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Calculating	the	area	under	a	curve	using	Riemann	sums
The	area	under	a	curve
Given	a	function	 	where	 	over	an	interval	 ,	we	investigate	the	area	of	the	region	that	is	under	the	graph	of	 	and
above	the	interval	 	on	the	 -axis.	For	example,	the	below	purple	shaded	region	is	the	region	above	the	interval	 	and	under	the
graph	of	a	function	 .	Such	an	area	is	often	referred	to	as	the	“area	under	a	curve.”

Since	the	region	under	the	curve	has	such	a	strange	shape,	calculating	its	area	is	too	difficult.	But	calculating	the	area	of	rectangles	is	simple.
Let's	simplify	our	life	by	pretending	the	region	is	composed	of	a	bunch	of	rectangles.	To	turn	the	region	into	rectangles,	we'll	use	a	similar
strategy	as	we	did	to	use	Forward	Euler	to	solve	pure-time	differential	equations.

As	illustrated	in	the	following	figure,	we	divide	the	interval	 	into	 	subintervals	of	length	 	(where	 	must	be	 ).	We	label	the
endpoints	of	the	subintervals	by	 ,	 ,	etc.,	so	that	the	leftmost	point	is	 	and	the	rightmost	point	is	 .	The	picture	shows	the	case
with	four	subintervals.

The	next	step	is	to	pretend	that	 	doesn't	change	over	each	subinterval.	We'll	measure	 	on	the	left	side	of	the	subinterval,	and	ignore
any	changes	in	 	across	the	subinterval.	The	result	is	that	we	are	pretending	that	the	region	under	 	is	composed	of	a	bunch	of	rectangles,	one
for	each	subinterval.	Maybe	it's	a	crude	approximation,	but	it	makes	for	an	easy	calculation	of	area.

Let's	number	the	 	subintervals	by	 .	Then,	the	left	endpoint	of	subinterval	number	 	is	 	and	its	right	endpoint	is	 .
We	are	imagining	that	the	height	of	 	over	the	entire	subinterval	is	 ,	the	value	of	 	at	the	left	endpoint.	Since	the	width	of	the	rectangle	is	

,	its	area	is	 .

To	estimate	the	area	under	the	graph	of	 	with	this	approximation,	we	just	need	to	add	up	the	areas	of	all	the	rectangles.	Using	summation
notation,	the	sum	of	the	areas	of	all	 	rectangles	for	 	is
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This	sum	is	called	a	Riemann	sum.

The	Riemann	sum	is	only	an	approximation	to	the	actual	area	underneath	the	graph	of	 .	To	make	the	approximation	better,	we	can	increase
the	number	of	subintervals	 ,	which	makes	the	subinterval	width	 	decrease.	To	explore	what	happens	as	 	gets	larger	and
larger,	you	can	use	the	following	applet.

Area	via	a	left	Riemann	sum.	The	area	underneath	the	graph	of	 	(blue	curve	in	left	panel)	over	the	interval	 	is	calculated	via	a
left	Riemann	sum.	The	left	Riemann	sum	of	 	subintervals	is	illustrated	by	the	rectangles	superimposed	with	the	graph	of	 .	The	right
panel	shows	the	area	of	the	rectangles	 	from	 	to	 ,	plotted	as	a	green	curve.	The	area	over	the	whole	interval	 	is	the	value	

.	To	investigate	the	behavior	of	 ,	you	can	move	pink	points	along	the	curve	and	the	tops	of	the	rectangles.	As	you	move	the	pink
points,	a	rectangle	is	highlighted,	and	the	calculation	of	its	area	is	shown	in	the	upper	right	corner.	The	area	of	each	rectangle	is	the
value	of	 	at	its	left	endpoint	times	the	subinterval	width	 .	The	running	sum	of	the	area,	 ,	increases	by	the	area	of	a	rectangle
when	you	move	the	pink	points	right	one	rectangle.	If	you	check	the	“exact”	box,	the	true	area	under	the	graph	of	 	is	shaded	in	red	at
the	left	and	the	right	panel	displays	a	graph	(in	red)	of	the	true	area	 	under	 	from	 	to	 .	The	true	area	through	the	right	of	the
highlighted	rectangle	is	calculated	along	with	the	error	between	the	true	area	and	the	corresponding	area	calculated	with	the	Riemann
sum.	The	values	of	 	and	 	are	areas	under	 	only	for	the	case	when	 .

More	information	about	applet.

For	 ,	write	out	all	four	terms	of	the	Riemann	sum	with	 	that	estimates	the	area	underneath	the	graph	of	 	over
the	interval	 .	Plug	in	the	numbers	from	 	evaluated	at	the	left	endpoints,	and	calculate	this	estimate	of	the	area.	This	estimate
should	agree	with	what	you	calculate	with	the	above	applet	for	that	function	and	four	subintervals.

What	happens	as	you	increase	 	further	and	further?	If	you	divide	the	interval	 	into	100	subintervals	of	length	 ,	what	is	the
estimate	of	the	area	under	the	graph	of	 ?	How	about	for	 	and	 ?	Do	the	estimates	for	the	area	seem	to	converge	as	
increases?	To	look	at	this	convergence,	check	if	the	the	estimates	change	less	and	less	as	you	keep	doubling	the	number	 	of	subintervals.

The	definite	integral
As	we	let	 	get	larger	and	larger	(and	 	smaller	and	smaller),	the	value	of	the	Riemann	sum	 	should	approach	a	single	number.	This	single
number	is	called	the	definite	integral	of	 	from	 	to	 .	We	write	the	definite	integral	as

The	integral	sign	 	refers	to	a	sum	just	like	summation	sign	 .	(OK,	it's	a	sum	over	an	infinite	number	of	terms,	whatever	that	means,	but
let's	not	get	hung	up	on	that.)	When	we	integrate	a	function	 	from	 	to	 ,	we	are	just	adding	up	values	of	 	for	 	going	from	 	to	 .

Another	important	thing	to	remember	is	that	the	definite	integral	 	is	just	a	single	number.	This	fact	is	in	contrast	to	the	indefinite
integral	 ,	which,	although	it	looks	similar,	is	something	different.	The	indefinite	integral	 	is	a	function	(actually	a	whole	family
of	functions,	as	you	can	add	an	arbitrary	constant).	When	you	add	the	limits	of	integration	 	and	 ,	the	expression	turns	into	a	definite	integral

,	which	is	just	a	number.	In	this	case,	we	are	viewing	the	number	as	the	area	under	the	function	 	over	the	interval	 .
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So	far,	we	built	our	Riemann	sum	 	by	using	rectangles	whose	height	was	equal	to	 	evaluated	at	the	left	endpoint	of	each	subinterval.	We
call	this	Riemann	sum	a	left	Riemann	sum.	What	if	we	used	the	value	of	 	at	the	right	endpoint	rather	than	the	left	endpoint?	The	result	is	the
right	Riemann	sum

The	only	difference	from	the	left	Riemann	sum	 	is	that	we	evaluate	 	in	interval	 	at	the	right	endpoint	 .

Since	 	actually	does	change	over	the	course	of	the	subinterval,	we	expect	that	the	left	Riemann	sum	will	give	a	different	area	than	the	right
Riemann	sum.	How	does	the	right	Riemann	sum	compare	to	the	left	Riemann	sum?	The	below	applet	will	let	you	experiment.	As	you	make	the
number	of	interval	 	larger,	does	the	estimate	of	the	area	converge	to	a	single	number?	Does	this	number	seem	to	be	the	same	as	with	the	left
Riemann	sum?

Area	via	a	right	Riemann	sum.	The	area	underneath	the	graph	of	 	(blue	curve	in	left	panel)	over	the	interval	 	is	calculated	via	a
right	Riemann	sum.	The	right	Riemann	sum	of	 	subintervals	is	illustrated	by	the	rectangles	superimposed	with	the	graph	of	 .	The
right	panel	shows	the	area	of	the	rectangles	 	from	 	to	 ,	plotted	as	a	green	curve.	The	area	over	the	whole	interval	 	is	the
value	 .	To	investigate	the	behavior	of	 ,	you	can	move	pink	points	along	the	curve	and	the	tops	of	the	rectangles.	As	you	move	the
pink	points,	a	rectangle	is	highlighted,	and	the	calculation	of	its	area	is	shown	in	the	upper	right	corner.	The	area	of	each	rectangle	is
the	value	of	 	at	its	right	endpoint	times	the	subinterval	width	 .	The	running	sum	of	the	area,	 ,	increases	by	the	area	of	a
rectangle	when	you	move	the	pink	points	right	one	rectangle.	If	you	check	the	“exact”	box,	the	true	area	under	the	graph	of	 	is	shaded
in	red	at	the	left	and	the	right	panel	displays	a	graph	(in	red)	of	the	true	area	 	under	 	from	 	to	 .	The	true	area	through	the	right
of	the	highlighted	rectangle	is	calculated	along	with	the	error	between	the	true	area	and	the	corresponding	area	calculated	with	the
Riemann	sum.	The	values	of	 	and	 	are	areas	under	 	only	for	the	case	when	 .

More	information	about	applet.

In	fact,	you	should	get	close	to	the	same	number	as	 	gets	large.	As	long	as	 	is	nice	enough	(for	example,	continuous,	or	even	continuous	at
all	but	a	finite	number	of	points),	these	left	and	right	Riemann	sums	will	converge	to	the	same	number,	which	is	the	definite	integral	

.

Forward	Euler	and	area
This	method	for	computing	area	should	seem	familiar.	It	should	remind	you	of	how	we	used	Forward	Euler	to	solve	pure	time	differential
equations.	To	make	the	connection	even	clearer,	let's	change	our	variable	name	from	 	to	 .	(The	variable	name	doesn't	matter,	after	all,	and	
makes	more	sense	so	we	can	talk	about	time.	)	Then,	our	definite	integral	is	 	and	the	corresponding	indefinite	integral	is	 .

To	make	our	Forward	Euler	result	be	similar	to	the	area	estimation	problem,	let's	use	 	for	the	variable	in	a	pure-time	differential	equation,
writing	it	as	 .	If	we	make	the	initial	condition	be	 ,	then	Forward	Euler	approximates	the	solution	 ,	i.e.,	the
antiderivative	 	that	has	 .	By	comparing	the	sum	we	wrote	for	Forward	Euler	(equation	(8)	from	the	Forward	Euler
page)	and	the	left	Riemann	sum	 ,	we	should	be	able	to	convince	ourselves	that	they	are	the	same	when	the	initial	condition	is	zero.

To	emphasize	this	correspondence	between	the	Forward	Euler	approximation	and	the	left	Riemann	sum	for	area,	we	made	the	Forward	Euler
applets	and	the	area	applets	in	a	similar	manner.	For	the	area	applets,	we	used	rectangles	to	estimate	the	definite	integral	 .	But	if
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you	relabel	some	variables,	then	the	calculation	is	essentially	the	same	as	the	Forward	Euler	calculation.	Below,	we	made	an	applet	that	you
can	transform	between	the	area	calculation	case	and	the	Forward	Euler	case	that	we	hope	will	make	the	parallel	clear.

The	Euler	algorithm	or	approximating	area	with	a	Riemann	sum.	Demonstration	of	the	link	between	the	Euler	approximation	to	a	pure-
time	differential	equation	and	calculating	the	area	under	a	curve.	When	the	“area”	box	is	checked,	the	area	underneath	the	graph	of	

	(blue	curve	in	left	panel)	over	the	interval	 	is	calculated	via	a	Riemann	sum.	The	Riemann	sum	of	 	subintervals	is	illustrated
by	the	rectangles	superimposed	with	the	graph	of	 .	As	you	move	the	pink	points,	the	region	of	the	rectangles	to	the	left	is	highlighted,
and	this	area	 	is	plotted	as	a	function	of	 	by	the	green	curve	in	the	right	panel.	When	“area”	box	is	unchecked,	the	solution	to	the
pure-time	differential	equation	 	via	the	Euler	algorithm	is	illustrated.	Only	the	tops	of	the	rectangles	remain,	which	form	an
approximation	to	 	that	is	constant	along	each	subinterval.	The	green	curve	in	the	right	panel	remains,	but	its	interpretation	is	an
approximation	solution	to	the	differential	equation	where	the	slope	is	held	constant	on	each	subinterval.	This	slope	is	illustrated	by	the
gray	lines:	constant	at	the	slope	in	the	left	panel	and	a	tangent	line	in	the	right	panel.	Unlike	for	the	area	calculation,	an	initial	condition

	can	be	changed	by	dragging	the	blue	point	in	the	right	panel	or	typing	a	value	in	the	box.	In	either	mode,	calculations	for	 	for
the	current	subinterval	are	shown,	as	well	as	the	exact	solution	and	corresponding	error	when	the	“exact”	box	is	checked.	The	exact
solution	is	also	shown	by	the	red	curve,	and,	for	the	area	case,	by	red	shading	of	the	area	underneath	 .

More	information	about	applet.

One	important	difference	between	the	Forward	Euler	calculation	and	the	area	calculation	is	the	initial	condition.	For	the	area	calculation,	we
add	up	area	starting	with	 .	With	Forward	Euler,	we	can	have	an	arbitrary	initial	condition	 ,	which	you	can	change	only	when	you
uncheck	the	“area”	option	in	the	applet.

To	calculate	the	area	under	the	curve,	is	it	essential	that	we	keep	 ?	Or,	if	we	let	 	be	another	value,	can	we	still	estimate	the	area
from	the	result?	Using	a	different	value	of	 	for	the	Forward	Euler	calculation	means	that	it	estimates	a	different	antiderivative	(since	the
initial	condition	determines	the	arbitrary	constant).	How	do	we	get	the	area	of	the	region	under	the	graph	of	 	regardless	of	which
antiderivative	we	use?

The	answer	lies	by	comparing	the	Forward	Euler	solution	to	the	area	solution.	We	can	rewrite	equation	(8)	from	the	Forward	Euler	page	in	the
notation	used	for	this	page:

Take	this	equation,	let	 	go	to	infinity	to	rewrite	the	equation	in	terms	of	the	definite	integral	of	 	that	is	the	area	under	the	curve.	From	this,
determine	how	one	can	determine	the	area	from	an	estimate	of	 	using	Forward	Euler	with	any	initial	condition	 .	You	should	test	that
your	method	works	by	trying	different	values	using	the	applet.

Area	of	negative	functions?
When	using	the	Riemann	sums	to	calculate	area,	the	mathematical	formulas	still	make	sense	even	if	 	is	negative.	Negative	values	shouldn't
be	a	problem	since	we've	shown	the	calculation	is	the	same	as	using	Forward	Euler.	When	working	with	Forward	Euler,	having	a	negative
function	wasn't	a	problem.

If	 	goes	negative,	though,	will	the	definite	integral	still	give	area?	One	hypothesis	is	that	the	definite	integral	gives	the	area	under	the	curve
(above	the	 -axis)	when	 	is	positive	plus	the	area	over	the	curve	(under	the	 -axis)	when	 	is	negative.	This	hypothesis	is	that	the	integral	
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	would	add	up	both	the	green	areas	and	the	red	areas	in	the	following	figure.	We'll	call	this	sum	the	“total	area.”

By	changing	the	function	in	the	applet	so	that	it	is	both	positive	and	negative	(or	even	negative	everywhere)	in	the	interval	 ,	test	this
hypothesis	that	the	integral	gives	the	total	area.	Does	the	hypothesis	seem	to	be	holding	true?	If	not,	what	is	the	relationship	between	the
definite	integral	 	and	area	above	or	below	the	graph	of	 ?	Does	this	make	sense	given	the	definition	of	the	definite	integral	in	terms
of	a	Riemann	sum?	Remember,	the	integral	is	just	a	sum.	What	is	it	adding	up	here?

If	you	disagree	with	the	hypothesis	that	the	definite	integral	 	gives	total	area	even	if	 	is	negative,	can	you	come	up	with	a	way	to
get	this	total	area	from	a	definite	integral?

Summary	of	questions
To	aid	you	in	writing	up	a	report	on	your	results,	we	summarize	the	main	questions	posed	above	that	you	should	be	able	to	answer	and	added
a	few	more	questions.

1.	 The	area	under	a	curve
a.	 For	 ,	write	out	all	four	terms	of	the	Riemann	sum	with	 	that	estimates	the	area	underneath	the	graph	of	

	over	the	interval	 .	Plug	in	the	numbers	from	 	evaluated	at	the	left	endpoints,	and	calculate	this	estimate	of	the	area.
b.	 What	happens	as	you	increase	 	further	and	further?	If	you	divide	the	interval	 	into	100	subintervals	of	length	 ,	what

is	the	estimate	of	the	area	under	the	graph	of	 ?	How	about	for	 	and	 ?
c.	 Do	the	estimates	for	the	area	seem	to	converge	as	 	increases?	To	look	at	this	convergence,	check	if	the	the	estimates	change	less	and

less	as	you	keep	doubling	the	number	 	of	subintervals.

2.	 The	definite	integral
a.	 When	you	calculate	a	definite	integral	such	as	 ,	what	kind	of	object	should	you	end	up	with?	A	function	or	something

simpler?
b.	 How	do	this	contrast	with	the	indefinite	integral	 ?

3.	 Right	sum
a.	 Show	that	the	right	Riemann	sum	gives	different	estimates	of	the	area	for	small	values	of	 ,	such	as	for	the	 	case	you	calculated

above.
b.	 As	you	make	the	number	of	interval	 	larger,	does	the	estimate	of	the	area	converge	to	a	single	number?	Does	this	number	seem	to	be

the	same	as	with	the	left	Riemann	sum?

4.	 Forward	Euler	and	area
a.	 Starting	with	the	sum	of	equation	 	for	Forward	Euler,	let	 	go	to	infinity	to	rewrite	the	equation	in	terms	of	the	definite	integral	of	

that	is	the	area	under	the	curve.
b.	 Use	this	result	to	determine	the	expression	for	how	we	can	determine	area	even	if	the	initial	condition	 	is	not	zero.	In	other	words,

we	want	an	equation	that	gives	the	area	(the	definite	integral)	in	terms	of	values	of	 	that	works	even	if	 .

5.	 Area	of	negative	functions?
a.	 Does	the	hypothesis	that	the	definite	integral	gives	total	area	holding	true?	If	not,	what	is	the	relationship	between	the	definite	integral

	and	area	above	or	below	the	graph	of	 ?
b.	 Does	this	make	sense	given	the	definition	of	the	definite	integral	in	terms	of	a	Riemann	sum?	What	is	the	integral	adding	up?
c.	 If	you	disagree	with	the	hypothesis	that	the	definite	integral	 	gives	total	area	even	if	 	is	negative,	can	you	come	up	with	a

way	to	get	this	total	area	from	a	definite	integral?
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