Examples of oxidoreductase in the following topics:
-
- In biochemistry, an oxidoreductase is an enzyme that catalyzes the transfer of electrons from one molecule to another.
- In biochemistry, an oxidoreductase is an enzyme that catalyzes the transfer of electrons from one molecule, the reductant, also called the electron donor, to another the oxidant, also called the electron acceptor.
- For example, an enzyme that catalyzed this reaction would be an oxidoreductase: A– + B → A + B–.
- Oxidoreductases are classified as EC 1 in the EC number classification of enzymes.
- Oxidoreductases can be further classified into 22 subclasses: EC 1.1 includes oxidoreductases that act on the CH-OH group of donors (alcohol oxidoreductases); EC 1.2 includes oxidoreductases that act on the aldehyde or oxo group of donors; EC 1.3 includes oxidoreductases that act on the CH-CH group of donors (CH-CH oxidoreductases); EC 1.4 includes oxidoreductases that act on the CH-NH2 group of donors (Amino acid oxidoreductases, Monoamine oxidase); EC 1.5 includes oxidoreductases that act on CH-NH group of donors; EC 1.6 includes oxidoreductases that act on NADH or NADPH; EC 1.7 includes oxidoreductases that act on other nitrogenous compounds as donors; EC 1.8 includes oxidoreductases that act on a sulfur group of donors; EC 1.9 includes oxidoreductases that act on a heme group of donors; EC 1.10 includes oxidoreductases that act on diphenols and related substances as donors; EC 1.11 includes oxidoreductases that act on peroxide as an acceptor (peroxidases); EC 1.12 includes oxidoreductases that act on hydrogen as donors; EC 1.13 includes oxidoreductases that act on single donors with incorporation of molecular oxygen (oxygenases); EC 1.14 includes oxidoreductases that act on paired donors with incorporation of molecular oxygen; EC 1.15 includes oxidoreductases that act on superoxide radicals as acceptors; EC 1.16 includes oxidoreductases that oxidize metal ions; EC 1.17 includes oxidoreductases that act on CH or CH2 groups; EC 1.18 includes oxidoreductases that act on iron-sulfur proteins as donors; EC 1.19 includes oxidoreductases that act on reduced flavodoxin as a donor; EC 1.20 includes oxidoreductases that act on phosphorus or arsenic in donors; EC 1.21 includes oxidoreductases that act on X-H and Y-H to form an X-Y bond; and EC 1.97 includes other oxidoreductases.
-
- The enzymes, unique to reverse TCA, that function in catalyzing these reactions include: ATP citrate lyase, 2-oxoglutarate:ferredoxin oxidoreductase, and pyruvate:ferredoxin oxidoreductase.
- List the enzymes and function that are unique to the reverse TCA cycle (ATP citrate lyase; 2-oxoglutarate:ferredoxin oxidoreductase; pyruvate:ferredoxin oxidoreductase)
-
- Biochemically, ammonium oxidation occurs by the stepwise oxidation of ammonium to hydroxylamine (NH2OH) by the enzyme ammonium monooxygenase in the cytoplasm, followed by the oxidation of hydroxylamine to nitrite by the enzyme hydroxylamine oxidoreductase in the periplasm.
- Nitrite reduction is much simpler, with nitrite being oxidized by the enzyme nitrite oxidoreductase coupled to proton translocation by a very short electron transport chain, again leading to very low growth rates for these organisms.
-
- The third complex is composed of cytochrome b, another Fe-S protein, Rieske center (2Fe-2S center), and cytochrome c proteins; this complex is also called cytochrome oxidoreductase.
-
- Methanotrophs oxidize methane by first initiating reduction of oxygen (O2) to water (H2O) and oxidation of methane (CH4) to a more active species, methanol (CH3OH), using oxidoreductase enzymes called methane monooxygenases (MMOs).