

CK-12 Chemistry - Intermediate Quizzes and Tests

CK-12 Chemistry -Intermediate Quizzes and Tests

Donald Calbreath, Ph.D.

Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required)

To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-source, collaborative, and web-based compilation model, CK-12 pioneers and promotes the creation and distribution of high-quality, adaptive online textbooks that can be mixed, modified and printed (i.e., the FlexBook® textbooks).

Copyright © 2015 CK-12 Foundation, www.ck12.org

The names "CK-12" and "CK12" and associated logos and the terms "**FlexBook**®" and "**FlexBook Platform**®" (collectively "CK-12 Marks") are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws.

Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms.

Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/licenses/by-nc/3.0/), as amended and updated by Creative Commons from time to time (the "CC License"), which is incorporated herein by this reference.

Complete terms can be found at http://www.ck12.org/about/ terms-of-use.

Printed: June 25, 2015

AUTHOR Donald Calbreath, Ph.D.

Contents

1	Intro	duction to Chemistry Assessments	1
	1.1	What is Chemistry?	2
	1.2	The Scientific Method	5
	1.3	Introduction to Chemistry	8
2	Matt	er and Change Assessments	10
	2.1	Properties of Matter	11
	2.2	Classification Of Matter	14
	2.3	Changes in Matter	17
	2.4	Matter and Change	19
3	Meas	surements Assessments	22
	3.1	The International System of Units	23
	3.2	Unit Conversions	25
	3.3	Uncertainty in Measurements	27
	3.4	Measurements	30
4	Aton	nic Structure Assessments	33
1	4.1	Atoms	34
	4.2	The Nuclear Model of the Atom	36
	4.3	Isotopes and Atomic Mass	38
	4.4	Atomic Structure	41
5	Elect	rons in Atoms Assessments	44
	5.1	Light	45
	5.2	The Ouantum Mechanical Model	48
	5.3	Electron Arrangement in Atoms	51
	5.4	Electrons in Atoms	54
6	The	Periodic Table Assessments	56
Ů	61	History of the Periodic Table	57
	6.2	Flectron Configuration and the Periodic Table	60
	6.3	Periodic Trends	63
	6.4	The Periodic Table	66
7	Cher	nical Nomenclature Assessments	68
'	7.1	Jonic Compounds	60
	7.2	Molecular Compounds	72
	73	Acids and Bases	75
	7.4	Chemical Nomenclature	78
8	Ionic	and Metallic Bonding Assessments	81
Č	8.1	Ions	82
	···		52

	8.2 8.3 8.4	Ionic Bonds and Ionic Compounds85Metallic Bonds87Ionic and Metallic Bonding90
9	Covale	nt Bonding Assessments 93
	9.1	Lewis Electron Dot Structures
	9.2	Molecular Geometry
	9.3	Polarity and Intermolecular Forces
	9.4	Hybridization of Atomic Orbitals
	9.5	Covalent Bonding
4.0		
10	The M	ole Assessments
	10.1	
	10.2	Mass, volume, and the Mole
	10.5	Chemical Formulas 110 The Mele 118
	10.4	
11	Chemi	cal Reactions Assessments 121
	11.1	Chemical Equations
	11.2	Types of Chemical Reactions
	11.3	Chemical Reactions
12	Stoichi	ometry Assessments 129
	12.1	Mole Ratios
	12.2	Stoichiometric Calculations
	12.3	Limiting Reactant and Percent Yield
	12.4	Chapter Twelve Exam
13	States	of Matter Assessments 137
	13.1	Kinetic - Molecular Theory and Gases
	13.2	Liquids
	13.3	Solids
	13.4	Changes of State
	13.5	States of Matter
14	The Be	chavior of Gases Assessments 152
	14.1	Gas Properties
	14.2	Gas Laws
	14.3	Ideal Gases
	14.4	Gas Mixtures and Molecular Speeds
	14.5	The Behavior of Gases
15	Water	Assessments 166
	15.1	Properties of Water
	15.2	Aqueous Solutions
	15.3	Colloids and Suspensions
	15.4	Water
	_	
16	Solutio	176 176
	16.1	Solubility
	16.2	Solution Concentration
	16.3	Colligative Properties
	16.4	Net Ionic Equations

	16.5	Solutions	85
17	Therm	ochemistry Assessments	88
	17.1	Heat Flow	89
	17.2	Thermochemical Equations	91
	17.3	Heat and Changes of State	93
	17.4	Hess's Law	95
	17.5	Thermochemistry	98
18	Kinetic	s Assessments 2	01
	18.1	Rates of Reactions	02
	18.2	Rate Laws	05
	18.3	Reaction Mechanisms	09
	18.4	Kinetics	11
19	Equilib	2 2 2	14
	19.1	The Nature of Equilibrium	15
	19.2	Le Châtelier's Principle	18
	19.3	Solubility Equilibrium	21
	19.4	Equilibrium	23
20	Entrop	y and Free Energy Assessments 2	26
	20.1	Entropy	27
	20.2	Spontaneous Reactions and Free Energy	30
	20.3	Free Energy and Equilibrium	33
	20.4	Entropy and Free Energy	35
21	Acids a	nd Bases Assessments 2	38
	21.1	Acid-Base Definitions	39
	21.2	The pH Concept	42
	21.3	Acid and Base Strength	45
	21.4	Acid-Base Neutralization	49
	21.5	Salt Solutions	51
	21.6	Acids and Bases	54
22	Oxidat	ion-Reduction Reactions Assessments 2	57
	22.1	The Nature of Oxidation and Reduction	58
	22.2	Oxidation Numbers	61
	22.3	Balancing Redox Reactions	64
	22.4	Oxidation-Reduction Reactions	67
23	Electro	chemistry Assessments 2	70
	23.1	Electrochemical Cells	71
	23.2	Cell Potentials	74
	23.3	Electrolysis	77

Introduction to Chemistry Assessments

Chapter Outline

- 1.1 WHAT IS CHEMISTRY?
- 1.2 THE SCIENTIFIC METHOD
- **1.3** INTRODUCTION TO CHEMISTRY

1.1 What is Chemistry?

Lesson Quiz

Name	Class	Date
------	-------	------

- 1. Copernicus studied
 - a. anatomy
 - b. painting
 - c. movement of the sun
 - d. movement of the planets
- 2. Our major source of energy today is
 - a. wind
 - b. fossil fuels
 - c. nuclear energy
 - d. solar power
- 3. Genetic information is contained in
 - a. proteins
 - b. enzymes
 - c. DNA
 - d. lipids
- 4. Which one of the following is not a material created by chemists?
 - a. liquid crystals
 - b. enzymes
 - c. plastics
 - d. ceramics
- 5. Chemists contribute to the growth of food by all of the following except
 - a. developing new fertilizers
 - b. causing soil erosion
 - c. creating new pesticides
 - d. making new soil supplements
- 6. Algae blooms in water are caused by
 - a. excess oxygen in the water
 - b. death of fish
 - c. decrease in oxygen in the water
 - d. fertilizer run-off from the ground
- 7. Many scientists believe that global warming is caused by
 - a. sun spots
 - b. increase in carbon dioxide from burning fossil fuels

- c. lowered carbon dioxide due to increased use by plants
- d. forest fires
- 8. Improved rubber compounds for tires might be developed by
 - a. an inorganic chemist
 - b. a biochemist
 - c. an organic chemist
 - d. a physical chemist
- 9. There is often overlap between the disciplines of biochemistry and
 - a. inorganic chemistry
 - b. analytical chemistry
 - c. organic chemistry
 - d. physical chemistry
- 10. All of the following are body parts developed by chemists except
 - a. hip replacement
 - b. artificial skin
 - c. plastic blood vessels
 - d. artificial liver

- 11. _____ Microscopic refers to the small particles that make up all matter.
- 12. _____ Observing the rusting of iron is a microscopic process.
- 13. _____ Chemistry is the study of planetary orbits.
- 14. _____ The alchemists were never successful in their attempts to make gold.
- 15. _____ The elixir of life was supposed to convey immortality to humans.
- 16. _____ Pure chemistry always has a practical goal.
- 17. _____ The development of wrinkle-free fabrics is an example of applied chemistry.
- 18. _____ Studying how fast crystals form from salt solutions would be done by a physical chemist.
- 19. _____ A biochemist would do research on glucose use by the liver.
- 20. _____ Mercury is not toxic to humans.

Fill in the blanks:

- 21. Chemistry is the study of the ______ of matter and the ______ that matter undergoes.
- 22. Matter is anything that has ______ and takes up space.
- 23. A ______ would study the structure of the hemoglobin molecule and how it transports oxygen.
- 24. An organic chemistry works mainly with ______ compounds.
- 25. The ______ chemist would be interested in the analysis of rubies.
- 26. ______ chemistry is the study of the composition of matter, with a focus on separating, identifying, and quantifying chemical samples.
- 27. One element known to cause brain damage in children is ______.
- 28. Nuclear ______ is a process that occurs in the sun and stars.
- 29. Alchemy contributed to the production of _____.
- 30. The first attempts to classify substances were made by _____.
- 31. Iron is caused to rust by exposure to _____ and _____

Short Answers:

32. Rock salt sprinkled on ice will cause the ice to melt. Is this a macroscopic or microscopic process?

1.1. What is Chemistry?

- 33. Some scientists study the chemical processes that take place in the sun. Is this pure or applied chemistry? Explain your answer.
- 34. Why are some people concerned about using nuclear power plants to generate electricity?

1.2 The Scientific Method

Lesson Quiz

Name	Class	Date
------	-------	------

- 1. Copernicus made the following contribution to scientific progress
 - a. research on the behavior of solar flares
 - b. measured the path of the moon
 - c. developed the idea of the heliocentric solar system
 - d. discovered the double helix
- 2. The Renaissance was
 - a. a time of scientific progress
 - b. a medieval fair
 - c. a time when science was not important
 - d. a form of music
- 3. Experiments are important because they
 - a. provide jobs for scientists
 - b. test the laws of science
 - c. test the hypothesis
 - d. identify the control group
- 4. A theory has been
 - a. repeatedly tested and shown to be true
 - b. repeatedly tested without clear conclusions
 - c. tested once and accepted
 - d. poorly accepted by other scientists
- 5. All but one statement below tell why scientists work in groups
 - a. problems are complex
 - b. research progress takes a lot of time and money
 - c. some scientists are lazy and steal the ideas of others
 - d. research progress occurs in small steps, so many people are needed
- 6. What does peer review do for science?
 - a. allows reviewers to eliminate research they don't agree with
 - b. makes sure research papers have reliable information
 - c. costs extra money
 - d. helps get a textbook written
- 7. A scientific law
 - a. is always true
 - b. might be disproved at some point in the future

1.2. The Scientific Method

- c. is another term for a hypothesis
- d. does not have a lot of data to support it
- 8. The independent variable
 - a. always increases with an increase in temperature
 - b. is never affected by temperature
 - c. is changed during the experiment
 - d. stays the same throughout the experiment
- 9. In order to accept the results of an experiment
 - a. other scientists must have failed to repeat it
 - b. it must be repeatable
 - c. a report needs to be written
 - d. only a few people need to agree with the data
- 10. The control group for an experiment
 - a. checks the reproducibility of the experiment
 - b. serves as the dependent variable
 - c. serves as the independent variable
 - d. does not experience the variable being tested

True/False:

- 11. _____ A theory has been widely tested
- 12. _____ A theory never changes
- 13. _____ The control group also has the experiment run on it
- 14. _____ The Renaissance put an emphasis on observation and experimentation
- 15. _____ The National Science Foundation is the only agency that funds research.
- 16. _____ The dependent variable is the one that is changed during the experiment.
- 17. _____ If experimental results are inconsistent with a hypothesis, the hypothesis must be changed or discarded.
- 18. _____ An experiment must only be repeated by the group originally proposing the hypothesis in order for the hypothesis to be accepted.
- 19. _____ Publishing research in a scientific journal is not the only way to get the information out to others.
- 20. _____ A valid explanation for an observation does not need to be tested if it sounds reasonable.

Matching:

- 21. _____ I develop an initial explanation that answers the question I ask.
- 22. ____ My final explanation has been repeatedly tested and is accepted by many scientists.
- 23. _____ I see something that is puzzling and that I cannot explain.
- 24. _____ what I get when I run an experiment
- 25. _____ variable observed during an experiment
- 26. _____ no known exceptions
- a. observation
- b. theory
- c. hypothesis
- d. dependent
- e. results
- f. law

Fill in the blanks:

- 27. The Renaissance was a time of great ______ in Europe.
- 28. Leonardo da Vinci carried out systematic studies of _____ and _____.
- 29. Great advancements in _____, ____, and _____ were made during the Renaissance period.
- 30. The _____ model said that the Earth revolved around the Sun.
- 31. The scientific method is a ______ and _____ approach to the acquisition of knowledge.

Critical Write Question:

- 32. I want to study the effect of chocolate chips on the baking time of cookies. My experiment involves mixing different amounts of chocolate chips into cookie dough and baking the cookies in the oven at 350 °F for 30 minutes. I will assess the effect by observing the hardness of the final product.
 - a. What is the independent variable in this experiment? Explain your answer.
 - b. How many dependent variables are there? List them and explain your answer.
 - c. Should I carry out my cookie research by myself or have other people help? Explain your answer.
 - d. Briefly describe two ways I can share my cookie research with other scientists.

1.3 Introduction to Chemistry

Chapter Test

Name_____ Class_____ Date____

- 1. Baking soda produces <u>during cooking</u>.
 - a. air
 - b. carbon dioxide
 - c. water
 - d. hydrogen gas
- 2. Which of the following is not a part of the macroscopic world?
 - a. rainwater
 - b. rusting iron
 - c. bacteria
 - d. leaves
- 3. What was the philosopher's stone?
 - a. a material that protected the body
 - b. a rock that Aristotle sat on while he taught
 - c. a material used to refine ores
 - d. a substance that could change lead into gold
- 4. Which of the following would not be considered applied chemistry?
 - a. study of the atomic structure of rubidium
 - b. use of rubidium in jewelry
 - c. treatment of disease using rubidium solutions
 - d. research on how to dissolve rubidium
- 5. Which of the following statements about fossil fuels is incorrect?
 - a. coal, petroleum, and natural gas are fossil fuels
 - b. they are a nonrenewable energy source
 - c. the global supply of fossil fuels will never be used up
 - d. fossil fuels supply most of our energy needs today
- 6. Which of the following statements is correct?
 - a. plastics are never used in hip replacement because they wear out quickly
 - b. genetically modified corn requires more pesticides that the non-modified plant
 - c. plastic tubing has been successfully used to repair diseased blood vessels
 - d. drugs do not affect any chemical processes in the body
- 7. Which one of the following is a material that was not developed by chemists?
 - a. quartz
 - b. adhesives

- c. copper cables
- d. polymers
- 8. Nuclear fusion
 - a. is used to generate electrical energy
 - b. takes place in the sun and stars
 - c. involves making large molecules from smaller ones
 - d. takes place at low temperatures
- 9. The dependent variable
 - a. does not change as the temperature increases
 - b. will change as the independent variable changes
 - c. never changes
 - d. is varied in the experiment to see how it influences the results
- 10. One of the following statements about Leonardo da Vinci is not true
 - a. he was called the father of modern science
 - b. he studied water flow
 - c. he discovered penicillin
 - d. he did medical dissections

- 11. _____ A tablet of ibuprofen is macroscopic.
- 12. _____ Applied chemistry is involved in looking for basic scientific ideas.
- 13. _____ The alchemists wanted to find the philosopher's stone.
- 14. _____ A biochemist studies how the pancreas affects blood glucose levels.
- 15. _____ A physical chemist looks at the composition of rocks.
- 16. _____ Nuclear energy is safer than using fossil fuels.
- 17. _____ Mercury has been shown to be a toxic element.
- 18. _____ Algae in water is a result of too little fertilizer.
- 19. _____ Peer review helps make sure scientific papers are reliable.
- 20. _____ Grant money can be used to purchase test tubes.

Fill in the blanks:

- 21. _____ is a toxic element other than lead that is no longer used to any extent.
- 22. Drugs work because of their ______ with other chemicals in the body.
- 23. Kevlar was discovered by _____
- 24. Alchemists laid the foundation for the production of _____
- 25. Organic chemistry and ______ are often closely connected.
- 26. List the five points of the scientific method in order:
 - a. _____
 - b. _____
 - c. _____
 - d. _____ e. _____
- 27. When scientists write grant proposals, they explain the _____ and _____ of their research.

Short Answers:

- 28. Why is peer review an important part of the publication of scientific results?
- 29. Give an example in the medical field where a scientist might use more than one chemistry discipline.

Matter and Change Assessments

Chapter Outline

- 2.1 **PROPERTIES OF MATTER**
- 2.2 CLASSIFICATION OF MATTER
- 2.3 CHANGES IN MATTER
- 2.4 MATTER AND CHANGE

2.1 Properties of Matter

Lesson Quiz

Name_____ Class_____ Date____

- 1. One of the following is not a physical property of iron.
 - a. malleability
 - b. magnetism
 - c. rusting
 - d. color
- 2. You have a sample of cobalt chloride with the following properties. Which one is an intensive property?
 - a. 654 grams
 - b. density of 3.356 g/cm^3
 - c. melting point of 735°C
 - d. sky blue color
- 3. The ability of aluminum to be formed into sheets is called
 - a. malleability
 - b. ductility
 - c. conductivity
 - d. deformability
- 4. Which of the following is not a characteristic of a sample of sodium metal?
 - a. defined mass
 - b. defined volume
 - c. takes on shape of container
 - d. defined color
- 5. An irreversible change would be
 - a. chipping ice to flakes
 - b. getting a hair cut
 - c. condensing steam
 - d. boiling water
- 6. The particles of a solid have all the following properties except one
 - a. very close together
 - b. in fixed position
 - c. easily compressed
 - d. may not expand when heated
- 7. Which of the following is not a physical change that a lead bar could undergo?
 - a. melting
 - b. boiling

- c. being stretched
- d. oxidation
- 8. A gas sample will not demonstrate one of the following properties
 - a. has a definite volume
 - b. has no definite shape
 - c. has a definite mass
 - d. be easily compressed
- 9. A pure substance has the following characteristic
 - a. uniform composition
 - b. composition not definite
 - c. can be compressed
 - d. molecules rigidly arranged
- 10. One of the following statements is not true of a physical change
 - a. the shape is unchanged
 - b. the chemical composition is unchanged
 - c. the identity of the material is unchanged
 - d. the reactivity is unchanged

- 11. _____ Bromine becomes another substance when it changes from liquid to gas.
- 12. _____ Magnetism is a physical property.
- 13. _____ A sample of liquid bromine cannot evaporate.
- 14. _____ Metallic sodium can become a vapor.
- 15. _____ The volume of a sample of water does not change when heated.
- 16. _____ Physical changes are always reversible.
- 17. _____ Air can be considered a pure substance.
- 18. _____ Physical changes involving a change of state are reversible.
- 19. _____ Burning of gasoline is not a physical change.
- 20. _____ Chopping down a tree is a reversible physical change.

Fill in the Blank:

- 21. Making furniture from wood is a(n) _____ physical change.
- 22. A ______ takes the shape of its container.
- 23. A ______ forms when mercury is boiled.
- 24. The freezing point of bromine is a _____ property.
- 25. The rich red color of a ruby is an _____ property while the mass of the ruby is an ______ property.
- 26. _____ is the amount of space occupied by a material.
- 27. A _____ has a definite volume and shape.
- 28. _____ is the term used for a substance which has neither a definite shape nor a definite volume at room temperature.
- 29. The ability of copper to be made into sheets is called _____
- 30. _____, and _____ are excellent conductors of electricity.
- 31. How does the shape of a water sample change when it goes from liquid to solid?
- 32. Iodine has a melting point of 113.7°C and a boiling point of 184.3°C. Give the state an iodine sample is in at the following temperatures:
 - a. 205.3°C _____

Chapter 2. Matter and Change Assessments

b. 104.7°C _____ c. 176.9°C _____

2.2 Classification Of Matter

Lesson Quiz

Name Class Date	
-----------------	--

- 1. A chemical symbol is
 - a. something students need to memorize
 - b. a unique one- or two-letter abbreviation for an element
 - c. something that always refers to a Greek or Latin name
 - d. a letter than can refer to several elements
- 2. The process of breaking a compound down into its elements is called
 - a. recombination
 - b. rearrangement
 - c. dessication
 - d. decomposition
- 3. Which of the following is an element?
 - a. sea water
 - b. salt
 - c. a gold ring
 - d. methane gas
- 4. Sodium chloride is changed to metallic sodium and chlorine gas. This process represents a
 - a. physical change
 - b. chemical change
 - c. nuclear change
 - d. elemental change
- 5. Chicken noodle soup is a _____ mixture.
 - a. homogeneous
 - b. heterogeneous
 - c. homogenized
 - d. heterophilic
- 6. Distillation is a process of separating materials by
 - a. differences in solubility
 - b. differences in particle size
 - c. differences in color
 - d. differences in boiling point
- 7. H_2SO_4 is a(n)
 - a. element
 - b. mixture

- c. compound
- d. heterogeneous solution
- 8. A chemical formula
 - a. shows the elements in a compound
 - b. shows how to make a compound
 - c. shows the mixture present
 - d. shows the decomposition's products
- 9. Filtration separates
 - a. two or more liquid phases
 - b. solids in a heterogeneous mixture
 - c. solids from liquids in a heterogeneous mixture
 - d. solids from liquids in a homogeneous mixture
- 10. Another term for a homogeneous mixture is a
 - a. solution
 - b. suspension
 - c. solubilizer
 - d. stabilizer

- 11. _____ One element can be converted to another element using chemical processes.
- 12. _____ A mixture can only have two components.
- 13. _____ Potassium iodide (KI) is a mixture of potassium and iodine.
- 14. _____ A chemical symbol for an element must have only one letter.
- 15. _____ Blood is a heterogeneous mixture.
- 16. _____ The compound NiS is composed of nickel and sodium.
- 17. ____ Cooking oil is a homogeneous mixture.
- 18. _____ A homogeneous mixture consists of one phase.
- 19. _____ Elements can be broken down into simpler substances.
- 20. _____ The two or more elements in a compound have been chemically combined.

Fill in the blank:

- 21. Sucrose (C₁₂H₂₂O₁₁) is composed of _____, and _____,
- 22. The chemical symbol for silver is _____ and the Latin name is _____.
- 23. Cu/Sn would represent a mixture of _____ and ____
- 24. Sushi is a _____ mixture of rice and fish.
- 25. Kalium is the Latin name for the element _____.

Matching:

- 26. _____ change that produces matter with a different composition
- 27. _____ a mixture that is not uniform throughout.
- 28. _____ separate solid from liquids in a heterogeneous mixture.
- 29. _____ has uniform composition and properties
- a. heterogeneous
- b. phase
- c. chemical change
- d. filtration

2.2. Classification Of Matter

30. Listed below are the boiling points for several petroleum fractions. Describe how you would separate diesel oil from everything else.

TABLE 2.1:

Fraction	Boiling Point (0C)	Use
butane	below 30	natural gas
gasoline	100-150	car and truck fuel
diesel oil	200-300	fuel for trucks and trains
greases and waxes	400-500	lubricants

31. Describe how you would separate a mixture of lead buckshot and potassium nitrate fertilizer.

2.3 Changes in Matter

Lesson Quiz

Name_____ Class____ Date____

- 1. Which of the following is a physical change?
 - a. oxidation of sulfur
 - b. melting of sulfur
 - c. reduction of sulfur
 - d. combustion of sulfur
- 2. One chemical property of the element sodium is
 - a. a density of 0.968 grams/cm³
 - b. a melting point of 97.8°C
 - c. forms hydrogen gas when added to water
 - d. becomes transparent at extremely high pressures
- 3. Which of the following energy changes is associated with a chemical reaction?
 - a. condensation of steam
 - b. melting of lead
 - c. compressing of air
 - d. heating of mercuric oxide
- 4. One of the following is not a sign of a chemical reaction
 - a. change of color
 - b. formation of a precipitate
 - c. release of energy
 - d. production of a gas
- 5. Lead iodide produces a _____ color.
 - a. yellow
 - b. orange
 - c. red
 - d. tan
- 6. _____ is an example of a chemical change
 - a. melting
 - b. rusting
 - c. boiling
 - d. freezing
- 7. Terms that are not used to describe chemical changes include
 - a. fermenting
 - b. condensing

- c. burning
- d. rotting
- 8. A more general term for the rusting process is
 - a. erosion
 - b. explosion
 - c. corrosion
 - d. collusion
- 9. Zinc reacts with hydrochloric acid to form
 - a. oxygen
 - b. hydrogen
 - c. chlorine
 - d. helium
- 10. The reaction of magnesium with oxygen is called
 - a. reduction
 - b. fermentation
 - c. decomposition
 - d. combustion

- 11. _____ The reactants are listed on the right hand side of the arrow in a chemical equation.
- 12. _____ Minor products can be omitted from a chemical equation.
- 13. _____ The conversion of mercuric oxide to mercury produces energy during the reaction.
- 14. _____ Iron reacts with oxygen to form rust.
- 15. _____ Nitrogen gas forms when lead nitrate and potassium iodide react.
- 16. _____ In the reaction between zinc and sulfur, zinc is a reactant.
- 17. _____ Chemical properties can only be observed after the reaction has occurred.
- 18. _____ If zinc and sulfur are mixed at room temperature, no reaction occurs.
- 19. _____ No color change takes place when zinc and sulfur react.
- 20. _____ Light is emitted when mercuric oxide decomposes.

Fill in the Blank:

- 21. In the reaction involving the electrolysis of water, we can write the following equation:
- 22. $2H_2O \rightarrow 2H_2 + O_2$
 - a. One reactant in this process is _____.
 - b. One product in this process is _____.
- 23. The color in the test tube changes from ______ to _____ when mercuric oxide is heated.
- 24. Which of the following is a physical change and which is a chemical change?
 - a. Hydrogen and oxygen produce water _____
 - b. Chlorine gas has a maximum solubility in water at 49°F._____
 - c. Isopropyl alcohol forms water and carbon dioxide when burned._____
 - d. Nitrogen gas is very compressible _____
- 25. A ______ is a solid product that can form in a liquid mixture.

Short Answers:

- 25. A copper penny is left outside for a long period of time and becomes green. Is this a chemical change or a physical change? How would you tell?
- 26. When iron is heated, it gives off a red glow. Is this a sign that a chemical change has taken place?

2.4 Matter and Change

Chapter Test

Name	Class	Date
------	-------	------

- 1. One of the following is not a physical property of osmium
 - a. density of 22.59 g/cm³
 - b. boiling point of 5012°C
 - c. forms osmium tetroxide with air
 - d. silver metal
- 2. A reversible change is
 - a. trimming a tree
 - b. cooking a steak
 - c. cutting up a potato
 - d. making ice cubes
- 3. Which of the following is not true of gases?
 - a. a hydrogen sample has a constant volume when the temperature changes
 - b. oxygen can be compressed easily
 - c. nitrogen molecules are very far apart in the gaseous state
 - d. molecules of chlorine gas are constantly moving
- 4. Which of the following is a pure substance?
 - a. air
 - b. nitrogen
 - c. iron alloy
 - d. salt water
- 5. Only one of the following is a homogeneous mixture
 - a. chocolate chip ice cream
 - b. iced tea with lemon
 - c. coffee with sugar
 - d. root beer float
- 6. Sodium chloride forms sodium ions and chloride ions when dissolved in water. This process represents a
 - a. physical change
 - b. chemical change
 - c. nuclear change
 - d. elemental change
- 7. One of the following is not a characteristic of the compound NaHCO₃
 - a. composed of four elements
 - b. cannot be broken down into simpler substances

- c. can undergo chemical changes
- d. elements are combined in fixed proportions
- 8. The symbol Sn represents the element
 - a. arsenic
 - b. antimony
 - c. mercury
 - d. tin
- 9. The Latin word for potassium is
 - a. natrium
 - b. kalium
 - c. plumbum
 - d. stibium
- 10. A gas is produced when zinc reacts with
 - a. hydrochloric acid
 - b. sulfur
 - c. mercuric oxide
 - d. water

- 11. _____ A chemical symbol for an element can have up to three letters.
- 12. _____ Water is fairly incompressible.
- 13. _____ A physical change does not involve a change in the identity of the sample.
- 14. _____ Mercury can be broken down into simpler components.
- 15. _____ Nitrogen at room temperature is very compressible.
- 16. _____ A homogeneous mixture consists of two or more phases.
- 17. _____ Iodine gas is formed from the reaction between potassium iodide and water.
- 18. _____ Distillation separates materials on the basis of boiling point.
- 19. _____ Distillation columns are cooled by compressed air.
- 20. _____ Boiling water is a chemical change.

Matching:

- 21. _____ the chemical symbol for iron.
- 22. _____ a form of matter with a definite volume, but an indefinite shape.
- 23. _____ separate gold dust from river water.
- 24. _____ a solid product that can form in a liquid mixture.

a. liquid

- b. filtration
- c. precipitate
- d. Fe

Fill in the blank:

- 25. A ______ is formed when mercury is heated above its boiling point of 356.7°C.
- 26. The chemical symbol for gold is _____ and the Latin name is ______.
- 27. Rust is the product of the reaction between iron and _____
- 28. Zinc sulfide is the product formed in the reaction between _____ and _____.

29. _____ is the measure of the amount of matter that an object contains.

30. A _____ forms when mercury is boiled.

Short Answers:

- 31. Can air exist as a pure substance? Explain your answer.
- 32. How would you separate a mixture of salt, olive oil, and water?

Measurements Assessments

Chapter Outline

- 3.1 THE INTERNATIONAL SYSTEM OF UNITS
- 3.2 UNIT CONVERSIONS
- 3.3 UNCERTAINTY IN MEASUREMENTS
- 3.4 MEASUREMENTS

3.1 The International System of Units

Lesson Quiz Name_____ Class_____ Date____ Multiple Choice: 1. The SI symbol K stands for a. kilogram b. kilometer c. kelvin d. kilo 2. The SI symbol for the amount of a substance is a. mol b. mole c. m d. molar 3. 1500 megabytes is equivalent to a. 1.5×10^3 gigabytes b. 1.5×10^2 kilobytes c. 1.5×10^{-2} gigabtyes d. 1.5×10^6 kilobytes 4. The prefix hecto has an exponential factor of a. 1×10^2 b. 1×10^{-2} c. 1×10^4 d. 1×10^{-4} 5. It takes ______ dekaliters to make 100 L. a. 1000 b. 1 c. 10 d. 0.1 6. The Kelvin scale has ______ degrees between the melting point of ice and the boiling point of water.

- a. 125
- b. 150
- c. 75
- d. 100

7. The freezing point of water on the Kelvin scale is

- a. 273.15
- b. 373.15

- c. 173.15
- d. 473.15
- 8. The number 0.0015 can be represented by
 - a. 1.5×10^3
 - b. 1.5×10^2
 - c. 1.5×10^{-3}
 - d. 1.5×10^{-2}
- 9. The boiling point of water on the Celsius scale is
 - a. 0°C
 - b. 90°C
 - c. 110°C
 - d. 100°C
- 10. On which astronomical body will ten pounds of water weight less than it will on the Earth?
 - a. Jupiter
 - b. the moon
 - c. the sun
 - d. Arcturus

- 11. _____SI is the abbreviation for the Le Système International.
- 12. _____ A measurement includes both a number and a unit.
- 13. The ampere is another unit for mass.
- 14. _____ There are 103 hg in 10.3 kg.
- 15. _____ Very large volumes may be conveniently expressed in microliters.
- 16. _____ There is no molecular motion at 0° C.
- 17. _____ Kinetic energy is the energy due to motion.
- 18. _____ The joule is the SI unit for energy.
- 19. Particles of a cold material move faster than particles of a hot material.
- 20. _____ The Fahrenheit scale is commonly used for scientific work.

Fill in the Blank:

- 21. Give the decimal or scientific notation for the following:
 - a. 10956. ____
 - a. 10956. _____ b. 67.3×10^2 _____

 - c. 0.0045 _____ d. 8.2×10^{-2} ____
- 22. The freezing point of water on the Celsius scale is _____°C.
- 23. _____ is a measure of the average _____ energy of the particles in matter.
- 24. Weight measures the effect of _____ on an object.
- 25. When two objects at different temperatures are brought into contact with one another, heat flows from the object at the ______ temperature to the object at the ______ temperature.
- 26. The Celsius temperature scale was developed by the _____astronomer _____

Short Answers:

- 27. In a space capsule in outer space, why do objects float around?
- 28. Why is the SI system easier to use than the British system of units (feet, inches, pounds, ounces)?

3.2 Unit Conversions

Lesson Quiz

Name	Class	Date

Multiple Choice:

- 1. The metric system uses powers of ______ to make conversions.
 - a. 100
 - b. 10
 - c. 0.1
 - d. 0.01

2. A conversion factor is a ratio of _____ measures

- a. opposite
- b. larger
- c. smaller
- d. equivalent

3. To convert from centimeters to meters, multiple the centimeter value by

- a. 10
- b. 0.1
- c. 100
- d. 0.01
- 4. Area is a unit derived from the base units
 - a. $length \times mass$
 - b. width \times volume
 - c. $length \times volume$
 - d. $length \times width$
- 5. The units for speed are
 - a. m/s
 - b. kg/s
 - c. m/L
 - d. m^2/s

```
6. Density is
```

- a. $mass \times volume$
- b. an intensive property
- c. $\frac{volume}{mass}$
- d. an extensive property
- 7. The SI unit for concentration is mol/L. What does "mol" represent?
 - a. volume of material
 - b. temperature of material

- c. mass of material
- d. density of material
- 8. Dimensional analysis
 - a. measures room size
 - b. uses units to set up problems correctly
 - c. defines SI units
 - d. eliminates the need for a calculator

- 9. _____ Helium is heavier than carbon dioxide.
- 10. _____ Ice will sink in 100% ethanol.
- 11. _____ The SI unit of force is the newton.
- 12. _____ One hour = 360 seconds.
- 13. _____ 4 cups/2 pints is a conversion factor.
- 14. _____ In using dimensional analysis, the units do not need to be included in the calculations.
- 15. _____ The SI unit for energy is the joule.
- 16. _____ The official SI unit for density is g/m^3 .

Fill in the Blank:

- 17. ____ has a density of 19.3 g/mL.
- 18. There are _____ mm in 12 cm.
- 19. If 4 cups = two pints and 4 cups = 1 quart, there are _____ pints in 1 quart.
- 20. A _____ unit is a unit that results from a mathematical combination of SI base units.

Perform the Following Calculations

- 21. There are 2.54 cm in one inch. I only have a centimeter ruler, but need to cut a 12 inch strip of duct tape. How much duct tape will I cut?
- 22. The lab instructor wants to prepare enough NaBr solution so that each of the 25 students will have 40 mL. He only has a two liter flask to store the solution in. Will there be enough room for all the solution?
- 23. A runner decides to participate in a 7.2 km run, but only knows miles (he did not pay attention to the chemistry lecture on units). He does learn that there are 1.6 km in a mile. How far (in miles) will he be running?
- 24. How many μL are there in 0.0245 mL?
- 25. Gold is selling for \$37.33/gram. I have 45.7 grams of pure gold. How much money will I get when I sell it?
- 26. Gold has a density of 19.3 g/mL. I have a metal sample that I was told was pure gold. It has a mass of 397.2 grams and a volume of 33.1 mL. Is this a pure sample of gold?
- 27. A swimming pool has the following dimensions: $20 \ m \times 10 \ m \times 5 \ m$. What is the volume of the pool?
- 28. An old folk song starts "It's a long hard road from Lynchburg to Danville …". The distance between these two towns in southern Virginia is 70.3 miles. If a car travels at 55 miles/hour, how long will it take to get from one town to the other?
- 29. Why is a golf ball heavier than a tennis ball?
- 30. Helium gas has a density of 0.166 g/L at 20°C while radon gas has a density of 9.23 g/L at the same temperature. What can we infer about the relative sizes of the two types of atoms?

3.3 Uncertainty in Measurements

Lesson Quiz

Name	Class	Date
------	-------	------

Multiple Choice:

Use the diagrams below to answer the first three questions. Each X represents data points and the O indicates the accepted value.

1. Data set one is

- a. accurate but not precise
- b. precise but not accurate
- c. both accurate and precise
- d. neither accurate nor precise

2. Data set two is

- a. accurate but not precise
- b. precise but not accurate
- c. both accurate and precise
- d. neither accurate nor precise
- 3. Data set three is
 - a. accurate but not precise
 - b. precise but not accurate
 - c. both accurate and precise
 - d. neither accurate nor precise
- 4. The experimental value of a measurement is
 - a. voted on by the lab team
 - b. obtained from the instructor
 - c. looked up on the internet
 - d. measured during the experiment

5. The percent error is

a. an absolute value

3.3. Uncertainty in Measurements

- b. the ratio of experimental value to accepted value
- c. the ratio of accepted value to experimental value
- d. always a whole number
- 6. The amount of uncertainty in a measurement depends upon
 - a. the length of the ruler
 - b. operator error only
 - c. calibration of the balance
 - d. operator error and measurement equipment
- 7. The inventory report shows 23 graduated cylinder in the stockroom. How many significant figures are in this number?
 - a. one
 - b. two
 - c. none
 - d. infinite
- 8. Insignificant figures
 - a. are always ignored
 - b. help locate decimal points
 - c. are never reported
 - d. indicate accuracy
- 9. The value 0.008140 has _____ significant figures.
 - a. one
 - b. two
 - c. three
 - d. four

10. For addition and subtraction, it is the position of the _____ that influences the rounding of the value.

- a. decimal point
- b. leading zero
- c. first digit
- d. final digit

True/False:

- 11. _____ Precision is a measure of how close the values are to the accepted value.
- 12. _____ The percent error cannot be calculated if the experimental value and the accepted value are the same.
- 13. _____ When calculating percent error, the accepted value is in the denominator.
- 14. _____ The significant figures in a measurement consist of all the certain digits in that measurement plus one uncertain or estimated digit.
- 15. _____ All nonzero digits in a number are significant.
- 16. _____ When 1.023 is divided by 0.447, the answer will be rounded to four significant figures.
- 17. _____ In rounding numbers in addition and subtraction problems, use the number of decimal places as a guide in deciding how to round.
- 18. _____ Zeros that appear between other nonzero digits are always significant.

Fill in the Blank:

19. Fill in the following table:

TABLE 3.1:

Experiment	Accepted Value	Experimental Value	Percent Error
a.	14.85	12.99	
b.	14.85	16.32	
с.	14.85		+2.7

20. Fill in the following table:

TABLE 3.2:

Number	How Many Significant Figures?
a. 7.2×10^{-4}	
b. 33.709	
c. 1408	
d. 2.69×10^3	

21. Give the answer (with the correct number of significant figures) for the following calculations:

a. $67 \times 23.12 =$ b. 867 + 23.4 =c. $\frac{805}{35} =$ d. 296.4 - 39.1

Short Answers:

- 22. Why would we have a rounding rule (below 5, drop; above 5 round up)?
- 23. How can we be confident that the density of gold is really 19.3 g/mL?

TABLE 3.3:

Experiment	Accepted Value	Experimental Value	Percent Error
a.	14.85	12.99	12.5%
b.	14.85	16.32	9.9%
с.	14.85	15.25	+2.7

TABLE 3.4:

Number	How Many Significant Figures?	
a. 7.2×10^{-4}	two	
b. 33.709	five	
c. 1408	four	
d. 2.69×10^3	three	

3.4 Measurements

Chapter Test

Name_____ Class_____ Date____

Multiple Choice:

Three different technicians measured the amount of silver in an ore sample. The data for each technician are listed below. The accepted value as determined by a certified laboratory is 14.07 grams. Use this data to answer the first three multiple choice questions.

TABLE 3.5:

Analysis	Technician One	Technician Two	Technician Three
1	12.98	13.98	11.45
2	17.62	14.22	11.63
3	10.51	13.87	12.09
4	7.35	14.15	11.84

- 1. Data from technician one is
 - a. accurate but not precise
 - b. precise but not accurate
 - c. both accurate and precise
 - d. neither accurate nor precise
- 2. Data from technician two is
 - a. accurate but not precise
 - b. precise but not accurate
 - c. both accurate and precise
 - d. neither accurate nor precise
- 3. Data from technician three is
 - a. accurate but not precise
 - b. precise but not accurate
 - c. both accurate and precise
 - d. neither accurate nor precise
- 4. The SI unit for mass is
 - a. g
 - b. kg
 - c. mol
 - d. K
- 5. It takes _____ L to make 5 kL.
 - a. 500
 - b. 5
- c. 5000
- d. 0.5
- 6. Density is
 - a. $\frac{mass}{volume}$
 - b. <u>volume</u>
 - c. $mass \times volume$
 - d. $\frac{(mass)^2}{volume}$
- 7. The parameters that determine the joule are
 - a. $force \times length$
 - b. $force \times mass$
 - c. $force \times volume$
 - d. $force \times area$
- 8. The prefix milli has an exponential factor of
 - a. 1×10^{-9}
 - b. 1×10^{-6}
 - c. 1×10^{-3}
 - d. 1×10^{-12}

9. To convert from kilograms to grams, multiply the kilogram value by

- a. 10
- b. 1×10^2
- c. 1×10^2
- d. 1×10^4

10. The value 1.070 has _____ significant figures

- a. two
- b. four
- c. one
- d. three

True/False:

- 11. _____ N is another unit for mass
- 12. _____ Very small volumes may conveniently be expressed as μL .
- 13. _____ SI is the abbreviation for Le Système International d'Unités.
- 14. _____ A measurement includes only a number.
- 15. _____ 4 quarts/1 gallon is a conversion factor.
- 16. _____ Carbon dioxide has a higher density than radon.
- 17. _____ Temperature is an indicator of particle kinetic energy.
- 18. _____ All gases have a density less than that of water.
- 19. _____ The Swiss astronomer Anders Celsius developed the Celsius temperature scale.
- 20. _____ Precision is a measure of how close the experimental values are to one another.

Fill in the Blank:

- 21. The boiling point of water on the Kelvin scale is _____ °K.
- 22. There are _____ mL in 1098 μ L.
- 23. If there are 2.54 cm in an inch and 12 inches in a foot, how many cm are in a foot?
- 24. What is the area in square centimeters of a small pond that measures 3.6 $m \times 7.2 m$?

3.4. Measurements

- 25. The speed of light is $3.0 \times 10^8 \ m/s$. The moon is 384,400 km from the earth. How long does it take light reflected by the moon to reach us?
- 26. A small cruise ship contains 354,000 gallons of fuel. If the ship sails without stopping and burns 936 gallons of fuel per hour, will it be able to sail from London to New York (3459 miles) at a speed of 20 miles/hour without running out of fuel?

Short Answers:

- 27. Archimedes was asked to determine whether the gold in the king's crown was actually pure gold. How would you help Archimedes solve this problem using nothing more than a set of scales and a basin of water?
- 28. The United States "officially" uses the British system of pounds, inches, and gallons (among others). Would there be any advantages to changing all our measurements to the metric system like the rest of the world? Explain your answer.

Atomic Structure Assessments

Chapter Outline

4.1 ATOMS
4.2 THE NUCLEAR MODEL OF THE ATOM
4.3 ISOTOPES AND ATOMIC MASS
4.4 ATOMIC STRUCTURE

4.1 Atoms

Lesson Quiz

Name_____ Class____ Date____

- 1. Democritus believed the atom was
 - a. indivisible
 - b. made up of smaller particles
 - c. universally accepted
 - d. experimentally verified
- 2. Dalton believed that atoms could be
 - a. broken into parts
 - b. rearranged to create other atoms
 - c. combined to form compounds
 - d. used to form elements
- 3. By the 1700s scientists knew about
 - a. neutrons
 - b. elements
 - c. electrons
 - d. protons
- 4. Samples of a specific compound from different sources obey the law of
 - a. multiple proportions
 - b. simple proportions
 - c. definite proportions
 - d. ideal proportions
- 5. Our idea of the atom
 - a. has not changed since Democritus
 - b. has been fairly constant for 200 years
 - c. is essentially what John Dalton described
 - d. is very different from what Dalton described
- 6. Chemical reactions change the _____ of atoms
 - a. composition
 - b. arrangement
 - c. size
 - d. shape
- 7. Methane (one C, 4 H) and ethane (2 C, 6H) illustrate the law of
 - a. definite proportions
 - b. multiple proportions

- c. additive proportions
- d. conservation of mass
- 8. The law of conservation of mass says that the mass of products in a reaction
 - a. is greater than the mass of reactants
 - b. is less that the mass of reactants
 - c. is equal to the mass of reactants
 - d. all of the above

9. Atoms combine in simple ______ to form compounds.

- a. proportions
- b. fractional ratios
- c. whole number ratios
- d. variable ratios
- 10. A rearrangement of atoms could be called
 - a. chemical reaction
 - b. nuclear fission
 - c. transmutation
 - d. elemental partition

True/False:

- 11. _____ Carbon and oxygen can only combine to form one compound.
- 12. _____ The mass of reactants must equal the mass of products.
- 13. _____ John Dalton was the first person to propose a detailed structure for the atom.
- 14. _____ Mass ratio must be a whole-number ratio.
- 15. _____ Chemical reactions can change the identity of atoms.
- 16. _____ All samples of pure water contain the same ratio of H to O.
- 17. _____ Dalton predicted the idea of the neutron.
- 18. _____ The ideas of Democritus were rejected because there was no way to prove them.
- 19. _____ Dalton's ideas about the atom were based (in part) on the law of definite proportions.
- 20. ____ Dalton's theory was proposed in 1743.

Fill in the Blank:

- 21. The Greek word "atomos" means _____.
- 22. The approach of Democritus was _____, not scientific.
- 23. Formation of 46 grams of product from 46 grams of reactant illustrates the law of ______ of mass.
- 24. In the 1790s, a greater emphasis began to be placed on the _____ analysis of chemical reactions.
- 25. Mass cannot be ______ or _____ during a chemical reaction.
- 26. A given chemical compound always contains the same elements in the exact same _____ by mass.
- 27. An ______ is the smallest particle of an element that retains the properties of that element.
- 28. The sizes of atoms of the same element are _____.
- 29. Lead forms two compounds with oxygen. One compound contains 2.98 g of lead and 0.461 g of oxygen. The other contains 9.89 g of lead and 0.763 g of oxygen. For a given mass of oxygen, what is the lowest whole-number mass ratio of lead in the two compounds?

Short Answers:

- 30. What is a model? How does a model of the atom help understand a real atom?
- 31. A certain reaction uses 34.6 grams of reactants and forms 19.3 grams of product A plus a gas. Does this disprove the law of conservation of mass? Explain you answer.

4.2 The Nuclear Model of the Atom

Lesson Quiz

Name	Class	Date
------	-------	------

- 1. Dalton had a better idea of the atom than Democritus because
 - a. Dalton was smarter
 - b. Dalton had studied more science
 - c. Democritus did no experiments
 - d. Dalton had a better lab
- 2. A cathode ray tube emits
 - a. protons and electrons
 - b. electrons only
 - c. protons only
 - d. neither protons or electrons
- 3. Thomson showed the cathode ray had mass by using a
 - a. electronic balance
 - b. magnet
 - c. electric current
 - d. paddle wheel
- 4. Rutherford used _____ foil to study atomic structure.
 - a. aluminum
 - b. lead
 - c. gold
 - d. platinum
- 5. Millikan's _____ drop experiments helped determine some properties of the electron.
 - a. water
 - b. oil
 - c. octane
 - d. propane
- 6. A neutron has a charge of
 - a. +1
 - b. -1
 - c. 0
 - d. -2
- 7. What did Eugene Goldstein first call protons?
 - a. channel rays
 - b. canal rays

- c. cathane rays
- d. chain
- 8. In the "plum pudding" model of the atom, the electrons were
 - a. mixed in the nucleus with the protons
 - b. orbiting around the protons
 - c. layered on the surface of the proton mass
 - d. surrounded by the protons
- 9. The plum pudding model was proposed by
 - a. Eugene Goldstein
 - b. Robert Millikan
 - c. Ernest Rutherford
 - d. J.J. Thomson
- 10. Rutherford's atomic model became known as the _____ model.
 - a. neutron
 - b. nucleus
 - c. nuclear
 - d. noodle

- 11. _____ Dalton assumed that atoms could be further divided.
- 12. _____ The electron and the neuron have essentially the same mass.
- 13. _____ The Rutherford model of the atom came after the Thomson model.
- 14. _____ The charge on the neutron is zero.
- 15. _____ The electron has a mass 1/1840 of that of the proton.
- 16. _____ Millikan originally called the electron a corpuscle.
- 17. _____ Goldstein discovered the proton.
- 18. _____ Most alpha particles were not deflected by the gold foil.
- 19. _____ Rutherford concluded that the electrons deflected the alpha particles.
- 20. _____ Electrical charges are carried by particles of matter.

Fill in the Blank:

- 21. Millikan's studies measured the _____ of an electron.
- 22. A cathode ray tube has _____ at either end of the tube.
- 23. Cathode rays were deflected ______ a negatively charged metal plate and ______ a positively charged plate.
- 24. The ______ is a positively charged subatomic particle that is present in all atoms.
- 25. An alpha particle is about _____ times the size of a hydrogen atom.
- 26. A small number of alphas particles bounced off the gold foil at _____ angles.
- 27. The unique _____ and _____ of subatomic particles gives each element its specific identity.
- 28. The _____ was the first subatomic particle discovered.
- 29. The cathode ray travels from the _____ to the _____.
- 30. _____ charges attract one another.

Short Answer:

- 31. How did the discovery of the electron lead to other discoveries about the atom?
- 32. How would Thomson have interpreted the gold foil experiment to support his "plum pudding" model?

www.ck12.org

4.3 Isotopes and Atomic Mass

Lesson Quiz

Name	Class	Date

- Multiple Choice:
 - 1. The number of protons represents the
 - a. atomic mass
 - b. atomic number
 - c. atomic weight
 - d. atomic isotope
 - 2. The number of electrons in an element equals
 - a. the number of neutrons
 - b. the number of protons
 - c. the number of protons + neutrons
 - d. the number of protons –neutrons
 - 3. An element has an atomic number of 25. That element is
 - a. Na
 - b. Sr
 - c. Mn
 - d. Cr
 - 4. One proper way to indicate an isotope of Si with an atomic mass of 28 is
 - a. 28-Si
 - b. Si-28
 - c. 28Si
 - d. *Si*
 - 5. How many neutrons are in the nucleus of ${}^{96}_{42}Mo?$
 - a. 53
 - b. 42
 - c. 48
 - d. 54
 - 6. Two isotopes of an element differ in the number of
 - a. neutrons
 - b. protons
 - c. electrons
 - d. muons
 - 7. The carbon-12 nuclide is used to define the
 - a. atomic mass
 - b. atomic weight

- c. atomic mass unit
- d. atomic weight unit
- 8. The most abundant isotope of oxygen is
 - a. O-16
 - b. O-17
 - c. O-18
 - d. O-19
- 9. Average atomic mass is calculated from
 - a. atomic mass and atomic number
 - b. average of isotope masses
 - c. atomic masses and abundance of isotopes
 - d. relative abundance of isotopes
- 10. A mass spectrometer can determine
 - a. proton mass
 - b. neuron mass
 - c. electron mass
 - d. atomic mass

- 11. _____ Most elements have only two isotopes.
- 12. _____ Isotopic composition affects chemical reactivity.
- 13. _____ "Nuclide" refers to the nucleus of a given isotope of an element.
- 14. _____ The symbol ₈₂Pb indicates an element with an atomic mass of 82.
- 15. _____ Ge-73 is another way of showing atomic mass.
- 16. _____ The isotope $\frac{101}{44}Ru$ has 57 neutrons.
- 17. _____ The isotope in problem 16 has 47 electrons.
- 18. _____ Atoms are electrically neutral.
- 19. _____ The presence of isotopes supports Dalton' atomic theory.
- 20. _____ The number of neutrons = mass number –atomic number.

Fill in the Blank:

TABLE 4.1:

Element	Symbol	Protons	Neutrons	Electrons	Atomic	Atomic Mass
					Number	
Indium	In			49		114
Yttrium	Y		50		39	
Sulfur	S				16	32
Rubidium	Rb	37				85
Argon	Ar		22	18		

- 22. Calculate the average atomic mass of the following: In-113 4.29% and I-115 95.7%
- 23. Neutrons do not contribute to chemical reactivity and new compound formation. What changes would we have to make in writing chemical symbols if neutrons somehow changed in the course of a reaction?

T •		-		0.	
	RI	E.	4	· · ·	
			-		

Element	Symbol	Protons	Neutrons	Electrons	Atomic	Atomic Mass
					Number	
Indium	In	49	65	49	49	114
Yttrium	Y	39	50	39	39	89
Sulfur	S	16	16	16	16	32
Rubidium	Rb	37	48	37	37	85
Argon	Ar	18	22	18	18	40

4.4 Atomic Structure

Chapter Test

Name	Class	Date

- 1. Which of the following reactions illustrates the law of conservation of mass?
 - a. 43.2 g A + 17.9 g B \rightarrow 30.1 g C + 31.0 g D
 - b. $68.2 \text{ g A} \rightarrow 27.1 \text{ g B} + 43.5 \text{ g C}$
 - c. 12.3 g A + 9.6 g B \rightarrow 23.9 g C
 - d. 18.7 g A + 22.4 g B \rightarrow 26.3 g C + 21.6 g D
- 2. Rutherford used gold foil to study
 - a. nuclear particles
 - b. atomic structure
 - c. neutron composition
 - d. atomic masses
- 3. The oil drop experiment was performed by
 - a. Thomson
 - b. Goldstein
 - c. Millikan
 - d. Dalton
- 4. Canal rays was the first name given to
 - a. neutrons
 - b. electrons
 - c. protons
 - d. gluons
- 5. The nuclear model of the atom replaced the _____ model.
 - a. plum pudding
 - b. cherry pie
 - c. fudge sundae
 - d. plum tart
- 6. The atomic mass equals
 - a. the number of protons
 - b. the number of neutrons
 - c. the number of protons + neutrons
 - d. the number of electrons + neutrons
- 7. The symbol $^{108}_{47}Ag$ represents an isotope with
 - a. atomic number 108 and atomic mass 155
 - b. atomic number 108

- c. atomic number 47 and atomic mass 61
- d. atomic number 47 and atomic mass 108
- 8. Which of the following was not part of Democritus' model of the atom?
 - a. basic unit of matter
 - b. indivisible
 - c. smallest unit of matter
 - d. reacted to form molecules
- 9. A chemical reaction is
 - a. a rearrangement of atoms
 - b. a dividing of atoms
 - c. a creation of new atoms
 - d. a disappearance of atoms
- 10. The cathode ray tube helped in the discovery of
 - a. neutrons
 - b. electrons
 - c. atoms
 - d. nuclides

- 11. _____ Carbon and oxygen can form ten different compounds.
- 12. _____ Water has the same H:O ratio on Mars as it does on Earth.
- 13. _____ Millikan discovered the electron using an oil drop apparatus.
- 14. _____ The proton is 1840 times as heavy as the electron.
- 15. _____ The proton is much heavier than the neutron.
- 16. _____ The isotope ${}^{178}_{72}Hf$ has 106 neutrons.
- 17. ____ Cs-132 has 132 neutrons.
- 18. _____ Neutrons play an important role in chemical reactivity.
- 19. _____ The nucleus of an atom is electrically positive.
- 20. _____ The ideas of Democritus became popular very quickly.

Fill in the Blank:

- 21. The chemical and _____ properties of compounds are different than the properties of the _____ from which they were formed.
- 22. Mass is _____ conserved in chemical reactions.
- 23. Two carbon-oxygen compounds are carbon dioxide and carbon _____.
- 24. The three fundamental particles are called the _____, the _____, and the _____.

TABLE 4.3:

Element	Symbol	Protons	Neutrons	Electrons	Atomic	Atomic Mass
					Number	
cesium	$^{129}_{55}Cs$					
iridium	Ir	77				192
arsenic	As		41			74
palladium	Pd			46		106

26. Carbon and hydrogen form many compounds. Methane has 1 carbon and 4 hydrogens while ethane had 2

carbons and 6 hydrogens. Carbon has an atomic mass of 12 and H has an atomic mass of 1. What is the mass ratio of H to carbon in the two compounds?

27. There are two isotopes of boron. Boron-10 has a mass of 10.012937 amu and makes up 19.9% of the total. Boron-11 has a mass of 11.009305 amu and comprises 80.1% of the total. Calculate the average atomic mass of boron.

Element	Symbol	Protons	Neutrons	Electrons	Atomic	Atomic Mass
					Number	
cesium	$^{129}_{55}Cs$	55	74	55	55	129
iridium	Ir	77	115	77	77	192
arsenic	As	33	41	33	33	74
palladium	Pd	46	60	46	46	106

TABLE 4.4:

Electrons in Atoms Assessments

Chapter Outline

5.1	LIGHT
5.2	THE QUANTUM MECHANICAL MODEL
5.3	ELECTRON ARRANGEMENT IN ATOMS
5.4	ELECTRONS IN ATOMS

5.1 Light

Lesson Quiz

Name_____ Class_____ Date____

- 1. The visible spectrum of light spans the range of approximately
 - a. 300-500 nm
 - b. 400-600 nm
 - c. 300-700 nm
 - d. 400-700 nm
- 2. Energy levels of electrons in an atom are
 - a. continuous
 - b. discrete
 - c. random
 - d. variable
- 3. A low-frequency wave has a _____ wavelength.
 - a. long
 - b. short
 - c. variable
 - d. high
- 4. The units of frequency are
 - a. meters/second
 - b. cycles/meter
 - c. cycles/second
 - d. meters/minute
- - a. *n* = 1
 - b. *n* = 2
 - c. n = 3
 - d. *n* = 4
- 6. The emission spectrum for helium contains _____ lines than the hydrogen spectrum.
 - a. more
 - b. the same
 - c. less
 - d. variable
- 7. The photoelectric effect shows that light
 - a. is composed of waves

- b. can be divided into discrete wavelengths
- c. has properties of a particle
- d. is continuous
- 8. The photoelectric effect was first demonstrated by
 - a. Albert Einstein
 - b. Robert Millikan
 - c. John Dalton
 - d. J.J. Thomson
- 9. The amplitude of a wave is its
 - a. frequency
 - b. height
 - c. wavelength
 - d. velocity
- 10. Frequency is represent by the Greek letter
 - a. η
 - b. σ
 - c. v
 - d. λ

- 11. _____ The wavelengths of infrared light are longer than those of visible light.
- 12. _____ An electron and a photon are of equal mass.
- 13. _____ Electrons move to lower energy levels as they emit energy.
- 14. _____ Two of the hydrogen emission lines are in the infrared region.
- 15. _____ The threshold frequency is the minimum frequency of light that will eject electrons from a surface.
- 16. _____ The Bohr model of the atom explains the emission lines of iron.
- 17. _____ Electromagnetic radiation exhibits wavelike behavior.
- 18. _____ Light from a heated body is emitted at all wavelengths.
- 19. _____ Light as a particle helps explain some experimental results.
- 20. ____ Classical physics could completely explain the photoelectric effect.

Fill in the Blank:

- 21. The wavelengths of visible light are _____ than those of infrared light.
- 22. A ______ is the minimum amount of energy that can be gained or lost by an electron.
- 23. _____ cells are commonly found in common devices such as calculators.
- 24. One hertz equals _____
- 25. The ______ for an atom is the lowest energy state for that atom.
- 26. An atom is in an ______ state when its potential energy is higher than that of the ground state.
- 27. An ______ spectrum is seen when light emitted from an atom passes through a prism.
- 28. The change in energy when an electron makes the transition from one energy level to another can be calculated using the term _____.
- 29. X-rays have ______ energy levels than microwaves.

Calculate:

- 30. What is the frequency of light that has a wavelength of 6×10^{-10} m?
- 31. What is the frequency of light that has an energy of 3.71×10^{-17} J?

Short Answer:

32. Why does the gas in a gas discharge tube need to be at low pressure in order for the gas to emit light when an electric current is passed through the tube?

5.2 The Quantum Mechanical Model

Lesson Quiz

Name_____ Class____ Date____

- 1. The study of motion in large objects is called
 - a. traditional mechanics
 - b. quantum mechanics
 - c. classical mechanics
 - d. quantized mechanics
- 2. According to the Heisenberg Uncertainty Principle, the velocity and position of which of the following can never be measured very accurately?
 - a. a traveling missile
 - b. an electron in motion
 - c. a hockey puck shot at the goal
 - d. atomic emission lines
- 3. An electron cloud
 - a. shows exactly where the electron is located
 - b. gives a 75% probability of where the electron is located
 - c. gives a 90% probability of where the electron is located
 - d. gives a 65% probability of where the electron is located
- 4. Each electron can be described by _____ quantum numbers.
 - a. two
 - b. four
 - c. six
 - d. eight
- 5. The highest allowable sublevel for n = 3 is
 - a. s
 - b. f
 - c. d
 - d. p
- 6. The spin quantum number has _____ values.
 - a. two
 - b. three
 - c. one
 - d. four
- 7. The units of mass in the de Broglie wave equation are
 - a. µg

- b. mg
- c. g
- d. kg

8. An increase in the quantum number n means ______ in the distance of the electron from the nucleus.

- a. an increase
- b. no change
- c. a decrease
- d. a variable response

9. If the principal quantum number n = 4, the angular quantum number can have values for zero to

- a. 2
- b. 4
- c. 1
- d. 3

10. The magnetic quantum number tells us the

- a. shape of the orbital
- b. orientation of the orbital around the nucleus
- c. distance of the orbital from the nucleus
- d. spin of the orbital

True/False:

- 11. _____ The Bohr model of the atom only explains the behavior of the hydrogen electron.
- 12. _____ Electrons in atoms do not have defined energy levels.
- 13. _____ It is not possible to measure simultaneously the exact velocity and location of a jet plane traveling at 645 miles/hour.
- 14. _____ The Schrödinger wave equation predicts the probability of finding an electron in a given area of space.
- 15. _____ An orbital represents a two-dimensional area of space.
- 16. _____ The spin quantum number can have up to four values.
- 17. _____ The s orbital has a spherical shape.
- 18. _____ The principal quantum number designates the principal energy level occupied by the electron.
- 19. _____ The term for the discrete energy levels of an electron is quantal.
- 20. _____ Two electrons in the same orbital cannot have the same spin quantum number.

Fill in the Blank:

21. The following image is a depiction of a _____ orbital.

- 22. A d orbital electron can assume any one of _____ different orientations.
- 23. If the angular momentum quantum number has an l of 0, that designates an _____ orbital.
- 24. The study of the motions of subatomic particles is called ______
- 25. Solutions to the Schrödinger equation are called ______ functions.

5.2. The Quantum Mechanical Model

- 26. Each electron can be described by _____ quantum numbers.
- 27. A maximum of _____ electrons can be found in p orbitals.
- 28. The equation that described the wave nature of any particle was developed by _
- 29. Calculate the wavelength of a space shuttle with a mass of 2.05×10^7 kg travelling at a rate of 7.85×10^3 m/s.

Short Answer:

30. What major change in our thinking about the path of a moving electron had to be made with the advent of quantum theory?

5.3 Electron Arrangement in Atoms

Lesson Quiz

Name	Class	Date
------	-------	------

```
Multiple Choice:
```

- 1. The iodine atom has the electronic configuration $[Kr]4d^{10}5s^25p^5$. The number of valence electrons in this atom is
 - a. ten
 - b. fifteen
 - c. five
 - d. seven
- 2. Lower orbitals are filled before upper orbitals is a statement of the
 - a. Hund's rule
 - b. Aufbau principle
 - c. Pauli exclusion principle
 - d. de Broglie principle
- 3. The electron configuration for $_{12}$ Mg is
 - a. [Ne]3s²
 - b. $[Rn]3s^2$
 - c. [Ne]3s²3p²
 - d. [Rn]3s1
- 4. Electron configuration superscripts indicate
 - a. orbital shape
 - b. valence electrons
 - c. number of electrons in a given sublevel
 - d. number of reactive electrons
- 5. In writing the electron configuration for $_{14}$ Si, the noble gas to use as a shorthand symbol is
 - a. ₈₆Rn
 - b. ₂He
 - c. 10Ne
 - d. 18Ar

6. According to the Aufbau principle, the _____ electrons are next in line of filling after the 6s electrons.

- a. 5d
- b. 4f
- c. 4d
- d. 6p
- 7. Unpaired electrons in orbitals are a consequence of the
 - a. Hund's rule

- b. Pauli exclusion principle
- c. Aufbau principle
- d. Scrödinger equation
- 8. The first five electron sublevels in order of filling are
 - a. 1s, 2s, 3s, 2p, 3p
 - b. 1s, 2s, 2p, 3s, 3p
 - c. 1s, 2s, 3s, 3p, 2s
 - d. 1s, 3s, 2s, 3p, 2p
- 9. Valence electrons are
 - a. unpaired electrons in the outermost principal energy level
 - b. all electrons in the outermost orbital
 - c. electrons in the outermost principal energy level
 - d. electrons with paired spin in the outermost principal energy level
- 10. The orbital filling for ₃Li is
 - a. $\uparrow \downarrow \uparrow$
 - b. $\uparrow \uparrow \downarrow$
 - c. $\uparrow\uparrow\downarrow$
 - d. $\uparrow\uparrow\downarrow$

- 11. _____ An atom's electron configuration only describes the arrangement of the valence electrons.
- 12. _____ We can indicate the exact location of any electron.
- 13. _____5B will have one unpaired electron.
- 14. _____ Chlorine ([Ne]3s²3p⁵ has two unpaired electrons.
- 15. _____ All unpaired electrons must have the same spin.
- 16. _____ Orbitals and sub-levels are filled with electrons in order of increasing energy.
- 17. _____ Neon has one set of unpaired electrons.
- 18. _____ The electron configuration for ${}_{8}O$ is $1s^{2}2s^{2}2p^{4}$.
- 19. _____4Be $(1s^22s^2)$ has four valence electrons.
- 20. _____ The sum of the superscripts in an electron configuration is equal to the number of electrons in that atom.

Fill in the Blank:

- 21. The first ten electrons of the sodium atom are the ______ electrons.
- 22. In each case, indicate the next sublevel to be filled after the indicated sublevel has all its electrons:
 - a. 4s
 - b. 5p
 - c. 3d
 - d. 6s

23. Write the electron configurations for the following atoms:

- a. 19K
- b. 21Sc
- c. 15P
- d. ₁₈Ar
- 24. Use arrows to indicate the orbital configurations of the following atoms.
 - a. selenium: [Ar] $3d^{10}4s^24p^4$ –include only the valence electrons
 - b. titanium: [Ar] $3d^24s^2$

- c. niobium: [Kr]4d⁴5s
- 25. Two of the isotopes of tungsten are W-180 and W-186. How does the change in the number of neutrons affect the electron configuration of tungsten?

5.4 Electrons in Atoms

Chapter Test

Name_____ Class_____ Date____

- 1. Wavelength is defined as
 - a. the height of the wave
 - b. the distance between two peaks
 - c. the frequency of the wave
 - d. the speed of the wave
- 2. One of the following statements about the photoelectric effect is not true
 - a. the idea was developed by Albert Einstein
 - b. the effect can be seen at all frequencies of light
 - c. light can behave as a particle
 - d. electrons can be displaced when light shines on a metal surface
- 3. The spin quantum number gives
 - a. the angular momentum of the electron
 - b. the rate of rotation of the electron
 - c. the direction of spin of the electron
 - d. the position of the orbital
- 4. Chromium has the following electron distribution: [Ar]3d⁵4s. How many valence electrons does chromium have?
 - a. six
 - b. one
 - c. five
 - d. two
- 5. Wavelength is designated by the symbol
 - a. v
 - b. δ
 - c. η
 - d. λ
- 6. Frequency is measured as
 - a. cycles/second
 - b. cycles/minute
 - c. seconds/cycle
 - d. vibrations/minute
- 7. There are _____ possible orientations for p orbitals.
 - a. one

- b. three
- c. two
- d. four
- 8. The total number of allowable orbitals in the principal energy level n = 3 is
 - a. 6
 - b. 12
 - c. 9
 - d. 3

9. The units of velocity in the de Broglie wave equation are

- a. km/sec
- b. m/sec
- c. cm/sec
- d. m/minute

10. In writing the electron configuration for ${}_{24}Cr$, the noble gas to use as a shorthand symbol is

- a. 36Kr
- b. 10Ne
- c. ₁₈Ar
- d. 54Xe

True/False:

- 11. _____ Unpaired electrons may have different spins.
- 12. _____ $_{5}B(1s^22s^22p)$ has four valence electrons.
- 13. _____ The p orbital has two lobes.
- 14. _____ The allowable spin quantum numbers are +2/3 and -2/3.
- 15. _____ A photon has a greater mass than an electron.
- 16. _____ The second energy level is filled at the end of the second period.
- 17. _____ There is no 6f atomic sub-level.
- 19. _____ A filled orbital has an equal number of electrons spinning in each direction.
- 20. _____ The Aufbau principle gives the order of electron filling in atoms.

Fill in the Blank:

- 21. What is the atomic number for the element with the following filling pattern: $1s^22s^22p^5$ _____
- 22. What is the wavelength of light which has a frequency of 1015 Hz?
- 23. Write the electron configurations for the following elements:
 - a. ₂₂Ti
 - b. 19K
 - c. 13Al

24. Use arrows to indicate the orbitals for the following -ignore the noble gas component

- a. vanadium: [Ar]3d³4s²
- b. germanium (valence electrons only): $[Ar]3d^{10}4s^24p^2$
- c. polonium: [Hg]6p⁴
- 25. Calculate the wavelength of a bumblebee with a mass of 1×10^{-3} kg travelling at a rate of 2 m/s.

Short Answer:

26. Why would Einstein propose that the electron had properties of a particle?

CHAPTER 6

The Periodic Table Assessments

Chapter Outline

- 6.1 HISTORY OF THE PERIODIC TABLE
- 6.2 ELECTRON CONFIGURATION AND THE PERIODIC TABLE
- 6.3 PERIODIC TRENDS
- 6.4 THE PERIODIC TABLE

6.1 History of the Periodic Table

Lesson) Quiz
Name	Class Date
Multiple (Choice:
1	developed the idea of triads.
1 2 3 4	 Mendeleev Dobereiner Newland Moseley
2. The	Law of Octaves stated that every element had similar properties.
1 2 3 4	 eighth fourth second tenth
3. In N	Mendeleev's table, elements were arranged in order of increasing atomic mass.
1 2 3 4	 left to right right to left top to bottom bottom top
4. The	first element discovered based on Mendeleev's predictions was
1 2 3 4	. eka-gallium . aluminum . eka-aluminum . gallium
5. The	physicist proposed that the periodic table be based on atomic number.
1 2 3 4	 Rutherford Moseley Thomson Newland
6. Eac	h horizontal row of today's periodic table corresponds to the beginning of a new

- 1. principal energy level
- 2. spin quantum number
- 3. orbital filling
- 4. orbital sublevel
- 7. The vertical columns of the periodic table represent
 - 1. elements with similar atomic masses
 - 2. elements with similar atomic radii

- 3. elements with similar chemical reactivity
- 4. elements with similar numbers of neutrons
- 8. The only metal that is a liquid at room temperature is
 - 1. sodium
 - 2. radon
 - 3. mercury
 - 4. osmium
- 9. The triad system of classification was based on
 - 1. atomic number divided by three
 - 2. both physical and chemical properties
 - 3. similarities in orbitals
 - 4. atomic mass multiplied by three
- 10. The official numbering system for groups uses the numbers
 - 1. 1-16
 - 2. 1-20
 - 3. 1-19
 - 4. 1-18

- 11. _____ The lanthanide series is listed separately because those atoms are much larger than the others in that period.
- 12. _____ The Law of Octaves was widely accepted when it was first proposed.
- 13. _____ When the atomic masses of lithium and potassium are averaged, the resulting number is very close to the atomic mass of sodium.
- 14. _____ Mendeleev wrote the information about each element on separate note cards.
- 15. _____ Study of X-ray spectra led to the current definition of atomic number.
- 16. _____ Elements with similar chemical properties appear in the same horizontal group.
- 17. _____ The International Chemistry Union developed the current numbering system for the periodic table.
- 18. _____ Silicon is a typical metalloid.
- 19. _____ Period two has 18 elements in it.
- 20. _____ There are four broad classes of elements based on physical properties.

Fill in the Blank:

- 21. The vertical columns of the periodic table are called _____.
- 22. The Law of Octaves did not seem to work for elements heavier than _____.
- 23. Element 101 is named ______ in honor of the founder of the periodic table.
- 24. In the modern periodic table, elements are arranged in order of increasing ______.
- 25. A ______ is a good conductor of heat and electricity.
- 26. A period is a _____ row of the periodic table.
- 27. Metals are _____ and _____.
- 28. Some new elements have been found in nature, while others have been _____ in the lab.
- 29. Approximately _______% of the elements in the periodic table are metals.
- 30. The majority of nonmetals are _____.

Short Answers:

31. Would a computer have helped Mendeleev develop his periodic table? Explain your answer. Assume there was no internet available at the time.

32. A solid has been turned in to the research lab with a request to classify it as a metal, nonmetal, or metalloid. Describe how this could be done.

	_			
TABLE	6.1:	Class Period(s) (60	min)

Test	Metal	Nonmetal	Metalloid
heat conductivity	good	very poor	some
electrical conductivity	good	very poor	some
malleability	very malleable	little malleability	some
ductility	very ductile	little ductility	some

6.2 Electron Configuration and the Periodic Table

Lesson Quiz

Name_____ Class_____ Date _____

Multiple Choice:

- 1. The first 3s sublevel appears in period
 - 1. one
 - 2. two
 - 3. three
 - 4. four
- 2. The _____ sublevel first appears in period five.
 - 1. 3d
 - 2. 4s
 - 3. 4p
 - 4. 4d

3. The element with the electron configuration [Kr]4d⁵5s² appears in period

- 1. seven
- 2. five
- 3. three
- 4. four

4. An element with the electron configuration $[Ar]3d^54s^2$ is in the _____

- 1. f block
- 2. d block
- 3. p block
- 4. s block
- 5. All of the following are f-block elements except
 - 1. Re
 - 2. Sm
 - 3. Ho
 - 4. Ce
- 6. Only one of the following is a p-block element
 - 1. Te
 - 2. Ta
 - 3. Ti
 - 4. Tm
- 7. One of the following is not a group one element
 - 1. Rb
 - 2. Ca

- 3. Fr
- 4. Li
- 8. The p-block consists of elements in groups
 - 1. 1-2
 - 2. 3-12
 - 3. 13-16
 - 4. 13-18
- 9. Group 17 elements are called
 - 1. inert gases
 - 2. noble gases
 - 3. halogens
 - 4. halides
- 10. The transition elements have the _____ sublevel being filled
 - 1. s
 - 2. p
 - 3. d
 - 4. f

- 11. _____ Period six contains 32 elements.
- 12. _____ The 3d sublevel fills during the fourth period.
- 13. _____ The s-block elements are largely unreactive.
- 14. _____ Radium is a group 2 element.
- 15. _____ Helium has a $1s^2$ electron configuration and is placed in group 18.
- 16. _____ The *p* sublevel always fills after the *s* sublevel of a given principal energy level.
- 17. _____ In scandium $[Ar]3d^{1}4s^{2}$, the 3d electron is added before the 4s electron.
- 18. _____ There are ten elements in each period of the d-block.
- 19. _____ The actinides consists of nine elements.
- 20. _____ Many transition element compounds are brightly colored.

Fill in the Blank:

- 21. Reactions between alkali metals and _____ are extremely vigorous.
- 22. There are _____ periods on the periodic table.
- 23. The f sublevel has _____ orbitals.
- 24. The _____ are in group 18.
- 25. Alkaline earth elements all have _____ valence electrons, found in the outermost _____ sublevel.
- 26. Transition elements found pure in nature are _____, ____, and _____.
- 27. The halogens react vigorously with the _____ metals.
- 28. Compounds of xenon have been formed through reaction with _____ gas.
- 29. Fill in the blanks

TABLE 6.2: Class Period(s) (60 min)

Configuration	Period	Group	Block	Valence Electrons
$[Xe]4f^{14}5d^{5}6s^{2}$				
[Ne]3s ² 3p				
$1s^22s^22p^3$				

6.2. Electron Configuration and the Periodic Table

Short Answer:

30. Why is helium a group 18 element?

TABLE 6.3: Class Period(s) (60 min)

Configuration	Period	Group	Block	Valence Electrons
$[Xe]4f^{14}5d^{5}6s^{2}$	six	six	d	two
[Ne]3s ² 3p	three	thirteen	р	three
$1s^22s^22p^3$	two	fifteen	р	five

6.3 Periodic Trends

Lesson Quiz

- 1. The atomic radius is measured in
 - 1. picometers
 - 2. nanometers
 - 3. femtometers
 - 4. micrometers
- 2. The outer electron configuration for group 14 is
 - 1. ns^2
 - 2. np⁴
 - 3. ns^2p^3
 - 4. ns^2p^4
- 3. When oxygen forms an ion, the name ends in
 - 1. ate
 - 2. ite
 - 3. ode
 - 4. ide
- 4. Ionization energy is the energy needed to
 - 1. remove an electron from an atom
 - 2. add an electron to an atom
 - 3. add an electron to an ion
 - 4. remove a proton from an atom
- 5. For each period in the periodic table, the ionization energy is highest in group
 - 1. 15
 - 2. 18
 - 3. 13
 - 4. 10
- 6. The elements of group _____ gain electrons most readily.
 - 1. 4
 - 2. 7
 - 3. 13
 - 4. 17
- 7. Electron shielding is
 - 1. blocking inner orbital electron removal by outer electrons
 - 2. inner electron partially shielding outer electrons from proton charge
 - 3. blocking of protons from inner electron attractions
 - 4. p orbital blocking of s orbital removal

6.3. Periodic Trends

- 8. Electron affinity is the
 - 1. energy released when an electron is lost
 - 2. energy released when electrons change orbitals
 - 3. energy released when an atom gains an electron
 - 4. energy needed to release an electron from an atom
- 9. The atomic radius
 - 1. decreases from top to bottom on the periodic table
 - 2. increases from left to right across the periodic table
 - 3. increases from top to bottom on the periodic table
 - 4. is greatest in the middle of the periodic table
- 10. All of the following statements about electronegativity are true with one exception
 - 1. electronegativity is not a measured unit of energy
 - 2. involves repulsion of electrons on a compound
 - 3. fluorine is the most electronegative atom
 - 4. electronegativity values for metals are generally low

True/False:

- 11. _____ For group one elements, the ionic radius increases as the atomic number increases.
- 12. _____ Elements within a group share similar chemical properties.
- 13. _____ Some valence electrons are in d and f orbitals.
- 14. _____ Ions form by atoms losing or gaining electrons.
- 15. _____ The sulfide ion is formed when sulfur loses two electrons.
- 16. _____ It is easier to remove a paired electron than an unpaired electron.
- 17. _____ The second ionization energy for an element is always less than the first ionization energy.
- 18. _____ The radius of the calcium ion is less than the radius of the calcium atom.
- 19. _____ The noble gases have very high electronegativity values.
- 20. _____ The electron affinities of group 17 elements is much higher than those of group two elements.

Fill in the Blank:

- 21. A positively charged ion is called a _____ and a negatively charge ion is called an _____.
- 22. As the atomic _____ increases within a period, the atomic _____ decreases.
- 23. The outer electron configuration for group 16 is _____.
- 24. The chemical symbol for the magnesium ion is _____.
- 25. Ionization energies are measured in _____.
- 26. Ionization energies generally _____ from top to bottom within a group.
- 27. The removal of electrons always results in a cation that is _____ than the parent atom.
- 28. _____ attracts electrons better than any other element.
- 29. The distance between two adjacent aluminum atoms is 286 pm. The atomic radius of the AL atom is _______ pm.

Short Answers:

30. The potassium atom has 19 protons and 19 electrons. What will potassium most likely do to form an ion? The following patters are observed with regard to ionization energies (IE):

Element	IE1	IE2	IE3	IE4
Li	520	7300		
В	801	2430	3660	25,000
Mg	738	1450	7730	

TABLE 6.4: Class Period(s) (60 min)

Explain why the ionization energy suddenly increases significantly in each case.

6.4 The Periodic Table

Chapter Test

Name_____ Class_____ Date _____

- 1. Ions are formed by
 - 1. only loss of electrons
 - 2. loss or gain of electrons
 - 3. only gain of electrons
 - 4. simultaneous loss and gain of electrons
- 2. $_{40}$ Zr belongs in the
 - 1. s-group
 - 2. p-group
 - 3. d-group
 - 4. f-group
- 3. Mendeleev organized his periodic table based on
 - 1. electron orbitals
 - 2. electron number
 - 3. atomic number
 - 4. atomic mass
- 4. Ra is in the _____ group.
 - 1. alkali metals
 - 2. alkaline earth metals
 - 3. halogens
 - 4. noble gases
- 5. A group in the periodic table is
 - 1. a horizontal row of elements
 - 2. adjacent periods of elements
 - 3. a vertical column of elements
 - 4. adjacent columns of elements
- 6. The d sublevel has _____ electrons
 - 1. 6
 - 2. 2
 - 3. 10
 - 4. 14
- 7. The lanthanides are found in group _____ of the periodic table
 - 1. 5
 - 2. 3
- 3. 7
- 4. 10
- 8. Moseley made the following improvement to Mendeleev's periodic table
 - 1. used atomic numbers instead of atomic mass
 - 2. developed more accurate atomic mass values
 - 3. based the table on electron configurations
 - 4. organized the table based on protons plus neutrons

9. The group 14 elements have the electron configuration

- 1. ns^2np^3
- 2. $nsnp^4$
- 3. ns^2np^2
- 4. $nd^{10}s^2p^2$
- 10. Period 5 of the periodic table contains ______ elements
 - 1. 12
 - 2. 6
 - 3. 24
 - 4. 18

True/False:

- 11. _____ Ionization energy increases markedly after all valence electrons have been removed.
- 12. _____ Metalloids have one less valence electrons than metals in the same period.
- 13. _____ Newland's idea of octaves did not work well for elements with atomic numbers higher than calcium.
- 15. _____ The ion formed when Be loses an electron has a smaller atomic radius than the parent atom.
- 16. _____ As the atomic number increases within a group, the atomic radius also increases.
- 17. _____ A nonmetal has a high electrical conductivity.
- 18. _____ The number of valence electrons and the outer electron configuration are constant within a group.
- 19. _____ All noble gases have the ns^2np^6 electron configuration.
- 20. Chlorine is the most electronegative element.

Fill in the Blank:

Use a periodic table to help answer the following questions

- 21. All group 12 elements have a ______ valence electron configuration.
- 22. The period 7 group 3 elements are known as _____ and are characterized by having unfilled _____ and _____ orbitals.
- 23. More energy is released in the formation of a _____ ion than for the anions of any other elements.
- 24. Dobereiner's proposal about triads was the precursor of the idea of similar _____ of elements within groups.
- 25. Which halogen has an atomic number of 53 and an atomic mass of 126.0?
- 26. The inner transition elements are known as the _____ and _____. The majority of these elements have unfilled _____ sublevels.
- 27. The electron configuration $[Xe]4f^{14}5d^96s$ represents the element _____.
- 28. Write the electron configuration for $_{15}P$

Short Answers:

- 29. Explain why all valence electrons are either in an s or p orbital.
- 30. The first ionization energy for ${}_{5}B$ is 801 kJ/mol while the first ionization energy for ${}_{13}Al$ is 578 kJ/mol. Offer a reasonable explanation for this observation.

CHAPTER

Chemical Nomenclature Assessments

Chapter Outline

7.1 IONIC COMPOUNDS

7

- 7.2 MOLECULAR COMPOUNDS
- 7.3 ACIDS AND BASES
- 7.4 CHEMICAL NOMENCLATURE

7.1 Ionic Compounds

Lesson Quiz			
Name	Class	Date	
Multiple Choice:			
1. A molecular for	ormula shows		
 how man the arran the lowes the three 	y atoms are in the molecule gement of atoms in a molecule at whole-number ratio of atoms i dimension array of ions in a mo	in a molecule blecule	
2. One of the foll	owing is not a monatomic ion		
1. Na ⁺ 2. Cl ⁻ 3. ClO ⁻ 4. O ²⁻			
3. The oxide ion	has a charge of		
1. +1			

- 2. +2
- 3. -1
- 4. -2
- 4. The magnesium ion has a charge of
 - 1. +1
 - 2. +2
 - 3. -1
 - 4. -2
- 5. The Stock system is used in naming compounds containing
 - 1. metals
 - 2. cations
 - 3. transition metals
 - 4. transition anions
- 6. The correct name for the As^{3-} ion is
 - 1. arsenic
 - 2. arsenous
 - 3. arsenide
 - 4. arsenate
- 7. The correct charge for the chromium(III) ion is
 - $1. \ Cr^+$
 - 2. Cr^{2+}

- 3. Cr³⁺
- 4. Cr⁴⁺
- 8. _____ is the name for the HPO_4^{2-} ion
 - 1. monohydrogen phosphate
 - 2. hydrogen phosphite
 - 3. biphosphate
 - 4. hydrogen phosphate
- 9. Parentheses are used in ionic formulas when
 - 1. ionic symbols equal one another
 - 2. more than one polyatomic ion is present
 - 3. separating cations and anions
 - 4. when more than one monatomic ion is present
- 10. Hg_2^{2+} is a
 - 1. polyatomic cation
 - 2. polyatomic compound
 - 3. monatomic cation
 - 4. trivalent cation

True/False:

- 11. _____ Na₂Cl₂ is the correct empirical formula for sodium chloride.
- 12. _____ Ionic compounds exist in three-dimensional arrays of ions.
- 13. _____ The proper designation of charge for the potassium ion is K^{+1} .
- 14. HCO_3^- is the symbol for the bicarbonate anion.
- 15. _____ The peroxide anion is monatomic.
- 16. _____ Chlorine can form four different anions with oxygen.
- 17. _____ The final formula for a ternary ionic compound must be neutral.
- 18. _____ $Zn_6(PO_4)_4$ is the correct empirical formula for zinc phosphate.
- 19. _____ All carbon-containing compounds are considered to be organic.
- 20. _____ A ternary compound consists of three or more elements.

Fill in the Blank:

- 21. Name the following compounds:
 - 1. Ag_2S
 - 2. Fe₂O₃
 - 3. CuCl₂
 - 4. AuBr
 - 5. MnO
 - 6. Ag₃SO₄
- 22. Write formulas for the following compounds
 - 1. lead(II) nitride
 - 2. cobalt(III) selenide
 - 3. rubidium dichromate
 - 4. magnesium cyanide
 - 5. lithium hypochlorite
 - 6. ammonium arsenate

Short Answer:

23. What is the advantage of using a chemical formula instead of a chemical name?

7.2 Molecular Compounds

Lesson Quiz		
Name	Class	Date
Multiple Choice:		
1. Only one of t	he following statements about n	nolecular compounds is true:
 molecul molecul molecul molecul 	ar compounds exist in extended ar compounds are made up of a ar compounds form bonds betw ar compounds are represented b	arrays Iternating positive and negative ions een pairs of atoms by empirical formulas
2. Which of the	following is a binary molecular	compound?
 NaCl CH₃Cl Na₂Cr₂4 CH₃CH 	D ₇ 2CH ₃	
3. The prefix	could designate a compo	und with six carbon atoms.
 tetra hexa octa deca 		
4. The compour	d tribromopentane contains	bromine atoms
 two three four five 		
5. The element	follows Cl when writing bir	nary compound formulas.
1. O		

- 2. H
- 3. Br
- 4. S
- 6. The formula for sulfur dioxide is
 - 1. SO
 - 2. S₂O
 - 3. SO₂
 - 4. S_2O_2
- 7. The formula P_2O_5 represents the compound
 - 1. pentoxide diphosphate
 - 2. diphosphorus pentoxide

- 3. phosphorus pentaoxide
- 4. diphosphopentoxide
- 8. The formula BH₃ represents the compound
 - 1. boron trihydride
 - 2. beryllium trihydride
 - 3. boron trihydrate
 - 4. boron trihydogen

9. Tellurium trioxide is represented by the following formula

- 1. Te₂O₃
- 2. TeO₃
- 3. Te₃O₂
- 4. TeO₄
- 10. Oxygen difluoride has the formula
 - 1. OF₃
 - 2. O₃F
 - 3. O₃F₃
 - 4. OF₂

True/False:

- 11. _____ Carbon tetrachloride is an ionic compound.
- 12. ____ Carbon monoxide contains one oxygen atom.
- 13. _____ Cl and O can combine in a variety of ratios.
- 14. _____ Generally, the most electronegative element is written first in a formula.
- 15. _____ The prefix mono is always used if there is one atom of the first element.
- 16. _____ The ending of the second element's name is changed to -*ide*.
- 17. _____ Four oxygen atoms is always referred to as tetraoxide.
- 18. _____ Metalloids generally form molecular compounds.
- 19. _____ Hepta- is the prefix used to designate six atoms of a specific element in a compound.
- 20. ____ The name dinitrogen monoxide suggests a compound containing two nitrogen atoms and one oxygen atom.
- 21. Name the following compounds:
 - $1. \ S_2Cl_2$
 - 2. NO₂
 - 3. CCl₄
 - 4. IBr₄
 - $5. \ BrF_5$
 - 6. SiO_3
- 22. Write formulas for the following compounds:
 - 1. bromochloride
 - 2. oxygen difluoride
 - 3. phosphorus trihydride
 - 4. diiodine pentoxide
 - 5. tricarbon octabromide
 - 6. disulfur difluoride

7.2. Molecular Compounds

23. How are the atoms held together in molecular compounds? How does this differ from attraction in ionic compounds?

7.3 Acids and Bases

Lesson Quiz Name _____ Class _____ Date _____ Multiple Choice: 1. _____ produce H⁺ when dissolved in water. 1. acids 2. molecular compounds 3. bases 4. ionic compounds 2. A _____ produces hydroxide ions when dissolved in water. 1. acid 2. molecular compounds 3. base 4. ionic compounds 3. A base contains at least one _____ atom 1. Na 2. O 3. K 4. Cl 4. One of the following does not contain acids 1. citrus fruits 2. citrus juices 3. drain cleaners 4. vinegar 5. Acid structure is 1. extended 2. three-dimensional 3. ionic 4. molecular

- 6. Base structure is
 - 1. molecular
 - 2. covalent
 - 3. ionic
 - 4. shared electrons
- 7. NH₄OH is properly named
 - 1. nitrogen tetrahydride hydroxide
 - 2. ammonium hydroxide

- 3. ammonium basic oxide
- 4. nitrogen hydroxide
- 8. The proper name for HCl in water is
 - 1. hydrogen chloride
 - 2. hydrochloride
 - 3. hydrochloric acid
 - 4. hydride chloric acid

9. When the anion ends in -ite, the suffix for the acid is

- 1. -*us*
- 2. -*ic*
- 3. *-ate*
- 4. -*ous*

10. It is the _____ of the anion that determines how the acid is named.

- 1. suffix
- 2. prefix
- 3. beginning
- 4. middle

True/False:

- 11. _____ A binary acid is composed of hydrogen and one other element.
- 12. _____ CH₃Cl is an acid
- 13. _____ All monatomic anions end in -ide.
- 14. _____ The acid prefix for an anion ending in *-ide* is hypo-.
- 15. _____ The proper name for $Ca(OH)_2$ is calcium dihydroxide.
- 16. _____ The hydroxide ion is polyatomic.
- 17. _____ Acids are electrically neutral.
- 18. _____ H_2SO_4 is called hydrosulfic acid.
- 19. _____ All inorganic bases are called hydroxides.
- 20. _____ An -*ite* anion requires the use of -*ous* in naming the acid.

Fill in the Blank:

- 21. Name the following compounds:
 - 1. HBr
 - 2. HNO₂
 - 3. Ba(OH)₂
 - 4. RbOH
 - 5. H₃PO₃
 - 6. H_2CrO_4
- 22. Write the formulas for the following compounds:
 - 1. carbonic acid
 - 2. hydroiodic acid
 - 3. strontium hydroxide
 - 4. iron(II) hydroxide
 - 5. permanganic acid
 - 6. chloric acid

Short Answer:

23. Why does the definition of an acid include two parts? Is it enough to say that acids contain hydrogen atoms?

7.4 Chemical Nomenclature

Chapter Test

Name	Class	Date
Multiple Ch	noice:	
1. An ac	cid contains at least one atom.	
1. 2. 3. 4.	O Cl H N	
2. The S	Stock system is used with	
1. 2. 3. 4.	transition metals noble gases alkali metals halogens	
3. The n	nolecular formula shows	
1. 2. 3. 4.	the shape of the molecule the number of atoms in the molecule the number of ions in the molecule the whole number ratio of atoms in the molecule	
4. Catio	ns are generally formed by	
1. 2. 3. 4.	removing some of the valence electrons removing only one of the valence electrons removing all the valence electrons adding to the valence electron sublevel	
5. Trans	sition metals	
1. 2. 3. 4.	are found in groups 1 and 2 form more than one type of stable cation are all f block elements are atomically unstable	
6. Oxyg	en trifluoride has the following formula	
1	OF	

- 1. OF₃
- 2. O₃F
- 3. O_3F_3
- 4. OF₂
- 7. Selenium dioxide has the following formula
 - 1. SeO₃
 - 2. Se₃O₂

- $3. \ SeO_2$
- 4. Se_2O_2
- 8. When dissolved in water, HCl gas will
 - 1. stay unchanged
 - 2. form extended arrays of HCl molecules
 - 3. form HCl^+ ions
 - 4. form H^+ and Cl^-
- 9. A binary compound
 - 1. contains two types of atoms
 - 2. contains atoms combined in ratios of two
 - 3. is a compound made of two metals
 - 4. is a compound made of two nonmetals
- 10. The correct name for Sn_3P_2 is
 - 1. tin phosphide
 - 2. tin(II) phosphate
 - 3. tin(II) phosphide
 - 4. tin phosphate

True/False:

- 11. _____ KMnO₄ is a ternary compound.
- 12. ____ Ca(II) is the correct way to name the Ca^{2+} ion.
- 13. _____All binary compounds are electrically neutral.
- 14. _____ A polyatomic ion has a charge of +2 or greater.
- 15. _____ Carbon dioxide has two carbons in between two oxygens.
- 16. _____ The formula for carbon tetrabromide is CBr₄.
- 17. _____ A base produces hydronium ions when dissolved in water.
- 18. _____ All monatomic ions end in ate.
- 19. ____ CN^- is the cyanate anion.
- 20. _____ AgCl is known as silver chloride.

Fill in the Blank:

- 21. Name the following compounds
 - 1. NaClO₃
 - 2. K₂SO₃
 - 3. H₃PO₄
 - 4. MnCl₂
 - 5. AuI_3
 - 6. Ba(NO₃)₂
 - 7. H_2SO_4
- 22. Write formulas for the following compounds
 - 1. dinitrogen pentoxide
 - 2. nickel(II) chloride
 - 3. iron(III) silicate
 - 4. hydroiodic acid
 - 5. chromium(II) hydroxide
 - 6. carbon tetranitrate

7.4. Chemical Nomenclature

7. ammonium cyanide

Short Answer:

23. Why is it so important to have he exact name and formula for a compound?

Ionic and Metallic Bonding Assessments

Chapter Outline

8.1	IONS
8.2	IONIC BONDS AND IONIC COMPOUNDS
8.3	METALLIC BONDS
8.4	IONIC AND METALLIC BONDING

8.1 lons

Lesson Quiz

Name	Class	_ Date
Multiple Choice:		

- 1. All of the elements below have two valence electrons except
 - 1. Sr
 - 2. Ra
 - 3. Cr
 - 4. Be
- 2. Tc has _____ valence electrons
 - 1. 2
 - 2. 5
 - 3. 7
 - 4. 9

3. Which of the following transition metal ions is not particularly stable?

- 1. Co^{2+}
- 2. Cu⁺
- 3. Ag⁺

4.
$$Zn^{2+}$$

- 4. Anions are formed when
 - 1. atoms lose one electron
 - 2. atoms gain one electron
 - 3. atoms lose their valence shell electrons
 - 4. atoms add electrons to fill their valence shell
- 5. In order to achieve a full octet, the arsenic atom will most likely
 - 1. lose 3 electrons
 - 2. gain 3 electrons
 - 3. lose 5 electrons
 - 4. lose 2 electrons
- 6. The electron configuration for the Mo^+ ion is
 - 1. [Kr]4d⁵5s
 - 2. [Xe]4d⁵
 - 3. $[Kr]4d^4$
 - 4. $[Kr]4d^5$

7. Atoms of ______ tend to gain electrons to satisfy the octet rule.

- 1. gases
- 2. halogens

- 3. metals
- 4. noble gases
- 8. The P^{3-} anion is isoelectric with
 - 1. Ne
 - 2. Xe
 - 3. Kr
 - 4. Ar

9. S-block elements have a maximum of _____ valence electrons

- 1. 1
- 2. 3
- 3. 2
- 4. 4

1

is the electron dot structure for which set of elements?

- 1. halogen
- 2. group one
- 3. noble gases
- 4. group two

True/False:

- 11. _____ [Ar] $3d^34s^2$ is the electron configuration for vanadium.
- 12. ____ Mg^{2+} and Ar are isoelectronic.
- 13. _____ The pseudo noble gas electron configuration for some transition elements contains 16 electrons.
- 14. _____ All the period six elements have a filled 4f principal energy level.
- 15. _____ Barium can achieve a complete outermost principal energy level by losing two electrons.
- 16. _____ Linus Pauling first proposed the octet rule.
- 17. _____ Zr has two valence electrons.
- 18. _____ The electron dot diagram for Cs will have two dots in it.
- 19. _____ Electron dot diagrams for a given group are identical (except for the element symbol).
- 20. _____ The octet rule indicates that elements form compounds in ways that give each element eight electrons.

Fill in the Blank:

- 21. Which cation is isoelectronic with Cl^{-} ?
- 22. Draw electron dot diagrams for
 - 1. P
 - 2. Po
 - 3. As
- 23. Write the ion formed by each of the following elements in order to fulfill the octet rule:
 - 1. B
 - 2. I
 - 3. Zn
 - 4. Be

24. Write the electron configurations for the following ions:

- 1. Ag^+
- 2. Se^{2-}

8.1. Ions

3. Tc²⁺ 4. Te²⁻

Short Answer:

25. Do the transition elements always follow the Aufbau rules?

8.2 Ionic Bonds and Ionic Compounds

Lesson Quiz			
Name	Class	Date	
Multiple Choice:			
 One of the fol the K-Cl the Ra-C the Li-C the Mg-C 	lowing statements is not true ionic bond is weaker than the Na I ionic bond is stronger than the I ionic bond is stronger than the F Cl ionic bond is stronger than the	a-Cl ionic bond Be-Cl ionic bond Rb-Cl ionic bond Ba-Cl ionic bond	
2. Oxygen can n	nost easily form an ion by		
 adding t adding f losing tv 	wo electrons our electrons vo electrons		

4. losing four electrons

_{3.} : X:

is the electron dot symbol for the group two element

- 1. Be
- 2. S
- 3. P
- 4. Li
- 4. The formula unit for aluminum sulfate is
 - 1. AlSO₄
 - 2. $Al(SO_4)_2$
 - 3. $Al_2(SO_4)_3$
 - 4. $Al_3(SO_4)^2$

5. Models of ionic compounds can be illustrated using a _____ model

- 1. ball and stick
- 2. crystal lattice
- 3. ball and chain
- 4. stick crystal

6. Only one of the following compounds will not conduct electricity when melted

- 1. KCl
- 2. CaBr₂
- 3. CH₃Br
- 4. NaI
- 7. Which of the following ions will form the weakest bond with Na^+

- 1. F⁻
- 2. I⁻
- 3. Cl⁻
- 4. Br⁻

8. The nitride anion involves the addition of _____ electrons to the N atom.

- 1. 2
- 2. 3
- 3. 1
- 4. 4

9. Ionic compounds exist in extended arrays to

- 1. make stacking easier
- 2. balance charges
- 3. minimize potential energy of the system
- 4. optimize electron transfer
- 10. The most accurate representation of ion packing is the
 - 1. ball and stick model
 - 2. space filling array model
 - 3. space balancing array model
 - 4. ball and rod model

True/False:

- 11. _____ Copper can lose two electrons to form an ion.
- 12. _____ One formula unit of $Al_2(SO_4)_3$ contains two sulfates for every aluminum.
- 13. _____ All group 2 cations will have the same packing arrangement.
- 14. _____ The coordination number tells how many ions surround an ion of opposite charge.
- 15. _____ Coordination numbers for the cation and anion in a crystal are identical.
- 16. _____ Transition ions give rise to color in crystals.
- 17. _____ Melted CsCl can conduct electricity.
- 18. _____ Ions of the same charge repel one another.
- 19. _____ Ion crystals form rough jagged edges when they break.
- 20. _____

: X :

is the period 4 electron dot formula for germanium.

Fill in the Blank:

- 21. LiCl and PbCl₂ are both ionic compounds. Which cation will more strongly attract the chloride ions? Explain your answer.
- 22. Iodine is a _____ and _____ one electron to become an anion.
- 23. The formula unit of an ionic compound is always an _____ formula.
- 24. _____ and _____ alternate in the extended three-dimensional array of an ionic compound.
- 25. Why do CsCl and LiCl not have identical packing arrangements?
- 26. What type of packing arrangement does CoCl₂ have when dissolved in water?
- 27. _____ charged particles attract one another.
- 28. An _____ compound is an electrically _____ compound consisting of _____ and _____ ions.

8.3 Metallic Bonds

Less	n Quiz	
Name _	Class	Date
Multipl	Choice:	
1. A	metallic bond is	
	 the attraction of metal ions to one another the attraction of metal ions to mobile elec the force generated by stationary electron a bond between a metallic cation and an a 	r etrons Is anion
2. N	etals conduct heat because	
	 electrons vibrate freely electrons are easily elevated to higher ene electrons release energy when they drop t electrons flow freely through the metal 	ergy levels to lower energy levels
3. A	oms in metals	
	 are stationary vibrate freely flow through the metal surface experience periodic loss of electricity 	
4. T	e metal crystal has the greatest	amount of space between atoms
	 hexagonal polyhedric cubic face centered cubic body centered 	
5. V	hich two metal crystal structures have the sar	me coordination number?
	 body-centered cubic and hexagonal face-centered cubic and hexagonal body-centered cubic and face-centered cu 	ıbic

- 4. face-centered cubic and polygonal
- 6. Brass is an alloy composed of
 - 1. copper and tin
 - 2. zinc and tin
 - 3. zinc and vanadium
 - 4. copper and zinc
- 7. Only one of the following is a constituent of steel
 - 1. copper
 - 2. boron

- 3. strontium
- 4. calcium
- 8. One of the following is not a property of metals
 - 1. high ductility
 - 2. high malleability
 - 3. high melting point
 - 4. high compressibility

9. The photoelectric effect contributes to the _____ of metals

- 1. luster
- 2. malleability
- 3. conductivity
- 4. ductility

10. The cubic body-centered crystal structure is seen in the metal _____.

- 1. Al
- 2. Cd
- 3. Cr
- 4. Cu

True/False:

- 11. _____ The major constituent of steel is iron.
- 12. _____ Brass is an alloy of copper and tin.
- 13. _____ Close packing provides room for the electrons to flow easily.
- 14. _____ Brass is used in the manufacture of trumpets.
- 15. _____ Se shows a high degree of metallic bonding.
- 16. _____ The hexagonal packing arrangement can be seen in crystals of Mg.
- 17. _____ Metallic materials are very brittle.
- 18. _____ Metal cations are surrounded by mobile electrons.
- 19. _____ Metal electrons are primarily associated with specific atoms.
- 20. _____ In the body-centered cubic structure, one metal atom is in the very center of the structure.

Fill in the Blank:

- 21. An alloy is a mixture of _____ or more elements, at least one of which is a _____.
- 22. Name the crystal structures:

A

23.

88

- 27. The model of metallic bonding is called the _____ model.
- 28. Alloys are commonly used in ______ objects because the properties of the mixtures are often more ______ than the pure metal.
- 29. Write definitions for the following terms:
 - 1. substitutional alloy
 - 2. interstitial alloy
 - 3. bronze
 - 4. brass
 - 5. closest packing

Short Answer:

26. Which energy level electrons would you expect to be most mobile? Explain your answer.

8.4 Ionic and Metallic Bonding

Chapter Test

Name	Class	Date	
Multiple Choice:			
1. A +2 charge	e will be seen when forms a	n ion	
1. Na			
2. O			
3. Mg			
4. Kii	n and sumtion for is IN-	12-22-6	
2. The electron	n configuration for is [Ne]38 ⁻ 3p°	
1. Na⊤ 2 s ^{2−}			
2. 3 3. Mg ²⁺			
4. P^{2-}			
3. The formula	a unit for aluminum sulfate is		
1. AlSO	4		
2. $Al_3(S)$	$(O_4)_2$		
3. Al(SC	$(0_4)_2$		
4. $Al_2(S)$	$O_4)_3$		
4. The coordin	nation number for an ionic comp	ound is	
1. the nu	mber of ions in the crystal		
2. the nu	mber of ions in the molecule		
3. the nu	mber of ions immediately surrou	unding an ion of opposite charge	
4. the nu	more of tons immediately surrou	unding an ion of like charge	
		$5 \cdot X$:	

is the electron dot symbol for

- 1. C
- 2. Al
- 3. Au
- 4. Mn
- 6. The ball and stick model shows
 - 1. shared electrons
 - 2. cation relationships
 - 3. ion packing
 - 4. ion distribution
- 7. Which of the following ions will form the weakest ionic bond with Cl?

1. Cs⁺

- 2. Ca²⁺
- 3. Na⁺
- 4. Be^{2+}
- 8. Metals conduct electricity because
 - 1. electrons vibrate freely
 - 2. electrons are easily elevated to higher energy levels
 - 3. electrons release energy when they drop to lower energy levels
 - 4. electrons flow freely through the metal
- 9. Cations are formed by
 - 1. adding electrons to the valence shell
 - 2. adding electrons to lower energy levels
 - 3. losing all their valence electrons
 - 4. losing lower energy level electrons
- 10. A charge of _____ is very common for transition metal ions
 - 1. 2-
 - 2. 2^+
 - 3. 3⁺
 - 4. 3⁻⁻

True/False:

- 11. _____ The crystal structure of any ionic compound must reflect its formula unit
- 12. ____ Co can lose two electrons to form an ion
- 13. _____ A half-filled d sublevel is very unstable.
- 14. _____ NaCl has a high melting point
- 15. _____ Melted CaBr will not conduct electricity.
- 16. _____ The crystal structure of a compound must reflect its formula unit.
- 17. _____ Cr has one valence electron.
- 18. _____

: <u>X</u> :

is the electron dot formula for a halogen atom.

- 19. _____ Under typical conditions, a maximum of three electrons will be gained during anion formation.
- 20. _____ Fe₂O₃ is the principal component of rust.

Fill in the Blank:

- 21. A pseudo noble gas electron configuration contains _____ electrons.
- 22. Draw the electron dot diagram for
 - 1. oxygen
 - 2. Ca
 - 3. He
 - 4. Sr
- 23. Indicate whether electrons will be lost or gained when the following elements form ions and state the number of electrons involved.
 - 1. H
 - 2. Hf

- 3. Po
- 4. Se

24. A ______ model of crystal structure shows the ions in contact with each other.

Short Answer:

25. Explain why Fe can form a 3+ cation.

Covalent Bonding Assessments

Chapter Outline

- 9.1 LEWIS ELECTRON DOT STRUCTURES
- 9.2 MOLECULAR GEOMETRY
- 9.3 POLARITY AND INTERMOLECULAR FORCES
- 9.4 HYBRIDIZATION OF ATOMIC ORBITALS
- 9.5 COVALENT BONDING

9.1 Lewis Electron Dot Structures

Lesson Quiz

Name_____ Class_____ Date _____

Multiple Choice:

- 1. One of the following is not a polyatomic ion
 - 1. SO₂
 - 2. SO₃₋
 - 3. SO₄₂₋
 - 4. HSO₃₋

2. Atoms have _____ potential energy when they are bonded than when they are isolated

- 1. higher
- 2. lower
- 3. equal
- 4. variable

3. A bond in which two atoms share one or more pairs of electrons is called a

- 1. coordinate bond
- 2. coordinate covalent bond
- 3. covalent bond
- 4. cohesive bond
- 4. The Lewis structure

represents a compound with

- 1. seven single bonds and one double bond
- 2. five single bonds and two double bonds
- 3. six single bonds and one double bond
- 4. eight single bonds
- 5. A resonance structure
 - 1. gives a realistic picture of shifting bonds
 - 2. accurately shows the differing structural isomers
 - 3. is a hybrid of all the possible structures
 - 4. shows different atomic charges that exist
- 6. One of the following does not represent an exception to the octet rule.

- 1. NO₂
- 2. PCl₅
- 3. BH₃
- 4. BeCl₂

7. The amount of energy needed to break a halogen-halogen bond is

- 1. fairly small
- 2. high
- 3. very high
- 4. moderate

8. Which is the proper way to represent the Lewis structure for a polyatomic ion?

- 1. [L⁺]
- 2. L⁺
- 3. [L]⁺
- 4. L[⁺]

9. In the CO molecule, the coordinate covalent bond is formed by

- 1. carbon contributing an s electron
- 2. oxygen contributing a lone pair.
- 3. carbon contributing a lone pair
- 4. oxygen contributing an s electron
- 10. A double bond is formed by two atoms
 - 1. sharing one pair of electrons
 - 2. sharing two lone pairs of electrons
 - 3. sharing two pairs of electrons
 - 4. sharing one lone pair of electrons

True/False:

- 11. _____ The central atom in a Lewis structure is the least electronegative.
- 12. _____ A covalent bond forms when two singly occupied orbitals overlap with each other.
- 13. _____ The structure C=C is the Lewis structure for a double bond.
- 14. _____ The electrons that form a covalent bond must have opposite spin.
- 15. _____ A carbon-carbon double bond has a higher bond energy than a carbon-carbon single bond.
- 16. _____ The nitrogen-nitrogen triple bond is very reactive.
- 17. _____ The d-sublevel electrons can be used in bonding in some cases.
- 18. _____ Many polyatomic ions exhibit resonance forms.
- 19. _____ In ozone, the two oxygen-oxygen bonds are identical.
- 20. _____ The F₂ molecule contains two shared pairs of electrons.

Fill in the Blank:

- 21. Draw the Lewis structures for
 - 1. OH⁻
 - 2. NH₃
 - 3. Cl-Br
- 22. Draw the structural formulas for

- 23. Which exception to the octet rule is shown by BH₃. Explain your answer
- 24. The two identical bonds in O_3 are stronger and shorter than a typical O-O single bond but longer and weaker than an O-O double bond. What can we conclude about the structure of the ozone molecule?
- 25. How is a resonance structure a type of model for a molecule?
- 26. Why is the O atom represented by

•Ö•

in Lewis structures?

- 27. A structural formula uses _____ to show bonds between atoms.
- 28. ______ is the energy required to break a covalent bond between two atoms.

9.2 Molecular Geometry

Lesson Quiz

Name	Class	Date

Note: all images in this lesson are in the public domain or taken from CK-12 materials.

Multiple Choice:

- 1. The VSEPR model explains
 - 1. reactivity of molecules
 - 2. molecular composition
 - 3. spacing of atoms in a molecule
 - 4. orbital structure of electrons
- 2. The AB₃ configuration is
 - 1. trigonal pyramidal
 - 2. trigonal planar
 - 3. trigonal parallel
 - 4. trigonal bipyramidal
- 3. Sulfur hexafluoride has the following VSEPR configuration
 - 1. trigonal bipyramidal
 - 2. tetrahedral
 - 3. linear
 - 4. octahedral
- 4. The AB_2E designation can be seen in
 - 1. methane
 - 2. ammonia
 - 3. ozone
 - 4. water

5. A distorted tetrahedron molecular geometry is seen in the _____ molecule.

- 1. SF₅
- $2. \ ClF_3$
- 3. SF₄
- 4. Cl₂F₅

6. A tetrahedral electron domain geometry can have one of the following molecular geometries

- 1. seesaw
- 2. T-shaped
- 3. square planar
- 4. bent
- 7. Xenon tetrafluoride has a Lewis structure consisting of
 - 1. four single bonds and two lone pairs

- 2. four single bonds and one lone pair
- 3. four single bonds
- 4. four single bonds and three lone pairs
- 8. The triiodide ion has a _____ geometry
 - 1. octahedral
 - 2. linear
 - 3. square pyramidal
 - 4. T-shaped
- 9. The H-O-H bond angle is
 - 1. 109.5°
 - 2. 107°
 - 3. 104.5°
 - 4. 103.2°
- 10. A characteristic of the ClF₃ molecule is
 - 1. two lone pair sets of electrons
 - 2. one lone pair set of electrons
 - 3. trigonal pyramidal domain geometry
 - 4. tetrahedral domain geometry

True/False:

- 11. _____ The VSEPR model is based on the fact that electrons repel one another.
- 12. _____ In the VSEPR model, double and triple bonds are treated differently than single bonds.
- 13. _____ In the VSEPR model, the central atom is the least electronegative.
- 14. _____ Only central atom lone pair electrons are considered to affect geometry.
- 15. _____ Only bonding pair electrons are considered in the electron domain geometry.
- 16. _____ Sulfur hexafluoride (SF₆) has no lone pair electrons.
- 17. _____ In a perspective drawing of a molecule, a solid triangle is visualized as receding into the page.
- 18. _____ All four atoms in BF₃ lie in the same plane.
- 19. _____ Molecular geometry deals with the three-dimensional arrangement of atoms in a molecule.
- 20. _____ The valence orbital is the outermost occupied space in an atom.

Fill in the Blank:

21. Name the molecule below. Indicate the VSEPR classification. What does the dotted line represent? What does the solid triangle represent? What does the single solid line represent?

23. Why does the ozone molecule take on a bent configuration?

24.

- 25. The molecular geometry of ammonia is _
- 26. Why does the sulfur tetrafluoride molecule have a distorted tetrahedron configuration?

- 28. Chlorine trifluoride has a _____ molecular geometry and _____ lone pairs.
 29. The water molecule has _____ lone pairs of electrons on the O atom and a _____ molecular geometry.
- 30. Name the following types of structures (E = lone pair electrons)

- 31. Match the structure with the compound
 - 1. PCl₅
 - 2. SF₆
 - 3. H₂O
- 32. Image 1

35.

36. Image 3

34. Image 2

9.3 Polarity and Intermolecular Forces

Lesson Quiz

Multiple Choice:

- 1. A bond that shows strong attraction of electrons by one atom is called
 - 1. polar covalent
 - 2. non-polar covalent
 - 3. ionic
 - 4. covalent
- 2. A partial charge is represented by
 - 1. Δ
 - 2. λ
 - 3. δ
 - 4. α
- 3. The Si-Br bond is
 - 1. mostly ionic
 - 2. partially ionic
 - 3. polar covalent
 - 4. mostly covalent
- 4. A dipole is represented by
 - 1. plus —- minus
 - 2. plus plus
 - 3. minus plus
 - 4. minus —- minus
- 5. Random motions of electrons are called
 - 1. London dispersion forces
 - 2. Lewis dispersion forces
 - 3. Gibbs dispersion forces
 - 4. Pauling dispersion forces
- 6. An atom that could form a H bond with an appropriate H atom is
 - 1. C
 - 2. Si
 - 3. I
 - 4. O

7. The physical state of an ionic compound at room temperature is

- 1. solid
- 2. liquid
- 3. gas
- 4. liquid or gas

- 8. Hydrogen bonding is a particularly strong form of
 - 1. ion-dipole interaction
 - 2. ion-ion interaction
 - 3. ion- covalent interaction
 - 4. dipole-dipole interaction
- 9. The relative ability of an atom to attract electrons is called
 - 1. electronegativity
 - 2. electropolarity
 - 3. electropositivity
 - 4. electrodispersion
- 10. One of the following is not a diatomic element
 - 1. hydrogen
 - 2. helium
 - 3. nitrogen
 - 4. iodine

True/False:

- 11. _____ A single water molecule can form H-bonds with more than one other water molecule.
- 12. _____ Hydrogen bonds make it possible for water to be a liquid at room temperature.
- 13. _____ CsO would be expected to be a mostly covalent compound.
- 14. _____ Bonds between two non-metal atoms are usually covalent in nature.
- 15. _____ HI molecules are held together by hydrogen bonds.
- 16. _____ The Si-I bond would be considered to be polar covalent.
- 17. _____ Electrons are not shared equally in a non-polar covalent bond.
- 18. _____ Partial positive and negative charges are used to indicate uneven electron distribution in a covalent bond.
- 19. _____ A molecule with two poles is called a dipole.
- 20. ____ When placed between oppositely charged plates, polar molecules orient themselves so that their positive ends are closer to the positive plate.

Fill in the Blank:

- 21. Classify the following bonds as mostly ionic, polar covalent, or mostly covalent.
 - 1. Si-P
 - 2. Ca-O
 - 3. H-Br
- 22. Define the following terms:
 - 1. van der Waals forces
 - 2. diatomic element
 - 3. dipole
 - 4. polar molecule
- 23. Which of the following pairs of molecular components will form hydrogen bonds? X = remainder of molecule.
 - 1. X-N-H and H-C-X
 - 2. X-O-H and H-F
 - 3. X-O-H and H-N-X
 - 4. I-H and H-O-X
- 24. Arrange the following in terms of increasing polarity, beginning with the least polar:
- 1. Ca-As
- 2. Pt-I
- 3. Si-F
- 4. Al-Cl
- 5. H-O

25. Can an ether (generic structure C-O-C) form H-bonds with water?

9.4 Hybridization of Atomic Orbitals

Lesson Quiz

Name_____ Class_____ Date _____

Multiple Choice:

- 1. Unpaired electrons are required in order to form
 - 1. p orbitals
 - 2. ions
 - 3. covalent bonds
 - 4. dipoles
- 2. In forming a bond, potential energy reaches a minimum
 - 1. before the electrons interact
 - 2. at twice the atomic radius
 - 3. when the nuclei connect
 - 4. when the bond length is achieved
- 3. Covalent bonds are formed when
 - 1. partially filled atomic orbitals overlap
 - 2. full orbitals interact
 - 3. partially filled orbitals dissociate
 - 4. full orbitals hybridize
- 4. The bond angles in methane are
 - 1. 107°
 - 2. 109.5°
 - 3. 104.5°
 - 4. 90°
- 5. The ammonia molecule displays _____ hybridization
 - 1. sp
 - 2. sp^2
 - 3. sp³
 - 4. sp^4
- 6. he electron domain geometry for BF₃ leads to _____ hybridization.
 - 1. sp
 - $2. sp^2$
 - 3. sp^3
 - 4. sp^4
- 7. The electron domain geometry of sp^2 hybrid orbitals is
 - 1. trigonal planar
 - 2. linear

- 3. hexagonal
- 4. bent

8. One of the following does not have linear electron domain geometry.

- 1. BeH_2
- 2. NH₃
- 3. CO₂
- 4. C_2H_2

9. Octahedral electron domain geometry is seen in _____ hybridization.

- 1. sp^2
- 2. sp^3d
- 3. sp^3d^2
- 4. sp^{3}

10. Ethyne is a linear carbon molecule which contains _____.

- 1. two single bonds between the two carbons
- 2. a triple bond between the two carbons
- 3. a double bond and a single bond between the two carbons
- 4. two double bonds between the two carbons

True/False:

- 11. _____ Overlapping orbitals can be of different types.
- 12. _____ Hybridization can involve f orbitals.
- 13. _____ In C=C, one bond is a sigma bond and the other is a pi bond.
- 14. _____ A sigma bond is formed by overlapping orbitals side to side.
- 15. _____ In a molecule with linear electron domain geometry, the hybridization of the central atom is sp.
- 16. _____ If the hybridization of the central atom is sp^2 , the electron domain geometry is trigonal planar.
- 17. _____ Oxygen in compounds has two lone pair sets of electrons.
- 18. _____ The pi bond extends above and below the plane of the molecule.
- 19. _____ Triple bonds are composed of three sigma bonds.
- 20. _____ In a pi bond, orbitals overlap in a side-to-side fashion.

Fill in the Blank:

- 21. Define the following terms:
 - 1. hybridization
 - 2. valence bond theory
 - 3. hybrid orbitals
 - 4. sigma bond
 - 5. pi bond

22. Describe the bonding that takes place in each of the following diatomic molecules

- 1. CS₂
- 2. I₂
- 3. H₂S

23. Indicate the hybridization of the central carbon atom in each of the following:

1. CH₄

24. How can SF_6 involve d orbitals when there are no d electrons in either atom?

9.5 Covalent Bonding

Chapter Test

Name_____ Class_____ Date _____

Multiple Choice:

- 1. In the NH₄ ion, the coordinate covalent bond is formed by
 - 1. nitrogen contributing an s electron
 - 2. nitrogen contributing a lone pair.
 - 3. hydrogen contributing a lone pair
 - 4. hydrogen contributing an s electron
- 2. One of the following represents an exception to the octet rule
 - $1. F_2$
 - 2. C_2H_4
 - 3. NO₂
 - 4. O₃
- 3. The AB₂ configuration is
 - 1. linear
 - 2. trigonal planar
 - 3. square planar
 - 4. tetrahedral
- 4. Methane has the following configuration
 - 1. trigonal bipyramidal
 - 2. tetrahedral
 - 3. linear
 - 4. octahedral
- 5. The H-C-H bond angle is
 - 1. 109.5°
 - $2.\ 107^\circ$
 - 3. 104.5°
 - 4. 103.2°
- 6. The -N-H ---- O-C interaction is an example of
 - 1. ion-dipole interaction
 - 2. ion-ion interaction
 - 3. ion- covalent interaction
 - 4. dipole-dipole interaction
- 7. One of the elements below is diatomic
 - 1. iron
 - 2. magnesium

- 3. helium
- 4. iodine
- 8. One of the following is not true about van der Waals forces
 - 1. ion-ion interactions
 - 2. dipole-dipole forces
 - 3. dispersion forces
 - 4. hydrogen bonds

9. CHBr₃ displays _____ hybridization

- 1. sp
- 2. sp^2
- 3. sp^{3}
- 4. sp^4
- 10. A C=C bond consists of
 - 1. two σ bonds
 - 2. two π bonds
 - 3. one π bond
 - 4. one σ bond and one π bond

True/False:

- 11. _____ The central atom in a Lewis structure is the most electronegative.
- 12. _____ The f-sublevel electrons can be used in bonding in some cases.
- 13. _____ In the VSEPR model, double and triple bonds are treated the same as single bonds.
- 14. _____ Lone pair electrons on any atom in the structure affect geometry.
- 15. _____ Carbon dioxide is a linear molecule.
- 16. _____ In the VSEPR model, valence electron pairs are attracted to one another.
- 17. _____ Bonds between two non-metal atoms are usually dipole in nature.
- 18. _____ The symbol δ^+ is used to indicate a partial positive charge on an atom.
- 19. _____ Nitrogen in compounds has one lone pair set of electrons.
- 20. _____ A pi bond is formed by overlapping orbitals side to side.

Fill in the Blank:

- 21. Which exception to the octet rule is seen in NO2. Explain your answer.
- 22. Draw the Lewis structure for
 - 1. O₂
 - 2. HBr
 - 3. F₂
- 23. Name the molecular geometry structure below

24. Arrange the following in terms of polarity, beginning with the least polar

- 1. In-Cl
- 2. H-Br
- 3. Zn-F
- 4. N-O
- 5. Ga-Br
- 25. Define the following terms:
 - 1. London dispersion forces
 - 2. diatomic element
 - 3. coordinate covalent bond
 - 4. valence shell
 - 5. valence bond theory

26. Describe the hybridization of the central atom in each of the following:

- 1. BF₃
- 2. CCl₄
- 3. CO₂

CHAPTER **10** The Mole Assessments

Chapter Outline

- 10.1 THE MOLE CONCEPT
- 10.2 MASS, VOLUME, AND THE MOLE
- **10.3 CHEMICAL FORMULAS**
- 10.4 THE MOLE

10.1 The Mole Concept

Lesson Quiz

Name	Class	Date

Multiple Choice:

- 1. The molecule CH₂CHCH₃CH₂CHF(CH₃)₂CCH₃ contains ____ H atoms
 - 1. 16
 - 2. 22
 - 3. 18
 - 4. 20
- 2. An exact quantity
 - 1. has been measured very carefully
 - 2. is found by counting
 - 3. is determined by several labs
 - 4. has been defined by an international commission
- 3. A representative particle of silicon dioxide is
 - 1. a grain of sand
 - 2. an atom of silicon
 - 3. a molecule of SiO_3
 - 4. a molecule of SiO_2
- 4. One of the following statements about atomic mass is untrue. Atomic mass is
 - 1. a relative number
 - 2. based on carbon-12
 - 3. based on H-1
 - 4. used to determine molar mass
- 5. There are _____ chocolate chips in five dozen chocolate chips
 - 1. 5
 - 2. 60
 - 3. 50
 - 4. 30

6. The _____ is the SI unit for the amount of a substance.

- 1. milligram
- 2. milliliter
- 3. mole
- 4. micron
- 7. The representative particle for O_2 is the
 - 1. atom
 - 2. molecule

- 3. formula unit
- 4. mole
- 8. Molar mass is defined as the mass of
 - 1. one mole of a solution
 - 2. on mole of representative particles of a substance
 - 3. 6.02×10^{20} particles
 - 4. one Avogadro's number of atoms
- 9. The representative particle for KBr is the
 - 1. atom
 - 2. formula unit
 - 3. molecule
 - 4. extended lattice
- 10. The molar mass of an element is
 - 1. the atomic mass expressed in grams
 - 2. the molecular mass
 - 3. the atomic mass expressed in amu
 - 4. the atomic mass expressed in milligrams

True/False:

- 11. _____ Dimensional analysis uses conversion factors.
- 12. _____ The representative particle for H_2 is the atom.
- 13. _____ "Formula mass" can apply to both molecules and ions.
- 14. _____ Ionic compounds exist as discrete molecules.
- 15. _____ A mole of CH₂CHCH₃CH₂CHF(CH₃)₂CCH₃ contains nine moles of carbon.
- 16. _____ Avogadro's number has been experimentally determined.
- 17. _____ Atomic masses on the periodic table are usually whole numbers.
- 18. _____ The molecular mass of a compound is the mass of one mole of that compound.

Short Answers:

- 19. You are buying chocolate chip cookies for the chess club. There are ten members of the club and they will each eat eight cookies. How many cookies do you need to buy?
- 20. Convert the given number of particles to moles
 - 1. 1.7×10^{14} atoms of Pt
 - 2. 3.8×10^{26} molecules of ethane
 - 3. 5.1×10^{12} formula units of LiBr.
 - 4. 3.7 molecules N₂
- 21. Convert the moles to the number of representative particles
 - 1. 24 mol gold
 - 2. 0.15 mol trinitrotoluene
 - 3. 0.57 mol MgBr_2
 - 4. 0.83 mol O₂
- 22. Calculate the formula mass for each of the following compounds
 - 1. PtCl₆
 - 2. N₂
 - 3. CH₃CH₂OCH₃
 - 4. $FeO_2C_6H_4$

10.2 Mass, Volume, and the Mole

Lesson Quiz

Name_____ Class_____ Date____

Multiple Choice:

- 1. One of the following is not a representative particle
 - 1. atoms
 - 2. ions
 - 3. molecules
 - 4. formula units
- 2. In order to convert between mass and number of particles, a conversion to _____ is first required.
 - 1. grams
 - 2. volume
 - 3. moles
 - 4. atoms
- 3. The molar mass of CuCl₂ is
 - 1. 134.6
 - 2. 98.9
 - 3. 207.7
 - 4. 63.55
- 4. The compound whose molar mas is 212.4 is
 - 1. CsBr
 - 2. RbI
 - 3. KF
 - 4. CaF₂
- 5. One of the following is not a property of a gas
 - 1. compressibility
 - 2. crowded molecules
 - 3. negligible particle size
 - 4. expandability
- 6. STP stands for
 - 1. sequentially timed pressure
 - 2. standard telemetry process
 - 3. standard temperature and pressure
 - 4. standard temperature processing
- 7. Gas density can be calculated using
 - 1. $D = \text{molar mass} \times 22.4$
 - 2. D =molecular mass $\div 22.4$

- 3. D =molecular mass \times 22.4
- 4. $D = \text{molar mass} \div 22.4$
- 8. The mole road map cannot be used in calculations of
 - 1. volume
 - 2. concentration
 - 3. mass
 - 4. representative particles
- 9. One mole of gas = 22.4 L only at
 - 1. 0°C and 1 atm pressure
 - 2. 32°C and one atm pressure
 - 3. 0°K and one atm pressure
 - 4. 0°F and one atm pressure
- 10. One of the following does not affect gas volume
 - 1. high pressure
 - 2. size of gas molecules
 - 3. high temperature
 - 4. low pressure

True/False:

- 11. _____ The number of moles of a solid can be determined by measuring the volume of the solid.
- 12. _____ As the temperature increases, the gas volume increases.
- 13. _____ Units for gas density are kg/L
- 14. _____ The density for hydrogen is greater than the density of air..
- 15. _____ A balance can be used to directly determine the number of moles in a material.
- 16. _____ Equal volumes of H₂ and Xe at STP contain different numbers of particles.
- 17. _____ Equal volumes of H₂ and Xe at STP have different masses.
- 18. _____ The density of a gas at a specific temperature and pressure is dependent on its molar mass.

Short Answers:

- 19. Find the mass of the following materials:
 - a. 0.45 moles C
 - b. 2.67 moles Hg
 - c. 1.9 moles MgCl₂
 - d. 4.3 moles $CH_2=CH-CH_2F$

20. Determine the number of moles in each of the following:

a. 153 g P₂O₅

- b. $75.3 \text{ g } N_2O_2$
- c. 17.4 g HCl
- d. 92.6 $g CH \equiv C CHBr_2$
- 21. How many moles of gas in each of the following?
 - a. 839 L of argon
 - b. 164 L of hydrogen
 - c. 63.7 L of fluorine
- 22. How much volume is occupied by the following gases?
 - a. 26.4 moles sulfur dioxide

- b. 14.5 moles helium
- c. 32.7 moles chlorine

23. Calculate the density of each of the following gases:

- a. CH_3CH_3 b. $CH \equiv CH$
- c. H₂S

24. Calculate the molar mass of the gas when given the density at STP

- a. density = 2.86 g/L
- b. density = 1.96 g/L
- c. density = 0.09 g/L

10.3 Chemical Formulas

Lesson Quiz

Name_____ Class_____ Date____

Multiple Choice:

- 1. A hydrate can be converted to its anhydrous form by
 - 1. heating
 - 2. vacuum distillation
 - 3. chemical treatment
 - 4. lowering the temperature
- 2. The percent composition tells us
 - 1. the purity of the compound
 - 2. the amount of each element present
 - 3. the yield of the reaction
 - 4. the amount needed for a reaction
- 3. An empirical formula will not provide the following information
 - 1. lowest whole-number ratio of elements
 - 2. elemental composition of the compound
 - 3. the molecular mass of the compound
 - 4. the relative amounts of elements in the compound
- 4. Mass spectrometers can determine
 - 1. molecular mass
 - 2. molecular formula
 - 3. molar mass
 - 4. molar formula
- 5. Percent composition is defined as
 - 1. mass of element \times mass of compound \times 100
 - 2. mass of compound \div mass of element \times 100
 - 3. (mass of element \div mass of compound) \times 100
 - 4. (mass of element \div mass of compound) \div 100
- 6. One of the following is not needed to determine percent of a hydrate's mass
 - 1. number of water molecules
 - 2. molecular mass of compound
 - 3. reactivity of compound
 - 4. molecular mass of water
- 7. The molecular formula for cyclohexane is C_6H_{12} . The correct empirical formula is
 - $1. \ C_{2}H_{4}$
 - 2. CH₃

- 3. CH
- 4. CH₂
- 8. Cobalt chloride hydrate has the following color
 - 1. magenta
 - 2. blue
 - 3. orange
 - 4. yellow

True/False:

- 9. _____ Purity of the compound affects determination of percent composition.
- 10. _____ Hydrate water molecules are bound to the crystal lattice of a formula unit.
- 11. _____ Ionic compounds exist as discrete molecules.
- 12. _____ Elemental analysis gives information for determination of empirical formulas.
- 13. _____ In many situations, the molecular formula and the empirical formula are the same.
- 14. _____ Acetic acid and glucose have different empirical formulas.
- 15. _____ The empirical formula mass is the molar mass represented by the empirical formula.
- 16. _____ Hydrates may contain fractional molecules of water.

Short Answers:

- 17. Determine the percent composition of the following compounds.
 - a. RbI
 - b. Na₂O
 - c. CH₃OH

18. Determine the percent composition from the following analytical data:

- a. Analysis of a 30.9 g sample of a compound yielded 9.63 g S and 21.3 g Cl.
- b. A sample with a mass of 95.2 g contains 40.8 g C and 54.4 g O.
- c. A sample has a mass of 0.432 g and contains only O and F. The oxygen content is 0.128 g.

19. Calculate the percent by mass of water in the following compounds:

- a. $LiNO_3 \cdot 3H_2O$
- b. $CoF_2 \cdot 4H_2O$
- c. $ZnSO_4 \cdot 7H_2O$
- 20. Calculate the empirical formula from the data below:
 - a. 47.9% Zn, 52.1% Cl
 - b. 20.23% Al, 79.77% Cl
 - c. 24.74% K, 34.7% Mn, 40.50% O
- 21. Determine the molecular formula:
 - a. empirical formula ClCH2 molar mass 98.96 g/mol
 - b. empirical formula $C_{10}H_7O_2$ molar mass 318.31 g/mol
 - c. empirical formula $C_4H_5N_2$ molar mass 194.16 g/mol

10.4 The Mole

Chapter Test			
Name	Class	Date	
Multiple Choice:			
1. A representativ	ve particle of carbon dioxide is		
 an atom a molecu 22.4L an ion 	le		
2. Atomic mass is	s based on		
1. C-12 2. H-1 3. O-16 4. C-14			
3. The mole is the	e SI unit for		
 volume o mass of r amount o mass of a 	f material eactant f a substance substance		
4. The term amu	stands for		
 atomic m atomic m atomic m anion ma 	olecular unit ass unit olar unit ss unit		
5. Gas volume is	not affected by		
 high pres temperate size of ga low press 	sure ire is molecules ure		
6. One mole of g	as equals at STP		
 1. 22.4 L 2. 22.8 L 3. 23.9 L 4. 22.4 mL 			
7. The representa	tive particle for HCl is the		

- 1. atom
- 2. molecule

- 3. ion
- 4. formula unit
- 8. Water molecules in a hydrate are
 - 1. ionically attached to the molecule
 - 2. covalently bound to the molecule
 - 3. covalently bound to the lattice
 - 4. incorporated into the crystal lattice
- 9. The amount of each substance present in a compound can best be learned from the
 - 1. molar mass
 - 2. empirical formula
 - 3. percent composition
 - 4. empirical mass

10. The molecular formula for ethylbenzene is C_8H_{10} . The empirical formula would be

- 1. C₃H₅
- 2. C₄H₆
- $3. C_4 H_5$
- 4. C₃H₆

True/False:

- 11. _____ Units for gas density are g/mL
- 12. _____ The representative particle for H_2 is the molecule.
- 13. _____ Equal volumes of N₂ and Rn gases have the same number of particles.
- 14. _____ The molar mass of a compound is the mass of one mole of representative particles of that compound.
- 15. _____ The amount of matter in a gas can be measured by its volume.
- 16. _____ The term formula mass can only be applied to molecules.
- 17. _____ The units for molar mass are g/mol.
- 18. _____ Gas volume increases when the temperature decreases.
- 19. _____ One atom of the most abundant isotope of hydrogen has a mass of approximately 1 amu.
- 20. _____ Empirical formulas are determined using elemental analysis.

Short Answers:

- 21. Make the following calculations of properties of gases
 - a. How many moles of SO_2 are in 745 L at STP?
 - b. What is the volume of 325 moles of N_2 ?
 - c. What is the density of a gas with a molar mass of 78 g/mole?
- 22. Determine the following formula masses:
 - a. NH₄Cl
 - b. NaHCO₃
 - c. $C_{17}H_{18}F_3NO$
- 23. How many moles are each of the following?
 - a. 270 g KBr
 - b. 397 g Li₂SO₄

24. Calculate the percent by mass of water in the following compounds

a. $CoCl_2 \cdot 6H_2O$ b. $PbCl_2 \cdot 3H_2O$

- 25. How many particles are there in
 - a. 0.2 moles FeSO₄
 - b. 1.7 moles CH_4
- 26. What is the mass of
 - a. 1.7 moles $CaBr_2$
 - b. 0.48 moles N_2O
- 27. Determine the percent composition for the following
 - a. A compound contains 6.2 g C, 4.1 g H, and 15.9 g O
 - b. A compound contains 1.2 moles C and 3.2 moles H $\,$

Chemical Reactions Assessments

Chapter Outline

- 11.1 CHEMICAL EQUATIONS
- **11.2 TYPES OF CHEMICAL REACTIONS**
- **11.3 CHEMICAL REACTIONS**

11.1 Chemical Equations

Lesson Quiz				
Name	Class		_ Date	
Multiple Choice:				
1. A product is				
 material acted up material made in starting material process of reacting 	oon the reaction ng			
2. Which of the followin	g is not a word equation?			
 flour + water + y sodium + water - drive down hight silver nitrate + so 	east \rightarrow bread \rightarrow sodium hydroxide + hyd way \rightarrow don't get lost odium chloride \rightarrow silver ch	rogen loride + sod	ium nitrate	
3. The proper form for a	chemical equation is			
1. reactants \rightarrow prod 2. reactants produce 3. products \rightarrow react 4. products are form	lucts e products tants ned from reactants			
4. The symbol Δ in a che	mical equation means			
 change in volum change in rate material is heated material is coole 	e d d			
 sodium + water - drive down hight silver nitrate + so The proper form for a reactants → prod reactants product products → react products are form The symbol Δ in a chee change in volum change in rate material is heated material is coole 	\rightarrow sodium hydroxide + hyd way \rightarrow don't get lost odium chloride \rightarrow silver chi chemical equation is lucts e products tants ned from reactants emical equation means e d d tes that	loride + sod	ium nitrate	

- 1. Pt is one of the reagents
- 2. Pt is a catalyst in the reaction
- 3. Pt is a product
- 4. Pt is added after the reaction starts
- 6. Only one of the following is used to describe the physical state of a reactant or product
 - 1. w
 - 2. *p*
 - 3. *l*
 - 4. *r*
- 7. In a chemical formula, the subscript stands for the number of
 - 1. atoms of an element in the compound
 - 2. molecules in the reaction

- 3. products that will be formed
- 4. reactants needed for the reaction to proceed
- 8. Balancing equations relies on the law of
 - 1. conservation of energy
 - 2. conservation of momentum
 - 3. conservation of mass
 - 4. conservation of heat
- 9. Only one of the following techniques is used in balancing chemical equations
 - 1. change subscripts
 - 2. change coefficients
 - 3. add extra materials
 - 4. only balance key reagents
- 10. Which of the following shows the balanced equation for the combustion of ethane (C_2H_6) ?
 - 1. $C_2H_6 + O_2 \rightarrow 2CO_2 + H_2O$
 - 2. $C_2H_6 + O_2 \rightarrow 2CO_2 + 3H_2O$
 - 3. $2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$
 - 4. $2C_2H_6 + 6O_2 \rightarrow 2CO_2 + 6H_2O$

True/False:

- 11. _____ Atoms cannot be created or destroyed.
- 12. _____ The symbol (*s*) means the material is in solution.
- 13. _____ In burning, a material reacts with hydrogen gas.
- 14. _____ Tarnish is silver sulfide
- 15. _____ A skeleton equation shows only the important reactants and products.
- 16. _____ The symbol \rightleftharpoons represents a reversible reaction.
- 17. _____ Equations should be balanced even if the formulas are incorrect.
- 18. _____ In balancing equations, a coefficient of 1 is never shown.
- 19. _____ All coefficients must be at the lowest possible ratio in a properly balanced equation.
- 20. _____ A skeleton equation shows the relative amounts of all materials in the reaction.

Fill in the Blank:

- 21. Write skeleton equations for the following reactions:
 - 1. barium chloride + potassium sulfate \rightarrow barium sulfate + potassium chloride.
 - 2. calcium chloride + potassium phosphate \rightarrow potassium chloride + calcium phosphate
 - 3. calcium hydroxide + sulfuric acid \rightarrow calcium sulfate + water
 - 4. sodium + iron(III) chloride \rightarrow iron + sodium chloride
- 22. Balance the following equations:
 - 1. $AgI + Na_2S \rightarrow Ag_2S + NaI$
 - 2. $Ba_3N_2 + H_2O \rightarrow Ba(OH)_2 + NH_3$
 - 3. $CaCl_2 + Na_3PO_4 \rightarrow Ca_3(PO_4)_2 + NaCl$
 - 4. $FeS + O_2 \rightarrow Fe_2O_3 + SO_2$
 - 5. $PCl_5 + H_2O \rightarrow H_3PO_4 + HCl$
 - 6. $KClO_3 + P_4 \rightarrow P_4O_{10} + KCl$
 - 7. $Fe + HC_2H_3O_2 \rightarrow Fe(C_2H_3O_2)_3 + H_2$
 - 8. $NH_4OH + KAl(SO_4)_2 \cdot 12H_2O \rightarrow Al(OH)_3 + (NH_4)_2SO_4 + KOH + H_2O$

11.2 Types of Chemical Reactions

Lesson Quiz			
Name	Class	D	Date
Multiple Choice:			
 One of the fo combina decomp subtract hydroge 	llowing is not a type of chemical ation osition ion n replacement	reaction	
2. The general e	quation for a single-replacement	reaction is	
1. $A + B -$ 2. $A + BC$ 3. $AC + BL$ 4. $AB \rightarrow A$	AB		
3. Sr reacts with	HCl in a reaction		
 decomp halogen hydroge combina 	osition replacement n replacement ation		
4. Metal hydrox	ides form when heated		
 metal ox metal + metal + metal ox 	kide + water water oxygen kide + hydrogen		
5. One of the fo	llowing statements about combination	ation reactions is	s not true.
 magnesi the reac a combi sodium 	um reacts with oxygen to form m tion of nonmetals with each other nation reaction is also called a ret and chlorine react to form a comp	agnesium oxide forms a molecu rosynthesis oound	e ılar compound
6. $Al + Ni(NO_3)$	$h_2 \rightarrow Al(NO_3)_3 + Ni$ is an example	le of a	reaction
1. combina	ation		

- 2. decomposition
- 3. double-replacement
- 4. single-replacement
- 7. One of the following is not a possible outcome of a double-replacement reaction
 - 1. formation of a gas
 - 2. formation of a macromolecular compound

- 3. formation of a precipitate
- 4. formation of a molecular compound
- 8. A combustion reaction involves a reaction with _____ gas.
 - 1. N₂
 - 2. H₂
 - 3. Cl₂
 - 4. O₂

9. One of the following does not react with water

- 1. Co
- 2. Li
- 3. Ca
- 4. Ba

10. In the reaction between silver nitrate and sodium chloride, _____ is formed.

- 1. hydrogen gas
- 2. a precipitate
- 3. chlorine gas
- 4. water

True/False:

- 11. _____ There are four basic types of reactions.
- 12. _____ Magnesium is a more reactive metal than copper.
- 13. _____ Potassium can be stored in open air.
- 14. _____ Some combination reactions are also combustion reactions.
- 15. _____ Fluorine exists in nature as a monatomic element.
- 16. _____ Sulfur can form more than one compound when reacting with oxygen.
- 17. _____ In a decomposition reaction, a binary compound forms its elements.
- 18. _____ A metal carbonate decomposes to form a metal oxide and water.
- 19. _____ Transition metals can often form more than one compound when combined with oxygen.
- 20. $___ Ca + Br_2 \rightarrow CaBr$.

Fill in the Blank:

- 21. Write the formulas for the product(s) of the following reactions and balance the resulting equations. Write NR if no reaction takes place.
 - 1. $Zn + HCl \rightarrow$ 2. $Pb + ZnSO_4 \rightarrow$
 - 3. $C_6H_{12}O_6 + O_2 \rightarrow$
 - 4. $AlCl_3 + HgCl_2 \rightarrow$
 - 5. $Ag+S \rightarrow$
 - 6. $Na + H_2O \rightarrow$
 - $7. AgNO_3 + K_3PO_4 \rightarrow$
 - 8. $Zn + NaF \rightarrow$
 - 9. $F_2 + MgCl_2 \rightarrow$
 - 10. $Mg + O_2 \rightarrow$
 - 11. $Cu(OH)_2 + HBr \rightarrow$
 - 12. $CH_3CH_2OH + O_2 \rightarrow$

11.3 Chemical Reactions

Chapter Test			
Name	Class	Date	
Multiple Choice:			
1. The reaction of calc	um and oxygen to form cal	cium oxide is written	
1. $Ca + O \rightarrow CaC$ 2. $Ca + O_2$ yields 3. $Ca + O_2 \rightarrow Ca$ 4. $2Ca + O_2 \rightarrow 2c$) CaO O ₂ CaO		
2. One of the following	g is not a type of chemical r	eaction	
 double-replace single-replacer oxygen replace halogen replace 	ment nent ement ement		
3. The general equation	n for a double-replacement	reaction is	
1. $A + B \rightarrow AB$ 2. $A + BC \rightarrow AC$ 3. $AC + BD \rightarrow AB$ 4. $AB \rightarrow A + B$	+B D+BC		
4. The reaction $CH_4 +$	$O_2 \rightarrow CO_2 + H_2O$ is both a	combination reaction and a	reaction.
 combustion double-replace single-replacer decomposition 	ment nent		
5. A skeleton equation			
 shows all the n shows only the shows only the shows only the 	eeded materials and their a needed materials important materials amounts of needed materia	mounts als	
6. Hydrogen at room te	emperature would have the	following subscript	
$ \begin{array}{rrrr} 1. & (s) \\ 2. & (l) \\ 3. & (g) \\ 4. & (w) \end{array} $			
7. $Ca + O_2 \rightarrow CaO$ vio	lates the law of		

- - 1. conservation of energy
 - 2. conservation of heat

- 3. conservation of mass
- 4. conservation of elements

8. The equation $2C_8H_{18} + 24O_2 \rightarrow 16CO_2 + 18H_2O$ has an imbalance of _____ atoms

- 1. C
- 2. O
- 3. H
- 4. H + O

9. One of the following metals reacts with cold water

- 1. Cr
- 2. Ba
- 3. Ni
- 4. Mg
- 10. The most reactive halogen is
 - 1. iodine
 - 2. bromine
 - 3. fluorine
 - 4. chlorine

True/False:

- 11. _____ Magnesium reacts dramatically when ignited.
- 12. _____ Transition metals only form one product in a reaction with oxygen.
- 13. $H_2 + O_2 \rightarrow H_2O$ is a skeleton equation.
- 14. _____ The symbol (aq) represents a material in water-based solution.
- 15. _____ The symbol $\xrightarrow{\Delta}$ indicates a catalyst is used in the reaction.
- 16. _____ A combination reaction can result in the formation of a more complex product.
- 17. _____ Oxides of sulfur help produce acid rain.
- 18. _____ The decomposition of HgO produces a change in color.
- 19. _____ Sodium hydroxide decomposes to form sodium oxide and water.
- 20. _____ Ni will react with steam, but not cold water.

Fill In the Blank:

- 21. Indicate the type of reaction represented by each equation:
 - 1. $Na_3PO_4 + 3KOH \rightarrow 3NaOH + K_3PO_4$
 - 2. $Pb + FeSO_4 \rightarrow PbSO_4 + Fe$
 - 3. $C_6H_{12} + 9O_2 \rightarrow 6CO_2 + 6H_2O$
 - 4. $CaCO_3 \rightarrow CaO + CO_2$
 - 5. $P_4 + 3O_2 \rightarrow 2P_2O_3$
- 22. Predict the product(s) of the following reactions.
 - 1. $AlBr_3 + Cl_2 \rightarrow$
 - 2. $MgI_2 + Mn(SO_3)_2 \rightarrow$
 - 3. $RbNO_3 + BeF_2 \rightarrow$
 - 4. $Al + Ag_2CrO_4 \rightarrow$
- 23. Balance the following equations:
 - 1. $B_2Br_6 + HNO_3 \rightarrow B(NO_3)_3 + HBr$
 - 2. $NH_3 + O_2 \rightarrow NO + H_2O$

- 3. $CO + H_2 \rightarrow C_8H_{18} + H_2O$ 4. $Na_3PO_4 + HCl \rightarrow NaCl + H_3PO_4$
- 5. $HClO_4 + P_4O_{10} \rightarrow H_3PO_4 + TCl_2O_7$

Chapter Outline

- 12.1 MOLE RATIOS
- 12.2 STOICHIOMETRIC CALCULATIONS
- 12.3 LIMITING REACTANT AND PERCENT YIELD
- 12.4 CHAPTER TWELVE EXAM

12.1 Mole Ratios

Lesson Quiz			
Name	Class	Date	
Multiple Choice:			

1. You invite three other people over to watch the Super Bowl. In preparing for the day, you assume each person will consume three soft drinks and $\frac{1}{2}$ bag of chips. At the grocery store, you purchase one 12-pack of soft drinks and two bags of chips. However, each of the three brings a friend, requiring an emergency run back to the grocery store. What do you buy to deal with the increase in friends?

- 1. one bag of chips
- 2. $\frac{3}{4}$ of a 12-pack of soft drinks
- 3. 1.5 bags of chips and $\frac{3}{4}$ of a 12-pack of soft drinks
- 4. two bags of chips and a 12-pack of soft drinks
- 2. Stoichiometric calculations require
 - 1. the number of grams of reactant
 - 2. the number of moles of product
 - 3. a balanced equation
 - 4. a word equation
- 3. Amounts of materials for chemical reactions are generally expressed in all the units below except
 - 1. moles
 - 2. µmL
 - 3. grams
 - 4. μ moles
- 4. Dinner for six is being prepared. The menu includes broccoli, which one person refuses to eat. The recipe at hand calls for one cup of broccoli to serve two people. How much broccoli needs to be prepared?
 - 1. 2 cups
 - 2. 3 cups
 - 3. 2.5 cups
 - 4. 3.5 cups
- 5. In a reaction, 5 moles reactant produces 3 moles of product. The following expression allows the calculation of the mole ratio reactant/product:
 - 1. $\frac{3}{5}$ 2. 5 - 3 3. $\frac{5}{3}$
 - 4. 5+3

True/False:

6. _____ In question number one about the Super Bowl, if three additional people drop in at half-time, you will need to purchase one more bag of chips and one more 12-pack of soft drinks.

- 7. _____ The coefficients of a balance equation represent only the number of moles of materials.
- 8. _____ The production of ammonia from nitrogen and hydrogen is known as the Haber process.
- 9. _____ The number of moles of material is conserved when the reactants are converted to products.
- 10. _____ A mole ratio tells us directly the number of grams of reactant needed to produce product.

Short Answers:

- 11. $4FeS_2 + 11O_2 \rightarrow 2Fe_2O_3 + 8SO_2$
- 12. Calculate the mole ratio of
 - 1. FeS₂ to O_2
 - 2. FeS_2 to Fe_2O_3
 - 3. O_2 to SO_2
- 13. $3Ca + 2AlCl_3 \rightarrow 3CaCl_2 + 2Al$
- 14. Calculate the mole ratio of
 - 1. Ca to Al
 - 2. CaCl₂ to AlCl₃
 - 3. Ca to $CaCl_2$
- 15. $2NaOH + Cl_2 \rightarrow NaCl + NaClO + H_2O$
 - 1. How many moles of NaOH are needed to form 2.3 moles NaClO?
 - 2. How much NaCl will be formed from 1.7 moles Cl₂?
 - 3. How much NaCl will be formed from 3.1 moles NaOH?
- 16. $SiCl_4 + 4H_2O \rightarrow H_4SiO_4 + 4HCl$
 - 1. How much SiCl₄ is needed to produce 2.7 moles HCl?
 - 2. How many moles H_4SiO_4 will be formed from 3.9 moles SiCl₄?
 - 3. How much water is needed to produce 2.5 moles H₄SiO₄?

17. $CaC_2 + 2H_2O \rightarrow C_2H_2 + Ca(OH)_2$

- 1. How many moles C_2H_2 can be formed from 8.3 moles CaC_2 ?
- 2. How much water is required to produce 3.7 moles Ca(OH)₂?
- 3. How many moles $Ca(OH)_2$ can be produced from 4.2 moles CaC_2 ?

18. $Al_4C_3 + 12H_2O \rightarrow 3CH_4 + 4Al(OH)_3$

- 1. How many moles Al_4C_3 are needed to produce 4.6 moles CH_4 ?
- 2. How many moles CH_4 are formed when the reaction produces 7.3 moles $Al(OH)_3$?
- 3. How much $Al(OH)_3$ will be formed from 2.1 moles Al_4C_3 ?

12.2 Stoichiometric Calculations

Lesson Quiz

Name	Class	Date

Short Answers:

- 1. $Ca_3P_2 + 6H_2O \rightarrow 3Ca(OH)_2 + 2PH_3$
 - 1. How many moles of Ca₃P₂ are needed to prepare 57.7 grams PH₃?
 - 2. How many moles of $Ca(OH)_2$ can be made from 100 grams Ca_3P_2 ?
 - 3. How many moles PH_3 are formed in a reaction that yields 98.4 grams $Ca(OH)_2$?
- 2. $2NaHCO_3 \rightarrow Na_2CO_3 + CO_2 + H_2O$
 - 1. How many liters of CO₂ at STP are produced from the reaction of 4.7 moles NaHCO₃?
 - 2. How many grams of NaHCO₃ are required to form 2.1 moles Na₂CO₃?
 - 3. How many grams carbon dioxide at STP are produced in a reaction that forms 1.9 moles sodium carbonate?
- 3. $2Au_2O_3 \rightarrow 4Au + 3O_2$
 - 1. What volume of O_2 at STP is produced from the reaction of 212 grams of Au_2O_3 ?
 - 2. How many grams of Au are produced?
 - 3. How much Au₂O₃ is needed to form 85 grams gold?
- 4. $Au_2S_3 + 3H_2 \rightarrow 2Au + 3H_2S$
 - 1. How many moles of Au_2S_3 is required to form 56 grams of H_2S at STP?
 - 2. What volume of hydrogen at STP is needed to form 450 grams of gold?
 - 3. How many grams of Au_2S_3 is needed to produce this amount of gold?
- 5. $4NH_3 + 6NO \rightarrow 5N_2 + 6H_2O$
 - 1. What volume of N_2 at STP is produced from the reaction of 7.9 L NO with ammonia?
 - 2. How many liters of ammonia at STP will be consumed in the above process?
 - 3. If 2.4 moles of ammonia react with excess NO, how many grams of N2 will be formed?
- 6. $FeCl_3 + 3NH_4OH \rightarrow Fe(OH)_3 + 3NH_4Cl$
 - 1. Excess ammonium hydroxide is reacted with 75.2 grams FeCl₃. How many grams Fe(OH)₃ are formed?
 - 2. How much ammonium hydroxide is needed to form 64 grams iron(III) hydroxide?
 - 3. How much iron(III) chloride is needed to react completely with 41 grams ammonium hydroxide?

12.3 Limiting Reactant and Percent Yield

 NameClassDate Multiple Choice: 1. After a reaction was run, there were 12.7 grams of reagent B left over. Reagent B is the superfluous reagent excess reagent extra reagent limiting reagent 2. Reagent A was used in a reaction. At the end of the reaction, no reagent A remained. Reagent A is the excess reagent insufficient reagent limiting reagent restricted reagent 3. The amount of product that is expected to be formed is the theoretical yield predicted yield 	Lesson Quiz			
 Multiple Choice: 1. After a reaction was run, there were 12.7 grams of reagent B left over. Reagent B is the superfluous reagent excess reagent extra reagent limiting reagent 2. Reagent A was used in a reaction. At the end of the reaction, no reagent A remained. Reagent A is the excess reagent insufficient reagent limiting reagent restricted reagent 3. The amount of product that is expected to be formed is the theoretical yield predicted yield 	Name	Class	Date	
 After a reaction was run, there were 12.7 grams of reagent B left over. Reagent B is the superfluous reagent excess reagent extra reagent limiting reagent Reagent A was used in a reaction. At the end of the reaction, no reagent A remained. Reagent A is the excess reagent insufficient reagent limiting reagent limiting reagent restricted reagent The amount of product that is expected to be formed is the theoretical yield predicted yield 	Multiple Choice:			
 superfluous reagent excess reagent extra reagent limiting reagent Reagent A was used in a reaction. At the end of the reaction, no reagent A remained. Reagent A is the excess reagent insufficient reagent limiting reagent restricted reagent The amount of product that is expected to be formed is the theoretical yield predicted yield 	1. After a reaction	was run, there were 12.7 grams	is of reagent B left over. Reagent B is the	
 extra reagent limiting reagent Reagent A was used in a reaction. At the end of the reaction, no reagent A remained. Reagent A is the excess reagent insufficient reagent limiting reagent restricted reagent The amount of product that is expected to be formed is the theoretical yield predicted yield 	 superfluous excess reag 	reagent ent		
 4. limiting reagent 2. Reagent A was used in a reaction. At the end of the reaction, no reagent A remained. Reagent A is the excess reagent insufficient reagent limiting reagent restricted reagent 3. The amount of product that is expected to be formed is the theoretical yield predicted yield 	3. extra reagen	nt		
 Reagent A was used in a reaction. At the end of the reaction, no reagent A remained. Reagent A is the excess reagent insufficient reagent limiting reagent restricted reagent The amount of product that is expected to be formed is the theoretical yield predicted yield 	4. limiting rea	gent		
 excess reagent insufficient reagent limiting reagent restricted reagent 3. The amount of product that is expected to be formed is the theoretical yield predicted yield 	2. Reagent A was u	sed in a reaction. At the end of	of the reaction, no reagent A remained. Reagent A is the	ie
 2. insufficient reagent 3. limiting reagent 4. restricted reagent 3. The amount of product that is expected to be formed is the 1. theoretical yield 2. predicted yield 	1. excess reag	ent		
 a. The amount of product that is expected to be formed is the 1. theoretical yield 2. predicted yield 	2. insufficient	reagent		
 3. The amount of product that is expected to be formed is the 1. theoretical yield 2. predicted yield 	4. restricted re	eagent		
1. theoretical yield 2. predicted yield	3. The amount of p	coduct that is expected to be for	ormed is the	
2 predicted yield	1. theoretical	yield		
2. produced yield	2. predicted y	eld		
3. limiting yield	3. limiting yie	ld		
4. desired yield	4. desired yiel	a		

- 1. desired yield
- 2. actual yield
- 3. measured yield
- 4. predicted yield
- 5. In order to calculate percent yield, all of the following information is needed except
 - 1. theoretical yield
 - 2. amount actually obtained
 - 3. expected amount
 - 4. amount of excess reagent

True/False:

- 6. _____ The presence of moisture in the product does not affect determination of actual yield.
- 7. _____ The product must be pure in order to determine actual yield.
- 8. _____ The excess reagent is always due to incomplete reactions.
- 9. _____ Excess reagent is calculated from mole data.
- 10. _____ A balanced equation is necessary for theoretical yield calculations.

Short Answers:

Part A -Limiting Reagent and Excess Reagent

For problems 11-15, determine

- a. the limiting reagent
- b. the excess reagent
- c. the number of moles of excess reagent
 - 11. 25.0 grams of chlorine reacts with 29.0 grams of sodium
 - 12. $2Na + Cl_2 \rightarrow 2NaCl$
 - 13. 2.80 g Mg reacts with 11.0 g O_2
 - 14. $2Mg + O_2 \rightarrow 2MgO$
 - 15. 75.4 grams of $C_2H_3Br_3$ reacts with 47.1 grams of O_2
 - 16. $4C_2H_3Br_3 + 11O_2 \rightarrow 8CO_2 + 6H_2O + 6Br_2$
 - 17. 22.5 grams of CoO reacts with 2.6 grams of O₂
 - 18. $4CoO + O_2 \rightarrow 2Co_2O_3$
 - 19. 21 grams sodium nitrate reacts with 15 grams sulfuric acid
 - 20. $2NaNO_3(s) + H_2SO_4(l) \rightarrow Na_2SO_4(s) + 2HNO_3(g)$

Part B – Theoretical Yield, Percent Yield

For each of the following reactions, calculate

- a. theoretical yield
- b. percent yield
 - 16. 65 grams of CaCO₃ is heated to give 18 grams of CaO
 - 17. $CaCO_3 \rightarrow CaO + CO_2$
 - 18. 59 mol of Ca₃(PO₄)₂ is used and 95 mol of CaSiO₃ is obtained
 - 19. $Ca_3(PO_4)_2 + 3SiO_2 + 5C \rightarrow 3CaSiO_3 + 2P + 5CO$
 - 20. 55.3 g WO₃ yields 40.7 g of tungsten
 - 21. $WO_3 + 3H_2 \rightarrow W + 3H_2O$
 - 22. 420 g CS_2 produces 740 g CCl_4
 - 23. $CS_2 + 3Cl_2 \rightarrow CCl_4 + S_2Cl_2$
 - 24. 0.40 g NO₂ forms 0.39 g N₂O₅
 - 25. $2NO_2 + O_3 \rightarrow N_2O_5 + O_2$

12.4 Chapter Twelve Exam

Lesson Quiz		
Name	Class	Date
Multiple Choice:		

- 1. A certain reaction produces 56.2 grams of product. This data is called the
 - 1. theoretical yield
 - 2. percent yield
 - 3. actual yield
 - 4. predicted yield
- 2. At the completion of a reaction, 6.3 grams of reagent A were left over. Reagent A is the
 - 1. excess reagent
 - 2. extra reagent
 - 3. limiting reagent
 - 4. remaining reagent
- 3. You are preparing pizzas to eat while watching the NCAA championship game on TV. Your recipe calls for 27 slices of pepperoni for each pizza. You have 142 slices of pepperoni. How many complete pizzas can you prepare?
 - 1. four
 - 2. six
 - 3. five
 - 4. seven
- 4. In the reaction $A + B \rightarrow C + D$, 7.2 moles A form 5.4 moles C. The mole ratio A:C is
 - 1. 2:1
 - 2. 4:2
 - 3. 3:2
 - 4. 4:3

5. The coefficients in a chemical equation represent the _____ of the individual materials

- 1. number of grams
- 2. number of moles
- 3. volume
- 4. molar designations
- 6. In the reaction for the Haber process, $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$. The mole ratio of hydrogen to ammonia can be expressed in any of the following ways except
 - 1. 3:2
 - 2. 9:6
 - 3. 5:3
 - 4. 6:4

- 7. In the reaction $C_3H_8 + 5O_2 \rightarrow 4H_2O + 3CO_2$, you react 2.5 moles C_3H_8 with 14.7 moles oxygen. The reaction goes to completion with 100% yield. What reagent is left over and how much of that reagent remains:
 - 1. 0.23 moles C₃H₈
 - 2. 2.2 moles O₂
 - 3. 1.7 moles C₃H₈
 - 4. 1.6 mole O₂
- 8. The amount of a given substance in moles x mole ratio = ?
 - 1. moles of unknown substance
 - 2. percent yield
 - 3. grams of unknown substance
 - 4. theoretical yield

True/False:

- 9. _____ The limiting reagent is the amount of material remaining after the reaction is completed.
- 10. _____ A balanced equation can be used to determine actual yield of a reaction.
- 11. _____ Actual yield is not affected by purity of product.
- 12. _____ Mass must be conserved in a chemical reaction.
- 13. _____ The mole ratio allows conversion from moles of given substance to moles of unknown substance.
- 14. _____ Side reactions do not influence the actual yield.
- 15. _____ Percent yield is obtained by dividing actual yield by theoretical yield and multiplying by 100%.
- 16. _____ In the laboratory, amounts of materials are usually expressed in terms of mass.

Short Answers:

- 17. 1. In the reaction $3Br_2 + 2FeI_3 \rightarrow 3I_2 + 2FeBr_3$, how many moles of iodine are produced if 4.7 moles bromine are reacted with excess iron(III) iodide?
 - 2. How many moles of FeI_3 are needed to react completely with 145 g Br_2 ?
 - 3. What is the theoretical yield of I_2 under the conditions of problem (c) above?
 - 4. The reaction produced 197.2 g I_2 . What is the percent yield?
 - 1. In the reaction $I_2O_5(g) + 5CO(g) \rightarrow 5CO_2(g) + I_2(g)$, how many moles of carbon monoxide is needed to react with 47.2 L of I_2O_5 at STP?
 - 2. How many grams of I_2 will be formed under the above conditions?
 - 3. The reaction is carried out and 469.7 g I_2 are formed. What is the percent yield?
- 18. Use the reaction $3Zn + 2MoO_3 \rightarrow Mo_2O_3 + 3ZnO$ to solve the following problems.
 - 1. What is the limiting reagent when 20.0 g MoO₃ reacts with 10.0 g Zn?
 - 2. How much ZnO will be formed under these conditions?
 - 3. If the percent yield for the reaction is 72%, how much ZnO was actually formed?
- 19. Use the reaction $F_2(g) + MgCl_2(s) \rightarrow Cl_2(g) + MgF_2(s)$ to answer the following questions:
 - 1. What volume of Cl_2 gas is formed at STP from the reaction of 7.2 mol F_2 ?
 - 2. How many liters of Cl₂ are formed at STP from 24.6 g MgCl₂?
 - 3. How many grams of F_2 are needed to carry out the reaction in (b)?

States of Matter Assessments

Chapter Outline

- 13.1 KINETIC MOLECULAR THEORY AND GASES
- 13.2 LIQUIDS
- 13.3 SOLIDS
- 13.4 CHANGES OF STATE
- 13.5 STATES OF MATTER

13.1 Kinetic - Molecular Theory and Gases

Lesson Quiz

Name_____ Class_____ Date _____

Multiple Choice:

- 1. One of the following is not a part of the kinetic-molecular theory
 - 1. matter is composed of tiny particles
 - 2. particles are in constant motion
 - 3. only atoms are affected by the theory
 - 4. kinetic energy is related to temperature
- 2. Ideal gas particles are all of the following except
 - 1. small spheres
 - 2. close together
 - 3. volume of particles insignificant
 - 4. in constant motion
- 3. Gas particles are
 - 1. strongly attracted toward one another
 - 2. connected by dipole-dipole forces
 - 3. have no intermolecular attractions
 - 4. connected by van der Waals forces
- 4. Gas exert pressure because of
 - 1. the mass of the particles
 - 2. the intermolecular forces
 - 3. the closeness of the particles
 - 4. the rapid motions of the particles
- 5. A mercury barometer measures
 - 1. atmospheric pressure
 - 2. tire pressure
 - 3. pressure inside a container
 - 4. vapor pressure
- 6. One of the following statements about atmospheric pressure is not true
 - 1. pressure due to downward force of air particles
 - 2. pressure due to upward motion of air particles
 - 3. higher at lower altitudes
 - 4. can be related to mm Hg
- 7. Absolute zero is the temperature at which
 - 1. hydrogen freezes
 - 2. the Kelvin scale no longer works
- 3. there is no molecular motion
- 4. all atomic vibrations are at a maximum
- 8. The Kelvin temperature is an indication of
 - 1. molecular stretching
 - 2. kinetic energy of the particles
 - 3. reactivity of the molecules
 - 4. size of the molecules
- 9. Pressure can be calculated using the formula
 - 1. force \div area
 - 2. mass \div acceleration
 - 3. area \div force
 - 4. area \div mass
- 10. Vapor pressure is determined using a
 - 1. manometer
 - 2. mercury barometer
 - 3. aneroid barometer
 - 4. water barometer

- 11. _____ The barometer was invented by Luigi Torricelli
- 12. _____ One standard atmospheric pressure is equivalent to 760 torr.
- 13. _____ Gravity is responsible for gas pressure inside a balloon.
- 14. _____ Collisions between gas particles are elastic collisions.
- 15. _____ The kinetic-molecular theory applies to all particles.
- 16. _____ Real gases behave exactly like ideal gases.
- 17. _____ Molecules of H₂ in the gas phase interact by way of hydrogen bonds.
- 18. _____ A given mass exerts more pressure on a large surface area than on a small surface area.
- 19. _____ Gravity holds atmospheric gases in place.
- 20. _____ Kinetic energy increases as the temperature increases.

- 21. List the five points of the kinetic-molecular theory.
- 22. Define the following terms:
 - 1. pressure
 - 2. ideal gas
 - 3. atmospheric pressure
 - 4. absolute zero
- 23. Make the following conversions:
 - 1. 1.7 atm to torr
 - 2. 780 mm Hg to kPa
 - 3. 245 kPa to atm
 - 4. 450 kPa to mm Hg
 - 5. 987 torr to atm

13.2 Liquids

Lesson Quiz

Name_____ Class____ Date _____

- 1. In liquids, the intermolecular forces are
 - 1. weak
 - 2. intermittent
 - 3. strong
 - 4. minor
- 2. One similarity between liquids and gases
 - 1. both types of particles are close together
 - 2. both are fluids
 - 3. both have definite shapes
 - 4. both types of particles are far apart
- 3. Surface tension is a measure of
 - 1. elastic force in the liquid's surface
 - 2. pressure against the sides of the container
 - 3. resistance to flow
 - 4. ability to float solid objects
- 4. One of the following statements about evaporation of a liquid is true
 - 1. only occurs above the boiling point of a liquid
 - 2. occurs at temperatures below the boiling point of a liquid
 - 3. higher temperatures decrease the rate of evaporation
 - 4. takes place only in closed containers
- 5. One of the following statements about liquid in a closed container is not true
 - 1. particles in the vapor state collide against the walls of the container
 - 2. liquids with weak intermolecular forces evaporate more quickly
 - 3. particles with strong intermolecular forces have high vapor pressures
 - 4. vapor pressure value depends upon the specific liquid
- 6. The standard pressure for measuring boiling point is
 - 1. 1.2 atm
 - 2. 105.9 kPa
 - 3. 760 torr
 - 4. 740 mm Hg
- 7. The boiling point of ethanol will be lowest
 - 1. on a mountain top
 - 2. at the sea shore

- 3. in the desert
- 4. beside a lake
- 8. The intermolecular interaction that will produce the highest surface tension is
 - 1. dipole-dipole interactions
 - 2. ionic bonds
 - 3. hydrogen bonds
 - 4. van der Waals forces
- 9. Vapor pressure
 - 1. can be measured with a barometer
 - 2. increases with an increase in temperature
 - 3. is higher with particles that have strong intermolecular interactions
 - 4. is not affected by molecular structure
- 10. Boiling point
 - 1. is lower at higher barometric pressure
 - 2. is higher at low barometric pressure
 - 3. is lower at low barometric pressure
 - 4. is not affected by barometric pressure

- 11. _____ In a closed container, the rate of evaporation is greater than the rate of condensation.
- 12. <u>Liquids with particles of higher kinetic energy will evaporate more quickly than a liquid whose particles have low kinetic energy.</u>
- 13. _____ Diethyl ether has a higher vapor pressure than water.
- 14. _____ At a given temperature, all the particles of a liquid have the same kinetic energy.
- 15. _____ Liquids are less dense than gases.
- 16. _____ Liquids are classified as fluids
- 17. _____ A rock will float on water because of the high surface tension of the liquid.
- 18. _____ At the boiling point of a liquid, all the particles have enough kinetic energy to evaporate.
- 19. _____ A manometer uses a U-tube to determine vapor pressure.
- 20. _____ A dynamic equilibrium exists when the rate of evaporation is greater than the rate of condensation.

- 21. Define the following terms:
 - 1. fluid
 - 2. surface tension
 - 3. vaporization
 - 4. evaporation
 - 5. condensation
- 22. _____ is a measure of the pressure exerted by the vapor that forms _____ its liquid form in a sealed container.
- 23. When the liquid in a closed container is _____, more molecules escape the liquid phase and evaporate.
- 24. Which of the following molecules will have the lowest vapor pressure?
 - 1. CH₃CH₂CH₃
 - 2. $CH_3CH_2NH_2$
 - 3. CH₃CH₂-O-CH₂CH₃
- 25. In order for a molecule to escape into the _____ state, it must have enough ______ energy to overcome the ______ attractive forces in the liquid.

13.2. Liquids

26. What is the difference between vaporization and evaporation?

13.3 Solids

Lesson Quiz

Name_____ Class_____ Date _____

- 1. One of the following is not true of solids
 - 1. particles are closely packed
 - 2. very compressible
 - 3. solid form most dense of all three forms of matter
 - 4. a condensed state
- 2. Solid carbon dioxide
 - 1. melts readily
 - 2. converts to a liquid at -78°C
 - 3. converts directly to a gas
 - 4. is a solid at room temperature
- 3. Solids can be classified into _____ crystal systems.
 - 1. three
 - 2. seven
 - 3. four
 - 4. six
- 4. One of the following is not a crystal system
 - 1. biclinic
 - 2. monoclinic
 - 3. triclinic
 - 4. cubic
- 5. In the tetragonal crystal system
 - 1. $a \neq b \neq c; \alpha = \beta = \gamma = 90^{\circ}$
 - 2. $a = b = c; \alpha = \beta = \gamma = 90^{\circ}$
 - 3. $a \neq b \neq c$; $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$
 - 4. $a = b \neq c; \alpha = \beta = \gamma = 90^{\circ}$
- 6. In the simple cubic system unit cell, atoms or ions are
 - 1. at the corners and multiple atoms or ions are in the center of each of the six faces
 - 2. at the corners and a single atom or ion in the center of each of the six faces
 - 3. only at the corners of the unit cell
 - 4. only in the center of the unit cell
- 7. One of the following statements about ionic crystals is not true
 - 1. generally formed between metals and group 16 or 17 non-metals
 - 2. brittle

- 3. some contain polyatomic ions
- 4. low melting points
- 8. One of the following is not true about metallic crystals:
 - 1. consist of cations
 - 2. have very mobile electrons
 - 3. narrow range of melting points
 - 4. good conductors of electricity
- 9. Covalent network crystals
 - 1. are connected by ionic bonds
 - 2. are hard and brittle
 - 3. conduct electricity well in molten state
 - 4. have low melting points
- 10. One of the following is not an amorphous solid
 - 1. diamond
 - 2. glass
 - 3. plastic
 - 4. rubber

- 11. _____ Nonmetallic polyatomic ions are often found in ionic crystals.
- 12. _____ The edge lengths of a crystal are represented by α , β , and γ .
- 13. _____ Solids have a vapor pressure.
- 14. _____ The melting point of solid aluminum is the same as the freezing point of liquid aluminum.
- 15. _____ The hexagonal crystal structure can be represented by a = b = c; $\alpha = \beta = \gamma \neq 90^{\circ}$.
- 16. _____ The majority of solids are crystalline in nature.
- 17. _____ The cubic crystal system is composed of four different types of unit cells.
- 18. _____ Boron is an example of a covalent network crystalline solid.
- 19. _____ Molecular crystals are connected by covalent bonds.
- 20. _____ Glass can be considered to be a supercooled liquid.

Fill in the Blank:

21. Identify the following unit cells:

- 22. Define the following terms:
 - 1. crystal
 - 2. sublimation
 - 3. deposition
 - 4. melting point
 - 5. unit cell
- 23. Match the cell dimensions with the appropriate cell:
 - 1. $a = b = c; \alpha = \beta = \gamma = 90^{\circ}$ 2. $a = b \neq c; \alpha = \beta = \gamma = 90^{\circ}$ 2. cubic 3. $a \neq b \neq c; \alpha = \beta = \gamma = 90^{\circ}$
 - 1. tetragonal
- 3. orthorhombic

- 24. List two examples of
 - 1. ionic crystals
 - 2. metallic crystals
 - 3. covalent network crystals
 - 4. molecular crystals

13.4 Changes of State

Lesson Quiz

Name_____ Class_____ Date _____

- 1. The hydrogen bonds in frozen water begin to break apart
 - 1. as the ice warms
 - 2. at 0°K
 - 3. at 0°C
 - 4. after the ice has completely melted
- 2. During the melting process
 - 1. the temperature of the system gradually increases
 - 2. the temperature remains constant
 - 3. the temperature of the liquid portion increases
 - 4. the temperature of the ice increases
- 3. Water vaporizes to steam at a temperature of
 - 1. 100 K
 - 2. 273 K
 - 3. 373 K
 - 4. 150 K
- 4. The transition from a liquid to a solid is known as
 - 1. freezing
 - 2. condensation
 - 3. sublimation
 - 4. vaporization
- 5. The change of state behavior for any material can be represented by a
 - 1. temperature curve
 - 2. condensing curve
 - 3. heating curve
 - 4. melting curve
- 6. A phase diagram for a material provides all the following information except
 - 1. the behavior of the gas under pressure
 - 2. the behavior of the solid under pressure
 - 3. the effect of pressure on the liquid to gas transition
 - 4. the effect of impurities in the material
- 7. All of the following statements about the water phase diagram are true except
 - 1. an increase in pressure increases the boiling point
 - 2. a decrease in pressure lowers the freezing point

- 3. a decrease in temperature lowers the pressure needed for boiling
- 4. an increase in temperature at constant pressure facilitates the shift from liquid to gas
- 8. Steam condenses to water at a temperature of
 - 1. 273 K
 - 2. 473 K
 - 3. 100°C
 - 4. 0°C

9. The equilibrium between the solid and gas states is represented by

- 1. freezing
- 2. condensation
- 3. deposition
- 4. vaporization

10. A cooling curve represents all of the following except

- 1. the transition from vapor to liquid
- 2. the transition from liquid to solid
- 3. the overall change from vapor to solid
- 4. the transition from solid to vapor

True/False:

- 11. _____ Temperature is always constant during a change of state
- 12. _____ Phase diagrams only show solid to liquid transitions.
- 13. _____ The heating curve for carbon dioxide at one atm pressure shows two plateaus.
- 14. _____ Melting of ice involves disruption of hydrogen bonds.
- 15. _____ The cooling curve is the reverse of the heating curve.
- 16. _____ Ice is less dense than liquid water.
- 17. _____ Ice at -5°C can be converted to water by decreasing the pressure.
- 18. _____ Under the right conditions, solid ice can be directly changed to vapor.
- 19. _____ Melting and boiling points cannot be determined from a heating curve.
- 20. _____ Hydrogen bonds are important in both the solid and liquid stages of water.

- 21. Define the following terms:
 - 1. freezing
 - 2. deposition
 - 3. triple point
 - 4. critical pressure
 - 5. phase diagram
- 22. Fill in the blanks:
 - 1. At a sufficiently low pressure, the _____ phase does not exist.
 - 2. As _____ is steadily added to the ice block, the water molecules will begin to ______ faster and faster as they absorb ______ energy.
- 23. Use the phase diagram for carbon dioxide below to answer the following questions:

24.

- 1. At 250 K and 1 bar pressure, what is the physical state of CO_2 ?
- 2. At 100 bar pressure and 250 K, what is the physical state of CO_2 ?
- 3. At one bar pressure and 250 K temperature, CO₂ is a gas. How can it be sold as dry ice?

13.5 States of Matter

Chapter Test

- 1. One of the following is not a form of matter
 - 1. solid
 - 2. liquid
 - 3. vacuum
 - 4. vapor
- 2. Pressure equals
 - 1. *force*
 - 1. $\frac{area}{area}$ 2. $\frac{area}{force}$
 - 3. $force \times area$
 - 4. force + area
- 3. Atmospheric pressure is measured with a
 - 1. manometer
 - 2. barometer
 - 3. telemeter
 - 4. sphygmomanometer
- 4. The kinetic energy in a sample of sulfur
 - 1. is increased with a decrease in temperature
 - 2. decreases as the temperature goes up
 - 3. is not affected by temperature
 - 4. increases as the temperature increases
- 5. Gases and liquids have one property in common.
 - 1. both are compressible
 - 2. both are fluids
 - 3. both have particles that are close together
 - 4. both have strong interactions among the particles of the material
- 6. The elastic force in the surface of a liquid is called
 - 1. surface tension
 - 2. surface pressure
 - 3. surface attraction
 - 4. surface energy
- 7. Vapor pressure is influenced by all of the following except
 - 1. temperature
 - 2. atmospheric pressure
 - 3. molecular mass
 - 4. intermolecular forces

13.5. States of Matter

- 8. A manometer is used to measure
 - 1. atmospheric pressure
 - 2. pressure in a closed reaction vessel
 - 3. reaction pressure
 - 4. vapor pressure
- 9. Solids and liquids have the following property in common
 - 1. particles close together
 - 2. both flow freely
 - 3. both have defined shape
 - 4. both take the shape of the container
- 10. Metallic crystals
 - 1. are poor conductors of electricity
 - 2. consist of anions
 - 3. have mobile electrons
 - 4. have a narrow range of melting points

True/False:

- 11. _____The kinetic-molecular theory applies to all forms of matter.
- 12. _____ When gas particles collide, kinetic energy is increased.
- 13. _____ A heavier rock exerts the same pressure on the ground as a lighter rock of the same dimensions.
- 14. _____ Intermolecular forces hold liquid particles together.
- 15. _____ High kinetic energy in a liquid decreases the evaporation rate.
- 16. _____ Evaporation of a liquid occurs below the boiling point.
- 17. _____ A barometer is a system for measuring atmospheric pressure.
- 18. _____ Solid particles are organized in regular three-dimensional arrays.
- 19. _____ Surface tension measures the pull of liquid particles by the walls of the containing vessel.
- 20. _____ The edge lengths of a crystal are presented by a, b, and c.

- 21. Define the following terms:
 - 1. pressure
 - 2. evaporation
 - 3. unit cell
 - 4. critical pressure
- 22. Make the following conversions:
 - 1. 972 torr to atm
 - 2. 302 kPa to torr
 - 3. 4.7 atm to mm Hg
 - 4. 845 mm Hg to kPa
- 23. Which of the molecules below will demonstrate the lowest surface tension?
 - 1. $CH_3CH_2CH_2 OH$
 - 2.

$$CH_3CH - O - CH_3$$

3. $CH_2 = CH_2$

24. Use the graph below to answer the following questions about chloroform:

- 1. What is the approximate vapor pressure at 60° C?
- 2. At what temperature is the vapor pressure 10,000 mm Hg?
- 26. Use the phase diagram for water to answer the following questions:

1. If the pressure on the system is increased, what happens to the temperature needed to freeze water?

2. How does an increase in pressure influence the boiling point of water?

The Behavior of Gases Assessments

Chapter Outline

- 14.1 GAS PROPERTIES
- 14.2 GAS LAWS
- 14.3 IDEAL GASES
- 14.4 GAS MIXTURES AND MOLECULAR SPEEDS
- 14.5 THE BEHAVIOR OF GASES

14.1 Gas Properties

Lesson Quiz		
Name	Class	Date
Multiple Choice:		
1. Most of the	volume of a gas is	
 the gas rapidly empty s kinetic 	molecules moving particles space energy	
2. Intermolecul	ar forces in a gas	
 hold the contrib slow the are inside 	e gas particles together ute to gas pressure e particles down gnificant	
3. Air molecule	s increase in velocity when	
 the tem when the tem when n when n 	perature is raised ne temperature is lowered nore molecules are added to the conta nolecules are removed from the conta	uiner uiner
4. An increase	in kinetic energy	
 increas increas decreas decreas 	es the volume of a rigid container es the pressure in the container ses the pressure in the container ses the temperature of the system	
5. After driving	in the desert for several hours, the ca	ar tire pressure will
 decreass not cha increass depend 	e nge e s on how fast the car is moving	
6. Gas pressure	in a rigid vessel will increase when	
 gas par the vest the vest the outs 	ticles are removed sel is cooled sel is heated side pressure is increased	
7. One of the fo	ollowing is not part of the kinetic-mol	lecular theory
1. gas par	ticles move in straight lines	

2. collisions with other particles cause loss of energy

- 3. particles do not lose energy when they collide with container walls
- 4. gas particle size is insignificant.
- 8. An increase in the number of gas particles in a rigid container
 - 1. causes a decrease in pressure
 - 2. causes a decrease in temperature
 - 3. increases intermolecular interactions
 - 4. causes an increase in pressure
- 9. If the volume of a container of gas is increased, one of the following will not happen
 - 1. pressure will decrease
 - 2. number of collisions with a unit area of the container wall will decrease
 - 3. pressure will increase
 - 4. kinetic energy of individual collisions will not be affected
- 10. An increase in temperature causes air molecules to
 - 1. increase in kinetic energy
 - 2. decrease in kinetic energy
 - 3. increase intermolecular interactions
 - 4. decrease intermolecular interactions

- 11. _____ Basketballs are checked for pressure after a game.
- 12. _____ The air in a fully inflated bicycle tire is at a lower pressure that the outside air.
- 13. _____ A given volume of gas has a definite three-dimensional character.
- 14. _____ Gases are less compressible than liquids.
- 15. _____ Most of the volume of a gas is made up of the volumes of the gas particles.
- 16. _____ Removing gas particles from a rigid container lowers the pressure in the system.
- 17. _____ Doubling the Celsius temperature doubles the pressure of a rigid container.
- 18. _____ An increase in temperature increases the kinetic energy of gas particles.
- 19. _____ At STP, the average distance between gas particles is about ten time the diameter of the gas particle.
- 20. _____ An elastic collision is one in which kinetic energy is lost.

Fill in the blank:

- 21. Gases are unlike other states of _____ in that a gas _____ to fill the shape and _____ of its container.
- 22. _____ is a measure of how much a given _____ of matter decreases when placed under pressure.
- 23. If the volume of a container is _____, the gas molecules have less space in which to move around.

Short Answer:

- 24. A balloon is filled to a pressure of 1 atm on the top of Mt. Whitney (14,505 feet) in California during the winter (snow is on the ground and the temperature is about 15°F). The balloon is quickly transported by drone to Badwater in Death Valley (282 feet below sea level), just 76 miles away from Mt. Whitney. The temperature at Badwater is 64°F. Describe the effects of these changes on the balloon.
- 25. Your friend wants to use an inflatable rubber raft to do a Polar Bear Plunge on New Year's Day. He inflates the raft to one atm in his garage (74°F). He then drives out to the lake where he and his friends are going to swim (very briefly!) in water at a temperature of 36°F. He hopes the raft will keep him out of the water. What do you think of his idea?

14.2 Gas Laws

Lesson Quiz

Name	Class	Date

- 1. Boyle's Law can be expressed mathematically as
 - 1. $\frac{P}{V} = k$ 2. $P \times V = k$ 3. $P \times k = V$
 - 4. $\frac{V}{P} = k$
- 2. Boyle's Law states that, for a gas at constant temperature,
 - 1. the volume increases as the pressure increases
 - 2. the volume decreases as the pressure decreases
 - 3. the volume increases as the pressure decreases
 - 4. the volume decreases as the pressure decreases
- 3. Charles' Law states that, for a gas at constant pressure
 - 1. the volume increases as the temperature increases
 - 2. the volume decreases as the temperature increases
 - 3. the volume increases as the temperature decreases
 - 4. an increase in volume causes an increase in temperature
- 4. Charles' Law can be stated
 - 1. $\frac{V}{T} = k$ 2. $V \times T = k$
 - 3. $\frac{T}{V} = k$
 - 4. $V \times k = T$
- 5. For Gay-Lussac's Law to be applicable, a _____ container is needed
 - 1. flexible
 - 2. large
 - 3. rigid
 - 4. small
- 6. Avogadro's Law relates
 - 1. number of moles and temperature
 - 2. volume and number of moles
 - 3. number of grams and pressure
 - 4. number of grams and temperature
- 7. Gay-Lussac's Law states

1.
$$\frac{P}{T} = K$$

2.
$$\frac{T}{P} = k$$

- 3. $K \times P = T$
- 4. $P \times T = k$
- 8. In Avogadro's Law, if a rigid container is used, the relationship exists between
 - 1. volume and temperature
 - 2. pressure and volume
 - 3. pressure and number of moles
 - 4. pressure and temperature

9. When using the combined gas law, the only constant is

- 1. temperature
- 2. amount of gas
- 3. pressure
- 4. volume

10. The combined gas law contains all the individual gas laws except

- 1. Boyle
- 2. Charles
- 3. Gay-Lussac
- 4. Avogadro

True/False:

- 11. _____ In an inverse relationship, as one variable increase, the other also increases.
- 12. _____ A plot of Charles' Law gives a straight line.
- 13. _____ For accurate calculations all temperatures must be in Celsius.
- 14. _____ As the absolute temperature approaches zero K, the volume also approaches zero.
- 15. _____ Charles' Law requires a flexible container.
- 16. _____ A plot of Boyle's Law gives a straight line.
- 17. _____ An increase in temperature produces an increase in kinetic energy.
- 18. _____ In Avogadro's Law calculations, grams of material can be used for n.
- 19. _____ In combined gas law calculations, pressures can only be in atm.
- 20. _____ The formula for the combined gas law is $P \times \frac{V}{T} = k$.

Fill in the Blank:

- 21. At constant temperature, $V_1 = 650 \ mL$, $P_1 = 465 \ torr$, $V_2 = 360 \ mL$, $P_2 = ?$
- 22. At constant temperature, $V_1 = 345 \ mL$, $P_1 = 780 \ torr$, $P_2 = 970 \ torr$, $V_2 = ?$
- 23. At constant pressure, the temperature of 550 mL of gas is increased from 270 K to 420 K. What is the new volume?
- 24. At constant pressure, the volume of helium increase from 560 mL at 245 K to 970 mL. What is the new temperature?
- 25. At constant volume, a tank of gas shows a pressure of 2500 atm at 290 K. The tank is then placed in a metal shed where the temperature is 320 K. What is the new pressure?
- 26. A rigid cylinder of gas shows a pressure of 600 torr at 215 K. It is moved to a new storage site where the pressure is now 750 torr. What is the new temperature?
- 27. Carry out the following calculations:
- 28. a.

29. $P_1 = 3.5 atm$ $P_2 = ?$ 30. $V_1 = 450 mL$ $V_2 = 790 mL$ 31. $T_1 = 290 K$ $T_2 = 360 K$ 32. b.

156

- 33. $P_1 = 840 torr$ $P_2 = 390 torr$
- 34. $V_1 = 245 \ mL$ $V_2 = ?$
- 35. $T_1 = 940 \ K$ $T_2 = 780 \ K$
 - 1. A 2.4 L balloon holds 3.7 mol He. If 1.6 mol He are added to the balloon, what is the new volume?
 - 2. A balloon containing 2.6 mol hydrogen has a volume of 3.9 L. More hydrogen is added to the balloon, giving it a volume of 17.1 L. How many moles of hydrogen were added?

14.3 Ideal Gases

Lesson Quiz				
Name	Class	_ Date		
Multiple	Choice:			
1. Th	e ideal gas law is a combination of			
	 Boyle's law and Charles' law Avogadro's law and Gay-Lussac's law combined gas law and Avogadro's law combined gas law and law of conservation of mass 			
2. Th	e ideal gas law is stated			
	1. $PT = nRV$ 2. $PV = nRT$ 3. $PV = \frac{RV}{n}$ 4. $n = \frac{RT}{PV}$			
3. Th	e units of R require all of the following except			
	 volume be in liters temperature be in Kelvin pressure be in mm Hg, kPa, or atm pressure be in mm Hg, atm, or torr 			

- 4. The unit for R is $J/K \cdot mol$ when the pressure is in
 - 1. mm Hg
 - 2. kPa
 - 3. atm
 - 4. psi
- 5. The units for n are
 - 1. grams
 - 2. mass
 - 3. moles
 - 4. molar mass
- 6. Combustion reactions involve all of the following except
 - 1. oxygen as a reactant
 - 2. carbon dioxide as a product
 - 3. water as a product
 - 4. nitrogen as a reactant
- 7. The ideal gas law allows stoichiometry calculations
 - 1. at any temperature and pressure
 - 2. using unbalanced equations

- 3. at standard pressure only
- 4. at standard temperature only
- 8. One of the following statements about ideal gases is not true
 - 1. $\frac{PV}{RT}$ ratio very close to one at all temperatures
 - 2. particles closely packed
 - 3. negligible intermolecular interactions
 - 4. size of particles insignificant
- 9. At higher pressures, $\frac{PV}{RT}$ becomes less than one because
 - 1. attractive forces become more significant
 - 2. the space occupied by the particles becomes more significant
 - 3. the kinetic energy of gas particles becomes less
 - 4. the temperature increases
- 10. At the same temperature and pressure, which of the following gases is least likely to demonstrate ideal gas behavior?
 - 1. O₂
 - 2. Ne
 - 3. H₂O
 - 4. H₂

- 11. _____ For an ideal gas, the plot of $\frac{PV}{RT}$ vs. pressure is a horizontal line.
- 12. _____ The ideal gas law can only be used at STP.
- 13. _____ Temperature units for the ideal gas law can be either Celsius or Fahrenheit.
- 14. $___k Pa \times L = J$
- 15. _____ Only temperature and pressure can be calculated using the ideal gas law.
- 16. _____ Avogadro's Law shows that pressure is directly proportional to n.
- 17. _____ The ideal gas law shows that an increase in volume produces a decrease in pressure at constant n and T.
- 18. _____ The numerical value of R depends on the units for temperature.
- 19. _____ Evaluation of R requires that the gas be ideal.
- 20. _____ Gas density at non-standard conditions cannot be determined using the ideal gas law.

- 21. The combined gas law shows that the pressure of a gas is _____ proportional to volume and directly proportional to _____.
- 22. The _____ R in the equation is called the ideal gas _____
- 23. An ideal gas is one that follows the _____ laws at all conditions of ______ and _____.
- 24. HF can exist as a gas above 293 K and one atm pressure. Would you expect HF to behave as an ideal gas? Explain your answer.
- 25. What volume of gas is occupied by 4.7 moles of nitrogen at 675 K and a pressure of 3.9 kPa?
- 26. How many moles of Rn are present in a sample that occupies a volume of 125 L at a pressure of 0.75 kPa and a temperature of 305 K?
- 27. Ammonium nitrate is heated to form N_2O and water according to the following equation:
- 28. $NH_4NO_3 \rightarrow N_2O + 2H_2O$
- 29. What mass of ammonium nitrate needs to be heated to form 125 mL of N
- 30. s
- 31. O at 125 kPa and 300 K?
- 32. A gas sample occupies a volume of 150 mL at a temperature of 295 K and a pressure of 98.2 kPa. How many moles of gas are there?

- 33. A gas occupies a space of 2.9 L at a pressure of 3.6 atm and a temperature of 315 K. It has a mass of 24.2 g. What is the molar mass?
- 34. Calculate the density of neon gas at 350 K and a pressure of 845 mm Hg.

14.4 Gas Mixtures and Molecular Speeds

Lesson Quiz

- 1. The partial pressure of neon is indicated by
 - 1. Pne
 - 2. P_{Ne}
 - 3. \mathbf{P}^{Ne}
 - 4. partial P Ne
- 2. The symbol for mole fraction is
 - 1. m_f
 - 2. X
 - 3. F_{mol}
 - 4. x
- 3. The partial pressure of a gas equals
 - 1. mole fraction \times total pressure
 - 2. mole fraction \div total pressure
 - 3. total pressure \div mole fraction
 - 4. (total pressure)² × mole fraction
- 4. Water displacement involves
 - 1. collecting a gas by bubbling it through water
 - 2. bubbling water through the gas
 - 3. adding water to the gas after it is collected
 - 4. removing water from the gas while it is being produced
- 5. Gas collected by water displacement will
 - 1. be contaminated by air
 - 2. dissolve in the water
 - 3. contain water vapor
 - 4. be pure
- 6. The pressure of a gas containing water vapor is an application of
 - 1. Charles' Law
 - 2. Dalton's Law
 - 3. Boyle's Law
 - 4. Gay-Lussac's Law
- 7. Graham's Law associates gas diffusion with
 - 1. pressure
 - 2. volume
 - 3. actual mass
 - 4. molar mass

- 8. If one mole of N_2 at 760 torr is added to a container holding one mole of H_2 at 760 torr
 - 1. the pressure in the container is 1520 torr
 - 2. the pressure in the container is 380 torr
 - 3. the pressure in the container is 760 torr
 - 4. the pressure in the container is 1140 torr
- 9. The mole fraction of nitrogen in air is calculated using the following formula
 - 1. mol $N_2 \times$ total mol
 - 2. mol $N_2 \div \text{total mol}$
 - 3. total mol \div mol N_2
 - 4. $(\text{mol } N_2 \times \text{total mol}) \times 100$
- 10. The partial pressure of a gas (P_x) in a mixture can be determined with
 - 1. $P_x = \text{mole fraction}_x \div \text{total moles}$
 - 2. $P_x = \text{total moles} \div \text{mole fraction}_x$
 - 3. P_x = mole fraction_x × total pressure
 - 4. $P_x = \text{mole fraction}_x \div \text{total pressure}$

- 11. _____ The total pressure in a mixture of gases is the sum of the partial pressures of the gases.
- 12. _____ A gas collected over water contains water vapor due to boiling at a high temperature.
- 13. _____ The vapor pressure of water is not affected by temperature.
- 14. _____ Carbon dioxide in the atmosphere exerts more pressure in air than does oxygen.
- 15. _____ Solids diffuse less readily than liquids.
- 16. _____ At the same temperature and volume, a container holding 1200 gas particles exhibits more pressure than a container holding 745 particles.
- 17. _____ Graham's Law applies to both diffusion and effusion.
- 18. _____ Dalton found that the pressure of a gas in a mixture is affected by other gases in the system.
- 19. _____ The mole fraction of a gas in a mixture depends upon its structure.
- 20. _____ Gases with high molar masses diffuse more slowly than gases with low molar masses.

- 21. Define the following terms:
 - 1. Dalton's Law
 - 2. Graham's Law
 - 3. partial pressure
 - 4. diffusion
- 22. Which of the following gases will diffuse the slowest? the fastest?
- 23. $N_2, He, HC \equiv CH, Ar, Cl_2$
- 24. Determine the partial pressure of oxygen in a container where it is mixed with hydrogen (partial pressure 85 mm Hg) and helium (partial pressure 198 mm Hg). The pressure in the tank is 412 mm Hg.
- 25. Space capsules operate with an oxygen content of about 34%. Assuming a total pressure of 780 mm Hg in the space capsule, what is the partial pressure of the oxygen?
- 26. Under a given set of circumstances, He effuses at a rate of 425 m/s. What is the effusion rate for Ar under those circumstances?
- 27. Calculate the mole fraction of each gas in a mixture of 43.7 g Xe and 36.9 g Kr.
- 28. If the total pressure in the system is 267 kPa, what is the partial pressure of the Xe and Kr in problem 26?
- 29. An experiment generates 25.0 L of O_2 collected over water. The atmospheric pressure is 740 mm Hg and the temperature is 25°C. What is the volume of the dry oxygen at STP?

14.5 The Behavior of Gases

Chapter Test

- 1. Car tire pressure is adjusted in a warm garage and the car is then driven for several hours in subzero weather. The tire pressure will
 - 1. decrease
 - 2. not change
 - 3. increase
 - 4. depends on how fast the car is moving
- 2. The gas law that states $P \times V = k$ is
 - 1. Boyle's Law
 - 2. Charles' Law
 - 3. Dalton's Law
 - 4. Gay-Lussac's Law
- 3. PV = nRT is a statement of
 - 1. Dalton's Law
 - 2. law of partial pressures
 - 3. ideal gas law
 - 4. Avogadro's Law
- 4. Mole fraction \times total pressure is a way to calculate
 - 1. molar mass
 - 2. partial pressures
 - 3. universal gas constant
 - 4. vapor pressure
- 5. An ideal gas has the following property
 - 1. particles are close together
 - 2. molar mass affects pressure
 - 3. intermolecular interactions negligible
 - 4. particle size important for pressure
- 6. Which of the following gases is least likely to show ideal behavior?
 - 1. HF
 - 2. Ne
 - $3. \ Cl_2$
 - 4. O₂
- 7. When gas pressure is measured in kPa, the units for R are
 - 1. $L \cdot mm Hg/K \cdot mol$
 - 2. $J/K \cdot mol$
 - 3. $L \cdot atm/K \cdot mol$

4. $kPa/K \cdot mol$

- 8. The law that relates volume and number of moles of a gas is
 - 1. Dalton's Law
 - 2. Avogadro's Law
 - 3. Charles' Law
 - 4. Boyle's Law
- 9. A decrease in temperature causes air molecules to
 - 1. increase in kinetic energy
 - 2. increase intermolecular interactions
 - 3. decrease intermolecular interactions
 - 4. decrease in kinetic energy
- 10. The combination of the combined gas law and Avogadro's law is
 - 1. partial pressures law
 - 2. law of conservation of mass
 - 3. ideal gas law
 - 4. molecular mass law

True/False:

- 11. _____ The plot of $\frac{PV}{RT}$ for an ideal gas is a curved line.
- 12. _____ At the same temperature and volume, a container holding 450 gas particles exhibits more pressure than a container holding 345 particles.
- 13. _____ Grahams's Law is derived from an equation for kinetic energy.
- 14. The ideal gas law shows that an increase in volume produces an increase in pressure at constant n and T.
- 15. _____ A plot of Boyle's Law gives a straight line.
- 16. _____ Doubling the Kelvin temperature doubles the pressure in a rigid container.
- 17. _____ A decrease in temperature increases the kinetic energy of gas particles.
- 18. _____ An elastic collision is one in which kinetic energy is gained.
- 19. _____ The amount of gas is assumed to be constant when doing combined gas law calculations.
- 20. _____ Temperature units for gas law calculations are in Kelvin.

- 21. Define the following terms:
 - 1. diffusion
 - 2. partial pressure
 - 3. Avogadro's Law
 - 4. Charles' Law
- 22. Make the following calculations:
 - 1. $P_1 = 3.6 atm V_1 = 246 L T_1 = 375 K P_2 = ? V_2 = 816 L T_2 = 523 K$
 - 2. $P_1 = 840 \text{ mm Hg } V_1 = 241 \text{ L } T_1 = 740 \text{ K } P_2 = 980 \text{ mm Hg } V_2 = ? T_2 = 460 \text{ K}$
- 23. Calculate the mole fraction for each gas in a mixture of 46.7 g Kr and 6.9 g H_2 .
- 24. A balloon containing 4.5 moles of He has a volume of 23.1 L. More helium is added, bringing the balloon to a volume of 35.2 L. How many moles He were added?
- 25. What volume of gas is occupied by 6.4 moles of oxygen at 298 K and a pressure of 840 mm Hg?
- 26. A gas occupies a volume of 4.9 L at a pressure of 502 kPa and a temperature of 356 K. It has a mass of 36.5 g. What is the molar mass?

- 27. Determine the partial pressure of He in a tank containing argon (partial pressure 340 mm Hg) and neon (partial pressure 195 mm Hg). The total pressure in the tank is 850 mm Hg.
- 28. An experiment produces 33 L of H₂ collected over water. The atmospheric pressure is 755 mm Hg and the temperature is 20°C. What is the volume of the dry hydrogen at STP?

CHAPTER **15**

Water Assessments

Chapter Outline

- 15.1 PROPERTIES OF WATER
- 15.2 AQUEOUS SOLUTIONS
- 15.3 COLLOIDS AND SUSPENSIONS
- 15.4 WATER

15.1 Properties of Water

Lesson Quiz

Name_____ Class____ Date____

- 1. Water exhibits a bent molecule configuration because of
 - 1. attractions between O and H
 - 2. sp³ hybridization
 - 3. two sets of lone pair O electrons
 - 4. repulsions between the two $\delta^+ H$ atoms
- 2. The H-O-H bond angle is
 - 1. 109.5°
 - 2. 105°
 - 3. 109.47°
 - 4. 107°
- 3. Each oxygen atom has a _____ geometry around it.
 - 1. square planar
 - 2. trigonal
 - 3. orthorhombic
 - 4. tetrahedral
- 4. Ice floats because
 - 1. there is more space between molecules
 - 2. repulsion by partial negative charge on O
 - 3. there is less space between molecules
 - 4. repulsion by partial positive charge on H
- 5. The bent shape of the water molecule
 - 1. allows molecules to come closer together
 - 2. makes the entire molecule polar
 - 3. permits hydrogen bond formation
 - 4. helps in dissolving materials
- 6. The O-H bond is polar covalent because of
 - 1. the bent shape of the molecule
 - 2. the electronegativity of the H atom
 - 3. the lone pair electrons on O
 - 4. the electronegativity of the O atom
- 7. Hydrogen bonds are stronger than
 - 1. covalent bonds
 - 2. ionic bonds

- 3. ion-dipole bonds
- 4. dipole-dipole bonds
- 8. The high boiling point of water is due to
 - 1. the bent shape of the water molecule
 - 2. hydrogen bonding
 - 3. dipole-dipole interactions
 - 4. kinetic energy of the water molecule
- 9. The most accurate meniscus reading is
 - 1. at eye level
 - 2. below the level of the meniscus
 - 3. above the level of the meniscus
 - 4. taking an average of readings at different levels
- 10. The low vapor pressure of water is due to
 - 1. high kinetic energy of the water molecules
 - 2. hydrogen bonding
 - 3. high molecular mass of the water molecule
 - 4. dipole-dipole interactions

- 11. _____ When water is in a thin column, the center of the surface is lower than the edges.
- 12. _____ The low vapor pressure of water decreases the rate of evaporation from bodies of water.
- 13. _____ Water reaches its highest density at $2^{\circ}C$.
- 14. _____ There are many solids that are less dense than their liquid form.
- 15. _____ As water approaches $0^{\circ}C$, the molecules begin to organize into a octahedral structure.
- 16. _____ The bent shape of the water molecule makes the entire structure polar.
- 17. _____ Each H atom can form a hydrogen bond with one O atom.
- 18. _____ In a water molecule, the H atoms function as dipoles.
- 19. _____ Very little energy is required to break the H-bonds in ice.
- 20. _____ As water cools, its molecular motion slows.

- 21. Oceans, rivers, and lakes cover about _____ of the Earth's surface.
- 22. The highly _____ O-H bonds leave very little _____ density around the _____atoms.
- 23. The geometry around each oxygen atom consists of two _____ bonds and two _____ bonds.
- 24. The _____ of any liquid increases as its temperature _____.
- 25. _____ is one of only very few solids that is _____ dense than its liquid form.
- 26. Look at the water cycle diagram at the beginning of the lesson. List the ways that liquid water can gain access to the atmosphere.

15.2 Aqueous Solutions

Lesson Quiz

Name	Class	Date

- 1. When NaHCO3 dissociates in water, the products are
 - 1. $Na^+ + H^+ + CO_3^-$
 - 2. $Na^+ + H^+ + CO_3^2$
 - 3. $Na^+ + HCO_3^-$
 - 4. $Na^+ + HCO_3^{2-}$
- 2. Oil and water form two layers when mixed together. Oil is a _____ material.
 - 1. polar
 - 2. nonpolar
 - 3. ionic
 - 4. dipole
- 3. An electrolyte shows all the following properties except
 - 1. can conduct electricity when dissolved in water or melted
 - 2. is ionic
 - 3. does not dissociate into ions when dissolved in water or melted
 - 4. forms H bonds with water molecules
- 4. Fe₂(SO₄)₃ is slightly soluble in water and forms _____ ions
 - 1. 3
 - 2. 5
 - 3. 12
 - 4. 2
- 5. The double arrow in an ionization equation indicate
 - 1. ionization of a weak electrolyte
 - 2. ionization of a strong electrolyte
 - 3. an incomplete reaction
 - 4. reaction of a nonelectrolyte
- 6. Water will dissolve all of the following except
 - 1. table salt
 - 2. sugar
 - 3. vegetable oil
 - 4. baking soda
- 7. The geological process of ______ is a direct result of water's dissolving power
 - 1. earthquake
 - 2. typhoon

- 3. tornado
- 4. erosion
- 8. When a crystal of sodium chloride is placed into water,
 - 1. water molecules are surrounded by sodium ions
 - 2. water molecules collide with the crystal lattice
 - 3. the ions react with water molecules
 - 4. water molecules are surrounded by chloride ions
- 9. Aqueous solutions are stabilized by
 - 1. hydration
 - 2. hydrolysis
 - 3. precipitation
 - 4. hyperactivity
- 10. The attractive forces between nonpolar particles are
 - 1. ionic forces
 - 2. covalent forces
 - 3. dispersion forces
 - 4. ion-dipole forces

- 11. _____ All ionic compounds are electrolytes.
- 12. _____ Solutes in a true solution can be filtered out.
- 13. _____ Ethanol is a polar liquid.
- 14. _____ When KBr dissolves, the bromine ion is attracted to the O atom in water
- 15. _____ Sugar dissolves in water to produce ions.
- 16. _____ HMnO₄ dissociates in water to produce H^+ and MnO_4^- ions.
- 17. _____ HCl gas is an electrolyte.
- 18. _____ Solvation involves formation of solutions by nonelectrolytes.
- 19. _____ Water molecules surround solute particles in a random manner.
- 20. _____ Nonpolar particles are held together by weak dispersion forces.

- 21. An ______ solution is water that contains one or more ______ substances.
- 22. Liquids that do not _____ in one another are called _____
- 23. Write dissociation equations for the following materials. Use NR if the material does not dissociate in water.
 - 1. Na₂CO₃
 - 2. CH₄
 - 3. $LiC_2H_3O_2$
 - 4. CH₃CH₂OH
 - 5. KOH

24. A solution is a _____ mixture consisting of a _____ dissolved into a _____

15.3 Colloids and Suspensions

Lesson Quiz

Name	Class	Date
------	-------	------

Multipl	e Ch	oice:
1,1,000000000	0 011	ovee.

- 1. A mixture in which some of the material settles out is called a
 - 1. precipitate
 - 2. suspension
 - 3. colloid
 - 4. solution
- 2. One of the following is not a property of a solution
 - 1. homogeneous mixture
 - 2. particle size less than 1 nm
 - 3. can filter material out of solution
 - 4. does not scatter light
- 3. Large particles are characteristic of a
 - 1. suspension
 - 2. colloid
 - 3. solution
 - 4. solid
- 4. All of the following are colloids except
 - 1. smoke
 - 2. butter
 - 3. milk
 - 4. cola drink
- 5. The scattering of light by a colloid is called the _____ effect
 - 1. Timpani
 - 2. Thomas
 - 3. Tyndall
 - 4. Tyson
- 6. Colloids exhibit _____ motion, seen under a microscope
 - 1. Bragton
 - 2. Brownian
 - 3. Broenian
 - 4. Bigstein
- 7. An example of a solid emulsion colloid is
 - 1. mayonnaise
 - 2. butter

- 3. marshmallow
- 4. blood
- 8. A sol and gel colloid consists of
 - 1. solid dispersed in liquid.
 - 2. liquid dispersed in liquid
 - 3. liquid dispersed in solid
 - 4. gas dispersed in solid

9. Egg yolk is added as _____ to a mixture of oil and vinegar

- 1. dispersing agent
- 2. emulsifying agent
- 3. emulsion agent
- 4. solubilizing agent
- 10. A liquid dispersed in a solid is called a _____ colloid
 - 1. solid aerosol
 - 2. liquid aerosol
 - 3. solid emulsion
 - 4. liquid emulsion

True/False:

- 11. _____ Colloids move in rapid and random motions
- 12. _____ Both ends of a soap molecule are polar.
- 13. _____ Light passed through a solution is not deflected.
- 14. _____ A colloid is a homogeneous mixture.
- 15. _____ Suspensions do not stay dispersed unless they are actively mixed.
- 16. _____ Dispersed colloid particles are about the same size as those in solutions.
- 17. _____ Suspensions do not scatter light.
- 18. _____ Mud is an example of a solid emulsion colloid.
- 19. _____ The rapid movements of colloidal particles can only be seen under a microscope.
- 20. _____ Some suspensions will be opaque.

Fill in the Blank:

- 21. Define the following terms:
 - 1. colloid
 - 2. emulsion
 - 3. suspension
 - 4. Tyndall effect

22. Colloidal particles are spread evenly throughout the _____ medium, which can be a _____, ____, or

- 23. A _____ emulsion requires an _____ agent to be present.
- 24. Fill in the blanks:

TABLE 15.1:

Solutions	Colloids	Suspensions
Homogeneous		
	Particle size: 1-1000 nm, dispersed;	
	large molecules or aggregates	

TABLE 15.1: (continued)

Solutions	Colloids	Suspensions
		Particles settle out
	Cannot be separated by filtration	
Do not scatter light		May either scatter light or be
		opaque

TABLE 15.2:

Solutions	Colloids	Suspensions	
Homogeneous	Heterogeneous	Heterogeneous	
Particle size: 0.01-1 nm; atoms,	Particle size: 1-1000 nm, dispersed;	Particle size: over 1000 nm, sus-	
ions, or molecules	large molecules or aggregates	pended; large particles or aggre-	
		gates	
Do not separate on standing	Do not separate on standing	Particles settle out	
Cannot be separated by filtration	Cannot be separated by filtration	Can be separated by filtration	
Do not scatter light	Scatter light (Tyndall effect)	May either scatter light or be	
		opaque	

15.4 Water

Chapter Test

Name	Class	Date

- 1. Acetone and water mix together because acetone is a _____ molecule.
 - 1. polar
 - 2. nonpolar
 - 3. ionic
 - 4. dipole
- 2. Water exhibits a _____ molecular configuration.
 - 1. linear
 - 2. bent
 - 3. tetrahedral
 - 4. trigonal
- 3. The shape of the water molecule
 - 1. facilitates solution formation
 - 2. allows colloids to form
 - 3. makes the entire molecule polar
 - 4. helps in hydrogen bond formation
- 4. Motor oil forms a colloid with water only if aided by
 - 1. a solubilizer
 - 2. increased temperature
 - 3. an emulsifying agent
 - 4. egg yolk
- 5. The Tyndall effect is
 - 1. visualization of a suspension
 - 2. light scattering by a colloid
 - 3. light scattering by a solution
 - 4. rapid movement of colloid particles
- 6. KClO₄ dissociates to form
 - 1. $K^+ + ClO_4^-$
 - 2. $K^+ + Cl^- + 2O_2$
 - 3. $KCl + 2O_2$
 - 4. $KClO_2 + O_2$
- 7. Hydrogen bonding affects all of the following properties of water except
 - 1. solubility of polar materials
 - 2. high melting point
- 3. low boiling point
- 4. lower density of solid water
- 8. The meniscus for water in a thin glass column is due to
 - 1. low polarity
 - 2. high surface tension
 - 3. repulsion of water by the glass
 - 4. molecular mass of water
- 9. LiCl dissolves in water because
 - 1. water molecules are surrounded by lithium ions
 - 2. water molecules collide with the crystal lattice
 - 3. the ions react with water molecules
 - 4. water molecules are surrounded by chloride ions
- 10. Shaving cream is an example of a _____ colloid.
 - 1. sol and gel
 - 2. solid aerosol
 - 3. liquid aerosol
 - 4. foam

- 11. _____ The double arrow in an ionization equation indicates ionization of a weak electrolyte.
- 12. _____ Dipole-dipole interactions are responsible for the low vapor pressure of water.
- 13. _____ Each H atom can form H-bonds with two O atoms.
- 14. _____ Hydrogen bonds are stronger than ionic bonds.
- 15. _____ The most accurate meniscus readings are made at eye level.
- 16. _____ Ice is less dense than water.
- 17. _____ Water will not dissolve CH₃OH.
- 18. _____ Non-polar molecules interact by way of dispersion forces.
- 19. _____ Electrolytes dissolve by forming H-bonds with water.
- 20. _____ Paint is a sol and gel colloid.

Fill in the Blank:

21. Define the following terms:

- 1. hydration
- 2. miscible
- 3. solute
- 4. electrolyte
- 5. solvation
- 22. A _____ emulsion requires an _____ agent to be present.
- 23. The geometry around each oxygen atom consists of two _____ bonds and two _____ bonds.
- 24. Write dissociation reactions for the following:
 - 1. NaBr (strong electrolyte)
 - 2. HCN (weak electrolyte)
 - 3. HCl (strong electrolyte)
 - 4. HF (weak electrolyte)

CHAPTER **16** Solutions Assessments

Chapter Outline

- 16.1 SOLUBILITY
- 16.2 SOLUTION CONCENTRATION
- 16.3 COLLIGATIVE PROPERTIES
- 16.4 NET IONIC EQUATIONS
- 16.5 SOLUTIONS

16.1 Solubility

Lesson Quiz		
Name	Class	Date
Multiple Choice:		
 Some liquid medica solution. gas in liquid gas in gas liquid in gas liquid in liquid 	tions can be administered u	using an oxygen inhaler. This is an example of a
 An example of a sol water in ammodeling cocoa in water gravel in concrete ice in water 	id in liquid solution is mia rete	
 The form of salt tha salt block salt crystals in salt from the s salt for melting 	t will dissolve least rapidly rock salt alt shaker g ice	is
4. Sugar will dissolve1. allowed to sit2. stirred rapidly3. stirred slowly4. chilled before	nost quickly if the solution	ı is
 5. NaCl is dissolved in 1. saturated 2. unsaturated 3. supersaturated 4. partially saturated 	water until no more will ge	o into solution. At this point the solution is
 Materials in aqueou surround wate are hydrated b 	s solution r molecules y water molecules	

- 3. form hydrogen bonds with water molecules
- 4. form ionic bonds with water molecules
- 7. When discussing solubility of sulfur dioxide in water, all of the following need to be considered except
 - 1. pressure of the gas

- 2. temperature
- 3. nature of the solvent
- 4. molecular mass of solute
- 8. Which of the following salts is most soluble at 60°C?
 - 1. KNO₃
 - 2. NaNO₃
 - 3. KCl
 - 4. NaCl
- 9. The solubility of a gas increases as
 - 1. the temperature increases
 - 2. the pressure increases
 - 3. the pressure decreases
 - 4. the solvent becomes more polar
- 10. Temperature has the least effect on the solubility of
 - 1. NaCl
 - 2. KCl
 - 3. HCl
 - 4. NH₄Cl

- 11. _____ The solubility of HCl increases as the temperature decreases.
- 12. _____ Salt in water is an example of a solid in liquid solution.
- 13. _____ Decreasing surface area enhances solute contact with solvent.
- 14. _____ As the partial pressure increases, the solubility of a gas increases.
- 15. _____ Gas solubilities are commonly reported in moles/L.
- 16. _____ Carbon dioxide in ether is an example of a gas in liquid solution.
- 17. _____ Increasing collisions of solvent with solute increases the rate of solution formation.
- 18. _____ At 20°C, KCl is more soluble than NaCl.
- 19. _____ The kinetic energy of a gas increases as the temperature increases.
- 20. _____ Solid-solid solutions are called alloys.

Fill in the Blank:

- 21. Define the following terms
 - 1. solubility
 - 2. Henry's law
 - 3. saturated solution
 - 4. recrystallization
 - 5. solution equilibrium
- 22. The solubility of a gaseous solute is affected by both the _____ and the _____ of the gas.
- 23. There are approximately _____ g NaNO₃ dissolved per 100 g water at 40°C.
- 24. Dissolving of a solid by water depends upon the _____ that occur between the _____ molecules and the particles in the solid _____.

- 25. The solubility of a certain gas is 0.85 g/L at 20°C and 650 mm Hg. What is the solubility when the gas pressure is increased to 1340 mm Hg?
- 26. The solubility of a gas is 1.25 g/L at 920 mm Hg. At what pressure will the gas solubility be 0.92 g/L?

16.2 Solution Concentration

Lesson Quiz Name _____ Class _____ Date _____ Multiple Choice: 1. The symbol for molality is 1. m 2. *m* 3. M 4. *M* 2. The symbol for molarity is 1. m 2. *m* 3. M 4. M3. Mass percent is determined by the calculation 1. (grams solute \div grams solvent) $\times 100\%$ 2. (grams solute \div grams solution) $\times 100\%$

- 3. (grams solvent \div grams solute) \div 100%
- 4. (grams solute \times grams solvent) \div 100%
- 4. In making a volume % solution, the volume of solute
 - 1. depends on the solvent type
 - 2. is calculated as (solute \div solvent) \times final volume
 - 3. is added to the desired final volume
 - 4. is subtracted from the desired final volume
- 5. One of the following concentration units allows us to determine the number of particles present.
 - 1. volume percent
 - 2. percent dilution
 - 3. molarity
 - 4. mass percent
- 6. Units for molarity are
 - 1. grams/liter
 - 2. grams/mL
 - 3. moles %
 - 4. moles/L
- 7. To determine molarity, we need to know _____ of solute
 - 1. grams/L
 - 2. grams%

- 3. grams/mole
- 4. moles/gram
- 8. Molality calculations require that we know
 - 1. liters of solution
 - 2. liters of solvent
 - 3. kilograms of solvent
 - 4. kilograms of solute
- 9. The best glassware to use in preparing a solution is a
 - 1. graduated cylinder
 - 2. volumetric flask
 - 3. calibrated beaker
 - 4. buret
- 10. The formula to use for calculations of dilutions is

1.
$$V_1C_1 = V_2C_2$$

2. $V_1C_2 = V_2C_1$
3. $\frac{V_1}{C_1} = \frac{V_2}{C_2}$
4. $\frac{C_1}{V_1} = \frac{C_2}{V_2}$

- 11. _____ Molarity values are not affected by temperature
- 12. _____ The concentration of a solution is decreased by adding water to it.
- 13. _____ You can use a 1.0 liter flask to prepare 500 mL of solution.
- 14. _____ A dilute solution contains a relatively small amount of solute
- 15. _____ If the solvent evaporates from a solution, that solution becomes less concentrated.
- 16. _____ Mass percent is used if the solute is a solid.
- 17. _____ Volume percent is calculated using volume solute ÷ volume solvent.
- 18. _____ Volume is not preserved in many liquid solute/solvent combinations.
- 19. _____ "Concentrated" and "dilute" provide accurate information about solute concentrations.
- 20. _____ It is not important to know whether a % solution is by mass or by volume.

- 21. Describe how to prepare 250 mL of a 5% (mass/mass) solution of glucose in water.
- 22. Describe how to prepare 500 mL of a 10% (vol/vol) solution of acetone in water.
- 23. How many mL of 0.45 M NaCl solution will you need to prepare 150 mL of 0.1 M NaCl?
- 24. You dilute 200 mL of a glucose stock solution to make 500 mL of a 0.30 M solution. What was the concentration of the stock solution?
- 25. Describe how to prepare 500 mL of 0.2 M LiCl.
- 26. You dissolve 45 g methanol (molar mass = 32 g/mole) in water and dilute to 300 mL. What is the molarity of the solution?
- 27. How many grams of MgCl₂ would you dissolve in 1.5 kilograms water to form a 0.5 m solution?
- 28. What is the molality of a solution in which 0.77 moles of solute are dissolved in 0.45 kg water?
- 29. Why would it be difficult to prepare a 0.5 M solution of CO_2 ?
- 30. You are preparing molal solutions by dissolving 0.15 moles of solute into 500 grams of solvent. Solvent A has a density of 0.6 g/mL and solvent B has a density of 1.4 g/mL. Which solution will contain the higher concentration of solute?

16.3 Colligative Properties

Lesson Quiz			
Name	Class	Date	
Multiple Choice:			
1. A colligative	property is one based on		
 numbe numbe numbe numbe 	r of covalent bonds r of hydrogen bonds r of particles r of dipole-dipole interactions		
2. The freezing	point of a solution is lowered by		
 increas increas decreas increas 	ing the number of solute particles ing the kinetic energy sing the number of solute particles ing the pressure on the solution		
3. The freezing	point of water will be lowered mos	st by dissolving 1.0 mole of	
 naphth NaCl MgCl₂ ether 	alene		
4. The best solu	ate for lowering vapor pressure is o	ne that	
 is sligh evapora is nonv reacts v 	tly soluble ates readily rolatile with the solvent		
5. Solvent freez	zing points are lowered by materials	s that	
1 bring n	nore order to the solvent molecules		

- 1. bring more order to the solvent molecules
- 2. disrupt the order of solvent molecules
- 3. increase kinetic energy of solvent molecules
- 4. decrease the kinetic energy of solvent molecules
- 6. Vapor pressure is a _____ property of the solvent
 - 1. physical
 - 2. chemical
 - 3. dynamic
 - 4. kinetic
- 7. K_f stands for
 - 1. freezing point elevation constant
 - 2. molar freezing point constant

- 3. micro freezing point constant
- 4. molal freezing point constant
- 8. A colligative property of water is
 - 1. molecular structure
 - 2. boiling point
 - 3. solubility
 - 4. reactivity
- 9. A volatile liquid
 - 1. evaporates readily
 - 2. has a low vapor pressure
 - 3. has a high boiling point
 - 4. is unreactive
- 10. Molality is defined as
 - 1. moles solute/moles solvent
 - 2. moles solute/moles solution
 - 3. moles solute/kg solution
 - 4. moles solute/kg solvent

- 11. _____ Ethylene glycol is used in many commercial antifreeze preparations.
- 12. _____ NaCl will depress the freezing point of water more than CaCl₂.
- 13. _____ A colligative property is one that depends on the identity of particles.
- 14. _____ Liquids that do not evaporate easily have lower vapor pressures.
- 15. _____ Solutes used to lower vapor pressure cannot evaporate readily.
- 16. _____ The amount of freezing point depression is inversely proportional to the number of particles dissolved.
- 17. _____ Vapor pressure is determined by how rapidly molecules can escape the surface of a liquid.
- 18. _____ When a solute is added to a solvent, more energy must be removed from the solution in order to freeze it.
- 19. _____ Salt is added to an icy road to increase the boiling point of the water.
- 20. _____ The vapor pressure of a solution is lower, so less energy is needed to bring that pressure up to the pressure of the atmosphere.

Fill in the Blank:

- 21. Define the following terms:
 - 1. freezing point depression
 - 2. molal freezing point depression constant
 - 3. boiling point elevation
 - 4. molal boiling point elevation constant
- 22. When a pure _____ freezes, its particles become more _____ as the _____ forces that operate between the molecules fix each molecule in place.
- 23. While _____ does not depend on temperature, the _____ of the solution increases with temperature.

- 24. We add 320 g glucose (molar mass 180 g/mole) to 0.65 kg water. What will the new freezing point be?
- 25. A solution is prepared of 60 g KCl in 0.700 kg water. What is the boiling pint of the new solution?
- 26. A solution containing 15.00 g of a carbohydrate in 100.0 g of water is found to freeze at -1.53°C. What is the molar mass of he carbohydrate?

16.4 Net Ionic Equations

Lesson Quiz		
Name	Class	Date
Multiple Choice:		
 The symbol (aq) water mole hydrated p water of hy water as a A net ionic equation all the ioni) represents ecules as part of the reaction articles /dration product tion shows c components in the reaction	
 2. spectator id 3. ions that an 4. both ions a 	ons re directly involved and molecules	
 Spectator ions help baland form produ balance ch are not inv 	ce net ionic equations acts arges olved in the reaction	
4. The compound 01. mostly inse2. mostly solution3. highly solution4. soluble	CaSiO ₃ is bluble uble ible	
 A single-replace metal water hydrogen halogen 	ment reaction involves all of the	following as products except
 One of the follow I. Zn HCl CH₃OH I₂ 	wing would not be a reactant in a	a single-replacement reaction

7. All of the following are mostly soluble except

- 1. CsI
- 2. NaBr

- 3. LiCl
- 4. AgBr
- 8. All of the following are mostly insoluble except
 - 1. NaOH
 - 2. Ca(OH)₂
 - 3. $Mg(OH)_2$
 - 4. Zn(OH)₂
- 9. All of the following are soluble except
 - 1. (NH₄)₂CO₃
 - 2. PbCO₃
 - 3. NaCl
 - 4. Pb(NO₃)₂
- 10. Only one of the following is soluble
 - 1. KCl
 - 2. AgCl
 - 3. PbCl₂
 - 4. Hg_2Cl_2

- 11. _____ Silver nitrate is completely soluble in water.
- 12. _____ Sodium acetate is only somewhat soluble in water.
- 13. _____ One reactant in a single replacement reaction is a pure neutral element.
- 14. _____ Single-replacement reactions do not involve spectator ions.
- 15. _____ In an ionic reaction, only the ions of interest are shown.
- 16. _____ A gas and water can be products of a double-replacement reaction.
- 17. _____ If copper(II) phosphate is formed in a reaction, it would be designated as (aq).
- 18. _____ The designation (*s*) indicates a material in solution.
- 19. _____ A single-replacement reaction might have water as a reactant.
- 20. _____ Cesium sulfide is a soluble material.

- 21. Write the molecular equation, the ionic equation and the net ionic equation for the following double replacement reactions:
 - 1. silver nitrate and rubidium chloride
 - 2. mercury(I) nitrate and hydrochloric acid
 - 3. calcium chloride and sodium carbonate
- 22. Complete the following equations, balance the equations, and indicate any insoluble products with (s)
 - 1. $Al + CuCl_2 \rightarrow$
 - 2. $Br_2 + CaI_2 \rightarrow$
 - 3. $Al + HCl \rightarrow$
 - 4. $Mg + HCl \rightarrow$
 - 5. $Zn + H_2SO_4 \rightarrow$

16.5 Solutions

Chapter Test		
Name	Class	Date
Multiple Choice:		
1. The solubility	y of a gas decreases as	
 the pres the tem the tem the solv 	sure increases perature increases perature decreases rent is less polar	
2. A solid solute	e contact with solvent is enhanced	d by all of the following except
 increasi stirring crushing increasi 	ng surface area g the solute ng pressure	
3. The role of w	vater in aqueous solution formatio	on is to
 hydrate form io be surro react with 	solute particles nic bonds with solute bunded by solute molecules ith solute molecules	
4. Molarity allo	ws us to calculate directly the foll	lowing
 freezing number percent partial p 	y point depression of particles in solution hydration pressure	
5. One of the fo	llowing is not affected by temper	rature
 molarity gas solu molality solid so 	y values ıbility y values ılute solubility	
6. Boiling point	is a property of wat	ter

- 1. collective
- 2. collaborative
- 3. colligative
- 4. collegial
- 7. The boiling point of a liquid is raised by
 - 1. increasing the number of solute particles
 - 2. increasing the pressure

- 3. decreasing the number of solute particles
- 4. using nonelectrolytes instead of electrolytes
- 8. The symbol (s) stands for
 - 1. solid
 - 2. solute
 - 3. solvent
 - 4. solution
- 9. All alkali metal salts are
 - 1. insoluble
 - 2. mostly insoluble
 - 3. mostly soluble
 - 4. soluble
- 10. Most compounds containing the silicate ion are
 - 1. insoluble
 - 2. mostly insoluble
 - 3. mostly soluble
 - 4. soluble

- 11. _____ The symbol for molality is m.
- 12. _____ Units for molarity are moles/liter.
- 13. _____ Dilution calculations can be made using $\frac{V_1}{C_1} = \frac{V_2}{C_2}$.
- 14. _____ Alloys are solutions of solids in other solids.
- 15. _____ Oxygen in water is an example of a gas in liquid solution.
- 16. _____ The freezing point of a liquid will be lowered when solute particles are removed.
- 17. _____ Vapor pressure is a physical property of a solution.
- 18. _____ The compound magnesium chromate is very soluble in water.
- 19. _____ Net ionic equations include spectator ions.
- 20. _____ A halogen is one possible product of a single-replacement reaction.

- 21. Define the following terms:
 - 1. recrystallization
 - 2. boiling point elevation
 - 3. saturated solution
 - 4. solution equilibrium
 - 1. The solubility of a gas in water is 0.56 g/L at 1.00 atm. What will be the solubility when the pressure is raised 3.9 atm?
 - 2. The solubility of a gas is 2.5 g/L at 3560 mm Hg. t what pressure will the solubility be 1.7 g/L?
- 22. Describe how to prepare 250 mL of a 12% solution of potassium bromide.
- 23. You dissolve 35 g of $Mg(NO_3)_2$ in water and dilute to 1.0 L. What is the molarity of this solution?
- 24. How would you prepare 100 mL of a 0.05 m solution of CsCl in water?
- 25. You dissolve 139 g ethylene glycol (molar mass = 62.07 g/mole) in 500 g water. How much will that solution lower the freezing point of water?
- 26. Write the molecular equation, the ionic equation and the net ionic equation for each of the following reactions:
 - 1. lithium sulfide and nickel(II) nitrate

- 2. barium chloride and sodium sulfate
- 27. Write balanced equations for the following reactions:
 - 1. aluminum + zinc oxide
 - 2. lithium + calcium sulfide.

Thermochemistry Assessments

Chapter Outline

- 17.1 HEAT FLOW
- 17.2 THERMOCHEMICAL EQUATIONS
- 17.3 HEAT AND CHANGES OF STATE
- 17.4 Hess's Law
- 17.5 THERMOCHEMISTRY

17.1 Heat Flow

Lesson Quiz		
Name	Class	Date
Multiple Choice:		
1. In order to b	be useful, chemical potential energy	must be
 stored seques release organi 	tered ed zed	
2. All of the fo	llowing statements about heat are tr	ue except
 heat is heat is heat is chemination heat end 	a form of energy transferred from one place to anoth cal reactions can produce heat nergy moves from a lower temperatu	er ire to a higher temperature
3. A system is		
 the ma matter matter matter 	tter in a given space not involved in in a given space that is involved in in a given space that is not acted up in a given space that has already rea	a reaction the reaction on acted
4. If heat is ab	sorbed from the surroundings, the pr	rocess is
 endoth exothe endod exody 	ermic rmic ynamic namic	
5. One of the f	ollowing is a unit of heat	
 caloris joule calorio jole 	;	
6. After one he	our exposure to the sun, which of the	e following will have the greatest increase in temperature?
 shallo gallon swimr lake 	w dish of water bucket of water ning pool	
7. Units for sp	ecific heat are	

- 1. joules/g
- 2. joules/kg

- 3. *joules*/ $g \cdot C$
- 4. *joules*/kg·°C
- 8. Water is used as _____ in power plants
 - 1. power source
 - 2. fuel
 - 3. coolant
 - 4. thermostat
- 9. The m in the specific heat formula stands for
 - 1. mass in grams
 - 2. moles
 - 3. mass in kg
 - 4. molal
- 10. The symbol for specific heat in the equation is
 - 1. e_p
 - 2. p_c
 - 3. h_p
 - 4. c_p

- 11. _____ A Calorie is the equivalent of 500 calories.
- 12. _____ When set in the sun at the same time, a gold coin will heat more rapidly than a silver coin.
- 13. _____ A fireplace warms a room because the heat produced by the fire is absorbed by air particles.
- 14. _____ Brewing coffee is an exothermic process.
- 15. _____ The sign of q is positive for an endothermic process.
- 16. $_$ A calorie is the amount of energy needed to raise the temperature of one gram of water by one degree C.
- 17. _____ One joule equals 4.184 calories.
- 18. _____ Water has a high specific heat.
- 19. _____ When two objects at different temperatures come in contact, heat flows from the lower temperature object to the higher temperature object.
- 20. _____ Metals are not very resistant to changes in temperature.

Fill in the Blank:

- 21. The _____ changes of a system occur as either _____ or work, or some combination of both.
- 22. Heat is _____ that is transferred from one object or substance to another because of a difference in ______ between them.
- 23. _____ is the study of energy changes that occur during ______ reactions and during changes of
- 24. The ______ is the specific portion of matter in a given space that is being studied during an ______ or an

- 25. How many calories are there in 504 joules?
- 26. A 500 g sample of water loses heat as the temperature drops from 29.4°C to 19.7°C. How much energy was lost?
- 27. A sample of gold is heated from 12°C to 28°C and absorbs 460 joules of energy. What is the mass of the gold?
- 28. A 25.2 g sample of tungsten absorbs 734 J of heat. The temperature increases from 14.5°C to 85.4°C. What is the specific heat of tungsten?

17.2 Thermochemical Equations

Lesson Quiz			
Name	Class	Date	
Multiple Choice:			
 Enthalpy cha constant constant constant constant constant 	anges are commonly measured at nt temperature nt pressure nt volume		
 Δ<i>H</i> is the de 1. enthalp 2. entropy 3. entropi 4. enthalp 	esignation for by change y change ic change bic change		
 The designat 1. h 2. e 3. q 4. m 	tion for heat is		
 Foam cups a coulon colorin caloric calorin 	are commonly used to make an inex nb meter neter meter neter	pensive	

- 5. Studies of heat change would be easiest for the following type of reaction:
 - 1. single-replacement
 - 2. formation of a gas
 - 3. combustion
 - 4. formation of a precipitate
- 6. One of the following is not a characteristic of an endothermic reaction
 - 1. heat goes from surroundings to system
 - 2. heat involved is written on the reactant side of the equation
 - 3. heat is released
 - 4. energy is in kJ
- 7. Studies of enthalpy involve measuring
 - 1. change of state
 - 2. temperature change

- 3. gas formation
- 4. solid formation
- 8. One key to successful measurements of heat of reaction is
 - 1. no temperature exchange with container and room
 - 2. reaction must form a gas
 - 3. precipitate formation does not interfere with measurement
 - 4. temperature must increase
- 9. A negative enthalpy changes means that
 - 1. heat is absorbed from the surroundings
 - 2. energy must be put into the reaction
 - 3. heat is given off to the surroundings
 - 4. the energy change in the reaction is negligible
- 10. The heat of a reaction is equivalent to
 - 1. ΔH
 - 2. ΔG
 - 3. ΔG°
 - 4. ΔH^r

- 11. _____ Chemical reactions in the lab are run with controlled temperature.
- 12. _____ Enthalpy measurements are made only when heat is released.
- 13. _____ A temperature change occurs when reactants are converted to products.
- 14. _____ A lid is used to control pressure in the reaction system
- 15. _____ The dissolved materials are the system.
- 16. _____ It is important to measure solution temperatures both before and after a reaction has occurred.
- 17. _____ The enthalpy change for an endothermic reaction is negative.
- 18. _____ The value of ΔH depends on the physical state of reactants and products.
- 19. _____ Energy changes follow stoichiometric relationships.
- 20. _____ Heats of reaction are usually measured in kJ.

Fill in the Blank:

- 21. _____ is the heat content of a _____ at constant _____.
- 22. _____ is the measurement of the transfer of _____ into or out of a system during a _____ reaction or _____ process.

- 23. In the reaction $2H_2O_2(l) \rightarrow 2H_2O(l) + O_2(g); \Delta H = -196.4 \text{ kJ}$. calculate the energy change when 1.0 g hydrogen peroxide decomposes.
- 24. When 15.3 g of sodium nitrate, NaNO₃, was dissolved in water in a calorimeter, the temperature fell from 25.00°C to 21.56°C. What is the enthalpy change when one mole of NaNO₃ dissolves?
- 25. A piece of metal is heated and dropped into a foam cup calorimeter containing 145 mL of water at 20.5°C. The temperature of the water rises to 26.7°C. How many joules of heat were released?
- 26. What is the specific heat of a substance that absorbs 2.5×10^3 *joules* of heat when a sample of 1.0×10^4 g of the substance increases in temperature from 10.0 C to 70.0 C?

17.3 Heat and Changes of State

Less	Lesson Quiz		
Name	Class Date		
Multip	le Choice:		
1. '	The heat of solidification for water is		
	 6.01 kJ/mol -6.01 kJ/mol 6.01 J/mol -6.01 J/mol 		
2. '	The heat of solidification is strongly influenced by		
	 temperature pressure intermolecular forces solvent 		
3. '	The heat of solidification deals with		
	 liquid converting to solid solid converting to gas solid converting to liquid liquid converting to gas 		
4.	As steam condenses to liquid water, the temperature of the steam		
	 increases decreases does not change fluctuates 		

- 5. Changes from the vapor state to the liquid state involves all of the following except
 - 1. release of energy
 - 2. less space between the particles in the liquid state
 - 3. disruption of intermolecular forces
 - 4. particles closer together in the liquid state
- 6. Ethanol has a higher heat of vaporization than other materials in the table because
 - 1. ethanol has a higher molecular mass
 - 2. ethanol can form more hydrogen bonds
 - 3. ethanol contains more hydrogen atoms
 - 4. ethanol contains more carbons
- 7. Calculation of the energy needed to melt 156 grams of ice uses the
 - 1. molar heat of fusion
 - 2. specific heat of water

- 3. molar heat of vaporization
- 4. specific heat of steam
- 8. The process of converting water at 55°C to ice at -12°C requires _____steps.
 - 1. five
 - 2. four
 - 3. three
 - 4. two
- 9. The molar heat of solution for KClO₄ is 51.04 kJ/mol. This value tells us that KClO₄ will
 - 1. dissolve slowly in water
 - 2. generate a great deal of heat when dissolving
 - 3. increase the specific heat of the solution
 - 4. decrease solvent temperature while dissolving
- 10. Many cold packs use
 - 1. sodium hydroxide
 - 2. ammonium nitrate
 - 3. calcium chloride
 - 4. sodium chloride

- 11. _____ The conversion of solid directly to vapor is known as sublimation.
- 12. _____ Energy is released when steam condenses to liquid water.
- 13. _____ The total energy released or absorbed in a process is independent of the amount of material involved.
- 14. _____ Energy is absorbed when a gas is converted to a liquid.
- 15. ____ The molar heat of vaporization is used to determine the amount of energy needed to convert water to ice.
- 16. _____ Calcium chloride releases heat energy when it dissolves.
- 17. _____ A temperature drop will be experienced when a solution of NaOH is prepared.
- 18. _____ For all substances, the heat of vaporization is greater than the heat of fusion.
- 19. _____ The molar heat of vaporization and the molar heat of condensation have different numerical values.
- 20. _____ units for molar heat of fusion are kJ/gram.

Fill in the Blank:

- 21. The molar heat of fusion of a substance is the heat _____ by one mole of that substance as it is converted from a _____ to a liquid.
- 22. Every substance has a ______ value for its molar heat of fusion, depending on the amount of energy required to disrupt the ______ forces present in the solid.
- 23. The molar heat of condensation of a substance is the heat _____ by one mole of that substance as it is converted from a _____ to a liquid.
- 24. The molar heat of _____a substance is the heat _____ or _____ when one ______ of the substance is dissolved in water.

- 25. How much heat is absorbed when 43.9 grams of ethanol are converted from the liquid to the vapor state?
- 26. How much heat is released when 125 g steam at 115°C are converted to liquid water at 85°C?
- 27. How many grams of methanol are present if the conversion of liquid to solid methanol releases 16.43 kJ of energy?
- 28. The molar heat of solution for KI is 20.33 kJ/mol. What will be the temperature change if 47 g KI are dissolved in 1500 mL water at 20°C?

17.4 Hess's Law

Lesson Quiz Name _____ Class _____ Date _____ Multiple Choice: 1. Hess' law deals with 1. adding thermochemical equations 2. calculating change of state situations 3. predicting products of reactions 4. energy transitions 2. Calorimetry is a _____ way to measure heats of reaction. 1. calculated 2. theoretical 3. direct 4. indirect 3. Heats of combustion in a table are for 1. combustion of one gram of substance 2. formation of one kJ of energy 3. utilization of one kJ of energy 4. combustion of one mole of substance 4. If the coefficients of a reaction ae doubled, the ΔH values are 1. unchanged 2. doubled 3. divided by two 4. squared 5. ΔH_f° is the symbol for 1. standard heat of reaction 2. standard heat of formation 3. standard heat of molar formation 4. standard heat of combustion 6. ΔH° is the symbol for the 1. enthalpy change under experimental conditions

- 2. entropy change under experimental conditions
- 3. enthalpy change under standard conditions
- 4. enthalpy change under standard conditions
- 7. The symbol n in the standard heat of reaction equation stands for
 - 1. number of chemicals in the reaction
 - 2. coefficient of energy

- 3. number of molecules in product
- 4. coefficient of a chemical in the reaction
- 8. ΔH° is called
 - 1. standard enthalpy of reaction
 - 2. standard enthalpy of change
 - 3. standard enthalpy
 - 4. standard enthalpy of product
- 9. The standard state for bromine is
 - 1. gas at 25° C and 101.3 kPa
 - 2. gas at 20° C and 101.3 kPa
 - 3. liquid at 25°C and 101.3 kPa
 - 4. liquid at 20°C and 101.3kPa
- 10. A theoretical reaction for the synthesis of acetylene involves a reaction between
 - 1. graphite and air
 - 2. graphite and hydrogen gas
 - 3. hydrogen gas and methane
 - 4. hydrogen gas and ethene

- 11. _____ Adding heats of reaction is an indirect approach to determining enthalpy change.
- 12. _____ Enthalpy changes for combustion reactions are difficult to measure.
- 13. _____ When coefficients in reactions are doubled, ΔH does not change.
- 14. _____ The standard state for oxygen is gas at 25°C and 101.3 kPa.
- 15. _____ The heat of combustion is the heat released when one mole of substance reacts completely with oxygen gas.
- 16. _____ The production of acetylene from graphite and hydrogen is an endothermic reaction.
- 17. _____ Diamond is the standard state for carbon.
- 18. _____ The standard heat of formation for an element is zero.
- 19. _____ Formation of NaCl from elemental sodium and chlorine is an exothermic reaction.
- 20. _____ Standard heats of formation can be used to indirectly calculate the heat of reaction for any reaction that occurs at standard conditions.

Fill in the Blank:

21. The standard heat of ______ is the enthalpy change associated with the formation of one mole of a compound from its ______ in their standard states.

- 22. State Hess' law.
- 23. Calculate ΔH for the reaction: $C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$, from the following data.
- 24.

$$C_{2}H_{4}(g) + 3O_{2}(g) \rightarrow 2CO_{2}(g) + 2H_{2}O(l) \qquad \Delta H = -1411 \ kJ$$

$$C_{2}H_{6}(g) + 3\frac{1}{2}O_{2}(g) \rightarrow 2CO_{2}(g) + 3H_{2}O(l) \qquad \Delta H = -1560 \ kJ$$

$$H_2(g) + \frac{1}{2}O_2(g) \to H_2O(l)$$
 $\Delta H = -285.8 \ kJ$

25. Calculate ΔH for the reaction $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$, from the following data. 26.

$$\begin{split} N_2(g) + O_2(g) &\to 2NO(g) & \Delta H = -180.5 \ kJ \\ N_2(g) + 3H_2(g) &\to 2NH_3(g) & \Delta H = -91.8 \ kJ \\ 2H_2(g) + O_2(g) &\to 2H_2O(g) & \Delta H = -483.6 \ kJ \end{split}$$

27. Calculate ΔH° for the reaction $2H_2(g) + 2C(s) + O_2(g) \rightarrow C_2H_5OH(l)$, from the following data. 28.

$$\begin{split} C_2 H_5 OH(l) + 2O_2(g) &\to 2CO_2(g) + 2H_2 O(l) \\ C(s) + O_2(g) &\to CO_2(g) \\ H_2(g) + \frac{1}{2}O_2(g) &\to H_2 O(l) \\ \Delta H &= -394.51 \ kJ \\ \Delta H &= -285.8 \ kJ \end{split}$$

29. Calculate ΔH° for the reaction $CH_4(g) + NH_3(g) \rightarrow HCN(g) + 3H_2(g)$, from the following data: 30.

$$\begin{split} & N_2(g) + 3H_2(g) \to 2NH_3(g) & \Delta H = -91.8 \ kJ \\ & C(s) + 2H_2(g) \to CH_4(g) & \Delta H = -74.9 \ kJ \\ & H_2(g) + 2C(s) + N_2(g) \to 2HCN(g) & \Delta H = +270.3 \ kJ \end{split}$$

31. Calculate ΔH° for the reaction $2Al(s) + 3Cl_2(g) \rightarrow 2AlCl_3(s)$ from the following data. 32.

$$2Al(s) + 6HCl(aq) \rightarrow 2AlCl_3(aq) + 3H_2(g) \qquad \Delta H = -1049 \ kJ$$
$$HCl(g) \rightarrow HCl(aq) \qquad \Delta H = -74.8 \ kJ$$
$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g) \qquad \Delta H = -1845 \ kJ$$

33. Calculate ΔH° for the following reactions. Use the data table in lesson 17.4 for thermodynamic information :

1.
$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

2. $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$
3. $NH_3(g) + HCl(g) \rightarrow NH_4Cl(s) \quad \Delta H \text{ for } NH_4Cl = -314.4 \text{ } kJ/mole$
4. $CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(s) \quad \Delta H \text{ for } Ca(OH)_2 = -986.1 \text{ } kJ/mole$
5. $C_6H_6(l) + 1\frac{1}{2}O_2(g) \rightarrow 6C(s) + 3H_2O(l) \quad \Delta H \text{ for } C_6H_6 = 49 \text{ } kJ/mol$

17.5 Thermochemistry

Chaptor Tost			
Chapter Test			
Name	Class	Date	
Multiple Choice:			
1. In a chemical e	xperiment, the surroundings ar	e	
 the matter matter in a matter in a matter in a 	in a given space not involved a given space that is involved in a given space that is not acted us a given space that has already n	in a reaction in the reaction upon eacted	
2. If heat is produ	ced in a chemical reaction, the	process is	
 endotherm exothermi endodyna exodynam 	nic ic mic nic		
3. ΔH_f° is the sym	bol for		
 standard F standard F standard F standard F standard F 	neat of combustion neat of state change neat of formation neat of solution		
4. A positive enth	alpy change means that		
 heat is abs energy mu heat is giv the energy 	sorbed from the surroundings ust be put into the reaction yen off to the surroundings y change in the reaction is negli	gible	
5. The heat of fus	ion for water is		
1. 6.01 kJ/m 26.01 kJ/n 3. 6.01 J/mo 46.01 J/mo	ol nol l ol		
6. The heat of fus	ion deals with		

- 1. liquid converting to solid
- 2. solid converting to gas
- 3. solid converting to liquid
- 4. liquid converting to gas
- 7. Calculation of the energy needed to convert 156 water of water at 0°C to solid at 0°C uses the
 - 1. molar heat of solidification
 - 2. specific heat of water

- 3. molar heat of vaporization
- 4. specific heat of steam

8. The process of converting steam at 125°C to liquid water at 0°C requires ______ steps

- 1. five
- 2. four
- 3. three
- 4. two

9. The molar heat of solution for NH₃ is -30.50 kJ/mol. This value tells us that NH₃ will

- 1. dissolve slowly in water
- 2. generate a great deal of heat when dissolving
- 3. increase the specific heat of the solution
- 4. decrease solvent temperature while dissolving
- 10. The standard state for chlorine is
 - 1. gas at 25°C and 101.3 kPa
 - 2. gas at 20°C and 101.3 kPa
 - 3. liquid at 25°C and 101.3 kPa
 - 4. liquid at 20°C and 101.3 kPa

True/False:

- 11. _____ 1000 calories = 1 Calorie
- 12. _____ The sign of q is positive for an exothermic process
- 13. _____ Water has a low specific heat.
- 14. _____ Chemical reactions in the lab are run with controlled pressure.
- 15. _____ A lid is used to prevent outside contamination in a reaction system.
- 16. _____ The units for ΔH_f° are kJ/mol
- 17. _____ The conversion of vapor directly to solid is known as sublimation.
- 18. _____ The standard heat of formation of an element depends on the element.
- 19. _____ Energy is released when a liquid is converted to a solid.
- 20. _____ H_s is the symbol for specific heat.

- 21. How many calories are needed to raise 125 g water 10.7°C?
- 22. A chemical reactions released 895 calories of energy. How many joules were released?
- 23. Sunlight shining on a sheet of glass with a mass of 115 g showed a 5.2°C increase in temperature when 502.3 J of heat is supplied. What is the specific heat of the glass?
- 24. In an experiment, 25.0 mL of 0.50 M HBr at 20.0°C is added to 25.0 mL of 0.50 M KOH at 20.0°C in a foam cup calorimeter. As the reaction occurs, the temperature of the solution rises to 32.0°C. Calculate the enthalpy change (ΔH) in kJ for this reaction. Assume the densities of the solutions are 1.00 g/mL and that their specific heats are the same as that of pure water.
- 25. $H_2(g) + S(s) + 2O_2(g) \rightarrow H_2SO_4(l)$ $\Delta H f^\circ = -811 \ kJ \ mol^{-1}$
- 26. What is the energy released if 47.3 g sulfur are reacted to form sulfuric acid?
- 27. Calculate the amount of energy absorbed when 89.7 grams of liquid ethanol at 78.4°C is converted to the vapor state at the same temperature.
- 28. How much energy is required to convert 118 g water at 55°C to steam at 100°C?
- 29. How many joules of energy are absorbed when 76.2 g KI (heat of solution = 20.33 kJ/mol) are dissolved in 750 mL water? If the initial water temperature is 22.7°C, what will the final temperature be?
- 30. Use the thermochemical equations shown below to determine the enthalpy for the reaction $CH_3COOH(l) \rightarrow 2C(s) + 2H_2(g) + O_2(g)$

17.5. Thermochemistry

31.

$2CO_2(g) + 2H_2O(l) \rightarrow CH_3COOH(l) + 2O_2(g)$	ΔH°	$= 3484 \ kJ$
$amp; C(s) + O_2(g) \rightarrow CO_2(g)$	ΔH°	= -1576 kJ
$2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$	ΔH°	$= -2288 \ kJ$

- 32. When potassium chloride reacts with oxygen under the right conditions, potassium chlorate is formed:
- 33. $2KCl + 3O_2 \rightarrow 2KClO_3$
- 34. Given that the heat of formation of potassium chloride is -36 kJ/mol and the heat of formation of potassium chlorate is -391 kJ/mol, determine the heat of reaction.

Chapter **18**

Kinetics Assessments

Chapter Outline

- 18.1 RATES OF REACTIONS
- 18.2 RATE LAWS
- **18.3 REACTION MECHANISMS**
- 18.4 KINETICS

18.1 Rates of Reactions

Lesson Quiz

Name_____ Class_____ Date _____

Multiple Choice:

- 1. Rate is defined as
 - 1. molarity/minute
 - 2. moles/second
 - 3. molals/minute
 - 4. molarity/second
- 2. Rate is another word for
 - 1. time
 - 2. change
 - 3. speed
 - 4. distance
- 3. One of the following is not a condition for a product to form
 - 1. collision at correct orientation
 - 2. proper size of molecules
 - 3. sufficient kinetic energy
 - 4. energetic collision
- 4. No rearrangement of atoms occurs during an
 - 1. ineffective collision
 - 2. excessive collision
 - 3. asymmetric collision
 - 4. effective collision
- 5. In a potential energy diagram for an exothermic reaction
 - 1. the potential energy of products is greater than that of reactants
 - 2. the potential energy of reactants and products is equal
 - 3. the potential energy of reactants is greater than that of products
 - 4. the potential energy valley is at a maximum
- 6. Activation energy
 - 1. is shown as a peak on the potential energy graph
 - 2. is the energy released by an exothermic reaction
 - 3. is the energy stored by an endothermic reaction
 - 4. is the difference between energy of reactants and energy of products
- 7. To include a catalyst in a reaction, we must
 - 1. write a separate procedure
 - 2. write a separate equation

- 3. include it in the chemical equation
- 4. write a footnote to the procedure

8. An increase in pressure will increase the rate of a reaction in the _____ phase

- 1. solid
- 2. gas
- 3. liquid
- 4. solution

9. An increase in collision rate in a solution can be accomplished by

- 1. an increase in particle size
- 2. an increase in pressure
- 3. an increase in temperature
- 4. an increase in solvent volume
- 10. The role of a catalyst is to
 - 1. lower activation energy
 - 2. increase activation energy
 - 3. lower ΔH of products
 - 4. increase ΔH of products

True/False:

- 11. _____ A catalyst is changed by the reaction it catalyzes.
- 12. _____ An increase in temperature raises the collision frequency of molecules in a reaction.
- 13. ____ [A] refers to the number of molals of A.
- 14. _____ In a rate equation, Δ indicates a change in.
- 15. _____ All reactions occur at higher temperatures.
- 16. _____ Lower vibrational energies produce more bond breaking.
- 17. _____ Little is known about the structures of most activated complexes.
- 18. _____ More energetic molecules have more forceful collisions.
- 19. _____ An increase in gas pressure does not affect the concentration of the gas.
- 20. _____ A potential energy diagram is sometimes called a reaction progress curve.

Fill in the Blank:

- 21. A reaction rate is the change in ______ of a reactant or product with _____.
- 22. Collision ______ is a set of principles based around the idea that ______ particles form ______ when they collide with one another, but only when those collisions have enough ______ energy and the correct ______ to cause a reaction.
- 23. The ______ energy for a reaction is the ______ energy that colliding particles must have in order to a reaction.
- 24. A ______ diagram shows the change in the potential energy of a ______ as _____ are converted into ______.
- 25. The total potential energy of the system ______ for the endothermic reaction as the system ______ energy from the ______.
- 26. An _____ complex is an _____ arrangement of atoms that exists _____ at the _____ of the activation energy _____.
- 27. When _____ particles are present in a given amount of _____, a ____ number of _____ will naturally occur between those particles.
- 28. _____ gas _____ leads to a greater _____ of _____ between reacting particles.
- 29. An _____ in the _____ area of a reactant _____ the rate of a reaction.

- 30. A _____ is a substance that ______ the _____ of a chemical reaction without being used up in the reaction.
- 31. Identify each part of the following diagram:

18.2 Rate Laws

Les	son Quiz			
Nam	ne	Class	Date	
Multi	tiple Choice:			
1.	 The rate law for a giv zero first second third 	ten reaction is $rate = k[A]$	$[B]^2$. The reaction is order of	overall.
2.	. The reaction in quest 1. zero 2. first 3. second 4. third	ion one is order w	vith regard to A.	
3.	 The reaction in quest 1. zero 2. first 3. second 4. third 	ion one is order wi	th regard to <i>B</i> .	
4.	 In the reaction A + B 1. zero 2. first 3. second 4. third 	$\rightarrow C$, the rate law is <i>rate</i> =	$= k[A]$. Therefore, the reaction is _	order with regard to <i>B</i> .
5.	 A large value for k m 1. relatively fast 2. biphasic 3. relatively slow 4. incomplete 	eans the reaction is		
6.	 In the reaction A + B data indicates that the 1. zero 2. first 3. second 	$\rightarrow C + D$, when the concerned e reaction is order	entration of A is doubled at constant for A.	nt $[B]$, the rate doubles. This

- 4. third
- 7. For the reaction in problem 6, when [*B*] is doubled at constant [*A*], the reaction rate is four times what it was. This data indicates that the reaction is _____ order for *B*.

- 1. zero
- 2. first
- 3. second
- 4. third

8. For the reaction in problem 6, when [B] is doubled at constant [A], the reaction rate is unchanged. This data indicates that the reaction is _____ order for B.

- 1. zero
- 2. first
- 3. second
- 4. third

9. In the hypothetical reaction $A + B \rightarrow C + D$, if we double the amount of A,

- 1. the rate will be unchanged
- 2. the rate will decrease by half
- 3. the rate will be doubled
- 4. we cannot predict the rate with the available data
- 10. In a given reaction, when the concentration of B is doubled, the rate is increased four-fold. We can write the statement
 - 1. rate $\propto [B]$ 2. rate $\propto [B]^2$ 3. rate $\propto [B]^4$ 4. rate $\propto [B]^0$

True/False:

- 11. _____ The rate of a reaction decreases as the concentration of reactants decreases.
- 12. _____ The rate of a reaction is not affected by collision frequency.
- 13. _____ The rate law for an equation can be determined by visual inspection.
- 14. _____ The value for a rate constant depends on the temperature.
- 15. _____ Real reactions do not always proceed by single-step mechanisms.
- 16. _____ In the reaction $A + 2B \rightarrow C$, if we double [B], we quadruple the rate of the reaction.
- 17. _____ The units for the specific rate constant are M/sec.
- 18. _____ The specific rate constant must be determined experimentally.
- 19. _____ The value of the rate constant tells us how fast the reaction will proceed.
- 20. ____ In a first-order reaction, there is only one reactant.

Fill in the Blank:

- 21. A rate _____ is an expression showing the relationship of the ______ rate to the ______ of each reactant.
- 22. A ______order reaction is a reaction in which the rate is ______ proportional to the concentration of a ______ reactant.
- 23. Reaction kinetics are based on initial rates of reaction, measured as soon as possible after the reaction is initiated. Why can we not use rate data after the reaction has run for several minutes?
- 24. For each of the following sets of data, determine the rate law expression, the reaction order, and the specific rate constant:
- 25. a.
- 26. $A_2 + B_2 \rightarrow 2AB$

TABLE 18.1:

Exp #	$[A_2]$	$[B_2]$	Rate (M/sec)
1	0.001	0.001	0.01
2	0.001	0.002	0.02
3	0.001	0.003	0.03
4	0.001	0.004	0.04
5	0.002	0.004	0.16
6	0.003	0.004	0.36

1. b.

2. $F + G \rightarrow H$

TABLE 18.2:

Exp #	[F]	[G]	Rate ((M/sec)
1	0.01	0.4	0.02
2	0.02	0.4	0.04
3	0.03	0.4	0.06
4	0.1	0.2	5
5	0.1	0.4	10
6	0.1	0.6	15

1. c.

2. $F + G \rightarrow H$

TABLE 18.3:

Exp #	[F]	[G]	Rate ((M/sec)
1	0.01	0.4	0.02
2	0.02	0.4	0.16
3	0.03	0.4	0.54
4	0.1	0.2	5
5	0.1	0.4	20
6	0.1	0.6	45

25. For the reaction $A + B \rightarrow C$, the rate law is $rate = k[A]^2[B]$. Fill in the blanks of the following table to show data that would give the indicated rate law.

TABLE 18.4:

Experiment	[A]	[B]	Rate ((M/sec)
1	0.1	0.1	1
2	0.1	0.2	
3	0.1	0.3	
4	0.2	0.1	
5	0.4	0.1	

TABLE 18.5:

Experiment	[A]	[<i>B</i>]	Rate (M/sec)
1	0.1	0.1	1
2	0.1	0.2	2
3	0.1	0.3	3
4	0.2	0.1	4
5	0.4	0.1	5

18.3 Reaction Mechanisms

Lesson Quiz

Name	Class	Date

Multiple Choice:

- 1. The overall reaction tells us
 - 1. the individual steps in the process
 - 2. the materials needed for the reaction
 - 3. how the reaction proceeds
 - 4. the rate equation for the reaction
- 2. In most reactions, a _____ is formed
 - 1. reaction complex
 - 2. intermediate complex
 - 3. reaction intermediate
 - 4. intermediary complex
- 3. A ______ reaction involves three reacting molecules in one elementary step
 - 1. unimolecular
 - 2. trimolecular
 - 3. bimolecular
 - 4. termolecular
- 4. In the overall reaction $2NO + O_2 \rightarrow 2NO_2$, a reaction that shows an intermediate is called
 - 1. intermediary reaction
 - 2. intermediate reaction
 - 3. elementary reaction
 - 4. elementary process
- 5. In a unimolecular reaction, product formation
 - 1. increases linearly with [A]
 - 2. increases non-linearly with [A]
 - 3. is independent of [A]
 - 4. increases linearly with $\frac{1}{[A]}$.
- 6. In a potential energy diagram, the well between two peaks represents the
 - 1. activated complex
 - 2. reaction intermediate
 - 3. ΔH for the system
 - 4. ΔH for the elementary step

True/False:

7. _____ The overall reaction does not include catalysts

- 8. _____ Reaction intermediates help determine the order of the reaction.
- 9. _____ A unimolecular reaction can only be first order.
- 10. _____ The overall enthalpy change in a potential energy diagram is not influenced by the activated complex.
- 11. _____ A catalyst can be consumed in one step in a reaction mechanism.
- 12. _____ Activated complexes can be detected and characterized.

Fill in the Blank:

- 13. An _____ step is one step in a _____ of simple reactions that show the _____ of a _____ at the _____ level.
- 14. A reaction ______ is the ______ of _____ steps that together comprise an entire chemical ______.
- 15. An _____ is a _____ which appears in the _____ of a reaction, but not in the overall ______ equation.
- 16. The ______ of an ______ step is the total number of ______ molecules in that step.
- 17. The reaction ______ for each ______ in an elementary step is equal to its ______ coefficient in the equation for that step.
- 18. The rate-______ step is the ______ step in the reaction mechanism.
- 19. For the reaction $NO_2 + CO \rightarrow NO + CO_2$ (all in gas phase), the experimental rate $= k[NO_2]^2$. Propose a mechanism and identify the rate-determining step.
- 20. Propose a mechanism for the reaction $2NO_2 + F_2 \rightarrow 2NO_2F$ (all in gas phase), with an experimental rate law of $k[NO_2][F_2]$ and identify the rate-limiting step.
- 21. In the reaction $O_3 + O \rightarrow 2O_2$, a two-step mechanism is proposed:
- 22. Step one:
- 23. $O_3 + NO \rightarrow NO_2 + O_2$
- 24. (slow) Step two:
- 25. $NO_2 + O \rightarrow NO + O_2$
- 26. (fast) Identify the catalyst and the intermediate. Explain your answer.
- 27. The composition of H_2O_2 in aqueous solution to form water plus oxygen is catalyzed by Br_2 . The following two-step mechanism has been proposed:
- 28. Step One :
- 29. $H_2O_2 + Br_2 \rightarrow 2Br^- + 2H^+ + O_2$
- 30. Step Two:
- 31. $H_2O_2 + 2Br^- + 2H^+ \rightarrow Br_2 + 2H_2O$
- 32. Write the overall reaction and explain why the mechanism is consistent with it.
18.4 Kinetics

Chapter Test

Name	Class	Date

- Multiple Choice:
 - 1. Rate is defined as
 - 1. $\Delta A \div \Delta T$
 - 2. $\Delta A \times \Delta T$
 - 3. $\Delta T \div \Delta A$
 - 4. $\Delta A \Delta T$
 - 2. Chemical reactions are measured in
 - 1. M/min
 - 2. m/min
 - 3. M/sec
 - 4. m/sec
 - 3. Ineffective collisions produce
 - 1. smaller molecules
 - 2. fewer molecules
 - 3. no reaction
 - 4. slower reaction
 - 4. All of the following will produce an increase in reactant collision rate except
 - 1. an increase in concentration
 - 2. an increase in solvent
 - 3. an increase in temperature
 - 4. a decrease in particle size
 - 5. Addition of a catalyst to a reaction
 - 1. increases the activation energy
 - 2. increases the ΔH for the reaction
 - 3. decreases the activation energy
 - 4. decreases the ΔH for the reaction
 - 6. The specific rate constant
 - 1. depends on the type of reaction
 - 2. can be calculated from the stoichiometry of the equation
 - 3. must be determined experimentally
 - 4. is independent of the rate law
 - 7. Rate constants are determined by using
 - 1. initial rates
 - 2. final rates

- 3. multiple rates
- 4. incremental rates
- 8. In the reaction $A + B \rightarrow C$, when the concentration of *B* is doubled, the rate is not affected. The reaction is _______ order for *B*.
 - 1. zero
 - 2. first
 - 3. second
 - 4. third
- 9. A reaction intermediate is
 - 1. shown as a reactant in the equation
 - 2. shown as a product in the equation
 - 3. written over the arrow in the equation
 - 4. not included in the equation
- 10. A potential energy diagram shows all of the following except
 - 1. reactant potential energy
 - 2. activation energy
 - 3. reaction order
 - 4. product potential energy

True/False:

- 11. [A] =molar concentration of A.
- 12. _____ Temperature does not affect rate constant values.
- 13. _____ If a reaction is second-order for reactant *B*, the rate will triple when [*B*] is doubled.
- 14. _____ Catalysts are included in the equation for an overall reaction.
- 15. _____ The identity of reaction intermediates does not influence determination of reaction order.
- 16. _____ Lower vibrational energies produce more bond breakage.
- 17. _____ Activated complexes are easy to characterize.
- 18. _____ A reaction complex is the same as an activated complex.
- 19. _____ The ΔH of the activated complex affects the overall ΔH of the reaction.
- 20. _____ The energy trough in a potential energy diagram represents an intermediate in the reaction.

Fill in the Blank:

- 21. Define the following terms:
 - 1. reaction rate
 - 2. activation energy
 - 3. catalyst
 - 4. specific rate constant
 - 5. reaction mechanism
- 22. Calculate the reaction rates for the following reactions in M/sec:
 - 1. initial concentration: 4.23 M concentration after 3.5 minutes: 2.7M
 - 2. initial concentration: 2.14 M concentration after 0.7 minutes: 1.37M
- 23. The reaction between hydrogen gas and oxygen gas forms water. Which of the following conditions will lead to the lowest rate of reaction? The highest?
 - 1. gas pressures 0.01 atm each, temperature $-12^{\circ}C$
 - 2. gas pressures 0.01 atm each, temperature $45^{\circ}C$
 - 3. gas pressures 1.5 atm each, temperature $-12^{\circ}C$

- 4. gas pressures 1.5 atm each, temperature 45°C
- 24. The following experimental data were obtained for the reaction at 250 K,

25. $F_2 + 2ClO_2 \rightarrow 2FClO_2$

TABLE 18.6:

$[F_2] M$	ClO ₂ M	Rate (M/sec)
0.10	0.010	1.2×10^{-3}
0.10	0.040	$4.8 imes 10^{-3}$
0.20	0.010	$4.8 imes 10^{-3}$

1. Write a rate law consistent with this data.

25. The following data were collected for the reaction

26. $P_4 + 6H_2 \rightarrow 4PH_3$

TABLE 18.7:

$P_4 M$	$[H_2] M$	Rate (M/sec)
0.0110	0.0075	$3.2 imes 10^{-4}$
0.0110	0.0150	6.40×10^{-4}
0.0220	0.0150	6.40×10^{-4}

- 1. What is the reaction order for
- 2. *P*₄
- 3. ? for
- 4. *H*₂
- 5. ? Write the rate law.
- 26. Given the reaction:
- 27. $4HBr + O_2 \rightarrow 2H_2O + 2Br_2$

28. a. Would you expect this reaction to take place in a single step? _____ Why or why not? ______-

- 29. b. This reaction is thought to take place by means of the following mechanism: Step 1:
- 30. $HBr + O_2 \rightarrow HOOBr$
- 31. (slow) Step 2:
- 32. $HBr + HOOBr \rightarrow 2HOBr$
- 33. (fast) Step 3:
- 34. $2HBr + 2HOBr \rightarrow 2H_2O + 2Br_2$
- 35. (fast) If this mechanism is valid, what would the rate law for the reaction look like?
- 36. c. Identify two reaction intermediates in this mechanism.

CHAPTER **19** Equilibrium Assessments

Chapter Outline

- 19.1 THE NATURE OF EQUILIBRIUM
- **19.2 LE CHÂTELIER'S PRINCIPLE**
- **19.3 SOLUBILITY EQUILIBRIUM**
- 19.4 EQUILIBRIUM

19.1 The Nature of Equilibrium

Lesson Quiz

Name_____ Class_____ Date____

Multiple Choice:

- 1. The symbol \rightleftharpoons indicates
 - 1. reversible reaction
 - 2. formation of a precipitate
 - 3. biphasic reaction
 - 4. unbalanced equation
- 2. In a reversible reaction, all of the following are true except
 - 1. the reactant concentration decrease with time
 - 2. the product concentration increases with time
 - 3. the concentrations of reactants and products become equal
 - 4. the forward rate equals the reverse rate
- 3. An equilibrium expression includes only
 - 1. concentrations of solids
 - 2. concentrations of gases and aqueous solutions
 - 3. concentrations of liquid water
 - 4. concentrations of pure liquids
- 4. The units for K_{eq} are
 - 1. moles/L
 - 2. grams/L
 - 3. none
 - 4. depends on the equation
- 5. A value of K_{eq} greater than 1 means
 - 1. products favored over reactants
 - 2. reactants favored over products
 - 3. an equilibrium situation
 - 4. reaction has not yet come to completion
- 6. For the reaction $aA + bB \rightleftharpoons cC + dD$ the equilibrium expression is written

1.
$$a[A]b[B] = c[C]d[D]$$

- 2. $\frac{[C][D]}{[A][B]}$
- 3. $\frac{a[A]b[B]}{a[C]d[D]}$
- J. c[C]d[D]
- 4. $\frac{[C]^{c}[D]^{a}}{[A]^{a}[B]^{b}}$
- 7. Ammonium carbonate decomposes to form
 - 1. ammonium carbonate

- 2. ammonia + carbon dioxide
- 3. ammonia + carbon monoxide
- 4. ammonium nitrate + carbon dioxide

True/False:

- 8. _____ Not all equilibrium reactions are reversible.
- 9. _____ The equilibrium position depends which materials are added first.
- 10. _____ Equilibrium reactions must be run in a closed system.
- 11. _____ Chemical equilibrium is a dynamic process.
- 12. _____ The value for K_{eq} of a system depends on which direction the reaction is written.
- 13. _____ A phase equilibrium exists when a substance is in equilibrium between two states.
- 14. _____ A change in temperature changes the rate of forward and reverse reactions.

Fill in the blanks:

- 15. A ______ reaction is a reaction in which the ______ of reactants to products and the conversion of products to reactants occur _____.
- 16. Chemical ______ is the state of a system in which the ______ of the forward reaction is ______ to the rate of the reverse reaction.
- 17. The ______ position is a property of the particular ______ reaction and does not depend upon the ______ concentrations of the reactants and products.
- 18. The equilibrium ______ (K_{eq}) is the ratio of the product of the concentrations of the products to the mathematical product of the concentrations of the reactants for a ______ that is at equilibrium.
- 19. Since the product concentrations are in the ______of the equilibrium expression, a $K_{eq} > 1$ means that the products are ______ over the reactants.
- 20. Write equilibrium constant expressions for the following reactions:
 - 1. $2SO_2 + O_2 \rightleftharpoons 2SO_3$
 - 2. $C_2H_6 \rightleftharpoons C_2H_4 + H_2$
 - 3. $As_4O_6(S) + 6C(S) \rightleftharpoons As_4(g) + 6CO(g)$
 - 4. $SnO_2(S) + 2CO(g) \rightleftharpoons Sn_{(S)} + 2CO_2(g)$
- 21. Calculate the K_{eq} of the following reaction
- 22. $S_2(g) + 2H_2(g) \rightleftharpoons 2H_2S(g)$

23.

 $[H_2] = 2.16 M$

S_2

= 0.3 M

H_2 S

- = 0.5 M
- 24. Six moles of $SO_{2(g)}$ and four moles of $O_{2(g)}$ are introduced into a 1.00 L reaction vessel and allowed to react to form $SO_{3(g)}$. At equilibrium, the vessel contains four moles of $SO_{3(g)}$. Calculate K_{eq} for this reaction.
- 25. The equilibrium constant for the reaction below is 0.11. Calculate all equilibrium concentrations if 0.33 mol of iodine chloride gas is placed in a 1.00 L vessel and allowed to come to equilibrium.
- 26. $2ICl_{(g)} \rightleftharpoons I_{2(g)} + Cl_{2(g)}$
- 27. The following reaction has a K_{eq} value of 85.0 at 460°*C*:
- 28. $SO_{2(g)} + NO_{2(g)} \rightleftharpoons NO_{(g)} + SO_{3(g)}$
- 29. If a mixture of sulfur dioxide and nitrogen dioxide is prepared, each with an initial concentration of 0.100 mol/L, calculate the equilibrium concentrations of nitrogen dioxide and nitrogen monoxide at this temperature.

TABLE 19.1:

Ι	6.00	4.00	0
С	-2x	- <i>x</i>	+2x
Е	6.00 - 2x	4.00 - x	2x = 4.00

TABLE 19.2:

Ι	0.33	0	0
С	-2x	+x	+x
E	0.33 - 2x	x	x

TABLE 19.3:

Ι	0.100	0.100	0	0
С	-x	-x	+x	+x
Е	0.100 - x	0.100 - x	x	x

19.2 Le Châtelier's Principle

Lesson Quiz

Name	Class	Date
------	-------	------

```
Multiple Choice:
```

- 1. Disruption in a chemical system in equilibrium can be caused by changes in
 - 1. catalyst
 - 2. time
 - 3. temperature
 - 4. reaction container
- 2. In the gas-phase reaction $2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g)$, an increase in pressure will
 - 1. favor the forward reaction
 - 2. favor the reverse reaction
 - 3. have no effect on the equilibrium
 - 4. decrease the rates of both reactions
- 3. In the reaction $2NO + O_2 \rightleftharpoons 2NO_2$, an increase in [O₂] will
 - 1. cause an increase in the forward reaction
 - 2. cause an increase in the reverse reaction
 - 3. cause a decrease in the forward reaction
 - 4. have no effect on concentrations
- 4. In the equilibrium reaction $CaCO_3(s) \rightleftharpoons CaO(s) + O_2(g)$, an increase in pressure produces all of the following except
 - 1. an increase in CaCO₃ formation
 - 2. an increase in the rate of the forward reaction
 - 3. a decrease in CaO formation
 - 4. an increase in the rate of the reverse reaction
- 5. In the reaction $2SO_3$ + heat $\rightleftharpoons 2SO_2 + O_2$, an increase in temperature will produce
 - 1. an increase in the forward reaction
 - 2. an increase in the reverse reaction
 - 3. an increase in the formation of SO_3
 - 4. no effect on K_{eq}
- 6. In the gas phase reaction $H_2 + Cl_2 \rightleftharpoons 2HCl$, an increase in volume will
 - 1. favor the forward reaction
 - 2. favor the reverse reaction
 - 3. have no effect on the equilibrium
 - 4. decrease the rates of both reactions
- 7. In the reaction $HCl(aq) + CaCO_3(s) \rightleftharpoons CaCl_2(aq) + CO_2(g)$, addition of a catalyst will
 - 1. increase the K_{eq}

- 2. decrease the K_{eq}
- 3. have no effct on the K_{eq}
- 4. have variable effects on the K_{eq}
- 8. The reaction in problem seven will go to completion when
 - 1. [CaCO₃] decreases
 - 2. CO_2 is removed from the reaction
 - 3. [CaCl₂] increases
 - 4. CO₂ pressure increases
- 9. In the reaction $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$, an increase in the amount of CaO will
 - 1. increase the K_{eq}
 - 2. decrease the K_{eq}
 - 3. have no effect on the K_{eq}
 - 4. have variable effects on the K_{eq}

10. In the reaction $Ag^+(aq) + Cl^-(aq) \rightleftharpoons AgCl(s)$, the reaction goes strongly in the forward direction because of

- 1. formation of a precipitate
- 2. formation of an ionized compound
- 3. formation of a gas
- 4. formation of water

True/False:

- 11. _____ If more H₂ is added to the Haber-Bosch process, the ammonia concetration will decrease.
- 12. _____ An increase in temperature in the Haber-Bosch process produces a decrease in ammonia formation.
- 13. _____ An increase in pressure on a solid stresses the system.
- 14. _____ In the Haber-Bosch process, an increase in volume increases the breakdown of ammonia.
- 15. _____ A change in pressure changes the K_{eq} for a reversible reaction.
- 16. _____ The presence of a catalyst allows the equilibrium of a system to be reached more quickly.
- 17. _____ The formation of vapor-phase water causes a reaction to go to completion.
- 18. _____ A decrease in pressure causes gas molecules to collide more frequently
- 19. _____ A change in concentration of a reactant does not affect the value of K_{ea} .
- 20. _____ The K_{eq} for an equilibrium process is the same at all temperatures.

Fill in the blanks:

- 21. When a chemical system that is at ______ is disturbed by a _____, the system will respond by attempting to ______ that stress until a new equilibrium is established.
- 22. If the ______ of one substance in a system is ______, the system will respond by favoring the reaction that ______ that substance.
- 23. An increase in the ______ of a system favors the direction of the reaction that absorbs heat, the ______ direction.
- 24. When the pressure is _____ by decreasing the available _____, the reaction that produces _____ total moles of gas becomes favored.
- 25. When one of the products of a reaction is ______ from the chemical equilibrium system as soon as it is ______, the ______ reaction cannot establish itself, and ______ is never reached
- 26. List the situations in which an equilibrium reaction can go to completion. Give an example for each situation.
- 27. Blood levels of hydrogen ions are regulated by the equilibrium process:
- 28. $H_2O(l) + CO_2(g) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$

- a. In a panic attack, the individual has short, shallow respirations leading to a decrease in blood levels of CO₂. Which way does the equilibrium shift. What is the effect on [H⁺]?
- b. Some clinical conditions produce decreased respiration and elevated blood CO_2 concentrations. Which way does the equilibrium shift? What is the effect on $[H^+]$?
- 29. Consider the following reaction:
- 30. $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$
- 31. Calculate the value of the equilibrium constant, K
- 32. eq
- 33. , for the above system, if 0.1908 moles of CO
- 34. 2
- 35. , 0.0908 moles of H
- 36.₂
- $37.\ , 0.0092$ moles of CO, and 0.0092 moles of H
- 38.₂
- 39. O vapor were present in a 2.00 L reaction vessel at equilibrium.
- 40. Consider the following reaction:
- 41. $C_2H_4(g) + H_2(g) \rightleftharpoons C_2H_6(g)$
- 42. with a
- 43. $K_{eq} = 0.99$
- 44. . What is the concentration for each substance at equilibrium if the initial concentration of ethene, C
- 45.₂
- 46. H
- 47. 4
- 48. (g) , is 0.335 M and that of hydrogen is 0.526 M?

TABLE 19.4:

Material	C_2H_4	H ₂	C ₂ H ₆
Ι	0.335	0.526	0
С	- <i>x</i>	- <i>x</i>	+x
E	0.335 - x	0.526 - x	+x

19.3 Solubility Equilibrium

Lesson Quiz

Name Class Date

Multiple Choice:

- 1. All of the following are true of saturated solutions except
 - 1. a saturated solution has the maximum amount of solute dissolved
 - 2. has undissolved solute present
 - 3. can dissolve more solute
 - 4. has an equilibrium between dissolved and undissolved solute
- 2. The K_{sp} for PbI₂ is written
 - 1. [Pb][2I]
 - 2. $\frac{[Pb]}{[2I]}$
 - 3. $[Pb][I]^2$
 - 4. $\frac{[Pb]}{[I]^2}$

3. For the reaction $AgBr(s) \rightleftharpoons Ag^+(aq) + Br^-(aq)$, the K_{sp} is

- 1. [Ag][Br]
- [Ag][Br]2.
- [AgBr AgBr
- 3. $\frac{\lfloor r_{\delta} \rfloor}{\lfloor Ag \rfloor \lfloor Br \rfloor}$
- [Ag]4. Br
- 4. The units for K_{sp} are
 - 1. moles/L
 - 2. grams/L
 - 3. unitless
 - 4. depends on the expression
- 5. When two solutions are mixed that could form a precipitate, the precipitate will occur when
 - 1. the ion product is greater than the K_{sp} .
 - 2. the ion product equals the K_{sp} .
 - 3. the ion product is less than the K_{sp} .
 - 4. the K_{sp} is greater than the ion product.
- 6. If sodium bicarbonate is added to a solution of calcium carbonate in equilibrium with its ions, $CaCO_3(s) \rightleftharpoons$ $Ca^{2+}(aq) + CO_3^{2-}(aq)$ the added material will
 - 1. increase the solubility of calcium carbonate
 - 2. decrease the solubility of calcium carbonate
 - 3. have no effect on the solubility of calcium carbonate
 - 4. change the K_{sp} for the process

19.3. Solubility Equilibrium

- 7. _____ KBr is highly soluble in water.
- 8. CaSO₄ is less soluble that $Ca_3(PO_4)_2$.
- 9. _____ Molarity is used to convert between solubility and molar solubility.
- 10. _____ Calculating the ion product for a material allows prediction of precipitate formation.
- 11. _____ The K_{sp} for a compound can be calculated if the molar solubility is known.
- 12. _____ Most insoluble ionic compounds will still dissolve to a small extent.

Fill in the blanks:

- 13. The solubility product constant, (K_{sp}) is equal to the mathematical _____ of the ions, each raised to the power of the _____ of the ion in the _____ equation.
- 14. Molar ______ is the number of moles of ______ in one liter of a ______solution.
- 15. If the value of the ion _____ is greater than the value of K_{sp} , then a _____ will form.
- 16. A ______ ion is an ion that is common to more than one _____ in a solution.
- 17. The common ion effect is a _____ in the _____ of an _____ compound as a result of the addition of a common ion.
- 18. The solubility of barium sulfate at 298 K is 1.05×10^{-5} M. Calculate the K_{sp}.
- 19. The solubility of Mg(OH)₂ is 1.71×10^{-4} *M*. Calculate the K_{sp}
- 20. The K_{sp} for AgCl is 1.8×10^{-10} . What is the molar solubility of AgCl in pure water?
- 21. How much $\text{SrF}_2(K_{sp} = 2.5 \times 10^{-9})$ will dissolve in one liter of water?
- 22. Determine if a precipitate of Ca(OH)₂ will form if 20 mL of 0.30 M CaCl₂ solution is mixed with 10 mL of 0.90 M NaOH. The K_{sp} for Ca(OH)₂ is 5.1×10^{-6} .
- 23. AgCl will be dissolved into a solution with is already 0.0100 M in chloride ion. What is the solubility of AgCl?

19.4 Equilibrium

Chapter Test

Name	Class	Date

Multiple Choice:

- 1. A reversible reaction is indicated by
- 2. In the reversible reaction between CaCO₃(s) and its products CaO(s) and O₂(g), the equilibrium expression is written
 - 1. $[Cao][O_2]$
 - 2. $[O_2]$
 - 3. $\frac{[CaO][O_2]}{[CaO]}$
 - J. $[CaCO_3]$ \downarrow [CaO]
 - 4. $\frac{[CaO]}{[CaCO_3]}$

3. In the equilibrium gas-phase reaction 2NOCl(g) produces $2NO(g) + Cl_2(g)$, a decrease in pressure will

- 1. favor the forward reaction
- 2. favor the reverse reaction
- 3. have no effect on the equilibrium
- 4. decrease the rates of both reactions
- 4. In the equilibrium gas phase reaction $H_2 + Cl_2$ forms 2 HCl, a decrease in volume will
 - 1. favor the forward reaction
 - 2. favor the reverse reaction
 - 3. have no effect on the equilibrium
 - 4. decrease the rates of both reactions
- 5. If lead nitrate is added to a solution of calcium carbonate in equilibrium with its ions $Ca^{2+}(aq) + CO_3^{2-}(aq)$, the added lead will
 - 1. increase the formation of calcium carbonate
 - 2. decrease the formation of calcium carbonate
 - 3. have no effect on the formation of calcium carbonate
 - 4. change the K_{sp} for the process
- 6. When two solutions are mixed that could form a precipitate, no precipitate will form unless
 - 1. the ion product is greater than the K_{sp} .
 - 2. the ion product equals the K_{sp}
 - 3. the ion product is less than the K_{sp}
 - 4. the K_{sp} is greater than the ion product
- 7. A value of K_{eq} less than 1 means

- 1. products favored over reactants
- 2. reactants favored over products
- 3. an equilibrium situation
- 4. reaction has not yet come to completion
- 8. In the reaction $2SO_3$ + heat $\rightleftharpoons 2SO_2 + O_2$, a decrease in temperature will produce
 - 1. an increase in the forward reaction
 - 2. an increase in the reverse reaction
 - 3. an increase in the formation of SO_3
 - 4. no effect on K_{eq}
- 9. In the Haber-Bosch reaction, if additional N_2 is added to the system, at equilibrium all of the following will be seen except
 - 1. the final concentration of N_2 will be higher
 - 2. the final concentration of H_2 will be higher
 - 3. the final concentration of NH₃ will be higher
 - 4. the final concentration of H_2 will be lower
- 10. A decrease in temperature in the Haber-Bosch process results in all of the following except
 - 1. an increase in [NH₃]
 - 2. a decrease in K_{eq}
 - 3. a decrease in [N₂]
 - 4. an increase in K_{eq}

True/False:

- 11. _____ All equilibrium reactions are reversible.
- 12. _____ The K_{eq} does not depend on the direction of the equilibrium reaction.
- 13. _____ The formation of liquid water causes a reaction to go to completion.
- 14. _____ A change in concentration of a reactant changes the value of K_{eq}
- 15. _____ A change in pressure on a liquid has no effect on K_{eq} .
- 16. _____ $Pb(NO_3)_2$ is very soluble in water.
- 17. _____ The presence of a catalyst has no effect on how fast the equilibrium of a system is reached.
- 18. _____ A decrease in volume causes gas molecules to collide more frequently.
- 19. _____ When the concentrations of reactants and products have become equal, equilibrium has been achieved.
- 20. _____ The equilibrium position is the property of the particular reversible reaction.

Fill in the blanks:

- 21. Define the following terms:
 - 1. reversible reaction
 - 2. chemical equilibrium
 - 3. solubility product constant
 - 4. Le Châtelier's principle
- 22. List the conditions and properties of a system at equilibrium.
- 23. The equilibrium position for a given reaction does not depend on the ______concentrations, so the equilibrium constant has the same ______ regardless of the ______ amounts of each reaction component.
- 24. Rank the following compounds in terms of solubility, beginning with the most soluble and ending with the least soluble:

_				-	-	
	DI		1	0	5	
	DL	. E		3		
		_		<u> </u>		-

Compound	K _{eq}
CaCO ₃	$4.5 imes 10^{-9}$
CuS	$8.0 imes 10^{-37}$
PbSO ₄	6.3×10^{-7}
CaSO ₄	$2.4 imes 10^{-5}$

- 25. Write the K_{eq} expressions for the following compounds
 - 1. Al(OH)₃
 - 2. AgCl
 - 3. $Ca_3(PO_4)_2$
 - 4. BaCO₃
- 26. Calculate the K_{eq} for the following gas-phase reaction:
- 27. $CO_2 + H_2 \rightleftharpoons CO + H_2O$
- 28. $[CO_2] = 0.095 M$ $[H_2] = 0.045 M$ [CO] = 0.0046 M $[H_2O] = 0.0046 M$
- 29. If one requirement for an equilibrium system is that it is closed, what would be the eventual fate of CaCO₃ if left exposed to the outside air?
- 30. At 448°*C*, the K_{eq} for the reaction $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ 0s 50.0. In which direction is the reaction most likely to go? How many moles of HI will be present at equilibrium when 1.0 mole H₂ and 1.0 mole I₂ react in a 1.0 L container?
- 31. What is the concentration of the silver ion in 1.0 L of a saturated solution of AgCl if 0.05 moles of NaCl are added to the solution?

TABLE 19.6:

	[H ₂]	[I ₂]	[HI]
Ι	1.0	1.0	0
C	-x	-x	+2x
E	1.0 - x	1.0 - x	2x

CHAPTER 20 Entropy and Free Energy Assessments

Chapter Outline

20.1 ENTROPY
20.2 SPONTANEOUS REACTIONS AND FREE ENERGY
20.3 FREE ENERGY AND EQUILIBRIUM
20.4 ENTROPY AND FREE ENERGY

20.1 Entropy

Lesson Quiz			
Name	Class	Date	
Multiple Choice:			
1. One of the follo	owing is a characteristic of an ex	othermic reaction	
 products heat is ab products energy is 	have high energy as compared to sorbed during the reaction are more stable than reactants needed to drive the reaction	o reactants	
2. One of the follo	owing is a characteristic of an er	ndothermic reaction	
 energy is reaction i products products 	absorbed during the reaction s energetically favorable have lower quantity of energy th are more stable than reactants	an reactants	
3. An increase in	entropy is seen in one of the foll	lowing situations	
 metallic N CO₂ gas of formation 	Va melts condenses 1 of AgCl precipitate		

- 4. cleaning up your room
- 4. A decrease in entropy is seen in one of the following situations
 - 1. $CaCO_3 \rightleftharpoons CaO + CO_21$
 - 2. $H_2O(l) \rightarrow H_2O(g)$
 - 3. crystallization of sucrose
 - 4. $2HgO \rightarrow 2Hg + O_2$
- 5. One of the following illustrates a decrease in entropy
 - 1. increase in temperature
 - 2. decrease in temperature
 - 3. increase in kinetic energy
 - 4. increase in motion of particles
- 6. *S* is the symbol for
 - 1. enthalpy
 - 2. energy
 - 3. entropy
 - 4. epitome
- 7. The S° for ice would have an entropy value
 - 1. higher than that for liquid water
 - 2. lower than that for liquid water

- 3. unable to predict
- 4. higher than that for steam
- 8. The standard entropy for diamond is less than that for graphite because
 - 1. graphite is more highly organized than diamond
 - 2. the two materials are composed of different elements
 - 3. diamond is more highly organized than graphite
 - 4. two different chemical reactions are involved
- 9. All molecular motion ceases at
 - 1. 100 K
 - 2. -250 K
 - 3. 272 K
 - 4. -272 K
- 10. The melting of ice involves all of the following except
 - 1. decrease in temperature
 - 2. change of state
 - 3. increase in entropy
 - 4. breaking of hydrogen bonds

True/False:

- 11. _____ The standard entropy of a substance is given by ΔS .
- 12. _____ The entropy change for the sublimation of CO_2 is positive.
- 13. _____ Most naturally occurring reactions are endothermic.
- 14. _____ The energy of the system decreases during an exothermic reaction.
- 15. _____ Work must be done to increase entropy.
- 16. _____ The entropy of a gas is less than the entropy of the corresponding liquid.
- 17. _____ The solid state of MgSO₄ is highly ordered.
- 18. _____ Endothermic reactions can occur spontaneously.
- 19. _____ The process of dissolving decreases entropy.
- 20. _____ The entropy of a material at absolute zero is negative.

Fill in the Blank:

- 21. In an exothermic reaction, the _____ have a relatively high quantity of _____ compared to the _____-
- 22. _____ is a measure of the degree of randomness or _____ of a system.
- 23. An increase in _____ means that the _____ of the substance have greater _____ energy
- 24. In each of the following cases, indicate whether the process results in an increase or decrease in the entropy of the system and explain with a brief comment.
 - 1. baking a cake
 - 2. setting off fireworks
 - 3. photosynthesis: $6CO_2(g) + 6H_2O(l) + \text{light} \rightarrow C_6H_{12}O_6(aq) + 6O_2(g)$
 - 4. burning of propane: $C_3H_8(g) + 5O_2(g) \rightarrow 4H_2O(g) + 3CO_2(g) + \text{energy}$
 - 5. rusting of iron: $Fe(s) + O_2(g) + H_2O(l) \rightarrow Fe_2O_3 \cdot nH_2O(s)$
 - 6. vinegar/baking soda: $HC_2H_3O_2(aq) + NaHCO_3(aq) \rightarrow NaC_2H_3O_2(aq) + H_2O(l) + CO_2(g)$
- 25. Calculate the standard entropy change for the following reaction:
- 26. $Cu(s) + \frac{1}{2}O_2(g) \to CuO(s)$
- 27. given that
- 28. $S^{\circ}[Cu(s)] = 33.15 J/K \cdot mol$

29., 30. $S^{\circ}[O_2(g)] = 205.14 J/K \cdot mol$ 31., 32. $S^{\circ}[CuO(s)] = 42.63 J/K \cdot mol$ 33. . 34. Calculate ΔS° for the following reaction: 35. $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$ 36. $\Delta S^{\circ}[H_2] = 131.0 J/K \cdot mol$ 37., 38. $\Delta S^{\circ}[Cl_2] = 223.0 J/K \cdot mol$ 39., 40. $\Delta S^{\circ}[HCl] = 187.0 J/K \cdot mol$ 41. . 42. Calculate ΔS° for the reaction: $N_2O(g) \rightarrow N_2(g) + \frac{1}{2}O_2(g)$ 43. ΔS° 44. for 45. $N_2O(g) = 220.0 J/K \cdot mol$ 46., 47. ΔS° 48. for 49. $N_2(g) = 192.0 J/K \cdot mol$ 50., 51. ΔS° 52. for 53. $O_2(g) = 205.14 J/K \cdot mol$ 54. .

20.2 Spontaneous Reactions and Free Energy

Lesson Quiz				
Name	Class	Date		
Multiple Choice:				
1. A spontaneous re	eaction has			
 an increase an increase absorption decrease in 	in enthalpy in entropy of energy randomness			
2. In a nonspontane	ous reaction we observe			
 an increase randomnese endothermi products are 	in entropy increases c reaction e favored over reactants			
3. The dissolving of	f AgNO ₃ in water is a spontan	eous reaction because all of the following except		
 a precipitate entropy is in randomness there is a ch 	e is formed ncreased s is increased nange of state			
4. If ΔH is positive	and ΔS is positive, then ΔG is			
 always negative at never negative at negative at 	ative ive higher temperatures lower temperatures			
5. If ΔH is negative	and ΔS is negative, then ΔG is	s		
 always nega never negat negative at negative at 	ative ive higher temperatures lower temperatures			
6. When the $T\Delta S$ te	rm is numerically smaller than	n the ΔH term, the ΔG value will be		
1. positive if Δ	LS is negative			

- 2. negative if ΔS is positive
- 3. negative if ΔS is negative
- 4. variable value
- 7. To be used in Gibbs free energy calculations, ΔS values
 - 1. can be used without conversion
 - 2. must be converted to kJ/mol

- 3. must be converted to J/mol
- 4. must be divided by 100
- 8. Energy that is available to do work is called
 - 1. stored energy
 - 2. entropic energy
 - 3. free energy
 - 4. enthalpy

9. The reaction $CO_2(g) + 2H_2O(g) \xrightarrow{\wedge} CH_4(g) + 2O_2(g)$ is nonspontaneous because

- 1. entropy is increased
- 2. reaction is endothermic
- 3. reaction is exothermic
- 4. reaction involves change of state
- 10. The dissolving of KCl in water is spontaneous because of all the following except
 - 1. entropy is increased
 - 2. solid is converted to aqueous particles
 - 3. no energy needed for process to occur
 - 4. reactants favored over products

True/False:

- 11. _____ The combustion of wood is spontaneous at room temperature.
- 12. _____ Entropy increases during most combustion reactions.
- 13. ΔG is positive for a spontaneous reaction.
- 14. _____ An endothermic reaction has a positive ΔH .
- 15. ΔG is positive above 273 K for the freezing of water.
- 16. _____ Standard conditions for measuring entropy and enthalpy values are one atm pressure and 298 K temperature.
- 17. _____ The products of a combustion reaction are primarily carbon dioxide gas and water vapor.
- 18. _____ Lightning can cause the formation of NO.
- 19. ____ Conversion of liquid water to steam is spontaneous above 300 K.
- 20. _____ Release of CO₂ from an opened cold soft drink is a spontaneous process.

Fill in the Blank:

- 21. A spontaneous reaction is a reaction that favors the ______of products at the conditions under which the reaction is occurring.
- 22. The_____ of a fire are composed mostly of gases such as carbon dioxide and ______, so the ______ of the system increases during most combustion reactions.
- 23. A ______ reaction is a reaction that does not favor the formation of ______ at the given set of conditions.
- 24. Write the mathematical equation for the calculation of Gibbs free energy.
- 25. When one driving force favors the _____, but the other does not, it is the _____ that determines the sign of ΔG .
- 26. Which of the following is spontaneous?
 - 1. $\Delta H > 0, T(\Delta S) > 0$
 - 2. $\Delta H < 0, T(\Delta S) > 0$
 - 3. $\Delta H > 0, T(\Delta S) < 0$
 - 4. $\Delta H < 0, T(\Delta S) < 0$

- 27. For the reaction $Cu_2S(s) + 2S(s) \rightarrow 2CuS(s)$
- 28. $\Delta H^\circ = -26.7 \ kJ/mol$
- $29. \ and$
- 30. $\Delta S^{\circ} = -19.7 J/K \cdot mol$
- 31. under standard conditions Calculate
- 32. ΔG°
- 33. .
- 34. For a certain process at 300.0 K, $\Delta G = -77.0 \ kJ/mol$ and $\Delta H = -56.9 \ kJ/mol$. Find the entropy change for this process.
- 35. The hydrogenation of ethene gas under standard conditions (T = 298.15 K) shows a decrease in disorder $(\Delta S^{\circ} = -0.1207 \text{ kJ}/(K \cdot mol))$ during an exothermic reaction $(\Delta H^{\circ} = -136.9 \text{ kJ}/mol)$. Calculate ΔG° .
- 36. The entropy of a system at 337.1 K increases by $221.7 J/K \cdot mol$. The free energy value is found to be -717.5 kJ/mol. Calculate the change in enthalpy of this system.

20.3 Free Energy and Equilibrium

Lesson Quiz				
Name	Class	Date		
Multiple Choice:				
1. The quicklin	ne manufacturing process has all th	e following characteristics except		
 reaction reaction CO₂ is as CO₂ 	n favors reactants at lower temperat n becomes spontaneous above 835° trapped in reaction vessel pressure approaches one atm, proc	tures °C lucts are favored over reactants		
2. In the quickl	ime manufacturing process, the am	ount of products is detected by		
 measur measur measur measur 	ing disappearance of CaCO ₃ ing CO ₂ pressure ing CaO formation ing T			
3. When ΔG fo	r a reversible reaction = zero,			
1. the read 2. the read 3. $\Delta S = z_{1}$ 4. $\Delta H = z_{2}$	ction becomes endothermic ction becomes exothermic ero zero			
4. At the transit	tion from liquid water to steam			
 Δ<i>G</i> for Δ<i>G</i> for Δ<i>H</i> for Δ<i>S</i> for 	the process is positive the process is negative the process is zero the process is positive			
5. The value for	r R is			

- 1. 8.314 $J/K \cdot mol$
- 2. 8.314 $kJ/K \cdot mol$
- 3. 8.314 J/mol
- 4. 8.314 kJ/mol
- 6. When K_{eq} is less than one, all of the following are true except
 - 1. ΔG is positive
 - 2. $\ln(K_{eq})$ is negative
 - 3. $\ln(K_{eq})$ is positive
 - 4. reactants are favored
- 7. As the solid state changes into the liquid state
 - 1. ΔS becomes positive
 - 2. ΔS becomes negative

- 3. $\Delta S = 0$
- 4. ΔH_{fus} changes
- 8. When calculating K_{eq} , units for ΔG need to be
 - 1. kJ/mol
 - 2. $kJ/K \cdot mol$
 - 3. $J/K \cdot mol$
 - 4. J/mol

True/False:

- 9. _____ When a system is at equilibrium, neither the forward or reverse reactions are spontaneous.
- 10. _____ At room temperature, the quicklime reaction has a large positive ΔG .
- 11. _____ The quicklime process produces measurable amounts of CO₂ at room temperature.
- 12. ΔS_{fus} represents the entropy change during the melting process.
- 13. _____ When $K_{eq} = 1$, $\ln(K_{eq}) = 1$
- 14. _____ We can calculate K_{eq} if we know ΔG .
- 15. _____ A large positive free energy change produces a very large K_{eq}
- 16. _____ K_{sp} can be used to calculate ΔG .

Fill in the Blank:

- 17. Carbon tetrachloride has a melting point of 250 K and the $\Delta H_{fus} = 2.67 \ kJ/mol$. Calculate the ΔS_{fus} .
- 18. Nonane (C₉H₂₀) boils at 491 K and the $\Delta H_{vap} = 40.5 \ kJ/mol$. Calculate the ΔS_{vap} .
- 19. For the following reaction at 327 C.
- 20. $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
- 21. given
- 22. $\Delta H = -91.8 \ kJ/mol$
- 23. and
- 24. $\Delta S = -197.3 J/K \cdot mol$

1. Calculate ΔG

- 2. Calculate the temperature where the system will be at equilibrium
- 25. For the following reaction at 400 K:
- 26. $CoCl_2(g) \rightarrow CO(g) + Cl_2(g)$
- 27. given
- 28. $\Delta H = 110.5 \text{ kJ/mol}$
- 29. and
- 30. $\Delta S = 136.8 J/K \cdot mol$
 - 1. Calculate ΔG
 - 2. Calculate the temperature at which the reaction is at equilibrium.
- 31. At 298 K, for the reaction $4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s), \Delta H^\circ = -34.90 \ kJ/mol$ and $\Delta S = -46.4 \ J/K \cdot mol$. Does the reaction proceed spontaneously?
- 32. For the reaction $BaSO_4(s) \rightleftharpoons Ba^{2+}(aq) + SO_4^{2-}(aq)$, the $K_{sp} = 1.1 \times 10^{-10}$ at 298 K.
- 33. Calculate the
- 34. ΔG
- 35. for this process.
- 36. For the reaction $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$ at 298 K, $\Delta G = 28.9 \ kJ/mol$
- 37. Calculate the
- 38. K_{eq}
- 39. for the reaction.

20.4 Entropy and Free Energy

Chapter Test			
Name	Class	Dat	te
Multiple Choice:			
1. All of the follow	wing are characteristics of exothe	ermic reactions ex	cept
 energy is a reaction is products h products a 	absorbed during the reaction s energetically favorable have lower quantity of energy that are more stable than reactants	an reactants	
2. All of the follow	wing are characteristics of endot	hermic reactions e	except
 products h heat is abs products a energy is a 	have higher energy as compared sorbed during the reaction are more stable than reactants needed to drive the reaction	to reactants	
3. An increase in e	entropy is seen in one of the foll	owing situations	
1. a lake free 2. making a	ezing pizza		

- 3. shelving books
- 4. shredding paper
- 4. If ΔH is negative and ΔS is positive, then ΔG is
 - 1. always negative
 - 2. never negative
 - 3. negative at higher temperatures
 - 4. negative at lower temperatures
- 5. $KOH(s) \rightarrow K^+(aq) + OH^-(aq) +$ heat is a spontaneous reaction for all of the following reasons except
 - 1. entropy is increased
 - 2. reaction is endothermic
 - 3. reaction is exothermic
 - 4. reaction involves change of state
- 6. At the transition from liquid water to ice
 - 1. ΔG for the process is positive
 - 2. ΔG for the process is negative
 - 3. ΔH for the process is zero
 - 4. ΔS for the process is positive
- 7. When K_{eq} is greater than one, all of the following are true except
 - 1. ΔG is negative
 - 2. $\ln(K_{eq})$ is negative

- 3. $\ln(K_{eq})$ is positive
- 4. products are favored
- 8. As the vapor state changes into the liquid state
 - 1. ΔS becomes positive
 - 2. ΔS becomes negative
 - 3. $\Delta S = 0$
 - 4. ΔH_{fus} changes
- 9. When the $H\Delta$ term is numerically larger than the $T\Delta S$ term, the ΔG value will be
 - 1. positive if ΔH is negative
 - 2. negative if ΔH is positive
 - 3. negative if ΔH is negative
 - 4. variable value
- 10. The condensation of CO_2 involves all of the following except
 - 1. decrease in temperature
 - 2. change of state
 - 3. decrease in entropy
 - 4. increase in volume

True/False:

- 11. _____ The standard entropy of a substance is given by ΔS° .
- 12. _____ Endothermic reactions do not occur spontaneously.
- 13. _____ The entropy change for the sublimation of I_2 is positive.
- 14. _____ Standard conditions for measuring entropy and enthalpy values are 700 mm pressure and 273 K temperature.
- 15. ΔG is negative for a spontaneous reaction.
- 16. _____ An endothermic reaction has a negative ΔH .
- 17. _____ The quicklime process produces measurable amounts of CO₂ at temperatures above 700°C.
- 18. _____ When $K_{eq} = 1, \Delta G = 0$
- 19. ΔG can be used to calculate K_{sp} .
- 20. ΔS_{vap} represents the entropy change during the melting process.

Fill in the Blank:

- 21. Define the following terms:
 - 1. entropy
 - 2. spontaneous reaction
 - 3. nonspontaneous reaction
 - 4. free energy
- 22. What is the standard molar entropy change of the following reaction?
- 23. $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$
- 24. Given:
- 25.

$$\begin{split} S^{\circ}_{NH_3} &= 193 \; J/K \cdot mol \\ S^{\circ}_{O_2} &= 205 \; J/K \cdot mol \\ S^{\circ}_{NO} &= 211 \; J/K \cdot mol \\ S^{\circ}_{H_2O} &= 189 \; J/K \cdot mol \end{split}$$

- 26. In each of the following cases, indicate whether the process results in an increase or decrease in the entropy of the system and explain with a brief comment.
 - 1. $C_{10}H_8(l) + 12O_2(g) \rightarrow 10CO_2(g) + 4H_2O(g)$ 2. $8Fe(s) + S_8(s) \rightarrow 8FeS(s)$ 3. $Mg(s) + 2H_2O(l) \rightarrow Mg(OH)_2(s) + H_2(g)$ 4. $Pb^+(aq) + 2NO_3^-(aq) + 2K^+(aq) + 2I^-(aq) \rightarrow PbI_2(s) + 2K^+(aq) + 2NO_3^-(aq)$ 5. $2H_2O(l) \rightarrow 2H_2(g) + O_2(g)$
- 27. Compute G° for the hydrolysis of urea, $CO(NH_2)_2$ at 298.15 K,
- 28. $CO(NH_2)_2(aq) + H_2O(l) \rightarrow CO_2(g) + 2NH_3(g)$
- 29. given
- 30. $\Delta H^{\circ} = 119.2 \ kJ/mol$
- 31. and
- 32. $\Delta S^{\circ} = 354.8 J/K \cdot mol$
- 33. Calculate ΔG° for the reaction at 298.15 K
- 34. $NH_4NO_3(s) + H_2O(l) \rightarrow NH_4^+(aq) + NO_3^-(aq)$
- 35. given
- 36. $\Delta H^{\circ} = 28.05 \ kJ/mol$
- 37. and
- 38. $\Delta S^{\circ} = 108.7 J/K \cdot mol$

Acids and Bases Assessments

Chapter Outline

21.1	ACID-BASE DEFINITIONS
21.2	THE PH CONCEPT
21.3	ACID AND BASE STRENGTH

- 21.4 ACID-BASE NEUTRALIZATION
- 21.5 SALT SOLUTIONS
- 21.6 ACIDS AND BASES

21.1 Acid-Base Definitions

Les	Lesson Quiz		
Nam	eClass	Date	
Multi	ple Choice:		
1.	All of the following are bases except		
	 drain cleaner ammonia vinegar 		
	4. sodium hydrogen carbonate		
2.	One of the following is a property of acids		
	 turn litmus red bitter taste do not react with metals turn phenolphthalein pink 		
3.	One of the following is a property of bases		
	 sour taste aqueous solutions are electrolytes turn litmus blue react with some metals to produce H₂ 		
4.	H_3O^+ is formally known as the		
	 hydrogen ion dihydrogen monoxide hydronium ion protonated water 		
5.	Phosphoric acid is a acid		
	 monoprotic diprotic multiprotic polyprotic 		
6.	Alkali metals react with water to form		
	 base + hydroxide compound base + CO₂ base + oxygen base + hydrogen 		

7. Ammonia is classified as a base because of all the following except

- 1. turns litmus blue
- 2. forms hydroxide ion

- 3. reacts with acids
- 4. turns phenolphthalein pink

8. In the reaction between water and ammonia, water functions as a

- 1. Brønsted-Lowry acid
- 2. Brønsted-Lowry base
- 3. Lewis acid
- 4. Arrhenius base
- 9. A Lewis acid
 - 1. accepts an electron pair
 - 2. donates an electron pair
 - 3. donates a proton
 - 4. donates a hydroxide ion
- 10. A proton is a
 - 1. hydroxide ion
 - 2. hydrogen ion
 - 3. hydronium ion
 - 4. hydrated ion

True/False:

- 11. _____ Oranges contain citric acid
- 12. _____ Lithium carbonate is a commercially available antacid
- 13. _____ All bases are strong electrolytes
- 14. _____ Acids react with active metals to produce hydrogen gas.
- 15. ____ CH₃OH is a strong base.
- 16. _____ Water can function as both a Brønsted-Lowry acid and a Brønsted-Lowry base.
- 17. _____ In a Lewis acid-base reaction, a covalent bond is formed.
- 18. _____ Acids are often called proton donors.
- 19. _____ The sulfate ion is the conjugate acid of the hydrogen sulfate ion.
- 20. _____ Group 2 metal hydroxides completely dissolve in water.

Fill in the blanks:

- 21. A Brønsted-Lowry _____ is a molecule or ion that donates a _____ ion in a reaction.
- 22. Water can also act as a base in a _____acid-base reaction, as long as it reacts with a substance that is a _____ proton donor.
- 23. An ______ substance is one that is capable of acting as either an _____ or a base by donating or ______ hydrogen ions.
- 24. A conjugate _____ is the particle produced when a base _____ a proton.
- 25. Name the following compounds:
 - 1. NaOH
 - 2. HClO
 - 3. H₃PO₄
 - 4. Mg(OH)₂
- 26. Write the formulas for the following compounds:
 - 1. calcium hydroxide
 - 2. sulfuric acid
 - 3. potassium hydroxide

4. acetic acid

27. Identify the Lewis acid and the Lewis base in each of the following reactions:

1.
$$NH_3 + BF_3 \rightarrow H_3N - BF_3$$

2. $CH_3 - O^- + CH_3Cl \rightarrow CH_3 - O - CH_3 + Cl^-$
3. $(CH_3)_3O^+ + H - O - H \rightarrow CH_3 - O - CH_3 + CH_3OH^{2+}$
4. $Cu^{+2} + 4NH_3 \rightarrow Cu(NH_3)_4^{+2}$

TABLE 21.1:

Problem	Lewis Acid	Lewis Base
a.	NH ₃	BF ₃
b.	CH ₃ Cl	CH ₃ -O ⁻
с.	$(CH_3)_3O^+$	Н–О–Н
d.	Cu ⁺²	NH ₃

21.2 The pH Concept

Lesson Quiz

Name	Class	Date

Multiple Choice:

1. H_3O^+ is the structure of a

- 1. hydrated proton
- 2. hydronium ion
- 3. protonated water
- 4. hydrogen ion
- 2. 1×10^{-14} is the equilibrium constant for
 - 1. ionization of weak base
 - 2. ionization of weak acid
 - 3. ionization of water
 - 4. ionization of acetic acid
- 3. The pH for a strong acid is
 - 1. greater than 7
 - 2. greater than 9
 - 3. 7
 - 4. less than 7
- 4. The most acid solution in the following list is
 - 1. tomato juice
 - 2. lemon juice
 - 3. soda pop
 - 4. coffee
- 5. The most basic solution in the following list is
 - 1. household bleach
 - 2. eggs
 - 3. soap
 - 4. ammonia solution
- 6. A solution with a pH of 9 has a hydrogen ion concentration of
 - 1. $1 \times 10^{-8} M$
 - 2. $9 \times 10^{-1} M$
 - 3. $1 \times 10^{-9} M$
 - 4. $9 \times 10^{-9} M$
- 7. The pH of a solution is 4, so the pOH is
 - 1. 11
 - 2. 9

- 3. 13
- 4. 10
- 8. The pH of a solution can be calculated by
 - 1. $pH = \log[H^+]$ 2. $pH = \ln[H^+]$ 3. $pH = -\log[H^+]$ 4. $pH = -\ln[H^+]$

9. Soap has an approximate pH of 11. Its [H⁺] is approximately

- 1. $1 \times 10^{11} M$
- 2. $1 \times 10^{-3} M$
- 3. $1 \times 10^{-7} M$
- 4. $1 \times 10^{-11} M$
- 10. All of the following have pH values greater than 8 except
 - 1. blood
 - 2. detergent
 - 3. soap
 - 4. milk of magnesia

True/False:

- 11. _____ Water is a weak electrolyte.
- 12. _____ The K_w is affected by temperature.
- 13. _____ When NaOH is added to water, the equilibrium shifts to the $H_2O(l)$ side.
- 14. _____ A 0.3 M solution of HCl has a negative pH.
- 15. _____ The letters pH stand for power of the hydrogen ion.
- 16. _____ The pH of vinegar is greater than 3.
- 17. ____ Soap has an approximate $[H^+]$ of 10^{-11} .
- 18. _____ The pOH value = 14 + pH.
- 19. _____ Hydrogen ions exist free in water solution.
- 20. _____ The equilibrium position for the self-ionization of water strongly favors the reactant water molecule.

Fill in the blanks:

- 21. The ______ of water is the process in which water ______ to _____ions and hydroxide ions.
- 22. The ______ of water (Kw) is the mathematical ______ of the concentrations of hydrogen ions and hydroxide ions.
- 23. An ______ solution is a solution in which the concentration of hydrogen ions is greater than the concentration of ______ ions.
- 24. The pH scale is generally presented as running from 0 to 14, though it is possible to have a pH of less than _____ or greater than _____
- 25. State whether the following solutions are acidic or basic:

1.
$$[H^+] = 3.7 \times 10^{-4} M$$

- 2. $[H^+] = 1.9 \times 10^{-9} M$
- 3. $[OH^-] = 5.8 \times 10^{-8} M$
- 4. $[OH^{-}] = 2.5 \times 10^{-5} M$

26. Calculate $[H^+]$ and $[OH^-]$ for the following solutions which ionize completely in water:

- 1. 0.07 M HBr
- 2. $1.4 \times 10^{-4} M HCl$

- 3. 0.028 M NaOH
- 4. $3.6 \times 10^{-5} M LiOH$
- 27. Calculate the pH and pOH of the following solutions:
 - 1. $[H^+] = 4.6 \times 10^{-4} M$
 - 2. $[OH^-] = 0.0063 M$

21.3 Acid and Base Strength

Lesson Quiz

Name_____ Class_____ Date____

Multiple Choice:

- 1. All of the following are weak acids except
 - 1. phosphoric acid
 - 2. carbonic acid
 - 3. hydrocyanic acid
 - 4. sulfuric acid
- 2. Strong acids ionize to form
 - 1. protons and anions
 - 2. protons and a conjugate base
 - 3. protons and a conjugate acid
 - 4. a conjugate acid and a conjugate base
- 3. Based on their first acid ionization constant, the strongest acid is
 - 1. oxalic acid
 - 2. benzoic acid
 - 3. acetic acid
 - 4. nitrous acid
- 4. Based on the base ionization constants, the weakest base is
 - 1. methylamine
 - 2. urea
 - 3. ammonia
 - 4. pyridine
- 5. The base ionization represents all of the following except
 - 1. the extent of ionization
 - 2. the strength of the base
 - 3. an indication of undissociated base
 - 4. the number of anions present
- 6. The weakest conjugate base listed below is
 - 1. CN⁻
 - 2. HSO₄-
 - 3. CH₃COO⁻
 - 4. HCO₃⁻
- 7. Only one of the following is a weak acid
 - 1. H₂CO₃
 - 2. HCl

- 3. HBr
- 4. HNO₃

8. The base ionization constant contains all of the following except

- 1. unionized base
- 2. base cation
- 3. water
- 4. hydroxide anion

9. The extent of ionization for a weak acid is usually less than

- 1. 90%
- 2. 50%
- 3. 10%
- 4. 0%

10. The base ionization constant expression for ammonia is $K_b =$

- 1. $[NH_4^+][OH^-] \div [NH_3]$
- 2. $[NH_3] \div [NH_4^+][OH^-]$
- 3. $[OH^{-}] \div [NH_{4}][NH_{3}]$
- 4. $[NH_4^+] \div [OH^-][NH_3]$

True/False:

- 11. _____ Some strong acids are found in foods and beverages.
- 12. _____ Hydrofluoric acid is a weak acid.
- 13. _____ HCO_3^- is the conjugate base of carbonic acid.
- 14. _____ The third ionization constant for phosphoric acid is larger than the first.
- 15. _____ Potassium hydroxide is completely soluble in water.
- 16. _____ The K_b for a weak base has $[OH^-]$ in the denominator.
- 17. _____ Methylamine is a weaker base than pyridine.
- 18. _____ Calculations of K_a omit the [H⁺] that is formed by the ionization of water.
- 19. _____ The conjugate base of a weak acid is a weak base.
- 20. _____ When dissolved in water, ammonia donates a proton.

Fill in the blanks:

- 21. A _____ acid is an acid which is completely _____ in _____ solution.
- 22. The ______ value of K_a is a reflection of the ______ of the acid.
- 23. Each successive ______ constant for a polyprotic acid is always ______ than the previous one.
- 24. Write an acid ionization reaction for each of the following acids:
 - 1. HCOOH
 - 2. H_2CrO_4
 - 3. HClO

25. Write a base ionization reaction for each of the following bases:

1. CH₃CH₂NH₂

- 2. C₅H₅N
- 3. $C_6H_5NH_2$
- 26. Calculate the pH of the following solutions
 - 1. 0.062 M acetic acid $(K_a = 1.8 \times 10^{-5})$
 - 2. $1.55 \times 10^{-4} M HClO_4$
 - 3. 0.8 M trimethylamine $(K_b = 7.4 \times 10^{-5})$
27. Complete the following table:

TABLE 21.2:

	pН	$[\mathrm{H^+}]$	рОН	[OH ⁻]
a.		$5.4 imes 10^{-4}$		
b.				$7.8 imes 10^{-10}$
с.	10.75			
d.			5.00	

TABLE 21.3:

	[HAc]	[H ⁺]	[Ac ⁻]
Ι	0.062	0	0
С	-x	x	x
Е	0.062 - x	x	x

TABLE 21.4:

	[TM]	[TMH ⁺]	[OH ⁻]
Ι	0.8 M	0	0
С	-x	x	x
Е	0.8 - x	x	x

TABLE 21.5:

	pН	$[\mathrm{H^+}]$	рОН	[OH ⁻]
a.	3.27	$5.4 imes 10^{-4}$	10.73	1.9×10^{-11}
b.	4.89	1.3×10^{-5}	9.11	$7.8 imes 10^{-10}$
с.	10.75	1.8×10^{-11}	3.25	5.6×10^{4}
d.	9.00	1.0×10^{-9}	5.00	1.0×10^{-5}

21.4 Acid-Base Neutralization

Lesson Quiz

Name	Class	Date

- 1. In the reaction $H^+ + Cl^- + Na^+ + OH^- \rightarrow Na^+ + Cl^- + H_2O$, the spectator ions are
 - 1. $H^+ + Cl^-$
 - 2. $Na^+ + OH^-$
 - 3. $Na^+ + Cl^-$
 - 4. $H^+ + OH^-$
- 2. The neutralization of a weak base with a strong acid produces a solution whose pH is
 - 1. neutral
 - 2. slightly acidic
 - 3. slightly basic
 - 4. strongly basic

3. The neutralization of a strong base with a strong acid produces a solution whose pH is

- 1. neutral
- 2. slightly acidic
- 3. slightly basic
- 4. strongly basic
- 4. In a titration of sulfuric acid with KOH, the ratio of acid to base for calculations is
 - 1. 1 mol sulfuric acid/1 mol NaOH
 - 2. 2 mol sulfuric acid/1mol NaOH
 - 3. 1 mol sulfuric acid/2 mol NaOH
 - 4. 1 mol sulfuric acid/3 mol NaOH
- 5. After the neutralization point is reached in a titration, the pH
 - 1. changes very slowly
 - 2. changes rapidly
 - 3. shows no change
 - 4. fluctuates depending on the acid
- 6. If the equivalence point is greater than pH seven, the titration is between
 - 1. a strong acid and a strong base
 - 2. a weak acid and a strong base
 - 3. a strong base and a weak acid
 - 4. a weak base and a weak acid
- 7. Thymol Blue exhibits a color change between the approximate pH values of
 - 1. 2-3
 - 2. 4-6

- 3. 1-3
- 4. 10-12
- 8. The best indicator for a titration with an equivalence point of 10 would be
 - 1. thymol blue
 - 2. thymolphthalein
 - 3. phenolphthalein
 - 4. alizarine yellow R

9. Red cabbage juice has a _____ color in neutral solutions

- 1. red
- 2. green
- 3. purple
- 4. orange

10. Antacids neutralize stomach HCl by using a material such as

- 1. NaOH
- 2. HNO₃
- 3. NH₃
- 4. Ca(OH)₂

True/False:

- 11. _____ Net ionic equations of weak bases include the weak base as a molecule.
- 12. _____ In neutralization reactions between weak acids and strong bases, both the acid and the base are completely ionized.
- 13. _____ The net ionic equation for the neutralization of a weak acid by a strong base is $HA + OH^- \rightarrow A^- + H_2O$.
- 14. _____ In a titration, the material from the buret is added rapidly to achieve equilibrium.
- 15. _____ A titration curve plots volume of titrant against pH.
- 16. _____ Titration curves for weak acid-strong base titrations have a different equivalence point when compared to strong acid-strong base titrations
- 17. _____ The acid that aids in the digestion of food is phosphoric acid.
- 18. _____ The products of a typical acid-base neutralization are a salt plus water.
- 19. _____ Phosphoric acid requires two moles NaOH/mole acid for neutralization.
- 20. _____ In a titration between HCl and ammonia, the ammonia functions as a proton acceptor.

Fill in the blanks:

- 21. A ______ reaction is a reaction in which an ______ and a base react in an ______ solution to produce a salt and ______.
- 22. A salt is an ionic compound composed of a ______ from a base and an anion from an _____.
- 23. Reactions where at least one of the components is _____do not generally result in a _____ solution.
- 24. The _____ point is the point in a _____ reaction where the number of _____ of hydrogen ions is equal to the number of moles of ______ ions.
- 25. Which indicator would be the best to use for a titration that has an equivalence point at pH 10.0?
- 26. In a titration, 22.5 mL of 0.4 M NaOH were required to neutralize 15.3 mL of HCl. What is the concentration of the HCl?
- 27. It takes 35.7 mL of 0.05 M NaOH to neutralize 21.6 mL of phosphoric acid. What is the concentration of the phosphoric acid?
- 28. What would the color of phenol red be in a solution at pH 3? pH 7.8?
- 29. Sulfuric acid contains two protons that dissociate under different conditions. The first dissociation (to form $H^+ + HSO_4^-$) is listed as "very large", equivalent to that of HCl. The second dissociation (to form $H^+ + SO_4^{2-}$) has a K_a of 1.9×10^{-2} . What would you expect a titration curve to look like for sulfuric acid?

21.5 Salt Solutions

Lesson Quiz

Name	Class	Date
------	-------	------

Multiple Choice:

- 1. When CsNO₃ is dissolved in water, the resulting solution will be
 - 1. strongly basic
 - 2. slightly basic
 - 3. neutral
 - 4. slightly acidic
- 2. A solution of RbF in water will have a pH that is
 - 1. strongly basic
 - 2. slightly basic
 - 3. neutral
 - 4. slightly acidic
- 3. A solution of a salt from a weak acid and a strong base will be
 - 1. strongly basic
 - 2. slightly basic
 - 3. neutral
 - 4. slightly acidic

4. A solution containing acetic acid $(K_a = 1.8 \times 10^{-5})$ and urea $(K_b = 1.5 \times 10^{-14})$ will be

- 1. acidic
- 2. basic
- 3. too difficult to analyze
- 4. neutral
- 5. The acetate ion can react with water by
 - 1. being a proton donor
 - 2. being a proton acceptor
 - 3. forming a hydroxide salt
 - 4. neutralizing the hydroxide ion
- 6. The nitrogen-containing base pyridine can react with water by serving as all of the following except
 - 1. proton donor
 - 2. proton acceptor
 - 3. Brønsted-Lowry base
 - 4. Lewis acid
- 7. The CN⁻ anion will produce an aqueous salt solution that is
 - 1. slightly basic
 - 2. slightly acid

- 3. neutral
- 4. unable to predict
- 8. Fluoride in water acts as all of the following except
 - 1. Arrhenius base
 - 2. Brønsted-Lowry acid
 - 3. Brønsted-Lowry base
 - 4. Lewis base
- 9. A buffer composed of acetic acid and sodium acetate is an example of
 - 1. weak acid and salt of its conjugate base
 - 2. weak base and salt of its conjugate acid
 - 3. strong acid and salt of its conjugate base
 - 4. strong base and salt of its conjugate acid
- 10. The ammonia/ammonium ion buffer is an example of
 - 1. weak acid and salt of its conjugate base
 - 2. weak base and salt of its conjugate acid
 - 3. strong acid and salt of its conjugate base
 - 4. strong base and salt of its conjugate acid

True/False:

- 11. _____ The ammonium ion reacts with water to lower the pH of the solution.
- 12. _____ Anions of weak acids contribute to proton formation.
- 13. _____ The conjugate base of HCN will produce OH⁻ ions.
- 14. ____ NO_2^- is the conjugate base of nitric acid.
- 15. _____ Sodium acetate acts as a base in water.
- 16. _____ A solution becomes basic as a result of hydronium ion production.
- 17. _____ The bromide ion will attract protons from water.
- 18. _____ The ammonia/ammonium ion buffer is important for maintaining blood pH.
- 19. _____ The acetic acid/acetate buffer functions best at pH values above 7.
- 20. _____ A salt formed from a weak base and a strong acid will be acidic.

Fill in the blanks:

- 21. Predict whether solutions made from the following salts will be acidic, basic, or neutral:
 - 1. KOH
 - 2. NaHCO₃
 - 3. NH₄Cl
- 22. A _____ is an _____ compound that is formed when an acid and a base _____ each other.
- 23. Salt ______ is a reaction in which one of the _____ from a salt reacts with ______, forming either an acidic or basic solution.
- 24. Salts that are derived from the neutralization of a _____ acid (HF) by a _____ base (NaOH) will always produce salt solutions that are _____.
- 25. The buffer _____ is the amount of acid or base that can be added to a _____ solution before a large change in _____ occurs.
- 26. Write balanced equations for the following ions in water solution:
 - 1. NO₂⁻
 - 2. $C_6H_5COO^-$
 - 3. H₂NCONH₂

4. CH₃NH₃⁺

- 27. What is the pH of a 0.01 M solution of benzoic acid? $K_a = 6.5 \times 10^{-5}$. Benzoic acid dissociates according to the following equation:
- 28. $C_6H_5COOH \rightarrow H^+ + C_6H_5COO^-$

29. .

30. What would the pOH of this solution be?

21.6 Acids and Bases

Chapter Test

Name_____ Class_____ Date____

Multiple Choice:

- 1. Bases have all of the following properties except
 - 1. turn litmus red
 - 2. bitter taste
 - 3. do not react with metals
 - 4. turn phenolphthalein pink
- 2. A Lewis base
 - 1. accepts an electron pair
 - 2. donates an electron pair
 - 3. donates a proton
 - 4. donates a hydroxide ion
- 3. All of the following have basic pH values except
 - 1. soap
 - 2. lemon juice
 - 3. detergent
 - 4. eggs
- 4. The pOH of a solution is 6.9 so the pH is
 - 1. 6.8
 - 2. 7.6
 - 3. 7.1
 - 4. 7.4
- 5. All of the following are strong acids except
 - 1. HCl
 - $2. HNO_2$
 - 3. HNO_3
 - 4. HBr
- 6. The strongest conjugate base listed below is
 - 1. CN⁻
 - 2. HSO₄-
 - 3. CH₃COO⁻
 - 4. HCO₃
- 7. The neutralization of a weak acid with a strong base produces a solution whose pH is
 - 1. neutral
 - 2. slightly acidic

- 3. slightly basic
- 4. strongly basic

8. In a titration of hydrobromic acid with KOH, the ratio of acid to base for calculations is

- 1. 1 mol hydrobromic acid/1 mol NaOH
- 2. 2 mol hydrobromic acid/1 mol NaOH
- 3. 1 mol hydrobromic acid/2 mol NaOH
- 4. 1 mol hydrobromic acid/3 mol NaOH

9. NH_3^+ in water acts as all of the following except

- 1. Arrhenius acid
- 2. Lewis acid
- 3. Arrhenius base
- 4. Brønsted-Lowry acid
- 10. The carbonic acid/hydrogen carbonate ion buffer is an example of
 - 1. weak acid and salt of its conjugate base
 - 2. weak base and salt of its conjugate acid
 - 3. strong acid and salt of its conjugate base
 - 4. strong base and salt of its conjugate acid

True/False:

- 11. _____ Bases react with active metals to produce hydrogen gas.
- 12. _____ Ca(OH)₂ dissolves completely in water.
- 13. _____ HBr is a strong electrolyte.
- 14. _____ The pH of soda pop is approximately 7.
- 15. CO_3^{2-} is the conjugate base of carbonic acid.
- 16. _____ When dissolved in water, ammonia accepts a proton.
- 17. _____ Net ionic equations of weak acids include the weak acid as a molecule.
- 18. _____ Titration curves for strong acid-weak base titrations have a different equivalence point when compared to strong acid-strong base titrations.
- 19. _____ NO $_2^-$ is the conjugate base of nitrous acid.
- 20. _____ A salt formed from a strong base and a weak acid will be acidic.

Fill in the blanks:

- 21. Define the following terms:
 - 1. polyprotic acid
 - 2. Brønsted-Lowry acid
 - 3. amphoteric
 - 4. salt
- 22. Classify each of the following as an Arrhenius acid/base (A), a Brønsted-Lowry acid/base (BL), or a Lewis acid/base (L)

TABLE 21.6:

Compound	Classification
HCl	
Mg(OH) ₂	
H ₂ O	
NH ₃	
BF ₃	255

- 23. State whether the following solutions are acidic or basic:
 - 1. $[H^+] = 3.9 \times 10^{-4} M$ 2. $[OH^-] = 5.7 \times 10^{-6} M$
 - 3. $[H^+] = 9.3 \times 10^{-10} M$
 - 4. $[OH^{-}] = 6.8 \times 10^{-8} M$
- 24. Calculate $[H^+]$ and $[OH^-]$ for the following solutions which ionize completely in water:
 - 1. 0.09 M HI
 - 2. $2.7 \times 10^{-3} M HBr$
 - 3. 0.08 M KOH
 - 4. $8.4 \times 10^{-4} M CsOH$
- 25. Calculate the pH and pOH of the following solutions:
 - 1. $[H^+] = 6.3 \times 10^{-5} M$ 2. $[OH^-] = 0.0037 M$
- 26. Write an acid or base ionization reaction for the following compounds:
 - 1. HCOOH
 - 2. N(CH₃)₃
 - $3.\ H_2S$
 - 4. HS⁻
- 27. Like any equilibrium constant, K_w varies with temperature. Its value at $37^{\circ}C$ is 2.4×10^{-14} . What is the pH of (neutral) pure water at $37^{\circ}C$?
- 28. In a titration, 31.6 mL of 0.45 M NaOH were required to neutralize 23.2 mL of HCl. What is the concentration of the HCl?

TABLE 21.7:

Compound	Classification
HCl	A, BL, L
Mg(OH) ₂	A, BL
H ₂ O	A, BL, L
NH ₃	BL, L
BF ₃	L

Oxidation-Reduction Reactions Assessments

Chapter Outline

- 22.1 THE NATURE OF OXIDATION AND REDUCTION
- 22.2 OXIDATION NUMBERS
- 22.3 BALANCING REDOX REACTIONS
- 22.4 OXIDATION-REDUCTION REACTIONS

22.1 The Nature of Oxidation and Reduction

Lesson Quiz			
Name	Class	Date	
Multiple Choice:			
1. One of the follow	ing is not an oxidation proces	S	
 formation o killing bacted refining iron rusting of ir 	f MgO eria with H_2O_2 n ore on		
2. One of the follow	ing is not a reduction process		
 removal of e reacting Fe2 heating mer bleaching st 	Dxygen O3 with carbon curic oxide ains		
3. Reduction involve	es		
 loss of elect shifting elect loss of hydr loss of proto 	rons etrons from oxygen to another ogen ons	atom	
4. When oxygen bo	nds to fluorine		
 both atoms electrons sh electrons sh electrons are 	form ions ift from oxygen to fluorine ift from fluorine to oxygen e shared equally between the	wo atoms	
5. When Zn is oxidi	zed		
 electrons are electrons are gaseous Zn the electron 	e added to the Zn atom e lost into the solution is formed s transfer from Zn to another	atom	
6. In water, bonding	electrons are more attracted	o O than H because	
 the O molect O has a high H has a high the reactant 	tule has a double bond structure ther electronegativity than H ther electronegativity that O is are completely nonpolar	re	

- 7. In reactions involving molecular compounds, all of the following are true except
 - 1. electrons are completely transferred between atoms
 - 2. electrons shift toward one atom in a covalent bond

- 3. a partial charge can form on an atom in a covalent bond
- 4. one atom in a covalent bond has less electron density than the other atom
- 8. Rust is a complex mixture of
 - 1. iron halides
 - 2. iron phosphates
 - 3. iron hydroxides
 - 4. iron oxides
- 9. One metal that does not corrode easily is
 - 1. Al
 - 2. Pt
 - 3. Cu
 - 4. Zn
- 10. All of the following are used to prevent corrosion except
 - 1. painting the metal
 - 2. use of sacrificial metal
 - 3. coating with gold
 - 4. covering with oil

True/False:

- 11. _____ Hydrogen peroxide kills bacteria by oxidizing them.
- 12. _____ Oxidation is the removal of oxygen from a substance.
- 13. _____ Some reduction reactions do not involve oxygen.
- 14. _____ O in the water molecule is more electron-rich than H is.
- 15. _____ Zn is the oxidizing agent in the formation of ZnS from Zn and S.
- 16. _____ Net ionic equations omit oxidizing and reducing agents.
- 17. _____ The half-reaction $Cu^{2+} \rightarrow Cu$ represents a reduction process.
- 18. _____ Hydrogen is oxidized when it combines with O to form water.
- 19. _____ Iron turns to rust when exposed to oxygen and water.
- 20. ____ Copper oxide reacts with water to form patina.

Fill in the Blank:

- 21. _____involves a full or partial loss of _____.
- 22. _____ involves a full or partial _____ of electrons.
- 23. A ______ is an equation that shows either the ______ or the reaction that occurs during a redox reaction.
- 24. Explain the role of a sacrificial metal in protection against corrosion.
- 25. For each of the following reactions, identify the entity that was oxidized and the entity that was reduced. Indicate the oxidizing and reducing agents:

1.
$$P_4 + 5O_2 \rightarrow P_4O_{10}$$

- 2. $2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2$
- 3. $2HgO \rightarrow Hg + O_2$
- 4. $2NaH \rightarrow Na + H_2$
- 5. $Cl_2 + 2NaI \rightarrow 2NaCl + I_2$

26. Predict the products of the following reactions and write a balanced equation for each reaction:

- 1. $Br_2 + KI$ 2. $Mg + CuSO_4$
- 3. octane $(C_8H_{18}) + O_2$

4. $Al + Br_2$ 5. $Cu + AgNO_3$

27. Write the reactions involved in the corrosion of iron.

TABLE 22.1:

Reaction	Oxidized	Reduced	Oxidizing Agent	Reducing Agent
a	P^0 to P^{+5}	O^0 to O^{-2}	0	Р
b	Al^0 to Al^{+3}	$\rm H^+$ to $\rm H^0$	Н	Al
с	O^{2-} to O^{0}	Hg^{2+} to Hg^{0}	Hg	0
d	H^{-1} to H^{0}	Na ⁺¹ to Na ⁰	Na	Н
e	I^{-1} to I^0	Cl^0 to Cl^{-1}	Cl	Ι

22.2 Oxidation Numbers

Lesson Quiz		
Name	Class	Date
Multiple Choice:		
 The oxidation pr gain of oxy loss of election gain of hydrogenetics gain of hydrogenetics 	rocess involves all of the follow ygen etrons lrogen oxidation number	ving except
 The reduction provide the reduc	rocess involves all of the follow drogen gen ctrons n oxidation number	ring except
3. The oxidation m 1. +1 2. +2 31 42	umber for H in CaH ₂ is	
 4. Oxygen has an o 1. Na₂O₂ 2. OF₂ 3. O₂ 4. MgO 	oxidation number of -1 in	
5. The oxidation m 11 2. +2 3. +4 4. +5	umber for Br in LiBrO ₃ is	
6. In the reaction S 1. $S^{2+} \rightarrow S^{4+}$	$F_4 + F_2 \rightarrow SF_6$, the oxidation c	hange was

7. One of the following is a type of redox reaction

- 1. acid-base
- 2. single-displacement

- 3. double-displacement
- 4. neutralization

8. In the reaction $KMnO_4 + HCl \rightarrow MnCl_2 + Cl_2 + H_2O + KCl$, all of the following statements are true except

- 1. K is oxidized
- 2. Cl is oxidized
- 3. Mn is reduced
- 4. H is unchanged

9. One element for which there are no specific oxidation-reduction rules is

- 1. F
- 2. N
- 3. Ca
- 4. Fe

10. Cl can have all of the following oxidation numbers except

- 1. -1
- 2. -2
- 3. +3
- 4. +5

True/False:

- 11. _____ In K₃PO₄, the sum of the oxidation numbers of the atoms equals zero.
- 12. _____ The oxidation number for elemental silver is zero.
- 13. _____ The oxidation number for S in $MgSO_4$ is +3.
- 14. _____ The change in Cl for HCl to HClO₂ represents an oxidation.
- 15. _____ When NO is converted to NO_2 , the nitrogen is reduced.
- 16. _____ The highest possible oxidation number for N is +3.
- 17. _____ The oxidation number for Ca^{2+} is +2.
- 18. _____ A free element is any element in an uncombined state.
- 19. _____ A shift of electrons away from an atom in a covalent bond is a reduction of that atom.
- 20. _____ Single-displacement reactions are redox reactions.

Fill in the Blank:

- 21. Overall, the _____number of an atom in a molecule is the _____that the atom would have if all polar _____and ionic bonds resulted in a complete transfer of *s* from the less electronegative atom to the more electronegative one.
- 22. Which of the oxidation number rules is illustrated by each of the following:
 - 1. F⁻
 - 2. Pt⁰
 - 3. H⁺
 - 4. SO_4^{2-}
- 23. Which of the following are redox reactions?
 - 1. $NaCl + AgNO_3 \rightarrow NaNO_3 + AgCl$
 - 2. $HBr + NaOH \rightarrow NaBr + H_2O$
 - 3. $C_{10}H_8 + 12O_2 \rightarrow 10CO_2 + 4H_2O$
 - 4. $Fe + CuSO_4 \rightarrow FeSO_4 + Cu$
 - 5. $2HNO_3 + Sr(OH)_2 \rightarrow Sr(NO_3)_2 + 2H_2O$
 - 6. $Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$
- 24. Indicate the oxidation number of the atoms listed

TABLE 22.2:

Atom	Compound	Oxidation Number
Ba	$Ba(NO_3)_2$	
Ν	NF ₃	
S	$(NH_4)_2SO_4$	
Cr	$K_2Cr_2O_7$	

25. For each of the following reactions, list the atom(s) oxidized and the atom(s) reduced:

- 1. $8NH_3 + 6NO_2 \rightarrow 7N_2 + 12H_2O$
- 2. $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
- 3. $5CO + I_2O_5 \rightarrow 5CO_2 + I_2$
- 4. $3CuS + 8HNO_3 \rightarrow 3CuSO_4 + 8NO + 4H_2O$

TABLE 22.3:

Atom	Compound	Oxidation Number
Ba	$Ba(NO_3)_2$	+2
Ν	NF ₃	+3
S	$(NH_4)_2SO_4$	+6
Cr	$K_2Cr_2O_7$	+6

22.3 Balancing Redox Reactions

Less	son Quiz	
Name	e Class Date	
Multip	ple Choice:	
The fo	ollowing questions deal with the oxidation number change method	
1. / 2. /	The equation below illustrates one of the following steps $2H_g^{+2}O \rightarrow 2H_g^{0}O \rightarrow 2H_g^{0}O$	
	 step 2 step 1 step 3 step 4 	
3.	states that lines are used to connect atoms undergoing a change in oxidation number.	
	 step 1 step 2 step 3 step 4 	
4.	Checking to see if the equation is balanced is	
	 step 5 step 6 step 3 step 2 	
5.	Using coefficients to balance oxidation number changes is	
	 step 5 step 7 step 4 step 3 	
6.	involves identifying oxidized and reduced atoms	
	 step 3 step 2 step 1 	

The following questions deal with the half-reaction method.

6.
$$Al(s) + H^+ \rightarrow Al^{3+} + H_2(g)$$
 illustrates _____.
1. step 2
2. step 1

4. step 4

- 3. step 3
- 4. step 4

Balancing oxygen atoms by adding water where needed is _____

- 1. step 4
- 2. step 7
- 3. step 3
- 4. step 2

8. _____ calls for writing separate half reactions for oxidation and reduction.

- 1. step 3
- 2. step 2
- 3. step 5
- 4. step 4
- 9. Adding the two half-reactions together is _____
 - 1. step 3
 - 2. step 7
 - 3. step 6
 - 4. step 5

10. _____ calls for balancing charges by adding electrons

- 1. step 4
- 2. step 7
- 3. step 3
- 4. step 5

True/False:

- 11. _____ Balancing by inspection is not always successful.
- 12. _____ The oxidation number change method is more useful for reactions involving aqueous ions.
- 13. _____ Reactions in an acidic medium require the addition of protons.
- 14. _____ Coefficients are required for all components of a reaction.
- 15. ____ Oxidation of Fe^{2+} by $Cr_2O_7^{2-}$ readily occurs at neural pH.
- 16. _____ The half-reaction process treats oxidation and reduction as two simultaneous processes.
- 17. _____ For reactions in basic solution, H⁺ and OH⁻ are combined to form water.
- 18. _____ Electrons do not need to balance on both sides of the equation.
- 19. _____ For reactions in basic solution, hydroxide ions are added.
- 20. _____ Most redox reactions can take place equally well in acidic and basic solutions.
- 21. Write half-reactions for the following processes:

1.
$$Sn + NO_{3^-} \rightarrow SnO_2 + NO_2$$

2.
$$HClO + Co \rightarrow Cl_2 + Co^{2+}$$

- 3. $NO_2 \rightarrow NO_{3^-} + NO$
- 22. Balance the following equations:
- 23. Acidic Solution
- a. $Ag + NO_{3^-} \rightarrow Ag^+ + NO$ b. $Zn + NO_{3^-} \rightarrow Zn^{2+} + NH_4^+$ c. $Cr_2O_7^{2^-} + C_2H_4O \rightarrow C_2H_4O_2 + Cr^{3+}$ d. $H_3PO_2 + Cr_2O_7^{2^-} \rightarrow H_3PO_4 + Cr^{3+}$ e. Basic Solution f. $MnO_{4^-} + C_2O_4^{2^-} \rightarrow MnO_2 + CO_2$

- g. $ClO^{-} + Fe(OH)_{3} \rightarrow Cl^{-} + FeO_{4}^{2-}$ h. $HO_{2^{-}} + Cr(OH)_{3} \rightarrow CrO_{4}^{2^{-}} + OH^{-}$ i. $N_{2}H_{4} + Cu(OH)_{2} \rightarrow N_{2} + Cu$

22.4 Oxidation-Reduction Reactions

Name Class Date Multiple Choice: 1. An example of an oxidation process is 1. removal of oxygen 2. reacting Fe ₂ O ₃ with carbon 3. heating mercuric oxide 4. bleaching stains 2. An example of a reduction process is 1. formation of MgO 2. killing bacteria with H ₂ O ₂ 3. refining iron ore 4. rusting of iron 3. One metal that does not corrode easily is 1. Fe 2. Sn 3. Au 4. When O is nothingd
 Multiple Choice: 1. An example of an oxidation process is removal of oxygen reacting Fe₂O₃ with carbon heating mercuric oxide bleaching stains 2. An example of a reduction process is formation of MgO killing bacteria with H₂O₂ refining iron ore rusting of iron 3. One metal that does not corrode easily is Fe Sn Au Mn
 An example of an oxidation process is removal of oxygen reacting Fe₂O₃ with carbon heating mercuric oxide bleaching stains An example of a reduction process is formation of MgO killing bacteria with H₂O₂ refining iron ore rusting of iron One metal that does not corrode easily is Fe Sn Au Mn
 An example of a reduction process is formation of MgO killing bacteria with H₂O₂ refining iron ore rusting of iron One metal that does not corrode easily is Fe Sn Au Mn
 3. One metal that does not corrode easily is 1. Fe 2. Sn 3. Au 4. Mn
4 When O is reduced
 4. when O is reduced 1. electrons are added to the O atom 2. electrons are removed from the O atom 3. electrons are transferred to another atom 4. electrons are lost in the solution
 5. The reduction process involves 1. gain of oxygen 2. loss of electrons 3. gain of hydrogen 4. increase in oxidation number
 6. The oxidation process involves gain of hydrogen gain of oxygen gain of electrons decrease in oxidation number

- 1. Na
- 2. Ne

- 3. S
- 4. Ca
- 8. Br can have all of the following oxidation numbers except
 - 1. -1
 - 2. -2
 - 3. +3
 - 4. +5
- 9. The oxidation number for S in H_2SO_3 is
 - 1. -2
 - 2. -4
 - 3. +2
 - 4. +4

10. In the reaction $2KClO_3 \rightarrow 2KCl + 3O_2$, the oxidation change was

1. $Cl^{-} \to Cl^{+5}$ 2. $O^{2-} \to O^{0}$ 3. $Cl^{+3} \to Cl^{-}$ 4. $Cl^{+5} \to Cl^{+3}$

True/False:

- 11. _____ When N_2O_3 changes to N_2O_5 , the N has been oxidized
- 12. _____ The oxidation number for N in N_2F_4 is +3.
- 13. _____ Double-displacement reactions are redox reactions.
- 14. _____O can have an oxidation number of -1 in some circumstances.
- 15. _____ O in the water molecule is less electron-rich than the H is.
- 16. _____ Net ionic equations eliminate spectator ions.
- 17. _____ Copper oxide reacts with CO₂ to form patina.
- 18. _____ The half-reaction $Fe^{2+} \rightarrow Fe^{3+}$ represents a reduction process.
- 19. _____ All oxidation reactions involve oxygen.
- 20. _____ A sacrificial metal helps prevent another metal from corrosion.

Fill in the Blank:

- 21. Define the following terms:
 - 1. oxidation-reduction reaction
 - 2. half-reaction
 - 3. corrosion
 - 4. oxidation number

22. Determine the oxidation number of the indicated element in each of the following compounds:

TABLE 22.4:

Atom	Compound	Oxidation Number
С	H ₂ CO ₃	
Zn	$Zn(OH)_4^{2-}$	
Н	LiH	
Fe	Fe ₂ O ₃	

- 23. For each of the following reactions, identify the entity that was oxidized and the entity that was reduced. Indicate the oxidizing and reducing agents:

 - 1. $2Fe(OH)_2 + H_2O_2 \rightarrow 2Fe(OH)_3$ 2. $2Cr^{3+} + H_2O + 6ClO_{3-} \rightarrow Cr_2O_7^{2-} + 6ClO_2 + 2H^+$
 - 3. $I_2O_5 + 5CO \rightarrow I_2 + 5CO_2$

24. Predict the products of the following reaction and write balanced equations:

- 1. $CuO + H_2 \rightarrow$
- 2. $KBr + Cl_2 \rightarrow$
- 3. $Fe + CuSO_4 \rightarrow$
- 25. Balance the following equations:
 - 1. $MnO_{4^-} + I^- \rightarrow IO_{3^-} + Mn^{2+}$ under acid conditions.

 - 2. balance the same equation under basic conditions 3. $S_2O_3^{2-} + H_2O_2 \rightarrow S_4O_6^{2-} + H_2O$ under acid conditions

TABLE 22.5:

Atom	Compound	Oxidation Number
С	H ₂ CO ₃	+4
Zn	$Zn(OH)_4^{2-}$	+2
Н	LiH	-1
Fe	Fe ₂ O ₃	+3

TABLE 22.6:

Reaction	Oxidized	Reduced	Oxidizing Agent	Reducing Agent
a	Fe +2 to +3	O -1 to -2	0	Fe
b	Cr 3+ to +6	Cl +5 to +4	Cl	Cr
c	C +2 to +4	I +5 to 0	Ι	С

Electrochemistry Assessments

Chapter Outline

- 23.1 ELECTROCHEMICAL CELLS
- 23.2 CELL POTENTIALS
- 23.3 ELECTROLYSIS

23.1 Electrochemical Cells

Lesson Quiz			
Name	Class	Date	
Multiple Choice:			
 Electrochemi making solar cei manufac refining Writing separ deciding 	stry involves all of the following a batteries lls cturing metals aluminum rate half-reactions for a redox pro g which reaction occurs first	applications except cess is helpful for	
2. predictin 3. understa 4. predictin	ng which half-reaction will not oc unding the flow of electrons from ng alternate products	ccur one entity to another	
 Tin can be ox copper magnesi nickel calcium 	idized by ions of		
 Calcium will LiCl NiCl₂ MgCl₂ ZnCl₂ 	not oxidize when in a solution of	·	
 The first direc 1. Le Chât 2. Volta 	elier		

- 3. Röntgen
- 4. Dalton

6. The notation for a voltaic cell comprised of copper and silver is

- 1. $Cu^{2+}|Cu||Ag|Ag^+$ 2. $Ag^+|Ag||Cu|Cu^{2+}$ 3. $Cu|Cu^{2+}||Ag^+|Ag$ 4. $Cu|Cu^{2+}||Ag|Ag^+$

7. In the Zn|Cu voltaic cell, the salt bridge is composed of

- 1. $ZnCl_2$
- 2. NaNO₃

- $3. \ CuCl_2$
- 4. NaF
- 8. In a dry cell, the anode is
 - 1. carbon
 - 2. manganese dioxide
 - 3. zinc
 - 4. zinc chloride
- 9. An alkaline battery produces all of the following as products except
 - 1. Mn(OH)₃
 - 2. Zn(OH)₂
 - 3. NH₃
 - $4. \hspace{0.1 cm} H_2O$
- 10. The anode in a lead storage battery is
 - 1. PbO₂
 - 2. PbO
 - 3. Pb
 - 4. PbSO₄

True/False:

- 11. _____ Oxidation and reduction reactions occur at the same time.
- 12. _____ Al will spontaneously oxidize in a solution of Ni(NO₃)₂.
- 13. _____ Lead will spontaneously oxidize in a solution of NaCl.
- 14. _____ Some spontaneous reactions can produce an electrical current.
- 15. _____ The two electrodes are connected by a salt bridge.
- 16. _____ Oxidation takes place at the anode.
- 17. _____ The electrolyte in the salt bridge is often AgNO₃.
- 18. _____ The cathode for a dry cell battery is carbon.
- 19. _____ In a dry cell battery, the paste eliminates the need for a salt bridge.
- 20. _____ An alkaline battery contains a paste of Zn and KOH.

Fill In the Blank:

- 21. ______ is a branch of chemistry that deals with the ______ of chemical energy and electrical energy.
- 22. An element that is ______in the activity series is capable of ______an element that is lower on the series in a ______reaction.
- 23. An _____ cell is any device that converts _____energy into electrical energy or electrical energy into chemical energy.
- 24. An ______is a conductor in a circuit that is used to carry to a ______ part of the circuit.
- 25. In each of the following combinations, indicate whether or not a reaction will occur:

1. $Fe(s) + CaSO_4(aq)$

- 2. $Ba(s) + AgNO_3(aq)$
- 3. $SnCl_2(aq) + Mg(s)$
- 4. $CaCl_2(aq) + Ni(s)$

Short Answers:

- 26. Write the shorthand notation for the cell that uses the reaction
- 27. $Al(s) + Sn^{2+}(aq) \rightarrow Al^{3+}(aq) + Sn(s)$

- 28. Can a lead storage battery recharge completely? Explain your answer.
- 29. What is one safety problem with a hydrogen-oxygen fuel cell?
- 30. A cell has the following diagram:
- 31. $Ba^{2+}|Ba||Cu|Cu^{2+}$
- 32. Write the two half-reactions for this cell

23.2 Cell Potentials

Les	son Quiz
Nam	e Class Date
Multi	iple Choice:
1.	 Movement of electrons is responsible for the of a cell 1. electrical charge 2. electrical potential 3. electrical difference 4. electrical partition
2.	Half-cell processes produce resistance milliamps voltage ohms
3.	 Standard cell potentials are measured in 1. kilovolts 2. millivolts 3. microvolts 4. volts
4.	The standard condition for cells using gases is 700 mm Hg 800 mm Hg 760 mm Hg 740 mm Hg
5.	 A positive standard reduction potential means 1. it is easier to reduce the species 2. it is easier to reduce hydrogen 3. it is easier to oxidize the species 4. hydrogen oxidizes less readily than the species
6.	 The half-cell with the lower reduction potential will 1. undergo reduction 2. undergo oxidation 3. cause the other cell to oxidize 4. gain electrons
1.	Cd ² will undergo reduction when paired with a half-cell made of

- 1. Fe^{3+}
- $2. \ \mathrm{Cu}^+$

- 3. Fe²⁺
- 4. Sn^{4+}
- 8. A strong reducing agent is one that can
 - 1. pull electrons away from other species
 - 2. donate electrons to other species
 - 3. transfer electrons from other species
 - 4. convert metals to metallic ions
- 9. Cu^{2+} will oxidize all of the following except
 - 1. Pb
 - 2. Sn
 - 3. Cr
 - 4. Ag
- 10. $E_{\rm red} E_{\rm ox}$ is the formula for calculating
 - 1. cell potential
 - 2. cell current
 - 3. cell resistance
 - 4. cell activation

True/False:

- 11. The potential of an isolated half-cell cannot be calculated.
- 12. Electrical energy is produced by double-displacement reactions.
- 13. The standard hydrogen electrode is immersed in 0.1 MH⁺.
- 14. The standard hydrogen electrode is made of platinum.
- 15. H_2 is formed when the standard hydrogen electrode is involved in a reduction reaction.
- 16. A redox reaction occurs when the cell potential is negative.
- 17. I_2 is more readily reduced than Ni²⁺
- 18. Ag^{3+} reduces more readily than Hg^{2+}
- 19. In a cell, the half-cell with the higher potential will undergo oxidation.
- 20. Lithium is the strongest reducing agent.

Fill in the Blank:

- 21. Electrical _____ is a measurement of the ability of a _____ cell to produce an electric current.
- 22. The cell potential (E_{cell}) is the difference in _____ potential between the two half-cells in an ______ cell.

Short Answers:

- 23. State the conditions for measuring standard cell potentials.
- 24. In the hydrogen electrode, when is hydrogen gas produced and when are hydrogen ions formed?
- 25. Which of the following metals will react with HCl? Ag, Zn, Cu, Ni, Fe?
- 26. Which of the following is the strongest oxidizing agent? The weakest?
- 27. Cr, Cu, Zn, Al, Au
- 28. In a typical half-cell, a metal strip is immersed in a solution containing the cation of that metal. What fulfills these functions in the hydrogen half-cell?
- 29. Which of the following reactions will occur spontaneously?

1.
$$Co + Sn^{+4} \rightarrow Co^{+2} + Sn^{-4}$$

2. $Mn + Zn^{2+} \rightarrow Mn^{2+} + Zn$

23.2. Cell Potentials

3. $Ag + Cu^{2+} \rightarrow Ag^+ + Cu$

- 30. Calculate the standard cell potential produced by a galvanic cell consisting of a nickel electrode in contact with a solution of Ni^{2+} ions and a silver electrode in contact with a solution of Ag^+ ions. Which is the anode and which is the cathode?
- 31. What is the voltage produced by a galvanic cell consisting of an aluminum electrode in contact with a solution of Al^{3+} ions and an iron electrode in contact with a solution of Fe^{2+} ions. Which is the anode and which is the cathode?

23.3 Electrolysis

Less	son Quiz
Name	c Class Date
Multip	ple Choice:
1.	Electrolysis is used for 1. spontaneous reactions
	 2. nonspontaneous reactions 3. reversible reactions 4. double-displacement reactions
2.	In an electrolytic reaction involving Pb and Ni
	 Pb is reduced Ni is reduced Pb is the anode Ni is the cathode
3.	The Down's cell uses to produce its products
	 molten Na gaseous Cl molten NaCl aqueous NaCl
4.	The cell potential for the anode reaction in the Down's cell is
	11.36 V 22.71 V 3. +1.36 V 4. +2.71 V
5.	The electrode used in the apparatus for the electrolysis of water is
	1. Au 2. Fe 3. Ag 4. Pt
6.	The electrolyte used for the electrolysis of water is
	 HCl H₂SO₄ H₃PO₄

4. HClO

7. Na metal is not produced in the electrolysis of brine because

- 1. the reduction potential for water is more negative
- 2. the reduction potential for Na is less negative

- 3. the reduction potential for water is less negative
- 4. the reduction potential for water is more positive
- 8. One of the following statements about the brine electrolysis is true
 - 1. the reduction reaction forms hydrogen gas and hydroxide ion
 - 2. the reduction process forms oxygen gas and hydroxide ion
 - 3. the oxidation process forms chloride ions
 - 4. the oxidation process produces hydroxide ions
- 9. Electroplating with gold would involve all of the following except
 - 1. oxidizing gold metal from the anode
 - 2. oxidizing gold metal from the cathode
 - 3. reducing gold ions at the cathode
 - 4. using a solution of gold nitrate
- 10. One metal that would not be safe for electroplating is
 - 1. Fe
 - 2. Cu
 - 3. Hg
 - 4. Ni

True/False:

- 11. Platinum is commonly plated onto objects
- 12. A voltaic cell uses an electric current to initiate a nonspontaneous reaction
- 13. NaOH is a major product of the Down's cell.
- 14. Aqueous NaCl is used in the Down's cell.
- 15. Both O₂ and H₂ are formed during the electrolysis of water.
- 16. In electrolysis, OH^- is formed at the anode.
- 17. During the electrolysis of brine, hydrogen gas is produced at the cathode
- 18. NaOH is an important product of brine electrolysis.
- 19. In electroplating, silver is oxidized at the cathode
- 20. Silver ions for electroplating come from the silver nitrate solution.

Fill in the Blank:

- 21. If a chemical system is supplied with _____ from an external source, it is possible to drive a reaction in the direction.
- 22. is the process in which ______ energy is used to cause a chemical reaction to occur.

Short Answers:

- 23. If a voltaic cell has an arrangement in which the Zn electrode is the anode and the Cu electrode is the cathode, what will be the arrangement in an electrolytic cell?
- 24. What will the standard cell potential be for a nonspontaneous reaction?
- 25. What is the direction of electron flow in an electrolytic cell?
- 26. Why does sulfuric acid need to be added to water for electrolysis?
- 27. What would happen if HCl were used in the electrolysis of water?
- 28. Explain the process taking place in the following diagram. Me stands for a metal:

