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Preface to Pfei�er Applied Probability1

The course

This is a "�rst course" in the sense that it presumes no previous course in probability. The units are
modules taken from the unpublished text: Paul E. Pfei�er, ELEMENTS OF APPLIED PROBABILITY,
USING MATLAB. The units are numbered as they appear in the text, although of course they may be used
in any desired order. For those who wish to use the order of the text, an outline is provided, with indication
of which modules contain the material.

The mathematical prerequisites are ordinary calculus and the elements of matrix algebra. A few standard
series and integrals are used, and double integrals are evaluated as iterated integrals. The reader who can
evaluate simple integrals can learn quickly from the examples how to deal with the iterated integrals used
in the theory of expectation and conditional expectation. Appendix B (Section 17.2) provides a convenient
compendium of mathematical facts used frequently in this work. And the symbolic toolbox, implementing
MAPLE, may be used to evaluate integrals, if desired.

In addition to an introduction to the essential features of basic probability in terms of a precise mathe-
matical model, the work describes and employs user de�ned MATLAB procedures and functions (which we
refer to as m-programs, or simply programs) to solve many important problems in basic probability. This
should make the work useful as a stand alone exposition as well as a supplement to any of several current
textbooks.

Most of the programs developed here were written in earlier versions of MATLAB, but have been revised
slightly to make them quite compatible with MATLAB 7. In a few cases, alternate implementations are
available in the Statistics Toolbox, but are implemented here directly from the basic MATLAB program,
so that students need only that program (and the symbolic mathematics toolbox, if they desire its aid in
evaluating integrals).

Since machine methods require precise formulation of problems in appropriate mathematical form, it
is necessary to provide some supplementary analytical material, principally the so-called minterm analysis.
This material is not only important for computational purposes, but is also useful in displaying some of the
structure of the relationships among events.

A probability model

Much of "real world" probabilistic thinking is an amalgam of intuitive, plausible reasoning and of statistical
knowledge and insight. Mathematical probability attempts to to lend precision to such probability analysis
by employing a suitablemathematical model, which embodies the central underlying principles and structure.
A successful model serves as an aid (and sometimes corrective) to this type of thinking.

Certain concepts and patterns have emerged from experience and intuition. The mathematical formu-
lation (the mathematical model) which has most successfully captured these essential ideas is rooted in
measure theory, and is known as the Kolmogorov model, after the brilliant Russian mathematician A.N.
Kolmogorov (1903-1987).

1This content is available online at <http://cnx.org/content/m23242/1.8/>.
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One cannot prove that a model is correct. Only experience may show whether it is useful (and not
incorrect). The usefulness of the Kolmogorov model is established by examining its structure and show-
ing that patterns of uncertainty and likelihood in any practical situation can be represented adequately.
Developments, such as in this course, have given ample evidence of such usefulness.

The most fruitful approach is characterized by an interplay of

• A formulation of the problem in precise terms of the model and careful mathematical analysis of the
problem so formulated.

• A grasp of the problem based on experience and insight. This underlies both problem formulation
and interpretation of analytical results of the model. Often such insight suggests approaches to the
analytical solution process.

MATLAB: A tool for learning

In this work, we make extensive use of MATLAB as an aid to analysis. I have tried to write the MATLAB
programs in such a way that they constitute useful, ready-made tools for problem solving. Once the user
understands the problems they are designed to solve, the solution strategies used, and the manner in which
these strategies are implemented, the collection of programs should provide a useful resource.

However, my primary aim in exposition and illustration is to aid the learning process and to deepen
insight into the structure of the problems considered and the strategies employed in their solution. Several
features contribute to that end.

1. Application of machine methods of solution requires precise formulation. The data available and the
fundamental assumptions must be organized in an appropriate fashion. The requisite discipline for
such formulation often contributes to enhanced understanding of the problem.

2. The development of a MATLAB program for solution requires careful attention to possible solution
strategies. One cannot instruct the machine without a clear grasp of what is to be done.

3. I give attention to the tasks performed by a program, with a general description of how MATLAB
carries out the tasks. The reader is not required to trace out all the programming details. However,
it is often the case that available MATLAB resources suggest alternative solution strategies. Hence,
for those so inclined, attention to the details may be fruitful. I have included, as a separate collection,
the m-�les written for this work. These may be used as patterns for extensions as well as programs in
MATLAB for computations. Appendix A (Section 17.1) provides a directory of these m-�les.

4. Some of the details in the MATLAB script are presentation details. These are re�nements which are
not essential to the solution of the problem. But they make the programs more readily usable. And
they provide illustrations of MATLAB techniques for those who may wish to write their own programs.
I hope many will be inclined to go beyond this work, modifying current programs or writing new ones.

An Invitation to Experiment and Explore

Because the programs provide considerable freedom from the burden of computation and the tyranny of
tables (with their limited ranges and parameter values), standard problems may be approached with a new
spirit of experiment and discovery. When a program is selected (or written), it embodies one method of
solution. There may be others which are readily implemented. The reader is invited, even urged, to explore!
The user may experiment to whatever degree he or she �nds useful and interesting. The possibilities are
endless.

Acknowledgments

After many years of teaching probability, I have long since lost track of all those authors and books which
have contributed to the treatment of probability in this work. I am aware of those contributions and am
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Chapter 1

Probability Systems

1.1 Likelihood1

1.1.1 Introduction

Probability models and techniques permeate many important areas of modern life. A variety of types of
random processes, reliability models and techniques, and statistical considerations in experimental work play
a signi�cant role in engineering and the physical sciences. The solutions of management decision problems
use as aids decision analysis, waiting line theory, inventory theory, time series, cost analysis under uncertainty
� all rooted in applied probability theory. Methods of statistical analysis employ probability analysis as an
underlying discipline.

Modern probability developments are increasingly sophisticated mathematically. To utilize these, the
practitioner needs a sound conceptual basis which, fortunately, can be attained at a moderate level of
mathematical sophistication. There is need to develop a feel for the structure of the underlying mathematical
model, for the role of various types of assumptions, and for the principal strategies of problem formulation
and solution.

Probability has roots that extend far back into antiquity. The notion of �chance� played a central role in
the ubiquitous practice of gambling. But chance acts were often related to magic or religion. For example,
there are numerous instances in the Hebrew Bible in which decisions were made �by lot� or some other
chance mechanism, with the understanding that the outcome was determined by the will of God. In the
New Testament, the book of Acts describes the selection of a successor to Judas Iscariot as one of �the
Twelve.� Two names, Joseph Barsabbas and Matthias, were put forward. The group prayed, then drew lots,
which fell on Matthias.

Early developments of probability as a mathematical discipline, freeing it from its religious and magical
overtones, came as a response to questions about games of chance played repeatedly. The mathematical
formulation owes much to the work of Pierre de Fermat and Blaise Pascal in the seventeenth century. The
game is described in terms of a well de�ned trial (a play); the result of any trial is one of a speci�c set of
distinguishable outcomes. Although the result of any play is not predictable, certain �statistical regularities�
of results are observed. The possible results are described in ways that make each result seem equally likely.
If there are N such possible �equally likely� results, each is assigned a probability 1/N .

The developers of mathematical probability also took cues from early work on the analysis of statistical
data. The pioneering work of John Graunt in the seventeenth century was directed to the study of �vital
statistics,� such as records of births, deaths, and various diseases. Graunt determined the fractions of people
in London who died from various diseases during a period in the early seventeenth century. Some thirty
years later, in 1693, Edmond Halley (for whom the comet is named) published the �rst life insurance tables.
To apply these results, one considers the selection of a member of the population on a chance basis. One

1This content is available online at <http://cnx.org/content/m23243/1.8/>.
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6 CHAPTER 1. PROBABILITY SYSTEMS

then assigns the probability that such a person will have a given disease. The trial here is the selection of
a person, but the interest is in certain characteristics. We may speak of the event that the person selected
will die of a certain disease� say �consumption.� Although it is a person who is selected, it is death from
consumption which is of interest. Out of this statistical formulation came an interest not only in probabilities
as fractions or relative frequencies but also in averages or expectatons. These averages play an essential role
in modern probability.

We do not attempt to trace this history, which was long and halting, though marked by �ashes of
brilliance. Certain concepts and patterns which emerged from experience and intuition called for clari�ca-
tion. We move rather directly to the mathematical formulation (the �mathematical model�) which has most
successfully captured these essential ideas. This is the model, rooted in the mathematical system known as
measure theory, is called the Kolmogorov model, after the brilliant Russian mathematician A.N. Kolmogorov
(1903-1987). Kolmogorov succeeded in bringing together various developments begun at the turn of the cen-
tury, principally in the work of E. Borel and H. Lebesgue on measure theory. Kolmogorov published his
epochal work in German in 1933. It was translated into English and published in 1956 by Chelsea Publishing
Company.

1.1.2 Outcomes and events

Probability applies to situations in which there is a well de�ned trial whose possible outcomes are found
among those in a given basic set. The following are typical.

• A pair of dice is rolled; the outcome is viewed in terms of the numbers of spots appearing on the top
faces of the two dice. If the outcome is viewed as an ordered pair, there are thirty six equally likely
outcomes. If the outcome is characterized by the total number of spots on the two die, then there are
eleven possible outcomes (not equally likely).

• A poll of a voting population is taken. Outcomes are characterized by responses to a question. For
example, the responses may be categorized as positive (or favorable), negative (or unfavorable), or
uncertain (or no opinion).

• A measurement is made. The outcome is described by a number representing the magnitude of the
quantity in appropriate units. In some cases, the possible values fall among a �nite set of integers. In
other cases, the possible values may be any real number (usually in some speci�ed interval).

• Much more sophisticated notions of outcomes are encountered in modern theory. For example, in
communication or control theory, a communication system experiences only one signal stream in its
life. But a communication system is not designed for a single signal stream. It is designed for one of
an in�nite set of possible signals. The likelihood of encountering a certain kind of signal is important
in the design. Such signals constitute a subset of the larger set of all possible signals.

These considerations show that our probability model must deal with

• A trial which results in (selects) an outcome from a set of conceptually possible outcomes. The trial
is not successfully completed until one of the outcomes is realized.

• Associated with each outcome is a certain characteristic (or combination of characteristics) pertinent
to the problem at hand. In polling for political opinions, it is a person who is selected. That person
has many features and characteristics (race, age, gender, occupation, religious preference, preferences
for food, etc.). But the primary feature, which characterizes the outcome, is the political opinion on
the question asked. Of course, some of the other features may be of interest for analysis of the poll.

Inherent in informal thought, as well as in precise analysis, is the notion of an event to which a probability
may be assigned as a measure of the likelihood the event will occur on any trial. A successful mathematical
model must formulate these notions with precision. An event is identi�ed in terms of the characteristic of
the outcome observed. The event �a favorable response� to a polling question occurs if the outcome observed
has that characteristic; i.e., i� (if and only if) the respondent replies in the a�rmative. A hand of �ve cards
is drawn. The event �one or more aces� occurs i� the hand actually drawn has at least one ace. If that same

Available for free at Connexions <http://cnx.org/content/col10708/1.6>
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hand has two cards of the suit of clubs, then the event �two clubs� has occurred. These considerations lead
to the following de�nition.

De�nition. The event determined by some characteristic of the possible outcomes is the set of those
outcomes having this characteristic. The event occurs i� the outcome of the trial is a member of that set
(i.e., has the characteristic determining the event).

• The event of throwing a �seven� with a pair of dice (which we call the event SEVEN) consists of the
set of those possible outcomes with a total of seven spots turned up. The event SEVEN occurs i� the
outcome is one of those combinations with a total of seven spots (i.e., belongs to the event SEVEN).
This could be represented as follows. Suppose the two dice are distinguished (say by color) and a
picture is taken of each of the thirty six possible combinations. On the back of each picture, write the
number of spots. Now the event SEVEN consists of the set of all those pictures with seven on the
back. Throwing the dice is equivalent to selecting randomly one of the thirty six pictures. The event
SEVEN occurs i� the picture selected is one of the set of those pictures with seven on the back.

• Observing for a very long (theoretically in�nite) time the signal passing through a communication
channel is equivalent to selecting one of the conceptually possible signals. Now such signals have many
characteristics: the maximum peak value, the frequency spectrum, the degree of di�erentibility, the
average value over a given time period, etc. If the signal has a peak absolute value less than ten volts,
a frequency spectrum essentially limited from 60 herz to 10,000 herz, with peak rate of change 10,000
volts per second, then it is one of the set of signals with those characteristics. The event "the signal has
these characteristics" has occured. This set (event) consists of an uncountable in�nity of such signals.

One of the advantages of this formulation of an event as a subset of the basic set of possible outcomes is that
we can use elementary set theory as an aid to formulation. And tools, such as Venn diagrams and indicator
functions (Section 1.3) for studying event combinations, provide powerful aids to establishing and visualizing
relationships between events. We formalize these ideas as follows:

• Let Ω be the set of all possible outcomes of the basic trial or experiment. We call this the basic space
or the sure event, since if the trial is carried out successfully the outcome will be in Ω; hence, the event
Ω is sure to occur on any trial. We must specify unambiguously what outcomes are �possible.� In
�ipping a coin, the only accepted outcomes are �heads� and �tails.� Should the coin stand on its edge,
say by leaning against a wall, we would ordinarily consider that to be the result of an improper trial.

• As we note above, each outcome may have several characteristics which are the basis for describing
events. Suppose we are drawing a single card from an ordinary deck of playing cards. Each card is
characterized by a �face value� (two through ten, jack, queen, king, ace) and a �suit� (clubs, hearts,
diamonds, spades). An ace is drawn (the event ACE occurs) i� the outcome (card) belongs to the
set (event) of four cards with ace as face value. A heart is drawn i� the card belongs to the set of
thirteen cards with heart as suit. Now it may be desirable to specify events which involve various
logical combinations of the characteristics. Thus, we may be interested in the event the face value
is jack or king and the suit is heart or spade. The set for jack or king is represented by the union
J ∪K and the set for heart or spade is the union H ∪S. The occurrence of both conditions means the
outcome is in the intersection (common part) designated by ∩. Thus the event referred to is

E = (J ∪K) ∩ (H ∪ S) (1.1)

The notation of set theory thus makes possible a precise formulation of the event E.
• Sometimes we are interested in the situation in which the outcome does not have one of the charac-

teristics. Thus the set of cards which does not have suit heart is the set of all those outcomes not in
event H. In set theory, this is the complementary set (event) Hc.

• Events are mutually exclusive i� not more than one can occur on any trial. This is the condition that
the sets representing the events are disjoint (i.e., have no members in common).

• The notion of the impossible event is useful. The impossible event is, in set terminology, the empty
set∅. Event ∅ cannot occur, since it has no members (contains no outcomes). One use of ∅ is to
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8 CHAPTER 1. PROBABILITY SYSTEMS

provide a simple way of indicating that two sets are mutually exclusive. To say AB = ∅ (here we
use the alternate AB for A ∩B) is to assert that events A and B have no outcome in common, hence
cannot both occur on any given trial.

• Set inclusion provides a convenient way to designate the fact that event A implies event B, in the sense
that the occurrence of A requires the occurrence of B. The set relation A ⊂ B signi�es that every
element (outcome) in A is also in B. If a trial results in an outcome in A (event A occurs), then that
outcome is also in B (so that event B has occurred).

The language and notaton of sets provide a precise language and notation for events and their combinations.
We collect below some useful facts about logical (often called Boolean) combinations of events (as sets). The
notion of Boolean combinations may be applied to arbitrary classes of sets. For this reason, it is sometimes
useful to use an index set to designate membership. We say the index J is countable if it is �nite or countably
in�nite; otherwise it is uncountable. In the following it may be arbitrary.

{Ai : i ∈ J} is the class of sets Ai, one for each index i in the index set J (1.2)

For example, if J = {1, 2, 3} then {Ai : i ∈ J} is the class {A1, A2, A3}, and⋃
i∈J

Ai = A1 ∪A2 ∪A3,
⋂
i∈J

Ai = A1 ∩A2 ∩A3, (1.3)

If J = {1, 2, · · · } then {Ai : i ∈ J} is the sequence {A1 : 1 ≤ i}. and

⋃
i∈J

Ai =
∞⋃
i=1

Ai,
⋂
i∈J

Ai =
∞⋂
i=1

Ai (1.4)

If event E is the union of a class of events, then event E occurs i� at least one event in the class occurs. If
F is the intersection of a class of events, then event F occurs i� all events in the class occur on the trial.

The role of disjoint unions is so important in probability that it is useful to have a symbol indicating
the union of a disjoint class. We use the big V to indicate that the sets combined in the union are disjoint.
Thus, for example, we write

A =
n∨
i=1

Ai to signify A =
n⋃
i=1

Ai with the proviso that the Ai form a disjoint class (1.5)

Example 1.1: Events derived from a class
Consider the class {E1, E2, E3} of events. Let Ak be the event that exactly k occur on a trial and
Bk be the event that k or more occur on a trial. Then

A0 = Ec
1E

c
2E

c
3, A1 = E1E

c
2E

c
3

∨
Ec

1E2E
c
3

∨
Ec

1E
c
2E3 A2 =

E1E2E
c
3

∨
E1E

c
2E3

∨
Ec

1E2E3, A3 = E1E2E3

(1.6)

The unions are disjoint since each pair of terms has Ei in one and Ei
c in the other, for at least

one i. Now the Bk can be expressed in terms of the Ak. For example

B2 = A2

∨
A3 (1.7)

The union in this expression for B2 is disjoint since we cannot have exactly two of the Ei occur
and exactly three of them occur on the same trial. We may express B2 directly in terms of the Ei
as follows:

B2 = E1E2 ∪ E1E3 ∪ E2E3 (1.8)
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Here the union is not disjoint, in general. However, if one pair, say {E1, E3} is disjoint, then
E1E3 = ∅ and the pair {E1E2, E2E3} is disjoint (draw a Venn diagram). Suppose C is the event
the �rst two occur or the last two occur but no other combination. Then

C = E1E2E
c
3

∨
Ec1E2E3 (1.9)

Let D be the event that one or three of the events occur.

D = A1

∨
A3 = E1E

c
2E

c
3

∨
Ec1E2E

c
3

∨
Ec1E

c
2E3

∨
E1E2E3 (1.10)

Two important patterns in set theory known as DeMorgan's rules are useful in the handling of events. For
an arbitrary class {Ai : i ∈ J} of events,[⋃

i∈J
Ai

]c
=
⋂
i∈J

Aci and

[⋂
i∈J

Ai

]c
=
⋃
i∈J

Aci (1.11)

An outcome is not in the union (i.e., not in at least one) of the Ai i� it fails to be in all Ai, and it is not in
the intersection (i.e. not in all) i� it fails to be in at least one of the Ai.

Example 1.2: Continuation of Example 1.1 (Events derived from a class)
Express the event of no more than one occurrence of the events in {E1, E2, E3} as B2c.

Bc2 = [E1E2 ∪ E1E3 ∪ E2E3]c = (Ec1 ∪ Ec2) (Ec1 ∪ Ec3)
(
E3

2E
c
3

)
= Ec1E

c
2 ∪ Ec1Ec3 ∪ Ec2Ec3 (1.12)

The last expression shows that not more than one of the Ei occurs i� at least two of them fail to
occur.

1.2 Probability Systems2

1.2.1 Probability measures

In the module "Likelihood" (Section 1.1) we introduce the notion of a basic space Ω of all possible outcomes
of a trial or experiment, events as subsets of the basic space determined by appropriate characteristics of
the outcomes, and logical or Boolean combinations of the events (unions, intersections, and complements)
corresponding to logical combinations of the de�ning characteristics.

Occurrence or nonoccurrence of an event is determined by characteristics or attributes of the outcome
observed on a trial. Performing the trial is visualized as selecting an outcome from the basic set. An
event occurs whenever the selected outcome is a member of the subset representing the event. As described
so far, the selection process could be quite deliberate, with a prescribed outcome, or it could involve the
uncertainties associated with �chance.� Probability enters the picture only in the latter situation. Before the
trial is performed, there is uncertainty about which of these latent possibilities will be realized. Probability
traditionally is a number assigned to an event indicating the likelihood of the occurrence of that event on
any trial.

We begin by looking at the classical model which �rst successfully formulated probability ideas in math-
ematical form. We use modern terminology and notation to describe it.

Classical probability

1. The basic space Ω consists of a �nite number N of possible outcomes.

- There are thirty six possible outcomes of throwing two dice.

2This content is available online at <http://cnx.org/content/m23244/1.8/>.
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10 CHAPTER 1. PROBABILITY SYSTEMS

- There are C (52, 5) = 52!
5!47! = 2598960 di�erent hands of �ve cards (order not important).

- There are 25 = 32 results (sequences of heads or tails) of �ipping �ve coins.

2. Each possible outcome is assigned a probability 1/N
3. If event (subset) A has NA elements, then the probability assigned event A is

P (A) = NA/N (i.e., the fraction favorable to A) (1.13)

With this de�nition of probability, each event A is assigned a unique probability, which may be determined
by counting NA, the number of elements in A (in the classical language, the number of outcomes "favorable"
to the event) and N the total number of possible outcomes in the sure event Ω.

Example 1.3: Probabilities for hands of cards
Consider the experiment of drawing a hand of �ve cards from an ordinary deck of 52 playing cards.
The number of outcomes, as noted above, is N = C (52, 5) = 2598960. What is the probability
of drawing a hand with exactly two aces? What is the probability of drawing a hand with two or
more aces? What is the probability of not more than one ace?

SOLUTION
Let A be the event of exactly two aces, B be the event of exactly three aces, and C be the event

of exactly four aces. In the �rst problem, we must count the number NA of ways of drawing a hand
with two aces. We select two aces from the four, and select the other three cards from the 48 non
aces. Thus

NA = C (4, 2)C (48, 3) = 103776, so that P (A) =
NA
N

=
103776
2598960

≈ 0.0399 (1.14)

There are two or more aces i� there are exactly two or exactly three or exactly four. Thus the
event D of two or more is D = A

∨
B
∨
C. Since A, B, C are mutually exclusive,

ND = NA + NB + NC = C (4, 2)C (48, 3) + C (4, 3)C (48, 2) + C (4, 4)C (48, 1) =
103776 + 4512 + 48 = 108336

(1.15)

so that P (D) ≈ 0.0417. There is one ace or none i� there are not two or more aces. We thus
want P (Dc). Now the number in Dc is the number not in D which is N −ND, so that

P (Dc) =
N −ND

N
= 1− ND

N
= 1− P (D) = 0.9583 (1.16)

� �
This example illustrates several important properties of the classical probability.

1. P (A) = NA/N is a nonnegative quantity.
2. P (Ω) = N/N = 1
3. If A,B,C are mutually exclusive, then the number in the disjoint union is the sum of the numbers in

the individual events, so that

P
(
A
∨
B
∨
C
)

= P (A) + P (B) + P (C) (1.17)

Several other elementary properties of the classical probability may be identi�ed. It turns out that they can
be derived from these three. Although the classical model is highly useful, and an extensive theory has been
developed, it is not really satisfactory for many applications (the communications problem, for example).
We seek a more general model which includes classical probability as a special case and is thus an extension
of it. We adopt the Kolmogorov model (introduced by the Russian mathematician A. N. Kolmogorov) which
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captures the essential ideas in a remarkably successful way. Of course, no model is ever completely successful.
Reality always seems to escape our logical nets.

The Kolmogorov model is grounded in abstract measure theory. A full explication requires a level of
mathematical sophistication inappropriate for a treatment such as this. But most of the concepts and many
of the results are elementary and easily grasped. And many technical mathematical considerations are not
important for applications at the level of this introductory treatment and may be disregarded. We borrow
from measure theory a few key facts which are either very plausible or which can be understood at a practical
level. This enables us to utilize a very powerful mathematical system for representing practical problems in
a manner that leads to both insight and useful strategies of solution.

Our approach is to begin with the notion of events as sets introduced above, then to introduce probability
as a number assigned to events subject to certain conditions which become de�nitive properties. Gradually
we introduce and utilize additional concepts to build progressively a powerful and useful discipline. The
fundamental properties needed are just those illustrated in Example 1.3 (Probabilities for hands of cards)
for the classical case.

De�nition
A probability system consists of a basic set Ω of elementary outcomes of a trial or experiment, a class of

events as subsets of the basic space, and a probability measure P (·) which assigns values to the events in
accordance with the following rules:

(P1): For any event A, the probability P (A) ≥ 0.
(P2): The probability of the sure event P (Ω) = 1.
(P3): Countable additivity. If {Ai : 1 ∈ J} is a mutually exclusive, countable class of events, then the

probability of the disjoint union is the sum of the individual probabilities.

The necessity of the mutual exclusiveness (disjointedness) is illustrated in Example 1.3 (Probabilities for
hands of cards). If the sets were not disjoint, probability would be counted more than once in the sum. A
probability, as de�ned, is abstract�simply a number assigned to each set representing an event. But we can
give it an interpretation which helps to visualize the various patterns and relationships encountered. We may
think of probability as mass assigned to an event. The total unit mass is assigned to the basic set Ω. The
additivity property for disjoint sets makes the mass interpretation consistent. We can use this interpretation
as a precise representation. Repeatedly we refer to the probability mass assigned a given set. The mass
is proportional to the weight, so sometimes we speak informally of the weight rather than the mass. Now
a mass assignment with three properties does not seem a very promising beginning. But we soon expand
this rudimentary list of properties. We use the mass interpretation to help visualize the properties, but are
primarily concerned to interpret them in terms of likelihoods.

(P4): P (Ac) = 1− P (A). This follows from additivity and the fact that

1 = P (Ω) = P
(
A
∨
Ac
)

= P (A) + P (Ac) (1.18)

(P5): P (∅) = 0. The empty set represents an impossible event. It has no members, hence cannot occur.
It seems reasonable that it should be assigned zero probability (mass). Since ∅ = Ωc, this follows
logically from (P4) ("(P4)", p. 11) and (P2) ("(P2)", p. 11).
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Figure 1.1: Partitions of the union A ∪B.

(P6): If A ⊂ B, then P (A) ≤ P (B). From the mass point of view, every point in A is also in B, so that B
must have at least as much mass as A. Now the relationship A ⊂ B means that if A occurs, B must
also. Hence B is at least as likely to occur as A. From a purely formal point of view, we have

B = A
∨
AcB so that P (B) = P (A) + P (AcB) ≥ P (A) since P (AcB) ≥ 0 (1.19)

(P7):
P (A ∪B) = P (A) + P (AcB) = P (B) + P (ABc) = P (ABc) + P (AB) + P (AcB)

= P (A) + P (B)− P (AB)
The �rst three expressions follow from additivity and partitioning of A∪B as follows (see Figure 1.1).

A ∪B = A
∨
AcB = B

∨
ABc = ABc

∨
AB

∨
AcB (1.20)

If we add the �rst two expressions and subtract the third, we get the last expression. In terms of
probability mass, the �rst expression says the probability in A ∪ B is the probability mass in A plus
the additional probability mass in the part of B which is not in A. A similar interpretation holds for
the second expression. The third is the probability in the common part plus the extra in A and the
extra in B. If we add the mass in A and B we have counted the mass in the common part twice. The
last expression shows that we correct this by taking away the extra common mass.

(P8): If {Bi : i ∈ J} is a countable, disjoint class and A is contained in the union, then

A =
∨
i∈J

ABi so that P (A) =
∑
i∈J

P (ABi) (1.21)
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(P9): Subadditivity. If A =
⋃∞
i=1Ai, then P (A) ≤

∑∞
i=1 P (Ai). This follows from countable additivity,

property (P6) ("(P6)", p. 12), and the fact (Partitions)

A =
∞⋃
i=1

Ai =
∞∨
i=1

Bi, where Bi = AiA
c
1A

c
2 · · ·Aci−1 ⊂ Ai (1.22)

This includes as a special case the union of a �nite number of events.

Some of these properties, such as (P4) ("(P4)", p. 11), (P5) ("(P5)", p. 11), and (P6) ("(P6)", p. 12), are
so elementary that it seems they should be included in the de�ning statement. This would not be incorrect,
but would be ine�cient. If we have an assignment of numbers to the events, we need only establish (P1)
("(P1)", p. 11), (P2) ("(P2)", p. 11), and (P3) ("(P3)", p. 11) to be able to assert that the assignment
constitutes a probability measure. And the other properties follow as logical consequences.

Flexibility at a price
In moving beyond the classical model, we have gained great �exibility and adaptability of the model.

It may be used for systems in which the number of outcomes is in�nite (countably or uncountably). It
does not require a uniform distribution of the probability mass among the outcomes. For example, the
dice problem may be handled directly by assigning the appropriate probabilities to the various numbers of
total spots, 2 through 12. As we see in the treatment of conditional probability (Section 3.1), we make
new probability assignments (i.e., introduce new probability measures) when partial information about the
outcome is obtained.

But this freedom is obtained at a price. In the classical case, the probability value to be assigned an event
is clearly de�ned (although it may be very di�cult to perform the required counting). In the general case,
we must resort to experience, structure of the system studied, experiment, or statistical studies to assign
probabilities.

The existence of uncertainty due to �chance� or �randomness� does not necessarily imply that the act of
performing the trial is haphazard. The trial may be quite carefully planned; the contingency may be the result
of factors beyond the control or knowledge of the experimenter. The mechanism of chance (i.e., the source
of the uncertainty) may depend upon the nature of the actual process or system observed. For example, in
taking an hourly temperature pro�le on a given day at a weather station, the principal variations are not due
to experimental error but rather to unknown factors which converge to provide the speci�c weather pattern
experienced. In the case of an uncorrected digital transmission error, the cause of uncertainty lies in the
intricacies of the correction mechanisms and the perturbations produced by a very complex environment. A
patient at a clinic may be self selected. Before his or her appearance and the result of a test, the physician
may not know which patient with which condition will appear. In each case, from the point of view of the
experimenter, the cause is simply attributed to �chance.� Whether one sees this as an �act of the gods� or
simply the result of a con�guration of physical or behavioral causes too complex to analyze, the situation is
one of uncertainty, before the trial, about which outcome will present itself.

If there were complete uncertainty, the situation would be chaotic. But this is not usually the case.
While there is an extremely large number of possible hourly temperature pro�les, a substantial subset of
these has very little likelihood of occurring. For example, pro�les in which successive hourly temperatures
alternate between very high then very low values throughout the day constitute an unlikely subset (event).
One normally expects trends in temperatures over the 24 hour period. Although a tra�c engineer does not
know exactly how many vehicles will be observed in a given time period, experience provides some idea what
range of values to expect. While there is uncertainty about which patient, with which symptoms, will appear
at a clinic, a physician certainly knows approximately what fraction of the clinic's patients have the disease
in question. In a game of chance, analyzed into �equally likely� outcomes, the assumption of equal likelihood
is based on knowledge of symmetries and structural regularities in the mechanism by which the game is
carried out. And the number of outcomes associated with a given event is known, or may be determined.

In each case, there is some basis in statistical data on past experience or knowledge of structure, regularity,
and symmetry in the system under observation which makes it possible to assign likelihoods to the occurrence
of various events. It is this ability to assign likelihoods to the various events which characterizes applied
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probability. However determined, probability is a number assigned to events to indicate their likelihood of
occurrence. The assignments must be consistent with the de�ning properties (P1) ("(P1)", p. 11), (P2)
("(P2)", p. 11), (P3) ("(P3)", p. 11) along with derived properties (P4) through (P9) (p. 11) (plus others
which may also be derived from these). Since the probabilities are not �built in,� as in the classical case, a
prime role of probability theory is to derive other probabilities from a set of given probabilites.

1.3 Interpretations3

1.3.1 What is Probability?

The formal probability system is a model whose usefulness can only be established by examining its structure
and determining whether patterns of uncertainty and likelihood in any practical situation can be represented
adequately. With the exception of the sure event and the impossible event, the model does not tell us how to
assign probability to any given event. The formal system is consistent with many probability assignments,
just as the notion of mass is consistent with many di�erent mass assignments to sets in the basic space.

The de�ning properties (P1) ("(P1)", p. 11), (P2) ("(P2)", p. 11), (P3) ("(P3)", p. 11) and derived
properties provide consistency rules for making probability assignments. One cannot assign negative proba-
bilities or probabilities greater than one. The sure event is assigned probability one. If two or more events
are mutually exclusive, the total probability assigned to the union must equal the sum of the probabilities
of the separate events. Any assignment of probability consistent with these conditions is allowed.

One may not know the probability assignment to every event. Just as the de�ning conditions put
constraints on allowable probability assignments, they also provide important structure. A typical applied
problem provides the probabilities of members of a class of events (perhaps only a few) from which to
determine the probabilities of other events of interest. We consider an important class of such problems in
the next chapter.

There is a variety of points of view as to how probability should be interpreted. These impact the manner
in which probabilities are assigned (or assumed). One important dichotomy among practitioners.

• One group believes probability is objective in the sense that it is something inherent in the nature of
things. It is to be discovered, if possible, by analysis and experiment. Whether we can determine it or
not, �it is there.�

• Another group insists that probability is a condition of the mind of the person making the probability
assessment. From this point of view, the laws of probability simply impose rational consistency upon
the way one assigns probabilities to events. Various attempts have been made to �nd objective ways
to measure the strength of one's belief or degree of certainty that an event will occur. The probability
P (A) expresses the degree of certainty one feels that event A will occur. One approach to characterizing
an individual's degree of certainty is to equate his assessment of P (A) with the amount a he is willing
to pay to play a game which returns one unit of money if A occurs, for a gain of (1− a), and returns
zero if A does not occur, for a gain of −a. Behind this formulation is the notion of a fair game, in
which the �expected� or �average� gain is zero.

The early work on probability began with a study of relative frequencies of occurrence of an event under
repeated but independent trials. This idea is so imbedded in much intuitive thought about probability that
some probabilists have insisted that it must be built into the de�nition of probability. This approach has not
been entirely successful mathematically and has not attracted much of a following among either theoretical or
applied probabilists. In the model we adopt, there is a fundamental limit theorem, known as Borel's theorem,
which may be interpreted �if a trial is performed a large number of times in an independent manner, the
fraction of times that event A occurs approaches as a limit the value P (A). Establishing this result (which
we do not do in this treatment) provides a formal validation of the intuitive notion that lay behind the
early attempts to formulate probabilities. Inveterate gamblers had noted long-run statistical regularities,

3This content is available online at <http://cnx.org/content/m23246/1.8/>.
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and sought explanations from their mathematically gifted friends. From this point of view, probability is
meaningful only in repeatable situations. Those who hold this view usually assume an objective view of
probability. It is a number determined by the nature of reality, to be discovered by repeated experiment.

There are many applications of probability in which the relative frequency point of view is not feasible.
Examples include predictions of the weather, the outcome of a game or a horse race, the performance of an
individual on a particular job, the success of a newly designed computer. These are unique, nonrepeatable
trials. As the popular expression has it, �You only go around once.� Sometimes, probabilities in these
situations may be quite subjective. As a matter of fact, those who take a subjective view tend to think
in terms of such problems, whereas those who take an objective view usually emphasize the frequency
interpretation.

Example 1.4: Subjective probability and a football game
The probability that one's favorite football team will win the next Superbowl Game may well
be only a subjective probability of the bettor. This is certainly not a probability that can be
determined by a large number of repeated trials. The game is only played once. However, the
subjective assessment of probabilities may be based on intimate knowledge of relative strengths
and weaknesses of the teams involved, as well as factors such as weather, injuries, and experience.
There may be a considerable objective basis for the subjective assignment of probability. In fact,
there is often a hidden �frequentist� element in the subjective evaluation. There is an assessment
(perhaps unrealized) that in similar situations the frequencies tend to coincide with the value
subjectively assigned.

Example 1.5: The probability of rain
Newscasts often report that the probability of rain of is 20 percent or 60 percent or some other
�gure. There are several di�culties here.

• To use the formal mathematical model, there must be precision in determining an event.
An event either occurs or it does not. How do we determine whether it has rained or not?
Must there be a measurable amount? Where must this rain fall to be counted? During what
time period? Even if there is agreement on the area, the amount, and the time period, there
remains ambiguity: one cannot say with logical certainty the event did occur or it did not
occur. Nevertheless, in this and other similar situations, use of the concept of an event may be
helpful even if the description is not de�nitive. There is usually enough practical agreement
for the concept to be useful.

• What does a 30 percent probability of rain mean? Does it mean that if the prediction is correct,
30 percent of the area indicated will get rain (in an agreed amount) during the speci�ed time
period? Or does it mean that 30 percent of the occasions on which such a prediction is made
there will be signi�cant rainfall in the area during the speci�ed time period? Again, the latter
alternative may well hide a frequency interpretation. Does the statement mean that it rains
30 percent of the times when conditions are similar to current conditions?

Regardless of the interpretation, there is some ambiguity about the event and whether it has
occurred. And there is some di�culty with knowing how to interpret the probability �gure. While
the precise meaning of a 30 percent probability of rain may be di�cult to determine, it is generally
useful to know whether the conditions lead to a 20 percent or a 30 percent or a 40 percent probability
assignment. And there is no doubt that as weather forecasting technology and methodology continue
to improve the weather probability assessments will become increasingly useful.

Another common type of probability situation involves determining the distribution of some characteristic
over a population�usually by a survey. These data are used to answer the question: What is the probability
(likelihood) that a member of the population, chosen �at random� (i.e., on an equally likely basis) will have
a certain characteristic?
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Example 1.6: Empirical probability based on survey data
A survey asks two questions of 300 students: Do you live on campus? Are you satis�ed with
the recreational facilities in the student center? Answers to the latter question were categorized
�reasonably satis�ed,� �unsatis�ed,� or �no de�nite opinion.� Let C be the event �on campus;� O
be the event �o� campus;� S be the event �reasonably satis�ed;� U be the event �unsatis�ed;� and
N be the event �no de�nite opinion.� Data are shown in the following table.

Survey Data

Survey Data

S U N

C 127 31 42

O 46 43 11

Table 1.1

If an individual is selected on an equally likely basis from this group of 300, the probability of any
of the events is taken to be the relative frequency of respondents in each category corresponding
to an event. There are 200 on campus members in the population, so P (C) = 200/300 and
P (O) = 100/300. The probability that a student selected is on campus and satis�ed is taken to be
P (CS) = 127/300. The probability a student is either on campus and satis�ed or o� campus and
not satis�ed is

P
(
CS

∨
OU
)

= P (CS) + P (OU) = 127/300 + 43/300 = 170/300 (1.23)

If there is reason to believe that the population sampled is representative of the entire student
body, then the same probabilities would be applied to any student selected at random from the
entire student body.

It is fortunate that we do not have to declare a single position to be the �correct� viewpoint and interpretation.
The formal model is consistent with any of the views set forth. We are free in any situation to make the
interpretation most meaningful and natural to the problem at hand. It is not necessary to �t all problems
into one conceptual mold; nor is it necessary to change mathematical model each time a di�erent point of
view seems appropriate.

1.3.2 Probability and odds

Often we �nd it convenient to work with a ratio of probabilities. If A and B are events with positive
probability the odds favoring A over B is the probability ratio P (A) /P (B). If not otherwise speci�ed, B is
taken to be Ac and we speak of the odds favoring A

O (A) =
P (A)
P (Ac)

=
P (A)

1− P (A)
(1.24)

This expression may be solved algebraically to determine the probability from the odds

P (A) =
O (A)

1 +O (A)
(1.25)

In particular, if O (A) = a/b then P (A) = a/b
1+a/b = a

a+b .

O (A) = 0.7/0.3 = 7/3. If the odds favoring A is 5/3, then P (A) = 5/ (5 + 3) = 5/8.
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1.3.3 Partitions and Boolean combinations of events

The countable additivity property (P3) ("(P3)", p. 11) places a premium on appropriate partitioning of
events.

De�nition. A partition is a mutually exclusive class

{Ai : i ∈ J} such that Ω =
∨
i∈J

Ai (1.26)

A partition of event A is a mutually exclusive class

{Ai : i ∈ J} such that A =
∨
i∈J

Ai (1.27)

Remarks.

• A partition is a mutually exclusive class of events such that one (and only one) must occur on each
trial.

• A partition of event A is a mutually exclusive class of events such that A occurs i� one (and only one)
of the Ai occurs.

• A partition (no quali�er) is taken to be a partition of the sure event Ω.
• If class {Bi : ß ∈ J} is mutually exclusive and A ⊂ B =

∨
i∈J

Bi, then the class {ABi : ß ∈ J} is a

partition of A and A =
∨
i∈J

ABi.

We may begin with a sequence {A1 : 1 ≤ i} and determine a mutually exclusive (disjoint) sequence {B1 :
1 ≤ i} as follows:

B1 = A1, and for any i > 1, Bi = AiA
c
1A

c
2 · · ·Aci−1 (1.28)

Thus each Bi is the set of those elements of Ai not in any of the previous members of the sequence.
This representation is used to show that subadditivity (P9) ("(P9)", p. 12) follows from countable

additivity and property (P6) ("(P6)", p. 12). Since each Bi ⊂ Ai, by (P6) ("(P6)", p. 12) P (Bi) ≤ P (Ai).
Now

P

( ∞⋃
i=1

Ai

)
= P

( ∞∨
i=1

Bi

)
=
∞∑
i=1

P (Bi) ≤
∞∑
i=1

P (Ai) (1.29)

The representation of a union as a disjoint union points to an important strategy in the solution of probability
problems. If an event can be expressed as a countable disjoint union of events, each of whose probabilities is
known, then the probability of the combination is the sum of the individual probailities. In in the module on
Partitions and Minterms (Section 2.1.2: Partitions and minterms), we show that any Boolean combination
of a �nite class of events can be expressed as a disjoint union in a manner that often facilitates systematic
determination of the probabilities.

1.3.4 The indicator function

One of the most useful tools for dealing with set combinations (and hence with event combinations) is the
indicator function IE for a set E ⊂ Ω. It is de�ned very simply as follows:

IE (ω) = {
1 for ω ∈ E
0 for ω ∈ Ec

(1.30)
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Remark. Indicator fuctions may be de�ned on any domain. We have occasion in various cases to de�ne
them on the real line and on higher dimensional Euclidean spaces. For example, if M is the interval [a, b]
on the real line then IM (t) = 1 for each t in the interval (and is zero otherwise). Thus we have a step
function with unit value over the interval M. In the abstract basic space Ω we cannot draw a graph so easily.
However, with the representation of sets on a Venn diagram, we can give a schematic representation, as in
Figure 1.2.

Figure 1.2: Representation of the indicator function IE for event E.

Much of the usefulness of the indicator function comes from the following properties.

(IF1): IA ≤ IB i� A ⊂ B. If IA ≤ IB , then ω ∈ A implies IA (ω) = IB (ω) = 1, so ω ∈ B. If A ⊂ B, then
IA (ω) = 1 implies ω ∈ A implies ω ∈ B implies IB (ω) = 1.

(IF2): IA = IB i� A = B

A = B i� both A ⊂ B and B ⊂ A i� IA ≤ IB and IB ≤ IA i� IA = IB (1.31)

(IF3): IAc = 1− IA This follows from the fact IAc (ω) = 1 i� IA (ω) = 0.
(IF4): IAB = IAIB = min{IA, IB} (extends to any class) An element ω belongs to the intersection i� it

belongs to all i� the indicator function for each event is one i� the product of the indicator functions
is one.

(IF5): IA∪B = IA + IB − IAIB = max{IA, IB} (the maximum rule extends to any class) The maximum
rule follows from the fact that ω is in the union i� it is in any one or more of the events in the union i�
any one or more of the individual indicator function has value one i� the maximum is one. The sum
rule for two events is established by DeMorgan's rule and properties (IF2), (IF3), and (IF4).

IA∪B = 1− IAcBc = 1− [1− IA] [1− IB ] = 1− 1 + IB + IA − IAIB (1.32)

(IF6): If the pair {A, B} is disjoint, IAW
B = IA + IB (extends to any disjoint class)

The following example illustrates the use of indicator functions in establishing relationships between set
combinations. Other uses and techniques are established in the module on Partitions and Minterms (Sec-
tion 2.1.2: Partitions and minterms).
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Example 1.7: Indicator functions and set combinations
Suppose {Ai : 1 ≤ i ≤ n} is a partition.

If B =
n∨
i=1

AiCi, then Bc =
n∨
i=1

AiC
c
i (1.33)

VERIFICATION
Utilizing properties of the indicator function established above, we have

IB =
n∑
i=1

IAiICi (1.34)

Note that since the Ai form a partition, we have
∑n
i=1 IAi = 1, so that the indicator function for

the complementary event is

IBc = 1−
n∑
i=1

IAiICi =
n∑
i=1

IAi −
n∑
i=1

IAiICi =
n∑
i=1

IAi [1− ICi ] =
n∑
i=1

IAiICci (1.35)

The last sum is the indicator function for
n∨
i=1

AiC
c
i .

1.3.5 A technical comment on the class of events

The class of events plays a central role in the intuitive background, the application, and the formal math-
ematical structure. Events have been modeled as subsets of the basic space of all possible outcomes of the
trial or experiment. In the case of a �nite number of outcomes, any subset can be taken as an event. In the
general theory, involving in�nite possibilities, there are some technical mathematical reasons for limiting the
class of subsets to be considered as events. The practical needs are these:

1. If A is an event, its complementary set must also be an event.
2. If {Ai : i ∈ J} is a �nite or countable class of events, the union and the intersection of members of the

class need to be events.

A simple argument based on DeMorgan's rules shows that if the class contains complements of all its sets
and countable unions, then it contains countable intersections. Likewise, if it contains complements of all its
sets and countable intersections, then it contains countable unions. A class of sets closed under complements
and countable unions is known as a sigma algebra of sets. In a formal, measure-theoretic treatment, a basic
assumption is that the class of events is a sigma algebra and the probability measure assigns probabilities to
members of that class. Such a class is so general that it takes very sophisticated arguments to establish the
fact that such a class does not contain all subsets. But precisely because the class is so general and inclusive
in ordinary applications we need not be concerned about which sets are permissible as events

A primary task in formulating a probability problem is identifying the appropriate events and the rela-
tionships between them. The theoretical treatment shows that we may work with great freedom in forming
events, with the assurrance that in most applications a set so produced is a mathematically valid event.
The so called measurability question only comes into play in dealing with random processes with continuous
parameters. Even there, under reasonable assumptions, the sets produced will be events.

1.4 Problems on Probability Systems4

Exercise 1.4.1 (Solution on p. 23.)

Let Ω consist of the set of positive integers. Consider the subsets

4This content is available online at <http://cnx.org/content/m24071/1.5/>.

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



20 CHAPTER 1. PROBABILITY SYSTEMS

A = {ω : ω ≤ 12} B = {ω : ω < 8} C = {ω : ω is even}
D = {ω : ω is a multiple of 3} E = {ω : ω is a multiple of 4}
Describe in terms of A,B,C,D,E and their complements the following sets:

a. {1, 3, 5, 7}
b. {3, 6, 9}
c. {8, 10}
d. The even integers greater than 12.
e. The positive integers which are multiples of six.
f. The integers which are even and no greater than 6 or which are odd and greater than 12.

Exercise 1.4.2 (Solution on p. 23.)

Let Ω be the set of integers 0 through 10. Let A = {5, 6, 7, 8}, B = the odd integers in Ω, and
C = the integers in Ω which are even or less than three. Describe the following sets by listing their
elements.

a. AB
b. AC
c. ABc ∪ C
d. ABCc

e. A ∪Bc
f. A ∪BCc
g. ABC
h. AcBCc

Exercise 1.4.3 (Solution on p. 23.)

Consider �fteen-word messages in English. Let A = the set of such messages which contain the
word �bank� and let B = the set of messages which contain the word �bank� and the word �credit.�
Which event has the greater probability? Why?

Exercise 1.4.4 (Solution on p. 23.)

A group of �ve persons consists of two men and three women. They are selected one-by-one in a
random manner. Let Ei be the event a man is selected on the ith selection. Write an expression
for the event that both men have been selected by the third selection.

Exercise 1.4.5 (Solution on p. 23.)

Two persons play a game consecutively until one of them is successful or there are ten unsuccessful
plays. Let Ei be the event of a success on the ith play of the game. Let A,B,C be the respective
events that player one, player two, or neither wins. Write an expression for each of these events in
terms of the events Ei, 1 ≤ i ≤ 10.
Exercise 1.4.6 (Solution on p. 23.)

Suppose the game in Exercise 1.4.5 could, in principle, be played an unlimited number of times.
Write an expression for the event D that the game will be terminated with a success in a �nite
number of times. Write an expression for the event F that the game will never terminate.

Exercise 1.4.7 (Solution on p. 23.)

Find the (classical) probability that among three random digits, with each digit (0 through 9)
being equally likely and each triple equally likely:

a. All three are alike.
b. No two are alike.
c. The �rst digit is 0.
d. Exactly two are alike.
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Exercise 1.4.8 (Solution on p. 23.)

The classical probability model is based on the assumption of equally likely outcomes. Some care
must be shown in analysis to be certain that this assumption is good. A well known example is the
following. Two coins are tossed. One of three outcomes is observed: Let ω1 be the outcome both
are �heads,� ω2 the outcome that both are �tails,� and ω3 be the outcome that they are di�erent.
Is it reasonable to suppose these three outcomes are equally likely? What probabilities would you
assign?

Exercise 1.4.9 (Solution on p. 23.)

A committee of �ve is chosen from a group of 20 people. What is the probability that a speci�ed
member of the group will be on the committee?

Exercise 1.4.10 (Solution on p. 23.)

Ten employees of a company drive their cars to the city each day and park randomly in ten spots.
What is the (classical) probability that on a given day Jim will be in place three? There are n!
equally likely ways to arrange n items (order important).

Exercise 1.4.11 (Solution on p. 23.)

An extension of the classical model involves the use of areas. A certain region L (say of land) is
taken as a reference. For any subregion A, de�ne P (A) = area (A) /area (L). Show that P (·) is a
probability measure on the subregions of L.

Exercise 1.4.12 (Solution on p. 23.)

John thinks the probability the Houston Texans will win next Sunday is 0.3 and the probability
the Dallas Cowboys will win is 0.7 (they are not playing each other). He thinks the probability both
will win is somewhere between�say, 0.5. Is that a reasonable assumption? Justify your answer.

Exercise 1.4.13 (Solution on p. 23.)

Suppose P (A) = 0.5 and P (B) = 0.3. What is the largest possible value of P (AB)? Using
the maximum value of P (AB), determine P (ABc), P (AcB), P (AcBc) and P (A ∪B). Are these
values determined uniquely?

Exercise 1.4.14 (Solution on p. 24.)

For each of the following probability �assignments�, �ll out the table. Which assignments are not
permissible? Explain why, in each case.

P (A) P (B) P (AB) P (A ∪B) P (ABc) P (AcB) P (A) + P (B)

0.3 0.7 0.4

0.2 0.1 0.4

0.3 0.7 0.2

0.3 0.5 0

0.3 0.8 0

Table 1.2

Exercise 1.4.15 (Solution on p. 24.)

The class {A, B, C} of events is a partition. Event A is twice as likely as C and event B is as
likely as the combination A or C. Determine the probabilities P (A) , P (B) , P (C).
Exercise 1.4.16 (Solution on p. 24.)

Determine the probability P (A ∪B ∪ C) in terms of the probabilities of the events A,B,C and
their intersections.

Exercise 1.4.17 (Solution on p. 24.)

If occurrence of event A implies occurrence of B, show that P (AcB) = P (B)− P (A).
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Exercise 1.4.18 (Solution on p. 24.)

Show that P (AB) ≥ P (A) + P (B)− 1.
Exercise 1.4.19 (Solution on p. 24.)

The set combination A ⊕ B = ABc
∨
AcB is known as the disjunctive union or the symetric

di�erence of A and B. This is the event that only one of the events A or B occurs on a trial.
Determine P (A⊕B) in terms of P (A), P (B), and P (AB).
Exercise 1.4.20 (Solution on p. 24.)

Use fundamental properties of probability to show

a. P (AB) ≤ P (A) ≤ P (A ∪B) ≤ P (A) + P (B)
b. P

(⋂∞
j=1Ej

)
≤ P (Ei) ≤ P

(⋃∞
j=1Ej

)
≤
∑∞
j=1 P (Ej)

Exercise 1.4.21 (Solution on p. 24.)

Suppose P1, P2 are probability measures and c1, c2 are positive numbers such that c1 + c2 = 1.
Show that the assignment P (E) = c1P1 (E) + c2P2 (E) to the class of events is a probability
measure. Such a combination of probability measures is known as a mixture. Extend this to

P (E) =
n∑
i=1

ciPi (E) , where the Pi are probabilities measures, ci > 0, and
n∑
i=1

ci = 1 (1.36)

Exercise 1.4.22 (Solution on p. 24.)

Suppose {A1, A2, · · · , An} is a partition and {c1, c2, · · · , cn} is a class of positive constants. For
each event E, let

Q (E) =
n∑
i=1

ciP (EAi) /
n∑
i=1

ciP (Ai) (1.37)

Show that Q (·) us a probability measure.
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Solutions to Exercises in Chapter 1

Solution to Exercise 1.4.1 (p. 19)
a = BCc, b = DAEc, c = CABcDc, d = CAc, e = CD, f = BC

∨
AcCc

Solution to Exercise 1.4.2 (p. 20)

a. AB = {5, 7}
b. AC = {6, 8}
c. ABC ∪ C = C
d. ABCc = AB
e. A ∪Bc = {0, 2, 4, 5, 6, 7, 8, 10}
f. ABC = ∅
g. AcBCc = {3, 9}

Solution to Exercise 1.4.3 (p. 20)
B ⊂ A implies P (B) ≤ P (A).
Solution to Exercise 1.4.4 (p. 20)
A = E1E2

∨
E1E

c
2E3

∨
Ec1E2E3

Solution to Exercise 1.4.5 (p. 20)

A = E1

∨
Ec1E

c
2E3

∨
Ec1E

c
2E

c
3E

c
4E5

∨
Ec1E

c
2E

c
3E

c
4E

c
5E

c
6E7

∨
Ec1E

c
2E

c
3E

c
4E

c
5E

c
6E

c
7E

c
8E9 (1.38)

B = Ec1E2

∨
Ec1E

c
2E

c
3E4

∨
Ec1E

c
2E

c
3E

c
4E

c
5E6

∨
Ec1E

c
2E

c
3E

c
4E

c
5E

c
6E

c
7E8

∨
Ec1E

c
2E

c
3E

c
4E

c
5E

c
6E

c
7E

c
8E

c
9E10

C =
⋂10
i=1E

c
i

Solution to Exercise 1.4.6 (p. 20)

Let F0 = Ω and Fk =
⋂k
i=1E

c
i for k ≥ 1. Then

D =
∞∨
n=1

Fn−1En and F = Dc =
∞⋂
i=1

Eci (1.39)

Solution to Exercise 1.4.7 (p. 20)
Each triple has probability 1/103 = 1/1000

a. Ten triples, all alike: P = 10/1000.
b. 10× 9× 8 triples all di�erent: P = 720/1000.
c. 100 triples with �rst one zero: P = 100/1000
d. C (3, 2) = 3 ways to pick two positions alike; 10 ways to pick the common value; 9 ways to pick the

other. P = 270/1000.

Solution to Exercise 1.4.8 (p. 21)
P ({ω1}) = P ({ω2}) = 1/4, P ({ω3} = 1/2 .
Solution to Exercise 1.4.9 (p. 21)
C (20, 5) committees; C (19, 4) have a designated member.

P =
19!

4!15!
· 5!15!

20!
= 5/20 = 1/4 (1.40)

Solution to Exercise 1.4.10 (p. 21)
10! permutations. 1× 9! permutations with Jim in place 3. P = 9!/10! = 1/10.
Solution to Exercise 1.4.11 (p. 21)
Additivity follows from additivity of areas of disjoint regions.
Solution to Exercise 1.4.12 (p. 21)
P (AB) = 0.5is not reasonable. It must no greater than the minimum of P (A) = 0.3 and P (B) = 0.7.
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Solution to Exercise 1.4.13 (p. 21)
Draw a Venn diagram, or use algebraic expressions P (ABc) = P (A)− P (AB) = 0.2

P (AcB) = P (B)− P (AB) = 0 P (AcBc) = P (Ac)− P (AcB) = 0.5 P (A ∪B) = 0.5 (1.41)

Solution to Exercise 1.4.14 (p. 21)

P (A) P (B) P (AB) P (A ∪B) P (ABc) P (AcB) P (A) + P (B)

0.3 0.7 0.4 0.6 -0.1 0.3 1.0

0.2 0.1 0.4 -0.1 -0.2 -0.3 0.3

0.3 0.7 0.2 0.8 0.1 0.5 1.0

0.3 0.5 0 0.8 0.3 0.5 0.8

0.3 0.8 0 1.1 0.3 0.8 1.1

Table 1.3

Only the third and fourth assignments are permissible.
Solution to Exercise 1.4.15 (p. 21)
P (A) + P (B) + P (C) = 1, P (A) = 2P (C), and P (B) = P (A) + P (C) = 3P (C), which implies

P (C) = 1/6, P (A) = 1/3, and P (B) = 1/2 (1.42)

Solution to Exercise 1.4.16 (p. 21)
P (A ∪B ∪ C) = P (A ∪B) + P (C)− P (AC ∪BC)

= P (A) + P (B)− P (AB) + P (C)− P (AC)− P (BC) + P (ABC) (1.43)

Solution to Exercise 1.4.17 (p. 21)
P (AB) = P (A) and P (AB) + P (AcB) = P (B) implies P (AcB) = P (B)− P (A).
Solution to Exercise 1.4.18 (p. 22)
Follows from P (A) + P (B)− P (AB) = P (A ∪B) ≤ 1.
Solution to Exercise 1.4.19 (p. 22)
A Venn diagram shows P (A⊕B) = P (ABc) + P (ABc) = P (A) + P (B)− 2P (AB).
Solution to Exercise 1.4.20 (p. 22)
AB ⊂ A ⊂ A ∪ B implies P (AB) ≤ P (A) ≤ P (A ∪B) = P (A) + P (B)− P (AB) ≤ P (A) + P (B). The
general case follows similarly, with the last inequality determined by subadditivity.
Solution to Exercise 1.4.21 (p. 22)
Clearly P (E) ≥ 0. P (Ω) = c1P1 (Ω) + c2P2 (Ω) = 1.

E =
∞∨
i=1

Ei implies P (E) = c1

∞∑
i=1

P1 (Ei) + c2

∞∑
i=1

P2 (Ei) =
∞∑
i=1

P (Ei) (1.44)

The pattern is the same for the general case, except that the sum of two terms is replaced by the sum of n
terms ciPi (E).
Solution to Exercise 1.4.22 (p. 22)
Clearly Q (E) ≥ 0 and since AiΩ = Ai we have Q (Ω) = 1. If

E =
∞∨
k=1

Ek, then P (EAi) =
∞∑
k=1

P (EkAi) ∀ i (1.45)

Interchanging the order of summation shows that Q is countably additive.
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Chapter 2

Minterm Analysis

2.1 Minterms1

2.1.1 Introduction

A fundamental problem in elementary probability is to �nd the probability of a logical (Boolean) combination
of a �nite class of events, when the probabilities of certain other combinations are known. If we partition an
event F into component events whose probabilities can be determined, then the additivity property implies
the probability of F is the sum of these component probabilities. Frequently, the event F is a Boolean
combination of members of a �nite class� say, {A, B, C} or {A, B, C, D} . For each such �nite class, there
is a fundamental partition determined by the class. The members of this partition are called minterms. Any
Boolean combination of members of the class can be expressed as the disjoint union of a unique subclass of
the minterms. If the probability of every minterm in this subclass can be determined, then by additivity the
probability of the Boolean combination is determined. We examine these ideas in more detail.

2.1.2 Partitions and minterms

To see how the fundamental partition arises naturally, consider �rst the partition of the basic space produced
by a single event A.

Ω = A
∨
Ac (2.1)

Now if B is a second event, then

A = AB
∨
ABc and Ac = AcB

∨
AcBc, so that Ω = AcBc

∨
AcB

∨
ABc

∨
AB (2.2)

The pair {A, B} has partitioned Ω into {AcBc, AcB, ABc, AB}. Continuation is this way leads systemat-
ically to a partition by three events {A, B, C}, four events {A, B, C, D}, etc.

We illustrate the fundamental patterns in the case of four events {A, B, C, D}. We form the minterms
as intersections of members of the class, with various patterns of complementation. For a class of four events,
there are 24 = 16 such patterns, hence 16 minterms. These are, in a systematic arrangement,

AcBcCcDc AcBCcDc ABcCcDc ABCcDc

AcBcCcD AcBCcD ABcCcD ABCcD

AcBcC Dc AcBC Dc ABcC Dc ABC Dc

AcBcC D AcBC D ABcC D ABC D

1This content is available online at <http://cnx.org/content/m23247/1.8/>.
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26 CHAPTER 2. MINTERM ANALYSIS

Table 2.1

No element can be in more than one minterm, because each di�ers from the others by complementation
of at least one member event. Each element ω is assigned to exactly one of the minterms by determining the
answers to four questions:

Is it in A? Is it in B? Is it in C? Is it in D?
Suppose, for example, the answers are: Yes, No, No, Yes. Then ω is in the minterm ABcCcD. In a

similar way, we can determine the membership of each ω in the basic space. Thus, the minterms form a
partition. That is, the minterms represent mutually exclusive events, one of which is sure to occur on each
trial. The membership of any minterm depends upon the membership of each generating set A, B, C or D,
and the relationships between them. For some classes, one or more of the minterms are empty (impossible
events). As we see below, this causes no problems.

An examination of the development above shows that if we begin with a class of n events, there are
2n minterms. To aid in systematic handling, we introduce a simple numbering system for the minterms,
which we illustrate by considering again the four events A, B, C, D , in that order. The answers to the four
questions above can be represented numerically by the scheme

No ∼ 0 and Yes ∼ 1
Thus, if ω is in AcBcCcDc, the answers are tabulated as 0 0 0 0. If ω is in ABcCcD, then this is designated

1 0 0 1 . With this scheme, the minterm arrangement above becomes

0000 ∼ 0 0100 ∼ 4 1000 ∼ 8 1100 ∼ 12

0001 ∼ 1 0101 ∼ 5 1001 ∼ 9 1101 ∼ 13

0010 ∼ 2 0110 ∼ 6 1010 ∼ 10 1110 ∼ 14

0011 ∼ 3 0111 ∼ 7 1011 ∼ 11 1111 ∼ 15

Table 2.2

We may view these quadruples of zeros and ones as binary representations of integers, which may also
be represented by their decimal equivalents, as shown in the table. Frequently, it is useful to refer to
the minterms by number. If the members of the generating class are treated in a �xed order, then each
minterm number arrived at in the manner above speci�es a minterm uniquely. Thus, for the generating class
{A, B, C, D}, in that order, we may designate

AcBcCcDc = M0 (minterm 0) ABcCcD = M9 (minterm 9), etc. (2.3)

We utilize this numbering scheme on special Venn diagrams called minterm maps. These are illustrated in
Figure 2.1, for the cases of three, four, and �ve generating events. Since the actual content of any minterm
depends upon the sets A, B, C, and D in the generating class, it is customary to refer to these sets as
variables. In the three-variable case, set A is the right half of the diagram and set C is the lower half; but set
B is split, so that it is the union of the second and fourth columns. Similar splits occur in the other cases.

Remark. Other useful arrangements of minterm maps are employed in the analysis of switching circuits.
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Figure 1.1.  M interm  m aps for three, four, and five variables.

Figure 2.1: Minterm maps for three, four, or �ve variables.

2.1.3 Minterm maps and the minterm expansion

The signi�cance of the minterm partition of the basic space rests in large measure on the following fact.
Minterm expansion
Each Boolean combination of the elements in a generating class may be expressed as the disjoint union

of an appropriate subclass of the minterms. This representation is known as the minterm expansion for the
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combination.
In deriving an expression for a given Boolean combination which holds for any class {A, B, C ,D} of four

events, we include all possible minterms, whether empty or not. If a minterm is empty for a given class, its
presence does not modify the set content or probability assignment for the Boolean combination.

The existence and uniqueness of the expansion is made plausible by simple examples utilizing minterm
maps to determine graphically the minterm content of various Boolean combinations. Using the arrangement
and numbering system introduced above, we let Mi represent the ith minterm (numbering from zero) and
let p (i) represent the probability of that minterm. When we deal with a union of minterms in a minterm
expansion, it is convenient to utilize the shorthand illustrated in the following.

M (1, 3, 7) = M1

∨
M3

∨
M7 and p (1, 3, 7) = p (1) + p (3) + p (7) (2.4)

Figure 2.2: E = AB ∪ Ac(B ∪ Cc)c = M (1, 6, 7) Minterm expansion for Example 2.1 ( Minterm
expansion)

Consider the following simple example.

Example 2.1: Minterm expansion
Suppose E = AB ∪ Ac(B ∪ Cc)c. Examination of the minterm map in Figure 2.2 shows that
AB consists of the union of minterms M6, M7, which we designate M (6, 7). The combination
B∪Cc = M (0, 2, 3, 4, 6, 7) , so that its complement (B ∪ Cc)c = M (1, 5). This leaves the common
part Ac(B ∪ Cc)c = M1. Hence, E = M (1, 6, 7). Similarly, F = A ∪BcC = M (1, 4, 5, 6, 7).

A key to establishing the expansion is to note that each minterm is either a subset of the combination or is
disjoint from it. The expansion is thus the union of those minterms included in the combination. A general
veri�cation using indicator functions is sketched in the last section of this module.

2.1.4 Use of minterm maps

A typical problem seeks the probability of certain Boolean combinations of a class of events when the
probabilities of various other combinations is given. We consider several simple examples and illustrate the
use of minterm maps in formulation and solution.
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Example 2.2: Survey on software
Statistical data are taken for a certain student population with personal computers. An individual
is selected at random. Let A = the event the person selected has word processing, B = the event
he or she has a spread sheet program, and C = the event the person has a data base program. The
data imply

• The probability is 0.80 that the person has a word processing program: P (A) = 0.8
• The probability is 0.65 that the person has a spread sheet program: P (B) = 0.65
• The probability is 0.30 that the person has a data base program: P (C) = 0.3
• The probability is 0.10 that the person has all three: P (ABC) = 0.1
• The probability is 0.05 that the person has neither word processing nor spread sheet:

P (AcBc) = 0.05
• The probability is 0.65 that the person has at least two: P (AB ∪AC ∪BC) = 0.65
• The probability of word processor and data base, but no spread sheet is twice the probabilty

of spread sheet and data base, but no word processor: P (ABcC) = 2P (AcBC)

a. What is the probability that the person has exactly two of the programs?
b. What is the probability that the person has only the data base program?

Several questions arise:

• Are these data consistent?
• Are the data su�cient to answer the questions?
• How may the data be utilized to anwer the questions?

SOLUTION
The data, expressed in terms of minterm probabilities, are:
P (A) = p (4, 5, 6, 7) = 0.80; hence P (Ac) = p (0, 1, 2, 3) = 0.20
P (B) = p (2, 3, 6, 7) = 0.65; hence P (Bc) = p (0, 1, 4, 5) = 0.35
P (C) = p (1, 3, 5, 7) = 0.30; hence P (Cc) = p (0, 2, 4, 6) = 0.70
P (ABC) = p (7) = 0.10 P (AcBc) = p (0, 1) = 0.05
P (AB ∪AC ∪BC) = p (3, 5, 6, 7) = 0.65
P (ABcC) = p (5) = 2p (3) = 2P (AcBC)
These data are shown on the minterm map in Figure 3a (Figure 2.3). We use the patterns

displayed in the minterm map to aid in an algebraic solution for the various minterm probabilities.
p (2, 3) = p (0, 1, 2, 3)− p (0, 1) = 0.20− 0.05 = 0.15
p (6, 7) = p (2, 3, 6, 7)− p (2, 3) = 0.65− 0.15 = 0.50
p (6) = p (6, 7)− p (7) = 0.50− 0.10 = 0.40
p (3, 5) = p (3, 5, 6, 7)− p (6, 7) = 0.65− 0.50 = 0.15 ⇒ p (3) = 0.05,
p (5) = 0.10 ⇒ p (2) = 0.10
p (1) = p (1, 3, 5, 7)− p (3, 5)− p (7) = 0.30− 0.15− 0.10 = 0.05 ⇒ p (0) = 0
p (4) = p (4, 5, 6, 7)− p (5)− p (6, 7) = 0.80− 0.10− 0.50 = 0.20
Thus, all minterm probabilities are determined. They are displayed in Figure 3b (Figure 2.3).

From these we get

P
(
AcBC

∨
ABcC

∨
ABCc

)
= p (3, 5, 6) = 0.05 + 0.10 + 0.40 = 0.55and P (AcBcC) = p (1) = 0.05 (2.5)
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Figure 2.3: Minterm maps for software survey, Example 2.2 (Survey on software)

Example 2.3: Survey on personal computers
A survey of 1000 students shows that 565 have PC compatible desktop computers, 515 have Macin-
tosh desktop computers, and 151 have laptop computers. 51 have all three, 124 have both PC and
laptop computers, 212 have at least two of the three, and twice as many own both PC and laptop
as those who have both Macintosh desktop and laptop. A person is selected at random from this
population. What is the probability he or she has at least one of these types of computer? What
is the probability the person selected has only a laptop?
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Figure 2.4: Minterm probabilities for computer survey, Example 2.3 (Survey on personal computers)

SOLUTION
Let A = the event of owning a PC desktop, B = the event of owning a Macintosh desktop, and

C = the event of owning a laptop. We utilize a minterm map for three variables to help determine
minterm patterns. For example, the event AC = M5

∨
M7 so that P (AC) = p (5)+p (7) = p (5, 7).

The data, expressed in terms of minterm probabilities, are:
P (A) = p (4, 5, 6, 7) = 0.565, hence P (Ac) = p (0, 1, 2, 3) = 0.435
P (B) = p (2, 3, 6, 7) = 0.515, hence P (Bc) = p (0, 1, 4, 5) = 0.485
P (C) = p (1, 3, 5, 7) = 0.151, hence P (Cc) = p (0, 2, 4, 6) = 0.849
P (ABC) = p (7) = 0.051 P (AC) = p (5, 7) = 0.124
P (AB ∪AC ∪BC) = p (3, 5, 6, 7) = 0.212
P (AC) = p (5, 7) = 2p (3, 7) = 2P (BC)
We use the patterns displayed in the minterm map to aid in an algebraic solution for the various

minterm probabilities.
p (5) = p (5, 7)− p (7) = 0.124− 0.051 = 0.073
p (1, 3) = P (AcC) = 0.151− 0.124 = 0.027 P (ACc) = p (4, 6) = 0.565− 0.124 = 0.441
p (3, 7) = P (BC) = 0.124/2 = 0.062
p (3) = 0.062− 0.051 = 0.011
p (6) = p (3, 4, 6, 7)− p (3)− p (5, 7) = 0.212− 0.011− 0.124 = 0.077
p (4) = P (A)− p (6)− p (5, 7) = 0.565− 0.077− 0.1124 = 0.364
p (1) = p (1, 3)− p (3) = 0.027− 0.11 = 0.016
p (2) = P (B)− p (3, 7)− p (6) = 0.515− 0.062− 0.077 = 0.376
p (0) = P (Cc)− p (4, 6)− p (2) = 0.849− 0.441− 0.376 = 0.032
We have determined the minterm probabilities, which are displayed on the minterm map Fig-

ure 2.4. We may now compute the probability of any Boolean combination of the generating events
A, B, C. Thus,

P (A ∪B ∪ C) = 1− P (AcBcCc) = 1− p (0) = 0.968 and P (AcBcC) = p (1) = 0.016 (2.6)
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Figure 2.5: Minterm probabilities for opinion survey, Example 2.4 (Opinion survey)

Example 2.4: Opinion survey
A survey of 1000 persons is made to determine their opinions on four propositions. Let A,B,C,D
be the events a person selected agrees with the respective propositions. Survey results show the
following probabilities for various combinations:

P (A) = 0.200, P (B) = 0.500, P (C) = 0.300, P (D) = 0.700, P (A (B ∪ Cc)Dc) = 0.055 (2.7)

P (A ∪BC ∪Dc) = 0.520, P (AcBCcD) = 0.200, P (ABCD) = 0.015, P (ABcC) = 0.030 (2.8)

P (AcBcCcD) = 0.195, P (AcBC) = 0.120, P (AcBcDc) = 0.120, P (ACc) = 0.140 (2.9)

P (ACDc) = 0.025, P (ABCcDc) = 0.020 (2.10)

Determine the probabilities for each minterm and for each of the following combinations
Ac (BCc ∪BcC) � that is, not A and (B or C, but not both)
A ∪BCc � that is, A or (B and not C)
SOLUTION
At the outset, it is not clear that the data are consistent or su�cient to determine the minterm

probabilities. However, an examination of the data shows that there are sixteen items (including the
fact that the sum of all minterm probabilities is one). Thus, there is hope, but no assurance, that a
solution exists. A step elimination procedure, as in the previous examples, shows that all minterms
can in fact be calculated. The results are displayed on the minterm map in Figure 2.5. It would be
desirable to be able to analyze the problem systematically. The formulation above suggests a more
systematic algebraic formulation which should make possible machine aided solution.
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2.1.5 Systematic formulation

Use of a minterm map has the advantage of visualizing the minterm expansion in direct relation to the
Boolean combination. The algebraic solutions of the previous problems involved ad hoc manipulations of
the data minterm probability combinations to �nd the probability of the desired target combination. We
seek a systematic formulation of the data as a set of linear algebraic equations with the minterm probabilities
as unknowns, so that standard methods of solution may be employed. Consider again the software survey
of Example 2.2 (Survey on software).

Example 2.5: The software survey problem reformulated
The data, expressed in terms of minterm probabilities, are:

P (A) = p (4, 5, 6, 7) = 0.80
P (B) = p (2, 3, 6, 7) = 0.65
P (C) = p (1, 3, 5, 7) = 0.30
P (ABC) = p (7) = 0.10
P (AcBc) = p (0, 1) = 0.05
P (AB ∪AC ∪BC) = p (3, 5, 6, 7) = 0.65
P (ABcC) = p (5) = 2p (3) = 2P (AcBC), so that p (5)− 2p (3) = 0
We also have in any case
P (Ω) = P (A ∪Ac) = p (0, 1, 2, 3, 4, 5, 6, 7) = 1
to complete the eight items of data needed for determining all eight minterm probabilities. The

�rst datum can be expressed as an equation in minterm probabilities:

0 · p (0) + 0 · p (1) + 0 · p (2) + 0 · p (3) + 1 · p (4) + 1 · p (5) + 1 · p (6) + 1 · p (7) = 0.80 (2.11)

This is an algebraic equation in p (0) , · · · , p (7) with a matrix of coe�cients

[0 0 0 0 1 1 1 1] (2.12)

The others may be written out accordingly, giving eight linear algebraic equations in eight variables
p (0) through p (7). Each equation has a matrix or vector of zero-one coe�cients indicating which
minterms are included. These may be written in matrix form as follows:

1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0

0 0 0 1 0 1 1 1

0 0 0 −2 0 1 0 0





p (0)

p (1)

p (2)

p (3)

p (4)

p (5)

p (6)

p (7)


=



1

0.80

0.65

0.30

0.10

0.05

0.65

0


=



P (Ω)

P (A)

P (B)

P (C)

P (ABC)

P (AcBc)

P (AB ∪AC ∪BC)

P (ABcC)− 2P (AcBC)


(2.13)

• The patterns in the coe�cient matrix are determined by logical operations. We obtained
these with the aid of a minterm map.

• The solution utilizes an algebraic procedure, which could be carried out in a variety of ways,
including several standard computer packages for matrix operations.

We show in the module Minterm Vectors and MATLAB (Section 2.2.1: Minterm vectors and
MATLAB ) how we may use MATLAB for both aspects.
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2.1.6 Indicator functions and the minterm expansion

Previous discussion of the indicator function shows that the indicator function for a Boolean combination of
sets is a numerical valued function of the indicator functions for the individual sets.

• As an indicator function, it takes on only the values zero and one.
• The value of the indicator function for any Boolean combination must be constant on each minterm.

For example, for each ω in the minterm ABcCDc, we must have IA (ω) = 1, IB (ω) = 0, IC (ω) = 1,
and ID (ω) = 0. Thus, any function of IA, IB , IC , ID must be constant over the minterm.

• Consider a Boolean combination E of the generating sets. If ω is in E ∩Mi, then IE (ω) = 1 for all
ω ∈Mi, so thatMi ⊂ E. Since each ω ∈Mi for some i, E must be the union of those minterms sharing
an ω with E.

• Let {Mi : i ∈ JE} be the subclass of those minterms on which IE has the value one. Then

E =
∨
JE

Mi (2.14)

which is the minterm expansion of E.

2.2 Minterms and MATLAB Calculations2

The concepts and procedures in this unit play a signi�cant role in many aspects of the analysis of probability
topics and in the use of MATLAB throughout this work.

2.2.1 Minterm vectors and MATLAB

The systematic formulation in the previous module Minterms (Section 2.1) shows that each Boolean com-
bination, as a union of minterms, can be designated by a vector of zero-one coe�cients. A coe�cient one
in the ith position (numbering from zero) indicates the inclusion of minterm Mi in the union. We formulate
this pattern carefully below and show how MATLAB logical operations may be utilized in problem setup
and solution.

Suppose E is a Boolean combination of A, B, C. Then, by the minterm expansion,

E =
∨
JE

Mi (2.15)

where Mi is the ith minterm and JE is the set of indices for those Mi included in E. For example, consider

E = A (B ∪ Cc) ∪Ac(B ∪ Cc)c = M1

∨
M4

∨
M6

∨
M7 = M (1, 4, 6, 7) (2.16)

F = AcBc ∪AC = M0

∨
M1

∨
M5

∨
M7 = M (0, 1, 5, 7) (2.17)

We may designate each set by a pattern of zeros and ones (e0, e1, · · · , e7). The ones indicate which
minterms are present in the set. In the pattern for set E, minterm Mi is included in E i� ei = 1. This
is, in e�ect, another arrangement of the minterm map. In this form, it is convenient to view the pattern
as a minterm vector, which may be represented by a row matrix or row vector [e0 e1 · · · e7] . We �nd
it convenient to use the same symbol for the name of the event and for the minterm vector or matrix
representing it. Thus, for the examples above,

E ∼ [0 1 0 0 1 0 1 1] and F ∼ [1 1 0 0 0 1 0 1] (2.18)

2This content is available online at <http://cnx.org/content/m23248/1.9/>.

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



35

It should be apparent that this formalization can be extended to sets generated by any �nite class.
Minterm vectors for Boolean combinations
If E and F are combinations of n generating sets, then each is represented by a unique minterm vector

of length 2n. In the treatment in the module Minterms (Section 2.1), we determine the minterm vector with
the aid of a minterm map. We wish to develop a systematic way to determine these vectors.

As a �rst step, we suppose we have minterm vectors for E and F and want to obtain the minterm vector
of Boolean combinations of these.

1. The minterm expansion for E ∪ F has all the minterms in either set. This means the jth element of
the vector for E ∪ F is the maximum of the jth elements for the two vectors.

2. The minterm expansion for E ∩ F has only those minterms in both sets. This means the jth element
of the vector for E ∩ F is the minimum of the jth elements for the two vectors.

3. The minterm expansion for Ec has only those minterms not in the expansion for E. This means the
vector for Ec has zeros and ones interchanged. The jth element of Ec is one i� the corresponding
element of E is zero.

We illustrate for the case of the two combinations E and F of three generating sets, considered above

E = A (B ∪ Cc) ∪Ac(B ∪ Cc)c ∼ [0 1 0 0 1 0 1 1] and F = AcBc ∪AC ∼ [1 1 0 0 0 1 0 1] (2.19)

Then

E ∪ F ∼ [1 1 0 0 1 1 1 1] , E ∩ F ∼ [0 1 0 0 0 0 0 1] , and Ec ∼ [1 0 1 1 0 1 0 0] (2.20)

MATLAB logical operations
MATLAB logical operations on zero-one matrices provide a convenient way of handling Boolean combi-

nations of minterm vectors represented as matrices. For two zero-one matrices E, F of the same size

: E|F is the matrix obtained by taking the maximum element in each place.
: E&F is the matrix obtained by taking the minimum element in each place.
: EC is the matrix obtained by interchanging one and zero in each place in E.

Thus, if E, F are minterm vectors for sets by the same name, then E|F is the minterm vector for E ∪ F ,
E&F is the minterm vector for E ∩ F , and E = 1− E is the minterm vector for Ec.

This suggests a general approach to determining minterm vectors for Boolean combinations.

1. Start with minterm vectors for the generating sets.
2. Use MATLAB logical operations to obtain the minterm vector for any Boolean combination.

Suppose, for example, the class of generating sets is {A, B, C}. Then the minterm vectors for A, B, and C,
respectively, are

A = [0 0 0 0 1 1 1 1] B = [0 0 1 1 0 0 1 1] C = [0 1 0 1 0 1 0 1] (2.21)

If E = AB ∪ Cc, then the logical combination E = (A&B) | C of the matrices yields E = [1 0 1 0 1 0 1 1].
MATLAB implementation
A key step in the procedure just outlined is to obtain the minterm vectors for the generating elements

{A, B, C}. We have an m-function to provide such fundamental vectors. For example to produce the
second minterm vector for the family (i.e., the minterm vector for B), the basic zero-one pattern 0 0 1 1 is
replicated twice to give

0 0 1 1 0 0 1 1

The function minterm(n,k) generates the kth minterm vector for a class of n generating sets.

Example 2.6: Minterms for the class {A,B,C}.
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� A = minterm(3,1)

A = 0 0 0 0 1 1 1 1

� B = minterm(3,2)

B = 0 0 1 1 0 0 1 1

� C = minterm(3,3)

C = 0 1 0 1 0 1 0 1

Example 2.7: Minterm patterns for the Boolean combinations
F = AB ∪BcC G = A ∪AcC

F = (A&B)|(∼B&C)
F = 0 1 0 0 0 1 1 1

� G = A|(∼A&C)
G = 0 1 0 1 1 1 1 1

� JF = find(F)-1 % Use of find to determine index set for F

JF = 1 5 6 7 % Shows F = M(1, 5, 6, 7)

These basic minterm patterns are useful not only for Boolean combinations of events but also for many
aspects of the analysis of those random variables which take on only a �nite number of values.

Zero-one arrays in MATLAB
The treatment above hides the fact that a rectangular array of zeros and ones can have two quite di�erent

meanings and functions in MATLAB.

1. A numerical matrix (or vector) subject to the usual operations on matrices..
2. A logical array whose elements are combined by a. Logical operators to give new logical arrays; b.

Array operations (element by element) to give numerical matrices; c. Array operations with numerical
matrices to give numerical results.

Some simple examples will illustrate the principal properties.

�> A = minterm(3,1);

� B = minterm(3,2);

� C = minterm(3,3);

� F = (A&B)|(∼B&C)
F = 0 1 0 0 0 1 1 1

� G = A|(∼A&C)
G = 0 1 0 1 1 1 1 1

� islogical(A) % Test for logical array

ans = 0

� islogical(F)

ans = 1

� m = max(A,B) % A matrix operation

m = 0 0 1 1 1 1 1 1

� islogical(m)

ans = 0

� m1 = A|B % A logical operation

m1 = 0 0 1 1 1 1 1 1

� islogical(m1)

ans = 1

� a = logical(A) % Converts 0-1 matrix into logical array

a = 0 0 0 0 1 1 1 1

� b = logical(B)

� m2 = a|b
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m2 = 0 0 1 1 1 1 1 1

� p = dot(A,B) % Equivalently, p = A*B'

p = 2

� p1 = total(A.*b)

p1 = 2

� p3 = total(A.*B)

p3 = 2

� p4 = a*b' % Cannot use matrix operations on logical arrays

??? Error using ==> mtimes % MATLAB error signal

Logical inputs must be scalar.

Often it is desirable to have a table of the generating minterm vectors. Use of the function minterm in a
simple �for loop� yields the following m-function.

The function mintable(n) Generates a table of minterm vectors for n generating sets.

Example 2.8: Mintable for three variables

� M3 = mintable(3)

M3 = 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

As an application of mintable, consider the problem of determining the probability of k of n events. If
{Ai : 1 ≤ i ≤ n} is any �nite class of events, the event that exactly k of these events occur on a trial can be
characterized simply in terms of the minterm expansion. The event Akn that exactly k occur is given by

Akn = the disjoint union of those minterms with exactly k positions uncomplemented (2.22)

In the matrix M = mintable(n) these are the minterms corresponding to columns with exactly k ones. The
event Bkn that k or more occur is given by

Bkn =
n∨
r=k

Arn (2.23)

If we have the minterm probabilities, it is easy to pick out the appropriate minterms and combine the
probabilities. The following example in the case of three variables illustrates the procedure.

Example 2.9: The software survey (continued)
In the software survey problem, the minterm probabilities are

pm = [0 0.05 0.10 0.05 0.20 0.10 0.40 0.10] (2.24)

where A = event has word processor, B = event has spread sheet, C = event has a data base
program. It is desired to get the probability an individual selected has k of these, k = 0, 1, 2, 3.

SOLUTION
We form a mintable for three variables. We count the number of �successes� corresponding to

each minterm by using the MATLAB function sum, which gives the sum of each column. In this
case, it would be easy to determine each distinct value and add the probabilities on the minterms
which yield this value. For more complicated cases, we have an m-function called csort (for sort
and consolidate) to perform this operation.

� pm = 0.01*[0 5 10 5 20 10 40 10];

� M = mintable(3)

M =
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0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

� T = sum(M) % Column sums give number

T = 0 1 1 2 1 2 2 3 % of successes on each

� [k,pk] = csort(T,pm); % minterm, determines

% distinct values in T and

� disp([k;pk]') % consolidates probabilities

0 0

1.0000 0.3500

2.0000 0.5500

3.0000 0.1000

For three variables, it is easy enough to identify the various combinations �by eye� and make the
combinations. For a larger number of variables, however, this may become tedious. The approach
is much more useful in the case of Independent Events, because of the ease of determining the
minterm probabilities.

Minvec procedures
Use of the tilde ∼ to indicate the complement of an event is often awkward. It is customary to indicate

the complement of an event E by Ec. In MATLAB, we cannot indicate the superscript, so we indicate the
complement by Ec instead of ∼ E. To facilitate writing combinations, we have a family of minvec procedures
(minvec3, minvec4, ..., minvec10) to expedite expressing Boolean combinations of n = 3, 4, 5, · · · , 10 sets.
These generate and name the minterm vector for each generating set and its complement.

Example 2.10: Boolean combinations using minvec3
We wish to generate a matrix whose rows are the minterm vectors for Ω = A ∪ Ac, A, AB, ABC,
C, and AcCc, respectively.

� minvec3 % Call for the setup procedure

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired

� V = [A|Ac; A; A&B; A&B&C; C; Ac&Cc]; % Logical combinations (one per

% row) yield logical vectors

� disp(V)

1 1 1 1 1 1 1 1 % Mixed logical and

0 0 0 0 1 1 1 1 % numerical vectors

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

0 1 0 1 0 1 0 1

1 0 1 0 0 0 0 0

Minterm probabilities and Boolean combination
If we have the probability of every minterm generated by a �nite class, we can determine the probability of

any Boolean combination of the members of the class. When we know the minterm expansion or, equivalently,
the minterm vector, we simply pick out the probabilities corresponding to the minterms in the expansion
and add them. In the following example, we do this �by hand� then show how to do it with MATLAB .

Example 2.11
Consider E = A (B ∪ Cc) ∪ Ac(B ∪ Cc)c and F = AcBc ∪ AC of the example above, and suppose
the respective minterm probabilities are

p0 = 0.21, p1 = 0.06, p2 = 0.29, p3 = 0.11, p4 = 0.09, p5 = 0.03, p6 = 0.14, p7 = 0.07 (2.25)
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Use of a minterm map shows E = M (1, 4, 6, 7) and F = M (0, 1, 5, 7). so that

P (E) = p1 + p4 + p6 + p7 = p (1, 4, 6, 7) = 0.36 and P (F ) = p (0, 1, 5, 7) = 0.37 (2.26)

This is easily handled in MATLAB.

• Use minvec3 to set the generating minterm vectors.
• Use logical matrix operations

E = (A& (B|Cc)) | (Ac& ( (B|Cc))) and F = (Ac&Bc) | (A&C) (2.27)

to obtain the (logical) minterm vectors for E and F.
• If pm is the matrix of minterm probabilities, perform the algebraic dot product or scalar

product of the pm matrix and the minterm vector for the combination. This can be called
for by the MATLAB commands PE = E*pm' and PF = F*pm' .

The following is a transcript of the MATLAB operations.

� minvec3 % Call for the setup procedure

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

� E = (A&(B|Cc))|(Ac&∼(B|Cc));
� F = (Ac&Bc)|(A&C);

� pm = 0.01*[21 6 29 11 9 3 14 7];

� PE = E*pm' % Picks out and adds the minterm probabilities

PE = 0.3600

� PF = F*pm'

PF = 0.3700

Example 2.12: Solution of the software survey problem
We set up the matrix equations with the use of MATLAB and solve for the minterm probabilities.
From these, we may solve for the desired �target� probabilities.

� minvec3

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

Data vector combinations are:

� DV = [A|Ac; A; B; C; A&B&C; Ac&Bc; (A&B)|(A&C)|(B&C); (A&Bc&C) - 2*(Ac&B&C)]

DV =

1 1 1 1 1 1 1 1 % Data mixed numerical

0 0 0 0 1 1 1 1 % and logical vectors

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0

0 0 0 1 0 1 1 1

0 0 0 -2 0 1 0 0

� DP = [1 0.8 0.65 0.3 0.1 0.05 0.65 0]; % Corresponding data probabilities

� pm = DV\DP' % Solution for minterm probabilities

pm =

-0.0000 % Roundoff -3.5 x 10-17

0.0500

0.1000

0.0500
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0.2000

0.1000

0.4000

0.1000

� TV = [(A&B&Cc)|(A&Bc&C)|(Ac&B&C); Ac&Bc&C] % Target combinations

TV =

0 0 0 1 0 1 1 0 % Target vectors

0 1 0 0 0 0 0 0

� PV = TV*pm % Solution for target probabilities

PV =

0.5500 % Target probabilities

0.0500

Example 2.13: An alternate approach
The previous procedure �rst obtained all minterm probabilities, then used these to determine
probabilities for the target combinations. The following procedure does not require calculation of the
minterm probabilities. Sometimes the data are not su�cient to calculate all minterm probabilities,
yet are su�cient to allow determination of the target probabilities.

Suppose the data minterm vectors are linearly independent, and the target minterm vectors
are linearly dependent upon the data vectors (i.e., the target vectors can be expressed as linear
combinations of the data vectors). Now each target probability is the same linear combination of
the data probabilities. To determine the linear combinations, solve the matrix equation

TV = CT ∗DV which has the MATLAB solution CT = TV/DV (2.28)

Then the matrix tp of target probabilities is given by tp = CT ∗DP '. Continuing the MATLAB
procedure above, we have:

� CT = TV/DV;

� tp = CT*DP'

tp = 0.5500

0.0500

2.2.2 The procedure mincalc

The procedure mincalc performs calculations as in the preceding examples. The re�nements consist of
determining consistency and computability of various individual minterm probabilities and target probilities.
The consistency check is principally for negative minterm probabilities. The computability tests are tests
for linear independence by means of calculation of ranks of various matrices. The procedure picks out the
computable minterm probabilities and the computable target probabilities and calculates them.

To utilize the procedure, the problem must be formulated appropriately and precisely, as follows:

1. Use the MATLAB program minvecq to set minterm vectors for each of q basic events.
2. Data consist of Boolean combinations of the basic events and the respective probabilities of these

combinations. These are organized into two matrices:

• The data vector matrix DV has the data Boolean combinations� one on each row. MATLAB
translates each row into the minterm vector for the corresponding Boolean combination. The
�rst entry (on the �rst row) is A |Ac (for A

∨
Ac), which is the whole space. Its minterm vector

consists of a row of ones.
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• The data probability matrix DP is a row matrix of the data probabilities. The �rst entry is one,
the probability of the whole space.

3. The objective is to determine the probability of various target Boolean combinations. These are put
into the target vector matrix TV , one on each row. MATLAB produces the minterm vector for each
corresponding target Boolean combination.

Computational note. In mincalc, it is necessary to turn the arrays DV and TV consisting of zero-one
patterns into zero-one matrices. This is accomplished for DV by the operation DV = ones(size(DV)).*DV.
and similarly for TV. Both the original and the transformed matrices have the same zero-one pattern, but
MATLAB interprets them di�erently.

Usual case

Suppose the data minterm vectors are linearly independent and the target vectors are each linearly depen-

dent on the data minterm vectors. Then each target minterm vector is expressible as a linear combination
of data minterm vectors. Thus, there is a matrix CT such that TV = CT ∗ DV . MATLAB solves this
with the command CT = TV/DV . The target probabilities are the same linear combinations of the data
probabilities. These are obtained by the MATLAB operation tp = DP ∗ CT '.

Cautionary notes
The program mincalc depends upon the provision in MATLAB for solving equations when less than full

data are available (based on the singular value decomposition). There are several situations which should
be dealt with as special cases. It is usually a good idea to check results by hand to determine whether they
are consistent with data. The checking by hand is usually much easier than obtaining the solution unaided,
so that use of MATLAB is advantageous even in questionable cases.

1. The Zero Problem. If the total probability of a group of minterms is zero, then it follows that the
probability of each minterm in the group is zero. However, if mincalc does not have enough information
to calculate the separate minterm probabilities in the case they are not zero, it will not pick up in the
zero case the fact that the separate minterm probabilities are zero. It simply considers these minterm
probabilities not computable.

2. Linear dependence. In the case of linear dependence, the operation called for by the command CT =
TV/DV may not be able to solve the equations. The matrix may be singular, or it may not be able to
decide which of the redundant data equations to use. Should it provide a solution, the result should
be checked with the aid of a minterm map.

3. Consistency check. Since the consistency check is for negative minterms, if there are not enough data
to calculate the minterm probabilities, there is no simple check on the consistency. Sometimes the
probability of a target vector included in another vector will actually exceed what should be the larger
probability. Without considerable checking, it may be di�cult to determine consistency.

4. In a few unusual cases, the command CT = TV/DV does not operate appropriately, even though the
data should be adequate for the problem at hand. Apparently the approximation process does not
converge.

MATLAB Solutions for examples using mincalc

Example 2.14: Software survey

% file mcalc01 Data for software survey

minvec3;

DV = [A|Ac; A; B; C; A&B&C; Ac&Bc; (A&B)|(A&C)|(B&C); (A&Bc&C) - 2*(Ac&B&C)];

DP = [1 0.8 0.65 0.3 0.1 0.05 0.65 0];

TV = [(A&B&Cc)|(A&Bc&C)|(Ac&B&C); Ac&Bc&C];

disp('Call for mincalc')

� mcalc01 % Call for data

Call for mincalc % Prompt supplied in the data file
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� mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.5500

2.0000 0.0500

The number of minterms is 8

The number of available minterms is 8

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

� disp(PMA) % Optional call for minterm probabilities

0 0

1.0000 0.0500

2.0000 0.1000

3.0000 0.0500

4.0000 0.2000

5.0000 0.1000

6.0000 0.4000

7.0000 0.1000

Example 2.15: Computer survey

% file mcalc02.m Data for computer survey

minvec3

DV = [A|Ac; A; B; C; A&B&C; A&C; (A&B)|(A&C)|(B&C); ...

2*(B&C) - (A&C)];

DP = 0.001*[1000 565 515 151 51 124 212 0]; TV = [A|B|C; Ac&Bc&C];

disp('Call for mincalc')

� mcalc02

Call for mincalc

� mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.9680

2.0000 0.0160

The number of minterms is 8

The number of available minterms is 8

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

� disp(PMA)

0 0.0320

1.0000 0.0160

2.0000 0.3760

3.0000 0.0110

4.0000 0.3640

5.0000 0.0730

6.0000 0.0770

7.0000 0.0510

Example 2.16
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% file mcalc03.m Data for opinion survey

minvec4

DV = [A|Ac; A; B; C; D; A&(B|Cc)&Dc; A|((B&C)|Dc) ; Ac&B&Cc&D; ...

A&B&C&D; A&Bc&C; Ac&Bc&Cc&D; Ac&B&C; Ac&Bc&Dc; A&Cc; A&C&Dc; A&B&Cc&Dc];

DP = 0.001*[1000 200 500 300 700 55 520 200 15 30 195 120 120 ...

140 25 20];

TV = [Ac&((B&Cc)|(Bc&C)); A|(B&Cc)];

disp('Call for mincalc')

� mincalc03

Call for mincalc

� mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.4000

2.0000 0.4800

The number of minterms is 16

The number of available minterms is 16

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

� disp(minmap(pma)) % Display arranged as on minterm map

0.0850 0.0800 0.0200 0.0200

0.1950 0.2000 0.0500 0.0500

0.0350 0.0350 0.0100 0.0150

0.0850 0.0850 0.0200 0.0150

The procedure mincalct
A useful modi�cation, which we call mincalct, computes the available target probabilities, without check-

ing and computing the minterm probabilities. This procedure assumes a data �le similar to that for mincalc,
except that it does not need the target matrix TV , since it prompts for target Boolean combination inputs.
The procedure mincalct may be used after mincalc has performed its operations to calculate probabilities
for additional target combinations.

Example 2.17: (continued) Additional target datum for the opinion survey
Suppose mincalc has been applied to the data for the opinion survey and that it is desired to
determine P (AD ∪BDc). It is not necessary to recalculate all the other quantities. We may
simply use the procedure mincalct and input the desired Boolean combination at the prompt.

� mincalct

Enter matrix of target Boolean combinations (A&D)|(B&Dc)

Computable target probabilities

1.0000 0.2850

Repeated calls for mcalct may be used to compute other target probabilities.

2.3 Problems on Minterm Analysis3

Exercise 2.3.1 (Solution on p. 48.)

Consider the class {A, B, C, D} of events. Suppose the probability that at least one of the events A
or C occurs is 0.75 and the probability that at least one of the four events occurs is 0.90. Determine
the probability that neither of the events A or C but at least one of the events B or D occurs.

3This content is available online at <http://cnx.org/content/m24171/1.5/>.
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Exercise 2.3.2 (Solution on p. 48.)

1. Use minterm maps to show which of the following statements are true for any class {A, B, C}:

a. A ∪ (BC)c = A ∪B ∪BcCc
b. (A ∪B)c = AcC ∪BcC
c. A ⊂ AB ∪AC ∪BC

2. Repeat part (1) using indicator functions (evaluated on minterms).
3. Repeat part (1) using the m-procedure minvec3 and MATLAB logical operations.

Exercise 2.3.3 (Solution on p. 48.)

Use (1) minterm maps, (2) indicator functions (evaluated on minterms), (3) the m-procedure
minvec3 and MATLAB logical operations to show that

a. A (B ∪ Cc) ∪AcBC ⊂ A (BC ∪ Cc) ∪AcB
b. A ∪AcBC = AB ∪BC ∪AC ∪ABcCc

Exercise 2.3.4 (Solution on p. 48.)

Minterms for the events {A,B,C,D}, arranged as on a minterm map are

0.0168 0.0072 0.0252 0.0108

0.0392 0.0168 0.0588 0.0252

0.0672 0.0288 0.1008 0.0432

0.1568 0.0672 0.2352 0.1008

What is the probability that three or more of the events occur on a trial? Of exactly two? Of two
or fewer?

Exercise 2.3.5 (Solution on p. 49.)

Minterms for the events {A,B,C,D,E}, arranged as on a minterm map are

0.0216 0.0324 0.0216 0.0324 0.0144 0.0216 0.0144 0.0216

0.0144 0.0216 0.0144 0.0216 0.0096 0.0144 0.0096 0.0144

0.0504 0.0756 0.0504 0.0756 0.0336 0.0504 0.0336 0.0504

0.0336 0.0504 0.0336 0.0504 0.0224 0.0336 0.0224 0.0336

What is the probability that three or more of the events occur on a trial? Of exactly four? Of three
or fewer? Of either two or four?

Exercise 2.3.6 (Solution on p. 49.)

Suppose P (A ∪BcC) = 0.65, P (AC) = 0.2, P (AcB) = 0.25
P (AcCc) = 0.25, P (BCc) = 0.30. Determine P ((ACc ∪AcC)Bc).
Then determine P ((ABc ∪Ac)Cc) and P (Ac (B ∪ Cc)), if possible.

Exercise 2.3.7 (Solution on p. 49.)

Suppose P ((ABc ∪AcB)C) = 0.4, P (AB) = 0.2, P (AcCc) = 0.3, P (A) = 0.6, P (C) = 0.5,
and P (ABcCc) = 0.1. Determine P (AcCc ∪AC), P ((ABc ∪Ac)Cc), and P (Ac (B ∪ Cc)), if
possible.

Exercise 2.3.8 (Solution on p. 50.)

Suppose P (A) = 0.6, P (C) = 0.4, P (AC) = 0.3, P (AcB) = 0.2,
and P (AcBcCc) = 0.1.
Determine P ((A ∪B)Cc), P (ACc ∪AcC), and P (ACc ∪AcB), if possible.

Exercise 2.3.9 (Solution on p. 50.)

Suppose P (A) = 0.5, P (AB) = P (AC) = 0.3, and P (ABCc) = 0.1.
Determine P (A(BCc)c) and P (AB ∪AC ∪BC).
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Then repeat with additional data P (AcBcCc) = 0.1 and P (AcBC) = 0.05.
Exercise 2.3.10 (Solution on p. 51.)

Given: P (A) = 0.6, P (AcBc) = 0.2, P (ACc) = 0.4, and P (ACDc) = 0.1.
Determine P (AcB ∪A (Cc ∪D)).

Exercise 2.3.11 (Solution on p. 52.)

A survey of a represenative group of students yields the following information:

• 52 percent are male
• 85 percent live on campus
• 78 percent are male or are active in intramural sports (or both)
• 30 percent live on campus but are not active in sports
• 32 percent are male, live on campus, and are active in sports
• 8 percent are male and live o� campus
• 17 percent are male students inactive in sports

a. What is the probability that a randomly chosen student is male and lives on campus?
b. What is the probability of a male, on campus student who is not active in sports?
c. What is the probability of a female student active in sports?

Exercise 2.3.12 (Solution on p. 52.)

A survey of 100 persons of voting age reveals that 60 are male, 30 of whom do not identify with
a political party; 50 are members of a political party; 20 nonmembers of a party voted in the
last election, 10 of whom are female. How many nonmembers of a political party did not vote?
Suggestion Express the numbers as a fraction, and treat as probabilities.

Exercise 2.3.13 (Solution on p. 52.)

During a period of unsettled weather, let A be the event of rain in Austin, B be the event of rain
in Houston, and C be the event of rain in San Antonio. Suppose:

P (AB) = 0.35, P (ABc) = 0.15, P (AC) = 0.20, P (ABc ∪AcB) = 0.45 (2.29)

P (BC) = 0.30 P (BcC) = 0.05 P (AcBcCc) = 0.15 (2.30)

a. What is the probability of rain in all three cities?
b. What is the probability of rain in exactly two of the three cities?
c. What is the probability of rain in exactly one of the cities?

Exercise 2.3.14 (Solution on p. 53.)

One hundred students are questioned about their course of study and plans for graduate study.
Let A = the event the student is male; B = the event the student is studying engineering; C = the
event the student plans at least one year of foreign language; D = the event the student is planning
graduate study (including professional school). The results of the survey are:

There are 55 men students; 23 engineering students, 10 of whom are women; 75 students will take
foreign language classes, including all of the women; 26 men and 19 women plan graduate study; 13
male engineering students and 8 women engineering students plan graduate study; 20 engineering
students will take a foreign language and plan graduate study; 5 non engineering students plan
graduate study but no foreign language courses; 11 non engineering, women students plan foreign
language study and graduate study.

a. What is the probability of selecting a student who plans foreign language classes and graduate
study?
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b. What is the probability of selecting a women engineer who does not plan graduate study?
c. What is the probability of selecting a male student who either studies a foreign language but

does not intend graduate study or will not study a foreign language but plans graduate study?

Exercise 2.3.15 (Solution on p. 54.)

A survey of 100 students shows that: 60 are men students; 55 students live on campus, 25 of
whom are women; 40 read the student newspaper regularly, 25 of whom are women; 70 consider
themselves reasonably active in student a�airs�50 of these live on campus; 35 of the reasonably
active students read the newspaper regularly; All women who live on campus and 5 who live o�
campus consider themselves to be active; 10 of the on-campus women readers consider themselves
active, as do 5 of the o� campus women; 5 men are active, o�-campus, non readers of the newspaper.

a. How many active men are either not readers or o� campus?
b. How many inactive men are not regular readers?

Exercise 2.3.16 (Solution on p. 54.)

A television station runs a telephone survey to determine how many persons in its primary viewing
area have watched three recent special programs, which we call a, b, and c. Of the 1000 persons
surveyed, the results are:

221 have seen at least a; 209 have seen at least b; 112 have seen at least c; 197 have seen at
least two of the programs; 45 have seen all three; 62 have seen at least a and c; the number having
seen at least a and b is twice as large as the number who have seen at least b and c.

• (a) How many have seen at least one special?
• (b) How many have seen only one special program?

Exercise 2.3.17 (Solution on p. 54.)

An automobile safety inspection station found that in 1000 cars tested:

• 100 needed wheel alignment, brake repair, and headlight adjustment
• 325 needed at least two of these three items
• 125 needed headlight and brake work
• 550 needed at wheel alignment

a. How many needed only wheel alignment?
b. How many who do not need wheel alignment need one or none of the other items?

Exercise 2.3.18 (Solution on p. 55.)

Suppose P (A (B ∪ C)) = 0.3, P (Ac) = 0.6, and P (AcBcCc) = 0.1.
Determine P (B ∪ C), P ((AB ∪AcBc)Cc ∪AC), and P (Ac (B ∪ Cc)), if possible.
Repeat the problem with the additional data P (AcBC) = 0.2 and P (AcB) = 0.3.

Exercise 2.3.19 (Solution on p. 56.)

A computer store sells computers, monitors, printers. A customer enters the store. Let A, B, C
be the respective events the customer buys a computer, a monitor, a printer. Assume the following
probabilities:

• The probability P (AB) of buying both a computer and a monitor is 0.49.
• The probability P (ABCc) of buying both a computer and a monitor but not a printer is

0.17.
• The probability P (AC) of buying both a computer and a printer is 0.45.
• The probability P (BC) of buying both a monitor and a printer is 0.39
• The probability P (ACc

∨
AcC) of buying a computer or a printer, but not both is 0.50.
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• The probability P (ABc
∨
AcB) of buying a computer or a monitor, but not both is 0.43.

• The probability P (BCc
∨
BcC) of buying a monitor or a printer, but not both is 0.43.

a. What is the probability P (A), P (B), or P (C) of buying each?
b. What is the probability of buying exactly two of the three items?
c. What is the probability of buying at least two?
d. What is the probability of buying all three?

Exercise 2.3.20 (Solution on p. 56.)

Data are P (A) = 0.232, P (B) = 0.228, P (ABC) = 0.045, P (AC) = 0.062,
P (AB ∪AC ∪BC) = 0.197 and P (BC) = 2P (AC).
Determine P (A ∪B ∪ C) and P (AcBcC), if possible.
Repeat, with the additional data P (C) = 0.230.

Exercise 2.3.21 (Solution on p. 57.)

Data are: P (A) = 0.4, P (AB) = 0.3, P (ABC) = 0.25, P (C) = 0.65,
P (AcCc) = 0.3. Determine available minterm probabilities and the following,
if computable:

P (ACc ∪AcC) , P (AcBc) , P (A ∪B) , P (ABc) (2.31)

With only six items of data (including P (Ω) = P (A
∨
Ac) = 1), not all minterms are available.

Try the additional data P (AcBCc) = 0.1 and P (AcBc) = 0.3. Are these consistent and linearly
independent? Are all minterm probabilities available?

Exercise 2.3.22 (Solution on p. 58.)

Repeat Exercise 2.3.21 with P (AB) changed from 0.3 to 0.5. What is the result? Explain the
reason for this result.

Exercise 2.3.23 (Solution on p. 59.)

Repeat Exercise 2.3.21 with the original data probability matrix, but with AB replaced by AC in
the data vector matrix. What is the result? Does mincalc work in this case? Check results on a
minterm map.
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Solutions to Exercises in Chapter 2

Solution to Exercise 2.3.1 (p. 43)
Use the pattern P (E ∪ F ) = P (E) + P (EcF ) and (A ∪ C)c = AcCc.

P (A ∪ C ∪B ∪D) = P (A ∪ C)+P (AcCc (B ∪D)) , so that P (AcCc (B ∪D)) =
0.90− 0.75 = 0.15

(2.32)

Solution to Exercise 2.3.2 (p. 44)
We use the MATLAB procedure, which displays the essential patterns.

minvec3

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

E = A|∼(B&C);
F = A|B|(Bc&Cc);

disp([E;F])

1 1 1 0 1 1 1 1 % Not equal

1 0 1 1 1 1 1 1

G = ∼(A|B);
H = (Ac&C)|(Bc&C);

disp([G;H])

1 1 0 0 0 0 0 0 % Not equal

0 1 0 1 0 1 0 0

K = (A&B)|(A&C)|(B&C);

disp([A;K])

0 0 0 0 1 1 1 1 % A not contained in K

0 0 0 1 0 1 1 1

Solution to Exercise 2.3.3 (p. 44)
We use the MATLAB procedure, which displays the essential patterns.

minvec3

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

E = (A&(B|Cc))|(Ac&B&C);

F = (A&((B&C)|Cc))|(Ac&B);

disp([E;F])

0 0 0 1 1 0 1 1 % E subset of F

0 0 1 1 1 0 1 1

G = A|(Ac&B&C);

H = (A&B)|(B&C)|(A&C)|(A&Bc&Cc);

disp([G;H])

0 0 0 1 1 1 1 1 % G = H

0 0 0 1 1 1 1 1

Solution to Exercise 2.3.4 (p. 44)
We use mintable(4) and determine positions with correct number(s) of ones (number of occurrences). An
alternate is to use minvec4 and express the Boolean combinations which give the correct number(s) of ones.

npr02_04 (Section~17.8.1: npr02_04)

Minterm probabilities are in pm. Use mintable(4)

a = mintable(4);
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s = sum(a); % Number of ones in each minterm position

P1 = (s>=3)*pm' % Select and add minterm probabilities

P1 = 0.4716

P2 = (s==2)*pm'

P2 = 0.3728

P3 = (s<=2)*pm'
P3 = 0.5284

Solution to Exercise 2.3.5 (p. 44)
We use mintable(5) and determine positions with correct number(s) of ones (number of occurrences).

npr02_05 (Section~17.8.2: npr02_05)

Minterm probabilities are in pm. Use mintable(5)

a = mintable(5);

s = sum(a); % Number of ones in each minterm position

P1 = (s>=3)*pm' % Select and add minterm probabilities

P1 = 0.5380

P2 = (s==4)*pm'

P2 = 0.1712

P3 = (s<=3)*pm'
P3 = 0.7952

P4 = ((s==2)|(s==4))*pm'

P4 = 0.4784

Solution to Exercise 2.3.6 (p. 44)

% file npr02_06.m (Section~17.8.3: npr02_06) % Data file

% Data for Exercise~2.3.6

minvec3

DV = [A|Ac; A|(Bc&C); A&C; Ac&B; Ac&Cc; B&Cc];

DP = [1 0.65 0.20 0.25 0.25 0.30];

TV = [((A&Cc)|(Ac&C))&Bc; ((A&Bc)|Ac)&Cc; Ac&(B|Cc)];

disp('Call for mincalc')

npr02_06 % Call for data

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.3000 % The first and third target probability

3.0000 0.3500 % is calculated. Check with minterm map.

The number of minterms is 8

The number of available minterms is 4

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

Solution to Exercise 2.3.7 (p. 44)

% file npr02_07.m (Section~17.8.4: npr02_07)

% Data for Exercise~2.3.7
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minvec3

DV = [A|Ac; ((A&Bc)|(Ac&B))&C; A&B; Ac&Cc; A; C; A&Bc&Cc];

DP = [ 1 0.4 0.2 0.3 0.6 0.5 0.1];

TV = [(Ac&Cc)|(A&C); ((A&Bc)|Ac)&Cc; Ac&(B|Cc)];

disp('Call for mincalc')

npr02_07 % Call for data

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.7000 % All target probabilities calculable

2.0000 0.4000 % even though not all minterms are available

3.0000 0.4000

The number of minterms is 8

The number of available minterms is 6

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

Solution to Exercise 2.3.8 (p. 44)

% file npr02_08.m (Section~17.8.5: npr02_08)

% Data for Exercise~2.3.8

minvec3

DV = [A|Ac; A; C; A&C; Ac&B; Ac&Bc&Cc];

DP = [ 1 0.6 0.4 0.3 0.2 0.1];

TV = [(A|B)&Cc; (A&Cc)|(Ac&C); (A&Cc)|(Ac&B)];

disp('Call for mincalc')

npr02_08 % Call for data

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.5000 % All target probabilities calculable

2.0000 0.4000 % even though not all minterms are available

3.0000 0.5000

The number of minterms is 8

The number of available minterms is 4

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

Solution to Exercise 2.3.9 (p. 44)

% file npr02_09.m (Section~17.8.6: npr02_09)

% Data for Exercise~2.3.9

minvec3
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DV = [A|Ac; A; A&B; A&C; A&B&Cc];

DP = [ 1 0.5 0.3 0.3 0.1];

TV = [A&(∼(B&Cc)); (A&B)|(A&C)|(B&C)];

disp('Call for mincalc')

% Modification for part 2

% DV = [DV; Ac&Bc&Cc; Ac&B&C];

% DP = [DP 0.1 0.05];

npr02_09 % Call for data

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.4000 % Only the first target probability calculable

The number of minterms is 8

The number of available minterms is 4

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

DV = [DV; Ac&Bc&Cc; Ac&B&C]; % Modification of data

DP = [DP 0.1 0.05];

mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.4000 % Both target probabilities calculable

2.0000 0.4500 % even though not all minterms are available

The number of minterms is 8

The number of available minterms is 6

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

Solution to Exercise 2.3.10 (p. 45)

% file npr02_10.m (Section~17.8.7: npr02_10)

% Data for Exercise~2.3.10

minvec4

DV = [A|Ac; A; Ac&Bc; A&Cc; A&C&Dc];

DP = [1 0.6 0.2 0.4 0.1];

TV = [(Ac&B)|(A&(Cc|D))];

disp('Call for mincalc')

npr02_10

Variables are A, B, C, D, Ac, Bc, Cc, Dc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.7000 % Checks with minterm map solution

The number of minterms is 16

The number of available minterms is 0

Available minterm probabilities are in vector pma
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To view available minterm probabilities, call for PMA

Solution to Exercise 2.3.11 (p. 45)

% file npr02_11.m (Section~17.8.8: npr02_11)

% Data for Exercise~2.3.11

% A = male; B = on campus; C = active in sports

minvec3

DV = [A|Ac; A; B; A|C; B&Cc; A&B&C; A&Bc; A&Cc];

DP = [ 1 0.52 0.85 0.78 0.30 0.32 0.08 0.17];

TV = [A&B; A&B&Cc; Ac&C];

disp('Call for mincalc')

npr02_11

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.4400

2.0000 0.1200

3.0000 0.2600

The number of minterms is 8

The number of available minterms is 8

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

Solution to Exercise 2.3.12 (p. 45)

% file npr02_12.m (Section~17.8.9: npr02_12)

% Data for Exercise~2.3.12

% A = male; B = party member; C = voted last election

minvec3

DV = [A|Ac; A; A&Bc; B; Bc&C; Ac&Bc&C];

DP = [ 1 0.60 0.30 0.50 0.20 0.10];

TV = [Bc&Cc];

disp('Call for mincalc')

npr02_12

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.3000

The number of minterms is 8

The number of available minterms is 4

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA
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Solution to Exercise 2.3.13 (p. 45)

% file npr02_13.m (Section~17.8.10: npr02_13)

% Data for Exercise~2.3.13

% A = rain in Austin; B = rain in Houston;

% C = rain in San Antonio

minvec3

DV = [A|Ac; A&B; A&Bc; A&C; (A&Bc)|(Ac&B); B&C; Bc&C; Ac&Bc&Cc];

DP = [ 1 0.35 0.15 0.20 0.45 0.30 0.05 0.15];

TV = [A&B&C; (A&B&Cc)|(A&Bc&C)|(Ac&B&C); (A&Bc&Cc)|(Ac&B&Cc)|(Ac&Bc&C)];

disp('Call for mincalc')

npr02_13

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.2000

2.0000 0.2500

3.0000 0.4000

The number of minterms is 8

The number of available minterms is 8

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

Solution to Exercise 2.3.14 (p. 45)

% file npr02_14.m (Section~17.8.11: npr02_14)

% Data for Exercise~2.3.14

% A = male; B = engineering;

% C = foreign language; D = graduate study

minvec4

DV = [A|Ac; A; B; Ac&B; C; Ac&C; A&D; Ac&D; A&B&D; ...

Ac&B&D; B&C&D; Bc&Cc&D; Ac&Bc&C&D];

DP = [1 0.55 0.23 0.10 0.75 0.45 0.26 0.19 0.13 0.08 0.20 0.05 0.11];

TV = [C&D; Ac&Dc; A&((C&Dc)|(Cc&D))];

disp('Call for mincalc')

npr02_14

Variables are A, B, C, D, Ac, Bc, Cc, Dc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.3900

2.0000 0.2600 % Third target probability not calculable

The number of minterms is 16

The number of available minterms is 4

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA
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Solution to Exercise 2.3.15 (p. 46)

% file npr02_15.m (Section~17.8.12: npr02_15)

% Data for Exercise~2.3.15

% A = men; B = on campus; C = readers; D = active

minvec4

DV = [A|Ac; A; B; Ac&B; C; Ac&C; D; B&D; C&D; ...

Ac&B&D; Ac&Bc&D; Ac&B&C&D; Ac&Bc&C&D; A&Bc&Cc&D];

DP = [1 0.6 0.55 0.25 0.40 0.25 0.70 0.50 0.35 0.25 0.05 0.10 0.05 0.05];

TV = [A&D&(Cc|Bc); A&Dc&Cc];

disp('Call for mincalc')

npr02_15

Variables are A, B, C, D, Ac, Bc, Cc, Dc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.3000

2.0000 0.2500

The number of minterms is 16

The number of available minterms is 8

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

Solution to Exercise 2.3.16 (p. 46)

% file npr02_16.m (Section~17.8.13: npr02_16)

% Data for Exercise~2.3.16

minvec3

DV = [A|Ac; A; B; C; (A&B)|(A&C)|(B&C); A&B&C; A&C; (A&B)-2*(B&C)];

DP = [ 1 0.221 0.209 0.112 0.197 0.045 0.062 0];

TV = [A|B|C; (A&Bc&Cc)|(Ac&B&Cc)|(Ac&Bc&C)];

npr02_16

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.3000

2.0000 0.1030

The number of minterms is 8

The number of available minterms is 8

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

Solution to Exercise 2.3.17 (p. 46)

% file npr02_17.m (Section~17.8.14: npr02_17)

% Data for Exercise~2.3.17
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% A = alignment; B = brake work; C = headlight

minvec3

DV = [A|Ac; A&B&C; (A&B)|(A&C)|(B&C); B&C; A ];

DP = [ 1 0.100 0.325 0.125 0.550];

TV = [A&Bc&Cc; Ac&(∼(B&C))];
disp('Call for mincalc')

npr02_17

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.2500

2.0000 0.4250

The number of minterms is 8

The number of available minterms is 3

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

Solution to Exercise 2.3.18 (p. 46)

% file npr02_18.m (Section~17.8.15: npr02_18)

% Date for Exercise~2.3.18

minvec3

DV = [A|Ac; A&(B|C); Ac; Ac&Bc&Cc];

DP = [ 1 0.3 0.6 0.1];

TV = [B|C; (((A&B)|(Ac&Bc))&Cc)|(A&C); Ac&(B|Cc)];

disp('Call for mincalc')

% Modification

% DV = [DV; Ac&B&C; Ac&B];

% DP = [DP 0.2 0.3];

npr02_18

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.8000

2.0000 0.4000

The number of minterms is 8

The number of available minterms is 2

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

DV = [DV; Ac&B&C; Ac&B]; % Modified data

DP = [DP 0.2 0.3];

mincalc % New calculation

Data vectors are linearly independent

Computable target probabilities

1.0000 0.8000

2.0000 0.4000

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



56 CHAPTER 2. MINTERM ANALYSIS

3.0000 0.4000

The number of minterms is 8

The number of available minterms is 5

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

Solution to Exercise 2.3.19 (p. 46)

% file npr02_19.m (Section~17.8.16: npr02_19)

% Data for Exercise~2.3.19

% A = computer; B = monitor; C = printer

minvec3

DV = [A|Ac; A&B; A&B&Cc; A&C; B&C; (A&Cc)|(Ac&C); ...

(A&Bc)|(Ac&B); (B&Cc)|(Bc&C)];

DP = [1 0.49 0.17 0.45 0.39 0.50 0.43 0.43];

TV = [A; B; C; (A&B&Cc)|(A&Bc&C)|(Ac&B&C); (A&B)|(A&C)|(B&C); A&B&C];

disp('Call for mincalc')

npr02_19

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.8000

2.0000 0.6100

3.0000 0.6000

4.0000 0.3700

5.0000 0.6900

6.0000 0.3200

The number of minterms is 8

The number of available minterms is 8

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

Solution to Exercise 2.3.20 (p. 47)

% file npr02_20.m (Section~17.8.17: npr02_20)

% Data for Exercise~2.3.20

minvec3

DV = [A|Ac; A; B; A&B&C; A&C; (A&B)|(A&C)|(B&C); B&C - 2*(A&C)];

DP = [ 1 0.232 0.228 0.045 0.062 0.197 0];

TV = [A|B|C; Ac&Bc&Cc];

disp('Call for mincalc')

% Modification

% DV = [DV; C];

% DP = [DP 0.230 ];

npr02_20 (Section~17.8.17: npr02_20)

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.
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mincalc

Data vectors are linearly independent

Data probabilities are INCONSISTENT

The number of minterms is 8

The number of available minterms is 6

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

disp(PMA)

2.0000 0.0480

3.0000 -0.0450 % Negative minterm probabilities indicate

4.0000 -0.0100 % inconsistency of data

5.0000 0.0170

6.0000 0.1800

7.0000 0.0450

DV = [DV; C];

DP = [DP 0.230];

mincalc

Data vectors are linearly independent

Data probabilities are INCONSISTENT

The number of minterms is 8

The number of available minterms is 8

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

Solution to Exercise 2.3.21 (p. 47)

% file npr02_21.m (Section~17.8.18: npr02_21)

% Data for Exercise~2.3.21

minvec3

DV = [A|Ac; A; A&B; A&B&C; C; Ac&Cc];

DP = [ 1 0.4 0.3 0.25 0.65 0.3 ];

TV = [(A&Cc)|(Ac&C); Ac&Bc; A|B; A&Bc];

disp('Call for mincalc')

% Modification

% DV = [DV; Ac&B&Cc; Ac&Bc];

% DP = [DP 0.1 0.3 ];

npr02_21 (Section~17.8.18: npr02_21)

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.3500

4.0000 0.1000

The number of minterms is 8

The number of available minterms is 4

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

DV = [DV; Ac&B&Cc; Ac&Bc];
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DP = [DP 0.1 0.3 ];

mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.3500

2.0000 0.3000

3.0000 0.7000

4.0000 0.1000

The number of minterms is 8

The number of available minterms is 8

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

Solution to Exercise 2.3.22 (p. 47)

% file npr02_22.m (Section~17.8.19: npr02_22)

% Data for Exercise~2.3.22

minvec3

DV = [A|Ac; A; A&B; A&B&C; C; Ac&Cc];

DP = [ 1 0.4 0.5 0.25 0.65 0.3 ];

TV = [(A&Cc)|(Ac&C); Ac&Bc; A|B; A&Bc];

disp('Call for mincalc')

% Modification

% DV = [DV; Ac&B&Cc; Ac&Bc];

% DP = [DP 0.1 0.3 ];

npr02_22 (Section~17.8.19: npr02_22)

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Data probabilities are INCONSISTENT

The number of minterms is 8

The number of available minterms is 4

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

disp(PMA)

4.0000 -0.2000

5.0000 0.1000

6.0000 0.2500

7.0000 0.2500

DV = [DV; Ac&B&Cc; Ac&Bc];

DP = [DP 0.1 0.3 ];

mincalc

Data vectors are linearly independent

Data probabilities are INCONSISTENT

The number of minterms is 8

The number of available minterms is 8

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA
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disp(PMA)

0 0.2000

1.0000 0.1000

2.0000 0.1000

3.0000 0.2000

4.0000 -0.2000

5.0000 0.1000

6.0000 0.2500

7.0000 0.2500

Solution to Exercise 2.3.23 (p. 47)

% file npr02_23.m (Section~17.8.20: npr02_23)

% Data for Exercise~2.3.23

minvec3

DV = [A|Ac; A; A&C; A&B&C; C; Ac&Cc];

DP = [ 1 0.4 0.3 0.25 0.65 0.3 ];

TV = [(A&Cc)|(Ac&C); Ac&Bc; A|B; A&Bc];

disp('Call for mincalc')

% Modification

% DV = [DV; Ac&B&Cc; Ac&Bc];

% DP = [DP 0.1 0.3 ];

npr02_23

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are NOT linearly independent

Warning: Rank deficient, rank = 5 tol = 5.0243e-15

Computable target probabilities

1.0000 0.4500

The number of minterms is 8

The number of available minterms is 2

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

DV = [DV; Ac&B&Cc; Ac&Bc];

DP = [DP 0.1 0.3 ];

mincalc

Data vectors are NOT linearly independent

Warning: Matrix is singular to working precision.

Computable target probabilities

1 Inf % Note that p(4) and p(7) are given in data

2 Inf

3 Inf

The number of minterms is 8

The number of available minterms is 6

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA
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Chapter 3

Conditional Probability

3.1 Conditional Probability1

3.1.1 Introduction

The probability P (A) of an event A is a measure of the likelihood that the event will occur on any trial.
Sometimes partial information determines that an event C has occurred. Given this information, it may
be necessary to reassign the likelihood for each event A. This leads to the notion of conditional probability.
For a �xed conditioning event C, this assignment to all events constitutes a new probability measure which
has all the properties of the original probability measure. In addition, because of the way it is derived from
the original, the conditional probability measure has a number of special properties which are important in
applications.

3.1.2 Conditional probability

The original or prior probability measure utilizes all available information to make probability assignments
P (A) , P (B), etc., subject to the de�ning conditions (P1), (P2), and (P3) (p. 11). The probability P (A)
indicates the likelihood that event A will occur on any trial.

Frequently, new information is received which leads to a reassessment of the likelihood of event A. For
example

• An applicant for a job as a manager of a service department is being interviewed. His résumé shows
adequate experience and other quali�cations. He conducts himself with ease and is quite articulate in
his interview. He is considered a prospect highly likely to succeed. The interview is followed by an
extensive background check. His credit rating, because of bad debts, is found to be quite low. With
this information, the likelihood that he is a satisfactory candidate changes radically.

• A young woman is seeking to purchase a used car. She �nds one that appears to be an excellent buy.
It looks �clean,� has reasonable mileage, and is a dependable model of a well known make. Before
buying, she has a mechanic friend look at it. He �nds evidence that the car has been wrecked with
possible frame damage that has been repaired. The likelihood the car will be satisfactory is thus
reduced considerably.

• A physician is conducting a routine physical examination on a patient in her seventies. She is somewhat
overweight. He suspects that she may be prone to heart problems. Then he discovers that she exercises
regularly, eats a low fat, high �ber, variagated diet, and comes from a family in which survival well
into their nineties is common. On the basis of this new information, he reassesses the likelihood of
heart problems.

1This content is available online at <http://cnx.org/content/m23252/1.7/>.
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New, but partial, information determines a conditioning event C , which may call for reassessing the likelihood
of event A. For one thing, this means that A occurs i� the event AC occurs. E�ectively, this makes C a new
basic space. The new unit of probability mass is P (C). How should the new probability assignments be
made? One possibility is to make the new assignment to A proportional to the probability P (AC). These
considerations and experience with the classical case suggests the following procedure for reassignment.
Although such a reassignment is not logically necessary, subsequent developments give substantial evidence
that this is the appropriate procedure.

De�nition. If C is an event having positive probability, the conditional probability of A, given C is

P (A|C) =
P (AC)
P (C)

(3.1)

For a �xed conditioning event C, we have a new likelihood assignment to the event A. Now

P (A|C) ≥ 0, P (Ω|C) = 1, and P

(∨
j

Aj|C

)
=

P(
W

j AjC)
P (C)

=∑
j P (AjC) /P (C) =

∑
j P (Aj|C)

(3.2)

Thus, the new function P ( · |C) satis�es the three de�ning properties (P1), (P2), and (P3) (p. 11) for
probability, so that for �xed C, we have a new probability measure, with all the properties of an ordinary
probability measure.

Remark. When we write P (A|C) we are evaluating the likelihood of event A when it is known that event
C has occurred. This is not the probability of a conditional event A|C. Conditional events have no meaning
in the model we are developing.

Example 3.1: Conditional probabilities from joint frequency data
A survey of student opinion on a proposed national health care program included 250 students, of
whom 150 were undergraduates and 100 were graduate students. Their responses were categorized
Y (a�rmative), N (negative), and D (uncertain or no opinion). Results are tabulated below.

Y N D

U 60 40 50

G 70 20 10

Table 3.1

Suppose the sample is representative, so the results can be taken as typical of the student body.
A student is picked at random. Let Y be the event he or she is favorable to the plan, N be the
event he or she is unfavorable, and D is the event of no opinion (or uncertain). Let U be the event
the student is an undergraduate and G be the event he or she is a graduate student. The data may
reasonably be interpreted

P (G) = 100/250, P (U) = 150/250, P (Y ) = (60 + 70) /250, P (Y U) = 60/250, etc. (3.3)

Then

P (Y |U) =
P (Y U)
P (U)

=
60/250
150/250

=
60
150

(3.4)
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Similarly, we can calculate

P (N |U) = 40/150, P (D|U) = 50/150, P (Y |G) = 70/100, P (N |G) = 20/100, P (D|G) = 10/100
(3.5)

We may also calculate directly

P (U |Y ) = 60/130, P (G|N) = 20/60, etc. (3.6)

Conditional probability often provides a natural way to deal with compound trials carried out in several
steps.

Example 3.2: Jet aircraft with two engines
An aircraft has two jet engines. It will �y with only one engine operating. Let F1 be the event
one engine fails on a long distance �ight, and F2 the event the second fails. Experience indicates
that P (F1) = 0.0003. Once the �rst engine fails, added load is placed on the second, so that
P (F2|F1) = 0.001. Now the second engine can fail only if the other has already failed. Thus
F2 ⊂ F1 so that

P (F2) = P (F1F2) = P (F1)P (F2|F1) = 3× 10−7 (3.7)

Thus reliability of any one engine may be less than satisfactory, yet the overall reliability may be
quite high.

The following example is taken from the UMAP Module 576, by Paul Mullenix, reprinted in UMAP Journal,
vol 2, no. 4. More extensive treatment of the problem is given there.

Example 3.3: Responses to a sensitive question on a survey
In a survey, if answering �yes� to a question may tend to incriminate or otherwise embarrass the
subject, the response given may be incorrect or misleading. Nonetheless, it may be desirable to
obtain correct responses for purposes of social analysis. The following device for dealing with this
problem is attributed to B. G. Greenberg. By a chance process, each subject is instructed to do
one of three things:

1. Respond with an honest answer to the question.
2. Respond �yes� to the question, regardless of the truth in the matter.
3. Respond �no� regardless of the true answer.

Let A be the event the subject is told to reply honestly, B be the event the subject is instructed
to reply �yes,� and C be the event the answer is to be �no.� The probabilities P (A), P (B), and
P (C) are determined by a chance mechanism (i.e., a fraction P (A) selected randomly are told to
answer honestly, etc.). Let E be the event the reply is �yes.� We wish to calculate P (E|A), the
probability the answer is �yes� given the response is honest.

SOLUTION
Since E = EA

∨
B, we have

P (E) = P (EA) + P (B) = P (E|A)P (A) + P (B) (3.8)

which may be solved algebraically to give

P (E|A) =
P (E)− P (B)

P (A)
(3.9)
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Suppose there are 250 subjects. The chance mechanism is such that P (A) = 0.7, P (B) = 0.14 and
P (C) = 0.16. There are 62 responses �yes,� which we take to mean P (E) = 62/250. According to
the pattern above

P (E|A) =
62/250− 14/100

70/100
=

27
175
≈ 0.154 (3.10)

The formulation of conditional probability assumes the conditioning event C is well de�ned. Sometimes
there are subtle di�culties. It may not be entirely clear from the problem description what the conditioning
event is. This is usually due to some ambiguity or misunderstanding of the information provided.

Example 3.4: What is the conditioning event?
Five equally quali�ed candidates for a job, Jim, Paul, Richard, Barry, and Evan, are identi�ed on
the basis of interviews and told that they are �nalists. Three of these are to be selected at random,
with results to be posted the next day. One of them, Jim, has a friend in the personnel o�ce. Jim
asks the friend to tell him the name of one of those selected (other than himself). The friend tells
Jim that Richard has been selected. Jim analyzes the problem as follows.

ANALYSIS
Let Ai, 1 ≤ i ≤ 5 be the event the ith of these is hired (A1 is the event Jim is hired, A3 is the

event Richard is hired, etc.). Now P (Ai) (for each i) is the probability that �nalist i is in one of
the combinations of three from �ve. Thus, Jim's probability of being hired, before receiving the
information about Richard, is

P (A1) =
1× C (4, 2)
C (5, 3)

=
6
10

= P (Ai) , 1 ≤ i ≤ 5 (3.11)

The information that Richard is one of those hired is information that the event A3 has occurred.
Also, for any pair i 6= j the number of combinations of three from �ve including these two is just
the number of ways of picking one from the remaining three. Hence,

P (A1A3) =
C (3, 1)
C (5, 3)

=
3
10

= P (AiAj) , i 6= j (3.12)

The conditional probability

P (A1|A3) =
P (A1A3)
P (A3)

=
3/10
6/10

= 1/2 (3.13)

This is consistent with the fact that if Jim knows that Richard is hired, then there are two to be
selected from the four remaining �nalists, so that

P (A1|A3) =
1× C (3, 1)
C (4, 2)

=
3
6

= 1/2 (3.14)

Discussion
Although this solution seems straightforward, it has been challenged as being incomplete. Many feel that

there must be information about how the friend chose to name Richard. Many would make an assumption
somewhat as follows. The friend took the three names selected: if Jim was one of them, Jim's name was
removed and an equally likely choice among the other two was made; otherwise, the friend selected on an
equally likely basis one of the three to be hired. Under this assumption, the information assumed is an event
B3 which is not the same as A3. In fact, computation (see Example 5, below) shows

P (A1|B3) =
6
10

= P (A1) 6= P (A1|A3) (3.15)
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Both results are mathematically correct. The di�erence is in the conditioning event, which corresponds to
the di�erence in the information given (or assumed).

� �

3.1.3 Some properties

In addition to its properties as a probability measure, conditional probability has special properties which
are consequences of the way it is related to the original probability measure P (·). The following are easily
derived from the de�nition of conditional probability and basic properties of the prior probability measure,
and prove useful in a variety of problem situations.

(CP1) Product rule If P (ABCD) > 0, then P (ABCD) = P (A)P (B|A)P (C|AB)P (D|ABC).
Derivation
The de�ning expression may be written in product form: P (AB) = P (A)P (B|A). Likewise

P (ABC) = P (A)
P (AB)
P (A)

· P (ABC)
P (AB)

= P (A)P (B|A)P (C|AB) (3.16)

and

P (ABCD) = P (A)
P (AB)
P (A)

· P (ABC)
P (AB)

· P (ABCD)
P (ABC)

= P (A)P (B|A)P (C|AB)P (D|ABC) (3.17)

This pattern may be extended to the intersection of any �nite number of events. Also, the events may be
taken in any order.

� �

Example 3.5: Selection of items from a lot
An electronics store has ten items of a given type in stock. One is defective. Four successive
customers purchase one of the items. Each time, the selection is on an equally likely basis from
those remaining. What is the probability that all four customes get good items?

SOLUTION
Let Ei be the event the ith customer receives a good item. Then the �rst chooses one of the

nine out of ten good ones, the second chooses one of the eight out of nine goood ones, etc., so that

P (E1E2E3E4) = P (E1)P (E2|E1)P (E3|E1E2)P (E4|E1E2E3) =
9
10
· 8

9
· 7

8
· 6

7
=

6
10

(3.18)

Note that this result could be determined by a combinatorial argument: under the assumptions,
each combination of four of ten is equally likely; the number of combinations of four good ones is
the number of combinations of four of the nine. Hence

P (E1E2E3E4) =
C (9, 4)
C (10, 4)

=
126
210

= 3/5 (3.19)

Example 3.6: A selection problem
Three items are to be selected (on an equally likely basis at each step) from ten, two of which are
defective. Determine the probability that the �rst and third selected are good.

SOLUTION
Let Gi, 1 ≤ i ≤ 3 be the event the ith unit selected is good. Then G1G3 = G1G2G3

∨
G1G

c
2G3.

By the product rule

P (G1G3) = P (G1)P (G2|G1)P (G3|G1G2) +P (G1)P (Gc
2|G1)P (G3|G1G

c
2) = 8

10
·

7
9
· 6

8
+ 8

10
· 2

9
· 7

8
= 28

45
≈ 0.62

(3.20)
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(CP2) Law of total probability Suppose the class {Ai : 1 ≤ i ≤ n} of events is mutually exclusive and
every outcome in E is in one of these events. Thus, E = A1E

∨
A2E

∨
· · ·
∨
AnE, a disjoint union. Then

P (E) = P (E|A1)P (A1) + P (E|A2)P (A2) + · · ·+ P (E|An)P (An) (3.21)

Example 3.7
A compound experiment.
Five cards are numbered one through �ve. A two-step selection procedure is carried out as follows.

1. Three cards are selected without replacement, on an equally likely basis.

• If card 1 is drawn, the other two are put in a box
• If card 1 is not drawn, all three are put in a box

2. One of cards in the box is drawn on an equally likely basis (from either two or three)

Let Ai be the event the ith card is drawn on the �rst selection and let Bi be the event the card
numbered i is drawn on the second selection (from the box). Determine P (B5), P (A1B5), and
P (A1|B5).

SOLUTION
From Example 3.4 (What is the conditioning event?), we have P (Ai) = 6/10 and P (AiAj) =

3/10. This implies

P
(
AiA

c
j

)
= P (Ai)− P (AiAj) = 3/10 (3.22)

Now we can draw card �ve on the second selection only if it is selected on the �rst drawing, so
that B5 ⊂ A5. Also A5 = A1A5

∨
Ac1A5. We therefore have B5 = B5A5 = B5A1A5

∨
B5A

c
1A5. By

the law of total probability (CP2) (p. 66),

P (B5) = P (B5|A1A5)P (A1A5) + P (B5|Ac1A5)P (Ac1A5) =
1
2
· 3

10
+

1
3
· 3

10
=

1
4

(3.23)

Also, since A1B5 = A1A5B5,

P (A1B5) = P (A1A5B5) = P (A1A5)P (B5|A1A5) =
3
10
· 1

2
=

3
20

(3.24)

We thus have

P (A1|B5) =
3/20
5/20

=
6
10

= P (A1) (3.25)

Occurrence of event B1 has no a�ect on the likelihood of the occurrence of A1. This condition is
examined more thoroughly in the chapter on "Independence of Events" (Section 4.1).

Often in applications data lead to conditioning with respect to an event but the problem calls for �conditioning
in the opposite direction.�

Example 3.8: Reversal of conditioning
Students in a freshman mathematics class come from three di�erent high schools. Their mathe-
matical preparation varies. In order to group them appropriately in class sections, they are given
a diagnostic test. Let Hi be the event that a student tested is from high school i, 1 ≤ i ≤ 3. Let F
be the event the student fails the test. Suppose data indicate

P (H1) = 0.2, P (H2) = 0.5, P (H3) = 0.3, P (F |H1) = 0.10, P (F |H2) = 0.02, P (F |H3) = 0.06
(3.26)

A student passes the exam. Determine for each i the conditional probability P (Hi|F c) that the
student is from high school i.
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SOLUTION

P (F c) = P (F c|H1)P (H1) + P (F c|H2)P (H2) + P (F c|H3)P (H3) = 0.90 · 0.2 +
0.98 · 0.5 + 0.94 · 0.3 = 0.952

(3.27)

Then

P (H1|F c) =
P (F cH1)
P (F c)

=
P (F c|H1)P (H1)

P (F c)
=

180
952

= 0.1891 (3.28)

Similarly,

P (H2|F c) =
P (F c|H2)P (H2)

P (F c)
=

590
952

= 0.5147 and P (H3|F c) =
P (F c|H3)P (H3)

P (F c)
=

282
952

= 0.2962

(3.29)

The basic pattern utilized in the reversal is the following.

(CP3) Bayes' rule If E ⊂
n∨
i=1

Ai (as in the law of total probability), then

P (Ai|E) =
P (AiE)
P (E)

=
P (E|Ai)P (Ai)

P (E)
1 ≤ i ≤ n The law of total probability yields P (E) (3.30)

Such reversals are desirable in a variety of practical situations.

Example 3.9: A compound selection and reversal
Begin with items in two lots:

1. Three items, one defective.
2. Four items, one defective.

One item is selected from lot 1 (on an equally likely basis); this item is added to lot 2; a selection
is then made from lot 2 (also on an equally likely basis). This second item is good. What is the
probability the item selected from lot 1 was good?

SOLUTION
Let G1 be the event the �rst item (from lot 1) was good, and G2 be the event the second item

(from the augmented lot 2) is good. We want to determine P (G1|G2). Now the data are interpreted
as

P (G1) = 2/3, P (G2|G1) = 4/5, P (G2|Gc1) = 3/5 (3.31)

By the law of total probability (CP2) (p. 66),

P (G2) = P (G1)P (G2|G1) + P (Gc1)P (G2|Gc1) =
2
3
· 4

5
+

1
3
· 3

5
=

11
15

(3.32)

By Bayes' rule (CP3) (p. 67),

P (G1|G2) =
P (G2|G1)P (G1)

P (G2)
=

4/5× 2/3
11/15

=
8
11
≈ 0.73 (3.33)

Example 3.10: Additional problems requiring reversals

• Medical tests. Suppose D is the event a patient has a certain disease and T is the event a
test for the disease is positive. Data are usually of the form: prior probability P (D) (or prior
odds P (D) /P (Dc)), probability P (T |Dc) of a false positive, and probability P (T c|D) of a
false negative. The desired probabilities are P (D|T ) and P (Dc|T c).
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• Safety alarm. If D is the event a dangerous condition exists (say a steam pressure is too
high) and T is the event the safety alarm operates, then data are usually of the form P (D),
P (T |Dc), and P (T c|D), or equivalently (e.g., P (T c|Dc) and P (T |D)). Again, the desired
probabilities are that the safety alarms signals correctly, P (D|T ) and P (Dc|T c).

• Job success. If H is the event of success on a job, and E is the event that an individual inter-
viewed has certain desirable characteristics, the data are usually prior P (H) and reliability of
the characteristics as predictors in the form P (E|H) and P (E|Hc). The desired probability
is P (H|E).

• Presence of oil. If H is the event of the presence of oil at a proposed well site, and E is the
event of certain geological structure (salt dome or fault), the data are usually P (H) (or the
odds), P (E|H), and P (E|Hc). The desired probability is P (H|E).

• Market condition. Before launching a new product on the national market, a �rm usually
examines the condition of a test market as an indicator of the national market. If H is the
event the national market is favorable and E is the event the test market is favorable, data
are a prior estimate P (H) of the likelihood the national market is sound, and data P (E|H)
and P (E|Hc) indicating the reliability of the test market. What is desired is P (H|E) , the
likelihood the national market is favorable, given the test market is favorable.

The calculations, as in Example 3.8 (Reversal of conditioning), are simple but can be tedious. We have an
m-procedure called bayes to perform the calculations easily. The probabilities P (Ai) are put into a matrix
PA and the conditional probabilities P (E|Ai) are put into matrix PEA. The desired probabilities P (Ai|E)
and P (Ai|Ec) are calculated and displayed

Example 3.11: MATLAB calculations for Example 3.8 (Reversal of conditioning)

� PEA = [0.10 0.02 0.06];

� PA = [0.2 0.5 0.3];

� bayes

Requires input PEA = [P(E|A1) P(E|A2) ... P(E|An)]

and PA = [P(A1) P(A2) ... P(An)]

Determines PAE = [P(A1|E) P(A2|E) ... P(An|E)]

and PAEc = [P(A1|Ec) P(A2|Ec) ... P(An|Ec)]

Enter matrix PEA of conditional probabilities PEA

Enter matrix PA of probabilities PA

P(E) = 0.048

P(E|Ai) P(Ai) P(Ai|E) P(Ai|Ec)

0.1000 0.2000 0.4167 0.1891

0.0200 0.5000 0.2083 0.5147

0.0600 0.3000 0.3750 0.2962

Various quantities are in the matrices PEA, PA, PAE, PAEc, named above

The procedure displays the results in tabular form, as shown. In addition, the various quantities are
in the workspace in the matrices named, so that they may be used in further calculations without
recopying.

The following variation of Bayes' rule is applicable in many practical situations.

(CP3*) Ratio form of Bayes' rule P (A|C)
P (B|C) = P (AC)

P (BC) = P (C|A)
P (C|B) ·

P (A)
P (B)

The left hand member is called the posterior odds, which is the odds after knowledge of the occurrence
of the conditioning event. The second fraction in the right hand member is the prior odds, which is the odds
before knowledge of the occurrence of the conditioning event C. The �rst fraction in the right hand member
is known as the likelihood ratio. It is the ratio of the probabilities (or likelihoods) of C for the two di�erent
probability measures P ( · |A) and P ( · |B).
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Example 3.12: A performance test
As a part of a routine maintenance procedure, a computer is given a performance test. The machine
seems to be operating so well that the prior odds it is satisfactory are taken to be ten to one. The
test has probability 0.05 of a false positive and 0.01 of a false negative. A test is performed. The
result is positive. What are the posterior odds the device is operating properly?

SOLUTION
Let S be the event the computer is operating satisfactorily and let T be the event the test is

favorable. The data are P (S) /P (Sc) = 10, P (T |Sc) = 0.05, and P (T c|S) = 0.01. Then by the
ratio form of Bayes' rule

P (S|T )
P (Sc|T )

=
P (T |S)
P (T |Sc)

· P (S)
P (Sc)

=
0.99
0.05

· 10 = 198 so that P (S|T ) =
198
199

= 0.9950 (3.34)

The following property serves to establish in the chapters on "Independence of Events" (Section 4.1) and
"Conditional Independence" (Section 5.1) a number of important properties for the concept of independence
and of conditional independence of events.

(CP4) Some equivalent conditions If 0 < P (A) < 1 and 0 < P (B) < 1, then

P (A|B) ∗ P (A) iff P (B|A) ∗ P (B) iff P (AB) ∗ P (A)P (B) and (3.35)

P (AB) ∗ P (A)P (B) iff P (AcBc) ∗ P (Ac)P (Bc) iff P (ABc) � P (A)P (Bc) (3.36)

where ∗is < ,≤,=,≥, or > and �is > ,≥,=,≤, or < , respectively.
Because of the role of this property in the theory of independence and conditional independence, we

examine the derivation of these results.
VERIFICATION of (CP4) (p. 69)

a. P (AB) ∗ P (A)P (B) i� P (A|B) ∗ P (A) (divide by P (B) � may exchange A and Ac)
b. P (AB) ∗ P (A)P (B) i� P (B|A) ∗ P (B) (divide by P (A) � may exchange B and Bc)
c. P (AB) ∗ P (A)P (B) i� [P (A)− P (ABc)] ∗ P (A) [1− P (Bc) i� −P (ABc) ∗ −P (A)P (Bc) i�
P (ABc) � P (A)P (Bc)

d. We may use c to get P (AB) ∗ P (A)P (B) i� P (ABc) � P (A)P (Bc) i� P (AcBc) ∗ P (Ac)P (Bc)

� �
A number of important and useful propositons may be derived from these.

1. P (A|B) + P (Ac|B) = 1, but, in general, P (A|B) + P (A|Bc) 6= 1.
2. P (A|B) > P (A) i� P (A|Bc) < P (A).
3. P (Ac|B) > P (Ac) i� P (A|B) < P (A).
4. P (A|B) > P (A) i� P (Ac|Bc) > P (Ac).

VERIFICATION � Exercises (see problem set)
� �

3.1.4 Repeated conditioning

Suppose conditioning by the event C has occurred. Additional information is then received that event D
has occurred. We have a new conditioning event CD. There are two possibilities:

1. Reassign the conditional probabilities. PC (A) becomes

PC (A|D) =
PC (AD)
PC (D)

=
P (ACD)
P (CD)

(3.37)
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2. Reassign the total probabilities: P (A) becomes

PCD (A) = P (A|CD) =
P (ACD)
P (CD)

(3.38)

Basic result: PC (A|D) = P (A|CD) = PD (A|C). Thus repeated conditioning by two events may be done
in any order, or may be done in one step. This result extends easily to repeated conditioning by any �nite
number of events. This result is important in extending the concept of "Independence of Events" (Section 4.1)
to "Conditional Independence" (Section 5.1). These conditions are important for many problems of probable
inference.

3.2 Problems on Conditional Probability2

Exercise 3.2.1 (Solution on p. 74.)

Given the following data:

P (A) = 0.55, P (AB) = 0.30, P (BC) = 0.20, P (Ac ∪BC) = 0.55, P (AcBCc) = 0.15 (3.39)

Determine, if possible, the conditional probability P (Ac|B) = P (AcB) /P (B).
Exercise 3.2.2 (Solution on p. 74.)

In Exercise 11 (Exercise 2.3.11) from "Problems on Minterm Analysis," we have the following data:
A survey of a represenative group of students yields the following information:

• 52 percent are male
• 85 percent live on campus
• 78 percent are male or are active in intramural sports (or both)
• 30 percent live on campus but are not active in sports
• 32 percent are male, live on campus, and are active in sports
• 8 percent are male and live o� campus
• 17 percent are male students inactive in sports

Let A = male, B = on campus, C = active in sports.

• (a) A student is selected at random. He is male and lives on campus. What is the (conditional)
probability that he is active in sports?

• (b) A student selected is active in sports. What is the(conditional) probability that she is a
female who lives on campus?

Exercise 3.2.3 (Solution on p. 74.)

In a certain population, the probability a woman lives to at least seventy years is 0.70 and is 0.55
that she will live to at least eighty years. If a woman is seventy years old, what is the conditional
probability she will survive to eighty years? Note that if A ⊂ B then P (AB) = P (A).
Exercise 3.2.4 (Solution on p. 74.)

From 100 cards numbered 00, 01, 02, · · ·, 99, one card is drawn. Suppose Ai is the event the sum
of the two digits on a card is i, 0 ≤ i ≤ 18, and Bj is the event the product of the two digits is j.
Determine P (Ai|B0) for each possible i.

Exercise 3.2.5 (Solution on p. 74.)

Two fair dice are rolled.

a. What is the (conditional) probability that one turns up two spots, given they show di�erent
numbers?

2This content is available online at <http://cnx.org/content/m24173/1.5/>.
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b. What is the (conditional) probability that the �rst turns up six, given that the sum is k, for
each k from two through 12?

c. What is the (conditional) probability that at least one turns up six, given that the sum is k,
for each k from two through 12?

Exercise 3.2.6 (Solution on p. 75.)

Four persons are to be selected from a group of 12 people, 7 of whom are women.

a. What is the probability that the �rst and third selected are women?
b. What is the probability that three of those selected are women?
c. What is the (conditional) probability that the �rst and third selected are women, given that

three of those selected are women?

Exercise 3.2.7 (Solution on p. 75.)

Twenty percent of the paintings in a gallery are not originals. A collector buys a painting. He has
probability 0.10 of buying a fake for an original but never rejects an original as a fake, What is the
(conditional) probability the painting he purchases is an original?

Exercise 3.2.8 (Solution on p. 75.)

Five percent of the units of a certain type of equipment brought in for service have a common
defect. Experience shows that 93 percent of the units with this defect exhibit a certain behavioral
characteristic, while only two percent of the units which do not have this defect exhibit that
characteristic. A unit is examined and found to have the characteristic symptom. What is the
conditional probability that the unit has the defect, given this behavior?

Exercise 3.2.9 (Solution on p. 75.)

A shipment of 1000 electronic units is received. There is an equally likely probability that there
are 0, 1, 2, or 3 defective units in the lot. If one is selected at random and found to be good, what
is the probability of no defective units in the lot?

Exercise 3.2.10 (Solution on p. 75.)

Data on incomes and salary ranges for a certain population are analyzed as follows. S1 = event
annual income is less than $25,000; S2 = event annual income is between $25,000 and $100,000; S3 =
event annual income is greater than $100,000. E1 = event did not complete college education; E2 =
event of completion of bachelor's degree; E3 = event of completion of graduate or professional degree
program. Data may be tabulated as follows: P (E1) = 0.65, P (E2) = 0.30, and P (E3) = 0.05.

P (Si|Ej) (3.40)

S1 S2 S3

E1 0.85 0.10 0.05

E2 0.10 0.80 0.10

E3 0.05 0.50 0.45

P (Si) 0.50 0.40 0.10

Table 3.2

a. Determine P (E3S3).
b. Suppose a person has a university education (no graduate study). What is the (conditional)

probability that he or she will make $25,000 or more?
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c. Find the total probability that a person's income category is at least as high as his or her
educational level.

Exercise 3.2.11 (Solution on p. 75.)

In a survey, 85 percent of the employees say they favor a certain company policy. Previous
experience indicates that 20 percent of those who do not favor the policy say that they do, out of
fear of reprisal. What is the probability that an employee picked at random really does favor the
company policy? It is reasonable to assume that all who favor say so.

Exercise 3.2.12 (Solution on p. 75.)

A quality control group is designing an automatic test procedure for compact disk players coming
from a production line. Experience shows that one percent of the units produced are defective. The
automatic test procedure has probability 0.05 of giving a false positive indication and probability
0.02 of giving a false negative. That is, if D is the event a unit tested is defective, and T is the event
that it tests satisfactory, then P (T |D) = 0.05 and P (T c|Dc) = 0.02. Determine the probability
P (Dc|T ) that a unit which tests good is, in fact, free of defects.

Exercise 3.2.13 (Solution on p. 76.)

Five boxes of random access memory chips have 100 units per box. They have respectively one,
two, three, four, and �ve defective units. A box is selected at random, on an equally likely basis,
and a unit is selected at random therefrom. It is defective. What are the (conditional) probabilities
the unit was selected from each of the boxes?

Exercise 3.2.14 (Solution on p. 76.)

Two percent of the units received at a warehouse are defective. A nondestructive test procedure
gives two percent false positive indications and �ve percent false negative. Units which fail to pass
the inspection are sold to a salvage �rm. This �rm applies a corrective procedure which does not
a�ect any good unit and which corrects 90 percent of the defective units. A customer buys a unit
from the salvage �rm. It is good. What is the (conditional) probability the unit was originally
defective?

Exercise 3.2.15 (Solution on p. 76.)

At a certain stage in a trial, the judge feels the odds are two to one the defendent is guilty. It
is determined that the defendent is left handed. An investigator convinces the judge this is six
times more likely if the defendent is guilty than if he were not. What is the likelihood, given this
evidence, that the defendent is guilty?

Exercise 3.2.16 (Solution on p. 76.)

Show that if P (A|C) > P (B|C) and P (A|Cc) > P (B|Cc), then P (A) > P (B). Is the converse
true? Prove or give a counterexample.

Exercise 3.2.17 (Solution on p. 76.)

Since P (·|B) is a probability measure for a given B, we must have P (A|B) + P (Ac|B) = 1.
Construct an example to show that in general P (A|B) + P (A|Bc) 6= 1.
Exercise 3.2.18 (Solution on p. 76.)

Use property (CP4) (p. 69) to show

a. P (A|B) > P (A) i� P (A|Bc) < P (A)
b. P (Ac|B) > P (Ac) i� P (A|B) < P (A)
c. P (A|B) > P (A) i� P (Ac|Bc) > P (Ac)

Exercise 3.2.19 (Solution on p. 76.)

Show that P (A|B) ≥ (P (A) + P (B)− 1) /P (B).
Exercise 3.2.20 (Solution on p. 76.)

Show that P (A|B) = P (A|BC)P (C|B) + P (A|BCc)P (Cc|B).
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Exercise 3.2.21 (Solution on p. 77.)

An individual is to select from among n alternatives in an attempt to obtain a particular one.
This might be selection from answers on a multiple choice question, when only one is correct. Let
A be the event he makes a correct selection, and B be the event he knows which is correct before
making the selection. We suppose P (B) = p and P (A|Bc) = 1/n. Determine P (B|A); show that
P (B|A) ≥ P (B) and P (B|A) increases with n for �xed p.

Exercise 3.2.22 (Solution on p. 77.)

Polya's urn scheme for a contagious disease. An urn contains initially b black balls and r red balls
(r + b = n). A ball is drawn on an equally likely basis from among those in the urn, then replaced
along with c additional balls of the same color. The process is repeated. There are n balls on the
�rst choice, n + c balls on the second choice, etc. Let Bk be the event of a black ball on the kth
draw and Rk be the event of a red ball on the kth draw. Determine

a. P (B2|R1)
b. P (B1B2)
c. P (R2)
d. P (B1|R2).
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Solutions to Exercises in Chapter 3

Solution to Exercise 3.2.1 (p. 70)

% file npr03_01.m (Section~17.8.21: npr03_01)

% Data for Exercise~3.2.1

minvec3

DV = [A|Ac; A; A&B; B&C; Ac|(B&C); Ac&B&Cc];

DP = [ 1 0.55 0.30 0.20 0.55 0.15 ];

TV = [Ac&B; B];

disp('Call for mincalc')

npr03_01

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.2500

2.0000 0.5500

The number of minterms is 8

The number of available minterms is 4

- - - - - - - - - - - -

P = 0.25/0.55

P = 0.4545

Solution to Exercise 3.2.2 (p. 70)

npr02_11 (Section~17.8.8: npr02_11)

- - - - - - - - - - - -

mincalc

- - - - - - - - - - - -

mincalct

Enter matrix of target Boolean combinations [A&B&C; A&B; Ac&B&C; C]

Computable target probabilities

1.0000 0.3200

2.0000 0.4400

3.0000 0.2300

4.0000 0.6100

PC_AB = 0.32/0.44

PC_AB = 0.7273

PAcB_C = 0.23/0.61

PAcB_C = 0.3770

Solution to Exercise 3.2.3 (p. 70)
Let A = event she lives to seventy and B = event she lives to eighty. Since B ⊂ A, P (B|A) =
P (AB) /P (A) = P (B) /P (A) = 55/70.
Solution to Exercise 3.2.4 (p. 70)
B0 is the event one of the �rst ten is drawn. AiB0 is the event that the card with numbers 0i is drawn.
P (Ai|B0) = (1/100) / (1/10) = 1/10 for each i, 0 through 9.
Solution to Exercise 3.2.5 (p. 70)
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a. There are 6× 5 ways to choose all di�erent. There are 2× 5 ways that they are di�erent and one turns
up two spots. The conditional probability is 2/6.

b. Let A6 = event �rst is a six and Sk = event the sum is k. Now A6Sk = ∅ for k ≤ 6. A table of
sums shows P (A6Sk) = 1/36 and P (Sk) = 6/36, 5/36, 4/36, 3/36, 2/36, 1/36 for k = 7 through 12,
respectively. Hence P (A6|Sk) = 1/6, 1/5, 1/4, 1/3, 1/2, 1, respectively.

c. If AB6 is the event at least one is a six, then P (AB6Sk) = 2/36 for k = 7 through 11 and P (AB6S12) =
1/36. Thus, the conditional probabilities are 2/6, 2/5, 2/4, 2/3, 1, 1, respectively.

Solution to Exercise 3.2.6 (p. 71)

P (W1W3) = P (W1W2W3) + P (W1W
c
2W3) =

7
12
· 6

11
· 5

10
+

7
12
· 5

11
· 6

10
=

7
22

(3.41)

Solution to Exercise 3.2.7 (p. 71)
Let B = the event the collector buys, and G = the event the painting is original. Assume P (B|G) = 1 and
P (B|Gc) = 0.1. If P (G) = 0.8, then

P (G|B) =
P (GB)
P (B)

=
P (B|G)P (G)

P (B|G)P (G) + P (B|Gc)P (Gc)
=

0.8
0.8 + 0.1 · 0.2

=
40
41

(3.42)

Solution to Exercise 3.2.8 (p. 71)
Let D = the event the unit is defective and C = the event it has the characteristic. Then P (D) = 0.05,
P (C|D) = 0.93, and P (C|Dc) = 0.02.

P (D|C) =
P (C|D)P (D)

P (C|D)P (D) + P (C|Dc)P (Dc)
=

0.93 · 0.05
0.93 · 0.05 + 0.02 · 0.95

=
93
131

(3.43)

Solution to Exercise 3.2.9 (p. 71)
Let Dk = the event of k defective and G be the event a good one is chosen.

P (D0|G) =
P (G|D0)P (D0)

P (G|D0)P (D0) + P (G|D1)P (D1) + P (G|D2)P (D2) + P (G|D3)P (D3)
(3.44)

=
1 · 1/4

(1/4) (1 + 999/1000 + 998/1000 + 997/1000)
=

1000
3994

(3.45)

Solution to Exercise 3.2.10 (p. 71)

a. P (E3S3) = P (S3|E3)P (E3) = 0.45 · 0.05 = 0.0225
b. P (S2

∨
S3|E2) = 0.80 + 0.10 = 0.90

c. p = (0.85 + 0.10 + 0.05) · 0.65 + (0.80 + 0.10) · 0.30 + 0.45 · 0.05 = 0.9425

Solution to Exercise 3.2.11 (p. 72)
P (S) = 0.85, P (S|F c) = 0.20. Also, reasonable to assume P (S|F ) = 1.

P (S) = P (S|F )P (F ) + P (S|F c) [1− P (F )] implies P (F ) =
P (S)− P (S|F c)

1− P (S|F c)
=

13
16

(3.46)

Solution to Exercise 3.2.12 (p. 72)

P (Dc|T )
P (D|T )

=
P (T |Dc)P (Dc)
P (T |D)P (D)

=
0.98 · 0.99
0.05 · 0.01

=
9702

5
(3.47)

P (Dc|T ) =
9702
9707

= 1− 5
9707

(3.48)
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Solution to Exercise 3.2.13 (p. 72)
Hi = the event from box i. P (Hi) = 1/5 and P (D|Hi) = i/100.

P (Hi|D) =
P (D|Hi)P (Hi)∑
P (D|Hj)P (Hj)

= i/15, 1 ≤ i ≤ 5 (3.49)

Solution to Exercise 3.2.14 (p. 72)
Let T = event test indicates defective, D = event initially defective, and G = event unit purchased is good.
Data are

P (D) = 0.02, P (T c|D) = 0.02, P (T |Dc) = 0.05, P (GT c) = 0, (3.50)

P (G|DT ) = 0.90, P (G|DcT ) = 1 (3.51)

P (D|G) =
P (GD)
P (G)

, P (GD) = P (GTD) = P (D)P (T |D)P (G|TD) (3.52)

P (G) = P (GT ) = P (GDT ) +P (GDcT ) = P (D)P (T |D)P (G|TD) +P (Dc)P (T |Dc)P (G|TDc) (3.53)

P (D|G) =
0.02 · 0.98 · 0.90

0.02 · 0.98 · 0.90 + 0.98 · 0.05 · 1.00
=

441
1666

(3.54)

Solution to Exercise 3.2.15 (p. 72)
Let G = event the defendent is guilty, L = the event the defendent is left handed. Prior odds:
P (G) /P (Gc) = 2. Result of testimony: P (L|G) /P (L|Gc) = 6.

P (G|L)
P (Gc|L)

=
P (G)
P (Gc)

· P (L|G)
P (L|Gc)

= 2 · 6 = 12 (3.55)

P (G|L) = 12/13 (3.56)

Solution to Exercise 3.2.16 (p. 72)
P (A) = P (A|C)P (C) + P (A|Cc)P (Cc) > P (B|C)P (C) + P (B|Cc)P (Cc) = P (B).

The converse is not true. Consider P (C) = P (Cc) = 0.5, P (A|C) = 1/4,
P (A|Cc) = 3/4, P (B|C) = 1/2, and P (B|Cc) = 1/4. Then

1/2 = P (A) =
1
2

(1/4 + 3/4) >
1
2

(1/2 + 1/4) = P (B) = 3/8 (3.57)

But P (A|C) < P (B|C).
Solution to Exercise 3.2.17 (p. 72)
Suppose A ⊂ B with P (A) < P (B). Then P (A|B) = P (A) /P (B) < 1 and P (A|Bc) = 0 so the sum is
less than one.
Solution to Exercise 3.2.18 (p. 72)

a. P (A|B) > P (A) i� P (AB) > P (A)P (B) i� P (ABc) < P (A)P (Bc) i� P (A|Bc) < P (A)
b. P (Ac|B) > P (Ac) i� P (AcB) > P (Ac)P (B) i� P (AB) < P (A)P (B) i� P (A|B) < P (A)
c. P (A|B) > P (A) i� P (AB) > P (A)P (B) i� P (AcBc) > P (Ac)P (Bc) i� P (Ac|Bc) > P (Ac)

Solution to Exercise 3.2.19 (p. 72)
1 ≥ P (A ∪B) = P (A) + P (B) − P (AB) = P (A) + P (B) − P (A|B)P (B). Simple algebra gives the
desired result.
Solution to Exercise 3.2.20 (p. 72)

P (A|B) =
P (AB)
P (B)

=
P (ABC) + P (ABCc)

P (B)
(3.58)
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=
P (A|BC)P (BC) + P (A|BCc)P (BCc)

P (B)
= P (A|BC)P (C|B) + P (A|BCc)P (Cc|B) (3.59)

Solution to Exercise 3.2.21 (p. 73)
P (A|B) = 1, P (A|Bc) = 1/n, P (B) = p

P (B|A) =
P (A|B)P (B)

PA|B
P (B) + P (A|Bc)P (Bc) =

p

p+ 1
n (1− p)

=
np

(n− 1) p+ 1
(3.60)

P (B|A)
P (B)

=
n

np+ 1− p
increases from 1 to 1/p as n→∞ (3.61)

Solution to Exercise 3.2.22 (p. 73)

a. P (B2|R1) = b
n+c

b. P (B1B2) = P (B1)P (B2|B1) = b
n ·

b+c
n+c

c. P (R2) = P (R2|R1)P (R1) + P (R2|B1)P (B1)

=
r + c

n+ c
· r
n

+
r

n+ c
· b
n

=
r (r + c+ b)
n (n+ c)

(3.62)

d. P (B1|R2) = P (R2|B1)P (B1)
P (R2) with P (R2|B1)P (B1) = r

n+c ·
b
n . Using (c), we have

P (B1|R2) =
b

r + b+ c
=

b

n+ c
(3.63)
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Chapter 4

Independence of Events

4.1 Independence of Events1

Historically, the notion of independence has played a prominent role in probability. If events form an
independent class, much less information is required to determine probabilities of Boolean combinations
and calculations are correspondingly easier. In this unit, we give a precise formulation of the concept of
independence in the probability sense. As in the case of all concepts which attempt to incorporate intuitive
notions, the consequences must be evaluated for evidence that these ideas have been captured successfully.

4.1.1 Independence as lack of conditioning

There are many situations in which we have an �operational independence.�

• Supose a deck of playing cards is shu�ed and a card is selected at random then replaced with reshu�ing.
A second card picked on a repeated try should not be a�ected by the �rst choice.

• If customers come into a well stocked shop at di�erent times, each unaware of the choice made by the
others, the the item purchased by one should not be a�ected by the choice made by the other.

• If two students are taking exams in di�erent courses, the grade one makes should not a�ect the grade
made by the other.

The list of examples could be extended inde�nitely. In each case, we should expect to model the events as
independent in some way. How should we incorporate the concept in our developing model of probability?

We take our clue from the examples above. Pairs of events are considered. The �operational independence�
described indicates that knowledge that one of the events has occured does not a�ect the likelihood that the
other will occur. For a pair of events {A,B}, this is the condition

P (A|B) = P (A) (4.1)

Occurrence of the event A is not �conditioned by� occurrence of the event B. Our basic interpretation is that
P (A) indicates of the likelihood of the occurrence of event A. The development of conditional probability
in the module Conditional Probability (Section 3.1), leads to the interpretation of P (A|B) as the likelihood
that A will occur on a trial, given knowledge that B has occurred. If such knowledge of the occurrence of B
does not a�ect the likelihood of the occurrence of A, we should be inclined to think of the events A and B
as being independent in a probability sense.

1This content is available online at <http://cnx.org/content/m23253/1.7/>.
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4.1.2 Independent pairs

We take our clue from the condition P (A|B) = P (A). Property (CP4) (p. 69) for conditional probability
(in the case of equality) yields sixteen equivalent conditions as follows.

P (A|B) = P (A) P (B|A) = P (B) P (AB) = P (A)P (B)

P (A|Bc) = P (A) P (Bc|A) = P (Bc) P (ABc) = P (A)P (Bc)

P (Ac|B) = P (Ac) P (B|Ac) = P (B) P (AcB) = P (Ac)P (B)

P (Ac|Bc) = P (Ac) P (Bc|Ac) = P (Bc) P (AcBc) = P (Ac)P (Bc)

Table 4.1

P (A|B) = P (A|Bc) P (Ac|B) = P (Ac|Bc) P (B|A) = P (B|Ac) P (Bc|A) = P (Bc|Ac)

Table 4.2

These conditions are equivalent in the sense that if any one holds, then all hold. We may chose any one
of these as the de�ning condition and consider the others as equivalents for the de�ning condition. Because
of its simplicity and symmetry with respect to the two events, we adopt the product rule in the upper right
hand corner of the table.

De�nition. The pair {A,B} of events is said to be (stochastically) independent i� the following product
rule holds:

P (AB) = P (A)P (B) (4.2)

Remark. Although the product rule is adopted as the basis for de�nition, in many applications the assump-
tions leading to independence may be formulated more naturally in terms of one or another of the equivalent
expressions. We are free to do this, for the e�ect of assuming any one condition is to assume them all.

The equivalences in the right-hand column of the upper portion of the table may be expressed as a
replacement rule, which we augment and extend below:

If the pair {A, B} independent, so is any pair obtained by taking the complement of either or both of
the events.

We note two relevant facts

• Suppose event N has probability zero (is a null event). Then for any event A, we have 0 ≤ P (AN) ≤
P (N) = 0 = P (A)P (N), so that the product rule holds. Thus {N,A} is an independent pair for any
event A.

• If event S has probability one (is an almost sure event), then its complement Sc is a null event. By the
replacement rule and the fact just established, {Sc, A} is independent, so {S,A} is independent.

The replacement rule may thus be extended to:
Replacement Rule
If the pair {A, B} independent, so is any pair obtained by replacing either or both of the events by their
complements or by a null event or by an almost sure event.

CAUTION

1. Unless at least one of the events has probability one or zero, a pair cannot be both independent
and mutually exclusive. Intuitively, if the pair is mutually exclusive, then the occurrence of one
requires that the other does not occur. Formally: Suppose 0 < P (A) < 1 and 0 < P (B) < 1.
{A,B} mutually exclusive implies P (AB) = P (∅) = 0 6= P (A)P (B). {A,B} independent implies
P (AB) = P (A)P (B) > 0 = P (∅)
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2. Independence is not a property of events. Two non mutually exclusive events may be independent under
one probability measure, but may not be independent for another. This can be seen by considering
various probability distributions on a Venn diagram or minterm map.

4.1.3 Independent classes

Extension of the concept of independence to an arbitrary class of events utilizes the product rule.
De�nition. A class of events is said to be (stochastically) independent i� the product rule holds for

every �nite subclass of two or more events in the class.
A class {A, B, C} is independent i� all four of the following product rules hold

P (AB) = P (A)P (B) P (AC) = P (A)P (C) P (BC) =
P (B)P (C) P (ABC) = P (A)P (B)P (C)

(4.3)

If any one or more of these product expressions fail, the class is not independent. A similar situation
holds for a class of four events: the product rule must hold for every pair, for every triple, and for the whole
class. Note that we say �not independent� or �nonindependent� rather than dependent. The reason for this
becomes clearer in dealing with independent random variables.

We consider some classical exmples of nonindependent classes

Example 4.1: Some nonindependent classes

1. Suppose {A1, A2, A3, A4} is a partition, with each P (Ai) = 1/4. Let

A = A1

∨
A2B = A1

∨
A3C = A1

∨
A4 (4.4)

Then the class {A,B,C} has P (A) = P (B) = P (C) = 1/2 and is pairwise independent,
but not independent, since

P (AB) = P (A1) = 1/4 = P (A)P (B) and similarly for the other pairs, but (4.5)

P (ABC) = P (A1) = 1/4 6= P (A)P (B)P (C) (4.6)

2. Consider the class {A,B,C,D} with AD = BD = ∅, C = AB
∨
D, P (A) = P (B) = 1/4,

P (AB) = 1/64, and P (D) = 15/64. Use of a minterm maps shows these assignments are
consistent. Elementary calculations show the product rule applies to the class {A,B,C} but
no two of these three events forms an independent pair.

As noted above, the replacement rule holds for any pair of events. It is easy to show, although somewhat
cumbersome to write out, that if the rule holds for any �nite number k of events in an independent class, it
holds for any k + 1 of them. By the principle of mathematical induction, the rule must hold for any �nite
subclass. We may extend the replacement rule as follows.
General Replacement Rule
If a class is independent, we may replace any of the sets by its complement, by a null event, or by an almost
sure event, and the resulting class is also independent. Such replacements may be made for any number of
the sets in the class. One immediate and important consequence is the following.
Minterm Probabilities
If {Ai : 1 ≤ i ≤ n} is an independent class and the the class {P (Ai) : 1 ≤ i ≤ n} of individual probabilities
is known, then the probability of every minterm may be calculated.
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Example 4.2: Minterm probabilities for an independent class
Suppose the class {A, B, C} is independent with respective probabilities P (A) = 0.3, P (B) = 0.6,
and P (C) = 0.5. Then
{Ac, Bc, Cc} is independent and P (M0) = P (Ac)P (Bc)P (Cc) = 0.14
{Ac, Bc, C} is independent and P (M1) = P (Ac)P (Bc)P (C) = 0.14
Similarly, the probabilities of the other six minterms, in order, are 0.21, 0.21, 0.06, 0.06, 0.09,

and 0.09. With these minterm probabilities, the probability of any Boolean combination of A, B,
and C may be calculated

In general, eight appropriate probabilities must be speci�ed to determine the minterm probabilities for a
class of three events. In the independent case, three appropriate probabilities are su�cient.

Example 4.3: Three probabilities yield the minterm probabilities
Suppose {A, B, C} is independent with P (A ∪BC) = 0.51, P (ACc) = 0.15, and P (A) = 0.30.
Then P (Cc) = 0.15/0.3 = 0.5 = P (C) and

P (A) + P (Ac)P (B)P (C) = 0.51 so that P (B) =
0.51− 0.30
0.7× 0.5

= 0.6 (4.7)

With each of the basic probabilities determined, we may calculate the minterm probabilities, hence
the probability of any Boolean combination of the events.

Example 4.4: MATLAB and the product rule
Frequently we have a large enough independent class {E1, E2, · · · , En} that it is desirable to
use MATLAB (or some other computational aid) to calculate the probabilities of various �and�
combinations (intersections) of the events or their complements. Suppose the independent class
{E1, E2, · · · , E10} has respective probabilities

0.13 0.37 0.12 0.56 0.33 0.71 0.22 0.43 0.57 0.31 (4.8)

It is desired to calculate (a) P (E1E2E
c
3E4E

c
5E

c
6E7), and (b) P (Ec1E2E

c
3E4E

c
5E

c
6E7E8E

c
9E10).

We may use the MATLAB function prod and the scheme for indexing a matrix.

� p = 0.01*[13 37 12 56 33 71 22 43 57 31];

� q = 1-p;

� % First case

� e = [1 2 4 7]; % Uncomplemented positions

� f = [3 5 6]; % Complemented positions

� P = prod(p(e))*prod(q(f)) % p(e) probs of uncomplemented factors

P = 0.0010 % q(f) probs of complemented factors

� % Case of uncomplemented in even positions; complemented in odd positions

� g = find(rem(1:10,2) == 0); % The even positions

� h = find(rem(1:10,2) ∼= 0); % The odd positions

� P = prod(p(g))*prod(q(h))

P = 0.0034

In the unit on MATLAB and Independent Classes, we extend the use of MATLAB in the calculations
for such classes.
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4.2 MATLAB and Independent Classes2

4.2.1 MATLAB and Independent Classes

In the unit on Minterms (Section 2.1), we show how to use minterm probabilities and minterm vectors to
calculate probabilities of Boolean combinations of events. In Independence of Events we show that in the
independent case, we may calculate all minterm probabilities from the probabilities of the basic events.
While these calculations are straightforward, they may be tedious and subject to errors. Fortunately, in this
case we have an m-function minprob which calculates all minterm probabilities from the probabilities of the
basic or generating sets. This function uses the m-function mintable to set up the patterns of p's and q's for
the various minterms and then takes the products to obtain the set of minterm probabilities.

Example 4.5

� pm = minprob(0.1*[4 7 6])

pm = 0.0720 0.1080 0.1680 0.2520 0.0480 0.0720 0.1120 0.1680

It may be desirable to arrange these as on a minterm map. For this we have an m-function minmap
which reshapes the row matrix pm, as follows:

� t = minmap(pm)

t = 0.0720 0.1680 0.0480 0.1120

0.1080 0.2520 0.0720 0.1680

Probability of occurrence of k of n independent events
In Example 2, we show how to use the m-functions mintable and csort to obtain the probability of the

occurrence of k of n events, when minterm probabilities are available. In the case of an independent class,
the minterm probabilities are calculated easily by minprob, It is only necessary to specify the probabilities
for the n basic events and the numbers k of events. The size of the class, hence the mintable, is determined,
and the minterm probabilities are calculated by minprob. We have two useful m-functions. If P is a matrix
of the n individual event probabilities, and k is a matrix of integers less than or equal to n, then

function y = ikn (P, k) calculates individual probabilities that k of n occur
functiony = ckn (P, k) calculates the probabilities that k or more occur

Example 4.6

� p = 0.01*[13 37 12 56 33 71 22 43 57 31];

� k = [2 5 7];

� P = ikn(p,k)

P = 0.1401 0.1845 0.0225 % individual probabilities

� Pc = ckn(p,k)

Pc = 0.9516 0.2921 0.0266 % cumulative probabilities

Reliability of systems with independent components
Suppose a system has n components which fail independently. Let Ei be the event the ith component

survives the designated time period. Then Ri = P (Ei) is de�ned to be the reliability of that component.
The reliability R of the complete system is a function of the component reliabilities. There are three basic
con�gurations. General systems may be decomposed into subsystems of these types. The subsystems become
components in the larger con�guration. The three fundamental con�gurations are:

1. Series. The system operates i� all n components operate: R =
∏n
i=1Ri

2. Parallel. The system operates i� not all components fail: R = 1−
∏n
i=1 (1−Ri)

2This content is available online at <http://cnx.org/content/m23255/1.7/>.
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3. k of n. The system operates i� k or more components operate. R may be calculated with the m-
function ckn. If the component probabilities are all the same, it is more e�cient to use the m-function
cbinom (see Bernoulli trials and the binomial distribution, below).

MATLAB solution. Put the component reliabilities in matrix RC = [R1 R2 · · · Rn]

1. Series Con�guration

� R = prod(RC) % prod is a built in MATLAB function

2. Parallel Con�guration

� R = parallel(RC) % parallel is a user defined function

3. k of n Con�guration

� R = ckn(RC,k) % ckn is a user defined function (in file ckn.m).

Example 4.7
There are eight components, numbered 1 through 8. Component 1 is in series with a parallel
combination of components 2 and 3, followed by a 3 of 5 combination of components 4 through 8
(see Figure 1 for a schematic representation). Probabilities of the components in order are

0.95 0.90 0.92 0.80 0.83 0.91 0.85 0.85 (4.9)

The second and third probabilities are for the parallel pair, and the last �ve probabilities are for
the 3 of 5 combination.

� RC = 0.01*[95 90 92 80 83 91 85 85]; % Component reliabilities

� Ra = RC(1)*parallel(RC(2:3))*ckn(RC(4:8),3) % Solution

Ra = 0.9172

Figure 4.1: Schematic representation of the system in Example 4.7

Example 4.8
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� RC = 0.01*[95 90 92 80 83 91 85 85]; % Component reliabilities 1--8

� Rb = prod(RC(1:2))*parallel([RC(3),ckn(RC(4:8),3)]) % Solution

Rb = 0.8532

Figure 4.2: Schematic representation of the system in Example 4.8

A test for independence
It is di�cult to look at a list of minterm probabilities and determine whether or not the generating events

form an independent class. The m-function imintest has as argument a vector of minterm probabilities. It
checks for feasible size, determines the number of variables, and performs a check for independence.

Example 4.9

� pm = 0.01*[15 5 2 18 25 5 18 12]; % An arbitrary class

� disp(imintest(pm))

The class is NOT independent

Minterms for which the product rule fails

1 1 1 0

1 1 1 0

Example 4.10

� pm = [0.10 0.15 0.20 0.25 0.30]: %An improper number of probabilities

� disp(imintest(pm))

The number of minterm probabilities incorrect

Example 4.11
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� pm = minprob([0.5 0.3 0.7]);

� disp(imintest(pm))

The class is independent

4.2.2 Probabilities of Boolean combinations

As in the nonindependent case, we may utilize the minterm expansion and the minterm probabilities to
calculate the probabilities of Boolean combinations of events. However, it is frequently more e�cient to
manipulate the expressions for the Boolean combination to be a disjoint union of intersections.

Example 4.12: A simple Boolean combination
Suppose the class {A, B, C} is independent, with respective probabilities 0.4, 0.6, 0.8. Determine
P (A ∪BC). The minterm expansion is

A ∪BC = M (3, 4, 5, 6, 7) , so that P (A ∪BC) = p (3, 4, 5, 6, 7) (4.10)

It is not di�cult to use the product rule and the replacement theorem to calculate the needed
minterm probabilities. Thus p (3) = P (Ac)P (B)P (C) = 0.6 · 0.6 · 0.8 = 0.2280. Similarly
p (4) = 0.0320, p (5) = 0.1280, p (6) = 0.0480, p (7) = 0.1920 . The desired probability is the
sum of these, 0.6880.

As an alternate approach, we write

A ∪BC = A
∨
AcBC, so that P (A ∪BC) = 0.4 + 0.6 · 0.6 · 0.8 = 0.6880 (4.11)

Considerbly fewer arithmetic operations are required in this calculation.

In larger problems, or in situations where probabilities of several Boolean combinations are to be deter-
mined, it may be desirable to calculate all minterm probabilities then use the minterm vector techniques
introduced earlier to calculate probabilities for various Boolean combinations. As a larger example for which
computational aid is highly desirable, consider again the class and the probabilities utilized in Example 4.6,
above.

Example 4.13
Consider again the independent class {E1, E2, · · · , E10} with respective probabilities
{0.13 0.37 0.12 0.56 0.33 0.71 0.22 0.43 0.57 0.31}. We wish to calculate

P (F ) = P (E1 ∪ E3 (E4 ∪ Ec7) ∪ E2 (Ec5 ∪ E6E8) ∪ E9E
c
10) (4.12)

There are 210 = 1024 minterm probabilities to be calculated. Each requires the multiplication of
ten numbers. The solution with MATLAB is easy, as follows:

� P = 0.01*[13 37 12 56 33 71 22 43 57 31];

� minvec10

Vectors are A1 thru A10 and A1c thru A10c

They may be renamed, if desired.

� F = (A1|(A3&(A4|A7c)))|(A2&(A5c|(A6&A8)))|(A9&A10c);

� pm = minprob(P);

� PF = F*pm'

PF = 0.6636

Writing out the expression for F is tedious and error prone. We could simplify as follows:
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� A = A1|(A3&(A4|A7c));

� B = A2&(A5c|(A6&A8));

� C = A9&A10c;

� F = A|B|C; % This minterm vector is the same as for F above

This decomposition of the problem indicates that it may be solved as a series of smaller problems.
First, we need some central facts about independence of Boolean combinations.

4.2.3 Independent Boolean combinations

Suppose we have a Boolean combination of the events in the class {Ai : 1 ≤ i ≤ n} and a second combination
the events in the class {Bj : 1 ≤ j ≤ m}. If the combined class {Ai, Bj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is
independent, we would expect the combinations of the subclasses to be independent. It is important to see
that this is in fact a consequence of the product rule, for it is further evidence that the product rule has
captured the essence of the intuitive notion of independence. In the following discussion, we exhibit the
essential structure which provides the basis for the following general proposition.

Proposition. Consider n distinct subclasses of an independent class of events. If for each i the event Ai

is a Boolean (logical) combination of members of the ith subclass, then the class {A1, A2, · · · , An} is an
independent class.

Veri�cation of this far reaching result rests on the minterm expansion and two elementary facts about
the disjoint subclasses of an independent class. We state these facts and consider in each case an example
which exhibits the essential structure. Formulation of the general result, in each case, is simply a matter of
careful use of notation.

1. A class each of whose members is a minterm formed by members of a distinct subclass of an independent
class is itself an independent class.

Example 4.14
Consider the independent class {A1, A2, A3, B1, B2, B3, B4}, with respective probabilities
0.4, 0.7, 0.3, 0.5, 0.8, 0.3, 0.6. Consider M3, minterm three for the class {A1, A2, A3}, and
N5, minterm �ve for the class {B1, B2, B3, B4}. Then

P (M3) = P (Ac
1A2A3) = 0.6 · 0.7 · 0.3 = 0.126 andP (N5) = P (Bc

1B2B
c
3B4) =

0.5 · 0.8 · 0.7 · 0.6 = 0.168
(4.13)

Also

P (M3N5) = P (Ac1A2A3B
c
1B2B

c
3B4) = 0.6 · 0.7 · 0.3 · 0.5 · 0.8 · 0.7 · 0.6

= (0.6 · 0.7 · 0.3) · (0.5 · 0.8 · 0.7 · 0.6) = P (M3)P (N5) = 0.0212
(4.14)

The product rule shows the desired independence.

Again, it should be apparent that the result holds for any number of Ai and Bj; and it can be extended
to any number of distinct subclasses of an independent class.

2. Suppose each member of a class can be expressed as a disjoint union. If each auxiliary class formed by
taking one member from each of the disjoint unions is an independent class, then the original class is
independent.

Example 4.15
Suppose A = A1

∨
A2

∨
A3 and B = B1

∨
B2, with {Ai, Bj} independent for each pair i, j.

Suppose

P (A1) = 0.3, P (A2) = 0.4, P (A3) = 0.1, P (B1) = 0.2, P (B2) = 0.5 (4.15)
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We wish to show that the pair {A, B} is independent; i.e., the product rule P (AB) =
P (A)P (B) holds.
COMPUTATION

P (A) = P (A1) + P (A2) + P (A3) = 0.3 + 0.4 + 0.1 = 0.8 andP (B) = P (B1) +
P (B2) = 0.2 + 0.5 = 0.7

(4.16)

Now

AB =
(
A1

∨
A2

∨
A3

)(
B1

∨
B2

)
= A1B1

∨
A1B2

∨
A2B1

∨
A2B2

∨
A3B1

∨
A3B2 (4.17)

By additivity and pairwise independence, we have

P (AB) = P (A1)P (B1) + P (A1)P (B2) + P (A2)P (B1) + P (A2)P (B2) +
P (A3)P (B1) + P (A3)P (B2) = 0.3 · 0.2 + 0.3 · 0.5 + 0.4 · 0.2 + 0.4 · 0.5 + 0.1 ·
0.2 + 0.1 · 0.5 = 0.56 = P (A)P (B)

(4.18)

The product rule can also be established algebraically from the expression for P (AB), as
follows:

P (AB) = P (A1) [P (B1) + P (B2)] + P (A2) [P (B1) + P (B2)] + P (A3) [P (B1) + P (B2)]

= [P (A1) + P (A2) + P (A3)] [P (B1) + P (B2)] = P (A)P (B)
(4.19)

It should be clear that the pattern just illustrated can be extended to the general case. If

A =
n∨
i=1

Ai and B =
m∨
j=1

Bj , with each pair {Ai, Bj} independent (4.20)

then the pair {A, B} is independent. Also, we may extend this rule to the triple {A, B, C}

A =
n∨
i=1

Ai, B =
m∨
j=1

Bj , and C =
r∨

k=1

Ck, with each class {Ai, Bj , Ck} independent (4.21)

and similarly for any �nite number of such combinations, so that the second proposition holds.
3. Begin with an independent class E of n events. Select m distinct subclasses and form Boolean combi-

nations for each of these. Use of the minterm expansion for each of these Boolean combinations and
the two propositions just illustrated shows that the class of Boolean combinations is independent To
illustrate, we return to Example 4.13, which involves an independent class of ten events.

Example 4.16: A hybrid approach
Consider again the independent class {E1, E2, · · · , E10} with respective probabilities
{0.13 0.37 0.12 0.56 0.33 0.71 0.22 0.43 0. 570.31}. We wish to calculate

P (F ) = P (E1 ∪ E3 (E4 ∪ Ec7) ∪ E2 (Ec5 ∪ E6E8) ∪ E9E
c
10) (4.22)

In the previous solution, we use minprob to calculate the 210 = 1024 minterms for all ten of
the Ei and determine the minterm vector for F. As we note in the alternate expansion of F,

F = A ∪B ∪ C, where A = E1 ∪ E3 (E4 ∪ Ec7) B = E2 (Ec5 ∪ E6E8) C = E9E
c
10 (4.23)

We may calculate directly P (C) = 0.57 · 0.69 = 0.3933. Now A is a Boolean combination of
{E1, E3, E4, E7} and B is a combination of {E2, E5, E6, E8}. By the result on independence
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of Boolean combinations, the class {A, B, C} is independent. We use the m-procedures to
calculate P (A) and P (B). Then we deal with the independent class {A, B, C} to obtain the
probability of F.

� p = 0.01*[13 37 12 56 33 71 22 43 57 31];

� pa = p([1 3 4 7]); % Selection of probabilities for A

� pb = p([2 5 6 8]); % Selection of probabilities for B

� pma = minprob(pa); % Minterm probabilities for calculating P(A)

� pmb = minprob(pb); % Minterm probabilities for calculating P(B)

� minvec4;

� a = A|(B&(C|Dc)); % A corresponds to E1, B to E3, C to E4, D to E7

� PA = a*pma'

PA = 0.2243

� b = A&(Bc|(C&D)); % A corresponds to E2, B to E5, C to E6, D to E8

� PB = b*pmb'

PB = 0.2852

� PC = p(9)*(1 - p(10))

PC = 0.3933

� pm = minprob([PA PB PC]);

� minvec3 % The problem becomes a three variable problem

� F = A|B|C; % with {A,B,C} an independent class

� PF = F*pm'

PF = 0.6636 % Agrees with the result of Example~4.11

4.3 Composite Trials3

4.3.1 Composite trials and component events

Often a trial is a composite one. That is, the fundamental trial is completed by performing several steps.
In some cases, the steps are carried out sequentially in time. In other situations, the order of performance
plays no signi�cant role. Some of the examples in the unit on Conditional Probability (Section 3.1) involve
such multistep trials. We examine more systematically how to model composite trials in terms of events
determined by the components of the trials. In the subsequent section, we illustrate this approach in the
important special case of Bernoulli trials, in which each outcome results in a success or failure to achieve a
speci�ed condition.

We call the individual steps in the composite trial component trials. For example, in the experiment of
�ipping a coin ten times, we refer the ith toss as the ith component trial. In many cases, the component
trials will be performed sequentially in time. But we may have an experiment in which ten coins are �ipped
simultaneously. For purposes of analysis, we impose an ordering� usually by assigning indices. The question
is how to model these repetitions. Should they be considered as ten trials of a single simple experiment? It
turns out that this is not a useful formulation. We need to consider the composite trial as a single outcome�
i.e., represented by a single point in the basic space Ω.

Some authors give considerable attention the the nature of the basic space, describing it as a Cartesian
product space, with each coordinate corresponding to one of the component outcomes. We �nd that unnec-
essary, and often confusing, in setting up the basic model. We simply suppose the basic space has enough
elements to consider each possible outcome. For the experiment of �ipping a coin ten times, there must be
at least 210 = 1024 elements, one for each possible sequence of heads and tails.

3This content is available online at <http://cnx.org/content/m23256/1.7/>.
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Of more importance is describing the various events associated with the experiment. We begin by
identifying the appropriate component events. A component event is determined by propositions about the
outcomes of the corresponding component trial.

Example 4.17: Component events

• In the coin �ipping experiment, consider the event H3 that the third toss results in a head.
Each outcome ω of the experiment may be represented by a sequence of H 's and T's, repre-
senting heads and tails. The event H3 consists of those outcomes represented by sequences
with H in the third position. Suppose A is the event of a head on the third toss and a tail
on the ninth toss. This consists of those outcomes corresponding to sequences with H in the
third position and T in the ninth. Note that this event is the intersection H3H

c
9 .

• A somewhat more complex example is as follows. Suppose there are two boxes, each containing
some red and some blue balls. The experiment consists of selecting at random a ball from
the �rst box, placing it in the second box, then making a random selection from the modi�ed
contents of the second box. The composite trial is made up of two component selections. We
may let R1 be the event of selecting a red ball on the �rst component trial (from the �rst
box), and R2 be the event of selecting a red ball on the second component trial. Clearly R1

and R2 are component events.

In the �rst example, it is reasonable to assume that the class {Hi : 1 ≤ i ≤ 10} is independent, and each
component probability is usually taken to be 0.5. In the second case, the assignment of probabilities is
somewhat more involved. For one thing, it is necessary to know the numbers of red and blue balls in each
box before the composite trial begins. When these are known, the usual assumptions and the properties of
conditional probability su�ce to assign probabilities. This approach of utilizing component events is used
tacitly in some of the examples in the unit on Conditional Probability.

When appropriate component events are determined, various Boolean combinations of these can be
expressed as minterm expansions.

Example 4.18
Four persons take one shot each at a target. Let Ei be the event the ith shooter hits the target
center. Let A3 be the event exacty three hit the target. Then A3 is the union of those minterms
generated by the Ei which have three places uncomplemented.

A3 = E1E2E3E
c
4

∨
E1E2E

c
3E4

∨
E1E

c
2E3E4

∨
Ec1E2E3E4 (4.24)

Usually we would be able to assume the Ei form an independent class. If each P (Ei) is known,
then all minterm probabilities can be calculated easily.

The following is a somewhat more complicated example of this type.

Example 4.19
Ten race cars are involved in time trials to determine pole positions for an upcoming race. To
qualify, they must post an average speed of 125 mph or more on a trial run. Let Ei be the event
the ith car makes qualifying speed. It seems reasonable to suppose the class {Ei : 1 ≤ i ≤ 10} is
independent. If the respective probabilities for success are 0.90, 0.88, 0.93, 0.77, 0.85, 0.96, 0.72,
0.83, 0.91, 0.84, what is the probability that k or more will qualify (k = 6, 7, 8, 9, 10)?
SOLUTION
Let Ak be the event exactly k qualify. The class {Ei : 1 ≤ i ≤ 10} generates 210 = 1024 minterms.
The event Ak is the union of those minterms which have exactly k places uncomplemented. The
event Bk that k or more qualify is given by

Bk =
n∨
r=k

Ar (4.25)
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The task of computing and adding the minterm probabilities by hand would be tedious, to say the
least. However, we may use the function ckn, introduced in the unit on MATLAB and Independent
Classes and illustrated in Example 4.4.2, to determine the desired probabilities quickly and easily.

� P = [0.90, 0.88, 0.93, 0.77, 0.85, 0.96,0.72, 0.83, 0.91, 0.84];

� k = 6:10;

� PB = ckn(P,k)

PB = 0.9938 0.9628 0.8472 0.5756 0.2114

An alternate approach is considered in the treatment of random variables.

4.3.2 Bernoulli trials and the binomial distribution

Many composite trials may be described as a sequence of success-failure trials. For each component trial in
the sequence, the outcome is one of two kinds. One we designate a success and the other a failure. Examples
abound: heads or tails in a sequence of coin �ips, favor or disapprove of a proposition in a survey sample,
and items from a production line meet or fail to meet speci�cations in a sequence of quality control checks.
To represent the situation, we let Ei be the event of a success on the ith component trial in the sequence.
The event of a failure on the ith component trial is thus Ei

c.
In many cases, we model the sequence as a Bernoulli sequence, in which the results on the successive

component trials are independent and have the same probabilities. Thus, formally, a sequence of success-
failure trials is Bernoulli i�

1. The class {Ei : 1 ≤ i} is independent.
2. The probability P (Ei) = p, invariant with i.

Simulation of Bernoulli trials
It is frequently desirable to simulate Bernoulli trials. By �ipping coins, rolling a die with various numbers

of sides (as used in certain games), or using spinners, it is relatively easy to carry this out physically. However,
if the number of trials is large�say several hundred�the process may be time consuming. Also, there are
limitations on the values of p, the probability of success. We have a convenient two-part m-procedure for
simulating Bernoulli sequences. The �rst part, called btdata, sets the parameters. The second, called bt,
uses the random number generator in MATLAB to produce a sequence of zeros and ones (for failures and
successes). Repeated calls for bt produce new sequences.

Example 4.20

� btdata

Enter n, the number of trials 10

Enter p, the probability of success on each trial 0.37

Call for bt

� bt

n = 10 p = 0.37 % n is kept small to save printout space

Frequency = 0.4

To view the sequence, call for SEQ

� disp(SEQ) % optional call for the sequence

1 1

2 1

3 0

4 0

5 0

6 0

7 0
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8 0

9 1

10 1

Repeated calls for bt yield new sequences with the same parameters.

To illustrate the power of the program, it was used to take a run of 100,000 component trials, with probability
p of success 0.37, as above. Successive runs gave relative frequencies 0.37001 and 0.36999. Unless the random
number generator is �seeded� to make the same starting point each time, successive runs will give di�erent
sequences and usually di�erent relative frequencies.

The binomial distribution
A basic problem in Bernoulli sequences is to determine the probability of k successes in n component

trials. We let Sn be the number of successes in n trials. This is a special case of a simple random variable,
which we study in more detail in the chapter on "Random Variables and Probabilities" (Section 6.1).

Let us characterize the events Akn = {Sn = k}, 0 ≤ k ≤ n. As noted above, the event Akn of exactly k
successes is the union of the minterms generated by {Ei : 1 ≤ i} in which there are k successes (represented
by k uncomplemented Ei) and n−k failures (represented by n−k complemented Ei

c). Simple combinatorics
show there are C (n, k) ways to choose the k places to be uncomplemented. Hence, among the 2n minterms,
there are C (n, k) = n!

k!(n−k)! which have k places uncomplemented. Each such minterm has probability

pk(1− p)n−k. Since the minterms are mutually exclusive, their probabilities add. We conclude that

P (Sn = k) = C (n, k) pk(1− p)n−k = C (n, k) pkqn−k where q = 1− p for 0 ≤ k ≤ n (4.26)

These probabilities and the corresponding values form the distribution for Sn. This distribution is known
as the binomial distribution, with parameters (n, p). We shorten this to binomial (n, p), and often write
Sn ∼ binomial (n, p). A related set of probabilities is P (Sn ≥ k) = P (Bkn), 0 ≤ k ≤ n. If the number n of
component trials is small, direct computation of the probabilities is easy with hand calculators.

Example 4.21: A reliability problem
A remote device has �ve similar components which fail independently, with equal probabilities.
The system remains operable if three or more of the components are operative. Suppose each unit
remains active for one year with probability 0.8. What is the probability the system will remain
operative for that long?

SOLUTION

P = C (5, 3) 0.83 · 0.22 +C (5, 4) 0.84 · 0.2 +C (5, 5) 0.85 = 10 · 0.83 · 0.22 + 5 · 0.84 ·
0.2 + 0.85 = 0.9421

(4.27)

Because Bernoulli sequences are used in so many practical situations as models for success-failure trials, the
probabilities P (Sn = k) and P (Sn ≥ k) have been calculated and tabulated for a variety of combinations
of the parameters (n, p). Such tables are found in most mathematical handbooks. Tables of P (Sn = k) are
usually given a title such as binomial distribution, individual terms. Tables of P (Sn ≥ k) have a designation
such as binomial distribution, cumulative terms. Note, however, some tables for cumulative terms give
P (Sn ≤ k). Care should be taken to note which convention is used.

Example 4.22: A reliability problem
Consider again the system of Example 5, above. Suppose we attempt to enter a table of Cumulative
Terms, Binomial Distribution at n = 5, k = 3, and p = 0.8. Most tables will not have probabilities
greater than 0.5. In this case, we may work with failures. We just interchange the role of Ei and
Ei

c. Thus, the number of failures has the binomial (n, q) distribution. Now there are three or more
successes i� there are not three or more failures. We go the the table of cumulative terms at n = 5,
k = 3, and p = 0.2. The probability entry is 0.0579. The desired probability is 1 - 0.0579 = 0.9421.

In general, there are k or more successes in n trials i� there are not n− k + 1 or more failures.
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m-functions for binomial probabilities
Although tables are convenient for calculation, they impose serious limitations on the available parameter

values, and when the values are found in a table, they must still be entered into the problem. Fortunately,
we have convenient m-functions for these distributions. When MATLAB is available, it is much easier to
generate the needed probabilities than to look them up in a table, and the numbers are entered directly into
the MATLAB workspace. And we have great freedom in selection of parameter values. For example we may
use n of a thousand or more, while tables are usually limited to n of 20, or at most 30. The two m-functions
for calculating P (Akn) and P (Bkn) are

: P (Akn) is calculated by y = ibinom(n,p,k), where k is a row or column vector of integers between 0 and
n. The result y is a row vector of the same size as k.

: P (Bkn) is calculated by y = cbinom(n,p,k), where k is a row or column vector of integers between 0 and
n. The result y is a row vector of the same size as k.

Example 4.23: Use of m-functions ibinom and cbinom
If n = 10 and p = 0.39, determine P (Akn) and P (Bkn) for k = 3, 5, 6, 8.

� p = 0.39;

� k = [3 5 6 8];

� Pi = ibinom(10,p,k) % individual probabilities

Pi = 0.2237 0.1920 0.1023 0.0090

� Pc = cbinom(10,p,k) % cumulative probabilities

Pc = 0.8160 0.3420 0.1500 0.0103

Note that we have used probability p = 0.39. It is quite unlikely that a table will have this probability.
Although we use only n = 10, frequently it is desirable to use values of several hundred. The m-functions
work well for n up to 1000 (and even higher for small values of p or for values very near to one). Hence,
there is great freedom from the limitations of tables. If a table with a speci�c range of values is desired, an
m-procedure called binomial produces such a table. The use of large n raises the question of cumulation of
errors in sums or products. The level of precision in MATLAB calculations is su�cient that such roundo�
errors are well below pratical concerns.

Example 4.24

� binomial % call for procedure

Enter n, the number of trials 13

Enter p, the probability of success 0.413

Enter row vector k of success numbers 0:4

n p

13.0000 0.4130

k P(X=k) P(X>=k)
0 0.0010 1.0000

1.0000 0.0090 0.9990

2.0000 0.0379 0.9900

3.0000 0.0979 0.9521

4.0000 0.1721 0.8542

Remark. While the m-procedure binomial is useful for constructing a table, it is usually not as convenient
for problems as the m-functions ibinom or cbinom. The latter calculate the desired values and put them
directly into the MATLAB workspace.
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4.3.3 Joint Bernoulli trials

Bernoulli trials may be used to model a variety of practical problems. One such is to compare the results of
two sequences of Bernoulli trials carried out independently. The following simple example illustrates the use
of MATLAB for this.

Example 4.25: A joint Bernoulli trial
Bill and Mary take ten basketball free throws each. We assume the two seqences of trials are
independent of each other, and each is a Bernoulli sequence.

Mary: Has probability 0.80 of success on each trial.
Bill: Has probability 0.85 of success on each trial.
What is the probability Mary makes more free throws than Bill?
SOLUTION
We have two Bernoulli sequences, operating independently.
Mary: n = 10, p = 0.80
Bill: n = 10, p = 0.85
Let
M be the event Mary wins
Mk be the event Mary makes k or more freethrows.
Bj be the event Bill makes exactly j freethrows
Then Mary wins if Bill makes none and Mary makes one or more, or Bill makes one and Mary

makes two or more, etc. Thus

M = B0M1

∨
B1M2

∨
· · ·

∨
B9M10 (4.28)

and

P (M) = P (B0)P (M1) + P (B1)P (M2) + · · · + P (B9)P (M10) (4.29)

We use cbinom to calculate the cumulative probabilities for Mary and ibinom to obtain the indi-
vidual probabilities for Bill.

� pm = cbinom(10,0.8,1:10); % cumulative probabilities for Mary

� pb = ibinom(10,0.85,0:9); % individual probabilities for Bill

� D = [pm; pb]' % display: pm in the first column

D = % pb in the second column

1.0000 0.0000

1.0000 0.0000

0.9999 0.0000

0.9991 0.0001

0.9936 0.0012

0.9672 0.0085

0.8791 0.0401

0.6778 0.1298

0.3758 0.2759

0.1074 0.3474

To �nd the probability P (M) that Mary wins, we need to multiply each of these pairs together, then
sum. This is just the dot or scalar product, which MATLAB calculates with the command pm∗pb'.
We may combine the generation of the probabilities and the multiplication in one command:

� P = cbinom(10,0.8,1:10)*ibinom(10,0.85,0:9)'

P = 0.2738
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The ease and simplicity of calculation with MATLAB make it feasible to consider the e�ect of di�erent
values of n. Is there an optimum number of throws for Mary? Why should there be an optimum?

An alternate treatment of this problem in the unit on Independent Random Variables utilizes techniques
for independent simple random variables.

4.3.4 Alternate MATLAB implementations

Alternate implementations of the functions for probability calculations are found in the Statistical Package
available as a supplementary package. We have utilized our formulation, so that only the basic MATLAB
package is needed.

4.4 Problems on Independence of Events4

Exercise 4.4.1 (Solution on p. 101.)

The minterms generated by the class {A, B, C} have minterm probabilities

pm = [0.15 0.05 0.02 0.18 0.25 0.05 0.18 0.12] (4.30)

Show that the product rule holds for all three, but the class is not independent.

Exercise 4.4.2 (Solution on p. 101.)

The class {A, B, C, D} is independent, with respective probabilities 0.65, 0.37, 0.48, 0.63. Use
the m-function minprob to obtain the minterm probabilities. Use the m-function minmap to put
them in a 4 by 4 table corresponding to the minterm map convention we use.

Exercise 4.4.3 (Solution on p. 101.)

The minterm probabilities for the software survey in Example 2 (Example 2.2: Survey on software)
from "Minterms" are

pm = [0 0.05 0.10 0.05 0.20 0.10 0.40 0.10] (4.31)

Show whether or not the class {A,B,C} is independent: (1) by hand calculation, and (2) by use
of the m-function imintest.

Exercise 4.4.4 (Solution on p. 101.)

The minterm probabilities for the computer survey in Example 3 (Example 2.3: Survey on personal
computers) from "Minterms" are

pm = [0.032 0.016 0.376 0.011 0.364 0.073 0.077 0.051] (4.32)

Show whether or not the class {A,B,C} is independent: (1) by hand calculation, and (2) by use
of the m-function imintest.

Exercise 4.4.5 (Solution on p. 101.)

Minterm probabilities p (0) through p (15) for the class {A, B, C, D} are, in order,
pm = [0.084 0.196 0.036 0.084 0.085 0.196 0.035 0.084 0.021 0.049 0.009 0.021 0.020 0.049 0.010 0.021]
Use the m-function imintest to show whether or not the class {A, B, C, D} is independent.

Exercise 4.4.6 (Solution on p. 102.)

Minterm probabilities p (0) through p (15) for the opinion survey in Example 4 (Example 2.4:
Opinion survey) from "Minterms" are

pm = [0.085 0.195 0.035 0.085 0.080 0.200 0.035 0.085 0.020 0.050 0.010 0.020 0.020 0.050 0.015 0.015]
Show whether or not the class {A, B, C, D} is independent.

4This content is available online at <http://cnx.org/content/m24180/1.5/>.
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Exercise 4.4.7 (Solution on p. 102.)

The class {A,B,C} is independent, with P (A) = 0.30, P (BcC) = 0.32, and P (AC) = 0.12.
Determine the minterm probabilities.

Exercise 4.4.8 (Solution on p. 102.)

The class {A, B, C} is independent, with P (A ∪B) = 0.6, P (A ∪ C) = 0.7, and P (C) = 0.4.
Determine the probability of each minterm.

Exercise 4.4.9 (Solution on p. 102.)

A pair of dice is rolled �ve times. What is the probability the �rst two results are �sevens� and the
others are not?

Exercise 4.4.10 (Solution on p. 102.)

David, Mary, Joan, Hal, Sharon, and Wayne take an exam in their probability course. Their
probabilities of making 90 percent or more are

0.72 0.83 0.75 0.92 0.65 0.79 (4.33)

respectively. Assume these are independent events. What is the probability three or more, four
or more, �ve or more make grades of at least 90 percent?

Exercise 4.4.11 (Solution on p. 102.)

Two independent random numbers between 0 and 1 are selected (say by a random number generator
on a calculator). What is the probability the �rst is no greater than 0.33 and the other is at least
57?

Exercise 4.4.12 (Solution on p. 102.)

Helen is wondering how to plan for the weekend. She will get a letter from home (with money)
with probability 0.05. There is a probability of 0.85 that she will get a call from Jim at SMU in
Dallas. There is also a probability of 0.5 that William will ask for a date. What is the probability
she will get money and Jim will not call or that both Jim will call and William will ask for a date?

Exercise 4.4.13 (Solution on p. 103.)

A basketball player takes ten free throws in a contest. On her �rst shot she is nervous and has
probability 0.3 of making the shot. She begins to settle down and probabilities on the next seven
shots are 0.5, 0.6 0.7 0.8 0.8, 0.8 and 0.85, respectively. Then she realizes her opponent is doing
well, and becomes tense as she takes the last two shots, with probabilities reduced to 0.75, 0.65.
Assuming independence between the shots, what is the probability she will make k or more for
k = 2, 3, · · · 10?
Exercise 4.4.14 (Solution on p. 103.)

In a group there are M men and W women; m of the men and w of the women are college
graduates. An individual is picked at random. Let A be the event the individual is a woman and B
be the event he or she is a college graduate. Under what condition is the pair {A, B} independent?
Exercise 4.4.15 (Solution on p. 103.)

Consider the pair {A, B} of events. Let P (A) = p, P (Ac) = q = 1 − p, P (B|A) = p1, and
P (B|Ac) = p2. Under what condition is the pair {A, B} independent?
Exercise 4.4.16 (Solution on p. 103.)

Show that if event A is independent of itself, then P (A) = 0 or P (A) = 1. (This fact is key to an
important �zero-one law.�)

Exercise 4.4.17 (Solution on p. 103.)

Does {A, B} independent and {B, C} independent imply {A, C} is independent? Justify your
answer.
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Exercise 4.4.18 (Solution on p. 103.)

Suppose event A implies B (i.e. A ⊂ B). Show that if the pair {A, B} is independent, then either
P (A) = 0 or P (B) = 1.
Exercise 4.4.19 (Solution on p. 103.)

A company has three task forces trying to meet a deadline for a new device. The groups work
independently, with respective probabilities 0.8, 0.9, 0.75 of completing on time. What is the
probability at least one group completes on time? (Think. Then solve �by hand.�)

Exercise 4.4.20 (Solution on p. 103.)

Two salesmen work di�erently. Roland spends more time with his customers than does Betty, hence
tends to see fewer customers. On a given day Roland sees �ve customers and Betty sees six. The
customers make decisions independently. If the probabilities for success on Roland's customers are
0.7, 0.8, 0.8, 0.6, 0.7 and for Betty's customers are 0.6, 0.5, 0.4, 0.6, 0.6, 0.4, what is the probability
Roland makes more sales than Betty? What is the probability that Roland will make three or more
sales? What is the probability that Betty will make three or more sales?

Exercise 4.4.21 (Solution on p. 104.)

Two teams of students take a probability exam. The entire group performs individually and
independently. Team 1 has �ve members and Team 2 has six members. They have the following
indivudal probabilities of making an `�A� on the exam.

Team 1: 0.83 0.87 0.92 0.77 0.86 Team 2: 0.68 0.91 0.74 0.68 0.73 0.83

a. What is the probability team 1 will make at least as many A's as team 2?
b. What is the probability team 1 will make more A's than team 2?

Exercise 4.4.22 (Solution on p. 104.)

A system has �ve components which fail independently. Their respective reliabilities are 0.93, 0.91,
0.78, 0.88, 0.92. Units 1 and 2 operate as a �series� combination. Units 3, 4, 5 operate as a two
of three subsytem. The two subsystems operate as a parallel combination to make the complete
system. What is reliability of the complete system?

Exercise 4.4.23 (Solution on p. 104.)

A system has eight components with respective probabilities

0.96 0.90 0.93 0.82 0.85 0.97 0.88 0.80 (4.34)

Units 1 and 2 form a parallel subsytem in series with unit 3 and a three of �ve combination of
units 4 through 8. What is the reliability of the complete system?

Exercise 4.4.24 (Solution on p. 104.)

How would the reliability of the system in Exercise 4.4.23 change if units 1, 2, and 3 formed a
parallel combination in series with the three of �ve combination?

Exercise 4.4.25 (Solution on p. 104.)

How would the reliability of the system in Exercise 4.4.23 change if the reliability of unit 3 were
changed from 0.93 to 0.96? What change if the reliability of unit 2 were changed from 0.90 to 0.95
(with unit 3 unchanged)?

Exercise 4.4.26 (Solution on p. 105.)

Three fair dice are rolled. What is the probability at least one will show a six?

Exercise 4.4.27 (Solution on p. 105.)

A hobby shop �nds that 35 percent of its customers buy an electronic game. If customers buy
independently, what is the probability that at least one of the next �ve customers will buy an
electronic game?
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Exercise 4.4.28 (Solution on p. 105.)

Under extreme noise conditions, the probability that a certain message will be transmitted correctly
is 0.1. Successive messages are acted upon independently by the noise. Suppose the message is
transmitted ten times. What is the probability it is transmitted correctly at least once?

Exercise 4.4.29 (Solution on p. 105.)

Suppose the class {Ai : 1 ≤ i ≤ n} is independent, with P (Ai) = pi, 1 ≤ i ≤ n. What is the
probability that at least one of the events occurs? What is the probability that none occurs?

Exercise 4.4.30 (Solution on p. 105.)

In one hundred random digits, 0 through 9, with each possible digit equally likely on each choice,
what is the probility 8 or more are sevens?

Exercise 4.4.31 (Solution on p. 105.)

Ten customers come into a store. If the probability is 0.15 that each customer will buy a television
set, what is the probability the store will sell three or more?

Exercise 4.4.32 (Solution on p. 105.)

Seven similar units are put into service at time t = 0. The units fail independently. The probability
of failure of any unit in the �rst 400 hours is 0.18. What is the probability that three or more units
are still in operation at the end of 400 hours?

Exercise 4.4.33 (Solution on p. 105.)

A computer system has ten similar modules. The circuit has redundancy which ensures the system
operates if any eight or more of the units are operative. Units fail independently, and the probability
is 0.93 that any unit will survive between maintenance periods. What is the probability of no system
failure due to these units?

Exercise 4.4.34 (Solution on p. 105.)

Only thirty percent of the items from a production line meet stringent requirements for a special
job. Units from the line are tested in succession. Under the usual assumptions for Bernoulli trials,
what is the probability that three satisfactory units will be found in eight or fewer trials?

Exercise 4.4.35 (Solution on p. 105.)

The probability is 0.02 that a virus will survive application of a certain vaccine. What is the
probability that in a batch of 500 viruses, �fteen or more will survive treatment?

Exercise 4.4.36 (Solution on p. 105.)

In a shipment of 20,000 items, 400 are defective. These are scattered randomly throughout the
entire lot. Assume the probability of a defective is the same on each choice. What is the probability
that

1. Two or more will appear in a random sample of 35?
2. At most �ve will appear in a random sample of 50?

Exercise 4.4.37 (Solution on p. 105.)

A device has probability p of operating successfully on any trial in a sequence. What probability
p is necessary to ensure the probability of successes on all of the �rst four trials is 0.85? With that
value of p, what is the probability of four or more successes in �ve trials?

Exercise 4.4.38 (Solution on p. 105.)

A survey form is sent to 100 persons. If they decide independently whether or not to reply,
and each has probability 1/4 of replying, what is the probability of k or more replies, where
k = 15, 20, 25, 30, 35, 40?
Exercise 4.4.39 (Solution on p. 105.)

Ten numbers are produced by a random number generator. What is the probability four or more
are less than or equal to 0.63?
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Exercise 4.4.40 (Solution on p. 105.)

A player rolls a pair of dice �ve times. She scores a �hit� on any throw if she gets a 6 or 7. She wins
i� she scores an odd number of hits in the �ve throws. What is the probability a player wins on any
sequence of �ve throws? Suppose she plays the game 20 successive times. What is the probability
she wins at least 10 times? What is the probability she wins more than half the time?

Exercise 4.4.41 (Solution on p. 106.)

Erica and John spin a wheel which turns up the integers 0 through 9 with equal probability. Results
on various trials are independent. Each spins the wheel 10 times. What is the probability Erica
turns up a seven more times than does John?

Exercise 4.4.42 (Solution on p. 106.)

Erica and John play a di�erent game with the wheel, above. Erica scores a point each time she gets
an integer 0, 2, 4, 6, or 8. John scores a point each time he turns up a 1, 2, 5, or 7. If Erica spins
eight times; John spins 10 times. What is the probability John makes more points than Erica?

Exercise 4.4.43 (Solution on p. 106.)

A box contains 100 balls; 30 are red, 40 are blue, and 30 are green. Martha and Alex select at
random, with replacement and mixing after each selection. Alex has a success if he selects a red
ball; Martha has a success if she selects a blue ball. Alex selects seven times and Martha selects
�ve times. What is the probability Martha has more successes than Alex?

Exercise 4.4.44 (Solution on p. 106.)

Two players roll a fair die 30 times each. What is the probability that each rolls the same number
of sixes?

Exercise 4.4.45 (Solution on p. 106.)

A warehouse has a stock of n items of a certain kind, r of which are defective. Two of the items are
chosen at random, without replacement. What is the probability that at least one is defective? Show
that for large n the number is very close to that for selection with replacement, which corresponds
to two Bernoulli trials with pobability p = r/n of success on any trial.

Exercise 4.4.46 (Solution on p. 106.)

A coin is �ipped repeatedly, until a head appears. Show that with probability one the game will
terminate.

tip: The probability of not terminating in n trials is qn.

Exercise 4.4.47 (Solution on p. 106.)

Two persons play a game consecutively until one of them is successful or there are ten unsuccesful
plays. Let Ei be the event of a success on the ith play of the game. Suppose {Ei : 1 ≤ i} is an
independent class with P (Ei) = p1 for i odd and P (Ei) = p2 for i even. Let A be the event the
�rst player wins, B be the event the second player wins, and C be the event that neither wins.

a. Express A, B, and C in terms of the Ei.
b. Determine P (A), P (B), and P (C) in terms of p1, p2, q1 = 1− p1, and q2 = 1− p2. Obtain

numerical values for the case p1 = 1/4 and p2 = 1/3.
c. Use appropriate facts about the geometric series to show that P (A) = P (B) i� p1 =
p2/ (1 + p2).

d. Suppose p2 = 0.5. Use the result of part (c) to �nd the value of p1 to make P (A) = P (B)
and then determine P (A), P (B), and P (C).

Exercise 4.4.48 (Solution on p. 106.)

Three persons play a game consecutively until one achieves his objective. Let Ei be the event of
a success on the ith trial, and suppose {Ei : 1 ≤ i} is an independent class, with P (Ei) = p1 for
i = 1, 4, 7, · · ·, P (Ei) = p2 for i = 2, 5, 8, · · ·, and P (Ei) = p3 for i = 3, 6, 9, · · ·. Let A,B,C be the
respective events the �rst, second, and third player wins.
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a. Express A,B, and C in terms of the Ei.
b. Determine the probabilities in terms of p1, p2, p3, then obtain numerical values in the case

p1 = 1/4, p2 = 1/3, and p3 = 1/2.

Exercise 4.4.49 (Solution on p. 107.)

What is the probability of a success on the ith trial in a Bernoulli sequence of n component trials,
given there are r successes?

Exercise 4.4.50 (Solution on p. 107.)

A device has N similar components which may fail independently, with probability p of failure of
any component. The device fails if one or more of the components fails. In the event of failure of
the device, the components are tested sequentially.

a. What is the probability the �rst defective unit tested is the nth, given one or more components
have failed?

b. What is the probability the defective unit is the nth, given that exactly one has failed?
c. What is the probability that more than one unit has failed, given that the �rst defective unit

is the nth?
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Solutions to Exercises in Chapter 4

Solution to Exercise 4.4.1 (p. 95)

pm = [0.15 0.05 0.02 0.18 0.25 0.05 0.18 0.12];

y = imintest(pm)

The class is NOT independent

Minterms for which the product rule fails

y =

1 1 1 0

1 1 1 0 % The product rule hold for M7 = ABC

Solution to Exercise 4.4.2 (p. 95)

P = [0.65 0.37 0.48 0.63];

p = minmap(minprob(P))

p =

0.0424 0.0249 0.0788 0.0463

0.0722 0.0424 0.1342 0.0788

0.0392 0.0230 0.0727 0.0427

0.0667 0.0392 0.1238 0.0727

Solution to Exercise 4.4.3 (p. 95)

pm = [0 0.05 0.10 0.05 0.20 0.10 0.40 0.10];

y = imintest(pm)

The class is NOT independent

Minterms for which the product rule fails

y =

1 1 1 1 % By hand check product rule for any minterm

1 1 1 1

Solution to Exercise 4.4.4 (p. 95)

npr04_04 (Section~17.8.22: npr04_04)

Minterm probabilities for Exercise~4.4.4 are in pm

y = imintest(pm)

The class is NOT independent

Minterms for which the product rule fails

y =

1 1 1 1

1 1 1 1

Solution to Exercise 4.4.5 (p. 95)

npr04_05 (Section~17.8.23: npr04_05)

Minterm probabilities for Exercise~4.4.5 are in pm

imintest(pm)

The class is NOT independent
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Minterms for which the product rule fails

ans =

0 1 0 1

0 0 0 0

0 1 0 1

0 0 0 0

Solution to Exercise 4.4.6 (p. 95)

npr04_06

Minterm probabilities for Exercise~4.4.6 are in pm

y = imintest(pm)

The class is NOT independent

Minterms for which the product rule fails

y =

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Solution to Exercise 4.4.7 (p. 96)
P (C) = P (AC) /P (A) = 0.40 and P (B) = 1− P (BcC) /P (C) = 0.20.

pm = minprob([0.3 0.2 0.4])

pm = 0.3360 0.2240 0.0840 0.0560 0.1440 0.0960 0.0360 0.0240

Solution to Exercise 4.4.8 (p. 96)
P (AcCc) = P (Ac)P (Cc) = 0.3 implies P (Ac) = 0.3/0.6 = 0.5 = P (A).
P (AcBc) = P (Ac)P (Bc) = 0.4 implies P (Bc) = 0.4/0.5 = 0.8 implies P (B) = 0.2

P = [0.5 0.2 0.4];

pm = minprob(P)

pm = 0.2400 0.1600 0.0600 0.0400 0.2400 0.1600 0.0600 0.0400

Solution to Exercise 4.4.9 (p. 96)
P = (1/6)2(5/6)3 = 0.0161.
Solution to Exercise 4.4.10 (p. 96)

P = 0.01*[72 83 75 92 65 79];

y = ckn(P,[3 4 5])

y = 0.9780 0.8756 0.5967

Solution to Exercise 4.4.11 (p. 96)
P = 0.33 • (1− 0.57) = 0.1419
Solution to Exercise 4.4.12 (p. 96)
A ∼ letter with money, B ∼ call from Jim, C ∼ William ask for date

P = 0.01*[5 85 50];

minvec3

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

pm = minprob(P);

p = ((A&Bc)|(B&C))*pm'

p = 0.4325
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Solution to Exercise 4.4.13 (p. 96)

P = 0.01*[30 50 60 70 80 80 80 85 75 65];

k = 2:10;

p = ckn(P,k)

p =

Columns 1 through 7

0.9999 0.9984 0.9882 0.9441 0.8192 0.5859 0.3043

Columns 8 through 9

0.0966 0.0134

Solution to Exercise 4.4.14 (p. 96)
P (A|B) = w/ (m+ w) = W/ (W +M) = P (A)
Solution to Exercise 4.4.15 (p. 96)
p1 = P (B|A) = P (B|Ac) = p2 (see table of equivalent conditions).
Solution to Exercise 4.4.16 (p. 96)
P (A) = P (A ∩A) = P (A)P (A). x2 = x i� x = 0 or x = 1.
Solution to Exercise 4.4.17 (p. 96)

% No. Consider for example the following minterm probabilities:

pm = [0.2 0.05 0.125 0.125 0.05 0.2 0.125 0.125];

minvec3

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

PA = A*pm'

PA = 0.5000

PB = B*pm'

PB = 0.5000

PC = C*pm'

PC = 0.5000

PAB = (A&B)*pm' % Product rule holds

PAB = 0.2500

PBC = (B&C)*pm' % Product rule holds

PBC = 0.2500

PAC = (A&C)*pm' % Product rule fails

PAC = 0.3250

Solution to Exercise 4.4.18 (p. 97)
A ⊂ B implies P (AB) = P (A); independence implies P (AB) = P (A)P (B). P (A) = P (A)P (B) only if
P (B) = 1 or P (A) = 0.
Solution to Exercise 4.4.19 (p. 97)
At least one completes i� not all fail. P = 1− 0.2 • 0.1 • 0.25 = 0.9950
Solution to Exercise 4.4.20 (p. 97)

PR = 0.1*[7 8 8 6 7];

PB = 0.1*[6 5 4 6 6 4];

PR3 = ckn(PR,3)

PR3 = 0.8662

PB3 = ckn(PB,3)

PB3 = 0.6906
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PRgB = ikn(PB,0:4)*ckn(PR,1:5)'

PRgB = 0.5065

Solution to Exercise 4.4.21 (p. 97)

P1 = 0.01*[83 87 92 77 86];

P2 = 0.01*[68 91 74 68 73 83];

P1geq = ikn(P2,0:5)*ckn(P1,0:5)'

P1geq = 0.5527

P1g = ikn(P2,0:4)*ckn(P1,1:5)'

P1g = 0.2561

Solution to Exercise 4.4.22 (p. 97)

R = 0.01*[93 91 78 88 92];

Ra = prod(R(1:2))

Ra = 0.8463

Rb = ckn(R(3:5),2)

Rb = 0.9506

Rs = parallel([Ra Rb])

Rs = 0.9924

Solution to Exercise 4.4.23 (p. 97)

R = 0.01*[96 90 93 82 85 97 88 80];

Ra = parallel(R(1:2))

Ra = 0.9960

Rb = ckn(R(4:8),3)

Rb = 0.9821

Rs = prod([Ra R(3) Rb])

Rs = 0.9097

Solution to Exercise 4.4.24 (p. 97)

Rc = parallel(R(1:3))

Rc = 0.9997

Rss = prod([Rb Rc])

Rss = 0.9818

Solution to Exercise 4.4.25 (p. 97)

R1 = R;

R1(3) =0.96;

Ra = parallel(R1(1:2))

Ra = 0.9960

Rb = ckn(R1(4:8),3)

Rb = 0.9821

Rs3 = prod([Ra R1(3) Rb])

Rs3 = 0.9390

R2 = R;
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R2(2) = 0.95;

Ra = parallel(R2(1:2))

Ra = 0.9980

Rb = ckn(R2(4:8),3)

Rb = 0.9821

Rs4 = prod([Ra R2(3) Rb])

Rs4 = 0.9115

Solution to Exercise 4.4.26 (p. 97)
P = 1− (5/6)3 = 0.4213
Solution to Exercise 4.4.27 (p. 97)
P = 1− 0.655 = 0.8840
Solution to Exercise 4.4.28 (p. 98)
P = 1− 0.910 = 0.6513
Solution to Exercise 4.4.29 (p. 98)
P1 = 1− P0, P0 =

∏n
i=1 (1− pi)

Solution to Exercise 4.4.30 (p. 98)
P = cbinom (100, 0.1, 8) = 0.7939
Solution to Exercise 4.4.31 (p. 98)
P = cbinom (10, 0.15, 3) = 0.1798
Solution to Exercise 4.4.32 (p. 98)
P = cbinom (7, 0.82, 3) = 0.9971
Solution to Exercise 4.4.33 (p. 98)
P = cbinom (10, 0.93, 8) = 0.9717
Solution to Exercise 4.4.34 (p. 98)
P = cbinom (8, 0.3, 3) = 0.4482
Solution to Exercise 4.4.35 (p. 98)
P = cbinom (500.0.02, 15) = 0.0814
Solution to Exercise 4.4.36 (p. 98)

• P1 = cbinom (35, 0.02, 2) = 0.1547.
• P2 = 1− cbinom (35, 0.02, 6) = 0.9999

Solution to Exercise 4.4.37 (p. 98)
p = 0.851/4, P = cbinom (5, p, 4) = 0.9854
Solution to Exercise 4.4.38 (p. 98)

P = cbinom(100,1/4,15:5:40)

P = 0.9946 0.9005 0.5383 0.1495 0.0164 0.0007

Solution to Exercise 4.4.39 (p. 98)
P1 = cbinom (10, 0.63, 4) = 0.9644
Solution to Exercise 4.4.40 (p. 99)
Each roll yields a hit with probability p = 6

36 + 5
36 = 11

36 .

PW = sum(ibinom(5,11/36,[1 3 5]))

PW = 0.4956

P2 = cbinom(20,PW,10)

P2 = 0.5724

P3 = cbinom(20,PW,11)

P3 = 0.3963
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Solution to Exercise 4.4.41 (p. 99)
P = ibinom (10, 0.1, 0 : 9) ∗ cbinom (10, 0.1, 1 : 10) ' = 0.3437
Solution to Exercise 4.4.42 (p. 99)
P = ibinom (8, 0.5, 0 : 8) ∗ cbinom (10, 0.4, 1 : 9) ' = 0.4030
Solution to Exercise 4.4.43 (p. 99)
P = ibinom (7, 0.3, 0 : 4) ∗ cbinom (5, 0.4, 1 : 5) ' = 0.3613
Solution to Exercise 4.4.44 (p. 99)
P = sum (ibinom (30, 1/6, 0 : 30) .^2) = 0.1386
Solution to Exercise 4.4.45 (p. 99)

P1 =
r

n
• r − 1
n− 1

+
r

n
• n− r
n− 1

+
n− r
n
• r

n− 1
=

(2n− 1) r − r2

n (n− 1)
(4.35)

P2 = 1−
( r
n

)2

=
2nr − r2

n2
(4.36)

Solution to Exercise 4.4.46 (p. 99)
Let N = event never terminates and Nk = event does not terminate in k plays. Then N ⊂ Nk for all k
implies 0 ≤ P (N) ≤ P (Nk) = 1/2k for all k. We conclude P (N) = 0.
Solution to Exercise 4.4.47 (p. 99)

a. C =
⋂10
i=1E

c
i .

A = E1

∨
Ec1E

c
2E3

∨
Ec1E

c
2E

c
3E

c
4E5

∨
Ec1E

c
2E

c
3E

c
4E

c
5E

c
6E7

∨
Ec1E

c
2E

c
3E

c
4E

c
5E

c
6E

c
7E

c
8E9 (4.37)

B = Ec1E2

∨
Ec1E

c
2E

c
3E4

∨
Ec1E

c
2E

c
3E

c
4E

c
5E6

∨
Ec1E

c
2E

c
3E

c
4E

c
5E

c
6E

c
7E8

∨
Ec1E

c
2E

c
3E

c
4E

c
5E

c
6E

c
7E

c
8E

c
9E10

(4.38)

b.

P (A) = p1

[
1 + q1q2 + (q1q2)2 + (q1q2)3 + (q1q2)4

]
= p1

1− (q1q2)5

1− q1q2
(4.39)

P (B) = q1p2
1− (q1q2)5

1− q1q2
P (C) = (q1q2)5

(4.40)

For p1 = 1/4, p2 = 1/3, we have q1q2 = 1/2 and q1p2 = 1/4. In this case

P (A) =
1
4
• 31

16
= 31/64 = 0.4844 = P (B) , P (C) = 1/32 (4.41)

Note that P (A) + P (B) + P (C) = 1.
c. P (A) = P (B) i� p1 = q1p2 = (1− p1) p2 i� p1 = p2/ (1 + p2).
d. p1 = 0.5/1.5 = 1/3

Solution to Exercise 4.4.48 (p. 99)

a. • A = E1

∨ ∞∨
k=1

⋂3k
i=1E

c
iE3k+1

• B = Ec1E2

∨ ∞∨
k=1

⋂3k+1
i=1 EciE3k+2

• C = Ec1E
c
2E3

∨ ∞∨
k=1

⋂3k+2
i=1 EciE3k+3

b. • P (A) = p1

∑∞
k=0 (q1q2q3)k = p1

1−q1q2q3
• P (B) = q1p2

1−q1q2q3
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• P (C) = q1q2p3
1−q1q2q3

• For p1 = 1/4, p2 = 1/3, p3 = 1/2, P (A) = P (B) = P (C) = 1/3.

Solution to Exercise 4.4.49 (p. 100)
P (ArnEi) = pC (n− 1, r − 1) pr−1qn−r and P (Arn) = C (n, r) prqn−r.

Hence P (Ei|AArn) = C (n− 1, r − 1) /C (n, r) = r/n.
Solution to Exercise 4.4.50 (p. 100)
Let A1 = event one failure, B1 = event of one or more failures, B2 = event of two or more failures, and
Fn = the event the �rst defective unit found is the nth.

a. Fn ⊂ B1 implies P (Fn|B1) = P (Fn) /P (B1) = qn−1p
1−qN

b.

P (Fn|A1) =
P (FnA1)
P (A1)

=
qn−1pqN−n

NpqN−1
=

1
N

(4.42)

(see Exercise 4.4.49)
c. Since probability not all from nth are good is 1− qN−n,

P (B2|Fn) =
P (B2Fn)
P (Fn)

=
qn−1p

(
1−QN−1

)
qn−1p

= 1− qN−n (4.43)

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



108 CHAPTER 4. INDEPENDENCE OF EVENTS

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



Chapter 5

Conditional Independence

5.1 Conditional Independence1

The idea of stochastic (probabilistic) independence is explored in the unit Independence of Events (Sec-
tion 4.1). The concept is approached as lack of conditioning: P (A|B) = P (A). This is equivalent to the
product rule P (AB) = P (A)P (B) . We consider an extension to conditional independence.

5.1.1 The concept

Examination of the independence concept reveals two important mathematical facts:

• Independence of a class of non mutually exclusive events depends upon the probability measure, and
not on the relationship between the events. Independence cannot be displayed on a Venn diagram,
unless probabilities are indicated. For one probability measure a pair may be independent while for
another probability measure the pair may not be independent.

• Conditional probability is a probability measure, since it has the three de�ning properties and all those
properties derived therefrom.

This raises the question: is there a useful conditional independence�i.e., independence with respect to a
conditional probability measure? In this chapter we explore that question in a fruitful way.

Among the simple examples of �operational independence" in the unit on independence of events, which
lead naturally to an assumption of �probabilistic independence� are the following:

• If customers come into a well stocked shop at di�erent times, each unaware of the choice made by the
other, the the item purchased by one should not be a�ected by the choice made by the other.

• If two students are taking exams in di�erent courses, the grade one makes should not a�ect the grade
made by the other.

Example 5.1: Buying umbrellas and the weather
A department store has a nice stock of umbrellas. Two customers come into the store �indepen-
dently.� Let A be the event the �rst buys an umbrella and B the event the second buys an umbrella.
Normally, we should think the events {A, B} form an independent pair. But consider the e�ect of
weather on the purchases. Let C be the event the weather is rainy (i.e., is raining or threatening
to rain). Now we should think P (A|C) > P (A|Cc) and P (B|C) > P (B|Cc). The weather has
a decided e�ect on the likelihood of buying an umbrella. But given the fact the weather is rainy

1This content is available online at <http://cnx.org/content/m23258/1.8/>.
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(event C has occurred), it would seem reasonable that purchase of an umbrella by one should not
a�ect the likelihood of such a purchase by the other. Thus, it may be reasonable to suppose

P (A|C) = P (A|BC) or, in another notation, PC (A) = PC (A|B) (5.1)

An examination of the sixteen equivalent conditions for independence, with probability measure P
replaced by probability measure PC, shows that we have independence of the pair {A, B} with re-
spect to the conditional probability measure PC (·) = P (·|C). Thus, P (AB|C) = P (A|C)P (B|C).
For this example, we should also expect that P (A|Cc) = P (A|BCc), so that there is independence
with respect to the conditional probability measure P (·|Cc). Does this make the pair {A, B} in-
dependent (with respect to the prior probability measure P)? Some numerical examples make it
plain that only in the most unusual cases would the pair be independent. Without calculations,
we can see why this should be so. If the �rst customer buys an umbrella, this indicates a higher
than normal likelihood that the weather is rainy, in which case the second customer is likely to
buy. The condition leads to P (B|A) > P (B). Consider the following numerical case. Suppose
P (AB|C) = P (A|C)P (B|C) and P (AB|Cc) = P (A|Cc)P (B|Cc) and

P (A|C) = 0.60, P (A|Cc) = 0.20, P (B|C) = 0.50, P (B|Cc) = 0.15,withP (C) = 0.30. (5.2)

Then

P (A) = P (A|C)P (C) + P (A|Cc)P (Cc) = 0.3200 P (B) = P (B|C)P (C) +
P (B|Cc)P (Cc) = 0.2550

(5.3)

P (AB) = P (AB|C)P (C) + P (AB|Cc)P (Cc) = P (A|C)P (B|C)P (C) +
P (A|Cc)P (B|Cc)P (Cc) = 0.1110

(5.4)

As a result,

P (A)P (B) = 0.0816 6= 0.1110 = P (AB) (5.5)

The product rule fails, so that the pair is not independent. An examination of the pattern of
computation shows that independence would require very special probabilities which are not likely
to be encountered.

Example 5.2: Students and exams
Two students take exams in di�erent courses, Under normal circumstances, one would suppose their
performances form an independent pair. Let A be the event the �rst student makes grade 80 or
better and B be the event the second has a grade of 80 or better. The exam is given on Monday
morning. It is the fall semester. There is a probability 0.30 that there was a football game on
Saturday, and both students are enthusiastic fans. Let C be the event of a game on the previous
Saturday. Now it is reasonable to suppose

P (A|C) = P (A|BC) and P (A|Cc) = P (A|BCc) (5.6)

If we know that there was a Saturday game, additional knowledge that B has occurred does not
a�ect the lielihood that A occurs. Again, use of equivalent conditions shows that the situation may
be expressed

P (AB|C) = P (A|C)P (B|C) and P (AB|Cc) = P (A|Cc)P (B|Cc) (5.7)

Under these conditions, we should suppose that P (A|C) < P (A|Cc) and P (B|C) < P (B|Cc).
If we knew that one did poorly on the exam, this would increase the likelihoood there was a
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Saturday game and hence increase the likelihood that the other did poorly. The failure to be
independent arises from a common chance factor that a�ects both. Although their performances
are �operationally� independent, they are not independent in the probability sense. As a numerical
example, suppose

P (A|C) = 0.7 P (A|Cc) = 0.9 P (B|C) = 0.6 P (B|Cc) = 0.8 P (C) = 0.3 (5.8)

Straightforward calculations show P (A) = 0.8400, P (B) = 0.7400, P (AB) = 0.6300. Note that
P (A|B) = 0.8514 > P (A) as would be expected.

5.1.2 Sixteen equivalent conditions

Using the facts on repeated conditioning (Section 3.1.4: Repeated conditioning) and the equivalent condi-
tions for independence (Table 4.1), we may produce a similar table of equivalent conditions for conditional
independence. In the hybrid notation we use for repeated conditioning, we write

PC (A|B) = PC (A) or PC (AB) = PC (A)PC (B) (5.9)

This translates into

P (A|BC) = P (A|C) or P (AB|C) = P (A|C)P (B|C) (5.10)

If it is known that C has occurred, then additional knowledge of the occurrence of B does not change the
likelihood of A.

If we write the sixteen equivalent conditions for independence in terms of the conditional probability
measure PC ( · ), then translate as above, we have the following equivalent conditions.

Sixteen equivalent conditions

P (A|BC) = P (A|C) P (B|AC) = P (B|C) P (AB|C) = P (A|C)P (B|C)

P (A|BcC) = P (A|C) P (Bc|AC) = P (Bc|C) P (ABc|C) = P (A|C)P (Bc|C)

P (Ac|BC) = P (Ac|C) P (B|AcC) = P (B|C) P (AcB|C) = P (Ac|C)P (B|C)

P (Ac|BcC) = P (Ac|C) P (Bc|AcC) = P (Bc|C) P (AcBc|C) = P (Ac|C)P (Bc|C)

Table 5.1

P (A|BC) = P (A|BcC) P (Ac|BC) =
P (Ac|BcC)

P (B|AC) = P (B|AcC) P (Bc|AC) =
P (Bc|AcC)

Table 5.2

The patterns of conditioning in the examples above belong to this set. In a given problem, one or the
other of these conditions may seem a reasonable assumption. As soon as one of these patterns is recognized,
then all are equally valid assumptions. Because of its simplicity and symmetry, we take as the de�ning
condition the product ruleP (AB|C) = P (A|C)P (B|C).

De�nition. A pair of events {A,B} is said to be conditionally independent, givenC, designated
{A,B} ci |C i� the following product rule holds: P (AB|C) = P (A|C)P (B|C).

The equivalence of the four entries in the right hand column of the upper part of the table, establish
The replacement rule
If any of the pairs {A,B}, {A,Bc}, {Ac, B}, or {Ac, Bc} is conditionally independent, given C, then so

are the others.
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� �
This may be expressed by saying that if a pair is conditionally independent, we may replace either or

both by their complements and still have a conditionally independent pair.
To illustrate further the usefulness of this concept, we note some other common examples in which similar

conditions hold: there is operational independence, but some chance factor which a�ects both.

• Two contractors work quite independently on jobs in the same city. The operational independence
suggests probabilistic independence. However, both jobs are outside and subject to delays due to bad
weather. Suppose A is the event the �rst contracter completes his job on time and B is the event the
second completes on time. If C is the event of �good� weather, then arguments similar to those in
Examples 1 and 2 make it seem reasonable to suppose {A, B} ci |C and {A, B} ci |Cc. Remark. In
formal probability theory, an event must be sharply de�ned: on any trial it occurs or it does not. The
event of �good weather� is not so clearly de�ned. Did a trace of rain or thunder in the area constitute
bad weather? Did rain delay on one day in a month long project constitute bad weather? Even with
this ambiguity, the pattern of probabilistic analysis may be useful.

• A patient goes to a doctor. A preliminary examination leads the doctor to think there is a thirty percent
chance the patient has a certain disease. The doctor orders two independent tests for conditions that
indicate the disease. Are results of these tests really independent? There is certainly operational
independence�the tests may be done by di�erent laboratories, neither aware of the testing by the
others. Yet, if the tests are meaningful, they must both be a�ected by the actual condition of the
patient. Suppose D is the event the patient has the disease, A is the event the �rst test is positive
(indicates the conditions associated with the disease) and B is the event the second test is positive.
Then it would seem reasonable to suppose {A, B} ci |D and {A, B} ci |Dc.

In the examples considered so far, it has been reasonable to assume conditional independence, given an event
C, and conditional independence, given the complementary event. But there are cases in which the e�ect of
the conditioning event is asymmetric. We consider several examples.

• Two students are working on a term paper. They work quite separately. They both need to borrow
a certain book from the library. Let C be the event the library has two copies available. If A is the
event the �rst completes on time and B the event the second is successful, then it seems reasonable
to assume {A, B} ci |C. However, if only one book is available, then the two conditions would not be
conditionally independent. In general P (B|ACc) < P (B|Cc), since if the �rst student completes on
time, then he or she must have been successful in getting the book, to the detriment of the second.

• If the two contractors of the example above both need material which may be in scarce supply, then
successful completion would be conditionally independent, give an adequate supply, whereas they would
not be conditionally independent, given a short supply.

• Two students in the same course take an exam. If they prepared separately, the event of both getting
good grades should be conditionally independent. If they study together, then the likelihoods of good
grades would not be independent. With neither cheating or collaborating on the test itself, if one does
well, the other should also.

Since conditional independence is ordinary independence with respect to a conditional probability measure,
it should be clear how to extend the concept to larger classes of sets.

De�nition. A class {Ai : i ∈ J}, where J is an arbitrary index set, is conditionally independent, given
event C, denoted {Ai : i ∈ J} ci |C, i� the product rule holds for every �nite subclass of two or more.

As in the case of simple independence, the replacement rule extends.
The replacement rule
If the class {Ai : i ∈ J} ci |C, then any or all of the events Ai may be replaced by their complements and

still have a conditionally independent class.
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5.1.3 The use of independence techniques

Since conditional independence is independence, we may use independence techniques in the solution of
problems. We consider two types of problems: an inference problem and a conditional Bernoulli sequence.

Example 5.3: Use of independence techniques
Sharon is investigating a business venture which she thinks has probability 0.7 of being successful.
She checks with �ve �independent� advisers. If the prospects are sound, the probabilities are 0.8,
0.75, 0.6, 0.9, and 0.8 that the advisers will advise her to proceed; if the venture is not sound, the
respective probabilities are 0.75, 0.85, 0.7, 0.9, and 0.7 that the advice will be negative. Given
the quality of the project, the advisers are independent of one another in the sense that no one is
a�ected by the others. Of course, they are not independent, for they are all related to the soundness
of the venture. We may reasonably assume conditional independence of the advice, given that the
venture is sound and also given that the venture is not sound. If Sharon goes with the majority of
advisers, what is the probability she will make the right decision?
SOLUTION
If the project is sound, Sharon makes the right choice if three or more of the �ve advisors are
positive. If the venture is unsound, she makes the right choice if three or more of the �ve advisers
are negative. Let H = the event the project is sound, F = the event three or more advisers are
positive, G = F c = the event three or more are negative, and E = the event of the correct decision.
Then

P (E) = P (FH) + P (GHc) = P (F |H)P (H) + P (G|Hc)P (Hc) (5.11)

Let Ei be the event the ith adviser is positive. Then P (F |H) = the sum of probabilities of the
form P (Mk|H), where Mk are minterms generated by the class {Ei : 1 ≤ i ≤ 5}. Because of the
assumed conditional independence,

P (E1E
c
2E

c
3E4E5|H) = P (E1|H)P (Ec2|H)P (Ec3|H)P (E4|H)P (E5|H) (5.12)

with similar expressions for each P (Mk|H) and P (Mk|Hc). This means that if we want the
probability of three or more successes, given H, we can use ckn with the matrix of conditional
probabilities. The following MATLAB solution of the investment problem is indicated.

P1~=~0.01*[80~75~60~90~80];

P2~=~0.01*[75~85~70~90~70];

PH~=~0.7;

PE~=~ckn(P1,3)*PH~+~ckn(P2,3)*(1~-~PH)

PE~=~~~~0.9255

Often a Bernoulli sequence is related to some conditioning event H. In this case it is reasonable to assume
the sequence {Ei : 1 ≤ i ≤ n} ci |H and ci |Hc. We consider a simple example.

Example 5.4: Test of a claim
A race track regular claims he can pick the winning horse in any race 90 percent of the time. In
order to test his claim, he picks a horse to win in each of ten races. There are �ve horses in each
race. If he is simply guessing, the probability of success on each race is 0.2. Consider the trials to
constitute a Bernoulli sequence. Let H be the event he is correct in his claim. If S is the number
of successes in picking the winners in the ten races, determine P (H|S = k) for various numbers k
of correct picks. Suppose it is equally likely that his claim is valid or that he is merely guessing.
We assume two conditional Bernoulli trials:

Claim is valid: Ten trials, probability p = P (Ei|H) = 0.9.
Guessing at random: Ten trials, probability p = P (Ei|Hc) = 0.2.
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Let S = number of correct picks in ten trials. Then

P (H|S = k)
P (Hc|S = k)

=
P (H)
P (Hc)

· P (S = k|H)
P (S = k|Hc)

, 0 ≤ k ≤ 10 (5.13)

Giving him the bene�t of the doubt, we suppose P (H) /P (Hc) = 1 and calculate the conditional
odds.

k~=~0:10;

Pk1~=~ibinom(10,0.9,k);~~~~%~Probability~of~k~successes,~given~H

Pk2~=~ibinom(10,0.2,k);~~~~%~Probability~of~k~successes,~given~H^c

OH~~=~Pk1./Pk2;~~~~~~~~~~~~%~Conditional~odds--~Assumes~P(H)/P(H^c)~=~1

e~~~=~OH~>~1;~~~~~~~~~~~~~~%~Selects~favorable~odds
disp(round([k(e);OH(e)]'))

~~~~~~~~~~~6~~~~~~~~~~~2~~~~~~%~Needs~at~least~six~to~have~creditability

~~~~~~~~~~~7~~~~~~~~~~73~~~~~~%~Seven~would~be~creditable,

~~~~~~~~~~~8~~~~~~~~2627~~~~~~%~even~if~P(H)/P(H^c)~=~0.1

~~~~~~~~~~~9~~~~~~~94585

~~~~~~~~~~10~~~~~3405063

Under these assumptions, he would have to pick at least seven correctly to give reasonable validation
of his claim.

5.2 Patterns of Probable Inference2

5.2.1 Some Patterns of Probable Inference

We are concerned with the likelihood of some hypothesized condition. In general, we have evidence for the
condition which can never be absolutely certain. We are forced to assess probabilities (likelihoods) on the
basis of the evidence. Some typical examples:

HYPOTHESIS EVIDENCE

Job success Personal traits

Presence of oil Geological structures

Operation of a device Physical condition

Market condition Test market condition

Presence of a disease Tests for symptoms

Table 5.3

If H is the event the hypothetical condition exists and E is the event the evidence occurs, the probabilities
available are usually P (H) (or an odds value), P (E|H), and P (E|Hc). What is desired is P (H|E) or,
equivalently, the odds P (H|E) /P (Hc|E). We simply use Bayes' rule to reverse the direction of conditioning.

P (H|E)
P (Hc|E)

=
P (E|H)
P (E|Hc)

· P (H)
P (Hc)

(5.14)

No conditional independence is involved in this case.

2This content is available online at <http://cnx.org/content/m23259/1.7/>.
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Independent evidence for the hypothesized condition
Suppose there are two �independent� bits of evidence. Now obtaining this evidence may be �opera-

tionally� independent, but if the items both relate to the hypothesized condition, then they cannot be really
independent. The condition assumed is usually of the form P (E1|H) = P (E1|HE2) �if H occurs, then
knowledge of E2 does not a�ect the likelihood of E1. Similarly, we usually have P (E1|Hc) = P (E1|HcE2).
Thus {E1, E2} ci |H and {E1, E2} ci |Hc.

Example 5.5: Independent medical tests
Suppose a doctor thinks the odds are 2/1 that a patient has a certain disease. She orders two
independent tests. Let H be the event the patient has the disease and E1 and E2 be the events
the tests are positive. Suppose the �rst test has probability 0.1 of a false positive and probability
0.05 of a false negative. The second test has probabilities 0.05 and 0.08 of false positive and false
negative, respectively. If both tests are positive, what is the posterior probability the patient has
the disease?
SOLUTION
Assuming {E1, E2} ci |H and ci |Hc, we work �rst in terms of the odds, then convert to probability.

P (H|E1E2)
P (Hc|E1E2)

=
P (H)
P (Hc)

· P (E1E2|H)
P (E1E2|Hc)

=
P (H)
P (Hc)

· P (E1|H)P (E2|H)
P (E1|Hc)P (E2|Hc)

(5.15)

The data are

P (H) /P (Hc) = 2, P (E1|H) = 0.95, P (E1|Hc) = 0.1, P (E2|H) = 0.92, P (E2|Hc) = 0.05 (5.16)

Substituting values, we get

P (H|E1E2)
P (Hc|E1E2)

= 2 · 0.95 · 0.92
0.10 · 0.05

=
1748

5
so that P (H|E1E2) =

1748
1753

= 1− 5
1753

= 1− 0.0029 (5.17)

Evidence for a symptom
Sometimes the evidence dealt with is not evidence for the hypothesized condition, but for some condition
which is stochastically related. For purposes of exposition, we refer to this intermediary condition as a
symptom. Consider again the examples above.

HYPOTHESIS SYMPTOM EVIDENCE

Job success Personal traits Diagnostic test results

Presence of oil Geological structures Geophysical survey results

Operation of a device Physical condition Monitoring report

Market condition Test market condition Market survey result

Presence of a disease Physical symptom Test for symptom

Table 5.4

We let S be the event the symptom is present. The usual case is that the evidence is directly related to
the symptom and not the hypothesized condition. The diagnostic test results can say something about an
applicant's personal traits, but cannot deal directly with the hypothesized condition. The test results would
be the same whether or not the candidate is successful in the job (he or she does not have the job yet). A
geophysical survey deals with certain structural features beneath the surface. If a fault or a salt dome is
present, the geophysical results are the same whether or not there is oil present. The physical monitoring
report deals with certain physical characteristics. Its reading is the same whether or not the device will fail.
A market survey treats only the condition in the test market. The results depend upon the test market, not
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the national market. A blood test may be for certain physical conditions which frequently are related (at
least statistically) to the disease. But the result of the blood test for the physical condition is not directly
a�ected by the presence or absence of the disease.

Under conditions of this type, we may assume

P (E|SH) = P (E|SHc) and P (E|ScH) = P (E|ScHc) (5.18)

These imply {E, H} ci |S and ci |Sc. Now

P (H|E)
P (Hc|E) = P (HE)

P (HcE) = P (HES)+P (HESc)
P (HcES)+P (HcESc) = P (HS)P (E|HS)+P (HSc)P (E|HSc)

P (HcS)P (E|HcS)+P (HcSc)P (E|HcSc)

= P (HS)P (E|S)+P (HSc)P (E|Sc)
P (HcS)P (E|S)+P (HcSc)P (E|Sc)

(5.19)

It is worth noting that each term in the denominator di�ers from the corresponding term in the numerator
by having Hc in place of H. Before completing the analysis, it is necessary to consider how H and S are
related stochastically in the data. Four cases may be considered.

a. Data are P (S|H), P (S|Hc), and P (H).
b. Data are P (S|H), P (S|Hc), and P (S).
c. Data are P (H|S), P (H|Sc), and P (S).
d. Data are P (H|S), P (H|Sc), and P (H).

Case a:
P (H|E)
P (Hc|E)

=
P (H)P (S|H)P (E|S) + P (H)P (Sc|H)P (E|Sc)

P (Hc)P (S|Hc)P (E|S) + P (Hc)P (Sc|Hc)P (E|Sc)
(5.20)

Example 5.6: Geophysical survey
Let H be the event of a successful oil well, S be the event there is a geophysical structure
favorable to the presence of oil, and E be the event the geophysical survey indicates a favorable
structure. We suppose {H, E} ci |S and ci |Sc. Data are

P (H) /P (Hc) = 3, P (S|H) = 0.92, P (S|Hc) = 0.20, P (E|S) = 0.95, P (E|Sc) = 0.15 (5.21)

Then

P (H|E)
P (Hc|E)

= 3 · 0.92 · 0.95 + 0.08 · 0.15
0.20 · 0.95 + 0.80 · 0.15

=
1329
155

= 8.5742 (5.22)

so that P (H|E) = 1− 155
1484

= 0.8956 (5.23)

The geophysical result moved the prior odds of 3/1 to posterior odds of 8.6/1, with a corre-
sponding change of probabilities from 0.75 to 0.90.

Case b: Data are P (S)P (S|H), P (S|Hc), P (E|S). and P (E|Sc). If we can determine P (H), we can
proceed as in case a. Now by the law of total probability

P (S) = P (S|H)P (H) + P (S|Hc) [1− P (H)] (5.24)

which may be solved algebraically to give

P (H) =
P (S)− P (S|Hc)
P (S|H)− P (S|Hc)

(5.25)
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Example 5.7: Geophysical survey revisited
In many cases a better estimate of P (S) or the odds P (S) /P (Sc) can be made on the basis
of previous geophysical data. Suppose the prior odds for S are 3/1, so that P (S) = 0.75.
Using the other data in Example 5.6 (Geophysical survey), we have

P (H) =
P (S)− P (S|Hc)
P (S|H)− P (S|Hc)

=
0.75− 0.20
0.92− 0.20

= 55/72, so that
P (H)
P (Hc)

= 55/17 (5.26)

Using the pattern of case a, we have

P (H|E)
P (Hc|E)

=
55
17
· 0.92 · 0.95 + 0.08 · 0.15

0.20 · 0.95 + 0.80 · 0.15
=

4873
527

= 9.2467 (5.27)

so that P (H|E) = 1− 527
5400

= 0.9024 (5.28)

Usually data relating test results to symptom are of the form P (E|S) and P (E|Sc), or equivalent.
Data relating the symptom and the hypothesized condition may go either way. In cases a and b, the
data are in the form P (S|H) and P (S|Hc), or equivalent, derived from data showing the fraction of
times the symptom is noted when the hypothesized condition is identi�ed. But these data may go in
the opposite direction, yielding P (H|S) and P (H|Sc), or equivalent. This is the situation in cases c
and d.

Case c: Data are P (E|S) , P (E|Sc) , P (H|S) , P (H|Sc) and P (S).
Example 5.8: Evidence for a disease symptom with prior P (S)
When a certain blood syndrome is observed, a given disease is indicated 93 percent of the
time. The disease is found without this syndrome only three percent of the time. A test
for the syndrome has probability 0.03 of a false positive and 0.05 of a false negative. A
preliminary examination indicates a probability 0.30 that a patient has the syndrome. A test
is performed; the result is negative. What is the probability the patient has the disease?
SOLUTION
In terms of the notation above, the data are

P (S) = 0.30, P (E|Sc) = 0.03, P (Ec|S) = 0.05, (5.29)

P (H|S) = 0.93, and P (H|Sc) = 0.03 (5.30)

We suppose {H, E} ci |S and ci |Sc.

P (H|Ec)
P (Hc|Ec)

=
P (S)P (H|S)P (Ec|S) + P (Sc)P (H|Sc)P (Ec|Sc)
P (S)P (Hc|S)P (Ec|S) + P (Sc)P (Hc|Sc)P (Ec|Sc)

(5.31)

=
0.30 · 0.93 · 0.05 + 0.70 · 0.03 · 0.97
0.30 · 0.07 · 0.05 + 0.70 · 0.97 · 0.97

=
429
8246

(5.32)

which implies P (H|Ec) = 429/8675 ≈ 0.05.
Case d: This di�ers from case c only in the fact that a prior probability for H is assumed. In this case, we

determine the corresponding probability for S by

P (S) =
P (H)− P (H|Sc)
P (H|S)− P (H|Sc)

(5.33)

and use the pattern of case c.
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Example 5.9: Evidence for a disease symptom with prior P (H)
Suppose for the patient in Example 5.8 (Evidence for a disease symptom with prior P (S)) the
physician estimates the odds favoring the presence of the disease are 1/3, so that P (H) = 0.25.
Again, the test result is negative. Determine the posterior odds, given Ec.
SOLUTION
First we determine

P (S) =
P (H)− P (H|Sc)
P (H|S)− P (H|Sc)

=
0.25− 0.03
0.93− 0.03

= 11/45 (5.34)

Then

P (H|Ec)
P (Hc|Ec)

=
(11/45) · 0.93 · 0.05 + (34/45) · 0.03 · 0.97
(11/45) · 0.07 · 0.05 + (34/45) · 0.97 · 0.97

=
15009
320291

= 0.047 (5.35)

The result of the test drops the prior odds of 1/3 to approximately 1/21.

Independent evidence for a symptom
In the previous cases, we consider only a single item of evidence for a symptom. But it may be desirable

to have a �second opinion.� We suppose the tests are for the symptom and are not directly related to the
hypothetical condition. If the tests are operationally independent, we could reasonably assume

P (E1|SE2) = P (E1|SEc2) {E1, E2} ci |S
P (E1|SH) = P (E1|SHc) {E1, H} ci |S
P (E2|SH) = P (E2|SHc) {E2, H} ci |S

P (E1E2|SH) = P (E1E2|SHc) {E1E2, H} ci |S

(5.36)

This implies {E1, E2, H} ci |S. A similar condition holds for Sc. As for a single test, there are four cases,
depending on the tie between S and H. We consider a "case a" example.

Example 5.10: A market survey problem
A food company is planning to market nationally a new breakfast cereal. Its executives feel con�dent
that the odds are at least 3 to 1 the product would be successful. Before launching the new product,
the company decides to investigate a test market. Previous experience indicates that the reliability
of the test market is such that if the national market is favorable, there is probability 0.9 that the
test market is also. On the other hand, if the national market is unfavorable, there is a probability
of only 0.2 that the test market will be favorable. These facts lead to the following analysis. Let

H be the event the national market is favorable (hypothesis)
S be the event the test market is favorable (symptom)

The initial data are the following probabilities, based on past experience:

• (a) Prior odds: P (H) /P (Hc) = 3
• (b) Reliability of the test market: P (S|H) = 0.9 P (S|Hc) = 0.2

If it were known that the test market is favorable, we should have

P (H|S)
P (Hc|S)

=
P (S|H)P (H)
P (S|Hc)P (Hc)

=
0.9
0.2
· 3 = 13.5 (5.37)

Unfortunately, it is not feasible to know with certainty the state of the test market. The company
decision makers engage two market survey companies to make independent surveys of the test
market. The reliability of the companies may be expressed as follows. Let

: E1 be the event the �rst company reports a favorable test market.
: E2 be the event the second company reports a favorable test market.
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On the basis of previous experience, the reliability of the evidence about the test market (the
symptom) is expressed in the following conditional probabilities.

P (E1|S) = 0.9 P (E1|Sc) = 0.3 P (E2|S) = 0.8 B (E2|Sc) = 0.2 (5.38)

Both survey companies report that the test market is favorable. What is the probability the
national market is favorable, given this result?
SOUTION
The two survey �rms work in an �operationally independent� manner. The report of either company
is una�ected by the work of the other. Also, each report is a�ected only by the condition of the
test market� regardless of what the national market may be. According to the discussion above,
we should be able to assume

{E1, E2, H} ci |S and {E1, E2, H} ci |Sc (5.39)

We may use a pattern similar to that in Example 2, as follows:

P (H|E1E2)
P (Hc|E1E2)

=
P (H)
P (Hc)

· P (S|H)P (E1|S)P (E2|S) + P (Sc|H)P (E1|Sc)P (E2|Sc)
P (S|Hc)P (E1|S)P (E2|S) + P (Sc|Hc)P (E1|Sc)P (E2|Sc)

(5.40)

= 3 · 0.9 · 0.9 · 0.8 + 0.1 · 0.3 · 0.2
0.2 · 0.9 · 0.8 + 0.8 · 0.3 · 0.2

=
327
32
≈ 10.22 (5.41)

In terms of the posterior probability, we have

P (H|E1E2) =
327/32

1 + 327/32
=

327
359

= 1− 32
359
≈ 0.91 (5.42)

We note that the odds favoring H, given positive indications from both survey companies, is 10.2
as compared with the odds favoring H, given a favorable test market, of 13.5. The di�erence
re�ects the residual uncertainty about the test market after the market surveys. Nevertheless, the
results of the market surveys increase the odds favoring a satisfactory market from the prior 3 to
1 to a posterior 10.2 to 1. In terms of probabilities, the market surveys increase the likelihood
of a favorable market from the original P (H) = 0.75 to the posterior P (H|E1E2) = 0.91. The
conditional independence of the results of the survey makes possible direct use of the data.

5.2.2 A classi�cation problem

A population consists of members of two subgroups. It is desired to formulate a battery of questions to aid
in identifying the subclass membership of randomly selected individuals in the population. The questions
are designed so that for each individual the answers are independent, in the sense that the answers to
any subset of these questions are not a�ected by and do not a�ect the answers to any other subset of
the questions. The answers are, however, a�ected by the subgroup membership. Thus, our treatment of
conditional idependence suggests that it is reasonable to supose the answers are conditionally independent,
given the subgroup membership. Consider the following numerical example.

Example 5.11: A classi�cation problem
A sample of 125 subjects is taken from a population which has two subgroups. The subgroup
membership of each subject in the sample is known. Each individual is asked a battery of ten
questions designed to be independent, in the sense that the answer to any one is not a�ected by
the answer to any other. The subjects answer independently. Data on the results are summarized
in the following table:
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GROUP 1 (69 members) GROUP 2 (56 members)

Q Yes No Unc. Yes No Unc.

1 42 22 5 20 31 5

2 34 27 8 16 37 3

3 15 45 9 33 19 4

4 19 44 6 31 18 7

5 22 43 4 23 28 5

6 41 13 15 14 37 5

7 9 52 8 31 17 8

8 40 26 3 13 38 5

9 48 12 9 27 24 5

10 20 37 12 35 16 5

Table 5.5

Assume the data represent the general population consisting of these two groups, so that the
data may be used to calculate probabilities and conditional probabilities.

Several persons are interviewed. The result of each interview is a �pro�le� of answers to the
questions. The goal is to classify the person in one of the two subgroups on the basis of the pro�le
of answers.

The following pro�les were taken.

• Y, N, Y, N, Y, U, N, U, Y. U
• N, N, U, N, Y, Y, U, N, N, Y
• Y, Y, N, Y, U, U, N, N, Y, Y

Classify each individual in one of the subgroups.
SOLUTION
Let G1 = the event the person selected is from group 1, and G2 = Gc1 = the event the person
selected is from group 2. Let

Ai = the event the answer to the ith question is �Yes�
Bi = the event the answer to the ith question is �No�
Ci = the event the answer to the ith question is �Uncertain�

The data are taken to mean P (A1|G1) = 42/69, P (B3|G2) = 19/56, etc. The pro�le
Y, N, Y, N, Y, U, N, U, Y. U corresponds to the event E = A1B2A3B4A5C6B7C8A9C10

We utilize the ratio form of Bayes' rule to calculate the posterior odds

P (G1|E)
P (G2|E)

=
P (E|G1)
P (E|G2)

· P (G1)
P (G2)

(5.43)

If the ratio is greater than one, classify in group 1; otherwise classify in group 2 (we assume that
a ratio exactly one is so unlikely that we can neglect it). Because of conditional independence, we
are able to determine the conditional probabilities

P (E|G1) =
42 · 27 · 15 · 44 · 22 · 15 · 52 · 3 · 48 · 12

6910 and (5.44)

P (E|G2) =
29 · 37 · 33 · 18 · 23 · 5 · 17 · 5 · 24 · 5

5610 (5.45)
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The odds P (G1) /P (G2) = 69/56. We �nd the posterior odds to be

P (G1|E)
P (G2|E)

=
42 · 27 · 15 · 44 · 22 · 15 · 52 · 3 · 48 · 12
29 · 37 · 33 · 18 · 23 · 5 · 17 · 5 · 24 · 5

· 569

699 = 5.85 (5.46)

The factor 569/699 comes from multiplying 5610/6910 by the odds P (G1) /P (G2) = 69/56. Since
the resulting posterior odds favoring Group 1 is greater than one, we classify the respondent in
group 1.

While the calculations are simple and straightforward, they are tedious and error prone. To
make possible rapid and easy solution, say in a situation where successive interviews are underway,
we have several m-procedures for performing the calculations. Answers to the questions would
normally be designated by some such designation as Y for yes, N for no, and U for uncertain. In
order for the m-procedure to work, these answers must be represented by numbers indicating the
appropriate columns in matrices A and B. Thus, in the example under consideration, each Y must
be translated into a 1, each N into a 2, and each U into a 3. The task is not particularly di�cult,
but it is much easier to have MATLAB make the translation as well as do the calculations. The
following two-stage approach for solving the problem works well.

The �rst m-procedure oddsdf sets up the frequency information. The next m-procedure odds
calculates the odds for a given pro�le. The advantage of splitting into two m-procedures is that we
can set up the data once, then call repeatedly for the calculations for di�erent pro�les. As always,
it is necessary to have the data in an appropriate form. The following is an example in which the
data are entered in terms of actual frequencies of response.

%~file~oddsf4.m

%~Frequency~data~for~classification

A~=~[42~22~5;~34~27~8;~15~45~9;~19~44~6;~22~43~4;

~~~~~41~13~15;~9~52~8;~40~26~3;~48~12~9;~20~37~12];

B~=~[20~31~5;~16~37~3;~33~19~4;~31~18~7;~23~28~5;

~~~~~14~37~5;~31~17~8;~13~38~5;~27~24~5;~35~16~5];

disp('Call~for~oddsdf')

Example 5.12: Classi�cation using frequency data

oddsf4~~~~~~~~~~~~~~%~Call~for~data~in~file~oddsf4.m

Call~for~oddsdf~~~~~%~Prompt~built~into~data~file

oddsdf~~~~~~~~~~~~~~%~Call~for~m-procedure~oddsdf

Enter~matrix~A~of~frequencies~for~calibration~group~1~~A

Enter~matrix~B~of~frequencies~for~calibration~group~2~~B

Number~of~questions~=~10

Answers~per~question~=~3

~Enter~code~for~answers~and~call~for~procedure~"odds"

y~=~1;~~~~~~~~~~~~~~%~Use~of~lower~case~for~easier~writing

n~=~2;

u~=~3;

odds~~~~~~~~~~~~~~~~%~Call~for~calculating~procedure

Enter~profile~matrix~E~~[y~n~y~n~y~u~n~u~y~u]~~~%~First~profile

Odds~favoring~Group~1:~~~5.845

Classify~in~Group~1

odds~~~~~~~~~~~~~~~~%~Second~call~for~calculating~procedure

Enter~profile~matrix~E~~[n~n~u~n~y~y~u~n~n~y]~~~%~Second~profile

Odds~favoring~Group~1:~~~0.2383

Classify~in~Group~2
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odds~~~~~~~~~~~~~~~~%~Third~call~for~calculating~procedure

Enter~profile~matrix~E~~[y~y~n~y~u~u~n~n~y~y]~~~%~Third~profile

Odds~favoring~Group~1:~~~5.05

Classify~in~Group~1

The principal feature of the m-procedure odds is the scheme for selecting the numbers from the A
and B matrices. If E = [yynyuunnyy], then the coding translates this into the actual numerical
matrix

[1 1 2 1 3 3 2 2 1 1] used internally. Then A (:, E) is a matrix with columns corresponding to
elements of E. Thus

e~=~A(:,E)

e~=~~~42~~~~42~~~~22~~~~42~~~~~5~~~~~5~~~~22~~~~22~~~~42~~~~42

~~~~~~34~~~~34~~~~27~~~~34~~~~~8~~~~~8~~~~27~~~~27~~~~34~~~~34

~~~~~~15~~~~15~~~~45~~~~15~~~~~9~~~~~9~~~~45~~~~45~~~~15~~~~15

~~~~~~19~~~~19~~~~44~~~~19~~~~~6~~~~~6~~~~44~~~~44~~~~19~~~~19

~~~~~~22~~~~22~~~~43~~~~22~~~~~4~~~~~4~~~~43~~~~43~~~~22~~~~22

~~~~~~41~~~~41~~~~13~~~~41~~~~15~~~~15~~~~13~~~~13~~~~41~~~~41

~~~~~~~9~~~~~9~~~~52~~~~~9~~~~~8~~~~~8~~~~52~~~~52~~~~~9~~~~~9

~~~~~~40~~~~40~~~~26~~~~40~~~~~3~~~~~3~~~~26~~~~26~~~~40~~~~40

~~~~~~48~~~~48~~~~12~~~~48~~~~~9~~~~~9~~~~12~~~~12~~~~48~~~~48

~~~~~~20~~~~20~~~~37~~~~20~~~~12~~~~12~~~~37~~~~37~~~~20~~~~20

The ith entry on the ith column is the count corresponding to the answer to the ith question. For
example, the answer to the third question is N (no), and the corresponding count is the third entry
in the N (second) column of A. The element on the diagonal in the third column of A (:, E) is
the third element in that column, and hence the desired third entry of the N column. By picking
out the elements on the diagonal by the command diag(A(:,E)), we have the desired set of counts
corresponding to the pro�le. The same is true for diag(B(:,E)).

Sometimes the data are given in terms of conditional probabilities and probabilities. A slight
modi�cation of the procedure handles this case. For purposes of comparison, we convert the problem
above to this form by converting the counts in matrices A and B to conditional probabilities. We do
this by dividing by the total count in each group (69 and 56 in this case). Also, P (G1) = 69/125 =
0.552 and P (G2) = 56/125 = 0.448.

GROUP 1 P (G1) = 69/125 GROUP 2 P (G2) = 56/125

Q Yes No Unc. Yes No Unc.

1 0.6087 0.3188 0.0725 0.3571 0.5536 0.0893

2 0.4928 0.3913 0.1159 0.2857 0.6607 0.0536

3 0.2174 0.6522 0.1304 0.5893 0.3393 0.0714

4 0.2754 0.6376 0.0870 0.5536 0.3214 0.1250

5 0.3188 0.6232 0.0580 0.4107 0.5000 0.0893

6 0.5942 0.1884 0.2174 0.2500 0.6607 0.0893

7 0.1304 0.7536 0.1160 0.5536 0.3036 0.1428

8 0.5797 0.3768 0.0435 0.2321 0.6786 0.0893

9 0.6957 0.1739 0.1304 0.4821 0.4286 0.0893

10 0.2899 0.5362 0.1739 0.6250 0.2857 0.0893
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Table 5.6

These data are in an m-�le oddsp4.m. The modi�ed setup m-procedure oddsdp uses the condi-
tional probabilities, then calls for the m-procedure odds.

Example 5.13: Calculation using conditional probability data

oddsp4~~~~~~~~~~~~~~~~~%~Call~for~converted~data~(probabilities)

oddsdp~~~~~~~~~~~~~~~~~%~Setup~m-procedure~for~probabilities

Enter~conditional~probabilities~for~Group~1~~A

Enter~conditional~probabilities~for~Group~2~~B

Probability~p1~individual~is~from~Group~1~~0.552

~Number~of~questions~=~10

~Answers~per~question~=~3

~Enter~code~for~answers~and~call~for~procedure~"odds"

y~=~1;

n~=~2;

u~=~3;

odds

Enter~profile~matrix~E~~[y~n~y~n~y~u~n~u~y~u]

Odds~favoring~Group~1:~~5.845

Classify~in~Group~1

The slight discrepancy in the odds favoring Group 1 (5.8454 compared with 5.8452) can be at-
tributed to rounding of the conditional probabilities to four places. The presentation above rounds
the results to 5.845 in each case, so the discrepancy is not apparent. This is quite acceptable, since
the discrepancy has no e�ect on the results.

5.3 Problems on Conditional Independence3

Exercise 5.3.1 (Solution on p. 129.)

Suppose {A,B} ci |C and {A,B} ci |Cc, P (C) = 0.7, and

P (A|C) = 0.4 P (B|C) = 0.6 P (A|Cc) = 0.3 P (B|Cc) = 0.2 (5.47)

Show whether or not the pair {A,B} is independent.
Exercise 5.3.2 (Solution on p. 129.)

Suppose {A1, A2, A3} ci |C and ci |Cc, with P (C) = 0.4, and

P (Ai|C) = 0.90, 0.85, 0.80 P (Ai|Cc) = 0.20, 0.15, 0.20 for i = 1, 2, 3, respectively (5.48)

Determine the posterior odds P (C|A1A
c
2A3) /P (Cc|A1A

c
2A3).

Exercise 5.3.3 (Solution on p. 129.)

Five world class sprinters are entered in a 200 meter dash. Each has a good chance to break
the current track record. There is a thirty percent chance a late cold front will move in, bringing
conditions that adversely a�ect the runners. Otherwise, conditions are expected to be favorable for
an outstanding race. Their respective probabilities of breaking the record are:

• Good weather (no front): 0.75, 0.80, 0.65, 0.70, 0.85

3This content is available online at <http://cnx.org/content/m24205/1.5/>.
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• Poor weather (front in): 0.60, 0.65, 0.50, 0.55, 0.70

The performances are (conditionally) independent, given good weather, and also, given poor
weather. What is the probability that three or more will break the track record?

Hint. If B3 is the event of three or more, P (B3) = P (B3|W )P (W ) + P (B3|W c)P (W c).
Exercise 5.3.4 (Solution on p. 129.)

A device has �ve sensors connected to an alarm system. The alarm is given if three or more of
the sensors trigger a switch. If a dangerous condition is present, each of the switches has high (but
not unit) probability of activating; if the dangerous condition does not exist, each of the switches
has low (but not zero) probability of activating (falsely). Suppose D = the event of the dangerous
condition and A = the event the alarm is activated. Proper operation consists of AD

∨
AcDc.

Suppose Ei = the event the ith unit is activated. Since the switches operate independently, we
suppose

{E1, E2, E3, E4, E5} ci |D and ci |Dc (5.49)

Assume the conditional probabilities of the E1, given D, are 0.91, 0.93, 0.96, 0.87, 0.97, and given
Dc, are 0.03, 0.02, 0.07, 0.04, 0.01, respectively. If P (D) = 0.02, what is the probability the alarm
system acts properly? Suggestion. Use the conditional independence and the procedure ckn.

Exercise 5.3.5 (Solution on p. 129.)

Seven students plan to complete a term paper over the Thanksgiving recess. They work indepen-
dently; however, the likelihood of completion depends upon the weather. If the weather is very
pleasant, they are more likely to engage in outdoor activities and put o� work on the paper. Let Ei
be the event the ith student completes his or her paper, Ak be the event that k or more complete
during the recess, and W be the event the weather is highly conducive to outdoor activity. It is
reasonable to suppose {Ei : 1 ≤ i ≤ 7} ci |W and ci |W c. Suppose

P (Ei|W ) = 0.4, 0.5, 0.3, 0.7, 0.5, 0.6, 0.2 (5.50)

P (Ei|W c) = 0.7, 0.8, 0.5, 0.9, 0.7, 0.8, 0.5 (5.51)

respectively, and P (W ) = 0.8. Determine the probability P (A4) that four our more complete
their papers and P (A5) that �ve or more �nish.

Exercise 5.3.6 (Solution on p. 129.)

A manufacturer claims to have improved the reliability of his product. Formerly, the product had
probability 0.65 of operating 1000 hours without failure. The manufacturer claims this probability
is now 0.80. A sample of size 20 is tested. Determine the odds favoring the new probability for
various numbers of surviving units under the assumption the prior odds are 1 to 1. How many
survivors would be required to make the claim creditable?

Exercise 5.3.7 (Solution on p. 130.)

A real estate agent in a neighborhood heavily populated by a�uent professional persons is working
with a customer. The agent is trying to assess the likelihood the customer will actually buy. His
experience indicates the following: if H is the event the customer buys, S is the event the customer
is a professional with good income, and E is the event the customer drives a prestigious car, then

P (S) = 0.7 P (S|H) = 0.90 P (S|Hc) = 0.2 P (E|S) = 0.95 P (E|Sc) = 0.25 (5.52)

Since buying a house and owning a prestigious car are not related for a given owner, it seems
reasonable to suppose P (E|HS) = P (E|HcS) and P (E|HSc) = P (E|HcSc). The customer
drives a Cadillac. What are the odds he will buy a house?
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Exercise 5.3.8 (Solution on p. 130.)

In deciding whether or not to drill an oil well in a certain location, a company undertakes a
geophysical survey. On the basis of past experience, the decision makers feel the odds are about
four to one favoring success. Various other probabilities can be assigned on the basis of past
experience. Let

• H be the event that a well would be successful
• S be the event the geological conditions are favorable
• E be the event the results of the geophysical survey are positive

The initial, or prior, odds are P (H) /P (Hc) = 4. Previous experience indicates

P (S|H) = 0.9 P (S|Hc) = 0.20 P (E|S) = 0.95 P (E|Sc) = 0.10 (5.53)

Make reasonable assumptions based on the fact that the result of the geophysical survey depends
upon the geological formations and not on the presence or absence of oil. The result of the survey
is favorable. Determine the posterior odds P (H|E) /P (Hc|E).
Exercise 5.3.9 (Solution on p. 130.)

A software �rm is planning to deliver a custom package. Past experience indicates the odds are at
least four to one that it will pass customer acceptance tests. As a check, the program is subjected
to two di�erent benchmark runs. Both are successful. Given the following data, what are the odds
favoring successful operation in practice? Let

• H be the event the performance is satisfactory
• S be the event the system satis�es customer acceptance tests
• E1 be the event the �rst benchmark tests are satisfactory.
• E2 be the event the second benchmark test is ok.

Under the usual conditions, we may assume {H, E1, E2} ci |S and ci |Sc. Reliability data show

P (H|S) = 0.95, P (H|Sc) = 0.45 (5.54)

P (E1|S) = 0.90 P (E1|Sc) = 0.25 P (E2|S) = 0.95 P (E2|Sc) = 0.20 (5.55)

Determine the posterior odds P (H|E1E2) /P (Hc|E1E2).
Exercise 5.3.10 (Solution on p. 130.)

A research group is contemplating purchase of a new software package to perform some specialized
calculations. The systems manager decides to do two sets of diagnostic tests for signi�cant bugs that
might hamper operation in the intended application. The tests are carried out in an operationally
independent manner. The following analysis of the results is made.

• H = the event the program is satisfactory for the intended application
• S = the event the program is free of signi�cant bugs
• E1 = the event the �rst diagnostic tests are satisfactory
• E2 = the event the second diagnostic tests are satisfactory

Since the tests are for the presence of bugs, and are operationally independent, it seems reasonable to
assume {H, E1, E2} ci |S and {H, E1, E2} ci |Sc. Because of the reliability of the software company,
the manager thinks P (S) = 0.85. Also, experience suggests

P (H|S) = 0.95 P (E1|S) = 0.90 P (E2|S) = 0.95

P (H|Sc) = 0.30 P (E1|Sc) = 0.20 P (E2|Sc) = 0.25
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Table 5.7

Determine the posterior odds favoring H if results of both diagnostic tests are satisfactory.

Exercise 5.3.11 (Solution on p. 131.)

A company is considering a new product now undergoing �eld testing. Let

• H be the event the product is introduced and successful
• S be the event the R&D group produces a product with the desired characteristics.
• E be the event the testing program indicates the product is satisfactory

The company assumes P (S) = 0.9 and the conditional probabilities

P (H|S) = 0.90 P (H|Sc) = 0.10 P (E|S) = 0.95 P (E|Sc) = 0.15 (5.56)

Since the testing of the merchandise is not a�ected by market success or failure, it seems reasonable
to suppose {H, E} ci |S and ci |Sc. The �eld tests are favorable. Determine P (H|E) /P (Hc|E).
Exercise 5.3.12 (Solution on p. 131.)

Martha is wondering if she will get a �ve percent annual raise at the end of the �scal year. She
understands this is more likely if the company's net pro�ts increase by ten percent or more. These
will be in�uenced by company sales volume. Let

• H = the event she will get the raise
• S = the event company pro�ts increase by ten percent or more
• E = the event sales volume is up by �fteen percent or more

Since the prospect of a raise depends upon pro�ts, not directly on sales, she supposes {H, E} ci |S
and {H, E} ci |Sc. She thinks the prior odds favoring suitable pro�t increase is about three to one.
Also, it seems reasonable to suppose

P (H|S) = 0.80 P (H|Sc) = 0.10 P (E|S) = 0.95 P (E|Sc) = 0.10 (5.57)

End of the year records show that sales increased by eighteen percent. What is the probability
Martha will get her raise?

Exercise 5.3.13 (Solution on p. 131.)

A physician thinks the odds are about 2 to 1 that a patient has a certain disease. He seeks the
�independent� advice of three specialists. Let H be the event the disease is present, and A,B,C be
the events the respective consultants agree this is the case. The physician decides to go with the
majority. Since the advisers act in an operationally independent manner, it seems reasonable to
suppose {A,B,C}ci|H and ci|Hc. Experience indicates

P (A|H) = 0.8, P (B|H) = 0.7, P (C|H) = 0.75 (5.58)

P (Ac|Hc) = 0.85, P (Bc|Hc) = 0.8, P (Cc|Hc) = 0.7 (5.59)

What is the probability of the right decision (i.e., he treats the disease if two or more think it is
present, and does not if two or more think the disease is not present)?

Exercise 5.3.14 (Solution on p. 131.)

A software company has developed a new computer game designed to appeal to teenagers and
young adults. It is felt that there is good probability it will appeal to college students, and that if
it appeals to college students it will appeal to a general youth market. To check the likelihood of
appeal to college students, it is decided to test �rst by a sales campaign at Rice and University of
Texas, Austin. The following analysis of the situation is made.
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• H = the event the sales to the general market will be good
• S = the event the game appeals to college students
• E1 = the event the sales are good at Rice
• E2 = the event the sales are good at UT, Austin

Since the tests are for the reception are at two separate universities and are operationally inde-
pendent, it seems reasonable to assume {H, E1, E2} ci |S and {H, E1, E2} ci |Sc. Because of its
previous experience in game sales, the managers think P (S) = 0.80. Also, experience suggests

P (H|S) = 0.95 P (E1|S) = 0.90 P (E2|S) = 0.95

P (H|Sc) = 0.30 P (E1|Sc) = 0.20 P (E2|Sc) = 0.25

Table 5.8

Determine the posterior odds favoring H if sales results are satisfactory at both schools.

Exercise 5.3.15 (Solution on p. 131.)

In a region in the Gulf Coast area, oil deposits are highly likely to be associated with underground
salt domes. If H is the event that an oil deposit is present in an area, and S is the event of a salt
dome in the area, experience indicates P (S|H) = 0.9 and P (S|Hc) = 0.1. Company executives
believe the odds favoring oil in the area is at least 1 in 10. It decides to conduct two independent
geophysical surveys for the presence of a salt dome. Let E1, E2 be the events the surveys indicate
a salt dome. Because the surveys are tests for the geological structure, not the presence of oil, and
the tests are carried out in an operationally independent manner, it seems reasonable to assume
{H, E1, E2} ci |S and ci |Sc. Data on the reliability of the surveys yield the following probabilities

P (E1|S) = 0.95 P (E1|Sc) = 0.05 P (E2|S) = 0.90 P (E2|Sc) = 0.10 (5.60)

Determine the posterior odds P (H|E1E2)
P (Hc|E1E2) . Should the well be drilled?

Exercise 5.3.16 (Solution on p. 131.)

A sample of 150 subjects is taken from a population which has two subgroups. The subgroup
membership of each subject in the sample is known. Each individual is asked a battery of ten
questions designed to be independent, in the sense that the answer to any one is not a�ected by
the answer to any other. The subjects answer independently. Data on the results are summarized
in the following table:

GROUP 1 (84 members) GROUP 2 (66 members)

Q Yes No Unc Yes No Unc

1 51 26 7 27 34 5

2 42 32 10 19 43 4

3 19 54 11 39 22 5

4 24 53 7 38 19 9

5 27 52 5 28 33 5

6 49 19 16 19 41 6

7 16 59 9 37 21 8

8 47 32 5 19 42 5

9 55 17 12 27 33 6

10 24 53 7 39 21 6

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



128 CHAPTER 5. CONDITIONAL INDEPENDENCE

Table 5.9

Assume the data represent the general population consisting of these two groups, so that the
data may be used to calculate probabilities and conditional probabilities.

Several persons are interviewed. The result of each interview is a �pro�le� of answers to the
questions. The goal is to classify the person in one of the two subgroups

For the following pro�les, classify each individual in one of the subgroups

i. y, n, y, n, y, u, n, u, y. u
ii. n, n, u, n, y, y, u, n, n, y
iii. y, y, n, y, u, u, n, n, y, y

Exercise 5.3.17 (Solution on p. 132.)

The data of Exercise 5.3.16, above, are converted to conditional probabilities and probabilities, as
follows (probabilities are rounded to two decimal places).

GROUP 1 P (G1) = 0.56 GROUP 2 P (G2) = 0.44

Q Yes No Unc Yes No Unc

1 0.61 0.31 0.08 0.41 0.51 0.08

2 0.50 0.38 0.12 0.29 0.65 0.06

3 0.23 0.64 0.13 0.59 0.33 0.08

4 0.29 0.63 0.08 0.57 0.29 0.14

5 0.32 0.62 0.06 0.42 0.50 0.08

6 0.58 0.23 0.19 0.29 0.62 0.09

7 0.19 0.70 0.11 0.56 0.32 0.12

8 0.56 0.38 0.06 0.29 0.63 0.08

9 0.65 0.20 0.15 0.41 0.50 0.09

10 0.29 0.63 0.08 0.59 0.32 0.09

Table 5.10

For the following pro�les classify each individual in one of the subgroups.

i. y, n, y, n, y, u, n, u, y, u
ii. n, n, u, n, y, y, u, n, n, y
iii. y, y, n, y, u, u, n, n, y, y
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Solutions to Exercises in Chapter 5

Solution to Exercise 5.3.1 (p. 123)
P (A) = P (A|C)P (C) + P (A|Cc)P (Cc) , P (B) = P (B|C)P (C) + P (B|Cc)P (Cc), and P (AB) =
P (A|C)P (B|C)P (C) + P (A|Cc)P (B|Cc)P (Cc).

PA = 0.4*0.7 + 0.3*0.3

PA = 0.3700

PB = 0.6*0.7 + 0.2*0.3

PB = 0.4800

PA*PB

ans = 0.1776

PAB = 0.4*0.6*0.7 + 0.3*0.2*0.3

PAB = 0.1860 % PAB not equal PA*PB; not independent

Solution to Exercise 5.3.2 (p. 123)

P (C|A1A
c
2A3)

P (Cc|A1Ac2A3)
=

P (C)
P (Cc)

• P (A1|C)P (Ac2|C)P (A3|C)
P (A1|Cc)P (Ac2|Cc)P (A3|Cc)

(5.61)

=
0.4
0.6
• 0.9 • 0.15 • 0.80

0.20 • 0.85 • 0.20
=

108
51

= 2.12 (5.62)

Solution to Exercise 5.3.3 (p. 123)

PW = 0.01*[75 80 65 70 85];

PWc = 0.01*[60 65 50 55 70];

P = ckn(PW,3)*0.7 + ckn(PWc,3)*0.3

P = 0.8353

Solution to Exercise 5.3.4 (p. 124)

P1 = 0.01*[91 93 96 87 97];

P2 = 0.01*[3 2 7 4 1];

P = ckn(P1,3)*0.02 + (1 - ckn(P2,3))*0.98

P = 0.9997

Solution to Exercise 5.3.5 (p. 124)

PW = 0.1*[4 5 3 7 5 6 2];

PWc = 0.1*[7 8 5 9 7 8 5];

PA4 = ckn(PW,4)*0.8 + ckn(PWc,4)*0.2

PA4 = 0.4993

PA5 = ckn(PW,5)*0.8 + ckn(PWc,5)*0.2

PA5 = 0.2482

Solution to Exercise 5.3.6 (p. 124)
Let E1 be the event the probability is 0.80 and E2 be the event the probability is 0.65. Assume
P (E1) /P (E2) = 1.

P (E1|Sn = k)
P (E2|Sn = k)

=
P (E1)
P (E2)

• P (Sn = k|E1)
P (Sn = k|E2)

(5.63)
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k = 1:20;

odds = ibinom(20,0.80,k)./ibinom(20,0.65,k);

disp([k;odds]')

- - - - - - - - - - - -

13.0000 0.2958

14.0000 0.6372

15.0000 1.3723 % Need at least 15 or 16 successes

16.0000 2.9558

17.0000 6.3663

18.0000 13.7121

19.0000 29.5337

20.0000 63.6111

Solution to Exercise 5.3.7 (p. 124)
Assumptions amount to {H,E} ci |S and ci |Sc.

P (H|S)
P (Hc|S)

=
P (H)P (S|H)
P (Hc)P (S|Hc)

(5.64)

P (S) = P (H)P (S|H) + [1− P (H)]P (S|Hc) which implies (5.65)

P (H) =
P (S)− P (S|Hc)
P (S|H)− P (S|Hc)

= 5/7 so that
P (H|S)
P (Hc|S)

=
5
2
• 0.9

0.2
=

45
4

(5.66)

Solution to Exercise 5.3.8 (p. 125)

P (H|E)
P (Hc|E)

=
P (H)
P (Hc)

• P (S|H)P (E|S) + P (Sc|H)P (E|Sc)
P (S|Hc)P (E|S) + P (Sc|Hc)P (E|Sc)

(5.67)

= 4 • 0.90 • 0.95 + 0.10 • 0.10
0.20 • 0.95 + 0.80 • 0.10

= 12.8148 (5.68)

Solution to Exercise 5.3.9 (p. 125)

P (H|E1E2)
P (Hc|E1E2)

=
P (HE1E2S) + P (HE1E2S

c)
P (HcE1E2S) + P (HcE1E2Sc)

(5.69)

= P (S)P (H|S)P (E1|S)P (E2|S)+P (Sc)P (H|Sc)P (E1|Sc)P (E2|Sc)
P (S)P (Hc|S)P (E1|S)P (E2|S)+P (Sc)P (Hc|Sc)P (E1|Sc)P (E2|Sc)

(5.70)

= 0.80•0.95•0.90•0.95+0.20•0.45•0.25•0.20
0.80•0.05•0.90•0.95+0.20•0.55•0.25•0.20

= 16.64811 (5.71)

Solution to Exercise 5.3.10 (p. 125)

P (H|E1E2)
P (Hc|E1E2)

=
P (HE1E2S) + P (HE1E2S

c)
P (HcE1E2S) + P (HcE1E2Sc)

(5.72)

P (HE1E2S) = P (S)P (H|S)P (E1|SH)P (E2|SHE1) = P (S)P (H|S)P (E1|S)P (E2|S) (5.73)

with similar expressions for the other terms.

P (H|E1E2)
P (Hc|E1E2)

=
0.85 • 0.95 • 0.90 • 0.95 + 0.15 • 0.30 • 0.25 • 0.20
0.85 • 0.05 • 0.90 • 0.95 + 0.15 • 0.70 • 0.25 ∗ 0.20

= 16.6555 (5.74)
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Solution to Exercise 5.3.11 (p. 126)

P (H|E)
P (Hc|E)

=
P (S)P (H|S)P (E|S) + P (Sc)P (H|Sc)P (E|Sc)
P (S)P (Hc|S)P (E|S) + P (Sc)P (Hc|Sc)P (E|Sc)

(5.75)

=
0.90 • 0.90 • 0.95 + 0.10 • 0.10 • 0.15
0.90 • 0.10 • 0.95 + 0.10 • 0.90 • 0.15

= 7.7879 (5.76)

Solution to Exercise 5.3.12 (p. 126)

P (H|E)
P (Hc|E)

=
P (S)P (H|S)P (E|S) + P (Sc)P (H|Sc)P (E|Sc)
P (S)P (Hc|S)P (E|S) + P (Sc)P (Hc|Sc)P (E|Sc)

(5.77)

=
0.75 • 0.80 • 0.95 + 0.25 • 0.10 • 0.10
0.75 • 0.20 • 0.95 + 0.25 • 0.90 • 0.10

= 3.4697 (5.78)

Solution to Exercise 5.3.13 (p. 126)

PH = 0.01*[80 70 75];

PHc = 0.01*[85 80 70];

pH = 2/3;

P = ckn(PH,2)*pH + ckn(PHc,2)*(1 - pH)

P = 0.8577

Solution to Exercise 5.3.14 (p. 126)

P (H|E1E2)
P (Hc|E1E2)

=
P (HE1E2S) + P (HE1E2S

c)
P (HcE1E2S) + P (HcE1E2Sc)

(5.79)

= P (S)P (H|S)P (E1|S)P (E2|S)+P (Sc)P (H|Sc)P (E1|Sc)P (E2|Sc)
P (S)P (Hc|S)P (E1|S)P (E2|S)+P (Sc)P (Hc|Sc)P (E1|Sc)P (E2|Sc)

(5.80)

= 0.80•0.95•0.90•0.95+0.20•0.30•0.20•0.25
0.80•0.05•0.90•0.95+0.20•0.70•0.20•0.25

= 15.8447 (5.81)

Solution to Exercise 5.3.15 (p. 127)

P (H|E1E2)
P (Hc|E1E2)

=
P (HE1E2S) + P (HE1E2S

c)
P (HcE1E2S) + P (HcE1E2Sc)

(5.82)

P (HE1E2S) = P (H)P (S|H)P (E1|SH)P (E2|SHE1) = P (H)P (S|H)P (E1|S)P (E2|S) (5.83)

with similar expressions for the other terms.

P (H|E1E2)
P (Hc|E1E2)

=
1
10
• 0.9 • 0.95 • 0.90 + 0.10 • 0.05 • 0.10

0.1 • 0.95 • 0.90 + 0.90 • 0.05 • 0.10
= 0.8556 (5.84)

Solution to Exercise 5.3.16 (p. 127)

% file npr05_16.m (Section~17.8.25: mpr05_16)

% Data for Exercise~5.3.16

A = [51 26 7; 42 32 10; 19 54 11; 24 53 7; 27 52 5;

49 19 16; 16 59 9; 47 32 5; 55 17 12; 24 53 7];

B = [27 34 5; 19 43 4; 39 22 5; 38 19 9; 28 33 5;
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19 41 6; 37 21 8; 19 42 5; 27 33 6; 39 21 6];

disp('Call for oddsdf')

npr05_16 (Section~17.8.25: mpr05_16)

Call for oddsdf

oddsdf

Enter matrix A of frequencies for calibration group 1 A

Enter matrix B of frequencies for calibration group 2 B

Number of questions = 10

Answers per question = 3

Enter code for answers and call for procedure "odds"

y = 1;

n = 2;

u = 3;

odds

Enter profile matrix E [y n y n y u n u y u]

Odds favoring Group 1: 3.743

Classify in Group 1

odds

Enter profile matrix E [n n u n y y u n n y]

Odds favoring Group 1: 0.2693

Classify in Group 2

odds

Enter profile matrix E [y y n y u u n n y y]

Odds favoring Group 1: 5.286

Classify in Group 1

Solution to Exercise 5.3.17 (p. 128)

npr05_17 (Section~17.8.26: npr05_17)

% file npr05_17.m (Section~17.8.26: npr05_17)

% Data for Exercise~5.3.17

PG1 = 84/150;

PG2 = 66/125;

A = [0.61 0.31 0.08

0.50 0.38 0.12

0.23 0.64 0.13

0.29 0.63 0.08

0.32 0.62 0.06

0.58 0.23 0.19

0.19 0.70 0.11

0.56 0.38 0.06

0.65 0.20 0.15

0.29 0.63 0.08];

B = [0.41 0.51 0.08

0.29 0.65 0.06

0.59 0.33 0.08

0.57 0.29 0.14

0.42 0.50 0.08

0.29 0.62 0.09

0.56 0.32 0.12

0.29 0.64 0.08
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0.41 0.50 0.09

0.59 0.32 0.09];

disp('Call for oddsdp')

Call for oddsdp

oddsdp

Enter matrix A of conditional probabilities for Group 1 A

Enter matrix B of conditional probabilities for Group 2 B

Probability p1 an individual is from Group 1 PG1

Number of questions = 10

Answers per question = 3

Enter code for answers and call for procedure "odds"

y = 1;

n = 2;

u = 3;

odds

Enter profile matrix E [y n y n y u n u y u]

Odds favoring Group 1: 3.486

Classify in Group 1

odds

Enter profile matrix E [n n u n y y u n n y]

Odds favoring Group 1: 0.2603

Classify in Group 2

odds

Enter profile matrix E [y y n y u u n n y y]

Odds favoring Group 1: 5.162

Classify in Group 1
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Chapter 6

Random Variables and Probabilities

6.1 Random Variables and Probabilities1

6.1.1 Introduction

Probability associates with an event a number which indicates the likelihood of the occurrence of that event
on any trial. An event is modeled as the set of those possible outcomes of an experiment which satisfy a
property or proposition characterizing the event.

Often, each outcome is characterized by a number. The experiment is performed. If the outcome is
observed as a physical quantity, the size of that quantity (in prescribed units) is the entity actually observed.
In many nonnumerical cases, it is convenient to assign a number to each outcome. For example, in a coin
�ipping experiment, a �head� may be represented by a 1 and a �tail� by a 0. In a Bernoulli trial, a success
may be represented by a 1 and a failure by a 0. In a sequence of trials, we may be interested in the number
of successes in a sequence of n component trials. One could assign a distinct number to each card in a deck
of playing cards. Observations of the result of selecting a card could be recorded in terms of individual
numbers. In each case, the associated number becomes a property of the outcome.

6.1.2 Random variables as functions

We consider in this chapter real random variables (i.e., real-valued random variables). In the chapter
"Random Vectors and Joint Distributions" (Section 8.1), we extend the notion to vector-valued random
quantites. The fundamental idea of a real random variable is the assignment of a real number to each
elementary outcome ω in the basic space Ω. Such an assignment amounts to determining a function X,
whose domain is Ω and whose range is a subset of the real line R. Recall that a real-valued function on a
domain (say an interval I on the real line) is characterized by the assignment of a real number y to each
element x (argument) in the domain. For a real-valued function of a real variable, it is often possible to
write a formula or otherwise state a rule describing the assignment of the value to each argument. Except
in special cases, we cannot write a formula for a random variable X. However, random variables share some
important general properties of functions which play an essential role in determining their usefulness.

Mappings and inverse mappings
There are various ways of characterizing a function. Probably the most useful for our purposes is as a

mapping from the domain Ω to the codomain R. We �nd the mapping diagram of Figure 1 extremely useful
in visualizing the essential patterns. Random variable X, as a mapping from basic space Ω to the real line
R, assigns to each element ω a value t = X (ω). The object point ω is mapped, or carried, into the image
point t. Each ω is mapped into exactly one t, although several ω may have the same image point.

1This content is available online at <http://cnx.org/content/m23260/1.9/>.
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Figure 6.1: The basic mapping diagram t = X (ω).

Associated with a function X as a mapping are the inverse mapping X−1 and the inverse images it
produces. Let M be a set of numbers on the real line. By the inverse image of M under the mapping X, we
mean the set of all those ω ∈ Ω which are mapped into M by X (see Figure 2). If X does not take a value
in M, the inverse image is the empty set (impossible event). If M includes the range of X, (the set of all
possible values of X), the inverse image is the entire basic space Ω. Formally we write

X−1 (M) = {ω : X (ω) ∈M} (6.1)

Now we assume the set X−1 (M), a subset of Ω, is an event for each M. A detailed examination of that
assertion is a topic in measure theory. Fortunately, the results of measure theory ensure that we may make
the assumption for any X and any subset M of the real line likely to be encountered in practice. The set
X−1 (M) is the event that X takes a value in M. As an event, it may be assigned a probability.

Figure 6.2: E is the inverse image X−1 (M).
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Example 6.1: Some illustrative examples.

1. X = IE where E is an event with probability p. Now X takes on only two values, 0 and 1.
The event that X take on the value 1 is the set

{ω : X (ω) = 1} = X−1 ({1}) = E (6.2)

so that P ({ω : X (ω) = 1}) = p. This rather ungainly notation is shortened to P (X = 1) = p.
Similarly, P (X = 0) = 1−p. Consider any setM. If neither 1 nor 0 is inM, thenX−1 (M) = ∅
If 0 is in M, but 1 is not, then X−1 (M) = Ec If 1 is in M, but 0 is not, then X−1 (M) = E
If both 1 and 0 are in M, then X−1 (M) = Ω In this case the class of all events X−1 (M)
consists of event E, its complement Ec, the impossible event ∅, and the sure event Ω.

2. Consider a sequence of n Bernoulli trials, with probability p of success. Let Sn be the random
variable whose value is the number of successes in the sequence of n component trials. Then,
according to the analysis in the section "Bernoulli Trials and the Binomial Distribution"
(Section 4.3.2: Bernoulli trials and the binomial distribution)

P (Sn = k) = C (n, k) pk(1− p)n−k 0 ≤ k ≤ n (6.3)

Before considering further examples, we note a general property of inverse images. We state it in terms of a
random variable, which maps Ω to the real line (see Figure 3).

Preservation of set operations
Let X be a mapping from Ω to the real line R. If M,Mi, i ∈ J , are sets of real numbers, with respective

inverse images E,Ei, then

X−1 (M c) = Ec, X−1

(⋃
i∈J

Mi

)
=
⋃
i∈J

Ei and X−1

(⋂
i∈J

Mi

)
=
⋂
i∈J

Ei (6.4)

Examination of simple graphical examples exhibits the plausibility of these patterns. Formal proofs amount
to careful reading of the notation. Central to the structure are the facts that each element ω is mapped
into only one image point t and that the inverse image of M is the set of all those ω which are mapped into
image points in M.

Figure 6.3: Preservation of set operations by inverse images.
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An easy, but important, consequence of the general patterns is that the inverse images of disjoint M,N
are also disjoint. This implies that the inverse of a disjoint union of Mi is a disjoint union of the separate
inverse images.

Example 6.2: Events determined by a random variable
Consider, again, the random variable Sn which counts the number of successes in a sequence of
n Bernoulli trials. Let n = 10 and p = 0.33. Suppose we want to determine the probability
P (2 < S10 ≤ 8). Let Ak = {ω : S10 (ω) = k}, which we usually shorten to Ak = {S10 = k}. Now
the Ak form a partition, since we cannot have ω ∈ Ak and ω ∈ Aj , j 6= k (i.e., for any ω, we
cannot have two values for Sn (ω)). Now,

{2 < S10 ≤ 8} = A3

∨
A4

∨
A5

∨
A6

∨
A7

∨
A8 (6.5)

since S10 takes on a value greater than 2 but no greater than 8 i� it takes one of the integer values
from 3 to 8. By the additivity of probability,

P (2 < S10 ≤ 8) =
8∑
k=3

P (S10 = k) = 0.6927 (6.6)

6.1.3 Mass transfer and induced probability distribution

Because of the abstract nature of the basic space and the class of events, we are limited in the kinds of
calculations that can be performed meaningfully with the probabilities on the basic space. We represent
probability as mass distributed on the basic space and visualize this with the aid of general Venn diagrams
and minterm maps. We now think of the mapping from Ω to R as a producing a point-by-point transfer of
the probability mass to the real line. This may be done as follows:

To any set M on the real line assign probability mass PX (M) = P
(
X−1 (M)

)
It is apparent that PX (M) ≥ 0 and PX (R) = P (Ω) = 1. And because of the preservation of set

operations by the inverse mapping

PX

( ∞∨
i=1

Mi

)
= P

(
X−1

( ∞∨
i=1

Mi

))
= P

( ∞∨
i=1

X−1 (Mi)

)
=
∞∑
i=1

P
(
X−1 (Mi)

)
=
∞∑
i=1

PX (Mi) (6.7)

This means that PX has the properties of a probability measure de�ned on the subsets of the real line.
Some results of measure theory show that this probability is de�ned uniquely on a class of subsets of R
that includes any set normally encountered in applications. We have achieved a point-by-point transfer
of the probability apparatus to the real line in such a manner that we can make calculations about the
random variable X. We call PX the probability measure induced byX. Its importance lies in the fact that
P (X ∈M) = PX (M). Thus, to determine the likelihood that random quantity X will take on a value in
set M, we determine how much induced probability mass is in the set M. This transfer produces what is
called the probability distribution for X. In the chapter "Distribution and Density Functions" (Section 7.1),
we consider useful ways to describe the probability distribution induced by a random variable. We turn �rst
to a special class of random variables.

6.1.4 Simple random variables

We consider, in some detail, random variables which have only a �nite set of possible values. These are called
simple random variables. Thus the term �simple� is used in a special, technical sense. The importance of
simple random variables rests on two facts. For one thing, in practice we can distinguish only a �nite set of
possible values for any random variable. In addition, any random variable may be approximated as closely
as pleased by a simple random variable. When the structure and properties of simple random variables have
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been examined, we turn to more general cases. Many properties of simple random variables extend to the
general case via the approximation procedure.

Representation with the aid of indicator functions
In order to deal with simple random variables clearly and precisely, we must �nd suitable ways to express

them analytically. We do this with the aid of indicator functions (Section 1.3.4: The indicator function).
Three basic forms of representation are encountered. These are not mutually exclusive representatons.

1. Standard or canonical form, which displays the possible values and the corresponding events. If X
takes on distinct values

{t1, t2, · · · , tn} with respective probabilities {p1, p2, · · · , pn} (6.8)

and if Ai = {X = ti}, for 1 ≤ i ≤ n, then {A1, A2, · · · , An} is a partition (i.e., on any trial, exactly
one of these events occurs). We call this the partition determined by (or, generated by) X. We may
write

X = t1IA1 + t2IA2 + · · · + tnIAn =
n∑
i=1

tiIAi (6.9)

If X (ω) = ti, then ω ∈ Ai, so that IAi (ω) = 1 and all the other indicator functions have value zero.
The summation expression thus picks out the correct value ti. This is true for any ti, so the expression
represents X (ω) for all ω. The distinct set {t1, t2, · · · , tn} of the values and the corresponding
probabilities {p1, p2, · · · , pn} constitute the distribution for X. Probability calculations for X are
made in terms of its distribution. One of the advantages of the canonical form is that it displays the
range (set of values), and if the probabilities pi = P (Ai) are known, the distribution is determined.
Note that in canonical form, if one of the ti has value zero, we include that term. For some probability
distributions it may be that P (Ai) = 0 for one or more of the ti. In that case, we call these values
null values, for they can only occur with probability zero, and hence are practically impossible. In
the general formulation, we include possible null values, since they do not a�ect any probabilitiy
calculations.

Example 6.3: Successes in Bernoulli trials
As the analysis of Bernoulli trials and the binomial distribution shows (see Section 4.8),
canonical form must be

Sn =
n∑
k=0

k IAk with P (Ak) = C (n, k) pk(1− p)n−k, 0 ≤ k ≤ n (6.10)

For many purposes, both theoretical and practical, canonical form is desirable. For one thing, it
displays directly the range (i.e., set of values) of the random variable. The distribution consists of the
set of values {tk : 1 ≤ k ≤ n} paired with the corresponding set of probabilities {pk : 1 ≤ k ≤ n},
where pk = P (Ak) = P (X = tk).

2. Simple random variable X may be represented by a primitive form

X = c1IC1 + c2IC2 + · · · , cmICm , where {Cj : 1 ≤ j ≤ m} is a partition (6.11)

Remarks

• If {Cj : 1 ≤ j ≤ m} is a disjoint class, but
⋃m
j=1 Cj 6= Ω, we may append the event Cm+1 =[⋃m

j=1 Cj

]c
and assign value zero to it.

• We say a primitive form, since the representation is not unique. Any of the Ci may be partitioned,
with the same value ci associated with each subset formed.

• Canonical form is a special primitive form. Canonical form is unique, and in many ways normative.

Example 6.4: Simple random variables in primitive form
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• A wheel is spun yielding, on a equally likely basis, the integers 1 through 10. Let Ci be
the event the wheel stops at i, 1 ≤ i ≤ 10. Each P (Ci) = 0.1. If the numbers 1, 4, or 7
turn up, the player loses ten dollars; if the numbers 2, 5, or 8 turn up, the player gains
nothing; if the numbers 3, 6, or 9 turn up, the player gains ten dollars; if the number 10
turns up, the player loses one dollar. The random variable expressing the results may
be expressed in primitive form as

X = −10IC1 + 0IC2 + 10IC3 − 10IC4 + 0IC5 + 10IC6 − 10IC7 + 0IC8 + 10IC9 − IC10 (6.12)

• A store has eight items for sale. The prices are $3.50, $5.00, $3.50, $7.50, $5.00, $5.00,
$3.50, and $7.50, respectively. A customer comes in. She purchases one of the items with
probabilities 0.10, 0.15, 0.15, 0.20, 0.10 0.05, 0.10 0.15. The random variable expressing
the amount of her purchase may be written

X = 3.5IC1 + 5.0IC2 + 3.5IC3 + 7.5IC4 + 5.0IC5 + 5.0IC6 + 3.5IC7 + 7.5IC8 (6.13)

3. We commonly have X represented in a�ne form, in which the random variable is represented as an
a�ne combination of indicator functions (i.e., a linear combination of the indicator functions plus a
constant, which may be zero).

X = c0 + c1IE1 + c2IE2 + · · · + cmIEm = c0 +
m∑
j=1

cjIEj (6.14)

In this form, the class {E1, E2, · · · , Em} is not necessarily mutually exclusive, and the coe�cients do
not display directly the set of possible values. In fact, the Ei often form an independent class. Remark.
Any primitive form is a special a�ne form in which c0 = 0 and the Ei form a partition.

Example 6.5
Consider, again, the random variable Sn which counts the number of successes in a sequence
of n Bernoulli trials. If Ei is the event of a success on the ith trial, then one natural way to
express the count is

Sn =
n∑
i=1

IEi , with P (Ei) = p 1 ≤ i ≤ n (6.15)

This is a�ne form, with c0 = 0 and ci = 1 for 1 ≤ i ≤ n. In this case, the Ei cannot form a
mutually exclusive class, since they form an independent class.

Events generated by a simple random variable: canonical form
We may characterize the class of all inverse images formed by a simple random X in terms of the
partition {Ai : 1 ≤ i ≤ n} it determines. Consider any set M of real numbers. If ti in the range of X
is in M, then every point ω ∈ Ai maps into ti, hence into M. If the set J is the set of indices i such
that ti ∈M , then

Only those points ω in AM =
∨
i∈J

Ai map into M.

Hence, the class of events (i.e., inverse images) determined by X consists of the impossible event ∅, the
sure event Ω, and the union of any subclass of the Ai in the partition determined by X.

Example 6.6: Events determined by a simple random variable
Suppose simple random variable X is represented in canonical form by

X = −2IA − IB + 0IC + 3ID (6.16)

Then the class {A,B,C,D} is the partition determined by X and the range of X is
{−2,−1, 0, 3}.
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a. If M is the interval [−2, 1], then the values -2, -1, and 0 are in M and X−1 (M) =
A
∨
B
∨
C.

b. If M is the set (−2,−1] ∪ [1, 5], then the values -1, 3 are in M and X−1 (M) = B
∨
D.

c. The event {X ≤ 1} = {X ∈ (−∞, 1]} = X−1 (M), where M = (−∞, 1]. Since values
-2, -1, 0 are in M, the event {X ≤ 1} = A

∨
B
∨
C.

6.1.5 Determination of the distribution

Determining the partition generated by a simple random variable amounts to determining the canonical
form. The distribution is then completed by determining the probabilities of each event Ak = {X = tk}.

From a primitive form
Before writing down the general pattern, we consider an illustrative example.

Example 6.7: The distribution from a primitive form
Suppose one item is selected at random from a group of ten items. The values (in dollars) and
respective probabilities are

cj 2.00 1.50 2.00 2.50 1.50 1.50 1.00 2.50 2.00 1.50

P (Cj) 0.08 0.11 0.07 0.15 0.10 0.09 0.14 0.08 0.08 0.10

Table 6.1

By inspection, we �nd four distinct values: t1 = 1.00, t2 = 1.50, t3 = 2.00, and t4 = 2.50. The
value 1.00 is taken on for ω ∈ C7 , so that A1 = C7 and P (A1) = P (C7) = 0.14. Value 1.50 is
taken on for ω ∈ C2, C5, C6, C10 so that

A2 = C2

∨
C5

∨
C6

∨
C10 and P (A2) = P (C2) + P (C5) + P (C6) + P (C10) = 0.40 (6.17)

Similarly

P (A3) = P (C1) + P (C3) + P (C9) = 0.23 and P (A4) = P (C4) + P (C8) = 0.23 (6.18)

The distribution for X is thus

k 1.00 1.50 2.00 2.50

P (X = k) 0.14 0.40 0.23 0.23

Table 6.2

The general procedure may be formulated as follows:
If X =

∑m
j=1 cjICj , we identify the set of distinct values in the set {cj : 1 ≤ j ≤ m}. Suppose these

are t1 < t2 < · · · < tn. For any possible value ti in the range, identify the index set Ji of those j such that
cj = ti. Then the terms ∑

Ji

cjICj = ti
∑
Ji

ICj = tiIAi , where Ai =
∨
j∈Ji

Cj , (6.19)

and

P (Ai) = P (X = ti) =
∑
j∈Ji

P (Cj) (6.20)

Examination of this procedure shows that there are two phases:
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• Select and sort the distinct values t1, t2, · · · , tn
• Add all probabilities associated with each value ti to determine P (X = ti)

We use the m-function csort which performs these two operations (see Example 4 (Example 2.9: The software
survey (continued)) from "Minterms and MATLAB Calculations").

Example 6.8: Use of csort on Example 6.7 (The distribution from a primitive form)

� C = [2.00 1.50 2.00 2.50 1.50 1.50 1.00 2.50 2.00 1.50]; % Matrix of c_j

� pc = [0.08 0.11 0.07 0.15 0.10 0.09 0.14 0.08 0.08 0.10]; % Matrix of P(C_j)

� [X,PX] = csort(C,pc); % The sorting and consolidating operation

� disp([X;PX]') % Display of results

1.0000 0.1400

1.5000 0.4000

2.0000 0.2300

2.5000 0.2300

For a problem this small, use of a tool such as csort is not really needed. But in many problems
with large sets of data the m-function csort is very useful.

From a�ne form
Suppose X is in a�ne form,

X = c0 + c1IE1 + c2IE2 + · · · + cmIEm = c0 +
m∑
j=1

cjIEj (6.21)

We determine a particular primitive form by determining the value of X on each minterm generated by
the class {Ej : 1 ≤ j ≤ m}. We do this in a systematic way by utilizing minterm vectors and properties of
indicator functions.

Step 1. X is constant on each minterm generated by the class {E1, E2, · · · , Em} since, as noted in the treat-
ment of the minterm expansion, each indicator function IEi is constant on each minterm. We determine
the value si of X on each minterm Mi. This describes X in a special primitive form

X =
2m−1∑
k=0

siIMi
, with P (Mi) = pi, 0 ≤ i ≤ 2m − 1 (6.22)

Step 2. We apply the csort operation to the matrices of values and minterm probabilities to determine the
distribution for X.

We illustrate with a simple example. Extension to the general case should be quite evident. First, we do the
problem �by hand� in tabular form. Then we use the m-procedures to carry out the desired operations.

Example 6.9: Finding the distribution from a�ne form
A mail order house is featuring three items (limit one of each kind per customer). Let

E1 = the event the customer orders item 1, at a price of 10 dollars.
E2 = the event the customer orders item 2, at a price of 18 dollars.
E3 = the event the customer orders item 3, at a price of 10 dollars.

There is a mailing charge of 3 dollars per order.
We suppose {E1, E2, E3} is independent with probabilities 0.6, 0.3, 0.5, respectively. Let X be

the amount a customer who orders the special items spends on them plus mailing cost. Then, in
a�ne form,

X = 10 IE1 + 18 IE2 + 10 IE3 + 3 (6.23)
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We seek �rst the primitive form, using the minterm probabilities, which may calculated in this
case by using the m-function minprob.

1. To obtain the value of X on each minterm we

• Multiply the minterm vector for each generating event by the coe�cient for that event
• Sum the values on each minterm and add the constant

To complete the table, list the corresponding minterm probabilities.

i 10IEi 18IE2 10IE3 c si pmi

0 0 0 0 3 3 0.14

1 0 0 10 3 13 0.14

2 0 18 0 3 21 0.06

3 0 18 10 3 31 0.06

4 10 0 0 3 13 0.21

5 10 0 10 3 23 0.21

6 10 18 0 3 31 0.09

7 10 18 10 3 41 0.09

Table 6.3

We then sort on the si, the values on the various Mi, to expose more clearly the primitive
form for X.

�Primitive form� Values

i si pmi

0 3 0.14

1 13 0.14

4 13 0.21

2 21 0.06

5 23 0.21

3 31 0.06

6 31 0.09

7 41 0.09

Table 6.4

The primitive form of X is thus

X = 3 IM0 + 13 IM1 + 13 IM4 + 21 IM2 + 23 IM5 + 31 IM3 + 31 IM6 + 41 IM7 (6.24)

We note that the value 13 is taken on on minterms M1 and M4. The probability X has the
value 13 is thus p (1) + p (4). Similarly, X has value 31 on minterms M3 and M6.

2. To complete the process of determining the distribution, we list the sorted values and consol-
idate by adding together the probabilities of the minterms on which each value is taken, as
follows:
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k tk pk

1 3 0.14

2 13 0.14 + 0.21 = 0.35

3 21 0.06

4 23 0.21

5 31 0.06 + 0.09 = 0.15

6 41 0.09

Table 6.5

The results may be put in a matrix X of possible values and a corresponding matrix PX of
probabilities that X takes on each of these values. Examination of the table shows that

X = [3 13 21 23 31 41] and PX = [0.14 0.35 0.06 0.21 0.15 0.09] (6.25)

Matrices X and PX describe the distribution for X.

6.1.6 An m-procedure for determining the distribution from a�ne form

We now consider suitable MATLAB steps in determining the distribution from a�ne form, then incorporate
these in the m-procedure canonic for carrying out the transformation. We start with the random variable
in a�ne form, and suppose we have available, or can calculate, the minterm probabilities.

1. The procedure usesmintable to set the basic minterm vector patterns, then uses a matrix of coe�cients,
including the constant term (set to zero if absent), to obtain the values on each minterm. The minterm
probabilities are included in a row matrix.

2. Having obtained the values on each minterm, the procedure performs the desired consolidation by
using the m-function csort.

Example 6.10: Steps in determining the distribution for X in Example 6.9 (Finding
the distribution from a�ne form)

� c = [10 18 10 3]; % Constant term is listed last

� pm = minprob(0.1*[6 3 5]);

� M = mintable(3) % Minterm vector pattern

M =

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

% - - - - - - - - - - - - - - % An approach mimicking ``hand'' calculation

� C = colcopy(c(1:3),8) % Coefficients in position

C =

10 10 10 10 10 10 10 10

18 18 18 18 18 18 18 18

10 10 10 10 10 10 10 10

� CM = C.*M % Minterm vector values

CM =
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0 0 0 0 10 10 10 10

0 0 18 18 0 0 18 18

0 10 0 10 0 10 0 10

� cM = sum(CM) + c(4) % Values on minterms

cM =

3 13 21 31 13 23 31 41

% - - - - - - - - - - - - - % Practical MATLAB procedure

� s = c(1:3)*M + c(4)

s =

3 13 21 31 13 23 31 41

� pm = 0.14 0.14 0.06 0.06 0.21 0.21 0.09 0.09 % Extra zeros deleted

� const = c(4)*ones(1,8);}

� disp([CM;const;s;pm]') % Display of primitive form

0 0 0 3 3 0.14 % MATLAB gives four decimals

0 0 10 3 13 0.14

0 18 0 3 21 0.06

0 18 10 3 31 0.06

10 0 0 3 13 0.21

10 0 10 3 23 0.21

10 18 0 3 31 0.09

10 18 10 3 41 0.09

� [X,PX] = csort(s,pm); % Sorting on s, consolidation of pm

� disp([X;PX]') % Display of final result

3 0.14

13 0.35

21 0.06

23 0.21

31 0.15

41 0.09

The two basic steps are combined in the m-procedure canonic, which we use to solve the previous problem.

Example 6.11: Use of canonic on the variables of Example 6.10 (Steps in determining
the distribution for X in Example 6.9 (Finding the distribution from a�ne form))

� c = [10 18 10 3]; % Note that the constant term 3 must be included last

� pm = minprob([0.6 0.3 0.5]);

� canonic

Enter row vector of coefficients c

Enter row vector of minterm probabilities pm

Use row matrices X and PX for calculations

Call for XDBN to view the distribution

� disp(XDBN)

3.0000 0.1400

13.0000 0.3500

21.0000 0.0600

23.0000 0.2100

31.0000 0.1500

41.0000 0.0900
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With the distribution available in the matrices X (set of values) and PX (set of probabilities), we may
calculate a wide variety of quantities associated with the random variable.

We use two key devices:

1. Use relational and logical operations on the matrix of values X to determine a matrix M which has
ones for those values which meet a prescribed condition. P (X ∈M): PM = M*PX'

2. Determine G = g (X) = [g (X1) g (X2) · · · g (Xn)] by using array operations on matrix X. We have
two alternatives:

a. Use the matrix G, which has values g (ti) for each possible value ti for X, or,
b. Apply csort to the pair (G, PX) to get the distribution for Z = g (X). This distribution (in

value and probability matrices) may be used in exactly the same manner as that for the original
random variable X.

Example 6.12: Continuation of Example 6.11 (Use of canonic on the variables of
Example 6.10 (Steps in determining the distribution for X in Example 6.9 (Finding
the distribution from a�ne form)))
Suppose for the random variable X in Example 6.11 (Use of canonic on the variables of Example 6.10
(Steps in determining the distribution for X in Example 6.9 (Finding the distribution from a�ne
form))) it is desired to determine the probabilities

P (15 ≤ X ≤ 35), P (|X − 20| ≤ 7), and P ((X − 10) (X − 25) > 0).

� M = (X>=15)&(X<=35);
M = 0 0 1 1 1 0 % Ones for minterms on which 15 <= X <= 35

� PM = M*PX' % Picks out and sums those minterm probs

PM = 0.4200

� N = abs(X-20)<=7;
N = 0 1 1 1 0 0 % Ones for minterms on which |X - 20| <= 7

� PN = N*PX' % Picks out and sums those minterm probs

PN = 0.6200

� G = (X - 10).*(X - 25)

G = 154 -36 -44 -26 126 496 % Value of g(t_i) for each possible value

� P1 = (G>0)*PX' % Total probability for those t_i such that

P1 = 0.3800 % g(t_i) > 0

� [Z,PZ] = csort(G,PX) % Distribution for Z = g(X)

Z = -44 -36 -26 126 154 496

PZ = 0.0600 0.3500 0.2100 0.1500 0.1400 0.0900

� P2 = (Z>0)*PZ' % Calculation using distribution for Z

P2 = 0.3800

Example 6.13: Alternate formulation of Example 3 (Example 4.19) from "Composite
Trials"
Ten race cars are involved in time trials to determine pole positions for an upcoming race. To
qualify, they must post an average speed of 125 mph or more on a trial run. Let Ei be the event
the ith car makes qualifying speed. It seems reasonable to suppose the class {Ei : 1 ≤ i ≤ 10} is
independent. If the respective probabilities for success are 0.90, 0.88, 0.93, 0.77, 0.85, 0.96, 0.72,
0.83, 0.91, 0.84, what is the probability that k or more will qualify (k = 6, 7, 8, 9, 10)?
SOLUTION
Let X =

∑10
i=1 IEi .

� c = [ones(1,10) 0];

� P = [0.90, 0.88, 0.93, 0.77, 0.85, 0.96, 0.72, 0.83, 0.91, 0.84];

� canonic
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Enter row vector of coefficients c

Enter row vector of minterm probabilities minprob(P)

Use row matrices X and PX for calculations

Call for XDBN to view the distribution

� k = 6:10;

� for i = 1:length(k)

Pk(i) = (X>=k(i))*PX';
end

� disp(Pk)

0.9938 0.9628 0.8472 0.5756 0.2114

This solution is not as convenient to write out. However, with the distribution for X as de�ned, a great
many other probabilities can be determined. This is particularly the case when it is desired to compare the
results of two independent races or �heats.� We consider such problems in the study of Independent Classes
of Random Variables (Section 9.1).

A function form for canonic
One disadvantage of the procedure canonic is that it always names the output X and PX. While these

can easily be renamed, frequently it is desirable to use some other name for the random variable from the
start. A function form, which we call canonicf, is useful in this case.

Example 6.14: Alternate solution of Example 6.13 (Alternate formulation of Example
3 (Example 4.19) from "Composite Trials"), using canonicf

� c = [10 18 10 3];

� pm = minprob(0.1*[6 3 5]);

� [Z,PZ] = canonicf(c,pm);

� disp([Z;PZ]') % Numbers as before, but the distribution

3.0000 0.1400 % matrices are now named Z and PZ

13.0000 0.3500

21.0000 0.0600

23.0000 0.2100

31.0000 0.1500

41.0000 0.0900

6.1.7 General random variables

The distribution for a simple random variable is easily visualized as point mass concentrations at the various
values in the range, and the class of events determined by a simple random variable is described in terms
of the partition generated by X (i.e., the class of those events of the form Ai = {X = ti} for each ti in the
range). The situation is conceptually the same for the general case, but the details are more complicated. If
the random variable takes on a continuum of values, then the probability mass distribution may be spread
smoothly on the line. Or, the distribution may be a mixture of point mass concentrations and smooth
distributions on some intervals. The class of events determined by X is the set of all inverse images X−1 (M)
forM any member of a general class of subsets of subsets of the real line known in the mathematical literature
as the Borel sets. There are technical mathematical reasons for not saying M is any subset, but the class
of Borel sets is general enough to include any set likely to be encountered in applications�certainly at the
level of this treatment. The Borel sets include any interval and any set that can be formed by complements,
countable unions, and countable intersections of Borel sets. This is a type of class known as a sigma algebra of
events. Because of the preservation of set operations by the inverse image, the class of events determined by
random variable X is also a sigma algebra, and is often designated σ (X). There are some technical questions
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concerning the probability measure PX induced by X, hence the distribution. These also are settled in such
a manner that there is no need for concern at this level of analysis. However, some of these questions become
important in dealing with random processes and other advanced notions increasingly used in applications.
Two facts provide the freedom we need to proceed with little concern for the technical details.

1. X−1 (M) is an event for every Borel set M i� for every semi-in�nite interval (−∞, t] on the real line
X−1 ((−∞, t]) is an event.

2. The induced probability distribution is determined uniquely by its assignment to all intervals of the
form (−∞, t].

These facts point to the importance of the distribution function introduced in the next chapter.
Another fact, alluded to above and discussed in some detail in the next chapter, is that any general

random variable can be approximated as closely as pleased by a simple random variable. We turn in the
next chapter to a description of certain commonly encountered probability distributions and ways to describe
them analytically.

6.2 Problems on Random Variables and Probabilities2

Exercise 6.2.1 (Solution on p. 152.)

The following simple random variable is in canonical form:
X = −3.75IA − 1.13IB + 0IC + 2.6ID.
Express the events {X ∈ (−4, 2]}, {X ∈ (0, 3]}, {X ∈ (−∞, 1]}, {|X − 1| ≥ 1}, and {X ≥ 0} in

terms of A,B,C, and D.

Exercise 6.2.2 (Solution on p. 152.)

Random variable X, in canonical form, is given by X = −2IA − IB + IC + 2ID + 5IE .
Express the events {X ∈ [2, 3)}, {X ≤ 0}, {X < 0}, {|X − 2| ≤ 3}, and {X2 ≥ 4}, in terms of

A,B,C,D, and E.

Exercise 6.2.3 (Solution on p. 152.)

The class {Cj : 1 ≤ j ≤ 10} is a partition. Random variable X has values {1, 3, 2, 3, 4, 2, 1, 3, 5, 2}
on C1 through C10, respectively. Express X in canonical form.

Exercise 6.2.4 (Solution on p. 152.)

The class {Cj : 1 ≤ j ≤ 10} in Exercise 6.2.3 has respective probabilities 0.08, 0.13, 0.06, 0.09,
0.14, 0.11, 0.12, 0.07, 0.11, 0.09. Determine the distribution for X.

Exercise 6.2.5 (Solution on p. 152.)

A wheel is spun yielding on an equally likely basis the integers 1 through 10. Let Ci be the event
the wheel stops at i, 1 ≤ i ≤ 10. Each P (Ci) = 0.1. If the numbers 1, 4, or 7 turn up, the player
loses ten dollars; if the numbers 2, 5, or 8 turn up, the player gains nothing; if the numbers 3, 6, or
9 turn up, the player gains ten dollars; if the number 10 turns up, the player loses one dollar. The
random variable expressing the results may be expressed in primitive form as

X = −10IC1 + 0IC2 + 10IC3 − 10IC4 + 0IC5 + 10IC6 − 10IC7 + 0IC8 + 10IC9 − IC10 (6.26)

• Determine the distribution for X, (a) by hand, (b) using MATLAB.
• Determine P (X < 0), P (X > 0).

Exercise 6.2.6 (Solution on p. 153.)

A store has eight items for sale. The prices are $3.50, $5.00, $3.50, $7.50, $5.00, $5.00, $3.50, and
$7.50, respectively. A customer comes in. She purchases one of the items with probabilities 0.10,

2This content is available online at <http://cnx.org/content/m24208/1.6/>.
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0.15, 0.15, 0.20, 0.10 0.05, 0.10 0.15. The random variable expressing the amount of her purchase
may be written

X = 3.5IC1 + 5.0IC2 + 3.5IC3 + 7.5IC4 + 5.0IC5 + 5.0IC6 + 3.5IC7 + 7.5IC8 (6.27)

Determine the distribution for X (a) by hand, (b) using MATLAB.

Exercise 6.2.7 (Solution on p. 153.)

Suppose X, Y in canonical form are

X = 2IA1 + 3IA2 + 5IA3 Y = IB1 + 2IB2 + 3IB3 (6.28)

The P (Ai) are 0.3, 0.6, 0.1, respectively, and the P (Bj) are 0.2 0.6 0.2. Each pair {Ai, Bj} is
independent. Consider the random variable Z = X + Y . Then Z = 2 + 1 on A1B1, Z = 3 + 3
on A2B3, etc. Determine the value of Z on each AiBj and determine the corresponding P (AiBj).
From this, determine the distribution for Z.

Exercise 6.2.8 (Solution on p. 153.)

For the random variables in Exercise 6.2.7, let W = XY . Determine the value of W on each AiBj
and determine the distribution of W.

Exercise 6.2.9 (Solution on p. 154.)

A pair of dice is rolled.

a. Let X be the minimum of the two numbers which turn up. Determine the distribution for X
b. Let Y be the maximum of the two numbers. Determine the distribution for Y.
c. Let Z be the sum of the two numbers. Determine the distribution for Z.
d. Let W be the absolute value of the di�erence. Determine its distribution.

Exercise 6.2.10 (Solution on p. 154.)

Minterm probabilities p (0) through p (15) for the class {A, B, C, D} are, in order,

0.072 0.048 0.018 0.012 0.168 0.112 0.042 0.028 0.062 0.048 0.028 0.010 0.170 0.110 0.040 0.032(6.29)

Determine the distribution for random variable

X = −5.3IA − 2.5IB + 2.3IC + 4.2ID − 3.7 (6.30)

Exercise 6.2.11 (Solution on p. 155.)

On a Tuesday evening, the Houston Rockets, the Orlando Magic, and the Chicago Bulls all have
games (but not with one another). Let A be the event the Rockets win, B be the event the Magic
win, and C be the event the Bulls win. Suppose the class {A, B, C} is independent, with respective
probabilities 0.75, 0.70 0.8. Ellen's boyfriend is a rabid Rockets fan, who does not like the Magic.
He wants to bet on the games. She decides to take him up on his bets as follows:

• $10 to 5 on the Rockets � i.e. She loses �ve if the Rockets win and gains ten if they lose
• $10 to 5 against the Magic
• even $5 to 5 on the Bulls.

Ellen's winning may be expressed as the random variable

X = −5IA + 10IAc + 10IB − 5IBc − 5IC + 5ICc = −15IA + 15IB − 10IC + 10 (6.31)

Determine the distribution for X. What are the probabilities Ellen loses money, breaks even, or
comes out ahead?
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Exercise 6.2.12 (Solution on p. 155.)

The class {A, B, C, D} has minterm probabilities

pm = 0.001 ∗ [5 7 6 8 9 14 22 33 21 32 50 75 86 129 201 302] (6.32)

• Determine whether or not the class is independent.
• The random variable X = IA + IB + IC + ID counts the number of the events which occur

on a trial. Find the distribution for X and determine the probability that two or more occur
on a trial. Find the probability that one or three of these occur on a trial.

Exercise 6.2.13 (Solution on p. 156.)

James is expecting three checks in the mail, for $20, $26, and $33 dollars. Their arrivals are the
events A,B, C. Assume the class is independent, with respective probabilities 0.90, 0.75, 0.80.
Then

X = 20IA + 26IB + 33IC (6.33)

represents the total amount received. Determine the distribution for X. What is the probability
he receives at least $50? Less than $30?

Exercise 6.2.14 (Solution on p. 156.)

A gambler places three bets. He puts down two dollars for each bet. He picks up three dollars (his
original bet plus one dollar) if he wins the �rst bet, four dollars if he wins the second bet, and six
dollars if he wins the third. His net winning can be represented by the random variable

X = 3IA + 4IB + 6IC − 6, with P (A) = 0.5, P (B) = 0.4, P (C) = 0.3 (6.34)

Assume the results of the games are independent. Determine the distribution for X.

Exercise 6.2.15 (Solution on p. 157.)

Henry goes to a hardware store. He considers a power drill at $35, a socket wrench set at $56,
a set of screwdrivers at $18, a vise at $24, and hammer at $8. He decides independently on the
purchases of the individual items, with respective probabilities 0.5, 0.6, 0.7, 0.4, 0.9. Let X be the
amount of his total purchases. Determine the distribution for X.

Exercise 6.2.16 (Solution on p. 158.)

A sequence of trials (not necessarily independent) is performed. Let Ei be the event of success on
the ith component trial. We associate with each trial a �payo� function� Xi = aIEi + bIEci . Thus,
an amount a is earned if there is a success on the trial and an amount b (usually negative) if there
is a failure. Let Sn be the number of successes in the n trials and W be the net payo�. Show that
W = (a− b)Sn + bn.

Exercise 6.2.17 (Solution on p. 158.)

A marker is placed at a reference position on a line (taken to be the origin); a coin is tossed
repeatedly. If a head turns up, the marker is moved one unit to the right; if a tail turns up, the
marker is moved one unit to the left.

a. Show that the position at the end of ten tosses is given by the random variable

X =
10∑
i=1

IEi −
10∑
i=1

IEci = 2
10∑
i=1

IEi − 10 = 2S10 − 10 (6.35)

where Ei is the event of a head on the ith toss and S10 is the number of heads in ten trials.
b. After ten tosses, what are the possible positions and the probabilities of being in each?
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Exercise 6.2.18 (Solution on p. 158.)

Margaret considers �ve purchases in the amounts 5, 17, 21, 8, 15 dollars with respective probabilities
0.37, 0.22, 0.38, 0.81, 0.63. Anne contemplates six purchases in the amounts 8, 15, 12, 18, 15, 12
dollars, with respective probabilities 0.77, 0.52, 0.23, 0.41, 0.83, 0.58. Assume that all eleven
possible purchases form an independent class.

a. Determine the distribution for X, the amount purchased by Margaret.
b. Determine the distribution for Y, the amount purchased by Anne.
c. Determine the distribution for Z = X + Y , the total amount the two purchase.

Suggestion for part (c). Let MATLAB perform the calculations.

[r,s] = ndgrid(X,Y);

[t,u] = ndgrid(PX,PY);

z = r + s;

pz = t.*u;

[Z,PZ] = csort(z,pz);
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Solutions to Exercises in Chapter 6

Solution to Exercise 6.2.1 (p. 148)

• A
∨
B
∨
C

• D
• A

∨
B
∨
C

• C
• C

∨
D

Solution to Exercise 6.2.2 (p. 148)

• D
• A

∨
B

• A
∨
B

• B
∨
C
∨
D
∨
E

• A
∨
D
∨
E

Solution to Exercise 6.2.3 (p. 148)

T = [1 3 2 3 4 2 1 3 5 2];

[X,I] = sort(T)

X = 1 1 2 2 2 3 3 3 4 5

I = 1 7 3 6 10 2 4 8 5 9

X = IA + 2IB + 3IC + 4ID + 5IE (6.36)

A = C1

∨
C7, B = C3

∨
C6

∨
C10, C = C2

∨
C4

∨
C8, D = C5, E = C9 (6.37)

Solution to Exercise 6.2.4 (p. 148)

T = [1 3 2 3 4 2 1 3 5 2];

pc = 0.01*[8 13 6 9 14 11 12 7 11 9];

[X,PX] = csort(T,pc);

disp([X;PX]')

1.0000 0.2000

2.0000 0.2600

3.0000 0.2900

4.0000 0.1400

5.0000 0.1100

Solution to Exercise 6.2.5 (p. 148)

p = 0.1*ones(1,10);

c = [-10 0 10 -10 0 10 -10 0 10 -1];

[X,PX] = csort(c,p);

disp([X;PX]')

-10.0000 0.3000

-1.0000 0.1000

0 0.3000

10.0000 0.3000
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Pneg = (X<0)*PX'
Pneg = 0.4000

Ppos = (X>0)*PX'
Ppos = 0.300

Solution to Exercise 6.2.6 (p. 148)

p = 0.01*[10 15 15 20 10 5 10 15];

c = [3.5 5 3.5 7.5 5 5 3.5 7.5];

[X,PX] = csort(c,p);

disp([X;PX]')

3.5000 0.3500

5.0000 0.3000

7.5000 0.3500

Solution to Exercise 6.2.7 (p. 149)

A = [2 3 5];

B = [1 2 3];

a = rowcopy(A,3);

b = colcopy(B,3);

Z =a + b % Possible values of sum Z = X + Y

Z = 3 4 6

4 5 7

5 6 8

PA = [0.3 0.6 0.1];

PB = [0.2 0.6 0.2];

pa= rowcopy(PA,3);

pb = colcopy(PB,3);

P = pa.*pb % Probabilities for various values

P = 0.0600 0.1200 0.0200

0.1800 0.3600 0.0600

0.0600 0.1200 0.0200

[Z,PZ] = csort(Z,P);

disp([Z;PZ]') % Distribution for Z = X + Y

3.0000 0.0600

4.0000 0.3000

5.0000 0.4200

6.0000 0.1400

7.0000 0.0600

8.0000 0.0200

Solution to Exercise 6.2.8 (p. 149)

XY = a.*b

XY = 2 3 5 % XY values

4 6 10

6 9 15

W PW % Distribution for W = XY
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2.0000 0.0600

3.0000 0.1200

4.0000 0.1800

5.0000 0.0200

6.0000 0.4200

9.0000 0.1200

10.0000 0.0600

15.0000 0.0200

Solution to Exercise 6.2.9 (p. 149)

t = 1:6;

c = ones(6,6);

[x,y] = meshgrid(t,t)

x = 1 2 3 4 5 6 % x-values in each position

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

y = 1 1 1 1 1 1 % y-values in each position

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

5 5 5 5 5 5

6 6 6 6 6 6

m = min(x,y); % min in each position

M = max(x,y); % max in each position

s = x + y; % sum x+y in each position

d = abs(x - y); % |x - y| in each position

[X,fX] = csort(m,c) % sorts values and counts occurrences

X = 1 2 3 4 5 6

fX = 11 9 7 5 3 1 % PX = fX/36

[Y,fY] = csort(M,c)

Y = 1 2 3 4 5 6

fY = 1 3 5 7 9 11 % PY = fY/36

[Z,fZ] = csort(s,c)

Z = 2 3 4 5 6 7 8 9 10 11 12

fZ = 1 2 3 4 5 6 5 4 3 2 1 %PZ = fZ/36

[W,fW] = csort(d,c)

W = 0 1 2 3 4 5

fW = 6 10 8 6 4 2 % PW = fW/36

Solution to Exercise 6.2.10 (p. 149)

% file npr06_10.m (Section~17.8.27: npr06_10)

% Data for Exercise~6.2.10

pm = [ 0.072 0.048 0.018 0.012 0.168 0.112 0.042 0.028 ...

0.062 0.048 0.028 0.010 0.170 0.110 0.040 0.032];

c = [-5.3 -2.5 2.3 4.2 -3.7];

disp('Minterm probabilities are in pm, coefficients in c')
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npr06_10 (Section~17.8.27: npr06_10)

Minterm probabilities are in pm, coefficients in c

canonic

Enter row vector of coefficients c

Enter row vector of minterm probabilities pm

Use row matrices X and PX for calculations

Call for XDBN to view the distribution

XDBN

XDBN =

-11.5000 0.1700

-9.2000 0.0400

-9.0000 0.0620

-7.3000 0.1100

-6.7000 0.0280

-6.2000 0.1680

-5.0000 0.0320

-4.8000 0.0480

-3.9000 0.0420

-3.7000 0.0720

-2.5000 0.0100

-2.0000 0.1120

-1.4000 0.0180

0.3000 0.0280

0.5000 0.0480

2.8000 0.0120

Solution to Exercise 6.2.11 (p. 149)

P = 0.01*[75 70 80];

c = [-15 15 -10 10];

canonic

Enter row vector of coefficients c

Enter row vector of minterm probabilities minprob(P)

Use row matrices X and PX for calculations

Call for XDBN to view the distribution

disp(XDBN)

-15.0000 0.1800

-5.0000 0.0450

0 0.4800

10.0000 0.1200

15.0000 0.1400

25.0000 0.0350

PXneg = (X<0)*PX'
PXneg = 0.2250

PX0 = (X==0)*PX'

PX0 = 0.4800

PXpos = (X>0)*PX'
PXpos = 0.2950

Solution to Exercise 6.2.12 (p. 150)
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npr06_12 (Section~17.8.28: npr06_12)

Minterm probabilities in pm, coefficients in c

a = imintest(pm)

The class is NOT independent

Minterms for which the product rule fails

a =

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

canonic

Enter row vector of coefficients c

Enter row vector of minterm probabilities pm

Use row matrices X and PX for calculations

Call for XDBN to view the distribution

XDBN =

0 0.0050

1.0000 0.0430

2.0000 0.2120

3.0000 0.4380

4.0000 0.3020

P2 = (X>=2)*PX'
P2 = 0.9520

P13 = ((X==1)|(X==3))*PX'

P13 = 0.4810

Solution to Exercise 6.2.13 (p. 150)

c = [20 26 33 0];

P = 0.01*[90 75 80];

canonic

Enter row vector of coefficients c

Enter row vector of minterm probabilities minprob(P)

Use row matrices X and PX for calculations

Call for XDBN to view the distribution

disp(XDBN)

0 0.0050

20.0000 0.0450

26.0000 0.0150

33.0000 0.0200

46.0000 0.1350

53.0000 0.1800

59.0000 0.0600

79.0000 0.5400

P50 = (X>=50)*PX'
P50 = 0.7800

P30 = (X <30)*PX'
P30 = 0.0650

Solution to Exercise 6.2.14 (p. 150)
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c = [3 4 6 -6];

P = 0.1*[5 4 3];

canonic

Enter row vector of coefficients c

Enter row vector of minterm probabilities minprob(P)

Use row matrices X and PX for calculations

Call for XDBN to view the distribution

dsp(XDBN)

-6.0000 0.2100

-3.0000 0.2100

-2.0000 0.1400

0 0.0900

1.0000 0.1400

3.0000 0.0900

4.0000 0.0600

7.0000 0.0600

Solution to Exercise 6.2.15 (p. 150)

c = [35 56 18 24 8 0];

P = 0.1*[5 6 7 4 9];

canonic

Enter row vector of coefficients c

Enter row vector of minterm probabilities minprob(P)

Use row matrices X and PX for calculations

Call for XDBN to view the distribution

disp(XDBN)

0 0.0036

8.0000 0.0324

18.0000 0.0084

24.0000 0.0024

26.0000 0.0756

32.0000 0.0216

35.0000 0.0036

42.0000 0.0056

43.0000 0.0324

50.0000 0.0504

53.0000 0.0084

56.0000 0.0054

59.0000 0.0024

61.0000 0.0756

64.0000 0.0486

67.0000 0.0216

74.0000 0.0126

77.0000 0.0056

80.0000 0.0036

82.0000 0.1134

85.0000 0.0504

88.0000 0.0324

91.0000 0.0054

98.0000 0.0084

99.0000 0.0486
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106.0000 0.0756

109.0000 0.0126

115.0000 0.0036

117.0000 0.1134

123.0000 0.0324

133.0000 0.0084

141.0000 0.0756

Solution to Exercise 6.2.16 (p. 150)

Xi = aIEi + b (1− IEi) = (a− b) IEi + b (6.38)

W =
n∑
i=1

Xi = (a− b)
n∑
i=1

IEi + bn = (a− b)Sn + bn (6.39)

Solution to Exercise 6.2.17 (p. 150)

Xi = IEi − IEci = IEi − (1− IEi) = 2IEi − 1 (6.40)

X =
10∑
i=1

Xi = 2
n∑
e=1

IEi − 10 (6.41)

S = 0:10;

PS = ibinom(10,0.5,0:10);

X = 2*S - 10;

disp([X;PS]')

-10.0000 0.0010

-8.0000 0.0098

-6.0000 0.0439

-4.0000 0.1172

-2.0000 0.2051

0 0.2461

2.0000 0.2051

4.0000 0.1172

6.0000 0.0439

8.0000 0.0098

10.0000 0.0010

Solution to Exercise 6.2.18 (p. 151)

% file npr06_18.m (Section~17.8.29: npr06_18.m)

cx = [5 17 21 8 15 0];

cy = [8 15 12 18 15 12 0];

pmx = minprob(0.01*[37 22 38 81 63]);

pmy = minprob(0.01*[77 52 23 41 83 58]);

npr06_18 (Section~17.8.29: npr06_18.m)

[X,PX] = canonicf(cx,pmx); [Y,PY] = canonicf(cy,pmy);

[r,s] = ndgrid(X,Y); [t,u] = ndgrid(PX,PY);

z = r + s; pz = t.*u;

[Z,PZ] = csort(z,pz);
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a = length(Z)

a = 125 % 125 different values

plot(Z,cumsum(PZ)) % See figure Plotting details omitted
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Chapter 7

Distribution and Density Functions

7.1 Distribution and Density Functions1

7.1.1 Introduction

In the unit on Random Variables and Probability (Section 6.1) we introduce real random variables as map-
pings from the basic space Ω to the real line. The mapping induces a transfer of the probability mass on
the basic space to subsets of the real line in such a way that the probability that X takes a value in a set
M is exactly the mass assigned to that set by the transfer. To perform probability calculations, we need to
describe analytically the distribution on the line. For simple random variables this is easy. We have at each
possible value of X a point mass equal to the probability X takes that value. For more general cases, we
need a more useful description than that provided by the induced probability measure PX.

7.1.2 The distribution function

In the theoretical discussion on Random Variables and Probability (Section 6.1), we note that the probability
distribution induced by a random variable X is determined uniquely by a consistent assignment of mass to
semi-in�nite intervals of the form (−∞, t] for each real t. This suggests that a natural description is provided
by the following.

De�nition
The distribution function FX for random variable X is given by

FX (t) = P (X ≤ t) = P (X ∈ (−∞, t]) ∀ t ∈ R (7.1)

In terms of the mass distribution on the line, this is the probability mass at or to the left of the point t. As
a consequence, FX has the following properties:

(F1) : FX must be a nondecreasing function, for if t > s there must be at least as much probability mass
at or to the left of t as there is for s.

(F2) : FX is continuous from the right, with a jump in the amount p0 at t0 i� P (X = t0) = p0. If the point
t approaches t0 from the left, the interval does not include the probability mass at t0 until t reaches
that value, at which point the amount at or to the left of t increases ("jumps") by amount p0; on the
other hand, if t approaches t0 from the right, the interval includes the mass p0 all the way to and
including t0, but drops immediately as t moves to the left of t0.

(F3) : Except in very unusual cases involving random variables which may take �in�nite� values, the prob-
ability mass included in (−∞, t] must increase to one as t moves to the right; as t moves to the left,

1This content is available online at <http://cnx.org/content/m23267/1.7/>.
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162 CHAPTER 7. DISTRIBUTION AND DENSITY FUNCTIONS

the probability mass included must decrease to zero, so that

FX (−∞) = lim
t→−∞

FX (t) = 0 and FX (∞) = lim
t→∞

FX (t) = 1 (7.2)

A distribution function determines the probability mass in each semiin�nite interval (−∞, t]. According to
the discussion referred to above, this determines uniquely the induced distribution.

The distribution function FX for a simple random variable is easily visualized. The distribution consists
of point mass pi at each point ti in the range. To the left of the smallest value in the range, FX (t) = 0; as t
increases to the smallest value t1, FX (t) remains constant at zero until it jumps by the amount p1.. FX (t)
remains constant at p1 until t increases to t2, where it jumps by an amount p2 to the value p1 + p2. This
continues until the value of FX (t)reaches 1 at the largest value tn. The graph of FX is thus a step function,
continuous from the right, with a jump in the amount pi at the corresponding point ti in the range. A
similar situation exists for a discrete-valued random variable which may take on an in�nity of values (e.g.,
the geometric distribution or the Poisson distribution considered below). In this case, there is always some
probability at points to the right of any ti, but this must become vanishingly small as t increases, since the
total probability mass is one.

The procedure ddbn may be used to plot the distributon function for a simple random variable from a
matrix X of values and a corresponding matrix PX of probabilities.

Example 7.1: Graph of FX for a simple random variable

� c = [10 18 10 3]; % Distribution for X in Example 6.5.1

� pm = minprob(0.1*[6 3 5]);

� canonic

Enter row vector of coefficients c

Enter row vector of minterm probabilities pm

Use row matrices X and PX for calculations

Call for XDBN to view the distribution

� ddbn % Circles show values at jumps

Enter row matrix of VALUES X

Enter row matrix of PROBABILITIES PX

% Printing details See Figure~7.1
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Figure 7.1: Distribution function for Example 7.1 (Graph of FX for a simple random variable)

7.1.3 Description of some common discrete distributions

We make repeated use of a number of common distributions which are used in many practical situations.
This collection includes several distributions which are studied in the chapter "Random Variables and Prob-
abilities" (Section 6.1).

1. Indicator function. X = IE P (X = 1) = P (E) = pP (X = 0) = q = 1 − p. The distribution
function has a jump in the amount q at t = 0 and an additional jump of p to the value 1 at t = 1.

2. Simple random variable X =
∑n
i=1 tiIAi (canonical form)

P (X = ti) = P (Ai) = p1 (7.3)

The distribution function is a step function, continuous from the right, with jump of pi at t = ti (See
Figure 7.1 for Example 7.1 (Graph of FX for a simple random variable))

3. Binomial (n, p). This random variable appears as the number of successes in a sequence of n Bernoulli
trials with probability p of success. In its simplest form

X =
n∑
i=1

IEi with {Ei : 1 ≤ i ≤ n} independent (7.4)

P (Ei) = p P (X = k) = C (n, k) pkqn−k (7.5)

As pointed out in the study of Bernoulli sequences in the unit on Composite Trials, two m-functions
ibinom andcbinom are available for computing the individual and cumulative binomial probabilities.
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164 CHAPTER 7. DISTRIBUTION AND DENSITY FUNCTIONS

4. Geometric (p) There are two related distributions, both arising in the study of continuing Bernoulli
sequences. The �rst counts the number of failures before the �rst success. This is sometimes called
the �waiting time.� The event {X = k} consists of a sequence of k failures, then a success. Thus

P (X = k) = qkp, 0 ≤ k (7.6)

The second designates the component trial on which the �rst success occurs. The event {Y = k}
consists of k − 1 failures, then a success on the kth component trial. We have

P (Y = k) = qk−1p, 1 ≤ k (7.7)

We say X has the geometric distribution with parameter (p), which we often designate by X ∼
geometric (p). Now Y = X + 1 or Y − 1 = X. For this reason, it is customary to refer to the
distribution for the number of the trial for the �rst success by saying Y − 1 ∼ geometric (p). The
probability of k or more failures before the �rst success is P (X ≥ k) = qk. Also

P (X ≥ n+ k|X ≥ n) =
P (X ≥ n+ k)
P (X ≥ n)

= qn+k/qn = qk = P (X ≥ k) (7.8)

This suggests that a Bernoulli sequence essentially "starts over" on each trial. If it has failed n times,
the probability of failing an additional k or more times before the next success is the same as the initial
probability of failing k or more times before the �rst success.

Example 7.2: The geometric distribution
A statistician is taking a random sample from a population in which two percent of the
members own a BMW automobile. She takes a sample of size 100. What is the probability
of �nding no BMW owners in the sample?
SOLUTION
The sampling process may be viewed as a sequence of Bernoulli trials with probability p = 0.02
of success. The probability of 100 or more failures before the �rst success is 0.98100 = 0.1326
or about 1/7.5.

5. Negative binomial (m, p). X is the number of failures before the mth success. It is generally more
convenient to work with Y = X + m, the number of the trial on which the mth success occurs. An
examination of the possible patterns and elementary combinatorics show that

P (Y = k) = C (k − 1,m− 1) pmqk−m, m ≤ k (7.9)

There are m − 1 successes in the �rst k − 1 trials, then a success. Each combination has probability
pmqk−m. We have an m-function nbinom to calculate these probabilities.

Example 7.3: A game of chance
A player throws a single six-sided die repeatedly. He scores if he throws a 1 or a 6. What is
the probability he scores �ve times in ten or fewer throws?

�~p~=~sum(nbinom(5,1/3,5:10))

p~~=~~0.2131

An alternate solution is possible with the use of the binomial distribution. The mth success
comes not later than the kth trial i� the number of successes in k trials is greater than or
equal to m.

�~P~=~cbinom(10,1/3,5)

P~~=~~0.2131
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6. Poisson (µ). This distribution is assumed in a wide variety of applications. It appears as a counting
variable for items arriving with exponential interarrival times (see the relationship to the gamma
distribution below). For large n and small p (which may not be a value found in a table), the binomial
distribution is approximately Poisson (np). Use of the generating function (see Transform Methods)
shows the sum of independent Poisson random variables is Poisson. The Poisson distribution is integer
valued, with

P (X = k) = e−µ
µk

k!
0 ≤ k (7.10)

Although Poisson probabilities are usually easier to calculate with scienti�c calculators than binomial
probabilities, the use of tables is often quite helpful. As in the case of the binomial distribution, we have
two m-functions for calculating Poisson probabilities. These have advantages of speed and parameter
range similar to those for ibinom and cbinom.

: P (X = k) is calculated by P = ipoisson(mu,k), where k is a row or column vector of integers and
the result P is a row matrix of the probabilities.

: P (X ≥ k) is calculated by P = cpoisson(mu,k), where k is a row or column vector of integers and
the result P is a row matrix of the probabilities.

Example 7.4: Poisson counting random variable
The number of messages arriving in a one minute period at a communications network
junction is a random variable N ∼ Poisson (130). What is the probability the number of
arrivals is greater than equal to 110, 120, 130, 140, 150, 160 ?

�~p~=~cpoisson(130,110:10:160)

p~~=~~0.9666~~0.8209~~0.5117~~0.2011~~0.0461~~0.0060

The descriptions of these distributions, along with a number of other facts, are summarized
in the table DATA ON SOME COMMON DISTRIBUTIONS in Appendix C (Section 17.3).

7.1.4 The density function

If the probability mass in the induced distribution is spread smoothly along the real line, with no point mass
concentrations, there is a probability density function fX which satis�es

P (X ∈M) = PX (M) =
∫
M

fX (t) dt (area under the graph of fX over M) (7.11)

At each t, fX (t) is the mass per unit length in the probability distribution. The density function has three
characteristic properties:

(f1) fX ≥ 0 (f2)

∫
R

fX = 1 (f3) FX (t) =
∫ t

−∞
fX (7.12)

A random variable (or distribution) which has a density is called absolutely continuous. This term comes
from measure theory. We often simply abbreviate as continuous distribution.

Remarks

1. There is a technical mathematical description of the condition �spread smoothly with no point mass
concentrations.� And strictly speaking the integrals are Lebesgue integrals rather than the ordinary
Riemann kind. But for practical cases, the two agree, so that we are free to use ordinary integration
techniques.

2. By the fundamental theorem of calculus

fX (t) = F '
X (t) at every point of continuity of fX (7.13)
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3. Any integrable, nonnegative function f with
∫
f = 1 determines a distribution function F , which

in turn determines a probability distribution. If
∫
f 6= 1, multiplication by the appropriate positive

constant gives a suitable f . An argument based on the Quantile Function shows the existence of a
random variable with that distribution.

4. In the literature on probability, it is customary to omit the indication of the region of integration when
integrating over the whole line. Thus∫

g (t) fX (t) dt =
∫

R

g (t) fX (t) dt (7.14)

The �rst expression is not an inde�nite integral. In many situations, fX will be zero outside an
interval. Thus, the integrand e�ectively determines the region of integration.

Figure 7.2: The Weibull density for α = 2, λ = 0.25, 1, 4.
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Figure 7.3: The Weibull density for α = 10, λ = 0.001, 1, 1000.

7.1.5 Some common absolutely continuous distributions

1. Uniform (a, b).
Mass is spread uniformly on the interval [a, b]. It is immaterial whether or not the end points are
included, since probability associated with each individual point is zero. The probability of any subin-
terval is proportional to the length of the subinterval. The probability of being in any two subintervals
of the same length is the same. This distribution is used to model situations in which it is known that
X takes on values in [a, b] but is equally likely to be in any subinterval of a given length. The density
must be constant over the interval (zero outside), and the distribution function increases linearly with
t in the interval. Thus,

fX (t) =
1

b− a
a < t < b (zero outside the interval) (7.15)

The graph of FX rises linearly, with slope 1/ (b− a) from zero at t = a to one at t = b.

2. Symmetric triangular (−a, a). fX (t) = {
(a+ t) /a2 −a ≤ t < 0

(a− t) /a2 0 ≤ t ≤ a
This distribution is used frequently in instructional numerical examples because probabilities can be
obtained geometrically. It can be shifted, with a shift of the graph, to di�erent sets of values. It
appears naturally (in shifted form) as the distribution for the sum or di�erence of two independent
random variables uniformly distributed on intervals of the same length. This fact is established with
the use of the moment generating function (see Transform Methods). More generally, the density may
have a triangular graph which is not symmetric.
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Example 7.5: Use of a triangular distribution
Suppose X ∼ symmetric triangular (100, 300). Determine P (120 < X ≤ 250).
Remark. Note that in the continuous case, it is immaterial whether the end point of the
intervals are included or not.
SOLUTION
To get the area under the triangle between 120 and 250, we take one minus the area of the
right triangles between 100 and 120 and between 250 and 300. Using the fact that areas of
similar triangles are proportional to the square of any side, we have

P = 1− 1
2

(
(20/100)2 + (50/100)2

)
= 0.855 (7.16)

3. Exponential (λ) fX (t) = λe−λt t ≥ 0 (zero elsewhere).
Integration shows FX (t) = 1 − e−λt t ≥ 0 (zero elsewhere). We note that P (X > t) = 1 − FX (t) =
e−λt t ≥ 0. This leads to an extremely important property of the exponential distribution. Since
X > t+ h, h > 0 implies X > t, we have

P (X > t+ h|X > t) = P (X > t+ h) /P (X > t) = e−λ(t+h)/e−λt = e−λh = P (X > h) (7.17)

Because of this property, the exponential distribution is often used in reliability problems. Suppose
X represents the time to failure (i.e., the life duration) of a device put into service at t = 0. If the
distribution is exponential, this property says that if the device survives to time t (i.e., X > t) then
the (conditional) probability it will survive h more units of time is the same as the original probability
of surviving for h units of time. Many devices have the property that they do not wear out. Failure
is due to some stress of external origin. Many solid state electronic devices behave essentially in this
way, once initial �burn in� tests have removed defective units. Use of Cauchy's equation (Appendix B)
shows that the exponential distribution is the only continuous distribution with this property.

4. Gamma distribution (α, λ) fX (t) = λαtα−1e−λt

Γ(α) t ≥ 0 (zero elsewhere)

We have an m-function gammadbn to determine values of the distribution function for X ∼ gamma
(α, λ). Use of moment generating functions shows that for α = n, a random variable X ∼ gamma
(n, λ) has the same distribution as the sum of n independent random variables, each exponential (λ).
A relation to the Poisson distribution is described in Sec 7.5.

Example 7.6: An arrival problem
On a Saturday night, the times (in hours) between arrivals in a hospital emergency unit may
be represented by a random quantity which is exponential (λ = 3). As we show in the chapter
Mathematical Expectation (Section 11.1), this means that the average interarrival time is 1/3
hour or 20 minutes. What is the probability of ten or more arrivals in four hours? In six
hours?
SOLUTION
The time for ten arrivals is the sum of ten interarrival times. If we suppose these are inde-
pendent, as is usually the case, then the time for ten arrivals is gamma (10, 3).

�~p~=~gammadbn(10,3,[4~6])

p~~=~~0.7576~~~~0.9846

5. Normal, or Gaussian
(
µ, σ2

)
fX (t) = 1

σ
√

2π
exp

(
− 1

2

(
t−µ
σ

)2) ∀ t
We generally indicate that a random variable X has the normal or gaussian distribution by writing
X ∼ N

(
µ, σ2

)
, putting in the actual values for the parameters. The gaussian distribution plays a

central role in many aspects of applied probability theory, particularly in the area of statistics. Much
of its importance comes from the central limit theorem (CLT), which is a term applied to a number
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of theorems in analysis. Essentially, the CLT shows that the distribution for the sum of a su�ciently
large number of independent random variables has approximately the gaussian distribution. Thus, the
gaussian distribution appears naturally in such topics as theory of errors or theory of noise, where the
quantity observed is an additive combination of a large number of essentially independent quantities.
Examination of the expression shows that the graph for fX (t) is symmetric about its maximum at
t = µ. The greater the parameter σ2, the smaller the maximum value and the more slowly the curve
decreases with distance from µ. Thus parameter µ locates the center of the mass distribution and σ2

is a measure of the spread of mass about µ. The parameter µ is called the mean value and σ2 is the
variance. The parameter σ, the positive square root of the variance, is called the standard deviation.
While we have an explicit formula for the density function, it is known that the distribution function,
as the integral of the density function, cannot be expressed in terms of elementary functions. The
usual procedure is to use tables obtained by numerical integration.
Since there are two parameters, this raises the question whether a separate table is needed for each
pair of parameters. It is a remarkable fact that this is not the case. We need only have a table of the
distribution function for X ∼ N (0, 1). This is refered to as the standardized normal distribution. We
use φ and Φ for the standardized normal density and distribution functions, respectively.
Standardized normalφ (t) = 1√

2π
e−t

2/2 so that the distribution function is Φ (t) =
∫ t
−∞ φ (u) du.

The graph of the density function is the well known bell shaped curve, symmetrical about the origin
(see Figure 7.4). The symmetry about the origin contributes to its usefulness.

P (X ≤ t) = Φ (t) = area under the curve to the left of t (7.18)

Note that the area to the left of t = −1.5 is the same as the area to the right of t = 1.5, so that
Φ (−2) = 1− Φ (2). The same is true for any t, so that we have

Φ (−t) = 1− Φ (t) ∀ t (7.19)

This indicates that we need only a table of values of Φ (t) for t > 0 to be able to determine Φ (t) for
any t. We may use the symmetry for any case. Note that Φ (0) = 1/2,
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Figure 7.4: The standardized normal distribution.

Example 7.7: Standardized normal calculations
Suppose X ∼ N (0, 1). Determine P (−1 ≤ X ≤ 2) and P (|X| > 1).
SOLUTION
1. P (−1 ≤ X ≤ 2) = Φ (2)− Φ (−1) = Φ (2)− [1− Φ (1)] = Φ (2) + Φ (1)− 1
2. P (|X| > 1) = P (X > 1) + P (X < − 1) = 1− Φ (1) + Φ (−1) = 2 [1− Φ (1)]
From a table of standardized normal distribution function (see Appendix D (Section 17.4)),
we �nd
Φ (2) = 0.9772 and Φ (1) = 0.8413 which gives P (−1 ≤ X ≤ 2) = 0.8185 and P (|X| > 1) =
0.3174

General gaussian distribution
For X ∼ N

(
µ, σ2

)
, the density maintains the bell shape, but is shifted with di�erent spread and

height. Figure 7.5 shows the distribution function and density function for X ∼ N (2, 0.1). The
density is centered about t = 2. It has height 1.2616 as compared with 0.3989 for the standardized
normal density. Inspection shows that the graph is narrower than that for the standardized normal.
The distribution function reaches 0.5 at the mean value 2.
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Figure 7.5: The normal density and distribution functions for X ∼ N (2, 0.1).

A change of variables in the integral shows that the table for standardized normal distribution function
can be used for any case.

FX (t) =
1

σ
√

2π

∫ t

−∞
exp

(
−1

2

(
x− µ
σ

)2
)
dx =

∫ t

−∞
φ

(
x− µ
σ

)
1
σ
dx (7.20)

Make the change of variable and corresponding formal changes

u =
x− µ
σ

du =
1
σ
dx x = t ∼ u =

t− µ
σ

(7.21)

to get

FX (t) =
∫ (t−µ)/σ

−∞
φ (u) du = Φ

(
t− µ
σ

)
(7.22)

Example 7.8: General gaussian calculation
Suppose X ∼ N (3, 16) (i.e., µ = 3 and σ2 = 16). Determine P (−1 ≤ X ≤ 11) and
P (|X − 3| > 4).
SOLUTION

a. FX (11)− FX (−1) = Φ
(

11−3
4

)
− Φ

(−1−3
4

)
= Φ (2)− Φ (−1) = 0.8185

b. P (X − 3 < − 4)+P (X − 3 > 4) = FX (−1)+[1− FX (7)] = Φ (−1)+1−Φ (1) = 0.3174

In each case the problem reduces to that in Example 7.7 (Standardized normal calculations)

We have m-functions gaussian and gaussdensity to calculate values of the distribution and density
function for any reasonable value of the parameters.
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The following are solutions of Example 7.7 (Standardized normal calculations) and Example 7.8 (Gen-
eral gaussian calculation), using the m-function gaussian.

Example 7.9: Example 7.7 (Standardized normal calculations) and Example 7.8
(General gaussian calculation) (continued)

� P1 = gaussian(0,1,2) - gaussian(0,1,-1)

P1 = 0.8186

� P2 = 2*(1 - gaussian(0,1,1))

P2 = 0.3173

� P1 = gaussian(3,16,11) - gaussian(3,16,-1)

P2 = 0.8186

� P2 = gaussian(3,16,-1)) + 1 - (gaussian(3,16,7)

P2 = 0.3173

The di�erences in these results and those above (which used tables) are due to the roundo�
to four places in the tables.

6. Beta(r, s) , r > 0, s > 0. fX (t) = Γ(r+s)
Γ(r)Γ(s) t

r−1(1− t)s−1 0 < t < 1
Analysis is based on the integrals∫ 1

0

ur−1(1− u)s−1
du =

Γ (r) Γ (s)
Γ (r + s)

with Γ (t+ 1) = tΓ (t) (7.23)

Figure 7.6 and Figure 7.7 show graphs of the densities for various values of r, s. The usefulness comes
in approximating densities on the unit interval. By using scaling and shifting, these can be extended
to other intervals. The special case r = s = 1 gives the uniform distribution on the unit interval. The
Beta distribution is quite useful in developing the Bayesian statistics for the problem of sampling to
determine a population proportion. If r, s are integers, the density function is a polynomial. For the
general case we have two m-functions, beta and betadbn to perform the calculatons.
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Figure 7.6: The Beta(r,s) density for r = 2, s = 1, 2, 10.
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Figure 7.7: The Beta(r,s) density for r = 5, s = 2, 5, 10.

7. Weibull(α, λ, ν) FX (t) = 1− e−λ(t−ν)α α > 0, λ > 0, ν ≥ 0, t ≥ ν
The parameter ν is a shift parameter. Usually we assume ν = 0. Examination shows that for
α = 1 the distribution is exponential (λ). The parameter α provides a distortion of the time scale for
the exponential distribution. Figure 7.6 and Figure 7.7 show graphs of the Weibull density for some
representative values of α and λ (ν = 0). The distribution is used in reliability theory. We do not make
much use of it. However, we have m-functions weibull (density) and weibulld (distribution function)
for shift parameter ν = 0 only. The shift can be obtained by subtracting a constant from the t values.

7.2 Distribution Approximations2

7.2.1 Binomial, Poisson, gamma, and Gaussian distributions

The Poisson approximation to the binomial distribution
The following approximation is a classical one. We wish to show that for small p and su�ciently large n

P (X = k) = C (n, k) pk(1− p)n−k ≈ e−npnp
k!

(7.24)

Suppose p = µ/n with n large and µ/n < 1. Then,

P (X = k) = C (n, k) (µ/n)k(1− µ/n)n−k =
n (n− 1) · · · (n− k + 1)

nk

(
1− µ

n

)−k(
1− µ

n

)nµk
k!

(7.25)

2This content is available online at <http://cnx.org/content/m23313/1.8/>.
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The �rst factor in the last expression is the ratio of polynomials in n of the same degree k, which must
approach one as n becomes large. The second factor approaches one as n becomes large. According to a well
known property of the exponential (

1− µ

n

)n
→ e−µ as n→∞ (7.26)

The result is that for large n, P (X = k) ≈ e−µ µ
k

k! , where µ = np.
The Poisson and gamma distributions
Suppose Y ∼ Poisson (λt). Now X ∼ gamma (α, λ) i�

P (X ≤ t) =
λα

Γ (α)

∫ t

0

xα−1e−λx dx =
1

Γ (α)

∫ t

0

(λx)α−1
e−λx d (λx) (7.27)

=
1

Γ (α)

∫ λt

0

uα−1e−u du (7.28)

A well known de�nite integral, obtained by integration by parts, is∫ ∞
a

tn−1e−t dt = Γ (n) e−a
n−1∑
k=0

ak

k!
with Γ (n) = (n− 1)! (7.29)

Noting that 1 = e−aea = e−a
∑∞
k=0

ak

k! we �nd after some simple algebra that

1
Γ (n)

∫ a

0

tn−1e−tdt = e−a
∞∑
k=n

ak

k!
(7.30)

For a = λt and α = n, we have the following equality i� X ∼ gamma (α, λ).

P (X ≤ t) =
1

Γ (n)

∫ λt

0

un−1d−u du = e−λt
∞∑
k=n

(λt)k

k!
(7.31)

Now

P (Y ≥ n) = e−λt
∞∑
k=n

(λt)k

k!
i� Y ∼ Poisson (λt) (7.32)

The gaussian (normal) approximation
The central limit theorem, referred to in the discussion of the gaussian or normal distribution above,

suggests that the binomial and Poisson distributions should be approximated by the gaussian. The number
of successes in n trials has the binomial (n, p) distribution. This random variable may be expressed

X =
n∑
i=1

IEi where the IEi constitute an independent class (7.33)

Since the mean value of X is np and the variance is npq, the distribution should be approximately
N (np, npq).
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Figure 7.8: Gaussian approximation to the binomial.

Use of the generating function shows that the sum of independent Poisson random variables is Poisson.
Now if X ∼ Poisson (µ), then X may be considered the sum of n independent random variables, each Poisson
(µ/n). Since the mean value and the variance are both µ, it is reasonable to suppose that suppose that X is
approximately N (µ, µ).

It is generally best to compare distribution functions. Since the binomial and Poisson distributions
are integer-valued, it turns out that the best gaussian approximaton is obtained by making a �continuity
correction.� To get an approximation to a density for an integer-valued random variable, the probability at
t = k is represented by a rectangle of height pk and unit width, with k as the midpoint. Figure 1 shows a
plot of the �density� and the corresponding gaussian density for n = 300, p = 0.1. It is apparent that the
gaussian density is o�set by approximately 1/2. To approximate the probability X ≤ k, take the area under
the curve from k + 1/2; this is called the continuity correction.

Use of m-procedures to compare
We have two m-procedures to make the comparisons. First, we consider approximation of the
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Figure 7.9: Gaussian approximation to the Poisson distribution function µ = 10.
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Figure 7.10: Gaussian approximation to the Poisson distribution function µ = 100.

Poisson (µ) distribution. The m-procedure poissapp calls for a value of µ, selects a suitable range about
k = µ and plots the distribution function for the Poisson distribution (stairs) and the normal (gaussian)
distribution (dash dot) for N (µ, µ). In addition, the continuity correction is applied to the gaussian distribu-
tion at integer values (circles). Figure 7.10 shows plots for µ = 10. It is clear that the continuity correction
provides a much better approximation. The plots in Figure 7.11 are for µ = 100. Here the continuity
correction provides the better approximation, but not by as much as for the smaller µ.
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Figure 7.11: Poisson and Gaussian approximation to the binomial: n = 1000, p = 0.03.
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Figure 7.12: Poisson and Gaussian approximation to the binomial: n = 50, p = 0.6.

The m-procedure bincomp compares the binomial, gaussian, and Poisson distributions. It calls for values
of n and p, selects suitable k values, and plots the distribution function for the binomial, a continuous
approximation to the distribution function for the Poisson, and continuity adjusted values of the gaussian
distribution function at the integer values. Figure 7.11 shows plots for n = 1000, p = 0.03. The good
agreement of all three distribution functions is evident. Figure 7.12 shows plots for n = 50, p = 0.6. There is
still good agreement of the binomial and adjusted gaussian. However, the Poisson distribution does not track
very well. The di�culty, as we see in the unit Variance (Section 12.1), is the di�erence in variances�npq
for the binomial as compared with np for the Poisson.

7.2.2 Approximation of a real random variable by simple random variables

Simple random variables play a signi�cant role, both in theory and applications. In the unit Random
Variables (Section 6.1), we show how a simple random variable is determined by the set of points on the
real line representing the possible values and the corresponding set of probabilities that each of these values
is taken on. This describes the distribution of the random variable and makes possible calculations of event
probabilities and parameters for the distribution.

A continuous random variable is characterized by a set of possible values spread continuously over an
interval or collection of intervals. In this case, the probability is also spread smoothly. The distribution is
described by a probability density function, whose value at any point indicates "the probability per unit
length" near the point. A simple approximation is obtained by subdividing an interval which includes the
range (the set of possible values) into small enough subintervals that the density is approximately constant
over each subinterval. A point in each subinterval is selected and is assigned the probability mass in its
subinterval. The combination of the selected points and the corresponding probabilities describes the dis-
tribution of an approximating simple random variable. Calculations based on this distribution approximate
corresponding calculations on the continuous distribution.
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Before examining a general approximation procedure which has signi�cant consequences for later treat-
ments, we consider some illustrative examples.

Example 7.10: Simple approximation to Poisson
A random variable with the Poisson distribution is unbounded. However, for a given parameter value
µ, the probability for k ≥ n, n su�ciently large, is negligible. Experiment indicates n = µ + 6

√
µ

(i.e., six standard deviations beyond the mean) is a reasonable value for 5 ≤ µ ≤ 200.

� mu = [5 10 20 30 40 50 70 100 150 200];

� K = zeros(1,length(mu));

� p = zeros(1,length(mu));

� for i = 1:length(mu)

K(i) = floor(mu(i)+ 6*sqrt(mu(i)));

p(i) = cpoisson(mu(i),K(i));

end

� disp([mu;K;p*1e6]')

5.0000 18.0000 5.4163 % Residual probabilities are 0.000001

10.0000 28.0000 2.2535 % times the numbers in the last column.

20.0000 46.0000 0.4540 % K is the value of k needed to achieve

30.0000 62.0000 0.2140 % the residual shown.

40.0000 77.0000 0.1354

50.0000 92.0000 0.0668

70.0000 120.0000 0.0359

100.0000 160.0000 0.0205

150.0000 223.0000 0.0159

200.0000 284.0000 0.0133

An m-procedure for discrete approximation
If X is bounded, absolutely continuous with density functon fX, the m-procedure tappr sets up the

distribution for an approximating simple random variable. An interval containing the range of X is divided
into a speci�ed number of equal subdivisions. The probability mass for each subinterval is assigned to
the midpoint. If dx is the length of the subintervals, then the integral of the density function over the
subinterval is approximated by fX (ti) dx. where ti is the midpoint. In e�ect, the graph of the density over
the subinterval is approximated by a rectangle of length dx and height fX (ti). Once the approximating
simple distribution is established, calculations are carried out as for simple random variables.

Example 7.11: A numerical example
Suppose fX (t) = 3t2, 0 ≤ t ≤ 1. Determine P (0.2 ≤ X ≤ 0.9).

SOLUTION
In this case, an analytical solution is easy. FX (t) = t3 on the interval [0, 1], so
P = 0.93 − 0.23 = 0.7210. We use tappr as follows:

� tappr

Enter matrix [a b] of x-range endpoints [0 1]

Enter number of x approximation points 200

Enter density as a function of t 3*t.^2

Use row matrices X and PX as in the simple case

� M = (X >= 0.2)&(X <= 0.9);

� p = M*PX'

p = 0.7210

Because of the regularity of the density and the number of approximation points, the result agrees quite well
with the theoretical value.
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The next example is a more complex one. In particular, the distribution is not bounded. However, it is
easy to determine a bound beyond which the probability is negligible.

Figure 7.13: Distribution function for Example 7.12 (Radial tire mileage).

Example 7.12: Radial tire mileage
The life (in miles) of a certain brand of radial tires may be represented by a random variable X
with density

fX (t) = {
t2/a3 for 0 ≤ t < a

(b/a) e−k(t−a) for a ≤ t
(7.34)

where a = 40, 000, b = 20/3, and k = 1/4000. Determine P (X ≥ 45, 000).

� a = 40000;

� b = 20/3;

� k = 1/4000;

� % Test shows cutoff point of 80000 should be satisfactory

� tappr

Enter matrix [a b] of x-range endpoints [0 80000]

Enter number of x approximation points 80000/20

Enter density as a function of t (t.^2/a^3).*(t < 40000) + ...

(b/a)*exp(k*(a-t)).*(t >= 40000)

Use row matrices X and PX as in the simple case

� P = (X >= 45000)*PX'

P = 0.1910 % Theoretical value = (2/3)exp(-5/4) = 0.191003

� cdbn

Enter row matrix of VALUES X

Enter row matrix of PROBABILITIES PX % See Figure~7.14 for plot
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In this case, we use a rather large number of approximation points. As a consequence, the results
are quite accurate. In the single-variable case, designating a large number of approximating points
usually causes no computer memory problem.

The general approximation procedure
We show now that any bounded real random variable may be approximated as closely as desired by

a simple random variable (i.e., one having a �nite set of possible values). For the unbounded case, the
approximation is close except in a portion of the range having arbitrarily small total probability.

We limit our discussion to the bounded case, in which the range of X is limited to a bounded interval
I = [a, b]. Suppose I is partitioned into n subintervals by points ti, 1 ≤ i ≤ n − 1, with a = t0 and b = tn.
Let Mi = [ti−1, ti) be the ith subinterval, 1 ≤ i ≤ n− 1 and Mn = [tn−1, tn] (see Figure 7.14). Now random
variable X may map into any point in the interval, and hence into any point in each subinterval Mi. Let
Ei = X−1 (Mi) be the set of points mapped into Mi by X. Then the Ei form a partition of the basic space
Ω. For the given subdivision, we form a simple random variable Xs as follows. In each subinterval, pick a
point si, ti−1 ≤ si < ti. Consider the simple random variable Xs =

∑n
i=1 siIEi .

Figure 7.14: Partition of the interval I including the range of X

Figure 7.15: Re�nement of the partition by additional subdividion points.

This random variable is in canonical form. If ω ∈ Ei, then X (ω) ∈ Mi and Xs (ω) = si. Now the
absolute value of the di�erence satis�es

|X (ω)−Xs (ω) | < ti − ti−1 the length of subinterval Mi (7.35)
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Since this is true for each ω and the corresponding subinterval, we have the important fact

|X (ω)−Xs (ω) | < maximum length of the Mi (7.36)

By making the subintervals small enough by increasing the number of subdivision points, we can make the
di�erence as small as we please.

While the choice of the si is arbitrary in each Mi, the selection of si = ti−1 (the left-hand endpoint) leads
to the property Xs (ω) ≤ X (ω)∀ω. In this case, if we add subdivision points to decrease the size of some or
all of the Mi, the new simple approximation Ys satis�es

Xs (ω) ≤ Ys (ω) ≤ X (ω) ∀ ω (7.37)

To see this, consider t∗i ∈ Mi (see Figure 7.15). Mi is partitioned into M '
i

∨
M ''
i and Ei is partitioned into

E'
i

∨
E''
i . X maps E'

i into M
'
i and E

''
i into M ''

i . Ys maps E'
i into ti and maps E''

i into t∗i > ti. Xs maps both
E'
i and E

''
i into ti. Thus, the asserted inequality must hold for each ω By taking a sequence of partitions

in which each succeeding partition re�nes the previous (i.e. adds subdivision points) in such a way that
the maximum length of subinterval goes to zero, we may form a nondecreasing sequence of simple random
variables Xn which increase to X for each ω.

The latter result may be extended to random variables unbounded above. Simply let N th set of subdi-
vision points extend from a to N, making the last subinterval [N, ∞). Subintervals from a to N are made
increasingly shorter. The result is a nondecreasing sequence {XN : 1 ≤ N} of simple random variables, with
XN (ω)→ X (ω) as N →∞, for each ω ∈ Ω.

For probability calculations, we simply select an interval I large enough that the probability outside I is
negligible and use a simple approximation over I.

7.3 Problems on Distribution and Density Functions3

Exercise 7.3.1 (Solution on p. 189.)

(See Exercises 3 (Exercise 6.2.3) and 4 (Exercise 6.2.4) from "Problems on Random Variables
and Probabilities"). The class {Cj : 1 ≤ j ≤ 10} is a partition. Random variable X has values
{1, 3, 2, 3, 4, 2, 1, 3, 5, 2} on C1 through C10, respectively, with probabilities 0.08, 0.13, 0.06, 0.09,
0.14, 0.11, 0.12, 0.07, 0.11, 0.09. Determine and plot the distribution function FX.

Exercise 7.3.2 (Solution on p. 189.)

(See Exercise 6 (Exercise 6.2.6) from "Problems on Random Variables and Probabilities"). A store
has eight items for sale. The prices are $3.50, $5.00, $3.50, $7.50, $5.00, $5.00, $3.50, and $7.50,
respectively. A customer comes in. She purchases one of the items with probabilities 0.10, 0.15,
0.15, 0.20, 0.10 0.05, 0.10 0.15. The random variable expressing the amount of her purchase may
be written

X = 3.5IC1 + 5.0IC2 + 3.5IC3 + 7.5IC4 + 5.0IC5 + 5.0IC6 + 3.5IC7 + 7.5IC8 (7.38)

Determine and plot the distribution function for X.

Exercise 7.3.3 (Solution on p. 189.)

(See Exercise 12 (Exercise 6.2.12) from "Problems on Random Variables and Probabilities"). The
class {A, B, C, D} has minterm probabilities

pm = 0.001 ∗ [5 7 6 8 9 14 22 33 21 32 50 75 86 129 201 302] (7.39)

Determine and plot the distribution function for the random variable X = IA + IB + IC + ID,
which counts the number of the events which occur on a trial.

3This content is available online at <http://cnx.org/content/m24209/1.5/>.
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Exercise 7.3.4 (Solution on p. 189.)

Suppose a is a ten digit number. A wheel turns up the digits 0 through 9 with equal probability
on each spin. On ten spins what is the probability of matching, in order, k or more of the ten digits
in a, 0 ≤ k ≤ 10? Assume the initial digit may be zero.

Exercise 7.3.5 (Solution on p. 189.)

In a thunderstorm in a national park there are 127 lightning strikes. Experience shows that the
probability of of a lightning strike starting a �re is about 0.0083. What is the probability that k
�res are started, k = 0, 1, 2, 3?
Exercise 7.3.6 (Solution on p. 189.)

A manufacturing plant has 350 special lamps on its production lines. On any day, each lamp
could fail with probability p = 0.0017. These lamps are critical, and must be replaced as quickly as
possible. It takes about one hour to replace a lamp, once it has failed. What is the probability that
on any day the loss of production time due to lamp failaures is k or fewer hours, k = 0, 1, 2, 3, 4, 5?
Exercise 7.3.7 (Solution on p. 189.)

Two hundred persons buy tickets for a drawing. Each ticket has probability 0.008 of winning.
What is the probability of k or fewer winners, k = 2, 3, 4?
Exercise 7.3.8 (Solution on p. 189.)

Two coins are �ipped twenty times. What is the probability the results match (both heads or both
tails) k times, 0 ≤ k ≤ 20?
Exercise 7.3.9 (Solution on p. 189.)

Thirty members of a class each �ip a coin ten times. What is the probability that at least �ve of
them get seven or more heads?

Exercise 7.3.10 (Solution on p. 189.)

For the system in Exercise 7.3.6, call a day in which one or more failures occur among the 350
lamps a �service day.� Since a Bernoulli sequence �starts over� at any time, the sequence of ser-
vice/nonservice days may be considered a Bernoulli sequence with probability p1, the probability
of one or more lamp failures in a day.

a. Beginning on a Monday morning, what is the probability the �rst service day is the �rst,
second, third, fourth, �fth day of the week?

b. What is the probability of no service days in a seven day week?

Exercise 7.3.11 (Solution on p. 190.)

For the system in Exercise 7.3.6 and Exercise 7.3.10 assume the plant works seven days a week.
What is the probability the third service day occurs by the end of 10 days? Solve using the negative
binomial distribution; repeat using the binomial distribution.

Exercise 7.3.12 (Solution on p. 190.)

A residential College plans to raise money by selling �chances� on a board. Fifty chances are sold.
A player pays $10 to play; he or she wins $30 with probability p = 0.2. The pro�t to the College is

X = 50 · 10− 30N, where N is the number of winners (7.40)

Determine the distribution for X and calculate P (X > 0), P (X ≥ 200), and
P (X ≥ 300).

Exercise 7.3.13 (Solution on p. 190.)

A single six-sided die is rolled repeatedly until either a one or a six turns up. What is the probability
that the �rst appearance of either of these numbers is achieved by the �fth trial or sooner?

Exercise 7.3.14 (Solution on p. 190.)

Consider a Bernoulli sequence with probability p = 0.53 of success on any component trial.
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a. The probability the fourth success will occur no later than the tenth trial is determined by
the negative binomial distribution. Use the procedure nbinom to calculate this probability .

b. Calculate this probability using the binomial distribution.

Exercise 7.3.15 (Solution on p. 190.)

Fifty percent of the components coming o� an assembly line fail to meet speci�cations for a special
job. It is desired to select three units which meet the stringent speci�cations. Items are selected
and tested in succession. Under the usual assumptions for Bernoulli trials, what is the probability
the third satisfactory unit will be found on six or fewer trials?

Exercise 7.3.16 (Solution on p. 190.)

The number of cars passing a certain tra�c count position in an hour has Poisson (53) distribution.
What is the probability the number of cars passing in an hour lies between 45 and 55 (inclusive)?
What is the probability of more than 55?

Exercise 7.3.17 (Solution on p. 190.)

Compare P (X ≤ k) and P (Y ≤ k) for X ∼ binomial(5000, 0.001) and Y ∼ Poisson (5), for
0 ≤ k ≤ 10. Do this directly with ibinom and ipoisson. Then use the m-procedure bincomp to
obtain graphical results (including a comparison with the normal distribution).

Exercise 7.3.18 (Solution on p. 191.)

Suppose X ∼ binomial (12, 0.375), Y ∼ Poisson (4.5), and Z ∼ exponential (1/4.5). For each
random variable, calculate and tabulate the probability of a value at least k, for integer values
3 ≤ k ≤ 8.
Exercise 7.3.19 (Solution on p. 191.)

The number of noise pulses arriving on a power circuit in an hour is a random quantity having
Poisson (7) distribution. What is the probability of having at least 10 pulses in an hour? What is
the probability of having at most 15 pulses in an hour?

Exercise 7.3.20 (Solution on p. 191.)

The number of customers arriving in a small specialty store in an hour is a random quantity having
Poisson (5) distribution. What is the probability the number arriving in an hour will be between
three and seven, inclusive? What is the probability of no more than ten?

Exercise 7.3.21 (Solution on p. 191.)

Random variable X ∼ binomial (1000, 0.1).

a. Determine P (X ≥ 80) , P (X ≥ 100) , P (X ≥ 120)
b. Use the appropriate Poisson distribution to approximate these values.

Exercise 7.3.22 (Solution on p. 191.)

The time to failure, in hours of operating time, of a televesion set subject to random voltage surges
has the exponential (0.002) distribution. Suppose the unit has operated successfully for 500 hours.
What is the (conditional) probability it will operate for another 500 hours?

Exercise 7.3.23 (Solution on p. 191.)

For X ∼ exponential (λ), determine P (X ≥ 1/λ), P (X ≥ 2/λ).
Exercise 7.3.24 (Solution on p. 191.)

Twenty �identical� units are put into operation. They fail independently. The times to failure
(in hours) form an iid class, exponential (0.0002). This means the �expected� life is 5000 hours.
Determine the probabilities that at least k, for k = 5, 8, 10, 12, 15, will survive for 5000 hours.

Exercise 7.3.25 (Solution on p. 191.)

Let T ∼ gamma (20, 0.0002) be the total operating time for the units described in Exercise 7.3.24.

a. Use the m-function for the gamma distribution to determine P (T ≤ 100, 000).
b. Use the Poisson distribution to determine P (T ≤ 100, 000).
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Exercise 7.3.26 (Solution on p. 191.)

The sum of the times to failure for �ve independent units is a random variable X ∼ gamma
(5, 0.15). Without using tables or m-programs, determine P (X ≤ 25).
Exercise 7.3.27 (Solution on p. 192.)

Interarrival times (in minutes) for fax messages on a terminal are independent, exponential (λ =
0.1). This means the time X for the arrival of the fourth message is gamma(4, 0.1). Without using
tables or m-programs, utilize the relation of the gamma to the Poisson distribution to determine
P (X ≤ 30).
Exercise 7.3.28 (Solution on p. 192.)

Customers arrive at a service center with independent interarrival times in hours, which have
exponential (3) distribution. The time X for the third arrival is thus gamma (3, 3). Without using
tables or m-programs, determine P (X ≤ 2).
Exercise 7.3.29 (Solution on p. 192.)

Five people wait to use a telephone, currently in use by a sixth person. Suppose time for the six
calls (in minutes) are iid, exponential (1/3). What is the distribution for the total time Z from the
present for the six calls? Use an appropriate Poisson distribution to determine P (Z ≤ 20).
Exercise 7.3.30 (Solution on p. 192.)

A random number generator produces a sequence of numbers between 0 and 1. Each of these
can be considered an observed value of a random variable uniformly distributed on the interval [0,
1]. They assume their values independently. A sequence of 35 numbers is generated. What is the
probability 25 or more are less than or equal to 0.71? (Assume continuity. Do not make a discrete
adjustment.)

Exercise 7.3.31 (Solution on p. 192.)

Five �identical� electronic devices are installed at one time. The units fail independently, and the
time to failure, in days, of each is a random variable exponential (1/30). A maintenance check
is made each �fteen days. What is the probability that at least four are still operating at the
maintenance check?

Exercise 7.3.32 (Solution on p. 192.)

Suppose X ∼ N (4, 81). That is, X has gaussian distribution with mean µ = 4 and variance
σ2 = 81.

a. Use a table of standardized normal distribution to determine P (2 < X < 8) and
P (|X − 4| ≤ 5).

b. Calculate the probabilities in part (a) with the m-function gaussian.

Exercise 7.3.33 (Solution on p. 192.)

Suppose X ∼ N (5, 81). That is, X has gaussian distribution with µ = 5 and σ2 = 81. Use a table
of standardized normal distribution to determine P (3 < X < 9) and P (|X − 5| ≤ 5). Check your
results using the m-function gaussian.

Exercise 7.3.34 (Solution on p. 193.)

Suppose X ∼ N (3, 64). That is, X has gaussian distribution with µ = 3 and σ2 = 64. Use a table
of standardized normal distribution to determine P (1 < X < 9) and P (|X − 3| ≤ 4). Check your
results with the m-function gaussian.

Exercise 7.3.35 (Solution on p. 193.)

Items coming o� an assembly line have a critical dimension which is represented by a random
variable ∼ N(10, 0.01). Ten items are selected at random. What is the probability that three or
more are within 0.05 of the mean value µ.

Exercise 7.3.36 (Solution on p. 193.)

The result of extensive quality control sampling shows that a certain model of digital watches
coming o� a production line have accuracy, in seconds per month, that is normally distributed with
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µ = 5 and σ2 = 300. To achieve a top grade, a watch must have an accuracy within the range of
-5 to +10 seconds per month. What is the probability a watch taken from the production line to
be tested will achieve top grade? Calculate, using a standardized normal table. Check with the
m-function gaussian.

Exercise 7.3.37 (Solution on p. 193.)

Use the m-procedure bincomp with various values of n from 10 to 500 and p from 0.01 to 0.7, to
observe the approximation of the binomial distribution by the Poisson.

Exercise 7.3.38 (Solution on p. 193.)

Use the m-procedure poissapp to compare the Poisson and gaussian distributions. Use various
values of µ from 10 to 500.

Exercise 7.3.39 (Solution on p. 193.)

Random variable X has density fX (t) = 3
2 t

2, − 1 ≤ t ≤ 1 (and zero elsewhere).

a. Determine P (−0.5 ≤ X < 0, 8), P (|X| > 0.5), P (|X − 0.25| ≤ 0.5).
b. Determine an expression for the distribution function.
c. Use the m-procedures tappr and cdbn to plot an approximation to the distribution function.

Exercise 7.3.40 (Solution on p. 194.)

Random variable X has density function fX (t) = t− 3
8 t

2, 0 ≤ t ≤ 2 (and zero elsewhere).

a. Determine P (X ≤ 0.5), P (0.5 ≤ X < 1.5), P (|X − 1| < 1/4).
b. Determine an expression for the distribution function.
c. Use the m-procedures tappr and cdbn to plot an approximation to the distribution function.

Exercise 7.3.41 (Solution on p. 194.)

Random variable X has density function

fX (t) = {
(6/5) t2 for 0 ≤ t ≤ 1

(6/5) (2− t) for 1 < t ≤ 2
= I [0, 1] (t)

6
5
t2 + I(1,2] (t)

6
5

(2− t) (7.41)

a. Determine P (X ≤ 0.5), P (0.5 ≤ X < 1.5), P (|X − 1| < 1/4).
b. Determine an expression for the distribution function.
c. Use the m-procedures tappr and cdbn to plot an approximation to the distribution function.
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Solutions to Exercises in Chapter 7

Solution to Exercise 7.3.1 (p. 184)

T = [1 3 2 3 4 2 1 3 5 2];

pc = 0.01*[8 13 6 9 14 11 12 7 11 9];

[X,PX] = csort(T,pc);

ddbn

Enter row matrix of VALUES X

Enter row matrix of PROBABILITIES PX % See MATLAB plot

Solution to Exercise 7.3.2 (p. 184)

T = [3.5 5 3.5 7.5 5 5 3.5 7.5];

pc = 0.01*[10 15 15 20 10 5 10 15];

[X,PX] = csort(T,pc);

ddbn

Enter row matrix of VALUES X

Enter row matrix of PROBABILITIES PX % See MATLAB plot

Solution to Exercise 7.3.3 (p. 184)

npr06_12 (Section~17.8.28: npr06_12)

Minterm probabilities in pm, coefficients in c

T = sum(mintable(4)); % Alternate solution. See Exercise 12 (Exercise~6.2.12) from "Problems on Random Variables and Probabilities"

[X,PX] = csort(T,pm);

ddbn

Enter row matrix of VALUES X

Enter row matrix of PROBABILITIES PX % See MATLAB plot

Solution to Exercise 7.3.4 (p. 185)
P = cbinom (10, 0.1, 0 : 10).
Solution to Exercise 7.3.5 (p. 185)
P = ibinom(127,0.0083,0:3) P = 0.3470 0.3688 0.1945 0.0678

Solution to Exercise 7.3.6 (p. 185)
P = 1 - cbinom(350,0.0017,1:6)

= 0.5513 0.8799 0.9775 0.9968 0.9996 1.0000

Solution to Exercise 7.3.7 (p. 185)
P = 1 - cbinom(200,0.008,3:5) = 0.7838 0.9220 0.9768
Solution to Exercise 7.3.8 (p. 185)
P = ibinom(20,1/2,0:20)

Solution to Exercise 7.3.9 (p. 185)
p = cbinom(10,0.5,7) = 0.1719

P = cbinom(30,p,5) = 0.6052

Solution to Exercise 7.3.10 (p. 185)
p1 = 1 - (1 - 0.0017)^350 = 0.4487 k = 1:5; (prob given day is a service day)

a.
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P = p1*(1 - p1).^(k-1) = 0.4487 0.2474 0.1364 0.0752 0.0414

b.

P0 = (1 - p1)^7 = 0.0155

Solution to Exercise 7.3.11 (p. 185)
p1 = 1 - (1 - 0.0017)^350 = 0.4487

• P = sum(nbinom(3,p1,3:10)) = 0.8990

• Pa = cbinom(10,p1,3) = 0.8990

Solution to Exercise 7.3.12 (p. 185)

N = 0:50;

PN = ibinom(50,0.2,0:50);

X = 500 - 30*N;

Ppos = (X>0)*PN'
Ppos = 0.9856

P200 = (X>=200)*PN'
P200 = 0.5836

P300 = (X>=300)*PN'
P300 = 0.1034

Solution to Exercise 7.3.13 (p. 185)
P = 1 - (2/3)^5 = 0.8683
Solution to Exercise 7.3.14 (p. 185)

a. P = sum(nbinom(4,0.53,4:10)) = 0.8729

b. Pa = cbinom(10,0.53,4) = 0.8729

Solution to Exercise 7.3.15 (p. 186)
P = cbinom(6,0.5,3) = 0.6562

Solution to Exercise 7.3.16 (p. 186)
P1 = cpoisson(53,45) - cpoisson(53,56) = 0.5224

P2 = cpoisson(53,56) = 0.3581

Solution to Exercise 7.3.17 (p. 186)

k = 0:10;

Pb = 1 - cbinom(5000,0.001,k+1);

Pp = 1 - cpoisson(5,k+1);

disp([k;Pb;Pp]')

0 0.0067 0.0067

1.0000 0.0404 0.0404

2.0000 0.1245 0.1247

3.0000 0.2649 0.2650

4.0000 0.4404 0.4405

5.0000 0.6160 0.6160

6.0000 0.7623 0.7622

7.0000 0.8667 0.8666

8.0000 0.9320 0.9319

9.0000 0.9682 0.9682

10.0000 0.9864 0.9863
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bincomp

Enter the parameter n 5000

Enter the parameter p 0.001

Binomial-- stairs

Poisson-- -.-.

Adjusted Gaussian-- o o o

gtext('Exercise 17')

Solution to Exercise 7.3.18 (p. 186)

k = 3:8;

Px = cbinom(12,0.375,k);

Py = cpoisson(4.5,k);

Pz = exp(-k/4.5);

disp([k;Px;Py;Pz]')

3.0000 0.8865 0.8264 0.5134

4.0000 0.7176 0.6577 0.4111

5.0000 0.4897 0.4679 0.3292

6.0000 0.2709 0.2971 0.2636

7.0000 0.1178 0.1689 0.2111

8.0000 0.0390 0.0866 0.1690

Solution to Exercise 7.3.19 (p. 186)
P1 = cpoisson(7,10) = 0.1695 P2 = 1 - cpoisson(7,16) = 0.9976
Solution to Exercise 7.3.20 (p. 186)
P1 = cpoisson(5,3) - cpoisson(5,8) = 0.7420

P2 = 1 - cpoisson(5,11) = 0.9863

Solution to Exercise 7.3.21 (p. 186)

k = [80 100 120];

P = cbinom(1000,0.1,k)

P = 0.9867 0.5154 0.0220

P1 = cpoisson(100,k)

P1 = 0.9825 0.5133 0.0282

Solution to Exercise 7.3.22 (p. 186)
P (X > 500 + 500|X > 500) = P (X > 500) = e−0.002·500 = 0.3679
Solution to Exercise 7.3.23 (p. 186)
P (X > kλ) = e−λk/λ = e−k

Solution to Exercise 7.3.24 (p. 186)

p = exp(-0.0002*5000)

p = 0.3679

k = [5 8 10 12 15];

P = cbinom(20,p,k)

P = 0.9110 0.4655 0.1601 0.0294 0.0006

Solution to Exercise 7.3.25 (p. 186)
P1 = gammadbn(20,0.0002,100000) = 0.5297 P2 = cpoisson(0.0002*100000,20) = 0.5297
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Solution to Exercise 7.3.26 (p. 187)

P (X ≤ 25) = P (Y ≥ 5) , Y ∼ poisson (0.15 · 25 = 3.75) (7.42)

P (Y ≥ 5) = 1− P (Y ≤ 4) = 1− e−3.35

(
1 + 3.75 +

3.752

2
+

3.753

3!
+

3.754

24

)
= 0.3225 (7.43)

Solution to Exercise 7.3.27 (p. 187)

P (X ≤ 30) = P (Y ≥ 4) , Y ∼ poisson (0.2 · 30 = 3) (7.44)

P (Y ≥ 4) = 1− P (Y ≤ 3) = 1− e−3

(
1 + 3 +

32

2
+

33

3!

)
= 0.3528 (7.45)

Solution to Exercise 7.3.28 (p. 187)

P (X ≤ 2) = P (Y ≥ 3) , Y ∼ poisson (3 · 2 = 6) (7.46)

P (Y ≥ 3) = 1− P (Y ≤ 2) = 1− e−6 (1 + 6 + 36/2) = 0.9380 (7.47)

Solution to Exercise 7.3.29 (p. 187)
Z ∼ gamma (6,1/3).

P (Z ≤ 20) = P (Y ≥ 6) , Y ∼ poisson (1/3 · 20) (7.48)

P (Y ≥ 6) = cpoisson (20/3, 6) = 0.6547 (7.49)

Solution to Exercise 7.3.30 (p. 187)
p = cbinom(35,0.71,25) = 0.5620

Solution to Exercise 7.3.31 (p. 187)
p = exp(-15/30) = 0.6065 P = cbinom(5,p,4) = 0.3483
Solution to Exercise 7.3.32 (p. 187)

a.
P (2 < X < 8) = Φ ((8− 4) /9)− Φ ((2− 4) /9) = (7.50)

Φ (4/9) + Φ (2/9)− 1 = 0.6712 + 0.5875− 1 = 0.2587 (7.51)

P (|X − 4| ≤ 5) = 2Φ (5/9)− 1 = 1.4212− 1 = 0.4212 (7.52)

b.

P1 = gaussian(4,81,8) - gaussian(4,81,2)

P1 = 0.2596

P2 = gaussian(4,81,9) - gaussian(4,84,-1)

P2 = 0.4181

Solution to Exercise 7.3.33 (p. 187)

P (3 < X < 9) = Φ ((9− 5) /9)−Φ ((3− 5) /9) = Φ (4/9) + Φ (2/9)−1 = 0.6712 +
0.5875− 1 = 0.2587

(7.53)

P (|X − 5| ≤ 5) = 2Φ (5/9)− 1 = 1.4212− 1 = 0.4212 (7.54)
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P1 = gaussian(5,81,9) - gaussian(5,81,3)

P1 = 0.2596

P2 = gaussian(5,81,10) - gaussian(5,84,0)

P2 = 0.4181

Solution to Exercise 7.3.34 (p. 187)

P (1 < X < 9) = Φ ((9− 3) /8)− Φ ((1− 3) /9) = (7.55)

Φ (0.75) + Φ (0.25)− 1 = 0.7734 + 0.5987− 1 = 0.3721 (7.56)

P (|X − 3| ≤ 4) = 2Φ (4/8)− 1 = 1.3829− 1 = 0.3829 (7.57)

P1 = gaussian(3,64,9) - gaussian(3,64,1)

P1 = 0.3721

P2 = gaussian(3,64,7) - gaussian(3,64,-1)

P2 = 0.3829

Solution to Exercise 7.3.35 (p. 187)

p = gaussian(10,0.01,10.05) - gaussian(10,0.01,9.95)

p = 0.3829

P = cbinom(10,p,3)

P = 0.8036

Solution to Exercise 7.3.36 (p. 187)
P (−5 < X < 10) = Φ

(
5/
√

300
)

+ Φ
(
10/
√

300
)
− 1 = Φ (0.289) + Φ (0.577)− 1 = 0.614 + 0.717− 1 = 0.331

P = gaussian (5, 300, 10) − gaussian (5, 300,−5) = 0.3317 (7.58)

Solution to Exercise 7.3.37 (p. 188)
Experiment with the m-procedure bincomp.
Solution to Exercise 7.3.38 (p. 188)
Experiment with the m-procedure poissapp.
Solution to Exercise 7.3.39 (p. 188)

3
2

∫
t2 = t3/2 (7.59)

a.

P1 = 0.5 ∗
(

0.83 − (−0.5)3
)

= 0.3185 P2 = 2
∫ 1

0.5

3
2
t2 =

(
1− (−0.5)3

)
= 7/8 (7.60)

P3 = P (|X − 0.25| ≤ 0.5) = P (−0.25 ≤ X ≤ 0.75) =
1
2

[
(3/4)3 − (−1/4)3

]
= 7/32 (7.61)

b. FX (t) =
∫ t
−1
fX = 1

2

(
t3 + 1

)
c.

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



194 CHAPTER 7. DISTRIBUTION AND DENSITY FUNCTIONS

tappr

Enter matrix [a b] of x-range endpoints [-1 1]

Enter number of x approximation points 200

Enter density as a function of t 1.5*t.^2

Use row matrices X and PX as in the simple case

cdbn

Enter row matrix of VALUES X

Enter row matrix of PROBABILITIES PX % See MATLAB plot

Solution to Exercise 7.3.40 (p. 188) ∫ (
t− 3

8
t2
)

=
t2

2
− t3

8
(7.62)

a.
P1 = 0.52/2− 0.53/8 = 7/64 P2 = 1.52/2− 1.53/8− 7/64 = 19/32 P3 = 79/256 (7.63)

b. FX (t) = t2

2 −
t3

8 , 0 ≤ t ≤ 2
c.

tappr

Enter matrix [a b] of x-range endpoints [0 2]

Enter number of x approximation points 200

Enter density as a function of t t - (3/8)*t.^2

Use row matrices X and PX as in the simple case

cdbn

Enter row matrix of VALUES X

Enter row matrix of PROBABILITIES PX % See MATLAB plot

Solution to Exercise 7.3.41 (p. 188)

a.

P1 =
6
5

∫ 1/2

0

t2 = 1/20 P2 =
6
5

∫ 1

1/2

t2 +
6
5

∫ 3/2

1

(2− t) = 4/5 (7.64)

P3 =
6
5

∫ 1

3/4

t2 +
6
5

∫ 5/4

1

(2− t) = 79/160 (7.65)

b.

FX (t) =
∫ t

0

fX = I[0,1] (t)
2
5
t3 + I(1.2] (t)

[
−7

5
+

6
5

(
2t− t2

2

)]
(7.66)

c.

tappr

Enter matrix [a b] of x-range endpoints [0 2]

Enter number of x approximation points 400

Enter density as a function of t (6/5)*(t<=1).*t.^2 + ...

(6/5)*(t>1).*(2 - t)

Use row matrices X and PX as in the simple case

cdbn

Enter row matrix of VALUES X

Enter row matrix of PROBABILITIES PX % See MATLAB plot
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Chapter 8

Random Vectors and joint Distributions

8.1 Random Vectors and Joint Distributions1

8.1.1 Introduction

A single, real-valued random variable is a function (mapping) from the basic space Ω to the real line. That
is, to each possible outcome ω of an experiment there corresponds a real value t = X (ω). The mapping
induces a probability mass distribution on the real line, which provides a means of making probability
calculations. The distribution is described by a distribution function FX. In the absolutely continuous case,
with no point mass concentrations, the distribution may also be described by a probability density function
fX. The probability density is the linear density of the probability mass along the real line (i.e., mass per unit
length). The density is thus the derivative of the distribution function. For a simple random variable, the
probability distribution consists of a point mass pi at each possible value ti of the random variable. Various
m-procedures and m-functions aid calculations for simple distributions. In the absolutely continuous case,
a simple approximation may be set up, so that calculations for the random variable are approximated by
calculations on this simple distribution.

Often we have more than one random variable. Each can be considered separately, but usually they have
some probabilistic ties which must be taken into account when they are considered jointly. We treat the
joint case by considering the individual random variables as coordinates of a random vector. We extend the
techniques for a single random variable to the multidimensional case. To simplify exposition and to keep
calculations manageable, we consider a pair of random variables as coordinates of a two-dimensional random
vector. The concepts and results extend directly to any �nite number of random variables considered jointly.

8.1.2 Random variables considered jointly; random vectors

As a starting point, consider a simple example in which the probabilistic interaction between two random
quantities is evident.

Example 8.1: A selection problem
Two campus jobs are open. Two juniors and three seniors apply. They seem equally quali�ed, so it
is decided to select them by chance. Each combination of two is equally likely. Let X be the number
of juniors selected (possible values 0, 1, 2) and Y be the number of seniors selected (possible values
0, 1, 2). However there are only three possible pairs of values for (X, Y ) : (0, 2) , (1, 1), or (2, 0).
Others have zero probability, since they are impossible. Determine the probability for each of the
possible pairs.

1This content is available online at <http://cnx.org/content/m23318/1.8/>.
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196 CHAPTER 8. RANDOM VECTORS AND JOINT DISTRIBUTIONS

SOLUTION
There are C (5, 2) = 10 equally likely pairs. Only one pair can be both juniors. Six pairs can be
one of each. There are C (3, 2) = 3 ways to select pairs of seniors. Thus

P (X = 0, Y = 2) = 3/10, P (X = 1, Y = 1) = 6/10, P (X = 2, Y = 0) = 1/10 (8.1)

These probabilities add to one, as they must, since this exhausts the mutually exclusive possibilities.
The probability of any other combination must be zero. We also have the distributions for the
random variables conisidered individually.

X = [0 1 2] PX = [3/10 6/10 1/10] Y = [0 1 2] PY = [1/10 6/10 3/10] (8.2)

We thus have a joint distribution and two individual or marginal distributions.

We formalize as follows:
A pair {X, Y } of random variables considered jointly is treated as the pair of coordinate functions for

a two-dimensional random vector W = (X, Y ). To each ω ∈ Ω, W assigns the pair of real numbers (t, u),
where X (ω) = t and Y (ω) = u. If we represent the pair of values {t, u} as the point (t, u) on the plane,
then W (ω) = (t, u), so that

W = (X, Y ) : Ω→ R2 (8.3)

is a mapping from the basic space Ω to the plane R2. Since W is a function, all mapping ideas extend. The
inverse mapping W−1 plays a role analogous to that of the inverse mapping X−1 for a real random variable.
A two-dimensional vector W is a random vector i� W−1 (Q) is an event for each reasonable set (technically,
each Borel set) on the plane.

A fundamental result from measure theory ensures
W = (X, Y ) is a random vector i� each of the coordinate functions X and Y is a random variable.
In the selection example above, we model X (the number of juniors selected) and Y (the number of

seniors selected) as random variables. Hence the vector-valued function

8.1.3 Induced distribution and the joint distribution function

In a manner parallel to that for the single-variable case, we obtain a mapping of probability mass from the
basic space to the plane. Since W−1 (Q) is an event for each reasonable set Q on the plane, we may assign
to Q the probability mass

PXY (Q) = P
[
W−1 (Q)

]
= P

[
(X, Y )−1 (Q)

]
(8.4)

Because of the preservation of set operations by inverse mappings as in the single-variable case, the mass
assignment determines PXY as a probability measure on the subsets of the plane R2. The argument parallels
that for the single-variable case. The result is the probability distribution induced by W = (X, Y ). To
determine the probability that the vector-valued function W = (X, Y ) takes on a (vector) value in region
Q, we simply determine how much induced probability mass is in that region.

Example 8.2: Induced distribution and probability calculations
To determine P (1 ≤ X ≤ 3, Y > 0), we determine the region for which the �rst coordinate value
(which we call t) is between one and three and the second coordinate value (which we call u) is
greater than zero. This corresponds to the set Q of points on the plane with 1 ≤ t ≤ 3 and u > 0.
Gometrically, this is the strip on the plane bounded by (but not including) the horizontal axis and
by the vertical lines t = 1 and t = 3 (included). The problem is to determine how much probability
mass lies in that strip. How this is acheived depends upon the nature of the distribution and how
it is described.

As in the single-variable case, we have a distribution function.
De�nition
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The joint distribution function FXY for W = (X, Y ) is given by

FXY (t, u) = P (X ≤ t, Y ≤ u) ∀ (t, u) ∈ R2 (8.5)

This means that FXY (t, u) is equal to the probability mass in the region Qtu on the plane such that the
�rst coordinate is less than or equal to t and the second coordinate is less than or equal to u. Formally, we
may write

FXY (t, u) = P [(X, Y ) ∈ Qtu] , where Qtu = {(r, s) : r ≤ t, s ≤ u} (8.6)

Now for a given point (a, b), the region Qab is the set of points (t, u) on the plane which are on or to the left
of the vertical line through (t, 0)and on or below the horizontal line through (0, u) (see Figure 1 for speci�c
point t = a, u = b). We refer to such regions as semiin�nite intervals on the plane.

The theoretical result quoted in the real variable case extends to ensure that a distribution on the
plane is determined uniquely by consistent assignments to the semiin�nite intervals Qtu. Thus, the induced
distribution is determined completely by the joint distribution function.

Figure 8.1: The region Qab for the value FXY (a, b).

Distribution function for a discrete random vector
The induced distribution consists of point masses. At point (ti, uj) in the range of W = (X, Y ) there

is probability mass pij = P [W = (ti, uj)] = P (X = ti, Y = uj). As in the general case, to determine
P [(X, Y ) ∈ Q] we determine how much probability mass is in the region. In the discrete case (or in any
case where there are point mass concentrations) one must be careful to note whether or not the boundaries
are included in the region, should there be mass concentrations on the boundary.
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Figure 8.2: The joint distribution for Example 8.3 (Distribution function for the selection problem in
Example 8.1 (A selection problem)).

Example 8.3: Distribution function for the selection problem in Example 8.1 (A selec-
tion problem)
The probability distribution is quite simple. Mass 3/10 at (0,2), 6/10 at (1,1), and 1/10 at (2,0).
This distribution is plotted in Figure 8.2. To determine (and visualize) the joint distribution
function, think of moving the point (t, u) on the plane. The region Qtu is a giant �sheet� with
corner at (t, u). The value of FXY (t, u) is the amount of probability covered by the sheet. This
value is constant over any grid cell, including the left-hand and lower boundariies, and is the value
taken on at the lower left-hand corner of the cell. Thus, if (t, u) is in any of the three squares on
the lower left hand part of the diagram, no probability mass is covered by the sheet with corner in
the cell. If (t, u) is on or in the square having probability 6/10 at the lower left-hand corner, then
the sheet covers that probability, and the value of FXY (t, u) = 6/10. The situation in the other
cells may be checked out by this procedure.

Distribution function for a mixed distribution

Example 8.4: A mixed distribution
The pair {X, Y } produces a mixed distribution as follows (see Figure 8.3)

Point masses 1/10 at points (0,0), (1,0), (1,1), (0,1)
Mass 6/10 spread uniformly over the unit square with these vertices
The joint distribution function is zero in the second, third, and fourth quadrants.

• If the point (t, u) is in the square or on the left and lower boundaries, the sheet covers the
point mass at (0,0) plus 0.6 times the area covered within the square. Thus in this region

FXY (t, u) =
1
10

(1 + 6tu) (8.7)
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• If the pont (t, u) is above the square (including its upper boundary) but to the left of the line
t = 1, the sheet covers two point masses plus the portion of the mass in the square to the left
of the vertical line through (t, u). In this case

FXY (t, u) =
1
10

(2 + 6t) (8.8)

• If the point (t, u) is to the right of the square (including its boundary) with 0 ≤ u < 1, the
sheet covers two point masses and the portion of the mass in the square below the horizontal
line through (t, u), to give

FXY (t, u) =
1
10

(2 + 6u) (8.9)

• If (t, u) is above and to the right of the square (i.e., both 1 ≤ t and 1 ≤ u). then all probability
mass is covered and FXY (t, u) = 1 in this region.

Figure 8.3: Mixed joint distribution for Example 8.4 (A mixed distribution).

8.1.4 Marginal distributions

If the joint distribution for a random vector is known, then the distribution for each of the component
random variables may be determined. These are known as marginal distributions. In general, the converse
is not true. However, if the component random variables form an independent pair, the treatment in that
case shows that the marginals determine the joint distribution.
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To begin the investigation, note that

FX (t) = P (X ≤ t) = P (X ≤ t, Y <∞) i.e., Y can take any of its possible values (8.10)

Thus

FX (t) = FXY (t, ∞) = lim
u→∞

FXY (t, u) (8.11)

This may be interpreted with the aid of Figure 8.4. Consider the sheet for point (t, u).

Figure 8.4: Construction for obtaining the marginal distribution for X.

If we push the point up vertically, the upper boundary of Qtu is pushed up until eventually all probability
mass on or to the left of the vertical line through (t, u) is included. This is the total probability that X ≤ t.
Now FX (t) describes probability mass on the line. The probability mass described by FX (t) is the same
as the total joint probability mass on or to the left of the vertical line through (t, u). We may think of the
mass in the half plane being projected onto the horizontal line to give the marginal distribution for X. A
parallel argument holds for the marginal for Y.

FY (u) = P (Y ≤ u) = FXY (∞, u) = mass on or below horizontal line through (t, u) (8.12)

This mass is projected onto the vertical axis to give the marginal distribution for Y.
Marginals for a joint discrete distribution
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Consider a joint simple distribution.

P (X = ti) =
m∑
j=1

P (X = ti, Y = uj) and P (Y = uj) =
n∑
i=1

P (X = ti, Y = uj) (8.13)

Thus, all the probability mass on the vertical line through (ti, 0) is projected onto the point ti on a horizontal
line to give P (X = ti). Similarly, all the probability mass on a horizontal line through (0, uj) is projected
onto the point uj on a vertical line to give P (Y = uj).

Example 8.5: Marginals for a discrete distribution
The pair {X, Y } produces a joint distribution that places mass 2/10 at each of the �ve points

(0, 0) , (1, 1) , (2, 0) , (2, 2) , (3, 1) (See Figure 8.5)
The marginal distribution for X has masses 2/10, 2/10, 4/10, 2/10 at points t = 0, 1, 2, 3,

respectively. Similarly, the marginal distribution for Y has masses 4/10, 4/10, 2/10 at points
u = 0, 1, 2, respectively.

Figure 8.5: Marginal distribution for Example 1.

Example 8.6
Consider again the joint distribution in Example 8.4 (A mixed distribution). The pair {X, Y }
produces a mixed distribution as follows:

Point masses 1/10 at points (0,0), (1,0), (1,1), (0,1)
Mass 6/10 spread uniformly over the unit square with these vertices
The construction in Figure 8.6 shows the graph of the marginal distribution function FX. There

is a jump in the amount of 0.2 at t = 0, corresponding to the two point masses on the vertical line.
Then the mass increases linearly with t, slope 0.6, until a �nal jump at t = 1 in the amount of 0.2
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produced by the two point masses on the vertical line. At t = 1, the total mass is �covered� and
FX (t) is constant at one for t ≥ 1. By symmetry, the marginal distribution for Y is the same.

Figure 8.6: Marginal distribution for Example 8.6.

8.2 Random Vectors and MATLAB2

8.2.1 m-procedures for a pair of simple random variables

We examine, �rst, calculations on a pair of simple random variables X,Y , considered jointly. These are, in
e�ect, two components of a random vector W = (X, Y ), which maps from the basic space Ω to the plane.
The induced distribution is on the (t, u)-plane. Values on the horizontal axis (t-axis) correspond to values

2This content is available online at <http://cnx.org/content/m23320/1.7/>.
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of the �rst coordinate random variable X and values on the vertical axis (u-axis) correspond to values of Y.
We extend the computational strategy used for a single random variable.

First, let us review the one-variable strategy. In this case, data consist of values ti and corresponding
probabilities P (X = ti) arranged in matrices

X = [t1, t2, · · · , tn] and PX = [P (X = t1) , P (X = t2) , · · · , P (X = tn)] (8.14)

To perform calculations on Z = g (X), we we use array operations on X to form a matrix

G = [g (t1) g (t2) · · · g (tn)] (8.15)

which has g (ti) in a position corresponding to P (X = ti) in matrix PX.
Basic problem. Determine P (g (X) ∈M), where M is some prescribed set of values.

• Use relational operations to determine the positions for which g (ti) ∈M . These will be in a zero-one
matrix N, with ones in the desired positions.

• Select the P (X = ti) in the corresponding positions and sum. This is accomplished by one of the
MATLAB operations to determine the inner product of N and PX

We extend these techniques and strategies to a pair of simple random variables, considered jointly.

a. The data for a pair {X,Y } of random variables are the values of X and Y, which we may put in row
matrices

X = [t1t2 · · · tn] andY = [u1u2 · · ·um] (8.16)

and the joint probabilities P (X = ti, Y = uj) in a matrix P. We usually represent the distribution
graphically by putting probability mass P (X = ti, Y = uj) at the point (ti, uj) on the plane. This
joint probability may is represented by the matrix P with elements arranged corresponding to the
mass points on the plane. Thus

Phas elementP (X = ti, Y = uj) atthe (ti, uj) position (8.17)

b. To perform calculations, we form computational matrices t and u such that � t has element ti at each
(ti, uj) position (i.e., at each point on the ith column from the left) � u has element uj at each (ti, uj)
position (i.e., at each point on the jth row from the bottom) MATLAB array and logical operations
on t, u, P perform the speci�ed operations on ti, uj , and P (X = ti, Y = uj) at each (ti, uj) position,
in a manner analogous to the operations in the single-variable case.

c. Formation of the t and u matrices is achieved by a basic setup m-procedure called jcalc. The data
for this procedure are in three matrices: X = [t1, t2, · · · , tn] is the set of values for random variable
X Y = [u1, u2, · · · , um] is the set of values for random variable Y, and P = [pij ], where pij =
P (X = ti, Y = uj). We arrange the joint probabilities as on the plane, with X-values increasing to
the right and Y -values increasing upward. This is di�erent from the usual arrangement in a matrix, in
which values of the second variable increase downward. The m-procedure takes care of this inversion.
The m-procedure forms the matrices t and u, utilizing the MATLAB function meshgrid, and computes
the marginal distributions for X and Y. In the following example, we display the various steps utilized
in the setup procedure. Ordinarily, these intermediate steps would not be displayed.

Example 8.7: Setup and basic calculations

� jdemo4 % Call for data in file jdemo4.m

� jcalc % Call for setup procedure

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X
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Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P

� disp(P) % Optional call for display of P

0.0360 0.0198 0.0297 0.0209 0.0180

0.0372 0.0558 0.0837 0.0589 0.0744

0.0516 0.0774 0.1161 0.0817 0.1032

0.0264 0.0270 0.0405 0.0285 0.0132

� PX % Optional call for display of PX

PX = 0.1512 0.1800 0.2700 0.1900 0.2088

� PY % Optional call for display of PY

PY = 0.1356 0.4300 0.3100 0.1244

- - - - - - - - - - % Steps performed by jcalc

� PX = sum(P) % Calculation of PX as performed by jcalc

PX = 0.1512 0.1800 0.2700 0.1900 0.2088

� PY = fliplr(sum(P')) % Calculation of PY (note reversal)

PY = 0.1356 0.4300 0.3100 0.1244

� [t,u] = meshgrid(X,fliplr(Y)); % Formation of t, u matrices (note reversal)

� disp(t) % Display of calculating matrix t

-3 0 1 3 5 % A row of X-values for each value of Y

-3 0 1 3 5

-3 0 1 3 5

-3 0 1 3 5

� disp(u) % Display of calculating matrix u

2 2 2 2 2 % A column of Y-values (increasing

1 1 1 1 1 % upward) for each value of X

0 0 0 0 0

-2 -2 -2 -2 -2

Suppose we wish to determine the probability P
(
X2 − 3Y ≥ 1

)
. Using array operations on t

and u, we obtain the matrix G = [g (ti, uj)].

� G = t.^2 - 3*u % Formation of G = [g(t_i,u_j)] matrix

G = 3 -6 -5 3 19

6 -3 -2 6 22

9 0 1 9 25

15 6 7 15 31

� M = G >= 1 % Positions where G >= 1

M = 1 0 0 1 1

1 0 0 1 1

1 0 1 1 1

1 1 1 1 1

� pM = M.*P % Selection of probabilities

pM =

0.0360 0 0 0.0209 0.0180

0.0372 0 0 0.0589 0.0744

0.0516 0 0.1161 0.0817 0.1032

0.0264 0.0270 0.0405 0.0285 0.0132

� PM = total(pM) % Total of selected probabilities

PM = 0.7336 % P(g(X,Y) >= 1)

d. In Example 3 (Example 8.3: Distribution function for the selection problem in Example 8.1 (A selection
problem)) from "Random Vectors and Joint Distributions" we note that the joint distribution function
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FXY is constant over any grid cell, including the left-hand and lower boundaries, at the value taken
on at the lower left-hand corner of the cell. These lower left-hand corner values may be obtained
systematically from the joint probability matrix P by a two step operation.

• Take cumulative sums upward of the columns of P.
• Take cumulative sums of the rows of the resultant matrix.

This can be done with the MATLAB function cumsum, which takes column cumulative sums downward.
By �ipping the matrix and transposing, we can achieve the desired results.

Example 8.8: Calculation of FXY values for Example 3 (Example 8.3: Distribution
function for the selection problem in Example 8.1 (A selection problem)) from
"Random Vectors and Joint Distributions"

� P = 0.1*[3 0 0; 0 6 0; 0 0 1];

� FXY = flipud(cumsum(flipud(P))) % Cumulative column sums upward

FXY =

0.3000 0.6000 0.1000

0 0.6000 0.1000

0 0 0.1000

� FXY = cumsum(FXY')' % Cumulative row sums

FXY =

0.3000 0.9000 1.0000

0 0.6000 0.7000

0 0 0.1000

Figure 8.7: The joint distribution for Example 3 (Example 8.3: Distribution function for the selection
problem in Example 8.1 (A selection problem)) in "Random Vectors and Joint Distributions'.

Comparison with Example 3 (Example 8.3: Distribution function for the selection problem in
Example 8.1 (A selection problem)) from "Random Vectors and Joint Distributions" shows
agreement with values obtained by hand.
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The two step procedure has been incorprated into an m-procedure jddbn. As an example,
return to the distribution in Example Example 8.7 (Setup and basic calculations)
Example 8.9: Joint distribution function for Example 8.7 (Setup and basic calcu-
lations)

� jddbn

Enter joint probability matrix (as on the plane) P

To view joint distribution function, call for FXY

� disp(FXY)

0.1512 0.3312 0.6012 0.7912 1.0000

0.1152 0.2754 0.5157 0.6848 0.8756

0.0780 0.1824 0.3390 0.4492 0.5656

0.0264 0.0534 0.0939 0.1224 0.1356

These values may be put on a grid, in the same manner as in Figure 2 (Figure 8.2) for Example
3 (Example 8.3: Distribution function for the selection problem in Example 8.1 (A selection
problem)) in "Random Vectors and Joint Distributions".

e. As in the case of canonic for a single random variable, it is often useful to have a function version of the
procedure jcalc to provide the freedom to name the outputs conveniently. function[x,y,t,u,px,py,p]
= jcalcf(X,Y,P) The quantities x, y, t, u, px, py, and p may be given any desired names.

8.2.2 Joint absolutely continuous random variables

In the single-variable case, the condition that there are no point mass concentrations on the line ensures
the existence of a probability density function, useful in probability calculations. A similar situation exists
for a joint distribution for two (or more) variables. For any joint mapping to the plane which assigns zero
probability to each set with zero area (discrete points, line or curve segments, and countable unions of these)
there is a density function.

De�nition
If the joint probability distribution for the pair {X,Y } assigns zero probability to every set of points

with zero area, then there exists a joint density function fXY with the property

P [(X, Y ) ∈ Q] =
∫ ∫

Q

fXY (8.18)

We have three properties analogous to those for the single-variable case:

(f1) fXY ≥ 0 (f2)

∫ ∫
R2
fXY = 1 (f3) FXY (t, u) =

∫ t

−∞

∫ u

−∞
fXY (8.19)

At every continuity point for fXY , the density is the second partial

fXY (t, u) =
∂2FXY (t, u)

∂t ∂u
(8.20)

Now

FX (t) = FXY (t, ∞) =
∫ t

−∞

∫ ∞
−∞

fXY (r, s) dsdr (8.21)
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A similar expression holds for FY (u). Use of the fundamental theorem of calculus to obtain the derivatives
gives the result

fX (t) =
∫ ∞
−∞

fXY (t, s) ds and fY (u) =
∫ ∞
−∞

fXY (r, u) du (8.22)

Marginal densities. Thus, to obtain the marginal density for the �rst variable, integrate out the second
variable in the joint density, and similarly for the marginal for the second variable.

Example 8.10: Marginal density functions
Let fXY (t, u) = 8tu 0 ≤ u ≤ t ≤ 1. This region is the triangle bounded by u = 0, u = t, and
t = 1 (see Figure 8.8)

fX (t) =
∫
fXY (t, u) du = 8t

∫ t

0

u du = 4t3, 0 ≤ t ≤ 1 (8.23)

fY (u) =
∫
fXY (t, u) dt = 8u

∫ 1

u

t dt = 4u
(
1− u2

)
, 0 ≤ u ≤ 1 (8.24)

P (0.5 ≤ X ≤ 0.75, Y > 0.5) = P [(X, Y ) ∈ Q] where Q is the common part of the triangle with
the strip between t = 0.5 and t = 0.75 and above the line u = 0.5. This is the small triangle
bounded by u = 0.5, u = t, and t = 0.75. Thus

p = 8
∫ 3/4

1/2

∫ t

1/2

tu dudt = 25/256 ≈ 0.0977 (8.25)

Figure 8.8: Distribution for Example 8.10 (Marginal density functions).
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Example 8.11: Marginal distribution with compound expression
The pair {X, Y } has joint density fXY (t, u) = 6

37 (t+ 2u) on the region bounded by t = 0, t = 2,
u = 0, and u = max{1, t} (see Figure 8.9). Determine the marginal density fX.

SOLUTION
Examination of the �gure shows that we have di�erent limits for the integral with respect to u

for 0 ≤ t ≤ 1 and for 1 < t ≤ 2.

• For 0 ≤ t ≤ 1

fX (t) =
6
37

∫ 1

0

(t+ 2u) du =
6
37

(t+ 1) (8.26)

• For 1 < t ≤ 2

fX (t) =
6
37

∫ t

0

(t+ 2u) du =
12
37
t2 (8.27)

We may combine these into a single expression in a manner used extensively in subsequent treat-
ments. Suppose M = [0, 1] and N = (1, 2]. Then IM (t) = 1 for t ∈ M (i.e., 0 ≤ t ≤ 1) and zero
elsewhere. Likewise, IN (t) = 1 for t ∈ N and zero elsewhere. We can, therefore express fX by

fX (t) = IM (t)
6
37

(t+ 1) + IN (t)
12
37
t2 (8.28)

Figure 8.9: Marginal distribution for Example 8.11 (Marginal distribution with compound expression).
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8.2.3 Discrete approximation in the continuous case

For a pair {X, Y } with joint density fXY , we approximate the distribution in a manner similar to that for a
single random variable. We then utilize the techniques developed for a pair of simple random variables. If we
have n approximating values ti for X and m approximating values uj for Y, we then have n ·m pairs (ti, uj),
corresponding to points on the plane. If we subdivide the horizontal axis for values of X, with constant
increments dx, as in the single-variable case, and the vertical axis for values of Y, with constant increments
dy, we have a grid structure consisting of rectangles of size dx · dy. We select ti and uj at the midpoint of
its increment, so that the point (ti, uj) is at the midpoint of the rectangle. If we let the approximating pair
be {X∗, Y ∗}, we assign

pij = P ((X∗, Y ∗) = (ti, uj)) = P (X∗ = ti, Y
∗ = uj) = P ((X, Y ) in ijth rectangle)(8.29)

As in the one-variable case, if the increments are small enough,

P ((X, Y ) ∈ ijth rectangle) ≈ dx · dy · fXY (ti, uj) (8.30)

The m-procedure tuappr calls for endpoints of intervals which include the ranges of X and Y and for the
numbers of subintervals on each. It then prompts for an expression for fXY (t, u), from which it determines
the joint probability distribution. It calculates the marginal approximate distributions and sets up the
calculating matrices t and u as does the m-process jcalc for simple random variables. Calculations are then
carried out as for any joint simple pair.

Example 8.12: Approximation to a joint continuous distribution

fXY (t, u) = 3 on 0 ≤ u ≤ t2 ≤ 1 (8.31)

Determine P (X ≤ 0.8, Y > 0.1).

�~tuappr

Enter~matrix~[a~b]~of~X-range~endpoints~~[0~1]

Enter~matrix~[c~d]~of~Y-range~endpoints~~[0~1]

Enter~number~of~X~approximation~points~~200

Enter~number~of~Y~approximation~points~~200

Enter~expression~for~joint~density~~3*(u~<=~t.^2)
Use~array~operations~on~X,~Y,~PX,~PY,~t,~u,~and~P

�~M~=~(t~<=~0.8)&(u~>~0.1);
�~p~=~total(M.*P)~~~~~~~~~~%~Evaluation~of~the~integral~with

p~=~~~0.3355~~~~~~~~~~~~~~~~%~Maple~gives~0.3352455531

The discrete approximation may be used to obtain approximate plots of marginal distribution and density
functions.
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Figure 8.10: Marginal density and distribution function for Example 8.13 (Approximate plots of
marginal density and distribution functions).

Example 8.13: Approximate plots of marginal density and distribution functions
fXY (t, u) = 3u on the triangle bounded by u = 0, u ≤ 1 + t, and u ≤ 1− t.

�~tuappr

Enter~matrix~[a~b]~of~X-range~endpoints~~[-1~1]

Enter~matrix~[c~d]~of~Y-range~endpoints~~[0~1]

Enter~number~of~X~approximation~points~~400

Enter~number~of~Y~approximation~points~~200

Enter~expression~for~joint~density~~3*u.*(u<=min(1+t,1-t))
Use~array~operations~on~X,~Y,~PX,~PY,~t,~u,~and~P

�~fx~=~PX/dx;~~~~~~~~~~~~~~~~%~Density~for~X~~(see~Figure~8.10)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%~Theoretical~(3/2)(1~-~|t|)^2

�~fy~=~PY/dy;~~~~~~~~~~~~~~~~%~Density~for~Y

�~FX~=~cumsum(PX);~~~~~~~~~~~%~Distribution~function~for~X~(Figure~8.10)

�~FY~=~cumsum(PY);~~~~~~~~~~~%~Distribution~function~for~Y

�~plot(X,fx,X,FX)~~~~~~~~~~~~%~Plotting~details~omitted

These approximation techniques useful in dealing with functions of random variables, expectations, and
conditional expectation and regression.
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8.3 Problems On Random Vectors and Joint Distributions3

Exercise 8.3.1 (Solution on p. 215.)

Two cards are selected at random, without replacement, from a standard deck. Let X be the
number of aces and Y be the number of spades. Under the usual assumptions, determine the joint
distribution and the marginals.

Exercise 8.3.2 (Solution on p. 215.)

Two positions for campus jobs are open. Two sophomores, three juniors, and three seniors apply.
It is decided to select two at random (each possible pair equally likely). Let X be the number of
sophomores and Y be the number of juniors who are selected. Determine the joint distribution for
the pair {X,Y } and from this determine the marginals for each.

Exercise 8.3.3 (Solution on p. 216.)

A die is rolled. Let X be the number that turns up. A coin is �ipped X times. Let Y be the
number of heads that turn up. Determine the joint distribution for the pair {X,Y }. Assume
P (X = k) = 1/6 for 1 ≤ k ≤ 6 and for each k, P (Y = j|X = k) has the binomial (k, 1/2) distri-
bution. Arrange the joint matrix as on the plane, with values of Y increasing upward. Determine
the marginal distribution for Y. (For a MATLAB based way to determine the joint distribution see
Example 7 (Example 14.7: A random number N of Bernoulli trials) from "Conditional Expectation,
Regression")

Exercise 8.3.4 (Solution on p. 216.)

As a variation of Exercise 8.3.3, Suppose a pair of dice is rolled instead of a single die. Determine
the joint distribution for the pair {X,Y } and from this determine the marginal distribution for Y.

Exercise 8.3.5 (Solution on p. 217.)

Suppose a pair of dice is rolled. Let X be the total number of spots which turn up. Roll the pair
an additional X times. Let Y be the number of sevens that are thrown on the X rolls. Determine
the joint distribution for the pair {X,Y } and from this determine the marginal distribution for Y.
What is the probability of three or more sevens?

Exercise 8.3.6 (Solution on p. 218.)

The pair {X, Y } has the joint distribution (in m-�le npr08_06.m (Section 17.8.37: npr08_06)):

X = [−2.3 − 0.7 1.1 3.9 5.1] Y = [1.3 2.5 4.1 5.3] (8.32)

P =


0.0483 0.0357 0.0420 0.0399 0.0441

0.0437 0.0323 0.0380 0.0361 0.0399

0.0713 0.0527 0.0620 0.0609 0.0551

0.0667 0.0493 0.0580 0.0651 0.0589

 (8.33)

Determine the marginal distributions and the corner values for FXY . Determine P (X + Y > 2)
and P (X ≥ Y ).
Exercise 8.3.7 (Solution on p. 218.)

The pair {X, Y } has the joint distribution (in m-�le npr08_07.m (Section 17.8.38: npr08_07)):

P (X = t, Y = u) (8.34)

3This content is available online at <http://cnx.org/content/m24244/1.5/>.
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t = -3.1 -0.5 1.2 2.4 3.7 4.9

u = 7.5 0.0090 0.0396 0.0594 0.0216 0.0440 0.0203

4.1 0.0495 0 0.1089 0.0528 0.0363 0.0231

-2.0 0.0405 0.1320 0.0891 0.0324 0.0297 0.0189

-3.8 0.0510 0.0484 0.0726 0.0132 0 0.0077

Table 8.1

Determine the marginal distributions and the corner values for FXY . Determine
P (1 ≤ X ≤ 4, Y > 4) and P (|X − Y | ≤ 2).
Exercise 8.3.8 (Solution on p. 219.)

The pair {X, Y } has the joint distribution (in m-�le npr08_08.m (Section 17.8.39: npr08_08)):

P (X = t, Y = u) (8.35)

t = 1 3 5 7 9 11 13 15 17 19

u = 12 0.0156 0.0191 0.0081 0.0035 0.0091 0.0070 0.0098 0.0056 0.0091 0.0049

10 0.0064 0.0204 0.0108 0.0040 0.0054 0.0080 0.0112 0.0064 0.0104 0.0056

9 0.0196 0.0256 0.0126 0.0060 0.0156 0.0120 0.0168 0.0096 0.0056 0.0084

5 0.0112 0.0182 0.0108 0.0070 0.0182 0.0140 0.0196 0.0012 0.0182 0.0038

3 0.0060 0.0260 0.0162 0.0050 0.0160 0.0200 0.0280 0.0060 0.0160 0.0040

-1 0.0096 0.0056 0.0072 0.0060 0.0256 0.0120 0.0268 0.0096 0.0256 0.0084

-3 0.0044 0.0134 0.0180 0.0140 0.0234 0.0180 0.0252 0.0244 0.0234 0.0126

-5 0.0072 0.0017 0.0063 0.0045 0.0167 0.0090 0.0026 0.0172 0.0217 0.0223

Table 8.2

Determine the marginal distributions. Determine FXY (10, 6) and P (X > Y ).
Exercise 8.3.9 (Solution on p. 220.)

Data were kept on the e�ect of training time on the time to perform a job on a production line. X
is the amount of training, in hours, and Y is the time to perform the task, in minutes. The data
are as follows (in m-�le npr08_09.m (Section 17.8.40: npr08_09)):

P (X = t, Y = u) (8.36)

t = 1 1.5 2 2.5 3

u = 5 0.039 0.011 0.005 0.001 0.001

4 0.065 0.070 0.050 0.015 0.010

3 0.031 0.061 0.137 0.051 0.033

2 0.012 0.049 0.163 0.058 0.039

1 0.003 0.009 0.045 0.025 0.017
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Table 8.3

Determine the marginal distributions. Determine FXY (2, 3) and P (Y/X ≥ 1.25).
For the joint densities in Exercises 10-22 below

a. Sketch the region of de�nition and determine analytically the marginal density functions fX and fY.
b. Use a discrete approximation to plot the marginal density fX and the marginal distribution function

FX.
c. Calculate analytically the indicated probabilities.
d. Determine by discrete approximation the indicated probabilities.

Exercise 8.3.10 (Solution on p. 220.)

fXY (t, u) = 1 for 0 ≤ t ≤ 1, 0 ≤ u ≤ 2 (1− t).

P (X > 1/2, Y > 1) , P (0 ≤ X ≤ 1/2, Y > 1/2) , P (Y ≤ X) (8.37)

Exercise 8.3.11 (Solution on p. 221.)

fXY (t, u) = 1/2 on the square with vertices at (1, 0) , (2, 1) , (1, 2) , (0, 1).

P (X > 1, Y > 1) , P (X ≤ 1/2, 1 < Y ) , P (Y ≤ X) (8.38)

Exercise 8.3.12 (Solution on p. 221.)

fXY (t, u) = 4t (1− u) for 0 ≤ t ≤ 1, 0 ≤ u ≤ 1.

P (1/2 < X < 3/4, Y > 1/2) , P (X ≤ 1/2, Y > 1/2) , P (Y ≤ X) (8.39)

Exercise 8.3.13 (Solution on p. 222.)

fXY (t, u) = 1
8 (t+ u) for 0 ≤ t ≤ 2, 0 ≤ u ≤ 2.

P (X > 1/2, Y > 1/2) , P (0 ≤ X ≤ 1, Y > 1) , P (Y ≤ X) (8.40)

Exercise 8.3.14 (Solution on p. 223.)

fXY (t, u) = 4ue−2t for 0 ≤ t, 0 ≤ u ≤ 1

P (X ≤ 1, Y > 1) , P (X > 0.5, 1/2 < Y < 3/4) , P (X < Y ) (8.41)

Exercise 8.3.15 (Solution on p. 223.)

fXY (t, u) = 3
88

(
2t+ 3u2

)
for 0 ≤ t ≤ 2, 0 ≤ u ≤ 1 + t.

FXY (1, 1) , P (X ≤ 1, Y > 1) , P (|X − Y | < 1) (8.42)

Exercise 8.3.16 (Solution on p. 224.)

fXY (t, u) = 12t2u on the parallelogram with vertices (−1, 0) , (0, 0) , (1, 1) , (0, 1)

P (X ≤ 1/2, Y > 0) , P (X < 1/2, Y ≤ 1/2) , P (Y ≥ 1/2) (8.43)
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Exercise 8.3.17 (Solution on p. 224.)

fXY (t, u) = 24
11 tu for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{1, 2− t}

P (X ≤ 1, Y ≤ 1) , P (X > 1) , P (X < Y ) (8.44)

Exercise 8.3.18 (Solution on p. 225.)

fXY (t, u) = 3
23 (t+ 2u) for 0 ≤ t ≤ 2, 0 ≤ u ≤ max{2− t, t}

P (X ≥ 1, Y ≥ 1) , P (Y ≤ 1) , P (Y ≤ X) (8.45)

Exercise 8.3.19 (Solution on p. 226.)

fXY (t, u) = 12
179

(
3t2 + u

)
, for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{2, 3− t}

P (X ≥ 1, Y ≥ 1) , P (X ≤ 1, Y ≤ 1) , P (Y < X) (8.46)

Exercise 8.3.20 (Solution on p. 227.)

fXY (t, u) = 12
227 (3t+ 2tu) for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{1 + t, 2}

P (X ≤ 1/2, Y ≤ 3/2) , P (X ≤ 1.5, Y > 1) , P (Y < X) (8.47)

Exercise 8.3.21 (Solution on p. 228.)

fXY (t, u) = 2
13 (t+ 2u) for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{2t, 3− t}

P (X < 1) , P (X ≥ 1, Y ≤ 1) , P (Y ≤ X/2) (8.48)

Exercise 8.3.22 (Solution on p. 228.)

fXY (t, u) = I[0,1] (t) 3
8

(
t2 + 2u

)
+ I(1,2] (t) 9

14 t
2u2 for 0 ≤ u ≤ 1.

P (1/2 ≤ X ≤ 3/2, Y ≤ 1/2) (8.49)

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



215

Solutions to Exercises in Chapter 8

Solution to Exercise 8.3.1 (p. 211)
Let X be the number of aces and Y be the number of spades. De�ne the events ASi, Ai, Si, and Ni,
i = 1, 2, of drawing ace of spades, other ace, spade (other than the ace), and neither on the i selection. Let
P (i, k) = P (X = i, Y = k).

P (0, 0) = P (N1N2) = 36
52 •

35
51 = 1260

2652
P (0, 1) = P (N1S2

∨
S1N2) = 36

52 •
12
51 + 12

52 •
36
51 = 864

2652
P (0, 2) = P (S1S2) = 12

52 •
11
51 = 132

2652
P (1, 0) = P (A1N2

∨
N1S2) = 3

52 •
36
51 + 36

52 •
3
51 = 216

2652
P (1, 1) = P (A1S2

∨
S1A2

∨
AS1N2

∨
N1AS2) = 3

52 •
12
51 + 12

52 •
3
51 + 1

52 •
36
51 + 36

52 •
1
51 = 144

2652
P (1, 2) = P (AS1S2

∨
S1AS2) = 1

52 •
12
51 + 12

52 •
1
51 = 24

2652
P (2, 0) = P (A1A2) = 3

52 •
2
51 = 6

2652
P (2, 1) = P (AS1A2

∨
A1AS2) = 1

52 •
3
51 + 3

52 •
1
51 = 6

2652
P (2, 2) = P (∅) = 0

% type npr08_01 (Section~17.8.32: npr08_01)

% file npr08_01.m (Section~17.8.32: npr08_01)

% Solution for Exercise~8.3.1

X = 0:2;

Y = 0:2;

Pn = [132 24 0; 864 144 6; 1260 216 6];

P = Pn/(52*51);

disp('Data in Pn, P, X, Y')

npr08_01 % Call for mfile

Data in Pn, P, X, Y % Result

PX = sum(P)

PX = 0.8507 0.1448 0.0045

PY = fliplr(sum(P'))

PY = 0.5588 0.3824 0.0588

Solution to Exercise 8.3.2 (p. 211)
Let Ai, Bi, Ci be the events of selecting a sophomore, junior, or senior, respectively, on the ith trial. Let X
be the number of sophomores and Y be the number of juniors selected.

Set P (i, k) = P (X = i, Y = k)
P (0, 0) = P (C1C2) = 3

8 •
2
7 = 6

56
P (0, 1) = P (B1C2) + P (C1B2) = 3

8 •
3
7 + 3

8 •
3
7 = 18

56
P (0, 2) = P (B1B2) = 3

8 •
2
7 = 6

56
P (1, 0) = P (A1C2) + P (C1A2) = 2

8 •
3
7 + 3

8 •
2
7 = 12

56
P (1, 1) = P (A1B2) + P (B1A2) = 2

8 •
3
7 + 3

8 •
2
7 = 12

56
P (2, 0) = P (A1A2) = 2

8 •
1
7 = 2

56
P (1, 2) = P (2, 1) = P (2, 2) = 0
PX = [30/56 24/56 2/56] PY = [20/56 30/56 6/56]

% file npr08_02.m (Section~17.8.33: npr08_02)

% Solution for Exercise~8.3.2

X = 0:2;

Y = 0:2;

Pn = [6 0 0; 18 12 0; 6 12 2];

P = Pn/56;

disp('Data are in X, Y,Pn, P')

npr08_02 (Section~17.8.33: npr08_02)
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Data are in X, Y,Pn, P

PX = sum(P)

PX = 0.5357 0.4286 0.0357

PY = fliplr(sum(P'))

PY = 0.3571 0.5357 0.1071

Solution to Exercise 8.3.3 (p. 211)
P (X = i, Y = k) = P (X = i)P (Y = k|X = i) = (1/6)P (Y = k|X = i).

% file npr08_03.m (Section~17.8.34: npr08_03)

% Solution for Exercise~8.3.3

X = 1:6;

Y = 0:6;

P0 = zeros(6,7); % Initialize

for i = 1:6 % Calculate rows of Y probabilities

P0(i,1:i+1) = (1/6)*ibinom(i,1/2,0:i);

end

P = rot90(P0); % Rotate to orient as on the plane

PY = fliplr(sum(P')); % Reverse to put in normal order

disp('Answers are in X, Y, P, PY')

npr08_03 (Section~17.8.34: npr08_03) % Call for solution m-file

Answers are in X, Y, P, PY

disp(P)

0 0 0 0 0 0.0026

0 0 0 0 0.0052 0.0156

0 0 0 0.0104 0.0260 0.0391

0 0 0.0208 0.0417 0.0521 0.0521

0 0.0417 0.0625 0.0625 0.0521 0.0391

0.0833 0.0833 0.0625 0.0417 0.0260 0.0156

0.0833 0.0417 0.0208 0.0104 0.0052 0.0026

disp(PY)

0.1641 0.3125 0.2578 0.1667 0.0755 0.0208 0.0026

Solution to Exercise 8.3.4 (p. 211)

% file npr08_04.m (Section~17.8.35: npr08_04)

% Solution for Exercise~8.3.4

X = 2:12;

Y = 0:12;

PX = (1/36)*[1 2 3 4 5 6 5 4 3 2 1];

P0 = zeros(11,13);

for i = 1:11

P0(i,1:i+2) = PX(i)*ibinom(i+1,1/2,0:i+1);

end

P = rot90(P0);

PY = fliplr(sum(P'));

disp('Answers are in X, Y, PY, P')

npr08_04 (Section~17.8.35: npr08_04)

Answers are in X, Y, PY, P

disp(P)

Columns 1 through 7

0 0 0 0 0 0 0
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0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0.0005

0 0 0 0 0 0.0013 0.0043

0 0 0 0 0.0022 0.0091 0.0152

0 0 0 0.0035 0.0130 0.0273 0.0304

0 0 0.0052 0.0174 0.0326 0.0456 0.0380

0 0.0069 0.0208 0.0347 0.0434 0.0456 0.0304

0.0069 0.0208 0.0312 0.0347 0.0326 0.0273 0.0152

0.0139 0.0208 0.0208 0.0174 0.0130 0.0091 0.0043

0.0069 0.0069 0.0052 0.0035 0.0022 0.0013 0.0005

Columns 8 through 11

0 0 0 0.0000

0 0 0.0000 0.0001

0 0.0001 0.0003 0.0004

0.0002 0.0008 0.0015 0.0015

0.0020 0.0037 0.0045 0.0034

0.0078 0.0098 0.0090 0.0054

0.0182 0.0171 0.0125 0.0063

0.0273 0.0205 0.0125 0.0054

0.0273 0.0171 0.0090 0.0034

0.0182 0.0098 0.0045 0.0015

0.0078 0.0037 0.0015 0.0004

0.0020 0.0008 0.0003 0.0001

0.0002 0.0001 0.0000 0.0000

disp(PY)

Columns 1 through 7

0.0269 0.1025 0.1823 0.2158 0.1954 0.1400 0.0806

Columns 8 through 13

0.0375 0.0140 0.0040 0.0008 0.0001 0.0000

Solution to Exercise 8.3.5 (p. 211)

% file npr08_05.m (Section~17.8.36: npr08_05)

% Data and basic calculations for Exercise~8.3.5

PX = (1/36)*[1 2 3 4 5 6 5 4 3 2 1];

X = 2:12;

Y = 0:12;

P0 = zeros(11,13);

for i = 1:11

P0(i,1:i+2) = PX(i)*ibinom(i+1,1/6,0:i+1);

end

P = rot90(P0);

PY = fliplr(sum(P'));

disp('Answers are in X, Y, P, PY')

npr08_05 (Section~17.8.36: npr08_05)

Answers are in X, Y, P, PY

disp(PY)

Columns 1 through 7

0.3072 0.3660 0.2152 0.0828 0.0230 0.0048 0.0008

Columns 8 through 13
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0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

Solution to Exercise 8.3.6 (p. 211)

npr08_06 (Section~17.8.37: npr08_06)

Data are in X, Y, P

jcalc

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X

Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P

disp([X;PX]')

-2.3000 0.2300

-0.7000 0.1700

1.1000 0.2000

3.9000 0.2020

5.1000 0.1980

disp([Y;PY]')

1.3000 0.2980

2.5000 0.3020

4.1000 0.1900

5.3000 0.2100

jddbn

Enter joint probability matrix (as on the plane) P

To view joint distribution function, call for FXY

disp(FXY)

0.2300 0.4000 0.6000 0.8020 1.0000

0.1817 0.3160 0.4740 0.6361 0.7900

0.1380 0.2400 0.3600 0.4860 0.6000

0.0667 0.1160 0.1740 0.2391 0.2980

P1 = total((t+u>2).*P)
P1 = 0.7163

P2 = total((t>=u).*P)
P2 = 0.2799

Solution to Exercise 8.3.7 (p. 211)

npr08_07 (Section~17.8.38: npr08_07)

Data are in X, Y, P

jcalc

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X

Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P

disp([X;PX]')

-3.1000 0.1500

-0.5000 0.2200

1.2000 0.3300

2.4000 0.1200

3.7000 0.1100

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



219

4.9000 0.0700

disp([Y;PY]')

-3.8000 0.1929

-2.0000 0.3426

4.1000 0.2706

7.5000 0.1939

jddbn

Enter joint probability matrix (as on the plane) P

To view joint distribution function, call for FXY

disp(FXY)

0.1500 0.3700 0.7000 0.8200 0.9300 1.0000

0.1410 0.3214 0.5920 0.6904 0.7564 0.8061

0.0915 0.2719 0.4336 0.4792 0.5089 0.5355

0.0510 0.0994 0.1720 0.1852 0.1852 0.1929

M = (1<=t)&(t<=4)&(u>4);
P1 = total(M.*P)

P1 = 0.3230

P2 = total((abs(t-u)<=2).*P)
P2 = 0.3357

Solution to Exercise 8.3.8 (p. 212)

npr08_08 (Section~17.8.39: npr08_08)

Data are in X, Y, P

jcalc

- - - - - - - - -

Use array operations on matrices X, Y, PX, PY, t, u, and P

disp([X;PX]')

1.0000 0.0800

3.0000 0.1300

5.0000 0.0900

7.0000 0.0500

9.0000 0.1300

11.0000 0.1000

13.0000 0.1400

15.0000 0.0800

17.0000 0.1300

19.0000 0.0700

disp([Y;PY]')

-5.0000 0.1092

-3.0000 0.1768

-1.0000 0.1364

3.0000 0.1432

5.0000 0.1222

9.0000 0.1318

10.0000 0.0886

12.0000 0.0918

F = total(((t<=10)&(u<=6)).*P)
F = 0.2982

P = total((t>u).*P)
P = 0.7390
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Solution to Exercise 8.3.9 (p. 212)

npr08_09 (Section~17.8.40: npr08_09)

Data are in X, Y, P

jcalc

- - - - - - - - - - - -

Use array operations on matrices X, Y, PX, PY, t, u, and P

disp([X;PX]')

1.0000 0.1500

1.5000 0.2000

2.0000 0.4000

2.5000 0.1500

3.0000 0.1000

disp([Y;PY]')

1.0000 0.0990

2.0000 0.3210

3.0000 0.3130

4.0000 0.2100

5.0000 0.0570

F = total(((t<=2)&(u<=3)).*P)
F = 0.5100

P = total((u./t>=1.25).*P)
P = 0.5570

Solution to Exercise 8.3.10 (p. 213)
Region is triangle with vertices (0,0), (1,0), (0,2).

fX (t) =
∫ 2(1−t)

0

du = 2 (1− t) , 0 ≤ t ≤ 1 (8.50)

fY (u) =
∫ 1−u/2

0

dt = 1− u/2, 0 ≤ u ≤ 2 (8.51)

M1 = {(t, u) : t > 1/2, u > 1} lies outside the triangle P ((X,Y ) ∈M1) = 0 (8.52)

M2 = {(t, u) : 0 ≤ t ≤ 1/2, u > 1/2} has area in the trangle = 1/2 (8.53)

M3 = the region in the triangle under u = t, which has area 1/3 (8.54)

tuappr

Enter matrix [a b] of X-range endpoints [0 1]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 200

Enter number of Y approximation points 400

Enter expression for joint density (t<=1)&(u<=2*(1-t))
Use array operations on X, Y, PX, PY, t, u, and P

fx = PX/dx;

FX = cumsum(PX);

plot(X,fx,X,FX) % Figure not reproduced
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M1 = (t>0.5)&(u>1);
P1 = total(M1.*P)

P1 = 0 % Theoretical = 0

M2 = (t<=0.5)&(u>0.5);
P2 = total(M2.*P)

P2 = 0.5000 % Theoretical = 1/2

P3 = total((u<=t).*P)
P3 = 0.3350 % Theoretical = 1/3

Solution to Exercise 8.3.11 (p. 213)
The region is bounded by the lines u = 1 + t, u = 1− t, u = 3− t, and u = t− 1

fX (t) = I[0,1] (t) 0.5
∫ 1+t

1−t
du + I(1,2] (t) 0.5

∫ 3−t

t−1
du = I[0,1] (t) t + I(1,2] (t) (2− t) =

fY (t) by symmetry

(8.55)

M1 = {(t, u) : t > 1, u > 1} has area in the trangle = 1/2, so PM1 = 1/4 (8.56)

M2 = {(t, u) : t ≤ 1/2, u > 1} has area in the trangle = 1/8, so PM2 = 1/16 (8.57)

M3 = {(t, u) : u ≤ t} has area in the trangle = 1, so PM3 = 1/2 (8.58)

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density 0.5*(u<=min(1+t,3-t))& ...

(u>=max(1-t,t-1))
Use array operations on X, Y, PX, PY, t, u, and P

fx = PX/dx;

FX = cumsum(PX);

plot(X,fx,X,FX) % Plot not shown

M1 = (t>1)&(u>1);
PM1 = total(M1.*P)

PM1 = 0.2501 % Theoretical = 1/4

M2 = (t<=1/2)&(u>1);
PM2 = total(M2.*P)

PM2 = 0.0631 % Theoretical = 1/16 = 0.0625

M3 = u<=t;
PM3 = total(M3.*P)

PM3 = 0.5023 % Theoretical = 1/2

Solution to Exercise 8.3.12 (p. 213)
Region is the unit square.

fX (t) =
∫ 1

0

4t (1− u) du = 2t, 0 ≤ t ≤ 1 (8.59)

fY (u) =
∫ 1

0

4t (1− u) dt = 2 (1− u) , 0 ≤ u ≤ 1 (8.60)
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P1 =
∫ 3/4

1/2

∫ 1

1/2

4t (1− u) dudt = 5/64 P2 =
∫ 1/2

0

∫ 1

1/2

4t (1− u) dudt = 1/16 (8.61)

P3 =
∫ 1

0

∫ t

0

4t (1− u) dudt = 5/6 (8.62)

tuappr

Enter matrix [a b] of X-range endpoints [0 1]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density 4*t.*(1 - u)

Use array operations on X, Y, PX, PY, t, u, and P

fx = PX/dx;

FX = cumsum(PX);

plot(X,fx,X,FX) % Plot not shown

M1 = (1/2<t)&(t<3/4)&(u>1/2);
P1 = total(M1.*P)

P1 = 0.0781 % Theoretical = 5/64 = 0.0781

M2 = (t<=1/2)&(u>1/2);
P2 = total(M2.*P)

P2 = 0.0625 % Theoretical = 1/16 = 0.0625

M3 = (u<=t);
P3 = total(M3.*P)

P3 = 0.8350 % Theoretical = 5/6 = 0.8333

Solution to Exercise 8.3.13 (p. 213)
Region is the square 0 ≤ t ≤ 2, 0 ≤ u ≤ 2.

fX (t) =
1
8

∫ 2

0

(t+ u) =
1
4

(t+ 1) = fY (t) , 0 ≤ t ≤ 2 (8.63)

P1 =
∫ 2

1/2

∫ 2

1/2

(t+ u) dudt = 45/64 P2 =
∫ 1

0

∫ 2

1

(t+ u) dudt = 1/4 (8.64)

P3 =
∫ 2

0

∫ t

0

(t+ u) dudt = 1/2 (8.65)

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density (1/8)*(t+u)

Use array operations on X, Y, PX, PY, t, u, and P

fx = PX/dx;

FX = cumsum(PX);

plot(X,fx,X,FX)

M1 = (t>1/2)&(u>1/2);
P1 = total(M1.*P)
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P1 = 0.7031 % Theoretical = 45/64 = 0.7031

M2 = (t<=1)&(u>1);
P2 = total(M2.*P)

P2 = 0.2500 % Theoretical = 1/4

M3 = u<=t;
P3 = total(M3.*P)

P3 = 0.5025 % Theoretical = 1/2

Solution to Exercise 8.3.14 (p. 213)
Region is strip bounded by t = 0, u = 0, u = 1

fX (t) = 2e−2t, 0 ≤ t, fY (u) = 2u, 0 ≤ u ≤ 1, fXY = fXfY (8.66)

P1 = 0, P2 =
∫ ∞

0.5

2e−2tdt

∫ 3/4

1/2

2udu = e−15/16 (8.67)

P3 = 4
∫ 1

0

∫ 1

t

ue−2tdudt =
3
2
e−2 +

1
2

= 0.7030 (8.68)

tuappr

Enter matrix [a b] of X-range endpoints [0 3]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 400

Enter number of Y approximation points 200

Enter expression for joint density 4*u.*exp(-2*t)

Use array operations on X, Y, PX, PY, t, u, and P

M2 = (t > 0.5)&(u > 0.5)&(u<3/4);
p2 = total(M2.*P)

p2 = 0.1139 % Theoretical = (5/16)exp(-1) = 0.1150

p3 = total((t<u).*P)
p3 = 0.7047 % Theoretical = 0.7030

Solution to Exercise 8.3.15 (p. 213)
Region bounded by t = 0, t = 2, u = 0, u = 1 + t

fX (t) =
3
88

∫ 1+t

0

(
2t+ 3u2

)
du =

3
88

(1 + t)
(
1 + 4t+ t2

)
=

3
88
(
1 + 5t+ 5t2 + t3

)
, 0 ≤ t ≤ 2 (8.69)

fY (u) = I[0,1] (u)
3
88

∫ 2

0

(
2t+ 3u2

)
dt+ I(1,3] (u)

3
88

∫ 2

u−1

(
2t+ 3u2

)
dt = (8.70)

I[0,1] (u)
3
88
(
6u2 + 4

)
+ I(1,3] (u)

3
88
(
3 + 2u+ 8u2 − 3u3

)
(8.71)

FXY (1, 1) =
∫ 1

0

∫ 1

0

fXY (t, u) dudt = 3/44 (8.72)

P1 =
∫ 1

0

∫ 1+t

1

fXY (t, u) dudt = 41/352 P2 =
∫ 1

0

∫ 1+t

1

fXY (t, u) dudt = 329/352 (8.73)
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tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 3]

Enter number of X approximation points 200

Enter number of Y approximation points 300

Enter expression for joint density (3/88)*(2*t+3*u.^2).*(u<=1+t)
Use array operations on X, Y, PX, PY, t, u, and P

fx = PX/dx;

FX = cumsum(PX);

plot(X,fx,X,FX)

MF = (t<=1)&(u<=1);
F = total(MF.*P)

F = 0.0681 % Theoretical = 3/44 = 0.0682

M1 = (t<=1)&(u>1);
P1 = total(M1.*P)

P1 = 0.1172 % Theoretical = 41/352 = 0.1165

M2 = abs(t-u)<1;
P2 = total(M2.*P)

P2 = 0.9297 % Theoretical = 329/352 = 0.9347

Solution to Exercise 8.3.16 (p. 213)
Region bounded by u = 0, u = t, u = 1, u = t+ 1

fX (t) = I[−1,0] (t) 12
∫ t+1

0

t2udu+I(0,1] (t) 12
∫ 1

t

t2udu = I[−1,0] (t) 6t2(t+ 1)2 +I(0,1] (t) 6t2
(
1− t2

)
(8.74)

fY (u) = 12
∫ t

u−1

t2udt+ 12u3 − 12u2 + 4u, 0 ≤ u ≤ 1 (8.75)

P1 = 1− 12
∫ 1

1/2

∫ 1

t

t2ududt = 33/80, P2 = 12
∫ 1/2

0

∫ u

u−1

t2udtdu = 3/16 (8.76)

P3 = 1− P2 = 13/16 (8.77)

tuappr

Enter matrix [a b] of X-range endpoints [-1 1]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 400

Enter number of Y approximation points 200

Enter expression for joint density 12*u.*t.^2.*((u<=t+1)&(u>=t))
Use array operations on X, Y, PX, PY, t, u, and P

p1 = total((t<=1/2).*P)
p1 = 0.4098 % Theoretical = 33/80 = 0.4125

M2 = (t<1/2)&(u<=1/2);
p2 = total(M2.*P)

p2 = 0.1856 % Theoretical = 3/16 = 0.1875

P3 = total((u>=1/2).*P)
P3 = 0.8144 % Theoretical = 13/16 = 0.8125
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Solution to Exercise 8.3.17 (p. 213)
Region is bounded by t = 0, u = 0, u = 2, u = 2− t

fX (t) = I[0,1] (t)
24
11

∫ 1

0

tudu+ I(1,2] (t)
24
11

∫ 2−t

0

tudu = (8.78)

I[0,1] (t)
12
11
t+ I(1,2] (t)

12
11
t(2− t)2

(8.79)

fY (u) =
24
11

∫ 2−u

0

tudt =
12
11
u(u− 2)2

, 0 ≤ u ≤ 1 (8.80)

P1 =
24
11

∫ 1

0

∫ 1

0

tududt = 6/11 P2 =
24
11

∫ 2

1

∫ 2−t

0

tududt = 5/11 (8.81)

P3 =
24
11

∫ 1

0

∫ 1

t

tududt = 3/11 (8.82)

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 400

Enter number of Y approximation points 200

Enter expression for joint density (24/11)*t.*u.*(u<=2-t)
Use array operations on X, Y, PX, PY, t, u, and P

M1 = (t<=1)&(u<=1);
P1 = total(M1.*P)

P1 = 0.5447 % Theoretical = 6/11 = 0.5455

P2 = total((t>1).*P)
P2 = 0.4553 % Theoretical = 5/11 = 0.4545

P3 = total((t<u).*P)
P3 = 0.2705 % Theoretical = 3/11 = 0.2727

Solution to Exercise 8.3.18 (p. 214)
Region is bounded by t = 0, t = 2, u = 0, u = 2− t (0 ≤ t ≤ 1) , u = t (1 < t ≤ 2)

fX (t) = I[0,1] (t)
3
23

∫ 2−t

0

(t+ 2u) du+I(1,2] (t)
3
23

∫ t

0

(t+ 2u) du = I[0,1] (t)
6
23

(2− t)+I(1,2] (t)
6
23
t2 (8.83)

fY (u) = I[0,1] (u)
3
23

∫ 2

0

(t+ 2u) dt+ I(1,2] (u)
[

3
23

∫ 2−u

0

(t+ 2u) dt+
3
23

∫ 2

u

(t+ 2u) dt
]

= (8.84)

I[0,1] (u)
6
23

(2u+ 1) + I(1,2] (u)
3
23
(
4 + 6u− 4u2

)
(8.85)

P1 =
3
23

∫ 2

1

∫ t

1

(t+ 2u) dudt = 13/46, P2 =
3
23

∫ 2

0

∫ 1

0

(t+ 2u) dudt = 12/23 (8.86)

P3 =
3
23

∫ 2

0

∫ t

0

(t+ 2u) dudt = 16/23 (8.87)
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tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density (3/23)*(t+2*u).*(u<=max(2-t,t))
Use array operations on X, Y, PX, PY, t, u, and P

M1 = (t>=1)&(u>=1);
P1 = total(M1.*P)

P1 = 0.2841

13/46 % Theoretical = 13/46 = 0.2826

P2 = total((u<=1).*P)
P2 = 0.5190 % Theoretical = 12/23 = 0.5217

P3 = total((u<=t).*P)
P3 = 0.6959 % Theoretical = 16/23 = 0.6957

Solution to Exercise 8.3.19 (p. 214)
Region has two parts: (1) 0 ≤ t ≤ 1, 0 ≤ u ≤ 2 (2) 1 < t ≤ 2, 0 ≤ u ≤ 3− t

fX (t) = I[0,1] (t)
12
179

∫ 2

0

(
3t2 + u

)
du+ I(1,2] (t)

12
179

∫ 3−t

0

(
3t2 + u

)
du = (8.88)

I[0,1] (t)
24
179

(
3t2 + 1

)
+ I(1,2] (t)

6
179

(
9− 6t+ 19t2 − 6t3

)
(8.89)

fY (u) = I[0,1] (u)
12
179

∫ 2

0

(
3t2 + u

)
dt+ I(1,2] (u)

12
179

∫ 3−u

0

(
3t2 + u

)
dt = (8.90)

I[0,1] (u)
24
179

(4 + u) + I(1,2] (u)
12
179

(
27− 24u+ 8u2 − u3

)
(8.91)

P1 =
12
179

∫ 2

1

∫ 3−t

1

(
3t2 + u

)
dudt = 41/179P2 =

12
179

∫ 1

0

∫ 1

0

(
3t2 + u

)
dudt = 18/179 (8.92)

P3 =
12
179

∫ 3/2

0

∫ t

0

(
3t2 + u

)
dudt+

12
179

∫ 2

3/2

∫ 3−t

0

(
3t2 + u

)
dudt = 1001/1432 (8.93)

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density (12/179)*(3*t.^2+u).* ...

(u<=min(2,3-t))
Use array operations on X, Y, PX, PY, t, u, and P

fx = PX/dx;

FX = cumsum(PX);

plot(X,fx,X,FX)

M1 = (t>=1)&(u>=1);
P1 = total(M1.*P)

P1 = 2312 % Theoretical = 41/179 = 0.2291

M2 = (t<=1)&(u<=1);
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P2 = total(M2.*P)

P2 = 0.1003 % Theoretical = 18/179 = 0.1006

M3 = u<=min(t,3-t);
P3 = total(M3.*P)

P3 = 0.7003 % Theoretical = 1001/1432 = 0.6990

Solution to Exercise 8.3.20 (p. 214)
Region is in two parts:

1. 0 ≤ t ≤ 1, 0 ≤ u ≤ 1 + t
2. (2) 1 < t ≤ 2, 0 ≤ u ≤ 2

fX (t) = I[0,1] (t)
∫ 1+t

0

fXY (t, u) du+ I(1,2] (t)
∫ 2

0

fXY (t, u) du = (8.94)

I[0,1] (t)
12
227

(
t3 + 5t2 + 4t

)
+ I(1,2] (t)

120
227

t (8.95)

fY (u) = I[0,1] (u)
∫ 2

0

fXY (t, u) dt+ I(1,2] (u)
∫ 2

u−1

fXY (t, u) dt = (8.96)

I[0,1] (u)
24
227

(2u+ 3) + I(1,2] (u)
6

227
(2u+ 3)

(
3 + 2u− u2

)
(8.97)

= I[0,1] (u)
24
227

(2u+ 3) + I(1,2] (u)
6

227
(
9 + 12u+ u2 − 2u3

)
(8.98)

P1 =
12
227

∫ 1/2

0

∫ 1+t

0

(3t+ 2tu) dudt = 139/3632 (8.99)

P2 =
12
227

∫ 1

0

∫ 1+t

1

(3t+ 2tu) dudt+
12
227

∫ 3/2

1

∫ 2

1

(3t+ 2tu) dudt = 68/227 (8.100)

P3 =
12
227

∫ 2

0

∫ t

1

(3t+ 2tu) dudt = 144/227 (8.101)

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density (12/227)*(3*t+2*t.*u).* ...

(u<=min(1+t,2))
Use array operations on X, Y, PX, PY, t, u, and P

M1 = (t<=1/2)&(u<=3/2);
P1 = total(M1.*P)

P1 = 0.0384 % Theoretical = 139/3632 = 0.0383

M2 = (t<=3/2)&(u>1);
P2 = total(M2.*P)

P2 = 0.3001 % Theoretical = 68/227 = 0.2996

M3 = u<t;
P3 = total(M3.*P)

P3 = 0.6308 % Theoretical = 144/227 = 0.6344
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Solution to Exercise 8.3.21 (p. 214)
Region bounded by t = 2, u = 2t (0 ≤ t ≤ 1) , 3− t (1 ≤ t ≤ 2)

fX (t) = I[0,1] (t)
2
13

∫ 2t

0

(t+ 2u) du+ I(1,2] (t)
2
13

∫ 3−t

0

(t+ 2u) du = I[0,1] (t)
12
13
t2 + I(1,2] (t)

6
13

(3− t)

(8.102)

fY (u) = I[0,1] (u)
2
13

∫ 2

u/2

(t+ 2u) dt+ I(1,2] (u)
2
13

∫ 3−u

u/2

(t+ 2u) dt = (8.103)

I[0,1] (u)
(

4
13

+
8
13
u− 9

52
u2

)
+ I(1,2] (u)

(
9
13

+
6
13
u− 21

52
u2

)
(8.104)

P1 =
∫ 1

0

∫ 2t

0

(t+ 2u) dudt = 4/13 P2 =
∫ 2

1

∫ 1

0

(t+ 2u) dudt = 5/13 (8.105)

P3 =
∫ 2

0

∫ t/2

0

(t+ 2u) dudt = 4/13 (8.106)

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 400

Enter number of Y approximation points 400

Enter expression for joint density (2/13)*(t+2*u).*(u<=min(2*t,3-t))
Use array operations on X, Y, PX, PY, t, u, and P

P1 = total((t<1).*P)
P1 = 0.3076 % Theoretical = 4/13 = 0.3077

M2 = (t>=1)&(u<=1);
P2 = total(M2.*P)

P2 = 0.3844 % Theoretical = 5/13 = 0.3846

P3 = total((u<=t/2).*P)
P3 = 0.3076 % Theoretical = 4/13 = 0.3077

Solution to Exercise 8.3.22 (p. 214)
Region is rectangle bounded by t = 0, t = 2, u = 0, u = 1

fXY (t, u) = I[0,1] (t)
3
8
(
t2 + 2u

)
+ I(1,2] (t)

9
14
t2u2, 0 ≤ u ≤ 1 (8.107)

fX (t) = I[0,1] (t)
3
8

∫ 1

0

(
t2 + 2u

)
du+ I(1,2] (t)

9
14

∫ 1

0

t2u2du = I[0,1] (t)
3
8
(
t2 + 1

)
+ I(1,2] (t)

3
14
t2 (8.108)

fY (u) =
3
8

∫ 1

0

(
t2 + 2u

)
dt+

9
14

∫ 2

1

t2u2dt =
1
8

+
3
4
u+

3
2
u2 0 ≤ u ≤ 1 (8.109)

P1 =
3
8

∫ 1

1/2

∫ 1/2

0

(
t2 + 2u

)
dudt+

9
14

∫ 3/2

1

∫ 1/2

0

t2u2dudt = 55/448 (8.110)
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tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 400

Enter number of Y approximation points 200

Enter expression for joint density (3/8)*(t.^2+2*u).*(t<=1) ...

+ (9/14)*(t.^2.*u.^2).*(t > 1)

Use array operations on X, Y, PX, PY, t, u, and P

M = (1/2<=t)&(t<=3/2)&(u<=1/2);
P = total(M.*P)

P = 0.1228 % Theoretical = 55/448 = 0.1228
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Chapter 9

Independent Classes of Random

Variables

9.1 Independent Classes of Random Variables1

9.1.1 Introduction

The concept of independence for classes of events is developed in terms of a product rule. In this unit, we
extend the concept to classes of random variables.

9.1.2 Independent pairs

Recall that for a random variable X, the inverse image X−1 (M) (i.e., the set of all outcomes ω ∈ Ω which are
mapped into M by X) is an event for each reasonable subset M on the real line. Similarly, the inverse image
Y −1 (N) is an event determined by random variable Y for each reasonable set N. We extend the notion of
independence to a pair of random variables by requiring independence of the events they determine. More
precisely,

De�nition
A pair {X,Y } of random variables is (stochastically) independent i� each pair of events

{X−1 (M) , Y −1 (N)} is independent.
This condition may be stated in terms of the product rule

P (X ∈M, Y ∈ N) = P (X ∈M)P (Y ∈ N) for all (Borel) sets M, N (9.1)

Independence implies

FXY (t, u) = P (X ∈ (−∞, t] , Y ∈ (−∞, u]) = P (X ∈ (−∞, t])P (Y ∈ (−∞, u]) = (9.2)

FX (t)FY (u) ∀ t, u (9.3)

Note that the product rule on the distribution function is equivalent to the condition the product rule holds
for the inverse images of a special class of sets {M,N} of the form M = (−∞, t] and N = (−∞, u]. An
important theorem from measure theory ensures that if the product rule holds for this special class it holds
for the general class of {M,N}. Thus we may assert

The pair {X, Y } is independent i� the following product rule holds

FXY (t, u) = FX (t)FY (u) ∀ t, u (9.4)

1This content is available online at <http://cnx.org/content/m23321/1.6/>.
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Example 9.1: An independent pair
Suppose FXY (t, u) = (1− e−αt)

(
1− e−βu

)
0 ≤ t, 0 ≤ u. Taking limits shows

FX (t) = lim
u→∞

FXY (t, u) = 1− e−αt and FY (u) = lim
t→∞

FXY (t, u) = 1− e−βu (9.5)

so that the product rule FXY (t, u) = FX (t)FY (u) holds. The pair {X, Y } is therefore indepen-
dent.

If there is a joint density function, then the relationship to the joint distribution function makes it clear that
the pair is independent i� the product rule holds for the density. That is, the pair is independent i�

fXY (t, u) = fX (t) fY (u) ∀ t, u (9.6)

Example 9.2: Joint uniform distribution on a rectangle
Suppose the joint probability mass distributions induced by the pair {X, Y } is uniform on a rect-
angle with sides I1 = [a, b] and I2 = [c, d]. Since the area is (b− a) (d− c), the constant value of
fXY is 1/ (b− a) (d− c). Simple integration gives

fX (t) =
1

(b− a) (d− c)

∫ d

c

du =
1

b− a
a ≤ t ≤ b and (9.7)

fY (u) =
1

(b− a) (d− c)

∫ b

a

dt =
1

d− c
c ≤ u ≤ d (9.8)

Thus it follows that X is uniform on [a, b], Y is uniform on [c, d], and fXY (t, u) = fX (t) fY (u) for
all t, u, so that the pair {X, Y } is independent. The converse is also true: if the pair is independent
with X uniform on [a, b] and Y is uniform on [c, d], the the pair has uniform joint distribution on
I1 × I2.

9.1.3 The joint mass distribution

It should be apparent that the independence condition puts restrictions on the character of the joint mass
distribution on the plane. In order to describe this more succinctly, we employ the following terminology.

De�nition
If M is a subset of the horizontal axis and N is a subset of the vertical axis, then the cartesian product

M × N is the (generalized) rectangle consisting of those points (t, u) on the plane such that t ∈ M and
u ∈ N .

Example 9.3: Rectangle with interval sides
The rectangle in Example 9.2 (Joint uniform distribution on a rectangle) is the Cartesian product
I1 × I2, consisting of all those points (t, u) such that a ≤ t ≤ b and c ≤ u ≤ d (i.e., t ∈ I1 and
u ∈ I2).
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Figure 9.1: Joint distribution for an independent pair of random variables.

We restate the product rule for independence in terms of cartesian product sets.

P (X ∈M, Y ∈ N) = P ((X, Y ) ∈M ×N) = P (X ∈M)P (Y ∈ N) (9.9)

Reference to Figure 9.1 illustrates the basic pattern. If M, N are intervals on the horizontal and vertical
axes, respectively, then the rectangle M ×N is the intersection of the vertical strip meeting the horizontal
axis in M with the horizontal strip meeting the vertical axis in N. The probability X ∈M is the portion of
the joint probability mass in the vertical strip; the probability Y ∈ N is the part of the joint probability in
the horizontal strip. The probability in the rectangle is the product of these marginal probabilities.

This suggests a useful test for nonindependence which we call the rectangle test. We illustrate with a
simple example.
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Figure 9.2: Rectangle test for nonindependence of a pair of random variables.

Example 9.4: The rectangle test for nonindependence
Supose probability mass is uniformly distributed over the square with vertices at (1,0), (2,1), (1,2),
(0,1). It is evident from Figure 9.2 that a value of X determines the possible values of Y and
vice versa, so that we would not expect independence of the pair. To establish this, consider the
small rectangle M × N shown on the �gure. There is no probability mass in the region. Yet
P (X ∈M) > 0 and P (Y ∈ N) > 0, so that

P (X ∈M)P (Y ∈ N) > 0, but P ((X, Y ) ∈M ×N) = 0. The product rule fails; hence the
pair cannot be stochastically independent.

Remark. There are nonindependent cases for which this test does not work. And it does not provide a test
for independence. In spite of these limitations, it is frequently useful. Because of the information contained
in the independence condition, in many cases the complete joint and marginal distributions may be obtained
with appropriate partial information. The following is a simple example.

Example 9.5: Joint and marginal probabilities from partial information
Suppose the pair {X, Y } is independent and each has three possible values. The following four
items of information are available.

P (X = t1) = 0.2, P (Y = u1) = 0.3, P (X = t1, Y = u2) = 0.08 (9.10)

P (X = t2, Y = u1) = 0.15 (9.11)

These values are shown in bold type on Figure 9.3. A combination of the product rule and the
fact that the total probability mass is one are used to calculate each of the marginal and joint
probabilities. For example P (X = t1) = 0.2 and P (X = t1, Y = u2)

= P (X = t1)P (Y = u2) = 0.08 implies P (Y = u2) = 0.4. Then P (Y = u3)
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= 1 − P (Y = u1) − P (Y = u2) = 0.3. Others are calculated similarly. There is no unique
procedure for solution. And it has not seemed useful to develop MATLAB procedures to accomplish
this.

Figure 9.3: Joint and marginal probabilities from partial information.

Example 9.6: The joint normal distribution
A pair {X, Y } has the joint normal distribution i� the joint density is

fXY (t, u) =
1

2πσXσY (1− ρ2)1/2
e−Q(t,u)/2 (9.12)

where

Q (t, u) =
1

1− ρ2

[(
t− µX
σX

)2

− 2ρ
(
t− µX
σX

)(
u− µY
σY

)
+
(
u− µY
σY

)2
]

(9.13)

The marginal densities are obtained with the aid of some algebraic tricks to integrate the joint
density. The result is that X ∼ N

(
µX , σ

2
X

)
and Y ∼ N

(
µY , σ

2
Y

)
. If the parameter ρ is set to

zero, the result is

fXY (t, u) = fX (t) fY (u) (9.14)

so that the pair is independent i� ρ = 0. The details are left as an exercise for the interested
reader.

Remark. While it is true that every independent pair of normally distributed random variables is joint
normal, not every pair of normally distributed random variables has the joint normal distribution.

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



236 CHAPTER 9. INDEPENDENT CLASSES OF RANDOM VARIABLES

Example 9.7: A normal pair not joint normally distributed
We start with the distribution for a joint normal pair and derive a joint distribution for a normal
pair which is not joint normal. The function

φ (t, u) =
1

2π
exp

(
− t

2

2
− u2

2

)
(9.15)

is the joint normal density for an independent pair (ρ = 0) of standardized normal random variables.
Now de�ne the joint density for a pair {X, Y } by

fXY (t, u) = 2φ (t, u) in the �rst and third quadrants, and zero elsewhere (9.16)

Both X ∼ N (0, 1) and Y ∼ N (0, 1). However, they cannot be joint normal, since the joint normal
distribution is positive for all (t, u).

9.1.4 Independent classes

Since independence of random variables is independence of the events determined by the random variables,
extension to general classes is simple and immediate.

De�nition
A class {Xi : i ∈ J} of random variables is (stochastically) independent i� the product rule holds for

every �nite subclass of two or more.
Remark. The index set J in the de�nition may be �nite or in�nite.
For a �nite class {Xi : 1 ≤ i ≤ n}, independence is equivalent to the product rule

FX1X2···Xn (t1, t2, · · · , tn) =
n∏
i=1

FXi (ti) for all (t1, t2, · · · , tn) (9.17)

Since we may obtain the joint distribution function for any �nite subclass by letting the arguments for the
others be ∞ (i.e., by taking the limits as the appropriate ti increase without bound), the single product rule
su�ces to account for all �nite subclasses.

Absolutely continuous random variables
If a class {Xi : i ∈ J} is independent and the individual variables are absolutely continuous (i.e., have

densities), then any �nite subclass is jointly absolutely continuous and the product rule holds for the densities
of such subclasses

fXi1Xi2···Xim (ti1, ti2, · · · , tim) =
m∏
k=1

fXik (tik) for all (t1, t2, · · · , tn) (9.18)

Similarly, if each �nite subclass is jointly absolutely continuous, then each individual variable is absolutely
continuous and the product rule holds for the densities. Frequently we deal with independent classes in
which each random variable has the same marginal distribution. Such classes are referred to as iid classes
(an acronym for independent,identically distributed). Examples are simple random samples from a given
population, or the results of repetitive trials with the same distribution on the outcome of each component
trial. A Bernoulli sequence is a simple example.

9.1.5 Simple random variables

Consider a pair {X, Y } of simple random variables in canonical form

X =
n∑
i=1

tiIAi Y =
m∑
j=1

ujIBj (9.19)
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Since Ai = {X = ti} and Bj = {Y = uj} the pair {X, Y } is independent i� each of the pairs {Ai, Bj} is
independent. The joint distribution has probability mass at each point (ti, uj) in the range of W = (X, Y ).
Thus at every point on the grid,

P (X = ti, Y = uj) = P (X = ti)P (Y = uj) (9.20)

According to the rectangle test, no gridpoint having one of the ti or uj as a coordinate has zero probability
mass . The marginal distributions determine the joint distributions. If X has n distinct values and Y has m
distinct values, then the n+m marginal probabilities su�ce to determine the m ·n joint probabilities. Since
the marginal probabilities for each variable must add to one, only (n− 1) + (m− 1) = m+ n− 2 values are
needed.

Suppose X and Y are in a�ne form. That is,

X = a0 +
n∑
i=1

aiIEi Y = b0 +
m∑
j=1

bjIFj (9.21)

Since Ar = {X = tr} is the union of minterms generated by the Ei and Bj = {Y = us} is the union of
minterms generated by the Fj, the pair {X, Y } is independent i� each pair of minterms {Ma, Nb} generated
by the two classes, respectivly, is independent. Independence of the minterm pairs is implied by independence
of the combined class

{Ei, Fj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} (9.22)

Calculations in the joint simple case are readily handled by appropriate m-functions and m-procedures.
MATLAB and independent simple random variables
In the general case of pairs of joint simple random variables we have the m-procedure jcalc, which uses

information in matrices X, Y, and P to determine the marginal probabilities and the calculation matrices
t and u. In the independent case, we need only the marginal distributions in matrices X, PX, Y, and PY
to determine the joint probability matrix (hence the joint distribution) and the calculation matrices t and
u. If the random variables are given in canonical form, we have the marginal distributions. If they are in
a�ne form, we may use canonic (or the function form canonicf) to obtain the marginal distributions.

Once we have both marginal distributions, we use an m-procedure we call icalc. Formation of the joint
probability matrix is simply a matter of determining all the joint probabilities

p (i, j) = P (X = ti, Y = uj) = P (X = ti)P (Y = uj) (9.23)

Once these are calculated, formation of the calculation matrices t and u is achieved exactly as in jcalc.

Example 9.8: Use of icalc to set up for joint calculations

X~=~[-4~-2~0~1~3];

Y~=~[0~1~2~4];

PX~=~0.01*[12~18~27~19~24];

PY~=~0.01*[15~43~31~11];

icalc

Enter~row~matrix~of~X-values~~X

Enter~row~matrix~of~Y-values~~Y

Enter~X~probabilities~~PX

Enter~Y~probabilities~~PY

~Use~array~operations~on~matrices~X,~Y,~PX,~PY,~t,~u,~and~P

disp(P)~~~~~~~~~~~~~~~~~~~~~~~~%~Optional~display~of~the~joint~matrix

~~~~0.0132~~~~0.0198~~~~0.0297~~~~0.0209~~~~0.0264

~~~~0.0372~~~~0.0558~~~~0.0837~~~~0.0589~~~~0.0744
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~~~~0.0516~~~~0.0774~~~~0.1161~~~~0.0817~~~~0.1032

~~~~0.0180~~~~0.0270~~~~0.0405~~~~0.0285~~~~0.0360

disp(t)~~~~~~~~~~~~~~~~~~~~~~~~%~Calculation~matrix~t

~~~~-4~~~~-2~~~~~0~~~~~1~~~~~3

~~~~-4~~~~-2~~~~~0~~~~~1~~~~~3

~~~~-4~~~~-2~~~~~0~~~~~1~~~~~3

~~~~-4~~~~-2~~~~~0~~~~~1~~~~~3

disp(u)~~~~~~~~~~~~~~~~~~~~~~~~%~Calculation~matrix~u

~~~~~4~~~~~4~~~~~4~~~~~4~~~~~4

~~~~~2~~~~~2~~~~~2~~~~~2~~~~~2

~~~~~1~~~~~1~~~~~1~~~~~1~~~~~1

~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0

M~=~(t>=-3)&(t<=2);~~~~~~~~~~~~%~M~=~[-3,~2]
PM~=~total(M.*P)~~~~~~~~~~~~~~~%~P(X~in~M)

PM~=~~~0.6400

N~=~(u>0)&(u.^2<=15);~~~~~~~~~~%~N~=~{u:~u~>~0,~u^2~<=~15}
PN~=~total(N.*P)~~~~~~~~~~~~~~~%~P(Y~in~N)

PN~=~~~0.7400

Q~=~M&N;~~~~~~~~~~~~~~~~~~~~~~~%~Rectangle~MxN

PQ~=~total(Q.*P)~~~~~~~~~~~~~~~%~P((X,Y)~in~MxN)

PQ~=~~~0.4736

p~=~PM*PN

p~~=~~~0.4736~~~~~~~~~~~~~~~~~~%~P((X,Y)~in~MxN)~=~P(X~in~M)P(Y~in~N)

As an example, consider again the problem of joint Bernoulli trials described in the treatment of Composite
trials (Section 4.3).

Example 9.9: The joint Bernoulli trial of Example 4.9.
1 Bill and Mary take ten basketball free throws each. We assume the two seqences of trials are
independent of each other, and each is a Bernoulli sequence.

Mary: Has probability 0.80 of success on each trial.
Bill: Has probability 0.85 of success on each trial.

What is the probability Mary makes more free throws than Bill?
SOLUTION
Let X be the number of goals that Mary makes and Y be the number that Bill makes. Then

X ∼ binomial (10, 0.8) and Y ∼ binomial (10, 0.85).

X~=~0:10;

Y~=~0:10;

PX~=~ibinom(10,0.8,X);

PY~=~ibinom(10,0.85,Y);

icalc

Enter~row~matrix~of~X-values~~X~~%~Could~enter~0:10

Enter~row~matrix~of~Y-values~~Y~~%~Could~enter~0:10

Enter~X~probabilities~~PX~~~~~~~~%~Could~enter~ibinom(10,0.8,X)

Enter~Y~probabilities~~PY~~~~~~~~%~Could~enter~ibinom(10,0.85,Y)

~Use~array~operations~on~matrices~X,~Y,~PX,~PY,~t,~u,~and~P

PM~=~total((t>u).*P)
PM~=~~0.2738~~~~~~~~~~~~~~~~~~~~~%~Agrees~with~solution~in~Example 9 from "Composite Trials".

Pe~=~total((u==t).*P)~~~~~~~~~~~~%~Additional~information~is~more~easily

Pe~=~~0.2276~~~~~~~~~~~~~~~~~~~~~%~obtained~than~in~the~event~formulation

Pm~=~total((t>=u).*P)~~~~~~~~~~~~%~of~Example 9 from "Composite Trials".

Pm~=~~0.5014
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Example 9.10: Sprinters time trials
Twelve world class sprinters in a meet are running in two heats of six persons each. Each runner has a
reasonable chance of breaking the track record. We suppose results for individuals are independent.

First heat probabilities: 0.61 0.73 0.55 0.81 0.66 0.43
Second heat probabilities: 0.75 0.48 0.62 0.58 0.77 0.51

Compare the two heats for numbers who break the track record.
SOLUTION
Let X be the number of successes in the �rst heat and Y be the number who are successful in the

second heat. Then the pair {X, Y } is independent. We use the m-function canonicf to determine
the distributions for X and for Y, then icalc to get the joint distribution.

c1~=~[ones(1,6)~0];

c2~=~[ones(1,6)~0];

P1~=~[0.61~0.73~0.55~0.81~0.66~0.43];

P2~=~[0.75~0.48~0.62~0.58~0.77~0.51];

[X,PX]~=~canonicf(c1,minprob(P1));

[Y,PY]~=~canonicf(c2,minprob(P2));

icalc

Enter~row~matrix~of~X-values~~X

Enter~row~matrix~of~Y-values~~Y

Enter~X~probabilities~~PX

Enter~Y~probabilities~~PY

~Use~array~operations~on~matrices~X,~Y,~PX,~PY,~t,~u,~and~P

Pm1~=~total((t>u).*P)~~~%~Prob~first~heat~has~most
Pm1~=~~0.3986

Pm2~=~total((u>t).*P)~~~%~Prob~second~heat~has~most
Pm2~=~~0.3606

Peq~=~total((t==u).*P)~~%~Prob~both~have~the~same

Peq~=~~0.2408

Px3~=~(X>=3)*PX'~~~~~~~~%~Prob~first~has~3~or~more
Px3~=~~0.8708

Py3~=~(Y>=3)*PY'~~~~~~~~%~Prob~second~has~3~or~more
Py3~=~~0.8525

As in the case of jcalc, we have an m-function version icalcf

[x, y, t, u, px, py, p] = icalcf (X, Y, PX, PY) (9.24)

We have a related m-function idbn for obtaining the joint probability matrix from the marginal probabilities.
Its formation of the joint matrix utilizes the same operations as icalc.

Example 9.11: A numerical example

PX~=~0.1*[3~5~2];

PY~=~0.01*[20~15~40~25];

P~~=~idbn(PX,PY)

P~=

~~~~0.0750~~~~0.1250~~~~0.0500

~~~~0.1200~~~~0.2000~~~~0.0800

~~~~0.0450~~~~0.0750~~~~0.0300

~~~~0.0600~~~~0.1000~~~~0.0400
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An m- procedure itest checks a joint distribution for independence. It does this by calculating the
marginals, then forming an independent joint test matrix, which is compared with the original. We
do not ordinarily exhibit the matrix P to be tested. However, this is a case in which the product
rule holds for most of the minterms, and it would be very di�cult to pick out those for which it
fails. The m-procedure simply checks all of them.

Example 9.12

idemo1~~~~~~~~~~~~~~~~~~~~~~~~~~~%~Joint~matrix~in~datafile~idemo1

P~=~~0.0091~~0.0147~~0.0035~~0.0049~~0.0105~~0.0161~~0.0112

~~~~~0.0117~~0.0189~~0.0045~~0.0063~~0.0135~~0.0207~~0.0144

~~~~~0.0104~~0.0168~~0.0040~~0.0056~~0.0120~~0.0184~~0.0128

~~~~~0.0169~~0.0273~~0.0065~~0.0091~~0.0095~~0.0299~~0.0208

~~~~~0.0052~~0.0084~~0.0020~~0.0028~~0.0060~~0.0092~~0.0064

~~~~~0.0169~~0.0273~~0.0065~~0.0091~~0.0195~~0.0299~~0.0208

~~~~~0.0104~~0.0168~~0.0040~~0.0056~~0.0120~~0.0184~~0.0128

~~~~~0.0078~~0.0126~~0.0030~~0.0042~~0.0190~~0.0138~~0.0096

~~~~~0.0117~~0.0189~~0.0045~~0.0063~~0.0135~~0.0207~~0.0144

~~~~~0.0091~~0.0147~~0.0035~~0.0049~~0.0105~~0.0161~~0.0112

~~~~~0.0065~~0.0105~~0.0025~~0.0035~~0.0075~~0.0115~~0.0080

~~~~~0.0143~~0.0231~~0.0055~~0.0077~~0.0165~~0.0253~~0.0176

itest

Enter~matrix~of~joint~probabilities~~P

The~pair~{X,Y}~is~NOT~independent~~~%~Result~of~test

To~see~where~the~product~rule~fails,~call~for~D

disp(D)~~~~~~~~~~~~~~~~~~~~~~~~~~%~Optional~call~for~D

~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0

~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0

~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0

~~~~~1~~~~~1~~~~~1~~~~~1~~~~~1~~~~~1~~~~~1

~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0

~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0

~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0

~~~~~1~~~~~1~~~~~1~~~~~1~~~~~1~~~~~1~~~~~1

~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0

~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0

~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0

~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0~~~~~0

Next, we consider an example in which the pair is known to be independent.

Example 9.13

jdemo3~~~~~~%~call~for~data~in~m-file

disp(P)~~~~~%~call~to~display~P

~~~~~0.0132~~~~0.0198~~~~0.0297~~~~0.0209~~~~0.0264

~~~~~0.0372~~~~0.0558~~~~0.0837~~~~0.0589~~~~0.0744

~~~~~0.0516~~~~0.0774~~~~0.1161~~~~0.0817~~~~0.1032

~~~~~0.0180~~~~0.0270~~~~0.0405~~~~0.0285~~~~0.0360

~

itest
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Enter~matrix~of~joint~probabilities~~P

The~pair~{X,Y}~is~independent~~~~~~~%~Result~of~test

The procedure icalc can be extended to deal with an independent class of three random variables. We call
the m-procedure icalc3. The following is a simple example of its use.

Example 9.14: Calculations for three independent random variables

X~=~0:4;

Y~=~1:2:7;

Z~=~0:3:12;

PX~=~0.1*[1~3~2~3~1];

PY~=~0.1*[2~2~3~3];

PZ~=~0.1*[2~2~1~3~2];

icalc3

Enter~row~matrix~of~X-values~~X

Enter~row~matrix~of~Y-values~~Y

Enter~row~matrix~of~Z-values~~Z

Enter~X~probabilities~~PX

Enter~Y~probabilities~~PY

Enter~Z~probabilities~~PZ

Use~array~operations~on~matrices~X,~Y,~Z,

PX,~PY,~PZ,~t,~u,~v,~and~P

G~=~3*t~+~2*u~-~4*v;~~~~~~~~%~W~=~3X~+~2Y~-4Z

[W,PW]~=~csort(G,P);~~~~~~~~%~Distribution~for~W

PG~=~total((G>0).*P)~~~~~~~~%~P(g(X,Y,Z)~>~0)
PG~=~~0.3370

Pg~=~(W>0)*PW'~~~~~~~~~~~~%~P(Z~>~0)
Pg~=~~0.3370

An m-procedure icalc4 to handle an independent class of four variables is also available. Also several
variations of the m-function mgsum and the m-function diidsum are used for obtaining distributions for
sums of independent random variables. We consider them in various contexts in other units.

9.1.6 Approximation for the absolutely continuous case

In the study of functions of random variables, we show that an approximating simple random variable Xs of
the type we use is a function of the random variable X which is approximated. Also, we show that if {X,Y }
is an independent pair, so is {g (X) , h (Y )} for any reasonable functions g and h. Thus if {X,Y } is an
independent pair, so is any pair of approximating simple functions {Xs, Ys} of the type considered. Now it is
theoretically possible for the approximating pair {Xs, Ys} to be independent, yet have the approximated pair
{X,Y } not independent. But this is highly unlikely. For all practical purposes, we may consider {X,Y } to
be independent i� {Xs, Ys} is independent. When in doubt, consider a second pair of approximating simple
functions with more subdivision points. This decreases even further the likelihood of a false indication of
independence by the approximating random variables.

Example 9.15: An independent pair
Suppose X ∼ exponential (3) and Y ∼ exponential (2) with

fXY (t, u) = 6e−3te−2u = 6e−(3t+2u) t ≥ 0, u ≥ 0 (9.25)

Since e−12 ≈ 6× 10−6, we approximate X for values up to 4 and Y for values up to 6.
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tuappr

Enter~matrix~[a~b]~of~X-range~endpoints~~[0~4]

Enter~matrix~[c~d]~of~Y-range~endpoints~~[0~6]

Enter~number~of~X~approximation~points~~200

Enter~number~of~Y~approximation~points~~300

Enter~expression~for~joint~density~~6*exp(-(3*t~+~2*u))

Use~array~operations~on~X,~Y,~PX,~PY,~t,~u,~and~P

itest

Enter~matrix~of~joint~probabilities~~P

The~pair~{X,Y}~is~independent

Example 9.16: Test for independence
The pair {X, Y } has joint density fXY (t, u) = 4tu0 ≤ t ≤ 1, 0 ≤ u ≤ 1. It is easy enough to
determine the marginals in this case. By symmetry, they are the same.

fX (t) = 4t
∫ 1

0

u du = 2t, 0 ≤ t ≤ 1 (9.26)

so that fXY = fXfY which ensures the pair is independent. Consider the solution using tuappr
and itest.

tuappr

Enter~matrix~[a~b]~of~X-range~endpoints~~[0~1]

Enter~matrix~[c~d]~of~Y-range~endpoints~~[0~1]

Enter~number~of~X~approximation~points~~100

Enter~number~of~Y~approximation~points~~100

Enter~expression~for~joint~density~~4*t.*u

Use~array~operations~on~X,~Y,~PX,~PY,~t,~u,~and~P

itest

Enter~matrix~of~joint~probabilities~~P

The~pair~{X,Y}~is~independent

9.2 Problems on Independent Classes of Random Variables2

Exercise 9.2.1 (Solution on p. 247.)

The pair {X, Y } has the joint distribution (in m-�le npr08_06.m (Section 17.8.37: npr08_06)):

X = [−2.3 − 0.7 1.1 3.9 5.1] Y = [1.3 2.5 4.1 5.3] (9.27)

P =


0.0483 0.0357 0.0420 0.0399 0.0441

0.0437 0.0323 0.0380 0.0361 0.0399

0.0713 0.0527 0.0620 0.0609 0.0551

0.0667 0.0493 0.0580 0.0651 0.0589

 (9.28)

Determine whether or not the pair {X,Y } is independent.
2This content is available online at <http://cnx.org/content/m24298/1.5/>.
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Exercise 9.2.2 (Solution on p. 247.)

The pair {X, Y } has the joint distribution (in m-�le npr09_02.m (Section 17.8.41: npr09_02)):

X = [−3.9 − 1.7 1.5 2.8 4.1] Y = [−2 1 2.6 5.1] (9.29)

P =


0.0589 0.0342 0.0304 0.0456 0.0209

0.0961 0.0556 0.0498 0.0744 0.0341

0.0682 0.0398 0.0350 0.0528 0.0242

0.0868 0.0504 0.0448 0.0672 0.0308

 (9.30)

Determine whether or not the pair {X,Y } is independent.
Exercise 9.2.3 (Solution on p. 247.)

The pair {X, Y } has the joint distribution (in m-�le npr08_07.m (Section 17.8.38: npr08_07)):

P (X = t, Y = u) (9.31)

t = -3.1 -0.5 1.2 2.4 3.7 4.9

u = 7.5 0.0090 0.0396 0.0594 0.0216 0.0440 0.0203

4.1 0.0495 0 0.1089 0.0528 0.0363 0.0231

-2.0 0.0405 0.1320 0.0891 0.0324 0.0297 0.0189

-3.8 0.0510 0.0484 0.0726 0.0132 0 0.0077

Table 9.1

Determine whether or not the pair {X,Y } is independent.
For the distributions in Exercises 4-10 below

a. Determine whether or not the pair is independent.
b. Use a discrete approximation and an independence test to verify results in part (a).

Exercise 9.2.4 (Solution on p. 247.)

fXY (t, u) = 1/π on the circle with radius one, center at (0,0).

Exercise 9.2.5 (Solution on p. 248.)

fXY (t, u) = 1/2 on the square with vertices at (1, 0) , (2, 1) , (1, 2) , (0, 1) (see Exercise 11
(Exercise 8.3.11) from "Problems on Random Vectors and Joint Distributions").

Exercise 9.2.6 (Solution on p. 248.)

fXY (t, u) = 4t (1− u) for 0 ≤ t ≤ 1, 0 ≤ u ≤ 1 (see Exercise 12 (Exercise 8.3.12) from "Problems
on Random Vectors and Joint Distributions").

Exercise 9.2.7 (Solution on p. 248.)

fXY (t, u) = 1
8 (t+ u) for 0 ≤ t ≤ 2, 0 ≤ u ≤ 2 (see Exercise 13 (Exercise 8.3.13) from "Problems

on Random Vectors and Joint Distributions").

Exercise 9.2.8 (Solution on p. 249.)

fXY (t, u) = 4ue−2t for 0 ≤ t, 0 ≤ u ≤ 1 (see Exercise 14 (Exercise 8.3.14) from "Problems on
Random Vectors and Joint Distributions").

Exercise 9.2.9 (Solution on p. 249.)

fXY (t, u) = 12t2u on the parallelogram with vertices (−1, 0) , (0, 0) , (1, 1) , (0, 1)
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(see Exercise 16 (Exercise 8.3.16) from "Problems on Random Vectors and Joint Distributions").

Exercise 9.2.10 (Solution on p. 249.)

fXY (t, u) = 24
11 tu for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{1, 2 − t} (see Exercise 17 (Exercise 8.3.17) from

"Problems on Random Vectors and Joint Distributions").

Exercise 9.2.11 (Solution on p. 250.)

Two software companies, MicroWare and BusiCorp, are preparing a new business package in time
for a computer trade show 180 days in the future. They work independently. MicroWare has
anticipated completion time, in days, exponential (1/150). BusiCorp has time to completion, in
days, exponential (1/130). What is the probability both will complete on time; that at least one
will complete on time; that neither will complete on time?

Exercise 9.2.12 (Solution on p. 250.)

Eight similar units are put into operation at a given time. The time to failure (in hours) of each
unit is exponential (1/750). If the units fail independently, what is the probability that �ve or more
units will be operating at the end of 500 hours?

Exercise 9.2.13 (Solution on p. 250.)

The location of ten points along a line may be considered iid random variables with symmytric
triangular distribution on [1, 3]. What is the probability that three or more will lie within distance
1/2 of the point t = 2?
Exercise 9.2.14 (Solution on p. 250.)

A Christmas display has 200 lights. The times to failure are iid, exponential (1/10000). The
display is on continuously for 750 hours (approximately one month). Determine the probability the
number of lights which survive the entire period is at least 175, 180, 185, 190.

Exercise 9.2.15 (Solution on p. 250.)

A critical module in a network server has time to failure (in hours of machine time) exponential
(1/3000). The machine operates continuously, except for brief times for maintenance or repair. The
module is replaced routinely every 30 days (720 hours), unless failure occurs. If successive units
fail independently, what is the probability of no breakdown due to the module for one year?

Exercise 9.2.16 (Solution on p. 250.)

Joan is trying to decide which of two sales opportunities to take.

• In the �rst, she makes three independent calls. Payo�s are $570, $525, and $465, with
respective probabilities of 0.57, 0.41, and 0.35.

• In the second, she makes eight independent calls, with probability of success on each call
p = 0.57. She realizes $150 pro�t on each successful sale.

Let X be the net pro�t on the �rst alternative and Y be the net gain on the second. Assume the
pair {X, Y } is independent.

a. Which alternative o�ers the maximum possible gain?
b. Compare probabilities in the two schemes that total sales are at least $600, $900, $1000,

$1100.
c. What is the probability the second exceeds the �rst� i.e., what is P (Y > X)?

Exercise 9.2.17 (Solution on p. 251.)

Margaret considers �ve purchases in the amounts 5, 17, 21, 8, 15 dollars with respective probabilities
0.37, 0.22, 0.38, 0.81, 0.63. Anne contemplates six purchases in the amounts 8, 15, 12, 18, 15, 12
dollars. with respective probabilities 0.77, 0.52, 0.23, 0.41, 0.83, 0.58. Assume that all eleven
possible purchases form an independent class.

a. What is the probability Anne spends at least twice as much as Margaret?
b. What is the probability Anne spends at least $30 more than Margaret?
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Exercise 9.2.18 (Solution on p. 252.)

James is trying to decide which of two sales opportunities to take.

• In the �rst, he makes three independent calls. Payo�s are $310, $380, and $350, with respective
probabilities of 0.35, 0.41, and 0.57.

• In the second, he makes eight independent calls, with probability of success on each call
p = 0.57. He realizes $100 pro�t on each successful sale.

Let X be the net pro�t on the �rst alternative and Y be the net gain on the second. Assume the
pair {X, Y } is independent.

• Which alternative o�ers the maximum possible gain?
• What is the probability the second exceeds the �rst� i.e., what is P (Y > X)?
• Compare probabilities in the two schemes that total sales are at least $600, $700, $750.

Exercise 9.2.19 (Solution on p. 252.)

A residential College plans to raise money by selling �chances� on a board. There are two games:

Game 1: Pay $5 to play; win $20 with probability p1 = 0.05 (one in twenty)
Game 2: Pay $10 to play; win $30 with probability p2 = 0.2 (one in �ve)

Thirty chances are sold on Game 1 and �fty chances are sold on Game 2. If X and Y are the pro�ts
on the respective games, then

X = 30 · 5− 20N1 and Y = 50 · 10− 30N2 (9.32)

where N1, N2 are the numbers of winners on the respective games. It is reasonable to suppose N1 ∼
binomial (30, 0.05) and N2 ∼ binomial (50, 0.2). It is reasonable to suppose the pair {N1, N2} is
independent, so that {X, Y } is independent. Determine the marginal distributions for X and Y
then use icalc to obtain the joint distribution and the calculating matrices. The total pro�t for the
College is Z = X+Y . What is the probability the College will lose money? What is the probability
the pro�t will be $400 or more, less than $200, between $200 and $450?

Exercise 9.2.20 (Solution on p. 253.)

The class {X, Y, Z} of random variables is iid (independent, identically distributed) with common
distribution

X = [−5 − 1 3 4 7] PX = 0.01 ∗ [15 20 30 25 10] (9.33)

Let W = 3X − 4Y + 2Z. Determine the distribution for W and from this determine P (W > 0)
and P (−20 ≤W ≤ 10). Do this with icalc, then repeat with icalc3 and compare results.

Exercise 9.2.21 (Solution on p. 254.)

The class {A, B, C, D, E, F} is independent; the respective probabilites for these events are
{0.46, 0.27, 0.33, 0.47, 0.37, 0.41}. Consider the simple random variables

X = 3IA − 9IB + 4IC , Y = −2ID + 6IE + 2IF − 3, and Z = 2X − 3Y (9.34)

Determine P (Y > X), P (Z > 0), P (5 ≤ Z ≤ 25).
Exercise 9.2.22 (Solution on p. 254.)

Two players, Ronald and Mike, throw a pair of dice 30 times each. What is the probability Mike
throws more �sevens� than does Ronald?

Exercise 9.2.23 (Solution on p. 254.)

A class has �fteen boys and �fteen girls. They pair up and each tosses a coin 20 times. What is
the probability that at least eight girls throw more heads than their partners?

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



246 CHAPTER 9. INDEPENDENT CLASSES OF RANDOM VARIABLES

Exercise 9.2.24 (Solution on p. 254.)

Glenn makes �ve sales calls, with probabilities 0.37, 0.52, 0.48, 0.71, 0.63, of success on the
respective calls. Margaret makes four sales calls with probabilities 0.77, 0.82, 0.75, 0.91, of success
on the respective calls. Assume that all nine events form an independent class. If Glenn realizes
a pro�t of $18.00 on each sale and Margaret earns $20.00 on each sale, what is the probability
Margaret's gain is at least $10.00 more than Glenn's?

Exercise 9.2.25 (Solution on p. 255.)

Mike and Harry have a basketball shooting contest.

• Mike shoots 10 ordinary free throws, worth two points each, with probability 0.75 of success
on each shot.

• Harry shoots 12 �three point� shots, with probability 0.40 of success on each shot.

Let X,Y be the number of points scored by Mike and Harry, respectively. Determine P (X ≥ 15),
and P (Y ≥ 15) , P (X ≥ Y ).
Exercise 9.2.26 (Solution on p. 255.)

Martha has the choice of two games.

Game 1: Pay ten dollars for each �play.� If she wins, she receives $20, for a net gain of $10 on the
play; otherwise, she loses her $10. The probability of a win is 1/2, so the game is �fair.�

Game 2: Pay �ve dollars to play; receive $15 for a win. The probability of a win on any play is
1/3.

Martha has $100 to bet. She is trying to decide whether to play Game 1 ten times or Game 2
twenty times. Let W1 and W2 be the respective net winnings (payo� minus fee to play).

• Determine P (W2 ≥W1).
• Compare the two games further by calculating P (W1 > 0) and P (W2 > 0)

Which game seems preferable?

Exercise 9.2.27 (Solution on p. 256.)

Jim and Bill of the men's basketball team challenge women players Mary and Ellen to a free throw
contest. Each takes �ve free throws. Make the usual independence assumptions. Jim, Bill, Mary,
and Ellen have respective probabilities p = 0.82, 0.87, 0.80, and 0.85 of making each shot tried.
What is the probability Mary and Ellen make a total number of free throws at least as great as the
total made by the guys?
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Solutions to Exercises in Chapter 9

Solution to Exercise 9.2.1 (p. 242)

npr08_06 (Section~17.8.37: npr08_06)

Data are in X, Y, P

itest

Enter matrix of joint probabilities P

The pair {X,Y} is NOT independent

To see where the product rule fails, call for D

disp(D)

0 0 0 1 1

0 0 0 1 1

1 1 1 1 1

1 1 1 1 1

Solution to Exercise 9.2.2 (p. 243)

npr09_02 (Section~17.8.41: npr09_02)

Data are in X, Y, P

itest

Enter matrix of joint probabilities P

The pair {X,Y} is NOT independent

To see where the product rule fails, call for D

disp(D)

0 0 0 0 0

0 1 1 0 0

0 1 1 0 0

0 0 0 0 0

Solution to Exercise 9.2.3 (p. 243)

npr08_07 (Section~17.8.38: npr08_07)

Data are in X, Y, P

itest

Enter matrix of joint probabilities P

The pair {X,Y} is NOT independent

To see where the product rule fails, call for D

disp(D)

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

Solution to Exercise 9.2.4 (p. 243)
Not independent by the rectangle test.

tuappr

Enter matrix [a b] of X-range endpoints [-1 1]

Enter matrix [c d] of Y-range endpoints [-1 1]

Enter number of X approximation points 100
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Enter number of Y approximation points 100

Enter expression for joint density (1/pi)*(t.^2 + u.^2<=1)
Use array operations on X, Y, PX, PY, t, u, and P

itest

Enter matrix of joint probabilities P

The pair {X,Y} is NOT independent

To see where the product rule fails, call for D % Not practical-- too large

Solution to Exercise 9.2.5 (p. 243)
Not independent, by the rectangle test.

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density (1/2)*(u<=min(1+t,3-t)).* ...

(u>=max(1-t,t-1))
Use array operations on X, Y, PX, PY, t, u, and P

itest

Enter matrix of joint probabilities P

The pair {X,Y} is NOT independent

To see where the product rule fails, call for D

Solution to Exercise 9.2.6 (p. 243)
From the solution for Exercise 12 (Exercise 8.3.12) from "Problems on Random Vectors and Joint Distri-
butions" we have

fX (t) = 2t, 0 ≤ t ≤ 1, fY (u) = 2 (1− u) , 0 ≤ u ≤ 1, fXY = fXfY (9.35)

so the pair is independent.

tuappr

Enter matrix [a b] of X-range endpoints [0 1]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 100

Enter number of Y approximation points 100

Enter expression for joint density 4*t.*(1-u)

Use array operations on X, Y, PX, PY, t, u, and P

itest

Enter matrix of joint probabilities P

The pair {X,Y} is independent

Solution to Exercise 9.2.7 (p. 243)
From the solution of Exercise 13 (Exercise 8.3.13) from "Problems on Random Vectors and Joint Distribu-
tions" we have

fX (t) = fY (t) =
1
4

(t+ 1) , 0 ≤ t ≤ 2 (9.36)

so fXY 6= fXfY which implies the pair is not independent.
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tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 100

Enter number of Y approximation points 100

Enter expression for joint density (1/8)*(t+u)

Use array operations on X, Y, PX, PY, t, u, and P

itest

Enter matrix of joint probabilities P

The pair {X,Y} is NOT independent

To see where the product rule fails, call for D

Solution to Exercise 9.2.8 (p. 243)
From the solution for Exercise 14 (Exercise 8.3.14) from "Problems on Random Vectors and Joint Distri-
bution" we have

fX (t) = 2e−2t, 0 ≤ t, fY (u) = 2u, 0 ≤ u ≤ 1 (9.37)

so that fXY = fXfY and the pair is independent.

tuappr

Enter matrix [a b] of X-range endpoints [0 5]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 500

Enter number of Y approximation points 100

Enter expression for joint density 4*u.*exp(-2*t)

Use array operations on X, Y, PX, PY, t, u, and P

itest

Enter matrix of joint probabilities P

The pair {X,Y} is independent % Product rule holds to within 10^{-9}

Solution to Exercise 9.2.9 (p. 243)
Not independent by the rectangle test.

tuappr

Enter matrix [a b] of X-range endpoints [-1 1]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 200

Enter number of Y approximation points 100

Enter expression for joint density 12*t.^2.*u.*(u<=min(t+1,1)).* ...

(u>=max(0,t))
Use array operations on X, Y, PX, PY, t, u, and P

itest

Enter matrix of joint probabilities P

The pair {X,Y} is NOT independent

To see where the product rule fails, call for D

Solution to Exercise 9.2.10 (p. 244)
By the rectangle test, the pair is not independent.

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 200
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Enter number of Y approximation points 100

Enter expression for joint density (24/11)*t.*u.*(u<=min(1,2-t))
Use array operations on X, Y, PX, PY, t, u, and P

itest

Enter matrix of joint probabilities P

The pair {X,Y} is NOT independent

To see where the product rule fails, call for D

Solution to Exercise 9.2.11 (p. 244)

p1 = 1 - exp(-180/150)

p1 = 0.6988

p2 = 1 - exp(-180/130)

p2 = 0.7496

Pboth = p1*p2

Pboth = 0.5238

Poneormore = 1 - (1 - p1)*(1 - p2) % 1 - Pneither

Poneormore = 0.9246

Pneither = (1 - p1)*(1 - p2)

Pneither = 0.0754

Solution to Exercise 9.2.12 (p. 244)

p = exp(-500/750); % Probability any one will survive

P = cbinom(8,p,5) % Probability five or more will survive

P = 0.3930

Solution to Exercise 9.2.13 (p. 244)
Geometrically, p = 3/4, so that P = cbinom(10,p,3) = 0.9996.
Solution to Exercise 9.2.14 (p. 244)

p = exp(-750/10000)

p = 0.9277

k = 175:5:190;

P = cbinom(200,p,k);

disp([k;P]')

175.0000 0.9973

180.0000 0.9449

185.0000 0.6263

190.0000 0.1381

Solution to Exercise 9.2.15 (p. 244)

p = exp(-720/3000)

p = 0.7866 % Probability any unit survives

P = p^12 % Probability all twelve survive (assuming 12 periods)

P = 0.056

Solution to Exercise 9.2.16 (p. 244)
X = 570IA + 525IB + 465IC with [P (A)P (B)P (C)] = [0.570.410.35]. Y = 150S, where S ∼ binomial (8,
0.57).

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



251

c = [570 525 465 0];

pm = minprob([0.57 0.41 0.35]);

canonic % Distribution for X

Enter row vector of coefficients c

Enter row vector of minterm probabilities pm

Use row matrices X and PX for calculations

Call for XDBN to view the distribution

Y = 150*[0:8]; % Distribution for Y

PY = ibinom(8,0.57,0:8);

icalc % Joint distribution

Enter row matrix of X-values X

Enter row matrix of Y-values Y

Enter X probabilities PX

Enter Y probabilities PY

Use array operations on matrices X, Y, PX, PY, t, u, and P

xmax = max(X)

xmax = 1560

ymax = max(Y)

ymax = 1200

k = [600 900 1000 1100];

px = zeros(1,4);

for i = 1:4

px(i) = (X>=k(i))*PX';
end

py = zeros(1,4);

for i = 1:4

py(i) = (Y>=k(i))*PY';
end

disp([px;py]')

0.4131 0.7765

0.4131 0.2560

0.3514 0.0784

0.0818 0.0111

M = u > t;

PM = total(M.*P)

PM = 0.5081 % P(Y>X)

Solution to Exercise 9.2.17 (p. 244)

cx = [5 17 21 8 15 0];

pmx = minprob(0.01*[37 22 38 81 63]);

cy = [8 15 12 18 15 12 0];

pmy = minprob(0.01*[77 52 23 41 83 58]);

[X,PX] = canonicf(cx,pmx);

[Y,PY] = canonicf(cy,pmy);

icalc

Enter row matrix of X-values X

Enter row matrix of Y-values Y

Enter X probabilities PX
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Enter Y probabilities PY

Use array operations on matrices X, Y, PX, PY, t, u, and P

M1 = u >= 2*t;

PM1 = total(M1.*P)

PM1 = 0.3448

M2 = u - t >=30;
PM2 = total(M2.*P)

PM2 = 0.2431

Solution to Exercise 9.2.18 (p. 245)

cx = [310 380 350 0];

pmx = minprob(0.01*[35 41 57]);

Y = 100*[0:8];

PY = ibinom(8,0.57,0:8);

canonic

Enter row vector of coefficients cx

Enter row vector of minterm probabilities pmx

Use row matrices X and PX for calculations

Call for XDBN to view the distribution

icalc

Enter row matrix of X-values X

Enter row matrix of Y-values Y

Enter X probabilities PX

Enter Y probabilities PY

Use array operations on matrices X, Y, PX, PY, t, u, and P

xmax = max(X)

xmax = 1040

ymax = max(Y)

ymax = 800

PYgX = total((u>t).*P)
PYgX = 0.5081

k = [600 700 750];

px = zeros(1,3);

py = zeros(1,3);

for i = 1:3

px(i) = (X>=k(i))*PX';
end

for i = 1:3

py(i) = (Y>=k(i))*PY';
end

disp([px;py]')

0.4131 0.2560

0.2337 0.0784

0.0818 0.0111

Solution to Exercise 9.2.19 (p. 245)

N1 = 0:30;

PN1 = ibinom(30,0.05,0:30);

x = 150 - 20*N1;
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[X,PX] = csort(x,PN1);

N2 = 0:50;

PN2 = ibinom(50,0.2,0:50);

y = 500 - 30*N2;

[Y,PY] = csort(y,PN2);

icalc

Enter row matrix of X-values X

Enter row matrix of Y-values Y

Enter X probabilities PX

Enter Y probabilities PY

Use array operations on matrices X, Y, PX, PY, t, u, and P

G = t + u;

Mlose = G < 0;

Mm400 = G >= 400;

Ml200 = G < 200;

M200_450 = (G>=200)&(G<=450);
Plose = total(Mlose.*P)

Plose = 3.5249e-04

Pm400 = total(Mm400.*P)

Pm400 = 0.1957

Pl200 = total(Ml200.*P)

Pl200 =

0.0828

P200_450 = total(M200_450.*P)

P200_450 = 0.8636

Solution to Exercise 9.2.20 (p. 245)
Since icalc uses X and PX in its output, we avoid a renaming problem by using x and px for data vectors
X and PX.

x = [-5 -1 3 4 7];

px = 0.01*[15 20 30 25 10];

icalc

Enter row matrix of X-values 3*x

Enter row matrix of Y-values -4*x

Enter X probabilities px

Enter Y probabilities px

Use array operations on matrices X, Y, PX, PY, t, u, and P

a = t + u;

[V,PV] = csort(a,P);

icalc

Enter row matrix of X-values V

Enter row matrix of Y-values 2*x

Enter X probabilities PV

Enter Y probabilities px

Use array operations on matrices X, Y, PX, PY, t, u, and P

b = t + u;

[W,PW] = csort(b,P);

P1 = (W>0)*PW'
P1 = 0.5300

P2 = ((-20<=W)&(W<=10))*PW'
P2 = 0.5514

icalc3 % Alternate using icalc3
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Enter row matrix of X-values x

Enter row matrix of Y-values x

Enter row matrix of Z-values x

Enter X probabilities px

Enter Y probabilities px

Enter Z probabilities px

Use array operations on matrices X, Y, Z,

PX, PY, PZ, t, u, v, and P

a = 3*t - 4*u + 2*v;

[W,PW] = csort(a,P);

P1 = (W>0)*PW'
P1 = 0.5300

P2 = ((-20<=W)&(W<=10))*PW'
P2 = 0.5514

Solution to Exercise 9.2.21 (p. 245)

cx = [3 -9 4 0];

pmx = minprob(0.01*[42 27 33]);

cy = [-2 6 2 -3];

pmy = minprob(0.01*[47 37 41]);

[X,PX] = canonicf(cx,pmx);

[Y,PY] = canonicf(cy,pmy);

icalc

Enter row matrix of X-values X

Enter row matrix of Y-values Y

Enter X probabilities PX

Enter Y probabilities PY

Use array operations on matrices X, Y, PX, PY, t, u, and P

G = 2*t - 3*u;

[Z,PZ] = csort(G,P);

PYgX = total((u>t).*P)
PYgX = 0.3752

PZpos = (Z>0)*PZ'
PZpos = 0.5654

P5Z25 = ((5<=Z)&(Z<=25))*PZ'
P5Z25 = 0.4745

Solution to Exercise 9.2.22 (p. 245)
P = (ibinom(30,1/6,0:29))*(cbinom(30,1/6,1:30))' = 0.4307

Solution to Exercise 9.2.23 (p. 245)

pg = (ibinom(20,1/2,0:19))*(cbinom(20,1/2,1:20))'

pg = 0.4373 % Probability each girl throws more

P = cbinom(15,pg,8)

P = 0.3100 % Probability eight or more girls throw more

Solution to Exercise 9.2.24 (p. 246)

cg = [18*ones(1,5) 0];

cm = [20*ones(1,4) 0];
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pmg = minprob(0.01*[37 52 48 71 63]);

pmm = minprob(0.01*[77 82 75 91]);

[G,PG] = canonicf(cg,pmg);

[M,PM] = canonicf(cm,pmm);

icalc

Enter row matrix of X-values G

Enter row matrix of Y-values M

Enter X probabilities PG

Enter Y probabilities PM

Use array operations on matrices X, Y, PX, PY, t, u, and P

H = u-t>=10;
p1 = total(H.*P)

p1 = 0.5197

Solution to Exercise 9.2.25 (p. 246)

X = 2*[0:10];

PX = ibinom(10,0.75,0:10);

Y = 3*[0:12];

PY = ibinom(12,0.40,0:12);

icalc

Enter row matrix of X-values X

Enter row matrix of Y-values Y

Enter X probabilities PX

Enter Y probabilities PY

Use array operations on matrices X, Y, PX, PY, t, u, and P

PX15 = (X>=15)*PX'
PX15 = 0.5256

PY15 = (Y>=15)*PY'
PY15 = 0.5618

G = t>=u;
PG = total(G.*P)

PG = 0.5811

Solution to Exercise 9.2.26 (p. 246)

W1 = 20*[0:10] - 100;

PW1 = ibinom(10,1/2,0:10);

W2 = 15*[0:20] - 100;

PW2 = ibinom(20,1/3,0:20);

P1pos = (W1>0)*PW1'
P1pos = 0.3770

P2pos = (W2>0)*PW2'
P2pos = 0.5207

icalc

Enter row matrix of X-values W1

Enter row matrix of Y-values W2

Enter X probabilities PW1

Enter Y probabilities PW2

Use array operations on matrices X, Y, PX, PY, t, u, and P

G = u >= t;
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PG = total(G.*P)

PG = 0.5182

Solution to Exercise 9.2.27 (p. 246)

x = 0:5;

PJ = ibinom(5,0.82,x);

PB = ibinom(5,0.87,x);

PM = ibinom(5,0.80,x);

PE = ibinom(5,0.85,x);

icalc

Enter row matrix of X-values x

Enter row matrix of Y-values x

Enter X probabilities PJ

Enter Y probabilities PB

Use array operations on matrices X, Y, PX, PY, t, u, and P

H = t+u;

[Tm,Pm] = csort(H,P);

icalc

Enter row matrix of X-values x

Enter row matrix of Y-values x

Enter X probabilities PM

Enter Y probabilities PE

Use array operations on matrices X, Y, PX, PY, t, u, and P

G = t+u;

[Tw,Pw] = csort(G,P);

icalc

Enter row matrix of X-values Tm

Enter row matrix of Y-values Tw

Enter X probabilities Pm

Enter Y probabilities Pw

Use array operations on matrices X, Y, PX, PY, t, u, and P

Gw = u>=t;
PGw = total(Gw.*P)

PGw = 0.5746

icalc4 % Alternate using icalc4

Enter row matrix of X-values x

Enter row matrix of Y-values x

Enter row matrix of Z-values x

Enter row matrix of W-values x

Enter X probabilities PJ

Enter Y probabilities PB

Enter Z probabilities PM

Enter W probabilities PE

Use array operations on matrices X, Y, Z,W

PX, PY, PZ, PW t, u, v, w, and P

H = v+w >= t+u;

PH = total(H.*P)

PH = 0.5746
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Chapter 10

Functions of Random Variables

10.1 Functions of a Random Variable1

Introduction
Frequently, we observe a value of some random variable, but are really interested in a value derived

from this by a function rule. If X is a random variable and g is a reasonable function (technically, a Borel
function), then Z = g (X) is a new random variable which has the value g (t) for any ω such that X (ω) = t.
Thus Z (ω) = g (X (ω)).

10.1.1 The problem; an approach

We consider, �rst, functions of a single random variable. A wide variety of functions are utilized in practice.

Example 10.1: A quality control problem
In a quality control check on a production line for ball bearings it may be easier to weigh the balls
than measure the diameters. If we can assume true spherical shape and w is the weight, then
diameter is kw1/3, where k is a factor depending upon the formula for the volume of a sphere, the
units of measurement, and the density of the steel. Thus, if X is the weight of the sampled ball,
the desired random variable is D = kX1/3.

Example 10.2: Price breaks
The cultural committee of a student organization has arranged a special deal for tickets to a
concert. The agreement is that the organization will purchase ten tickets at $20 each (regardless
of the number of individual buyers). Additional tickets are available according to the following
schedule:

• 11-20, $18 each
• 21-30, $16 each
• 31-50, $15 each
• 51-100, $13 each

If the number of purchasers is a random variable X, the total cost (in dollars) is a random quantity
Z = g (X) described by

g (X) = 200 + 18IM1 (X) (X − 10) + (16− 18) IM2 (X) (X − 20) (10.1)

+ (15− 16) IM3 (X) (X − 30) + (13− 15) IM4 (X) (X − 50) (10.2)

1This content is available online at <http://cnx.org/content/m23329/1.6/>.
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where M1 = [10, ∞) , M2 = [20, ∞) , M3 = [30, ∞) , M4 = [50, ∞) (10.3)

The function rule is more complicated than in Example 10.1 (A quality control problem), but the
essential problem is the same.

The problem
If X is a random variable, then Z = g (X) is a new random variable. Suppose we have the distribution

for X. How can we determine P (Z ∈M), the probability Z takes a value in the set M?
An approach to a solution
We consider two equivalent approaches

a. To �nd P (X ∈M).

a. Mapping approach. Simply �nd the amount of probability mass mapped into the set M by the
random variable X.

• In the absolutely continuous case, calculate
∫
M
fX .

• In the discrete case, identify those values ti of X which are in the setM and add the associated
probabilities.

b. Discrete alternative. Consider each value ti of X. Select those which meet the de�ning conditions
for M and add the associated probabilities. This is the approach we use in the MATLAB calcu-
lations. Note that it is not necessary to describe geometrically the set M ; merely use the de�ning
conditions.

b. To �nd P (g (X) ∈M).

a. Mapping approach. Determine the set N of all those t which are mapped into M by the function
g. Now if X (ω) ∈ N , then g (X (ω)) ∈M , and if g (X (ω)) ∈M , then X (ω) ∈ N . Hence

{ω : g (X (ω)) ∈M} = {ω : X (ω) ∈ N} (10.4)

Since these are the same event, they must have the same probability. Once N is identi�ed,
determine P (X ∈ N) in the usual manner (see part a, above).

b. Discrete alternative. For each possible value ti of X, determine whether g (ti) meets the de�ning
condition for M. Select those ti which do and add the associated probabilities.

� �
Remark. The set N in the mapping approach is called the inverse image N = g−1 (M).

Example 10.3: A discrete example
Suppose X has values -2, 0, 1, 3, 6, with respective probabilities 0.2, 0.1, 0.2, 0.3 0.2.

Consider Z = g (X) = (X + 1) (X − 4). Determine P (Z > 0).
SOLUTION
First solution. The mapping approach
g (t) = (t+ 1) (t− 4). N = {t : g (t) > 0} is the set of points to the left of −1 or to the right of

4. The X-values −2 and 6 lie in this set. Hence

P (g (X) > 0) = P (X = −2) + P (X = 6) = 0.2 + 0.2 = 0.4 (10.5)

Second solution. The discrete alternative

X = -2 0 1 3 6

PX = 0.2 0.1 0.2 0.3 0.2

Z = 6 -4 -6 -4 14

Z > 0 1 0 0 0 1
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Table 10.1

Picking out and adding the indicated probabilities, we have

P (Z > 0) = 0.2 + 0.2 = 0.4 (10.6)

In this case (and often for �hand calculations�) the mapping approach requires less calculation.
However, for MATLAB calculations (as we show below), the discrete alternative is more readily
implemented.

Example 10.4: An absolutely continuous example
Suppose X ∼ uniform [−3, 7]. Then fX (t) = 0.1,−3 ≤ t ≤ 7 (and zero elsewhere). Let

Z = g (X) = (X + 1) (X − 4) (10.7)

Determine P (Z > 0).
SOLUTION
First we determine N = {t : g (t) > 0}. As in Example 10.3 (A discrete example), g (t) =

(t+ 1) (t− 4) > 0 for t < − 1 or t > 4. Because of the uniform distribution, the integral of the
density over any subinterval of [−3, 7] is 0.1 times the length of that subinterval. Thus, the desired
probability is

P (g (X) > 0) = 0.1 [(−1− (−3)) + (7− 4)] = 0.5 (10.8)

We consider, next, some important examples.

Example 10.5: The normal distribution and standardized normal distribution
To show that if X ∼ N

(
µ, σ2

)
then

Z = g (X) =
X − µ
σ

∼ N (0, 1) (10.9)

VERIFICATION
We wish to show the denity function for Z is

φ (t) =
1√
2π
e−t

2/2 (10.10)

Now

g (t) =
t− µ
σ
≤ v i� t ≤ σv + µ (10.11)

Hence, for given M = (−∞, v] the inverse image is N = (−∞, σv + µ], so that

FZ (v) = P (Z ≤ v) = P (Z ∈M) = P (X ∈ N) = P (X ≤ σv + µ) = FX (σv + µ) (10.12)

Since the density is the derivative of the distribution function,

fZ (v) = F '
Z (v) = F '

X (σv + µ)σ = σfX (σv + µ) (10.13)

Thus

fZ (v) =
σ

σ
√

2π
exp

[
−1

2

(
σv + µ− µ

σ

)2

=
1√
2π
e−v

2/2 = φ (v) (10.14)

We conclude that Z ∼ N (0, 1)
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Example 10.6: A�ne functions
Suppose X has distribution function FX. If it is absolutely continuous, the corresponding density is
fX. Consider Z = aX + b (a 6= 0). Here g (t) = at+ b, an a�ne function (linear plus a constant).
Determine the distribution function for Z (and the density in the absolutely continuous case).

SOLUTION

FZ (v) = P (Z ≤ v) = P (aX + b ≤ v) (10.15)

There are two cases

• a > 0:

FZ (v) = P

(
X ≤ v − b

a

)
= FX

(
v − b
a

)
(10.16)

• a < 0

FZ (v) = P

(
X ≥ v − b

a

)
= P

(
X >

v − b
a

)
+ P

(
X =

v − b
a

)
(10.17)

So that

FZ (v) = 1− FX
(
v − b
a

)
+ P

(
X =

v − b
a

)
(10.18)

For the absolutely continuous case, P
(
X = v−b

a

)
= 0, and by di�erentiation

• for a > 0 fZ (v) = 1
afX

(
v−b
a

)
• for a < 0 fZ (v) = − 1

afX
(
v−b
a

)
Since for a < 0, −a = |a|, the two cases may be combined into one formula.

fZ (v) =
1
|a|
fX

(
v − b
a

)
(10.19)

Example 10.7: Completion of normal and standardized normal relationship
Suppose Z ∼ N (0, 1). Show that X = σZ + µ (σ > 0) is N

(
µ, σ2

)
.

VERIFICATION
Use of the result of Example 10.6 (A�ne functions) on a�ne functions shows that

fX (t) =
1
σ
φ

(
t− µ
σ

)
=

1
σ
√

2π
exp

[
−1

2

(
t− µ
σ

)2
]

(10.20)

Example 10.8: Fractional power of a nonnegative random variable
Suppose X ≥ 0 and Z = g (X) = X1/a for a > 1. Since for t ≥ 0, t1/a is increasing, we have
0 ≤ t1/a ≤ v i� 0 ≤ t ≤ va. Thus

FZ (v) = P (Z ≤ v) = P (X ≤ va) = FX (va) (10.21)

In the absolutely continuous case

fZ (v) = F '
Z (v) = fX (va) ava−1 (10.22)

Example 10.9: Fractional power of an exponentially distributed random variable
Suppose X ∼ exponential (λ). Then Z = X1/a ∼ Weibull (a, λ, 0).
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According to the result of Example 10.8 (Fractional power of a nonnegative random variable),

FZ (t) = FX (ta) = 1− e−λt
a

(10.23)

which is the distribution function for Z ∼ Weibull (a, λ, 0).

Example 10.10: A simple approximation as a function of X
If X is a random variable, a simple function approximation may be constructed (see Distribution
Approximations). We limit our discussion to the bounded case, in which the range of X is limited to
a bounded interval I = [a, b]. Suppose I is partitioned into n subintervals by points ti, 1 ≤ i ≤ n−1,
with a = t0 and b = tn. LetMi = [ti−1, ti) be the ith subinterval, 1 ≤ i ≤ n−1 andMn = [tn−1, tn].
Let Ei = X−1 (Mi) be the set of points mapped into Mi by X. Then the Ei form a partition of the
basic space Ω. For the given subdivision, we form a simple random variable Xs as follows. In each
subinterval, pick a point si, ti−1 ≤ si < ti. The simple random variable

Xs =
n∑
i=1

siIEi (10.24)

approximates X to within the length of the largest subinterval Mi. Now IEi = IMi
(X), since

IEi (ω) = 1 i� X (ω) ∈Mi i� IMi
(X (ω)) = 1. We may thus write

Xs =
n∑
i=1

siIMi
(X) , a function of X (10.25)

10.1.2 Use of MATLAB on simple random variables

For simple random variables, we use the discrete alternative approach, since this may be implemented easily
with MATLAB. Suppose the distribution for X is expressed in the row vectors X and PX.

• We perform array operations on vector X to obtain

G = [g (t1) g (t2) · · · g (tn)] (10.26)

• We use relational and logical operations on G to obtain a matrix M which has ones for those ti (values
of X) such that g (ti) satis�es the desired condition (and zeros elsewhere).

• The zero-one matrix M is used to select the the corresponding pi = P (X = ti) and sum them by the
taking the dot product of M and PX.

Example 10.11: Basic calculations for a function of a simple random variable

X = -5:10; % Values of X

PX = ibinom(15,0.6,0:15); % Probabilities for X

G = (X + 6).*(X - 1).*(X - 8); % Array operations on X matrix to get G = g(X)

M = (G > - 100)&(G < 130); % Relational and logical operations on G

PM = M*PX' % Sum of probabilities for selected values

PM = 0.4800

disp([X;G;M;PX]') % Display of various matrices (as columns)

-5.0000 78.0000 1.0000 0.0000

-4.0000 120.0000 1.0000 0.0000

-3.0000 132.0000 0 0.0003
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-2.0000 120.0000 1.0000 0.0016

-1.0000 90.0000 1.0000 0.0074

0 48.0000 1.0000 0.0245

1.0000 0 1.0000 0.0612

2.0000 -48.0000 1.0000 0.1181

3.0000 -90.0000 1.0000 0.1771

4.0000 -120.0000 0 0.2066

5.0000 -132.0000 0 0.1859

6.0000 -120.0000 0 0.1268

7.0000 -78.0000 1.0000 0.0634

8.0000 0 1.0000 0.0219

9.0000 120.0000 1.0000 0.0047

10.0000 288.0000 0 0.0005

[Z,PZ] = csort(G,PX); % Sorting and consolidating to obtain

disp([Z;PZ]') % the distribution for Z = g(X)

-132.0000 0.1859

-120.0000 0.3334

-90.0000 0.1771

-78.0000 0.0634

-48.0000 0.1181

0 0.0832

48.0000 0.0245

78.0000 0.0000

90.0000 0.0074

120.0000 0.0064

132.0000 0.0003

288.0000 0.0005

P1 = (G<-120)*PX ' % Further calculation using G, PX

P1 = 0.1859

p1 = (Z<-120)*PZ' % Alternate using Z, PZ

p1 = 0.1859

Example 10.12
X = 10IA + 18IB + 10IC with {A,B,C} independent and P = [0.60.30.5].

We calculate the distribution for X, then determine the distribution for

Z = X1/2 −X + 50 (10.27)

c = [10 18 10 0];

pm = minprob(0.1*[6 3 5]);

canonic

Enter row vector of coefficients c

Enter row vector of minterm probabilities pm

Use row matrices X and PX for calculations

Call for XDBN to view the distribution

disp(XDBN)

0 0.1400

10.0000 0.3500

18.0000 0.0600

20.0000 0.2100
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28.0000 0.1500

38.0000 0.0900

G = sqrt(X) - X + 50; % Formation of G matrix

[Z,PZ] = csort(G,PX); % Sorts distinct values of g(X)

disp([Z;PZ]') % consolidates probabilities

18.1644 0.0900

27.2915 0.1500

34.4721 0.2100

36.2426 0.0600

43.1623 0.3500

50.0000 0.1400

M = (Z < 20)|(Z >= 40) % Direct use of Z distribution

M = 1 0 0 0 1 1

PZM = M*PZ'

PZM = 0.5800

Remark. Note that with the m-function csort, we may name the output as desired.

Example 10.13: Continuation of Example 10.12, above.

H = 2*X.^2 - 3*X + 1;

[W,PW] = csort(H,PX)

W = 1 171 595 741 1485 2775

PW = 0.1400 0.3500 0.0600 0.2100 0.1500 0.0900

Example 10.14: A discrete approximation
Suppose X has density function fX (t) = 1

2

(
3t2 + 2t

)
for 0 ≤ t ≤ 1. Then FX (t) = 1

2

(
t3 + t2

)
. Let

Z = X1/2. We may use the approximation m-procedure tappr to obtain an approximate discrete
distribution. Then we work with the approximating random variable as a simple random variable.
Suppose we want P (Z ≤ 0.8). Now Z ≤ 0.8 i� X ≤ 0.82 = 0.64. The desired probability may be
calculated to be

P (Z ≤ 0.8) = FX (0.64) =
(
0.643 + 0.642

)
/2 = 0.3359 (10.28)

Using the approximation procedure, we have

tappr

Enter matrix [a b] of x-range endpoints [0 1]

Enter number of x approximation points 200

Enter density as a function of t (3*t.^2 + 2*t)/2

Use row matrices X and PX as in the simple case

G = X.^(1/2);

M = G <= 0.8;

PM = M*PX'

PM = 0.3359 % Agrees quite closely with the theoretical

10.2 Function of Random Vectors2

Introduction
2This content is available online at <http://cnx.org/content/m23332/1.6/>.
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The general mapping approach for a single random variable and the discrete alternative extends to
functions of more than one variable. It is convenient to consider the case of two random variables, considered
jointly. Extensions to more than two random variables are made similarly, although the details are more
complicated.

10.2.1 The general approach extended to a pair

Consider a pair {X,Y } having joint distribution on the plane. The approach is analogous to that for a single
random variable with distribution on the line.

a. To �nd P ((X, Y ) ∈ Q).

a. Mapping approach. Simply �nd the amount of probability mass mapped into the set Q on the
plane by the random vector W = (X, Y ).
• In the absolutely continuous case, calculate

∫ ∫
Q
fXY .

• In the discrete case, identify those vector values (ti, uj) of (X, Y ) which are in the set Q and
add the associated probabilities.

b. Discrete alternative. Consider each vector value (ti, uj) of (X, Y ). Select those which meet the
de�ning conditions for Q and add the associated probabilities. This is the approach we use in the
MATLAB calculations. It does not require that we describe geometrically the region Q.

b. To �nd P (g (X,Y ) ∈M). g is real valued and M is a subset the real line.

a. Mapping approach. Determine the set Q of all those (t, u) which are mapped into M by the
function g. Now

W (ω) = (X (ω) , Y (ω)) ∈ Qi�g ((X (ω) , Y (ω)) ∈MHence(10.29)

{ω : g (X (ω) , Y (ω)) ∈M} = {ω : (X (ω) , Y (ω)) ∈ Q} (10.30)

Since these are the same event, they must have the same probability. Once Q is identi�ed on the
plane, determine P ((X,Y ) ∈ Q) in the usual manner (see part a, above).

b. Discrete alternative. For each possible vector value (ti, uj) of (X,Y ), determine whether g (ti, uj)
meets the de�ning condition for M. Select those (ti, uj) which do and add the associated proba-
bilities.

We illustrate the mapping approach in the absolutely continuous case. A key element in the approach is
�nding the set Q on the plane such that g (X, Y ) ∈ M i� (X, Y ) ∈ Q. The desired probability is obtained
by integrating fXY over Q.
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Figure 10.1: Distribution for Example 10.15 (A numerical example).

Example 10.15: A numerical example
The pair {X,Y } has joint density fXY (t, u) = 6

37 (t+ 2u) on the region bounded by t = 0, t = 2,
u = 0, u = max{1, t} (see Figure 1). Determine P (Y ≤ X) = P (X − Y ≥ 0). Here g (t, u) = t− u
and M = [0,∞). Now Q = {(t, u) : t − u ≥ 0} = {(t, u) : u ≤ t} which is the region on the plane
on or below the line u = t. Examination of the �gure shows that for this region, fXY is di�erent
from zero on the triangle bounded by t = 2, u = 0, and u = t. The desired probability is

P (Y ≤ X) =
∫ 2

0

∫ t

0

6
37

(t+ 2u) du dt = 32/37 ≈ 0.8649 (10.31)

Example 10.16: The density for the sum X + Y
Suppose the pair {X, Y } has joint density fXY . Determine the density for

Z = X + Y (10.32)

SOLUTION

FZ (v) = P (X + Y ≤ v) = P ((X, Y ) ∈ Qv) where Qv = {(t, u) : t + u ≤ v} =
{(t, u) : u ≤ v − t}

(10.33)

For any �xed v, the region Qv is the portion of the plane on or below the line u = v − t (see
Figure 10.2). Thus

FZ (v) =
∫ ∫

Qv

fXY =
∫ ∞
−∞

∫ v−t

−∞
fXY (t, u) du dt (10.34)
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Di�erentiating with the aid of the fundamental theorem of calculus, we get

fZ (v) =
∫ ∞
∞

fXY (t, v − t) dt (10.35)

This integral expresssion is known as a convolution integral.

Figure 10.2: Region Qv for X + Y ≤ v.

Example 10.17: Sum of joint uniform random variables
Suppose the pair {X, Y } has joint uniform density on the unit square 0 ≤ t ≤ 1, 0 ≤ u ≤ 1.
Determine the density for Z = X + Y .

SOLUTION
FZ (v) is the probability in the region Qv : u ≤ v − t. Now PXY (Qv) = 1 − PXY (Qcv), where

the complementary set Qv
c is the set of points above the line. As Figure 3 shows, for v ≤ 1, the

part of Qv which has probability mass is the lower shaded triangular region on the �gure, which has
area (and hence probability) v2/2. For v > 1, the complementary region Qv

c is the upper shaded

region. It has area (2− v)2
/2. so that in this case,

PXY (Qv) = 1− (2− v)2
/2. Thus,

FZ (v) =
v2

2
for 0 ≤ v ≤ 1 and FZ (v) = 1− (2− v)2

2
for 1 ≤ v ≤ 2 (10.36)

Di�erentiation shows that Z has the symmetric triangular distribution on [0, 2], since

fZ (v) = v for 0 ≤ v ≤ 1 and fZ (v) = (2− v) for 1 ≤ v ≤ 2 (10.37)

With the use of indicator functions, these may be combined into a single expression

fZ (v) = I[0,1] (v) v + I(1,2] (v) (2− v) (10.38)
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Figure 10.3: Geometry for sum of joint uniform random variables.

ALTERNATE SOLUTION
Since fXY (t, u) = I[0, 1] (t) I[0, 1] (u), we have fXY (t, v − t) = I[0, 1] (t) I[0, 1] (v − t). Now 0 ≤

v − t ≤ 1 i� v − 1 ≤ t ≤ v, so that

fXY (t, v − t) = I[0, 1] (v) I[0, v] (t) + I(1, 2] (v) I[v−1, 1] (t) (10.39)

Integration with respect to t gives the result above.

Independence of functions of independent random variables
Suppose {X,Y } is an independent pair. Let Z = g (X) ,W = h (Y ). Since

Z−1 (M) = X−1
[
g−1 (M)

]
and W−1 (N) = Y −1

[
h−1 (N) (10.40)

the pair {Z−1 (M) , W−1 (N)} is independent for each pair {M, N}. Thus, the pair {Z, W} is independent.
If {X,Y } is an independent pair and Z = g (X) , W = h (Y ), then the pair {Z,W} is independent.

However, if Z = g (X,Y ) and W = h (X,Y ), then in general {Z,W} is not independent. This is illustrated
for simple random variables with the aid of the m-procedure jointzw at the end of the next section.

Example 10.18: Independence of simple approximations to an independent pair
Suppose {X, Y } is an independent pair with simple approximations Xs and Ys as described in
Distribution Approximations.

Xs =
n∑
i=1

tiIEi =
n∑
i=1

tiIMi (X) and Ys =
m∑
j=1

ujIFj =
m∑
j=1

ujINj (Y ) (10.41)

As functions of X and Y, respectively, the pair {Xs, Ys} is independent. Also each pair
{IMi

(X) , INj (Y )} is independent.
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10.2.2 Use of MATLAB on pairs of simple random variables

In the single-variable case, we use array operations on the values of X to determine a matrix of values of
g (X). In the two-variable case, we must use array operations on the calculating matrices t and u to obtain
a matrix G whose elements are g (ti, uj). To obtain the distribution for Z = g (X, Y ), we may use the
m-function csort on G and the joint probability matrix P. A �rst step, then, is the use of jcalc or icalc to
set up the joint distribution and the calculating matrices. This is illustrated in the following example.

Example 10.19

% file jdemo3.m

% data for joint simple distribution

X = [-4 -2 0 1 3];

Y = [0 1 2 4];

P = [0.0132 0.0198 0.0297 0.0209 0.0264;

0.0372 0.0558 0.0837 0.0589 0.0744;

0.0516 0.0774 0.1161 0.0817 0.1032;

0.0180 0.0270 0.0405 0.0285 0.0360];

jdemo3 % Call for data

jcalc % Set up of calculating matrices t, u.

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X

Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P

G = t.^2 -3*u; % Formation of G = [g(ti,uj)]

M = G >= 1; % Calculation using the XY distribution

PM = total(M.*P) % Alternately, use total((G>=1).*P)
PM = 0.4665

[Z,PZ] = csort(G,P);

PM = (Z>=1)*PZ' % Calculation using the Z distribution

PM = 0.4665

disp([Z;PZ]') % Display of the Z distribution

-12.0000 0.0297

-11.0000 0.0209

-8.0000 0.0198

-6.0000 0.0837

-5.0000 0.0589

-3.0000 0.1425

-2.0000 0.1375

0 0.0405

1.0000 0.1059

3.0000 0.0744

4.0000 0.0402

6.0000 0.1032

9.0000 0.0360

10.0000 0.0372

13.0000 0.0516

16.0000 0.0180

We extend the example above by considering a function W = h (X, Y ) which has a composite de�nition.
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Example 10.20: Continuation of Example 10.19
Let

W = {
X for X + Y ≥ 1

X2 + Y 2 for X + Y < 1
Determine the distribution forW (10.42)

H = t.*(t+u>=1) + (t.^2 + u.^2).*(t+u<1); % Specification of h(t,u)

[W,PW] = csort(H,P); % Distribution for W = h(X,Y)

disp([W;PW]')

-2.0000 0.0198

0 0.2700

1.0000 0.1900

3.0000 0.2400

4.0000 0.0270

5.0000 0.0774

8.0000 0.0558

16.0000 0.0180

17.0000 0.0516

20.0000 0.0372

32.0000 0.0132

ddbn % Plot of distribution function

Enter row matrix of values W

Enter row matrix of probabilities PW

print % See Figure~10.4
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Figure 10.4: Distribution for random variable W in Example 10.20 (Continuation of Example 10.19).

Joint distributions for two functions of (X,Y )
In previous treatments, we use csort to obtain themarginal distribution for a single function Z = g (X,Y ).

It is often desirable to have the joint distribution for a pair Z = g (X,Y ) and W = h (X,Y ). As special
cases, we may have Z = X or W = Y . Suppose

Z has values [z1 z2 · · · zc] and W has values [w1 w2 · · · wr] (10.43)

The joint distribution requires the probability of each pair, P (W = wi, Z = zj). Each such pair of values
corresponds to a set of pairs of X and Y values. To determine the joint probability matrix PZW for (Z,W )
arranged as on the plane, we assign to each position (i, j) the probability P (W = wi, Z = zj), with values
of W increasing upward. Each pair of (W,Z) values corresponds to one or more pairs of (Y,X) values. If we
select and add the probabilities corresponding to the latter pairs, we have P (W = wi, Z = zj). This may be
accomplished as follows:

1. Set up calculation matrices t and u as with jcalc.
2. Use array arithmetic to determine the matrices of values G = [g (t, u)] and H = [h (t, u)].
3. Use csort to determine the Z andW value matrices and the PZ and PW marginal probability matrices.

4. For each pair (wi, zj), use the MATLAB function �nd to determine the positions a for which

(H == W (i)) & (G == Z (j)) (10.44)

5. Assign to the (i, j) position in the joint probability matrix PZW for (Z,W ) the probability

PZW (i, j) = total (P (a)) (10.45)
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We �rst examine the basic calculations, which are then implemented in the m-procedure jointzw.

Example 10.21: Illustration of the basic joint calculations

% file jdemo7.m

P = [0.061 0.030 0.060 0.027 0.009;

0.015 0.001 0.048 0.058 0.013;

0.040 0.054 0.012 0.004 0.013;

0.032 0.029 0.026 0.023 0.039;

0.058 0.040 0.061 0.053 0.018;

0.050 0.052 0.060 0.001 0.013];

X = -2:2;

Y = -2:3;

jdemo7 % Call for data in jdemo7.m

jcalc % Used to set up calculation matrices t, u

- - - - - - - - - -

H = u.^2 % Matrix of values for W = h(X,Y)

H =

9 9 9 9 9

4 4 4 4 4

1 1 1 1 1

0 0 0 0 0

1 1 1 1 1

4 4 4 4 4

G = abs(t) % Matrix of values for Z = g(X,Y)

G =

2 1 0 1 2

2 1 0 1 2

2 1 0 1 2

2 1 0 1 2

2 1 0 1 2

2 1 0 1 2

[W,PW] = csort(H,P) % Determination of marginal for W

W = 0 1 4 9

PW = 0.1490 0.3530 0.3110 0.1870

[Z,PZ] = csort(G,P) % Determination of marginal for Z

Z = 0 1 2

PZ = 0.2670 0.3720 0.3610

r = W(3) % Third value for W

r = 4

s = Z(2) % Second value for Z

s = 1

To determine P (W = 4, Z = 1), we need to determine the (t, u) positions for which this pair of
(W,Z) values is taken on. By inspection, we �nd these to be (2,2), (6,2), (2,4), and (6,4). Then
P (W = 4, Z = 1) is the total probability at these positions. This is 0.001 + 0.052 + 0.058 + 0.001
= 0.112. We put this probability in the joint probability matrix PZW at the W = 4, Z = 1
position. This may be achieved by MATLAB with the following operations.

[i,j] = find((H==W(3))&(G==Z(2))); % Location of (t,u) positions

disp([i j]) % Optional display of positions
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2 2

6 2

2 4

6 4

a = find((H==W(3))&(G==Z(2))); % Location in more convenient form

P0 = zeros(size(P)); % Setup of zero matrix

P0(a) = P(a) % Display of designated probabilities in P

P0 =

0 0 0 0 0

0 0.0010 0 0.0580 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0.0520 0 0.0010 0

PZW = zeros(length(W),length(Z)) % Initialization of PZW matrix

PZW(3,2) = total(P(a)) % Assignment to PZW matrix with

PZW = 0 0 0 % W increasing downward

0 0 0

0 0.1120 0

0 0 0

PZW = flipud(PZW) % Assignment with W increasing upward

PZW =

0 0 0

0 0.1120 0

0 0 0

0 0 0

The procedure jointzw carries out this operation for each possible pair of W and Z values (with
the flipud operation coming only after all individual assignments are made).

Example 10.22: Joint distribution for Z = g (X,Y ) = ||X| − Y | and W = h (X,Y ) = |XY |

% file jdemo3.m data for joint simple distribution

X = [-4 -2 0 1 3];

Y = [0 1 2 4];

P = [0.0132 0.0198 0.0297 0.0209 0.0264;

0.0372 0.0558 0.0837 0.0589 0.0744;

0.0516 0.0774 0.1161 0.0817 0.1032;

0.0180 0.0270 0.0405 0.0285 0.0360];

jdemo3 % Call for data

jointzw % Call for m-program

Enter joint prob for (X,Y): P

Enter values for X: X

Enter values for Y: Y

Enter expression for g(t,u): abs(abs(t)-u)

Enter expression for h(t,u): abs(t.*u)

Use array operations on Z, W, PZ, PW, v, w, PZW

disp(PZW)

0.0132 0 0 0 0

0 0.0264 0 0 0

0 0 0.0570 0 0
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0 0.0744 0 0 0

0.0558 0 0 0.0725 0

0 0 0.1032 0 0

0 0.1363 0 0 0

0.0817 0 0 0 0

0.0405 0.1446 0.1107 0.0360 0.0477

EZ = total(v.*PZW)

EZ = 1.4398

ez = Z*PZ' % Alternate, using marginal dbn

ez = 1.4398

EW = total(w.*PZW)

EW = 2.6075

ew = W*PW' % Alternate, using marginal dbn

ew = 2.6075

M = v > w; % P(Z>W)
PM = total(M.*PZW)

PM = 0.3390

At noted in the previous section, if {X,Y } is an independent pair and Z = g (X),
W = h (Y ), then the pair {Z,W} is independent. However, if Z = g (X,Y ) and
W = h (X,Y ), then in general the pair {Z,W} is not independent. We may illustrate this with the aid

of the m-procedure jointzw

Example 10.23: Functions of independent random variables

jdemo3

itest

Enter matrix of joint probabilities P

The pair {X,Y} is independent % The pair {X,Y} is independent

jointzw

Enter joint prob for (X,Y): P

Enter values for X: X

Enter values for Y: Y

Enter expression for g(t,u): t.^2 - 3*t % Z = g(X)

Enter expression for h(t,u): abs(u) + 3 % W = h(Y)

Use array operations on Z, W, PZ, PW, v, w, PZW

itest

Enter matrix of joint probabilities PZW

The pair {X,Y} is independent % The pair {g(X),h(Y)} is independent

jdemo3 % Refresh data

jointzw

Enter joint prob for (X,Y): P

Enter values for X: X

Enter values for Y: Y

Enter expression for g(t,u): t+u % Z = g(X,Y)

Enter expression for h(t,u): t.*u % W = h(X,Y)

Use array operations on Z, W, PZ, PW, v, w, PZW

itest

Enter matrix of joint probabilities PZW
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The pair {X,Y} is NOT independent % The pair {g(X,Y),h(X,Y)} is not indep

To see where the product rule fails, call for D % Fails for all pairs

10.2.3 Absolutely continuous case: analysis and approximation

As in the analysis Joint Distributions, we may set up a simple approximation to the joint distribution and
proceed as for simple random variables. In this section, we solve several examples analytically, then obtain
simple approximations.

Example 10.24: Distribution for a product
Suppose the pair {X,Y } has joint density fXY . Let Z = XY . Determine Qv such that P (Z ≤ v) =
P ((X,Y ) ∈ Qv).

Figure 10.5: Region Qv for product XY , v ≥ 0.

SOLUTION (see Figure 10.5)

Qv = {(t, u) : tu ≤ v} = {(t, u) : t > 0, u ≤ v/t}
∨
{(t, u) : t < 0, u ≥ v/t}} (10.46)

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



275

Figure 10.6: Product of X,Y with uniform joint distribution on the unit square.

Example 10.25
{X,Y } ∼ uniform on unit square

fXY (t, u) = 1, 0 ≤ t ≤ 1, 0 ≤ u ≤ 1. Then (see Figure 10.6)

P (XY ≤ v) =
∫ ∫

Qv

1 dudt where Qv = {(t, u) : 0 ≤ t ≤ 1, 0 ≤ u ≤ min{1, v/t}} (10.47)

Integration shows

FZ (v) = P (XY ≤ v) = v (1− ln (v)) so that fZ (v) = −ln (v) = ln (1/v) , 0 < v ≤ 1 (10.48)

For v = 0.5, FZ (0.5) = 0.8466.

% Note that although f = 1, it must be expressed in terms of t, u.

tuappr

Enter matrix [a b] of X-range endpoints [0 1]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density (u>=0)&(t>=0)
Use array operations on X, Y, PX, PY, t, u, and P

G = t.*u;

[Z,PZ] = csort(G,P);

p = (Z<=0.5)*PZ'
p = 0.8465 % Theoretical value 0.8466, above
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Example 10.26: Continuation of Example 5 (Example 8.5: Marginals for a discrete
distribution) from "Random Vectors and Joint Distributions"
The pair {X, Y } has joint density fXY (t, u) = 6

37 (t+ 2u) on the region bounded by t = 0, t = 2,
u = 0, and u = max{1, t} (see Figure 7). Let Z = XY . Determine P (Z ≤ 1).

Figure 10.7: Area of integration for Example 10.26 (Continuation of Example 5 (Example 8.5:
Marginals for a discrete distribution) from "Random Vectors and Joint Distributions").

ANALYTIC SOLUTION

P (Z ≤ 1) = P ((X, Y ) ∈ Q) where Q = {(t, u) : u ≤ 1/t} (10.49)

Reference to Figure 10.7 shows that

P ((X, Y ) ∈ Q) = 6
37

∫ 1

0

∫ 1

0
(t+ 2u) dudt+ 6

37

∫ 2

1

∫ 1/t

0
(t+ 2u) dudt = 9/37+9/37 =

18/37 ≈ 0.4865
(10.50)

APPROXIMATE SOLUTION

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 300

Enter number of Y approximation points 300

Enter expression for joint density (6/37)*(t + 2*u).*(u<=max(t,1))
Use array operations on X, Y, PX, PY, t, u, and P

Q = t.*u<=1;
PQ = total(Q.*P)

PQ = 0.4853 % Theoretical value 0.4865, above
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G = t.*u; % Alternate, using the distribution for Z

[Z,PZ] = csort(G,P);

PZ1 = (Z<=1)*PZ'
PZ1 = 0.4853

In the following example, the function g has a compound de�nition. That is, it has a di�erent rule for
di�erent parts of the plane.

Figure 10.8: Regions for P (Z ≤ 1/2) in Example 10.27 (A compound function).

Example 10.27: A compound function
The pair {X,Y } has joint density fXY (t, u) = 2

3 (t+ 2u) on the unit square 0 ≤ t ≤ 1, 0 ≤ u ≤ 1.

Z = {
Y for X2 − Y ≥ 0

X + Y for X2 − Y < 0
= IQ (X, Y )Y + IQc (X, Y ) (X + Y ) (10.51)

for Q = {(t, u) : u ≤ t2}. Determine P (Z < = 0.5).
ANALYTICAL SOLUTION

P (Z ≤ 1/2) = P
(
Y ≤ 1/2, Y ≤ X2

)
+ P

(
X + Y ≤ 1/2, Y > X2

)
= P

(
(X, Y ) ∈ QA

∨
QB

)
(10.52)

where QA = {(t, u) : u ≤ 1/2, u ≤ t2} and QB = {(t, u) : t + u ≤ 1/2, u > t2}. Reference to
Figure 10.8 shows that this is the part of the unit square for which u ≤ min

(
max

(
1/2− t, t2

)
, 1/2

)
.

We may break up the integral into three parts. Let 1/2− t1 = t21 and t22 = 1/2. Then

P (Z ≤ 1/2) = 2
3

∫ t1
0

∫ 1/2−t

0
(t+ 2u) dudt + 2

3

∫ t2
t1

∫ t2

0
(t+ 2u) dudt +

2
3

∫ 1

t2

∫ 1/2

0
(t+ 2u) dudt = 0.2322

(10.53)

APPROXIMATE SOLUTION
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tuappr

Enter matrix [a b] of X-range endpoints [0 1]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density (2/3)*(t + 2*u)

Use array operations on X, Y, PX, PY, t, u, and P

Q = u <= t.^2;

G = u.*Q + (t + u).*(1-Q);

prob = total((G<=1/2).*P)
prob = 0.2328 % Theoretical is 0.2322, above

The setup of the integrals involves careful attention to the geometry of the system. Once set up, the
evaluation is elementary but tedious. On the other hand, the approximation proceeds in a straightforward
manner from the normal description of the problem. The numerical result compares quite closely with the
theoretical value and accuracy could be improved by taking more subdivision points.

10.3 The Quantile Function3

10.3.1 The Quantile Function

The quantile function for a probability distribution has many uses in both the theory and application of
probability. If F is a probability distribution function, the quantile function may be used to �construct� a
random variable having F as its distributions function. This fact serves as the basis of a method of simulating
the �sampling� from an arbitrary distribution with the aid of a random number generator. Also, given any
�nite class
{Xi : 1 ≤ i ≤ n} of random variables, an independent class {Yi : 1 ≤ i ≤ n} may be constructed, with

each Xi and associated Yi having the same (marginal) distribution. Quantile functions for simple random
variables may be used to obtain an important Poisson approximation theorem (which we do not develop
in this work). The quantile function is used to derive a number of useful special forms for mathematical
expectation.

General concept�properties, and examples
If F is a probability distribution function, the associated quantile function Q is essentially an inverse

of F. The quantile function is de�ned on the unit interval (0, 1). For F continuous and strictly increasing
at t, then Q (u) = t i� F (t) = u. Thus, if u is a probability value, t = Q (u) is the value of t for which
P (X ≤ t) = u.

Example 10.28: The Weibull distribution (3, 2, 0)

u = F (t) = 1− e−3t2 t ≥ 0 ⇒ t = Q (u) =
√
−ln (1− u) /3 (10.54)

Example 10.29: The Normal Distribution
The m-function norminv, based on the MATLAB function er�nv (inverse error function), calculates
values of Q for the normal distribution.

The restriction to the continuous case is not essential. We consider a general de�nition which applies to any
probability distribution function.

De�nition: If F is a function having the properties of a probability distribution function, then the
quantile function for F is given by

Q (u) = inf{t : F (t) ≥ u} ∀ u ∈ (0, 1) (10.55)

3This content is available online at <http://cnx.org/content/m23385/1.7/>.
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We note

If F (t∗) ≥ u∗, then t∗ ≥ inf{t : F (t) ≥ u∗} = Q (u∗)
If F (t∗) < u∗, then t∗ < inf{t : F (t) ≥ u∗} = Q (u∗)

Hence, we have the important property:
(Q1)Q (u) ≤ t i� u ≤ F (t) ∀ u ∈ (0, 1).
The property (Q1) implies the following important property:
(Q2)If U ∼ uniform (0, 1), then X = Q (U) has distribution function FX = F . To see this, note that

FX (t) = P [Q (U) ≤ t] = P [U ≤ F (t)] = F (t).
Property (Q2) implies that if F is any distribution function, with quantile function Q, then the random

variable X = Q (U), with U uniformly distributed on (0, 1), has distribution function F.

Example 10.30: Independent classes with prescribed distributions
Suppose {Xi : 1 ≤ i ≤ n} is an arbitrary class of random variables with corresponding distribution
functions {Fi : 1 ≤ i ≤ n}. Let {Qi : 1 ≤ i ≤ n} be the respective quantile functions. There is
always an independent class {Ui : 1 ≤ i ≤ n} iid uniform (0, 1) (marginals for the joint uniform
distribution on the unit hypercube with sides (0, 1)). Then the random variables Yi = Qi (Ui) , 1 ≤
i ≤ n, form an independent class with the same marginals as the Xi.

Several other important properties of the quantile function may be established.
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Figure 10.9: Graph of quantile function from graph of distribution function,

1. Q is left-continuous, whereas F is right-continuous.
2. If jumps are represented by vertical line segments, construction of the graph of u = Q (t) may be

obtained by the following two step procedure:

• Invert the entire �gure (including axes), then
• Rotate the resulting �gure 90 degrees counterclockwise
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This is illustrated in Figure 10.9. If jumps are represented by vertical line segments, then jumps go
into �at segments and �at segments go into vertical segments.

3. If X is discrete with probability pi at ti, 1 ≤ i ≤ n, then F has jumps in the amount pi at each ti and
is constant between. The quantile function is a left-continuous step function having value ti on the
interval (bi−1, bi], where b0 = 0 and bi =

∑i
j=1 pj . This may be stated

IfF (ti) = bi, thenQ (u) = tiforF (ti−1) < u ≤ F (ti) (10.56)

Example 10.31: Quantile function for a simple random variable
Suppose simple random variable X has distribution

X = [−2 0 1 3] PX = [0.2 0.1 0.3 0.4] (10.57)

Figure 1 shows a plot of the distribution function FX. It is re�ected in the horizontal axis then
rotated counterclockwise to give the graph of Q (u) versus u.
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Figure 10.10: Distribution and quantile functions for Example 10.31 (Quantile function for a simple
random variable).

We use the analytic characterization above in developing a number of m-functions and m-procedures.
m-procedures for a simple random variable
The basis for quantile function calculations for a simple random variable is the formula above. This is

implemented in the m-function dquant, which is used as an element of several simulation procedures. To plot
the quantile function, we use dquanplot which employs the stairs function and plots X vs the distribution
function FX. The procedure dsample employs dquant to obtain a �sample� from a population with simple
distribution and to calculate relative frequencies of the various values.

Example 10.32: Simple Random Variable

X = [-2.3 -1.1 3.3 5.4 7.1 9.8];
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PX = 0.01*[18 15 23 19 13 12];

dquanplot

Enter VALUES for X X

Enter PROBABILITIES for X PX % See Figure~10.11 for plot of results

rand('seed',0) % Reset random number generator for reference

dsample

Enter row matrix of values X

Enter row matrix of probabilities PX

Sample size n 10000

Value Prob Rel freq

-2.3000 0.1800 0.1805

-1.1000 0.1500 0.1466

3.3000 0.2300 0.2320

5.4000 0.1900 0.1875

7.1000 0.1300 0.1333

9.8000 0.1200 0.1201

Sample average ex = 3.325

Population mean E[X] = 3.305

Sample variance = 16.32

Population variance Var[X] = 16.33

Figure 10.11: Quantile function for Example 10.32 (Simple Random Variable).

Sometimes it is desirable to know how many trials are required to reach a certain value, or one of a set of
values. A pair of m-procedures are available for simulation of that problem. The �rst is called targetset. It
calls for the population distribution and then for the designation of a �target set� of possible values. The
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second procedure, targetrun, calls for the number of repetitions of the experiment, and asks for the number
of members of the target set to be reached. After the runs are made, various statistics on the runs are
calculated and displayed.

Example 10.33

X = [-1.3 0.2 3.7 5.5 7.3]; % Population values

PX = [0.2 0.1 0.3 0.3 0.1]; % Population probabilities

E = [-1.3 3.7]; % Set of target states

targetset

Enter population VALUES X

Enter population PROBABILITIES PX

The set of population values is

-1.3000 0.2000 3.7000 5.5000 7.3000

Enter the set of target values E

Call for targetrun

rand('seed',0) % Seed set for possible comparison

targetrun

Enter the number of repetitions 1000

The target set is

-1.3000 3.7000

Enter the number of target values to visit 2

The average completion time is 6.32

The standard deviation is 4.089

The minimum completion time is 2

The maximum completion time is 30

To view a detailed count, call for D.

The first column shows the various completion times;

the second column shows the numbers of trials yielding those times

% Figure 10.6.4 shows the fraction of runs requiring t steps or less
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Figure 10.12: Fraction of runs requiring t steps or less.

m-procedures for distribution functions
A procedure dfsetup utilizes the distribution function to set up an approximate simple distribution.

The m-procedure quanplot is used to plot the quantile function. This procedure is essentially the same as
dquanplot, except the ordinary plot function is used in the continuous case whereas the plotting function
stairs is used in the discrete case. The m-procedure qsample is used to obtain a sample from the population.
Since there are so many possible values, these are not displayed as in the discrete case.

Example 10.34: Quantile function associated with a distribution function.

F = '0.4*(t + 1).*(t < 0) + (0.6 + 0.4*t).*(t >= 0)'; % String

dfsetup

Distribution function F is entered as a string

variable, either defined previously or upon call

Enter matrix [a b] of X-range endpoints [-1 1]

Enter number of X approximation points 1000

Enter distribution function F as function of t F

Distribution is in row matrices X and PX

quanplot

Enter row matrix of values X

Enter row matrix of probabilities PX
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Probability increment h 0.01 % See Figure~10.13 for plot

qsample

Enter row matrix of X values X

Enter row matrix of X probabilities PX

Sample size n 1000

Sample average ex = -0.004146

Approximate population mean E(X) = -0.0004002 % Theoretical = 0

Sample variance vx = 0.25

Approximate population variance V(X) = 0.2664

Figure 10.13: Quantile function for Example 10.34 (Quantile function associated with a distribution
function.).

m-procedures for density functions
An m- procedure acsetup is used to obtain the simple approximate distribution. This is essentially the

same as the procedure tuappr, except that the density function is entered as a string variable. Then the
procedures quanplot and qsample are used as in the case of distribution functions.

Example 10.35: Quantile function associated with a density function.

acsetup

Density f is entered as a string variable.

either defined previously or upon call.

Enter matrix [a b] of x-range endpoints [0 3]

Enter number of x approximation points 1000

Enter density as a function of t '(t.^2).*(t<1) + (1- t/3).*(1<=t)'
Distribution is in row matrices X and PX

quanplot

Enter row matrix of values X

Enter row matrix of probabilities PX

Probability increment h 0.01 % See Figure~10.14 for plot
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rand('seed',0)

qsample

Enter row matrix of values X

Enter row matrix of probabilities PX

Sample size n 1000

Sample average ex = 1.352

Approximate population mean E(X) = 1.361 % Theoretical = 49/36 = 1.3622

Sample variance vx = 0.3242

Approximate population variance V(X) = 0.3474 % Theoretical = 0.3474

Figure 10.14: Quantile function for Example 10.35 (Quantile function associated with a density func-
tion.).

10.4 Problems on Functions of Random Variables4

Exercise 10.4.1 (Solution on p. 294.)

Suppose X is a nonnegative, absolutely continuous random variable. Let Z = g (X) = Ce−aX ,
where a > 0, C > 0. Then 0 < Z ≤ C. Use properties of the exponential and natural log function
to show that

FZ (v) = 1− FX
(
− ln (v/C)

a

)
for 0 < v ≤ C (10.58)

4This content is available online at <http://cnx.org/content/m24315/1.5/>.
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Exercise 10.4.2 (Solution on p. 294.)

Use the result of Exercise 10.4.1 to show that if X ∼ exponential (λ), then

FZ (v) =
( v
C

)λ/a
0 < v ≤ C (10.59)

Exercise 10.4.3 (Solution on p. 294.)

Present value of future costs. Suppose money may be invested at an annual rate a, compounded
continually. Then one dollar in hand now, has a value eax at the end of x years. Hence, one dollar
spent x years in the future has a present valuee−ax. Suppose a device put into operation has time
to failure (in years) X ∼ exponential (λ). If the cost of replacement at failure is C dollars, then
the present value of the replacement is Z = Ce−aX . Suppose λ = 1/10, a = 0.07, and C = $1000.

a. Use the result of Exercise 10.4.2 to determine the probability Z ≤ 700, 500, 200.
b. Use a discrete approximation for the exponential density to approximate the probabilities in

part (a). Truncate X at 1000 and use 10,000 approximation points.

Exercise 10.4.4 (Solution on p. 294.)

Optimal stocking of merchandise. A merchant is planning for the Christmas season. He intends
to stock m units of a certain item at a cost of c per unit. Experience indicates demand can be
represented by a random variable D ∼ Poisson (µ). If units remain in stock at the end of the
season, they may be returned with recovery of r per unit. If demand exceeds the number originally
ordered, extra units may be ordered at a cost of s each. Units are sold at a price p per unit. If
Z = g (D) is the gain from the sales, then

• For t ≤ m, g (t) = (p− c) t− (c− r) (m− t) = (p− r) t+ (r − c)m
• For t > m, g (t) = (p− c)m+ (t−m) (p− s) = (p− s) t+ (s− c)m

Let M = (−∞,m]. Then

g (t) = IM (t) [(p− r) t+ (r − c)m] + IM (t) [(p− s) t+ (s− c)m] (10.60)

= (p− s) t+ (s− c)m+ IM (t) (s− r) (t−m) (10.61)

Suppose µ = 50 m = 50 c = 30 p = 50 r = 20 s = 40..
Approximate the Poisson random variable D by truncating at 100. Determine P (500 ≤ Z ≤ 1100).
Exercise 10.4.5 (Solution on p. 295.)

(See Example 2 (Example 10.2: Price breaks) from "Functions of a Random Variable") The
cultural committee of a student organization has arranged a special deal for tickets to a concert.
The agreement is that the organization will purchase ten tickets at $20 each (regardless of the
number of individual buyers). Additional tickets are available according to the following schedule:

• 11-20, $18 each
• 21-30, $16 each
• 31-50, $15 each
• 51-100, $13 each

If the number of purchasers is a random variable X, the total cost (in dollars) is a random quantity
Z = g (X) described by

g (X) = 200 + 18IM1 (X) (X − 10) + (16− 18) IM2 (X) (X − 20) + (10.62)
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(15− 16) IM3 (X) (X − 30) + (13− 15) IM4 (X) (X − 50) (10.63)

where M1 = [10, ∞) , M2 = [20, ∞) , M3 = [30, ∞) , M4 = [50, ∞) (10.64)

Suppose X ∼ Poisson (75). Approximate the Poisson distribution by truncating at 150. Determine
P (Z ≥ 1000) , P (Z ≥ 1300), and P (900 ≤ Z ≤ 1400).
Exercise 10.4.6 (Solution on p. 295.)

(See Exercise 6 (Exercise 8.3.6) from "Problems on Random Vectors and Joint Distributions", and
Exercise 1 (Exercise 9.2.1) from "Problems on Independent Classes of Random Variables")) The
pair {X, Y } has the joint distribution

(in m-�le npr08_06.m (Section 17.8.37: npr08_06)):

X = [−2.3 − 0.7 1.1 3.9 5.1] Y = [1.3 2.5 4.1 5.3] (10.65)

P =


0.0483 0.0357 0.0420 0.0399 0.0441

0.0437 0.0323 0.0380 0.0361 0.0399

0.0713 0.0527 0.0620 0.0609 0.0551

0.0667 0.0493 0.0580 0.0651 0.0589

 (10.66)

Determine P (max{X,Y } ≤ 4) , P (|X − Y | > 3). Let Z = 3X3 + 3X2Y − Y 3.
Determine P (Z < 0) and P (−5 < Z ≤ 300).
Exercise 10.4.7 (Solution on p. 295.)

(See Exercise 2 (Exercise 9.2.2) from "Problems on Independent Classes of Random Variables")
The pair {X, Y } has the joint distribution (in m-�le npr09_02.m (Section 17.8.41: npr09_02)):

X = [−3.9 − 1.7 1.5 2 8 4.1] Y = [−2 1 2.6 5.1] (10.67)

P =


0.0589 0.0342 0.0304 0.0456 0.0209

0.0961 0.0556 0.0498 0.0744 0.0341

0.0682 0.0398 0.0350 0.0528 0.0242

0.0868 0.0504 0.0448 0.0672 0.0308

 (10.68)

Determine P ({X + Y ≥ 5} ∪ {Y ≤ 2}), P
(
X2 + Y 2 ≤ 10

)
.

Exercise 10.4.8 (Solution on p. 296.)

(See Exercise 7 (Exercise 8.3.7) from "Problems on Random Vectors and Joint Distributions", and
Exercise 3 (Exercise 9.2.3) from "Problems on Independent Classes of Random Variables") The
pair {X, Y } has the joint distribution

(in m-�le npr08_07.m (Section 17.8.38: npr08_07)):

P (X = t, Y = u) (10.69)
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t = -3.1 -0.5 1.2 2.4 3.7 4.9

u = 7.5 0.0090 0.0396 0.0594 0.0216 0.0440 0.0203

4.1 0.0495 0 0.1089 0.0528 0.0363 0.0231

-2.0 0.0405 0.1320 0.0891 0.0324 0.0297 0.0189

-3.8 0.0510 0.0484 0.0726 0.0132 0 0.0077

Table 10.2

Determine P
(
X2 − 3X ≤ 0

)
, P
(
X3 − 3|Y | < 3

)
.

Exercise 10.4.9 (Solution on p. 296.)

For the pair {X, Y } in Exercise 10.4.8, let Z = g (X,Y ) = 3X2 + 2XY − Y 2. Determine and plot
the distribution function for Z.

Exercise 10.4.10 (Solution on p. 296.)

For the pair {X, Y } in Exercise 10.4.8, let

W = g (X,Y ) = {
X for X + Y ≤ 4

2Y for X + Y > 4
= IM (X,Y )X + IMc (X,Y ) 2Y (10.70)

Determine and plot the distribution function for W.

For the distributions in Exercises 10-15 below

a. Determine analytically the indicated probabilities.
b. Use a discrete approximation to calculate the same probablities.'

Exercise 10.4.11 (Solution on p. 296.)

fXY (t, u) = 3
88

(
2t+ 3u2

)
for 0 ≤ t ≤ 2, 0 ≤ u ≤ 1 + t (see Exercise 15 (Exercise 8.3.15) from

"Problems on Random Vectors and Joint Distributions").

Z = I[0,1] (X) 4X + I(1,2] (X) (X + Y ) (10.71)

Determine P (Z ≤ 2)
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Figure 10.15

Exercise 10.4.12 (Solution on p. 297.)

fXY (t, u) = 24
11 tu for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{1, 2 − t} (see Exercise 17 (Exercise 8.3.17) from

"Problems on Random Vectors and Joint Distributions").

Z = IM (X,Y )
1
2
X + IMc (X,Y )Y 2, M = {(t, u) : u > t} (10.72)

Determine P (Z ≤ 1/4).
Exercise 10.4.13 (Solution on p. 297.)

fXY (t, u) = 3
23 (t+ 2u) for 0 ≤ t ≤ 2, 0 ≤ u ≤ max{2 − t, t} (see Exercise 18 (Exercise 8.3.18)

from "Problems on Random Vectors and Joint Distributions").

Z = IM (X,Y ) (X + Y ) + IMc (X,Y ) 2Y, M = {(t, u) : max (t, u) ≤ 1} (10.73)

Determine P (Z ≤ 1).
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Figure 10.16

Exercise 10.4.14 (Solution on p. 298.)

fXY (t, u) = 12
179

(
3t2 + u

)
, for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{2, 3− t} (see Exercise 19 (Exercise 8.3.19)

from "Problems on Random Vectors and Joint Distributions").

Z = IM (X,Y ) (X + Y ) + IMc (X,Y ) 2Y 2, M = {(t, u) : t ≤ 1, u ≥ 1} (10.74)

Determine P (Z ≤ 2).
Exercise 10.4.15 (Solution on p. 298.)

fXY (t, u) = 12
227 (3t+ 2tu), for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{1 + t, 2} (see Exercise 20 (Exercise 8.3.20)

from "Problems on Random Variables and Joint Distributions")

Z = IM (X,Y )X + IMc (X,Y )
Y

X
, M = {(t, u) : u ≤ min (1, 2− t)} (10.75)

Detemine P (Z ≤ 1).
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Figure 10.17

Exercise 10.4.16 (Solution on p. 299.)

The class {X, Y, Z} is independent.
X = −2IA + IB + 3IC . Minterm probabilities are (in the usual order)

0.255 0.025 0.375 0.045 0.108 0.012 0.162 0.018 (10.76)

Y = ID + 3IE + IF − 3. The class {D, E, F} is independent with

P (D) = 0.32 P (E) = 0.56 P (F ) = 0.40 (10.77)

Z has distribution

Value -1.3 1.2 2.7 3.4 5.8

Probability 0.12 0.24 0.43 0.13 0.08

Table 10.3

Determine P
(
X2 + 3XY 2 > 3Z

)
.

Exercise 10.4.17 (Solution on p. 299.)

The simple random variable X has distribution

X = [−3.1 − 0.5 1.2 2.4 3.7 4.9] PX = [0.15 0.22 0.33 0.12 0.11 0.07] (10.78)

a. Plot the distribution function FX and the quantile function QX.
b. Take a random sample of size n = 10, 000. Compare the relative frequency for each value

with the probability that value is taken on.
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Solutions to Exercises in Chapter 10

Solution to Exercise 10.4.1 (p. 287)
Z = Ce−aX ≤ v i� e−aX ≤ v/C i� −aX ≤ ln (v/C) i� X ≥ −ln (v/C) /a, so that

FZ (v) = P (Z ≤ v) = P (X ≥ −ln (v/C) /a) = 1− FX
(
− ln (v/C)

a

)
(10.79)

Solution to Exercise 10.4.2 (p. 287)

FZ (v) = 1−
[
1− exp

(
−λ
a
· ln (v/C)

)]
=
( v
C

)λ/a
(10.80)

Solution to Exercise 10.4.3 (p. 288)

P (Z ≤ v) =
( v

1000

)10/7

(10.81)

v = [700 500 200];

P = (v/1000).^(10/7)

P = 0.6008 0.3715 0.1003

tappr

Enter matrix [a b] of x-range endpoints [0 1000]

Enter number of x approximation points 10000

Enter density as a function of t 0.1*exp(-t/10)

Use row matrices X and PX as in the simple case

G = 1000*exp(-0.07*t);

PM1 = (G<=700)*PX'
PM1 = 0.6005

PM2 = (G<=500)*PX'
PM2 = 0.3716

PM3 = (G<=200)*PX'
PM3 = 0.1003

Solution to Exercise 10.4.4 (p. 288)

mu = 50;

D = 0:100;

c = 30;

p = 50;

r = 20;

s = 40;

m = 50;

PD = ipoisson(mu,D);

G = (p - s)*D + (s - c)*m +(s - r)*(D - m).*(D <= m);

M = (500<=G)&(G<=1100);
PM = M*PD'

PM = 0.9209

[Z,PZ] = csort(G,PD); % Alternate: use dbn for Z

m = (500<=Z)&(Z<=1100);
pm = m*PZ'

pm = 0.9209
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Solution to Exercise 10.4.5 (p. 288)

X = 0:150;

PX = ipoisson(75,X);

G = 200 + 18*(X - 10).*(X>=10) + (16 - 18)*(X - 20).*(X>=20) + ...

(15 - 16)*(X- 30).*(X>=30) + (13 - 15)*(X - 50).*(X>=50);
P1 = (G>=1000)*PX'
P1 = 0.9288

P2 = (G>=1300)*PX'
P2 = 0.1142

P3 = ((900<=G)&(G<=1400))*PX'
P3 = 0.9742

[Z,PZ] = csort(G,PX); % Alternate: use dbn for Z

p1 = (Z>=1000)*PZ'
p1 = 0.9288

Solution to Exercise 10.4.6 (p. 289)

npr08_06 (Section~17.8.37: npr08_06)

Data are in X, Y, P

jcalc

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X

Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P

P1 = total((max(t,u)<=4).*P)
P1 = 0.4860

P2 = total((abs(t-u)>3).*P)
P2 = 0.4516

G = 3*t.^3 + 3*t.^2.*u - u.^3;

P3 = total((G<0).*P)
P3 = 0.5420

P4 = total(((-5<G)&(G<=300)).*P)
P4 = 0.3713

[Z,PZ] = csort(G,P); % Alternate: use dbn for Z

p4 = ((-5<Z)&(Z<=300))*PZ'
p4 = 0.3713

Solution to Exercise 10.4.7 (p. 289)

npr09_02 (Section~17.8.41: npr09_02)

Data are in X, Y, P

jcalc

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X

Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P

M1 = (t+u>=5)|(u<=2);
P1 = total(M1.*P)

P1 = 0.7054

M2 = t.^2 + u.^2 <= 10;
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P2 = total(M2.*P)

P2 = 0.3282

Solution to Exercise 10.4.8 (p. 289)

npr08_07 (Section~17.8.38: npr08_07)

Data are in X, Y, P

jcalc

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X

Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P

M1 = t.^2 - 3*t <=0;
P1 = total(M1.*P)

P1 = 0.4500

M2 = t.^3 - 3*abs(u) < 3;

P2 = total(M2.*P)

P2 = 0.7876

Solution to Exercise 10.4.9 (p. 290)

G = 3*t.^2 + 2*t.*u - u.^2; % Determine g(X,Y)

[Z,PZ] = csort(G,P); % Obtain dbn for Z = g(X,Y)

ddbn % Call for plotting m-procedure

Enter row matrix of VALUES Z

Enter row matrix of PROBABILITIES PZ % Plot not reproduced here

Solution to Exercise 10.4.10 (p. 290)

H = t.*(t+u<=4) + 2*u.*(t+u>4);
[W,PW] = csort(H,P);

ddbn

Enter row matrix of VALUES W

Enter row matrix of PROBABILITIES PW % Plot not reproduced here

Solution to Exercise 10.4.11 (p. 290)

P (Z ≤ 2) = P
(
Z ∈ Q = Q1M1

∨
Q2M2

)
, where M1 = {(t, u) : 0 ≤ t ≤ 1, 0 ≤ u ≤ 1 + t} (10.82)

M2 = {(t, u) : 1 < t ≤ 2, 0 ≤ u ≤ 1 + t} (10.83)

Q1 = {(t, u) : 0 ≤ t ≤ 1/2}, Q2 = {(t, u) : u ≤ 2− t} (see �gure) (10.84)

P =
3
88

∫ 1/2

0

∫ 1+t

0

(
2t+ 3u2

)
dudt+

3
88

∫ 2

1

∫ 2−t

0

(
2t+ 3u2

)
dudt =

563
5632

(10.85)

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 3]
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Enter number of X approximation points 200

Enter number of Y approximation points 300

Enter expression for joint density (3/88)*(2*t + 3*u.^2).*(u<=1+t)
Use array operations on X, Y, PX, PY, t, u, and P

G = 4*t.*(t<=1) + (t+u).*(t>1);
[Z,PZ] = csort(G,P);

PZ2 = (Z<=2)*PZ'
PZ2 = 0.1010 % Theoretical = 563/5632 = 0.1000

Solution to Exercise 10.4.12 (p. 291)

P (Z ≤ 1/4) = P
(

(X,Y ) ∈M1Q1

∨
M2Q2

)
, M1 = {(t, u) : 0 ≤ t ≤ u ≤ 1} (10.86)

M2 = {(t, u) : 0 ≤ t ≤ 2, 0 ≤ t ≤ min (t, 2− t)} (10.87)

Q1 = {(t, u) : t ≤ 1/2} Q2 = {(t, u) : u ≤ 1/2} (see �gure) (10.88)

P =
24
11

∫ 1/2

0

∫ 1

0

tu dudt+
24
11

∫ 3/2

1/2

∫ 1/2

0

tu dudt+
24
11

∫ 2

3/2

∫ 2−t

0

tu dudt =
85
176

(10.89)

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 400

Enter number of Y approximation points 200

Enter expression for joint density (24/11)*t.*u.*(u<=min(1,2-t))
Use array operations on X, Y, PX, PY, t, u, and P

G = 0.5*t.*(u>t) + u.^2.*(u<t);
[Z,PZ] = csort(G,P);

pp = (Z<=1/4)*PZ'
pp = 0.4844 % Theoretical = 85/176 = 0.4830

Solution to Exercise 10.4.13 (p. 291)

P (Z ≤ 1) = P
(

(X,Y ) ∈M1Q1

∨
M2Q2

)
, M1 = {(t, u) : 0 ≤ t ≤ 1, 0 ≤ u ≤ 1− t} (10.90)

M2 = {(t, u) : 1 ≤ t ≤ 2, 0 ≤ u ≤ t} (10.91)

Q1 = {(t, u) : u ≤ 1− t} Q2 = {(t, u) : u ≤ 1/2} (see �gure) (10.92)

P =
3
23

∫ 1

0

∫ 1−t

0

(t+ 2u) dudt+
3
23

∫ 2

1

∫ 1/2

0

(t+ 2u) dudt =
9
46

(10.93)

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 300

Enter number of Y approximation points 300

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



298 CHAPTER 10. FUNCTIONS OF RANDOM VARIABLES

Enter expression for joint density (3/23)*(t + 2*u).*(u<=max(2-t,t))
Use array operations on X, Y, PX, PY, t, u, and P

M = max(t,u) <= 1;

G = M.*(t + u) + (1 - M)*2.*u;

p = total((G<=1).*P)
p = 0.1960 % Theoretical = 9/46 = 0.1957

Solution to Exercise 10.4.14 (p. 292)

P (Z ≤ 2) = P
(

(, Y ) ∈M1Q1

∨(
M2

∨
M3

)
Q2

)
, M1 = {(t, u) : 0 ≤ t ≤ 1, 1 ≤ u ≤ 2} (10.94)

M2 = {(t, u) : 0 ≤ t ≤ 1, 0 ≤ u ≤ 1} M3 = {(t, u) : 1 ≤ t ≤ 2, 0 ≤ u ≤ 3− t} (10.95)

Q1 = {(t, u) : u ≤ 1− t} Q2 = {(t, u) : u ≤ 1/2} (see �gure) (10.96)

P =
12
179

∫ 1

0

∫ 2−t

0

(
3t2 + u

)
dudt+

12
179

∫ 2

1

∫ 1

0

(
3t2 + u

)
dudt =

119
179

(10.97)

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 300

Enter number of Y approximation points 300

Enter expression for joint density (12/179)*(3*t.^2 + u).*(u<=min(2,3-t))
Use array operations on X, Y, PX, PY, t, u, and P

M = (t<=1)&(u>=1);
Z = M.*(t + u) + (1 - M)*2.*u.^2;

G = M.*(t + u) + (1 - M)*2.*u.^2;

p = total((G<=2).*P)
p = 0.6662 % Theoretical = 119/179 = 0.6648

Solution to Exercise 10.4.15 (p. 292)

P (Z ≤ 1) = P
(

(X,Y ) ∈M1Q1

∨
M2Q2

)
, M1 = M, M2 = M c (10.98)

Q1 = {(t, u) : 0 ≤ t ≤ 1} Q2 = {(t, u) : u ≤ t} (see �gure) (10.99)

P =
12
227

∫ 1

0

∫ 1

0

(3t+ 2tu) dudt+
12
227

∫ 2

1

∫ t

2−t
(3t+ 2tu) dudt =

124
227

(10.100)

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 400

Enter number of Y approximation points 400

Enter expression for joint density (12/227)*(3*t+2*t.*u).*(u<=min(1+t,2))
Use array operations on X, Y, PX, PY, t, u, and P

Q = (u<=1).*(t<=1) + (t>1).*(u>=2-t).*(u<=t);
P = total(Q.*P)

P = 0.5478 % Theoretical = 124/227 = 0.5463
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Solution to Exercise 10.4.16 (p. 293)

% file npr10_16.m (Section~17.8.42: npr10_16) Data for Exercise~10.4.16

cx = [-2 1 3 0];

pmx = 0.001*[255 25 375 45 108 12 162 18];

cy = [1 3 1 -3];

pmy = minprob(0.01*[32 56 40]);

Z = [-1.3 1.2 2.7 3.4 5.8];

PZ = 0.01*[12 24 43 13 8];

disp('Data are in cx, pmx, cy, pmy, Z, PZ')

npr10_16 % Call for data

Data are in cx, pmx, cy, pmy, Z, PZ

[X,PX] = canonicf(cx,pmx);

[Y,PY] = canonicf(cy,pmy);

icalc3

Enter row matrix of X-values X

Enter row matrix of Y-values Y

Enter row matrix of Z-values Z

Enter X probabilities PX

Enter Y probabilities PY

Enter Z probabilities PZ

Use array operations on matrices X, Y, Z,

PX, PY, PZ, t, u, v, and P

M = t.^2 + 3*t.*u.^2 > 3*v;

PM = total(M.*P)

PM = 0.3587

Solution to Exercise 10.4.17 (p. 293)

X = [-3.1 -0.5 1.2 2.4 3.7 4.9];

PX = 0.01*[15 22 33 12 11 7];

ddbn

Enter row matrix of VALUES X

Enter row matrix of PROBABILITIES PX % Plot not reproduced here

dquanplot

Enter VALUES for X X

Enter PROBABILITIES for X PX % Plot not reproduced here

rand('seed',0) % Reset random number generator

dsample % for comparison purposes

Enter row matrix of VALUES X

Enter row matrix of PROBABILITIES PX

Sample size n 10000

Value Prob Rel freq

-3.1000 0.1500 0.1490

-0.5000 0.2200 0.2164

1.2000 0.3300 0.3340

2.4000 0.1200 0.1184

3.7000 0.1100 0.1070

4.9000 0.0700 0.0752

Sample average ex = 0.8792

Population mean E[X] = 0.859
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Sample variance vx = 5.146

Population variance Var[X] = 5.112
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Chapter 11

Mathematical Expectation

11.1 Mathematical Expectation: Simple Random Variables1

11.1.1 Introduction

The probability that real random variable X takes a value in a set M of real numbers is interpreted as the
likelihood that the observed value X (ω) on any trial will lie inM. Historically, this idea of likelihood is rooted
in the intuitive notion that if the experiment is repeated enough times the probability is approximately the
fraction of times the value of X will fall inM. Associated with this interpretation is the notion of the average of
the values taken on. We incorporate the concept of mathematical expectation into the mathematical model
as an appropriate form of such averages. We begin by studying the mathematical expectation of simple
random variables, then extend the de�nition and properties to the general case. In the process, we note the
relationship of mathematical expectation to the Lebesque integral, which is developed in abstract measure
theory. Although we do not develop this theory, which lies beyond the scope of this study, identi�cation of
this relationship provides access to a rich and powerful set of properties which have far reaching consequences
in both application and theory.

11.1.2 Expectation for simple random variables

The notion of mathematical expectation is closely related to the idea of a weighted mean, used extensively
in the handling of numerical data. Consider the arithmetic average x of the following ten numbers: 1, 2, 2,
2, 4, 5, 5, 8, 8, 8, which is given by

x =
1
10

(1 + 2 + 2 + 2 + 4 + 5 + 5 + 8 + 8 + 8) (11.1)

Examination of the ten numbers to be added shows that �ve distinct values are included. One of the ten,
or the fraction 1/10 of them, has the value 1, three of the ten, or the fraction 3/10 of them, have the value
2, 1/10 has the value 4, 2/10 have the value 5, and 3/10 have the value 8. Thus, we could write

x = (0.1 · 1 + 0.3 · 2 + 0.1 · 4 + 0.2 · 5 + 0.3 · 8) (11.2)

The pattern in this last expression can be stated in words: Multiply each possible value by the fraction
of the numbers having that value and then sum these products. The fractions are often referred to as the
relative frequencies. A sum of this sort is known as a weighted average.

In general, suppose there are n numbers {x1, x2, · · · xn} to be averaged, with m ≤ n distinct values
{t1, t2, · · · , tm}. Suppose f1 have value t1, f2 have value t2, · · · , fm have value tm. The fi must add to n.

1This content is available online at <http://cnx.org/content/m23387/1.6/>.
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If we set pi = fi/n, then the fraction pi is called the relative frequency of those numbers in the set which
have the value ti, 1 ≤ i ≤ m. The average x of the n numbers may be written

x =
1
n

n∑
i=1

xi =
m∑
j=1

tjpj (11.3)

In probability theory, we have a similar averaging process in which the relative frequencies of the various
possible values of are replaced by the probabilities that those values are observed on any trial.

De�nition. For a simple random variable X with values {t1, t2, · · · , tn} and corresponding probabilities
pi = P (X = ti), the mathematical expectation, designated E [X], is the probability weighted average of the
values taken on by X. In symbols

E [X] =
n∑
i=1

tiP (X = ti) =
n∑
i=1

tipi (11.4)

Note that the expectation is determined by the distribution. Two quite di�erent random variables may have
the same distribution, hence the same expectation. Traditionally, this average has been called the mean, or
the mean value, of the random variable X.

Example 11.1: Some special cases

1. Since X = aIE = 0IEc + aIE , we have E [aIE ] = aP (E).
2. For X a constant c, X = cIΩ, so that E [c] = cP (Ω) = c.
3. If X =

∑n
i=1 tiIAi then aX =

∑n
i=1 atiIAi , so that

E [aX] =
n∑
i=1

atiP (Ai) = a

n∑
i=1

tiP (Ai) = aE [X] (11.5)

Figure 11.1: Moment of a probability distribution about the origin.
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Mechanical interpretation
In order to aid in visualizing an essentially abstract system, we have employed the notion of probability

as mass. The distribution induced by a real random variable on the line is visualized as a unit of probability
mass actually distributed along the line. We utilize the mass distribution to give an important and helpful
mechanical interpretation of the expectation or mean value. In Example 6 (Example 11.16: Alternate
interpretation of the mean value) in "Mathematical Expectation: General Random Variables", we give an
alternate interpretation in terms of mean-square estimation.

Suppose the random variable X has values {ti : 1 ≤ i ≤ n}, with P (X = ti) = pi. This produces a
probability mass distribution, as shown in Figure 1, with point mass concentration in the amount of pi at
the point ti. The expectation is ∑

i

tipi (11.6)

Now |ti| is the distance of point mass pi from the origin, with pi to the left of the origin i� ti is negative.
Mechanically, the sum of the products tipi is the moment of the probability mass distribution about the
origin on the real line. From physical theory, this moment is known to be the same as the product of the
total mass times the number which locates the center of mass. Since the total mass is one, the mean value
is the location of the center of mass. If the real line is viewed as a sti�, weightless rod with point mass pi
attached at each value ti of X, then the mean value µX is the point of balance. Often there are symmetries
in the distribution which make it possible to determine the expectation without detailed calculation.

Example 11.2: The number of spots on a die
Let X be the number of spots which turn up on a throw of a simple six-sided die. We suppose each
number is equally likely. Thus the values are the integers one through six, and each probability is
1/6. By de�nition

E [X] =
1
6
· 1 +

1
6
· 2 +

1
6
· 3 +

1
6
· 4 +

1
6
· 5 +

1
6
· 6 =

1
6

(1 + 2 + 3 + 4 + 5 + 6) =
7
2

(11.7)

Although the calculation is very simple in this case, it is really not necessary. The probability
distribution places equal mass at each of the integer values one through six. The center of mass is
at the midpoint.

Example 11.3: A simple choice
A child is told she may have one of four toys. The prices are $2.50. $3.00, $2.00, and $3.50,
respectively. She choses one, with respective probabilities 0.2, 0.3, 0.2, and 0.3 of choosing the �rst,
second, third or fourth. What is the expected cost of her selection?

E [X] = 2.00 · 0.2 + 2.50 · 0.2 + 3.00 · 0.3 + 3.50 · 0.3 = 2.85 (11.8)

For a simple random variable, the mathematical expectation is determined as the dot product of the value
matrix with the probability matrix. This is easily calculated using MATLAB.

Example 11.4: MATLAB calculation for Example 3

X = [2 2.5 3 3.5]; % Matrix of values (ordered)

PX = 0.1*[2 2 3 3]; % Matrix of probabilities

EX = dot(X,PX) % The usual MATLAB operation

EX = 2.8500

Ex = sum(X.*PX) % An alternate calculation

Ex = 2.8500

ex = X*PX' % Another alternate

ex = 2.8500
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Expectation and primitive form
The de�nition and treatment above assumes X is in canonical form, in which case

X =
n∑
i=1

tiIAi , where Ai = {X = ti}, implies E [X] =
n∑
i=1

tiP (Ai) (11.9)

We wish to ease this restriction to canonical form.
Suppose simple random variable X is in a primitive form

X =
m∑
j=1

cjICj , where {Cj : 1 ≤ j ≤ m} is a partition (11.10)

We show that

E [X] =
m∑
j=1

cjP (Cj) (11.11)

Before a formal veri�cation, we begin with an example which exhibits the essential pattern. Establishing
the general case is simply a matter of appropriate use of notation.

Example 11.5: Simple random variable X in primitive form

X = IC1 + 2IC2 + IC3 + 3IC4 + 2IC5 + 2IC6 , with {C1, C2, C3, C4, C5. C6} a partition (11.12)

Inspection shows the distinct possible values of X to be 1, 2, or 3. Also,

A1 = {X = 1} = C1

∨
C3, A2 = {X = 2} = C2

∨
C5

∨
C6 and A3 = {X = 3} = C4 (11.13)

so that

P (A1) = P (C1) + P (C3) , P (A2) = P (C2) + P (C5) + P (C6) , and P (A3) = P (C4) (11.14)

Now

E [X] = P (A1) + 2P (A2) + 3P (A3) = P (C1) + P (C3) + 2 [P (C2) + P (C5) + P (C6)] + 3P (C4) (11.15)

= P (C1) + 2P (C2) + P (C3) + 3P (C4) + 2P (C5) + 2P (C6) (11.16)

To establish the general pattern, consider X =
∑m
j=1 cjICj . We identify the distinct set of values contained

in the set {cj : 1 ≤ j ≤ m}. Suppose these are t1 < t2 < · · · < tn. For any value ti in the range, identify the
index set Ji of those j such that cj = ti. Then the terms∑

Ji

cjICj = ti
∑
Ji

ICj = tiIAi , where Ai =
∨
j∈Ji

Cj (11.17)

By the additivity of probability

P (Ai) = P (X = ti) =
∑
j∈Ji

P (Cj) (11.18)

Since for each j ∈ Ji we have cj = ti, we have

E [X] =
n∑
i=1

tiP (Ai) =
n∑
i=1

ti
∑
j∈Ji

P (Cj) =
n∑
i=1

∑
j∈Ji

cjP (Cj) =
m∑
j=1

cjP (Cj) (11.19)
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� �
Thus, the de�ning expression for expectation thus holds for X in a primitive form.
An alternate approach to obtaining the expectation from a primitive form is to use the csort operation

to determine the distribution of X from the coe�cients and probabilities of the primitive form.

Example 11.6: Alternate determinations of E [X]
Suppose X in a primitive form is

X = IC1 + 2IC2 + IC3 + 3IC4 + 2IC5 + 2IC6 + IC7 + 3IC8 + 2IC9 + IC10 (11.20)

with respective probabilities

P (Ci) = 0.08, 0.11, 0.06, 0.13, 0.05, 0.08, 0.12, 0.07, 0.14, 0.16 (11.21)

c = [1 2 1 3 2 2 1 3 2 1]; % Matrix of coefficients

pc = 0.01*[8 11 6 13 5 8 12 7 14 16]; % Matrix of probabilities

EX = c*pc'

EX = 1.7800 % Direct solution

[X,PX] = csort(c,pc); % Determination of dbn for X

disp([X;PX]')

1.0000 0.4200

2.0000 0.3800

3.0000 0.2000

Ex = X*PX' % E[X] from distribution

Ex = 1.7800

Linearity
The result on primitive forms may be used to establish the linearity of mathematical expectation for

simple random variables. Because of its fundamental importance, we work through the veri�cation in some
detail.

Suppose X =
∑n
i=1 tiIAi and Y =

∑m
j=1 ujIBj (both in canonical form). Since

n∑
i=1

IAi =
m∑
j=1

IBj = 1 (11.22)

we have

X + Y =
n∑
i=1

tiIAi

 m∑
j=1

IBj

+
m∑
j=1

ujIBj

(
n∑
i=1

IAi

)
=

n∑
i=1

m∑
j=1

(ti + uj) IAiIBj (11.23)

Note that IAiIBj = IAiBj and AiBj = {X = ti, Y = uj}. The class of these sets for all possible pairs (i, j)
forms a partition. Thus, the last summation expresses Z = X +Y in a primitive form. Because of the result
on primitive forms, above, we have

E [X + Y ] =
n∑
i=1

m∑
j=1

(ti + uj)P (AiBj) =
n∑
i=1

m∑
j=1

tiP (AiBj) +
n∑
i=1

m∑
j=1

ujP (AiBj) (11.24)

=
n∑
i=1

ti

m∑
j=1

P (AiBj) +
m∑
j=1

uj

n∑
i=1

P (AiBj) (11.25)
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We note that for each i and for each j

P (Ai) =
m∑
j=1

P (AiBj) and P (Bj) =
n∑
i=1

P (AiBj) (11.26)

Hence, we may write

E [X + Y ] =
n∑
i=1

tiP (Ai) +
m∑
j=1

ujP (Bj) = E [X] + E [Y ] (11.27)

Now aX and bY are simple if X and Y are, so that with the aid of Example 11.1 (Some special cases) we
have

E [aX + bY ] = E [aX] + E [bY ] = aE [X] + bE [Y ] (11.28)

If X,Y, Z are simple, then so are aX + bY , and cZ. It follows that

E [aX + bY + cZ] = E [aX + bY ] + cE [Z] = aE [X] + bE [Y ] + cE [Z] (11.29)

By an inductive argument, this pattern may be extended to a linear combination of any �nite number of
simple random variables. Thus we may assert

Linearity. The expectation of a linear combination of a �nite number of simple random variables is that
linear combination of the expectations of the individual random variables.

� �
Expectation of a simple random variable in a�ne form
As a direct consequence of linearity, whenever simple random variable X is in a�ne form, then

E [X] = E

[
c0 +

n∑
i=1

ciIEi

]
= c0 +

n∑
i=1

ciP (Ei) (11.30)

Thus, the de�ning expression holds for any a�ne combination of indicator functions, whether in canonical
form or not.

Example 11.7: Binomial distribution (n, p)
This random variable appears as the number of successes in n Bernoulli trials with probability p of
success on each component trial. It is naturally expressed in a�ne form

X =
n∑
i=1

IEi so that E [X] =
n∑
i=1

p = np (11.31)

Alternately, in canonical form

X =
n∑
k=0

kIAkn , with pk = P (Akn) = P (X = k) = C (n, k) pkqn−k, q = 1− p (11.32)

so that

E [X] =
n∑
k=0

kC (n, k) pkqn−k, q = 1− p (11.33)

Some algebraic tricks may be used to show that the second form sums to np, but there is no need
of that. The computation for the a�ne form is much simpler.
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Example 11.8: Expected winnings
A bettor places three bets at $2.00 each. The �rst bet pays $10.00 with probability 0.15, the
second pays $8.00 with probability 0.20, and the third pays $20.00 with probability 0.10. What is
the expected gain?

SOLUTION
The net gain may be expressed

X = 10IA + 8IB + 20IC − 6, with P (A) = 0.15, P (B) = 0.20, P (C) = 0.10 (11.34)

Then

E [X] = 10 · 0.15 + 8 · 0.20 + 20 · 0.10− 6 = −0.90 (11.35)

These calculations may be done in MATLAB as follows:

c = [10 8 20 -6];

p = [0.15 0.20 0.10 1.00]; % Constant a = aI_(Omega), with P(Omega) = 1

E = c*p'

E = -0.9000

Functions of simple random variables
If X is in a primitive form (including canonical form) and g is a real function de�ned on the range of X,

then

Z = g (X) =
m∑
j=1

g (cj) ICj a primitive form (11.36)

so that

E [Z] = E [g (X)] =
m∑
j=1

g (cj)P (Cj) (11.37)

Alternately, we may use csort to determine the distribution for Z and work with that distribution.
Caution. If X is in a�ne form (but not a primitive form)

X = c0 +
m∑
j=1

cjIEj then g (X) 6= g (c0) +
m∑
j=1

g (cj) IEj (11.38)

so that

E [g (X)] 6= g (c0) +
m∑
j=1

g (cj)P (Ej) (11.39)

Example 11.9: Expectation of a function of X
Suppose X in a primitive form is

X = −3IC1 − IC2 + 2IC3 − 3IC4 + 4IC5 − IC6 + IC7 + 2IC8 + 3IC9 + 2IC10 (11.40)

with probabilities P (Ci) = 0.08, 0.11, 0.06, 0.13, 0.05, 0.08, 0.12, 0.07, 0.14, 0.16.
Let g (t) = t2 + 2t. Determine E [g (X)].
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c = [-3 -1 2 -3 4 -1 1 2 3 2]; % Original coefficients

pc = 0.01*[8 11 6 13 5 8 12 7 14 16]; % Probabilities for C_j

G = c.^2 + 2*c % g(c_j)

G = 3 -1 8 3 24 -1 3 8 15 8

EG = G*pc' % Direct computation

EG = 6.4200

[Z,PZ] = csort(G,pc); % Distribution for Z = g(X)

disp([Z;PZ]') % Optional display

-1.0000 0.1900

3.0000 0.3300

8.0000 0.2900

15.0000 0.1400

24.0000 0.0500

EZ = Z*PZ' % E[Z] from distribution for Z

EZ = 6.4200

A similar approach can be made to a function of a pair of simple random variables, provided the joint
distribution is available. Suppose X =

∑n
i=1 tiIAi and Y =

∑m
j=1 ujIBj (both in canonical form). Then

Z = g (X, Y ) =
n∑
i=1

m∑
j=1

g (ti, uj) IAiBj (11.41)

The AiBj form a partition, so Z is in a primitive form. We have the same two alternative possibilities: (1)
direct calculation from values of g (ti, uj) and corresponding probabilities P (AiBj) = P (X = ti, Y = uj),
or (2) use of csort to obtain the distribution for Z.

Example 11.10: Expectation for Z = g (X, Y )
We use the joint distribution in �le jdemo1.m and let g (t, u) = t2 + 2tu − 3u. To set up for
calculations, we use jcalc.

% file jdemo1.m

X = [-2.37 -1.93 -0.47 -0.11 0 0.57 1.22 2.15 2.97 3.74];

Y = [-3.06 -1.44 -1.21 0.07 0.88 1.77 2.01 2.84];

P = 0.0001*[ 53 8 167 170 184 18 67 122 18 12;

11 13 143 221 241 153 87 125 122 185;

165 129 226 185 89 215 40 77 93 187;

165 163 205 64 60 66 118 239 67 201;

227 2 128 12 238 106 218 120 222 30;

93 93 22 179 175 186 221 65 129 4;

126 16 159 80 183 116 15 22 113 167;

198 101 101 154 158 58 220 230 228 211];

jdemo1 % Call for data

jcalc % Set up

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X

Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P

G = t.^2 + 2*t.*u - 3*u; % Calculation of matrix of [g(t_i, u_j)]

EG = total(G.*P) % Direct calculation of expectation

EG = 3.2529

[Z,PZ] = csort(G,P); % Determination of distribution for Z

EZ = Z*PZ' % E[Z] from distribution
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EZ = 3.2529

11.2 Mathematical Expectation; General Random Variables2

In this unit, we extend the de�nition and properties of mathematical expectation to the general case. In the
process, we note the relationship of mathematical expectation to the Lebesque integral, which is developed
in abstract measure theory. Although we do not develop this theory, which lies beyond the scope of this
study, identi�cation of this relationship provides access to a rich and powerful set of properties which have
far reaching consequences in both application and theory.

11.2.1 Extension to the General Case

In the unit on Distribution Approximations (Section 7.2), we show that a bounded random variable X can be
represented as the limit of a nondecreasing sequence of simple random variables. Also, a real random variable
can be expressed as the di�erence X = X+ − X− of two nonnegative random variables. The extension of
mathematical expectation to the general case is based on these facts and certain basic properties of simple
random variables, some of which are established in the unit on expectation for simple random variables. We
list these properties and sketch how the extension is accomplished.

De�nition. A condition on a random variable or on a relationship between random variables is said to
hold almost surely, abbreviated �a.s.� i� the condition or relationship holds for all ω except possibly a set
with probability zero.

Basic properties of simple random variables

(E0) : If X = Y a.s. then E [X] = E [Y ].
(E1) : E [aIE ] = aP (E).
(E2) : Linearity. X =

∑n
i=1 aiXi implies E [X] =

∑n
i=1 aiE [Xi]

(E3) : Positivity; monotonicity

a. If X ≥ 0 a.s. , then E [X] ≥ 0, with equality i� X = 0 a.s..
b. If X ≥ Y a.s. , then E [X] ≥ E [Y ], with equality i� X = Y a.s.

(E4) : Fundamental lemma If X ≥ 0 is bounded and {Xn : 1 ≤ n} is an a.s. nonnegative, nondecreasing
sequence with lim

n
Xn (ω) ≥ X (ω) for almost every ω, then lim

n
E [Xn] ≥ E [X].

(E4a): If for all n, 0 ≤ Xn ≤ Xn+1 a.s. and Xn → X a.s. , then E [Xn] → E [X] (i.e., the expectation of
the limit is the limit of the expectations).

Ideas of the proofs of the fundamental properties

• Modifying the random variable X on a set of probability zero simply modi�es one or more of the Ai

without changing P (Ai). Such a modi�cation does not change E [X].
• Properties (E1) ("(E1) ", p. 309) and (E2) ("(E2) ", p. 309) are established in the unit on expectation

of simple random variables..
• Positivity (E3a) (p. 309) is a simple property of sums of real numbers. Modi�cation of sets of proba-

bility zero cannot a�ect the expectation.
• Monotonicity (E3b) (p. 309) is a consequence of positivity and linearity.

X ≥ Y i� X − Y ≥ 0 a.s. and E [X] ≥ E [Y ] i� E [X]− E [Y ] = E [X − Y ] ≥ 0 (11.42)

2This content is available online at <http://cnx.org/content/m23412/1.6/>.
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• The fundamental lemma (E4) ("(E4) ", p. 309) plays an essential role in extending the concept of
expectation. It involves elementary, but somewhat sophisticated, use of linearity and monotonicity,
limited to nonnegative random variables and positive coe�cients. We forgo a proof.

• Monotonicity and the fundamental lemma provide a very simple proof of the monotone convergence
theoem, often designated MC. Its role is essential in the extension.

Nonnegative random variables
There is a nondecreasing sequence of nonnegative simple random variables converging to X. Monotonicity

implies the integrals of the nondecreasing sequence is a nondecreasing sequence of real numbers, which must
have a limit or increase without bound (in which case we say the limit is in�nite). We de�ne E [X] =
lim
n
E [Xn].
Two questions arise.

1. Is the limit unique? The approximating sequences for a simple random variable are not unique, although
their limit is the same.

2. Is the de�nition consistent? If the limit random variable X is simple, does the new de�nition coincide
with the old?

The fundamental lemma and monotone convergence may be used to show that the answer to both questions
is a�rmative, so that the de�nition is reasonable. Also, the six fundamental properties survive the passage
to the limit.

As a simple applications of these ideas, consider discrete random variables such as the geometric (p) or
Poisson (µ), which are integer-valued but unbounded.

Example 11.11: Unbounded, nonnegative, integer-valued random variables
The random variable X may be expressed

X =
∞∑
k=0

kIEk , where Ek = {X = k} with P (Ek) = pk (11.43)

Let

Xn =
n−1∑
k=0

kIEk + nIBn , where Bn = {X ≥ n} (11.44)

Then each Xn is a simple random variable withXn ≤ Xn+1. IfX (ω) = k, thenXn (ω) = k = X (ω)
for all n ≥ k + 1. Hence, Xn (ω) → X (ω) for all ω. By monotone convergence, E [Xn] → E [X].
Now

E [Xn] =
n−1∑
k=1

kP (Ek) + nP (Bn) (11.45)

If
∑∞
k=0 kP (Ek) <∞, then

0 ≤ nP (Bn) = n

∞∑
k=n

P (Ek) ≤
∞∑
k=n

kP (Ek)→ 0 as n→∞ (11.46)

Hence

E [X] = lim
n
E [Xn] =

∞∑
k=0

kP (Ak) (11.47)

We may use this result to establish the expectation for the geometric and Poisson distributions.
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Example 11.12: X ∼ geometric (p)
We have pk = P (X = k) = qkp, 0 ≤ k. By the result of Example 11.11 (Unbounded, nonnegative,
integer-valued random variables)

E [X] =
∞∑
k=0

kpqk = pq

∞∑
k=1

kqk−1 =
pq

(1− q)2 = q/p (11.48)

For Y − 1 ∼ geometric (p), pk = pqk−1 so that E [Y ] = 1
qE [X] = 1/p

Example 11.13: X ∼ Poisson (µ)
We have pk = e−µ µ

k

k! . By the result of Example 11.11 (Unbounded, nonnegative, integer-valued
random variables)

E [X] = e−µ
∞∑
k=0

k
µk

k!
= µe−µ

∞∑
k=1

µk−1

(k − 1)!
= µe−µeµ = µ (11.49)

The general case
We make use of the fact that X = X+ −X−, where both X+ and X- are nonnegative. Then

E [X] = E
[
X+
]
− E

[
X−
]

provided at least one of E
[
X+
]
, E

[
X−
]
is �nite (11.50)

De�nition. If both E [X+] and E [X−] are �nite, X is said to be integrable.
The term integrable comes from the relation of expectation to the abstract Lebesgue integral of measure

theory.
Again, the basic properties survive the extension. The property (E0) ("(E0) ", p. 309) is subsumed in a

more general uniqueness property noted in the list of properties discussed below.
Theoretical note
The development of expectation sketched above is exactly the development of the Lebesgue integral of

the random variable X as a measurable function on the basic probability space (Ω, F, P ), so that

E [X] =
∫

Ω

X dP (11.51)

As a consequence, we may utilize the properties of the general Lebesgue integral. In its abstract form, it
is not particularly useful for actual calculations. A careful use of the mapping of probability mass to the
real line by random variable X produces a corresponding mapping of the integral on the basic space to
an integral on the real line. Although this integral is also a Lebesgue integral it agrees with the ordinary
Riemann integral of calculus when the latter exists, so that ordinary integrals may be used to compute
expectations.

Additional properties
The fundamental properties of simple random variables which survive the extension serve as the basis

of an extensive and powerful list of properties of expectation of real random variables and real functions of
random vectors. Some of the more important of these are listed in the table in Appendix E (Section 17.5).
We often refer to these properties by the numbers used in that table.

Some basic forms
The mapping theorems provide a number of basic integral (or summation) forms for computation.

1. In general, if Z = g (X) with distribution functions FX and FZ, we have the expectation as a Stieltjes
integral.

E [Z] = E [g (X)] =
∫
g (t)FX (dt) =

∫
uFZ (du) (11.52)
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2. If X and g (X) are absolutely continuous, the Stieltjes integrals are replaced by

E [Z] =
∫
g (t) fX (t) dt =

∫
ufZ (u) du (11.53)

where limits of integration are determined by fX or fY. Justi�cation for use of the density function is
provided by the Radon-Nikodym theorem�property (E19) ("(E19)", p. 600).

3. If X is simple, in a primitive form (including canonical form), then

E [Z] = E [g (X)] =
m∑
j=1

g (cj)P (Cj) (11.54)

If the distribution for Z = g (X) is determined by a csort operation, then

E [Z] =
n∑
k=1

vkP (Z = vk) (11.55)

4. The extension to unbounded, nonnegative, integer-valued random variables is shown in Example 11.11
(Unbounded, nonnegative, integer-valued random variables), above. The �nite sums are replaced by
in�nite series (provided they converge).

5. For Z = g (X, Y ),

E [Z] = E [g (X, Y )] =
∫ ∫

g (t, u)FXY (dtdu) =
∫
vFZ (dv) (11.56)

6. In the absolutely continuous case

E [Z] = E [g (X, Y )] =
∫ ∫

g (t, u) fXY (t, u) dudt =
∫
vfZ (v) dv (11.57)

7. For joint simple X, Y (Section on Expectation for Simple Random Variables (Section 11.1.2: Expec-
tation for simple random variables))

E [Z] = E [g (X, Y )] =
n∑
i=1

m∑
j=1

g (ti, uj)P (X = ti, Y = uj) (11.58)

Mechanical interpretation and approximation procedures
In elementary mechanics, since the total mass is one, the quantity E [X] =

∫
tfX (t) dt is the location of

the center of mass. This theoretically rigorous fact may be derived heuristically from an examination of the
expectation for a simple approximating random variable. Recall the discussion of the m-procedure for discrete
approximation in the unit on Distribution Approximations (Section 7.2) The range of X is divided into equal
subintervals. The values of the approximating random variable are at the midpoints of the subintervals. The
associated probability is the probability mass in the subinterval, which is approximately fX (ti) dx, where
dx is the length of the subinterval. This approximation improves with an increasing number of subdivisions,
with corresponding decrease in dx. The expectation of the approximating simple random variable Xs is

E [Xs] =
∑
i

tifX (ti) dx ≈
∫
tfX (t) dt (11.59)

The approximation improves with increasingly �ne subdivisions. The center of mass of the approximating
distribution approaches the center of mass of the smooth distribution.
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It should be clear that a similar argument for g (X) leads to the integral expression

E [g (X)] =
∫
g (t) fX (t) dt (11.60)

This argument shows that we should be able to use tappr to set up for approximating the expectation
E [g (X)] as well as for approximating P (g (X) ∈M), etc. We return to this in Section 11.2.2 (Properties
and computation).

Mean values for some absolutely continuous distributions

1. Uniform on [a, b]fX (t) = 1
b−a , a ≤ t ≤ b The center of mass is at (a+ b) /2. To calculate the value

formally, we write

E [X] =
∫
tfX (t) dt =

1
b− a

∫ b

a

t dt =
b2 − a2

2 (b− a)
=
b+ a

2
(11.61)

2. Symmetric triangular on[a, b] The graph of the density is an isoceles triangle with base on the
interval [a, b]. By symmetry, the center of mass, hence the expectation, is at the midpoint (a+ b) /2.

3. Exponential(λ). fX (t) = λe−λt, 0 ≤ t Using a well known de�nite integral (see Appendix B
(Section 17.2)), we have

E [X] =
∫
tfX (t) dt =

∫ ∞
0

λte−λt dt = 1/λ (11.62)

4. Gamma(α, λ). fX (t) = 1
Γ(α) t

α−1λαe−λt, 0 ≤ t Again we use one of the integrals in Appendix B

(Section 17.2) to obtain

E [X] =
∫
tfX (t) dt =

1
Γ (α)

∫ ∞
0

λαtαe−λt dt =
Γ (α+ 1)
λΓ (α)

= α/λ (11.63)

The last equality comes from the fact that Γ (α+ 1) = αΓ (α).
5. Beta(r, s). fX (t) = Γ(r+s)

Γ(r)Γ(s) t
r−1(1− t)s−1

, 0 < t < 1 We use the fact that
∫ 1

0
ur−1(1− u)s−1

du =
Γ(r)Γ(s)
Γ(r+s) , r > 0, s > 0.

E [X] =
∫
tfX (t) dt =

Γ (r + s)
Γ (r) Γ (s)

∫ 1

0

tr(1− t)s−1
dt =

Γ (r + s)
Γ (r) Γ (s)

· Γ (r + 1) Γ (s)
Γ (r + s+ 1)

=
r

r + s
(11.64)

6. Weibull(α, λ, ν). FX (t) = 1− e−λ(t−ν)α α > 0, λ > 0, ν ≥ 0, t ≥ ν. Di�erentiation shows

fX (t) = αλ(t− ν)α−1
e−λ(t−ν)α , t ≥ ν (11.65)

First, consider Y ∼ exponential (λ). For this random variable

E [Y r] =
∫ ∞

0

trλe−λt dt =
Γ (r + 1)

λr
(11.66)

If Y is exponential (1), then techniques for functions of random variables show that
[

1
λY
]1/α + ν ∼

Weibull (α, λ, ν). Hence,

E [X] =
1

λ1/α
E
[
Y 1/α

]
+ ν =

1
λ1/α

Γ
(

1
α

+ 1
)

+ ν (11.67)
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7. Normal
(
µ, σ2

)
The symmetry of the distribution about t = µ shows that E [X] = µ. This, of course,

may be veri�ed by integration. A standard trick simpli�es the work.

E [X] =
∫ ∞
−∞

tfX (t) dt =
∫ ∞
−∞

(t− µ) fX (t) dt+ µ (11.68)

We have used the fact that
∫∞
−∞ fX (t) dt = 1. If we make the change of variable x = t− µ in the last

integral, the integrand becomes an odd function, so that the integral is zero. Thus, E [X] = µ.

11.2.2 Properties and computation

The properties in the table in Appendix E (Section 17.5) constitute a powerful and convenient resource for
the use of mathematical expectation. These are properties of the abstract Lebesgue integral, expressed in
the notation for mathematical expectation.

E [g (X)] =
∫
g (X) dP (11.69)

In the development of additional properties, the four basic properties: (E1) ("(E1) ", p. 309) Expectation
of indicator functions, (E2) ("(E2) ", p. 309) Linearity, (E3) ("(E3) ", p. 309) Positivity; monotonicity, and
(E4a) ("(E4a)", p. 309) Monotone convergence play a foundational role. We utilize the properties in the
table, as needed, often referring to them by the numbers assigned in the table.

In this section, we include a number of examples which illustrate the use of various properties. Some
are theoretical examples, deriving additional properties or displaying the basis and structure of some in the
table. Others apply these properties to facilitate computation

Example 11.14: Probability as expectation
Probability may be expressed entirely in terms of expectation.

• By properties (E1) ("(E1) ", p. 309) and positivity (E3a) ("(E3) ", p. 309), P (A) = E [IA] ≥
0.

• As a special case of (E1) ("(E1) ", p. 309), we have P (Ω) = E [IΩ] = 1
• By the countable sums property (E8) ("(E8) ", p. 600),

A =
∨
i

Ai implies P (A) = E [IA] = E

[∑
i

IAi

]
=
∑
i

E [IAi ] =
∑
i

P (Ai) (11.70)

Thus, the three de�ning properties for a probability measure are satis�ed.

Remark. There are treatments of probability which characterize mathematical expectation with properties
(E0) through (E4a) (p. 309), then de�ne P (A) = E [IA]. Although such a development is quite feasible, it
has not been widely adopted.

Example 11.15: An indicator function pattern
Suppose X is a real random variable and E = X−1 (M) = {ω : X (ω) ∈M}. Then

IE = IM (X) (11.71)

To see this, note that X (ω) ∈M i� ω ∈ E, so that IE (ω) = 1 i� IM (X (ω)) = 1.
Similarly, if E = X−1 (M)∩ Y −1 (N), then IE = IM (X) IN (Y ). We thus have, by (E1) ("(E1)

", p. 309),

P (X ∈M) = E [IM (X)] and P (X ∈M, Y ∈ N) = E [IM (X) IN (Y )] (11.72)

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



315

Example 11.16: Alternate interpretation of the mean value

E
[
(X − c)2

]
is a minimum i� c = E [X] , in which case E

[
(X − E [X])2

]
= E

[
X2
]
− E2 [X] (11.73)

INTERPRETATION. If we approximate the random variable X by a constant c, then for any ω
the error of approximation is X (ω)− c. The probability weighted average of the square of the error

(often called the mean squared error) is E
[
(X − c)2

]
. This average squared error is smallest i�

the approximating constant c is the mean value.
VERIFICATION
We expand (X − c)2

and apply linearity to obtain

E
[
(X − c)2

]
= E

[
X2 − 2cX + c2

]
= E

[
X2
]
− 2E [X] c+ c2 (11.74)

The last expression is a quadratic in c (since E
[
X2
]
and E [X] are constants). The usual calculus

treatment shows the expression has a minimum for c = E [X]. Substitution of this value for c shows
the expression reduces to E

[
X2
]
− E2 [X].

A number of inequalities are listed among the properties in the table. The basis for these inequalities is
usually some standard analytical inequality on random variables to which the monotonicity property is
applied. We illustrate with a derivation of the important Jensen's inequality.

Example 11.17: Jensen's inequality
If X is a real random variable and g is a convex function on an interval I which includes the range
of X, then

g (E [X]) ≤ E [g (X)] (11.75)

VERIFICATION
The function g is convex on I i� for each t0 ∈ I = [a, b] there is a number λ (t0) such that

g (t) ≥ g (t0) + λ (t0) (t− t0) (11.76)

This means there is a line through (t0, g (t0)) such that the graph of g lies on or above it. If
a ≤ X ≤ b, then by monotonicity E [a] = a ≤ E [X] ≤ E [b] = b (this is the mean value property
(E11) ("(E11)", p. 600)). We may choose t0 = E [X] ∈ I. If we designate the constant λ (E [X])
by c, we have

g (X) ≥ g (E [X]) + c (X − E [X]) (11.77)

Recalling that E [X] is a constant, we take expectation of both sides, using linearity and mono-
tonicity, to get

E [g (X)] ≥ g (E [X]) + c (E [X]− E [X]) = g (E [X]) (11.78)

Remark. It is easy to show that the function λ (·) is nondecreasing. This fact is used in establishing Jensen's
inequality for conditional expectation.

The product rule for expectations of independent random variables

Example 11.18: Product rule for simple random variables
Consider an independent pair {X, Y } of simple random variables

X =
n∑
i=1

tiIAi Y =
m∑
j=1

ujIBj (both in canonical form) (11.79)
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We know that each pair {Ai, Bj} is independent, so that P (AiBj) = P (Ai)P (Bj). Consider the
product XY . According to the pattern described after Example 9 (Example 11.9: Expectation of
a function of X) from "Mathematical Expectation: Simple Random Variables."

XY =
n∑
i=1

tiIAi

m∑
j=1

ujIBj =
n∑
i=1

m∑
j=1

tiujIAiBj (11.80)

The latter double sum is a primitive form, so that

E [XY ] =
∑n

i=1

∑m
j=1 tiujP (AiBj) =

∑n
i=1

∑m
j=1 tiujP (Ai)P (Bj) =

(
∑n

i=1 tiP (Ai))
(∑m

j=1 ujP (Bj)
)

= E [X]E [Y ]

(11.81)

Thus the product rule holds for independent simple random variables.

Example 11.19: Approximating simple functions for an independent pair
Suppose {X, Y } is an independent pair, with an approximating simple pair {Xs, Ys}. As functions
of X and Y, respectively, the pair {Xs, Ys} is independent. According to Example 11.18 (Product
rule for simple random variables), above, the product rule E [XsYs] = E [Xs]E [Ys] must hold.

Example 11.20: Product rule for an independent pair
For X ≥ 0, Y ≥ 0, there exist nondecreasing sequences {Xn : 1 ≤ n} and {Yn : 1 ≤ n} of
simple random variables increasing to X and Y, respectively. The sequence {XnYn : 1 ≤ n} is
also a nondecreasing sequence of simple random variables, increasing to XY . By the monotone
convergence theorem (MC)

E [Xn] [U+2197]E [X] , E [Yn] [U+2197]E [Y ] , and E [XnYn] [U+2197]E [XY ] (11.82)

Since E [XnYn] = E [Xn]E [Yn] for each n, we conclude E [XY ] = E [X]E [Y ]
In the general case,

XY =
(
X+ −X−

) (
Y + − Y −

)
= X+Y + −X+Y − −X−Y + +X−Y − (11.83)

Application of the product rule to each nonnegative pair and the use of linearity gives the product
rule for the pair {X, Y }

Remark. It should be apparent that the product rule can be extended to any �nite independent class.

Example 11.21: The joint distribution of three random variables
The class {X, Y, Z} is independent, with the marginal distributions shown below. Let W =
g (X, Y, Z) = 3X2 + 2XY − 3XY Z. Determine E [W ].

X = 0:4;

Y = 1:2:7;

Z = 0:3:12;

PX = 0.1*[1 3 2 3 1];

PY = 0.1*[2 2 3 3];

PZ = 0.1*[2 2 1 3 2];

icalc3 % Setup for joint dbn for{X,Y,Z}

Enter row matrix of X-values X

Enter row matrix of Y-values Y

Enter row matrix of Z-values Z

Enter X probabilities PX

Enter Y probabilities PY
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Enter Z probabilities PZ

Use array operations on matrices X, Y, Z,

PX, PY, PZ, t, u, v, and P

EX = X*PX' % E[X]

EX = 2

EX2 = (X.^2)*PX' % E[X^2]

EX2 = 5.4000

EY = Y*PY' % E[Y]

EY = 4.4000

EZ = Z*PZ' % E[Z]

EZ = 6.3000

G = 3*t.^2 + 2*t.*u - 3*t.*u.*v; % W = g(X,Y,Z) = 3X^2 + 2XY - 3XYZ

EG = total(G.*P) % E[g(X,Y,Z)]

EG = -132.5200

[W,PW] = csort(G,P); % Distribution for W = g(X,Y,Z)

EW = W*PW' % E[W]

EW = -132.5200

ew = 3*EX2 + 2*EX*EY - 3*EX*EY*EZ % Use of linearity and product rule

ew = -132.5200

Example 11.22: A function with a compound de�nition: truncated exponential
Suppose X ∼ exponential (0.3). Let

Z = {
X2 for X ≤ 4

16 for X > 4
= I[0,4] (X)X2 + I(4,∞] (X) 16 (11.84)

Determine E [Z].
ANALYTIC SOLUTION

E [g (X)] =
∫
g (t) fX (t) dt =

∫ ∞
0

I[0,4] (t) t20.3e−0.3t dt+ 16E
[
I(4,∞] (X)

]
(11.85)

=
∫ 4

0

t20.3e−0.3t dt+ 16P (X > 4) ≈ 7.4972 (by Maple) (11.86)

APPROXIMATION
To obtain a simple aproximation, we must approximate the exponential by a bounded random

variable. Since P (X > 50) = e−15 ≈ 3 · 10−7 we may safely truncate X at 50.

tappr

Enter matrix [a b] of x-range endpoints [0 50]

Enter number of x approximation points 1000

Enter density as a function of t 0.3*exp(-0.3*t)

Use row matrices X and PX as in the simple case

M = X <= 4;

G = M.*X.^2 + 16*(1 - M); % g(X)

EG = G*PX' % E[g(X)]

EG = 7.4972

[Z,PZ] = csort(G,PX); % Distribution for Z = g(X)

EZ = Z*PZ' % E[Z] from distribution

EZ = 7.4972
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Because of the large number of approximation points, the results agree quite closely with the
theoretical value.

Example 11.23: Stocking for random demand (see Exercise 4 (Exercise 10.4.4) from
"Problems on Functions of Random Variables")
The manager of a department store is planning for the holiday season. A certain item costs c
dollars per unit and sells for p dollars per unit. If the demand exceeds the amount m ordered,
additional units can be special ordered for s dollars per unit (s > c). If demand is less than
amount ordered, the remaining stock can be returned (or otherwise disposed of) at r dollars per
unit (r < c). Demand D for the season is assumed to be a random variable with Poisson (µ)
distribution. Suppose µ = 50, c = 30, p = 50, s = 40, r = 20. What amount m should the manager
order to maximize the expected pro�t?

PROBLEM FORMULATION
Suppose D is the demand and X is the pro�t. Then

For D ≤ m, X = D (p− c)− (m−D) (c− r) = D (p− r) +m (r − c)
For D > m, X = m (p− c) + (D −m) (p− s) = D (p− s) +m (s− c)

It is convenient to write the expression for X in terms of IM, where M = (−∞,m]. Thus

X = IM (D) [D (p− r) +m (r − c)] + [1− IM (D)] [D (p− s) +m (s− c)] (11.87)

= D (p− s) +m (s− c) + IM (D) [D (p− r) +m (r − c)−D (p− s)−m (s− c)] (11.88)

= D (p− s) +m (s− c) + IM (D) (s− r) (D −m) (11.89)

Then E [X] = (p− s)E [D] +m (s− c) + (s− r)E [IM (D)D]− (s− r)mE [IM (D)].
ANALYTIC SOLUTION
For D ∼ Poisson (µ), E [D] = µ and E [IM (D)] = P (D ≤ m)

E [IM (D)D] = e−µ
m∑
k=1

k
µk

k!
= µe−µ

m∑
k=1

µk−1

(k − 1)!
= µP (D ≤ m− 1) (11.90)

Hence,

E [X] = (p− s)E [D] +m (s− c) + (s− r)E [IM (D)D]− (s− r)mE [IM (D)] (11.91)

= (p− s)µ+m (s− c) + (s− r)µP (D ≤ m− 1)− (s− r)mP (D ≤ m) (11.92)

Because of the discrete nature of the problem, we cannot solve for the optimum m by ordinary
calculus. We may solve for various m about m = µ and determine the optimum. We do so with
the aid of MATLAB and the m-function cpoisson.

mu = 50;

c = 30;

p = 50;

s = 40;

r = 20;

m = 45:55;

EX = (p - s)*mu + m*(s -c) + (s - r)*mu*(1 - cpoisson(mu,m)) ...

-(s - r)*m.*(1 - cpoisson(mu,m+1));

disp([m;EX]')

45.0000 930.8604
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46.0000 935.5231

47.0000 939.1895

48.0000 941.7962

49.0000 943.2988

50.0000 943.6750 % Optimum m = 50

51.0000 942.9247

52.0000 941.0699

53.0000 938.1532

54.0000 934.2347

55.0000 929.3886

A direct, solution may be obtained by MATLAB, using �nite approximation for the Poisson distri-
bution.

APPROXIMATION

ptest = cpoisson(mu,100) % Check for suitable value of n

ptest = 3.2001e-10

n = 100;

t = 0:n;

pD = ipoisson(mu,t);

for i = 1:length(m) % Step by step calculation for various m

M = t > m(i);

G(i,:) = t*(p - r) - M.*(t - m(i))*(s - r)- m(i)*(c - r);

end

EG = G*pD'; % Values agree with theoretical to four deicmals

An advantage of the second solution, based on simple approximation to D, is that the distribution of gain
for each m could be studied � e.g., the maximum and minimum gains.

� �

Example 11.24: A jointly distributed pair
Suppose the pair {X, Y } has joint density fXY (t, u) = 3u on the triangular region bounded by
u = 0, u = 1 + t, u = 1− t (see Figure 11.2). Let Z = g (X, Y ) = X2 + 2XY . Determine E [Z].

Figure 11.2: The density for Example 11.24 (A jointly distributed pair).
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ANALYTIC SOLUTION
E [Z] =

∫ ∫ (
t2 + 2tu

)
fXY (t, u) dudt

= 3
∫ 0

−1

∫ 1+t

0

(
t2u+ 2tu2

)
dudt+ 3

∫ 1

0

∫ 1−t

0

(
t2u+ 2tu2

)
dudt = 1/10 (11.93)

APPROXIMATION

tuappr

Enter matrix [a b] of X-range endpoints [-1 1]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 400

Enter number of Y approximation points 200

Enter expression for joint density 3*u.*(u<=min(1+t,1-t))
Use array operations on X, Y, PX, PY, t, u, and P

G = t.^2 + 2*t.*u; % g(X,Y) = X^2 + 2XY

EG = total(G.*P) % E[g(X,Y)]

EG = 0.1006 % Theoretical value = 1/10

[Z,PZ] = csort(G,P); % Distribution for Z

EZ = Z*PZ' % E[Z] from distribution

EZ = 0.1006

Example 11.25: A function with a compound de�nition
The pair {X, Y } has joint density fXY (t, u) = 1/2 on the square region bounded by u = 1 + t,
u = 1− t, u = 3− t, and u = t− 1 (see Figure 11.3),

W = {
X formax{X, Y } ≤ 1

2Y formax{X, Y } > 1
= IQ (X, Y )X + IQc (X, Y ) 2Y (11.94)

where Q = {(t, u) : max{t, u} ≤ 1} = {(t, u) : t ≤ 1, u ≤ 1}. Determine E [W ].
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Figure 11.3: The density for Example 11.25 (A function with a compound de�nition).

ANALYTIC SOLUTION
The intersection of the region Q and the square is the set for which 0 ≤ t ≤ 1 and 1− t ≤ u ≤ 1.

Reference to the �gure shows three regions of integration.

E [W ] =
1
2

∫ 1

0

∫ 1

1−t
t dudt+

1
2

∫ 1

0

∫ 1+t

1

2u dudt+
1
2

∫ 2

1

∫ 3−t

t−1

2u dudt = 11/6 ≈ 1.8333 (11.95)

APPROXIMATION

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density ((u<=min(t+1,3-t))& ...

(u>=max(1-t,t-1)))/2
Use array operations on X, Y, PX, PY, t, u, and P

M = max(t,u)<=1;
G = t.*M + 2*u.*(1 - M); % Z = g(X,Y)

EG = total(G.*P) % E[g(X,Y)]

EG = 1.8340 % Theoretical 11/6 = 1.8333

[Z,PZ] = csort(G,P); % Distribution for Z

EZ = dot(Z,PZ) % E[Z] from distribution

EZ = 1.8340

Special forms for expectation
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The various special forms related to property (E20a) (list, p. 600) are often useful. The general result,
which we do not need, is usually derived by an argument which employs a general form of what is known as
Fubini's theorem. The special form (E20b) (list, p. 601)

E [X] =
∫ ∞
−∞

[u (t)− FX (t)] dt (11.96)

may be derived from (E20a) by use of integration by parts for Stieltjes integrals. However, we use the
relationship between the graph of the distribution function and the graph of the quantile function to show
the equivalence of (E20b) (list, p. 601) and (E20f) (list, p. 601). The latter property is readily established
by elementary arguments.

Example 11.26: The property (E20f) (list, p. 601)
If Q is the quantile function for the distribution function FX, then

E [g (X)] =
∫ 1

0

g [Q (u)] du (11.97)

VERIFICATION
If Y = Q (U), where U ∼ uniform on (0, 1), then Y has the same distribution as X. Hence,

E [g (X)] = E [g (Q (U))] =
∫
g (Q (u)) fU (u) du =

∫ 1

0

g (Q (u)) du (11.98)

Example 11.27: Reliability and expectation
In reliability, if X is the life duration (time to failure) for a device, the reliability function is the
probability at any time t the device is still operative. Thus

R (t) = P (X > t) = 1− FX (t) (11.99)

According to property (E20b) (list, p. 601)

E [X] =
∫ ∞

0

R (t) dt (11.100)

Example 11.28: Use of the quantile function
Suppose FX (t) = ta, a > 0, 0 ≤ t ≤ 1. Then Q (u) = u1/a, 0 ≤ u ≤ a.

E [X] =
∫ 1

0

u1/a du =
1

1 + 1/a
=

a

a+ 1
(11.101)

The same result could be obtained by using fX (t) = F '
X (t) and evaluating

∫
tfX (t) dt.

Example 11.29: Equivalence of (E20b) (list, p. 601) and (E20f) (list, p. 601)

For the special case g (X) = X, Figure 3(a) shows
∫ 1

0
Q (u) du is the di�erence in the shaded areas∫ 1

0

Q (u) du = Area A - Area B (11.102)

The corresponding graph of the distribution function F is shown in Figure 3(b) (Figure 11.4).
Because of the construction, the areas of the regions marked A and B are the same in the two
�gures. As may be seen,

Area A =
∫ ∞

0

[1− F (t)] dt and Area B =
∫ 0

−∞
F (t) dt (11.103)
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Use of the unit step function u (t) = 1 for t > 0 and 0 for t < 0 (de�ned arbitrarily at t = 0)
enables us to combine the two expressions to get∫ 1

0

Q (u) du = Area A - Area B =
∫ ∞
−∞

[u (t)− F (t)] dt (11.104)
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Figure 11.4: Equivalence of properties (E20b) (list, p. 601) and (E20f) (list, p. 601).

Property (E20c) (list, p. 601) is a direct result of linearity and (E20b) (list, p. 601), with the unit step
functions cancelling out.
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Example 11.30: Property (E20d) (list, p. 601) Useful inequalities
Suppose X ≥ 0. Then

∞∑
n=0

P (X ≥ n+ 1) ≤ E [X] ≤
∞∑
n=0

P (X ≥ n) ≤ N
∞∑
k=0

P (X ≥ kN) , for all N ≥ 1 (11.105)

VERIFICATION
For X ≥ 0, by (E20b) (list, p. 601)

E [X] =
∫ ∞

0

[1− F (t)] dt =
∫ ∞

0

P (X > t) dt (11.106)

Since F can have only a countable number of jumps on any interval and P (X > t) and P (X ≥ t)
di�er only at jump points, we may assert∫ b

a

P (X > t) dt =
∫ b

a

P (X ≥ t) dt (11.107)

For each nonnegative integer n, let En = [n, n+ 1). By the countable additivity of expectation

E [X] =
∞∑
n=0

E [IEnX] =
∞∑
n=0

∫
En

P (X ≥ t) dt (11.108)

Since P (X ≥ t) is decreasing with t and each En has unit length, we have by the mean value
theorem

P (X ≥ n+ 1) ≤ E [IEnX] ≤ P (X ≥ n) (11.109)

The third inequality follows from the fact that∫ (k+1)N

kN

P (X ≥ t) dt ≤ N
∫
EkN

P (X ≥ t) dt ≤ NP (X ≥ kN) (11.110)

Remark. Property (E20d) (list, p. 601) is used primarily for theoretical purposes. The special case (E20e)
(list, p. 601) is more frequently used.

Example 11.31: Property (E20e) (list, p. 601)
If X is nonnegative, integer valued, then

E [X] =
∞∑
k=1

P (X ≥ k) =
∞∑
k=0

P (X > k) (11.111)

VERIFICATION
The result follows as a special case of (E20d) (list, p. 601). For integer valued random variables,

P (X ≥ t) = P (X ≥ n) on En and P (X ≥ t) = P (X > n) = P (X ≥ n+ 1) on En+1 (11.112)

An elementary derivation of (E20e) (list, p. 601) can be constructed as follows.

Example 11.32: (E20e) (list, p. 601) for integer-valued random variables
By de�nition

E [X] =
∞∑
k=1

kP (X = k) = lim
n

n∑
k=1

kP (X = k) (11.113)
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Now for each �nite n,

n∑
k=1

kP (X = k) =
n∑
k=1

k∑
j=1

P (X = k) =
n∑
j=1

n∑
k=j

P (X = k) =
n∑
j=1

P (X ≥ j) (11.114)

Taking limits as n→∞ yields the desired result.

Example 11.33: The geometric distribution
Suppose X ∼ geometric (p). Then P (X ≥ k) = qk. Use of (E20e) (list, p. 601) gives

E [X] =
∞∑
k=1

qk = q

∞∑
k=0

qk =
q

1− q
= q/p (11.115)

11.3 Problems on Mathematical Expectation3

Exercise 11.3.1 (Solution on p. 334.)

(See Exercise 1 (Exercise 7.3.1) from "Problems on Distribution and Density Functions", m-�le
npr07_01.m (Section 17.8.30: npr07_01)). The class {Cj : 1 ≤ j ≤ 10} is a partition. Random
variable X has values {1, 3, 2, 3, 4, 2, 1, 3, 5, 2} on C1 through C10, respectively, with probabilities
0.08, 0.13, 0.06, 0.09, 0.14, 0.11, 0.12, 0.07, 0.11, 0.09. Determine E [X].
Exercise 11.3.2 (Solution on p. 334.)

(See Exercise 2 (Exercise 7.3.2) from "Problems on Distribution and Density Functions", m-�le
npr07_02.m (Section 17.8.31: npr07_02) ). A store has eight items for sale. The prices are $3.50,
$5.00, $3.50, $7.50, $5.00, $5.00, $3.50, and $7.50, respectively. A customer comes in. She purchases
one of the items with probabilities 0.10, 0.15, 0.15, 0.20, 0.10 0.05, 0.10 0.15. The random variable
expressing the amount of her purchase may be written

X = 3.5IC1 + 5.0IC2 + 3.5IC3 + 7.5IC4 + 5.0IC5 + 5.0IC6 + 3.5IC7 + 7.5IC8 (11.116)

Determine the expection E [X] of the value of her purchase.
Exercise 11.3.3 (Solution on p. 334.)

(See Exercise 12 (Exercise 6.2.12) from "Problems on Random Variables and Probabilities", and Ex-
ercise 3 (Exercise 7.3.3) from "Problems on Distribution and Density Functions," m-�le npr06_12.m
(Section 17.8.28: npr06_12)). The class {A, B, C, D} has minterm probabilities

pm = 0.001 ∗ [5 7 6 8 9 14 22 33 21 32 50 75 86 129 201 302] (11.117)

Determine the mathematical expection for the random variable X = IA + IB + IC + ID, which
counts the number of the events which occur on a trial.

Exercise 11.3.4 (Solution on p. 335.)

(See Exercise 5 (Exercise 7.3.5) from "Problems on Distribution and Density Functions"). In
a thunderstorm in a national park there are 127 lightning strikes. Experience shows that the
probability of of a lightning strike starting a �re is about 0.0083. Determine the expected number
of �res.

Exercise 11.3.5 (Solution on p. 335.)

(See Exercise 8 (Exercise 7.3.8) from "Problems on Distribution and Density Functions"). Two
coins are �ipped twenty times. Let X be the number of matches (both heads or both tails).
Determine E [X].

3This content is available online at <http://cnx.org/content/m24366/1.5/>.
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Exercise 11.3.6 (Solution on p. 335.)

(See Exercise 12 (Exercise 7.3.12) from "Problems on Distribution and Density Functions"). A
residential College plans to raise money by selling �chances� on a board. Fifty chances are sold. A
player pays $10 to play; he or she wins $30 with probability p = 0.2. The pro�t to the College is

X = 50 · 10− 30N, where N is the number of winners (11.118)

Determine the expected pro�t E [X].
Exercise 11.3.7 (Solution on p. 335.)

(See Exercise 19 (Exercise 7.3.19) from "Problems on Distribution and Density Functions"). The
number of noise pulses arriving on a power circuit in an hour is a random quantity having Poisson
(7) distribution. What is the expected number of pulses in an hour?

Exercise 11.3.8 (Solution on p. 335.)

(See Exercise 24 (Exercise 7.3.24) and Exercise 25 (Exercise 7.3.25) from "Problems on Distribution
and Density Functions"). The total operating time for the units in Exercise 24 (Exercise 7.3.24) is
a random variable T ∼ gamma (20, 0.0002). What is the expected operating time?

Exercise 11.3.9 (Solution on p. 335.)

(See Exercise 41 (Exercise 7.3.41) from "Problems on Distribution and Density Functions"). Ran-
dom variable X has density function

fX (t) = {
(6/5) t2 for 0 ≤ t ≤ 1

(6/5) (2− t) for 1 < t ≤ 2
= I [0, 1] (t)

6
5
t2 + I(1,2] (t)

6
5

(2− t) (11.119)

What is the expected value E [X]?
Exercise 11.3.10 (Solution on p. 335.)

Truncated exponential. Suppose X ∼ exponential (λ) and Y = I[0,a] (X)X + I(a,∞) (X) a.

a. Use the fact that ∫ ∞
0

te−λt dt =
1
λ2

and

∫ ∞
a

te−λt dt =
1
λ2
e−λa (1 + λa) (11.120)

to determine an expression for E [Y ].
b. Use the approximation method, with λ = 1/50, a = 30. Approximate the exponential at

10,000 points for 0 ≤ t ≤ 1000. Compare the approximate result with the theoretical result
of part (a).

Exercise 11.3.11 (Solution on p. 335.)

(See Exercise 1 (Exercise 8.3.1) from "Problems On Random Vectors and Joint Distributions",
m-�le npr08_01.m (Section 17.8.32: npr08_01)). Two cards are selected at random, without
replacement, from a standard deck. Let X be the number of aces and Y be the number of spades.
Under the usual assumptions, determine the joint distribution. Determine E [X], E [Y ], E

[
X2
]
,

E
[
Y 2
]
, and E [XY ].

Exercise 11.3.12 (Solution on p. 336.)

(See Exercise 2 (Exercise 8.3.2) from "Problems On Random Vectors and Joint Distributions",
m-�le npr08_02.m (Section 17.8.33: npr08_02) ). Two positions for campus jobs are open. Two
sophomores, three juniors, and three seniors apply. It is decided to select two at random (each
possible pair equally likely). Let X be the number of sophomores and Y be the number of juniors
who are selected. Determine the joint distribution for {X,Y } and E [X], E [Y ], E

[
X2
]
, E

[
Y 2
]
,

and E [XY ].
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Exercise 11.3.13 (Solution on p. 336.)

(See Exercise 3 (Exercise 8.3.3) from "Problems On Random Vectors and Joint Distributions",
m-�le npr08_03.m (Section 17.8.34: npr08_03) ). A die is rolled. Let X be the number of spots
that turn up. A coin is �ipped X times. Let Y be the number of heads that turn up. Determine
the joint distribution for the pair {X,Y }. Assume P (X = k) = 1/6 for 1 ≤ k ≤ 6 and for each k,
P (Y = j|X = k) has the binomial (k, 1/2) distribution. Arrange the joint matrix as on the plane,
with values of Y increasing upward. Determine the expected value E [Y ].
Exercise 11.3.14 (Solution on p. 336.)

(See Exercise 4 (Exercise 8.3.4) from "Problems On Random Vectors and Joint Distributions", m-
�le npr08_04.m (Section 17.8.35: npr08_04) ). As a variation of Exercise 11.3.13, suppose a pair
of dice is rolled instead of a single die. Determine the joint distribution for {X,Y } and determine
E [Y ].
Exercise 11.3.15 (Solution on p. 337.)

(See Exercise 5 (Exercise 8.3.5) from "Problems On Random Vectors and Joint Distributions",
m-�le npr08_05.m (Section 17.8.36: npr08_05)). Suppose a pair of dice is rolled. Let X be the
total number of spots which turn up. Roll the pair an additional X times. Let Y be the number of
sevens that are thrown on the X rolls. Determine the joint distribution for {X,Y } and determine
E [Y ].
Exercise 11.3.16 (Solution on p. 337.)

(See Exercise 6 (Exercise 8.3.6) from "Problems On Random Vectors and Joint Distributions",
m-�le npr08_06.m (Section 17.8.37: npr08_06)). The pair {X, Y } has the joint distribution:

X = [−2.3 − 0.7 1.1 3.9 5.1] Y = [1.3 2.5 4.1 5.3] (11.121)

P =


0.0483 0.0357 0.0420 0.0399 0.0441

0.0437 0.0323 0.0380 0.0361 0.0399

0.0713 0.0527 0.0620 0.0609 0.0551

0.0667 0.0493 0.0580 0.0651 0.0589

 (11.122)

Determine E [X], E [Y ], E
[
X2
]
, E
[
Y 2
]
, and E [XY ].

Exercise 11.3.17 (Solution on p. 337.)

(See Exercise 7 (Exercise 8.3.7) from "Problems On Random Vectors and Joint Distributions",
m-�le npr08_07.m (Section 17.8.38: npr08_07)). The pair {X, Y } has the joint distribution:

P (X = t, Y = u) (11.123)

t = -3.1 -0.5 1.2 2.4 3.7 4.9

u = 7.5 0.0090 0.0396 0.0594 0.0216 0.0440 0.0203

4.1 0.0495 0 0.1089 0.0528 0.0363 0.0231

-2.0 0.0405 0.1320 0.0891 0.0324 0.0297 0.0189

-3.8 0.0510 0.0484 0.0726 0.0132 0 0.0077

Table 11.1

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



329

Determine E [X], E [Y ], E
[
X2
]
, E
[
Y 2
]
, and E [XY ].

Exercise 11.3.18 (Solution on p. 337.)

(See Exercise 8 (Exercise 8.3.8) from "Problems On Random Vectors and Joint Distributions",
m-�le npr08_08.m (Section 17.8.39: npr08_08)). The pair {X, Y } has the joint distribution:

P (X = t, Y = u) (11.124)

t = 1 3 5 7 9 11 13 15 17 19

u = 12 0.0156 0.0191 0.0081 0.0035 0.0091 0.0070 0.0098 0.0056 0.0091 0.0049

10 0.0064 0.0204 0.0108 0.0040 0.0054 0.0080 0.0112 0.0064 0.0104 0.0056

9 0.0196 0.0256 0.0126 0.0060 0.0156 0.0120 0.0168 0.0096 0.0056 0.0084

5 0.0112 0.0182 0.0108 0.0070 0.0182 0.0140 0.0196 0.0012 0.0182 0.0038

3 0.0060 0.0260 0.0162 0.0050 0.0160 0.0200 0.0280 0.0060 0.0160 0.0040

-1 0.0096 0.0056 0.0072 0.0060 0.0256 0.0120 0.0268 0.0096 0.0256 0.0084

-3 0.0044 0.0134 0.0180 0.0140 0.0234 0.0180 0.0252 0.0244 0.0234 0.0126

-5 0.0072 0.0017 0.0063 0.0045 0.0167 0.0090 0.0026 0.0172 0.0217 0.0223

Table 11.2

Determine E [X], E [Y ], E
[
X2
]
, E
[
Y 2
]
, and E [XY ].

Exercise 11.3.19 (Solution on p. 338.)

(See Exercise 9 (Exercise 8.3.9) from "Problems On Random Vectors and Joint Distributions",
m-�le npr08_09.m (Section 17.8.40: npr08_09)). Data were kept on the e�ect of training time on
the time to perform a job on a production line. X is the amount of training, in hours, and Y is the
time to perform the task, in minutes. The data are as follows:

P (X = t, Y = u) (11.125)

t = 1 1.5 2 2.5 3

u = 5 0.039 0.011 0.005 0.001 0.001

4 0.065 0.070 0.050 0.015 0.010

3 0.031 0.061 0.137 0.051 0.033

2 0.012 0.049 0.163 0.058 0.039

1 0.003 0.009 0.045 0.025 0.017

Table 11.3

Determine E [X], E [Y ], E
[
X2
]
, E
[
Y 2
]
, and E [XY ].

For the joint densities in Exercises 20-32 below

a. Determine analytically E [X], E [Y ], E
[
X2
]
, E
[
Y 2
]
, and E [XY ].

b. Use a discrete approximation for E [X], E [Y ], E
[
X2
]
, E
[
Y 2
]
, and E [XY ].
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Exercise 11.3.20 (Solution on p. 338.)

(See Exercise 10 (Exercise 8.3.10) from "Problems On Random Vectors and Joint Distributions").
fXY (t, u) = 1 for 0 ≤ t ≤ 1, 0 ≤ u ≤ 2 (1− t).

fX (t) = 2 (1− t) , 0 ≤ t ≤ 1, fY (u) = 1− u/2, 0 ≤ u ≤ 2 (11.126)

Exercise 11.3.21 (Solution on p. 338.)

(See Exercise 11 (Exercise 8.3.11) from "Problems On Random Vectors and Joint Distributions").
fXY (t, u) = 1/2 on the square with vertices at (1, 0) , (2, 1) , (1, 2) , (0, 1).

fX (t) = fY (t) = I[0,1] (t) t+ I(1,2] (t) (2− t) (11.127)

Exercise 11.3.22 (Solution on p. 339.)

(See Exercise 12 (Exercise 8.3.12) from "Problems On Random Vectors and Joint Distributions").
fXY (t, u) = 4t (1− u) for 0 ≤ t ≤ 1, 0 ≤ u ≤ 1.

fX (t) = 2t, 0 ≤ t ≤ 1, fY (u) = 2 (1− u) , 0 ≤ u ≤ 1 (11.128)

Exercise 11.3.23 (Solution on p. 339.)

(See Exercise 13 (Exercise 8.3.13) from "Problems On Random Vectors and Joint Distributions").
fXY (t, u) = 1

8 (t+ u) for 0 ≤ t ≤ 2, 0 ≤ u ≤ 2.

fX (t) = fY (t) =
1
4

(t+ 1) , 0 ≤ t ≤ 2 (11.129)

Exercise 11.3.24 (Solution on p. 339.)

(See Exercise 14 (Exercise 8.3.14) from "Problems On Random Vectors and Joint Distributions").
fXY (t, u) = 4ue−2t for 0 ≤ t, 0 ≤ u ≤ 1.

fX (t) = 2e−2t, 0 ≤ t, fY (u) = 2u, 0 ≤ u ≤ 1 (11.130)

Exercise 11.3.25 (Solution on p. 339.)

(See Exercise 15 (Exercise 8.3.15) from "Problems On Random Vectors and Joint Distributions").
fXY (t, u) = 3

88

(
2t+ 3u2

)
for 0 ≤ t ≤ 2, 0 ≤ u ≤ 1 + t.

fX (t) =
3
88

(1 + t)
(
1 + 4t+ t2

)
=

3
88
(
1 + 5t+ 5t2 + t3

)
, 0 ≤ t ≤ 2 (11.131)

fY (u) = I[0,1] (u)
3
88
(
6u2 + 4

)
+ I(1,3] (u)

3
88
(
3 + 2u+ 8u2 − 3u3

)
(11.132)

Exercise 11.3.26 (Solution on p. 339.)

(See Exercise 16 (Exercise 8.3.16) from "Problems On Random Vectors and Joint Distributions").
fXY (t, u) = 12t2u on the parallelogram with vertices

(−1, 0) , (0, 0) , (1, 1) , (0, 1) (11.133)

fX (t) = I[−1,0] (t) 6t2(t+ 1)2 + I(0,1] (t) 6t2
(
1− t2

)
, fY (u) = 12u3 − 12u2 + 4u, 0 ≤ u ≤ 1 (11.134)
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Exercise 11.3.27 (Solution on p. 339.)

(See Exercise 17 (Exercise 8.3.17) from "Problems On Random Vectors and Joint Distributions").
fXY (t, u) = 24

11 tu for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{1, 2− t}.

fX (t) = I[0,1] (t)
12
11
t+ I(1,2] (t)

12
11
t(2− t)2

, fY (u) =
12
11
u(u− 2)2

, 0 ≤ u ≤ 1 (11.135)

Exercise 11.3.28 (Solution on p. 340.)

(See Exercise 18 (Exercise 8.3.18) from "Problems On Random Vectors and Joint Distributions").
fXY (t, u) = 3

23 (t+ 2u) for 0 ≤ t ≤ 2, 0 ≤ u ≤ max{2− t, t}.

fX (t) = I[0,1] (t) 6
23

(2− t) + I(1,2] (t) 6
23
t2, fY (u) = I[0,1] (u) 6

23
(2u+ 1) +

I(1,2] (u) 3
23

(4 + 6u− 4u2)

(11.136)

Exercise 11.3.29 (Solution on p. 340.)

(See Exercise 19 (Exercise 8.3.19) from "Problems On Random Vectors and Joint Distributions").
fXY (t, u) = 12

179

(
3t2 + u

)
, for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{2, 3− t}.

fX (t) = I[0,1] (t)
24
179

(
3t2 + 1

)
+ I(1,2] (t)

6
179

(
9− 6t+ 19t2 − 6t3

)
(11.137)

fY (u) = I[0,1] (u)
24
179

(4 + u) + I(1,2] (u)
12
179

(
27− 24u+ 8u2 − u3

)
(11.138)

Exercise 11.3.30 (Solution on p. 340.)

(See Exercise 20 (Exercise 8.3.20) from "Problems On Random Vectors and Joint Distributions").
fXY (t, u) = 12

227 (3t+ 2tu), for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{1 + t, 2}.

fX (t) = I[0,1] (t)
12
227

(
t3 + 5t2 + 4t

)
+ I(1,2] (t)

120
227

t (11.139)

fY (u) = I[0,1] (u)
24
227

(2u+ 3) + I(1,2] (u)
6

227
(2u+ 3)

(
3 + 2u− u2

)
(11.140)

= I[0,1] (u)
24
227

(2u+ 3) + I(1,2] (u)
6

227
(
9 + 12u+ u2 − 2u3

)
(11.141)

Exercise 11.3.31 (Solution on p. 340.)

(See Exercise 21 (Exercise 8.3.21) from "Problems On Random Vectors and Joint Distributions").
fXY (t, u) = 2

13 (t+ 2u), for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{2t, 3− t}.

fX (t) = I[0,1] (t)
12
13
t2 + I(1,2] (t)

6
13

(3− t) (11.142)

fY (u) = I[0,1] (u)
(

4
13

+
8
13
u− 9

52
u2

)
+ I(1,2] (u)

(
9
13

+
6
13
u− 21

52
u2

)
(11.143)

Exercise 11.3.32 (Solution on p. 340.)

(See Exercise 22 (Exercise 8.3.22) from "Problems On Random Vectors and Joint Distributions").
fXY (t, u) = I[0,1] (t) 3

8

(
t2 + 2u

)
+ I(1,2] (t) 9

14 t
2u2,
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for 0 ≤ u ≤ 1.

fX (t) = I[0,1] (t)
3
8
(
t2 + 1

)
+ I(1,2] (t)

3
14
t2, fY (u) =

1
8

+
3
4
u+

3
2
u2 0 ≤ u ≤ 1 (11.144)

Exercise 11.3.33 (Solution on p. 340.)

The class {X, Y, Z} of random variables is iid (independent, identically distributed) with common
distribution

X = [−5 − 1 3 4 7] PX = 0.01 ∗ [15 20 30 25 10] (11.145)

Let W = 3X − 4Y + 2Z. Determine E [W ]. Do this using icalc, then repeat with icalc3 and
compare results.

Exercise 11.3.34 (Solution on p. 341.)

(See Exercise 5 (Exercise 10.4.5) from "Problems on Functions of Random Variables") The cultural
committee of a student organization has arranged a special deal for tickets to a concert. The
agreement is that the organization will purchase ten tickets at $20 each (regardless of the number
of individual buyers). Additional tickets are available according to the following schedule:

11-20, $18 each; 21-30 $16 each; 31-50, $15 each; 51-100, $13 each
If the number of purchasers is a random variable X, the total cost (in dollars) is a random

quantity Z = g (X) described by

g (X) = 200 + 18IM1 (X) (X − 10) + (16− 18) IM2 (X) (X − 20) + (11.146)

(15− 16) IM3 (X) (X − 30) + (13− 15) IM4 (X) (X − 50) (11.147)

where M1 = [10, ∞) , M2 = [20, ∞) , M3 = [30, ∞) , M4 = [50, ∞) (11.148)

Suppose X ∼ Poisson (75). Approximate the Poisson distribution by truncating at 150. Determine
E [Z] and E

[
Z2
]
.

Exercise 11.3.35 (Solution on p. 341.)

The pair {X, Y } has the joint distribution (in m-�le npr08_07.m (Section 17.8.38: npr08_07)):

P (X = t, Y = u) (11.149)

t = -3.1 -0.5 1.2 2.4 3.7 4.9

u = 7.5 0.0090 0.0396 0.0594 0.0216 0.0440 0.0203

4.1 0.0495 0 0.1089 0.0528 0.0363 0.0231

-2.0 0.0405 0.1320 0.0891 0.0324 0.0297 0.0189

-3.8 0.0510 0.0484 0.0726 0.0132 0 0.0077

Table 11.4

Let Z = g (X,Y ) = 3X2 + 2XY − Y 2. Determine E [Z] and E
[
Z2
]
.

Exercise 11.3.36 (Solution on p. 342.)

For the pair {X, Y } in Exercise 11.3.35, let

W = g X, Y = {
X for X + Y ≤ 4

2Y for X + Y > 4
= IM (X,Y )X + IMc (X,Y ) 2Y (11.150)
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Determine E [W ] and E
[
W 2
]
.

For the distributions in Exercises 37-41 below

a. Determine analytically E [Z] and E
[
Z2
]
.

b. Use a discrete approximation to calculate the same quantities.

Exercise 11.3.37 (Solution on p. 342.)

fXY (t, u) = 3
88

(
2t+ 3u2

)
for 0 ≤ t ≤ 2, 0 ≤ u ≤ 1 + t (see Exercise 11.3.25).

Z = I[0,1] (X) 4X + I(1,2] (X) (X + Y ) (11.151)

Exercise 11.3.38 (Solution on p. 342.)

fXY (t, u) = 24
11 tu for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{1, 2− t} (see Exercise 11.3.27).

Z = IM (X,Y )
1
2
X + IMc (X,Y )Y 2, M = {(t, u) : u > t} (11.152)

Exercise 11.3.39 (Solution on p. 342.)

fXY (t, u) = 3
23 (t+ 2u) for 0 ≤ t ≤ 2, 0 ≤ u ≤ max{2− t, t} (see Exercise 11.3.28).

Z = IM (X,Y ) (X + Y ) + IMc (X,Y ) 2Y, M = {(t, u) : max (t, u) ≤ 1} (11.153)

Exercise 11.3.40 (Solution on p. 343.)

fXY (t, u) = 12
179

(
3t2 + u

)
, for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{2, 3− t} (see Exercise 11.3.29).

Z = IM (X,Y ) (X + Y ) + IMc (X,Y ) 2Y 2, M = {(t, u) : t ≤ 1, u ≥ 1} (11.154)

Exercise 11.3.41 (Solution on p. 343.)

fXY (t, u) = 12
227 (3t+ 2tu), for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{1 + t, 2} (see Exercise 11.3.30).

Z = IM (X,Y )X + IMc (X,Y )XY, M = {(t, u) : u ≤ min (1, 2− t)} (11.155)

Exercise 11.3.42 (Solution on p. 344.)

The class {X, Y, Z} is independent. (See Exercise 16 (Exercise 10.4.16) from "Problems on Func-
tions of Random Variables", m-�le npr10_16.m (Section 17.8.42: npr10_16))

X = −2IA + IB + 3IC . Minterm probabilities are (in the usual order)

0.255 0.025 0.375 0.045 0.108 0.012 0.162 0.018 (11.156)

Y = ID + 3IE + IF − 3. The class {D, E, F} is independent with

P (D) = 0.32 P (E) = 0.56 P (F ) = 0.40 (11.157)

Z has distribution

Value -1.3 1.2 2.7 3.4 5.8

Probability 0.12 0.24 0.43 0.13 0.08

Table 11.5

W = X2 + 3XY 2 − 3Z . Determine E [W ] and E
[
W 2
]
.
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Solutions to Exercises in Chapter 11

Solution to Exercise 11.3.1 (p. 326)

% file npr07_01.m (Section~17.8.30: npr07_01)

% Data for Exercise 1 (Exercise~7.3.1) from "Problems on Distribution and Density Functions"

T = [1 3 2 3 4 2 1 3 5 2];

pc = 0.01*[ 8 13 6 9 14 11 12 7 11 9];

disp('Data are in T and pc')

npr07_01

Data are in T and pc

EX = T*pc'

EX = 2.7000

[X,PX] = csort(T,pc); % Alternate using X, PX

ex = X*PX'

ex = 2.7000

Solution to Exercise 11.3.2 (p. 326)

% file npr07_02.m (Section~17.8.31: npr07_02)

% Data for Exercise 2 (Exercise~7.3.2) from "Problems on Distribution and Density Functions"

T = [3.5 5.0 3.5 7.5 5.0 5.0 3.5 7.5];

pc = 0.01*[10 15 15 20 10 5 10 15];

disp('Data are in T, pc')

npr07_02

Data are in T, pc

EX = T*pc'

EX = 5.3500

[X,PX] = csort(T,pc);

ex = X*PX'

ex = 5.3500

Solution to Exercise 11.3.3 (p. 326)

% file npr06_12.m (Section~17.8.28: npr06_12)

% Data for Exercise 12 (Exercise~6.2.12) from "Problems on Random Variables and Probabilities"

pm = 0.001*[5 7 6 8 9 14 22 33 21 32 50 75 86 129 201 302];

c = [1 1 1 1 0];

disp('Minterm probabilities in pm, coefficients in c')

npr06_12

Minterm probabilities in pm, coefficients in c

canonic

Enter row vector of coefficients c

Enter row vector of minterm probabilities pm

Use row matrices X and PX for calculations

Call for XDBN to view the distribution

EX = X*PX'

EX = 2.9890

T = sum(mintable(4));

[x,px] = csort(T,pm);

ex = x*px

ex = 2.9890
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Solution to Exercise 11.3.4 (p. 326)
X ∼ binomial (127, 0.0083). E [X] = 127 · 0.0083 = 1.0541
Solution to Exercise 11.3.5 (p. 326)
X ∼ binomial (20, 1/2). E [X] = 20 · 0.5 = 10.
Solution to Exercise 11.3.6 (p. 327)
N ∼ binomial (50, 0.2). E [N ] = 50 · 0.2 = 10. E [X] = 500− 30E [N ] = 200.
Solution to Exercise 11.3.7 (p. 327)
X ∼ Poisson (7). E [X] = 7.
Solution to Exercise 11.3.8 (p. 327)
X ∼ gamma (20, 0.0002). E [X] = 20/0.0002 = 100, 000.
Solution to Exercise 11.3.9 (p. 327)

E [X] =
∫
tfX (t) dt =

6
5

∫ 1

0

t3 dt+
6
5

∫ 2

1

(
2t− t2

)
dt =

11
10

(11.158)

Solution to Exercise 11.3.10 (p. 327)

E [Y ] =
∫
g (t) fX (t) dt =

∫ a

0

tλe−λtdt+ aP (X > a) = (11.159)

λ

λ2

[
1− e−λa (1 + λa)

]
+ ae−λa =

1
λ

(
1− e−λa

)
(11.160)

tappr

Enter matrix [a b] of x-range endpoints [0 1000]

Enter number of x approximation points 10000

Enter density as a function of t (1/50)*exp(-t/50)

Use row matrices X and PX as in the simple case

G = X.*(X<=30) + 30*(X>30);
EZ = G8PX'

EZ = 22.5594

ez = 50*(1 - exp(-30/50)) % Theoretical value

ez = 22.5594

Solution to Exercise 11.3.11 (p. 327)

npr08_01 (Section~17.8.32: npr08_01)

Data in Pn, P, X, Y

jcalc

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X

Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P

EX = X*PX'

EX = 0.1538

ex = total(t.*P) % Alternate

ex = 0.1538

EY = Y*PY'

EY = 0.5000

EX2 = (X.^2)*PX'

EX2 = 0.1629
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EY2 = (Y.^2)*PY'

EY2 = 0.6176

EXY = total(t.*u.*P)

EXY = 0.0769

Solution to Exercise 11.3.12 (p. 327)

npr08_02 (Section~17.8.33: npr08_02)

Data are in X, Y,Pn, P

jcalc

- - - - - - - - - - - -

EX = X*PX'

EX = 0.5000

EY = Y*PY'

EY = 0.7500

EX2 = (X.^2)*PX'

EX2 = 0.5714

EY2 = (Y.^2)*PY'

EY2 = 0.9643

EXY = total(t.*u.*P)

EXY = 0.2143

Solution to Exercise 11.3.13 (p. 328)

npr08_03 (Section~17.8.34: npr08_03)

Answers are in X, Y, P, PY

jcalc

- - - - - - - - - - - -

EX = X*PX'

EX = 3.5000

EY = Y*PY'

EY = 1.7500

EX2 = (X.^2)*PX'

EX2 = 15.1667

EY2 = (Y.^2)*PY'

EY2 = 4.6667

EXY = total(t.*u.*P)

EXY = 7.5833

Solution to Exercise 11.3.14 (p. 328)

npr08_04 (Exercise~8.3.4)

Answers are in X, Y, P

jcalc

- - - - - - - - - - - -

EX = X*PX'

EX = 7

EY = Y*PY'

EY = 3.5000

EX2 = (X.^2)*PX'

EX2 = 54.8333
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EY2 = (Y.^2)*PY'

EY2 = 15.4583

Solution to Exercise 11.3.15 (p. 328)

npr08_05 (Section~17.8.36: npr08_05)

Answers are in X, Y, P, PY

jcalc

- - - - - - - - - - - -

EX = X*PX'

EX = 7.0000

EY = Y*PY'

EY = 1.1667

Solution to Exercise 11.3.16 (p. 328)

npr08_06 (Section~17.8.37: npr08_06)

Data are in X, Y, P

jcalc

- - - - - - - - - - - -

EX = X*PX'

EX = 1.3696

EY = Y*PY'

EY = 3.0344

EX2 = (X.^2)*PX'

EX2 = 9.7644

EY2 = (Y.^2)*PY'

EY2 = 11.4839

EXY = total(t.*u.*P)

EXY = 4.1423

Solution to Exercise 11.3.17 (p. 328)

npr08_07 (Section~17.8.38: npr08_07)

Data are in X, Y, P

jcalc

- - - - - - - - - - - -

EX = X*PX'

EX = 0.8590

EY = Y*PY'

EY = 1.1455

EX2 = (X.^2)*PX'

EX2 = 5.8495

EY2 = (Y.^2)*PY'

EY2 = 19.6115

EXY = total(t.*u.*P)

EXY = 3.6803

Solution to Exercise 11.3.18 (p. 329)
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npr08_08 (Section~17.8.39: npr08_08)

Data are in X, Y, P

jcalc

- - - - - - - - - - - - -

EX = X*PX'

EX = 10.1000

EY = Y*PY'

EY = 3.0016

EX2 = (X.^2)*PX'

EX2 = 133.0800

EY2 = (Y.^2)*PY'

EY2 = 41.5564

EXY = total(t.*u.*P)

EXY = 22.2890

Solution to Exercise 11.3.19 (p. 329)

npr08_09 (Section~17.8.40: npr08_09)

Data are in X, Y, P

jcalc

- - - - - - - - - - - -

EX = X*PX'

EX = 1.9250

EY = Y*PY'

EY = 2.8050

EX2 = (X.^2)*PX'

EX2 = 4.0375

EY2 = (Y.^2)*PY' EXY = total(t.*u.*P)

EY2 = 8.9850 EXY = 5.1410

Solution to Exercise 11.3.20 (p. 330)

E [X] =
∫ 1

0

2t (1− t) dt = 1/3, E [Y ] = 2/3, E
[
X2
]

= 1/6, E
[
Y 2
]

= 2/3 (11.161)

E [XY ] =
∫ 1

0

∫ 2(1−t)

0

tu dudt = 1/6 (11.162)

tuappr: [0 1] [0 2] 200 400 u<=2*(1-t)
EX = 0.3333 EY = 0.6667 EX2 = 0.1667 EY2 = 0.6667

EXY = 0.1667 (use t, u, P)

Solution to Exercise 11.3.21 (p. 330)

E [X] = E [Y ] =
∫ 1

0

t2 dt+
∫ t

1

(
2t− t2

)
dt = 1, E

[
X2
]

= E
[
Y 2
]

= 7/6 (11.163)

E [XY ] = (1/2)
∫ 1

0

∫ 1+t

1−t
dudt+ (1/2)

∫ 2

1

∫ 3−t

t−1

dudt = 1 (11.164)

tuappr: [0 2] [0 2] 200 200 0.5*(u<=min(t+1,3-t))&(u>= max(1-t,t-1))

EX = 1.0000 EY = 1.0002 EX2 = 1.1684 EY2 = 1.1687 EXY = 1.0002
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Solution to Exercise 11.3.22 (p. 330)

E [X] = 2/3, E [Y ] = 1/3, E
[
X2
]

= 1/2, E
[
Y 2
]

= 1/6 E [XY ] = 2/9 (11.165)

tuappr: [0 1] [0 1] 200 200 4*t.*(1-u)

EX = 0.6667 EY = 0.3333 EX2 = 0.5000 EY2 = 0.1667 EXY = 0.2222

Solution to Exercise 11.3.23 (p. 330)

E [X] = E [Y ] =
1
4

∫ 2

0

(
t2 + t

)
dt =

7
6
, E

[
X2
]

= E
[
Y 2
]

= 5/3 (11.166)

E [XY ] =
1
8

∫ 2

0

∫ 2

0

(
t2u+ tu2

)
dudt =

4
3

(11.167)

tuappr: [0 2] [0 2] 200 200 (1/8)*(t+u)

EX = 1.1667 EY = 1.1667 EX2 = 1.6667 EY2 = 1.6667 EXY = 1.3333

Solution to Exercise 11.3.24 (p. 330)

E [X] =
∫ ∞

0

2te−2t dt =
1
2
, E [Y ] =

2
3
, E

[
X2
]

=
1
2
, E

[
Y 2
]

=
1
2
, E [XY ] =

1
3

(11.168)

tuappr: [0 6] [0 1] 600 200 4*u.*exp(-2*t)

EX = 0.5000 EY = 0.6667 EX2 = 0.4998 EY2 = 0.5000 EXY = 0.3333

Solution to Exercise 11.3.25 (p. 330)

E [X] =
313
220

, E [Y ] =
1429
880

, E
[
X2
]

=
49
22
, E

[
Y 2
]

=
172
55

, E [XY ] =
2153
880

(11.169)

tuappr: [0 2] [0 3] 200 300 (3/88)*(2*t + 3*u.^2).*(u<1+t)
EX = 1.4229 EY = 1.6202 EX2 = 2.2277 EY2 = 3.1141 EXY = 2.4415

Solution to Exercise 11.3.26 (p. 330)

E [X] =
2
5
, E [Y ] =

11
15
, E

[
X2
]

=
2
5
, E

[
Y 2
]

=
3
5
, E [XY ] =

2
5

(11.170)

tuappr: [-1 1] [0 1] 400 200 12*t.^2.*u.*(u>= max(0,t)).*(u<= min(1+t,1))

EX = 0.4035 EY = 0.7342 EX2 = 0.4016 EY2 = 0.6009 EXY = 0.4021

Solution to Exercise 11.3.27 (p. 331)

E [X] =
52
55
, E [Y ] =

32
55
, E

[
X2
]

=
57
55
, E

[
Y 2
]

=
2
5
, E [XY ] =

28
55

(11.171)

tuappr: [0 2] [0 1] 400 200 (24/11)*t.*u.*(u<=min(1,2-t))
EX = 0.9458 EY = 0.5822 EX2 = 1.0368 EY2 = 0.4004 EXY = 0.5098

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



340 CHAPTER 11. MATHEMATICAL EXPECTATION

Solution to Exercise 11.3.28 (p. 331)

E [X] =
53
46
, E [Y ] =

22
23
, E

[
X2
]

=
397
230

, E
[
Y 2
]

=
261
230

, E [XY ] =
251
230

(11.172)

tuappr: [0 2] [0 2] 200 200 (3/23)*(t + 2*u).*(u<=max(2-t,t))
EX = 1.1518 EY = 0.9596 EX2 = 1.7251 EY2 = 1.1417 EXY = 1.0944

Solution to Exercise 11.3.29 (p. 331)

E [X] =
2313
1790

, E [Y ] =
778
895

, E
[
X2
]

=
1711
895

, E
[
Y 2
]

=
916
895

, E [XY ] =
1811
1790

(11.173)

tuappr: [0 2] [0 2] 400 400 (12/179)*(3*t.^2 + u).*(u<=min(2,3-t))
EX = 1.2923 EY = 0.8695 EX2 = 1.9119 EY2 = 1.0239 EXY = 1.0122

Solution to Exercise 11.3.30 (p. 331)

E [X] =
1567
1135

, E [Y ] =
2491
2270

, E
[
X2
]

=
476
227

, E
[
Y 2
]

=
1716
1135

, E [XY ] =
5261
3405

(11.174)

tuappr: [0 2] [0 2] 400 400 (12/227)*(3*t + 2*t.*u).*(u<=min(1+t,2))
EX = 1.3805 EY = 1.0974 EX2 = 2.0967 EY2 = 1.5120 EXY = 1.5450

Solution to Exercise 11.3.31 (p. 331)

E [X] =
16
13
, E [Y ] =

11
12
, E

[
X2
]

=
219
130

, E
[
Y 2
]

=
83
78
, E [XY ] =

431
390

(11.175)

tuappr: [0 2] [0 2] 400 400 (2/13)*(t + 2*u).*(u<=min(2*t,3-t))
EX = 1.2309 EY = 0.9169 EX2 = 1.6849 EY2 = 1.0647 EXY = 1.1056

Solution to Exercise 11.3.32 (p. 331)

E [X] =
243
224

, E [Y ] =
11
16
, E

[
X2
]

=
107
70

, E
[
Y 2
]

=
127
240

, E [XY ] =
347
448

(11.176)

tuappr [0 2] [0 1] 400 200 (3/8)*(t.^2+2*u).*(t<=1) + (9/14)*(t.^2.*u.^2).*(t > 1)

EX = 1.0848 EY = 0.6875 EX2 = 1.5286 EY2 = 0.5292 EXY = 0.7745

Solution to Exercise 11.3.33 (p. 332)
Use x and px to prevent renaming.

x = [-5 -1 3 4 7];

px = 0.01*[15 20 30 25 10];

icalc

Enter row matrix of X-values x

Enter row matrix of Y-values x

Enter X probabilities px

Enter Y probabilities px

Use array operations on matrices X, Y, PX, PY, t, u, and P

G = 3*t -4*u;
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[R,PR] = csort(G,P);

icalc

Enter row matrix of X-values R

Enter row matrix of Y-values x

Enter X probabilities PR

Enter Y probabilities px

Use array operations on matrices X, Y, PX, PY, t, u, and P

H = t + 2*u;

EH = total(H.*P)

EH = 1.6500

[W,PW] = csort(H,P); % Alternate

EW = W*PW'

EW = 1.6500

icalc3 % Solution with icalc3

Enter row matrix of X-values x

Enter row matrix of Y-values x

Enter row matrix of Z-values x

Enter X probabilities px

Enter Y probabilities px

Enter Z probabilities px

Use array operations on matrices X, Y, Z,

PX, PY, PZ, t, u, v, and P

K = 3*t - 4*u + 2*v;

EK = total(K.*P)

EK = 1.6500

Solution to Exercise 11.3.34 (p. 332)

X = 0:150;

PX = ipoisson(75,X);

G = 200 + 18*(X - 10).*(X>=10) + (16 - 18)*(X - 20).*(X>=20) + ...

(15 - 16)*(X- 30).*(X>=30) + (13 - 15)*(X - 50).*(X>=50);
[Z,PZ] = csort(G,PX);

EZ = Z*PZ'

EZ = 1.1650e+03

EZ2 = (Z.^2)*PZ'

EZ2 = 1.3699e+06

Solution to Exercise 11.3.35 (p. 332)

npr08_07 (Section~17.8.38: npr08_07)

Data are in X, Y, P

jcalc

- - - - - - - - -

G = 3*t.^2 + 2*t.*u - u.^2;

EG = total(G.*P)

EG = 5.2975

ez2 = total(G.^2.*P)

EG2 = 1.0868e+03

[Z,PZ] = csort(G,P); % Alternate

EZ = Z*PZ'
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EZ = 5.2975

EZ2 = (Z.^2)*PZ'

EZ2 = 1.0868e+03

Solution to Exercise 11.3.36 (p. 332)

H = t.*(t+u<=4) + 2*u.*(t+u>4);
EH = total(H.*P)

EH = 4.7379

EH2 = total(H.^2.*P)

EH2 = 61.4351

[W,PW] = csort(H,P); % Alternate

EW = W*PW'

EW = 4.7379

EW2 = (W.^2)*PW'

EW2 = 61.4351

Solution to Exercise 11.3.37 (p. 333)

E [Z] =
3
88

∫ 1

0

∫ 1+t

0

4t
(
2t+ 3u2

)
dudt+

3
88

∫ 2

1

∫ 1+t

0

(t+ u)
(
2t+ 3u2

)
dudt =

5649
1760

(11.177)

E
[
Z2
]

=
3
88

∫ 1

0

∫ 1+t

0

(4t)2 (2t+ 3u2
)
dudt+

3
88

∫ 2

1

∫ 1+t

0

(t+ u)2 (2t+ 3u2
)
dudt =

4881
440

(11.178)

tuappr: [0 2] [0 3] 200 300 (3/88)*(2*t+3*u.^2).*(u<=1+t)
G = 4*t.*(t<=1) + (t + u).*(t>1);
EG = total(G.*P)

EG = 3.2086

EG2 = total(G.^2.*P)

EG2 = 11.0872

Solution to Exercise 11.3.38 (p. 333)

E [Z] =
12
11

∫ 1

0

∫ 1

t

t2u dudt+
24
11

∫ 1

0

∫ t

0

tu3 dudt+
24
11

∫ 2

1

∫ 2−t

0

tu3 dudt =
16
55

(11.179)

E
[
Z2
]

=
6
11

∫ 1

0

∫ 1

t

t3u dudt+
24
11

∫ 1

0

∫ t

0

tu5 dudt+
24
11

∫ 2

1

∫ 2−t

0

tu5 dudt =
39
308

(11.180)

tuappr: [0 2] [0 1] 400 200 (24/11)*t.*u.*(u<=min(1,2-t))
G = (1/2)*t.*(u>t) + u.^2.*(u<=t);
EZ = 0.2920 EZ2 = 0.1278

Solution to Exercise 11.3.39 (p. 333)

E [Z] = 3
23

∫ 1

0

∫ 1

0
(t+ u) (t+ 2u) dudt + 3

23

∫ 1

0

∫ 2−t

1
2u (t+ 2u) dudt +

3
23

∫ 2

1

∫ t

1
2u (t+ 2u) dudt = 175

92

(11.181)
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E [Z2] = 3
23

∫ 1

0

∫ 1

0
(t+ u)2 (t+ 2u) dudt + 3

23

∫ 1

0

∫ 2−t

1
4u2 (t+ 2u) dudt +

3
23

∫ 2

1

∫ t

1
4u2 (t+ 2u) dudt = 2063

460

(11.182)

tuappr: [0 2] [0 2] 400 400 (3/23)*(t+2*u).*(u<=max(2-t,t))
M = max(t,u)<=1;
G = (t+u).*M + 2*u.*(1-M);

EZ = total(G.*P)

EZ = 1.9048

EZ2 = total(G.^2.*P)

EZ2 = 4.4963

Solution to Exercise 11.3.40 (p. 333)

E [Z] =
12
179

∫ 1

0

∫ 2

1

(t+ u)
(
3t2 + u

)
dudt+

12
179

∫ 1

0

∫ 1

0

2u2
(
3t2 + u

)
dudt+ (11.183)

12
179

∫ 2

1

∫ 3−t

0

2u2
(
3t2 + u

)
dudt =

1422
895

(11.184)

E
[
Z2
]

=
12
179

∫ 1

0

∫ 2

1

(t+ u)2 (3t2 + u
)
dudt+

12
179

∫ 1

0

∫ 1

0

4u4
(
3t2 + u

)
dudt+ (11.185)

12
179

∫ 2

1

∫ 3−t

0

4u4
(
3t2 + u

)
dudt =

28296
6265

(11.186)

tuappr: [0 2] [0 2] 400 400 (12/179)*(3*t.^2 + u).*(u <= min(2,3-t))

M = (t<=1)&(u>=1);
G = (t + u).*M + 2*u.^2.*(1 - M);

EZ = total(G.*P)

EZ = 1.5898

EZ2 = total(G.^2.*P)

EZ2 = 4.5224

Solution to Exercise 11.3.41 (p. 333)

E [Z] =
12
227

∫ 1

0

∫ 1

0

t (3t+ 2tu) dudt+
12
227

∫ 2

1

∫ 2−t

0

t (3t+ 2tu) dudt + (11.187)

12
227

∫ 1

0

∫ 1+t

1

tu (3t+ 2tu) dudt+
12
227

∫ 2

1

∫ 2

2−t
tu (3t+ 2tu) dudt =

5774
3405

(11.188)

E
[
Z2
]

=
56673
15890

(11.189)

tuappr: [0 2] [0 2] 400 400 (12/227)*(3*t + 2*t.*u).*(u <= min(1+t,2))

M = u <= min(1,2-t);

G = t.*M + t.*u.*(1 - M);

EZ = total(G.*P)

EZ = 1.6955

EZ2 = total(G.^2.*P)

EZ2 = 3.5659
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Solution to Exercise 11.3.42 (p. 333)

npr10_16 (Section~17.8.42: npr10_16)

Data are in cx, pmx, cy, pmy, Z, PZ

[X,PX] = canonicf(cx,pmx);

[Y,PY] = canonicf(cy,pmy);

icalc3

input: X, Y, Z, PX, PY, PZ

- - - - - - -

Use array operations on matrices X, Y, Z,

PX, PY, PZ, t, u, v, and P

G = t.^2 + 3*t.*u.^2 - 3*v;

[W,PW] = csort(G,P);

EW = W*PW'

EW = -1.8673

EW2 = (W.^2)*PW'

EW2 = 426.8529
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Chapter 12

Variance, Covariance, Linear Regression

12.1 Variance1

In the treatment of the mathematical expection of a real random variable X, we note that the mean value
locates the center of the probability mass distribution induced by X on the real line. In this unit, we examine
how expectation may be used for further characterization of the distribution for X. In particular, we deal
with the concept of variance and its square root the standard deviation. In subsequent units, we show
how it may be used to characterize the distribution for a pair {X, Y } considered jointly with the concepts
covariance, and linear regression

12.1.1 Variance

Location of the center of mass for a distribution is important, but provides limited information. Two markedly
di�erent random variables may have the same mean value. It would be helpful to have a measure of the
spread of the probability mass about the mean. Among the possibilities, the variance and its square root,
the standard deviation, have been found particularly useful.

De�nition. The variance of a random variable X is the mean square of its variation about the mean
value:

Var [X] = σ2
X = E

[
(X − µX)2

]
where µX = E [X] (12.1)

The standard deviation for X is the positive square root σX of the variance.

Remarks

• If X (ω) is the observed value of X, its variation from the mean is X (ω) − µX . The variance is the
probability weighted average of the square of these variations.

• The square of the error treats positive and negative variations alike, and it weights large variations
more heavily than smaller ones.

• As in the case of mean value, the variance is a property of the distribution, rather than of the random
variable.

• We show below that the standard deviation is a �natural� measure of the variation from the mean.
• In the treatment of mathematical expectation, we show that

E
[
(X − c)2

]
is a minimum i� c = E [X] , in which case E

[
(X − E [X])2

]
= E

[
X2
]
− E2 [X]

(12.2)
This shows that the mean value is the constant which best approximates the random variable, in the
mean square sense.

1This content is available online at <http://cnx.org/content/m23441/1.7/>.
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346 CHAPTER 12. VARIANCE, COVARIANCE, LINEAR REGRESSION

Basic patterns for variance
Since variance is the expectation of a function of the random variable X, we utilize properties of expec-

tation in computations. In addition, we �nd it expedient to identify several patterns for variance which are

frequently useful in performing calculations. For one thing, while the variance is de�ned as E
[
(X − µX)2

]
,

this is usually not the most convenient form for computation. The result quoted above gives an alternate
expression.

(V1): Calculating formula. Var [X] = E
[
X2
]
− E2 [X].

(V2): Shift property. Var [X + b] = Var [X]. Adding a constant b to X shifts the distribution (hence its
center of mass) by that amount. The variation of the shifted distribution about the shifted center of
mass is the same as the variation of the original, unshifted distribution about the original center of
mass.

(V3): Change of scale. Var [aX] = a2Var [X]. Multiplication of X by constant a changes the scale by a
factor |a|. The squares of the variations are multiplied by a2. So also is the mean of the squares of the
variations.

(V4): Linear combinations

a. Var [aX ± bY ] = a2Var [X] + b2Var [Y ]± 2ab (E [XY ]− E [X]E [Y ])
b. More generally,

Var

[
n∑
k=1

akXk

]
=

n∑
k=1

a2
kVar [Xk] + 2

∑
i<j

aiaj (E [XiXj ]− E [Xi]E [Xj ]) (12.3)

The term cij = E [XiXj ] − E [Xi]E [Xj ] is the covariance of the pair {Xi, Xj}, whose role we study
in the unit on that topic. If the cij are all zero, we say the class is uncorrelated.

Remarks

• If the pair {X, Y } is independent, it is uncorrelated. The converse is not true, as examples in the next
section show.

• If the ai = ±1 and all pairs are uncorrelated, then

Var

[
n∑
k=1

aiXi

]
=

n∑
k=1

Var [Xi] (12.4)

The variance add even if the coe�cients are negative.

We calculate variances for some common distributions. Some details are omitted�usually details of algebraic
manipulation or the straightforward evaluation of integrals. In some cases we use well known sums of
in�nite series or values of de�nite integrals. A number of pertinent facts are summarized in Appendix
B (Section 17.2). Some Mathematical Aids. The results below are included in the table in Appendix C
(Section 17.3).

Variances of some discrete distributions

1. Indicator function X = IEP (E) = p, q = 1− p E [X] = p

E
[
X2
]
− E2 [X] = E

[
I2
E

]
− p2 = E [IE ]− p2 = p− p2 = p (1− p) = pq (12.5)

2. Simple random variableX =
∑n
i=1 tiIAi (primitive form) P (Ai) = pi.

Var [X] =
n∑
i=1

t2i piqi − 2
∑
i<j

titjpipj , sinceE
[
IAiIAj

]
= 0i 6= j (12.6)
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3. Binomial(n, p). X =
∑n
i=1 IEiwith{IEi : 1 ≤ i ≤ n}iidP (Ei) = p

Var [X] =
n∑
i=1

Var [IEi ] =
n∑
i=1

pq = npq (12.7)

4. Geometric(p). P (X = k) = pqk∀k ≥ 0E [X] = q/p
We use a trick: E

[
X2
]

= E [X (X − 1)] + E [X]

E
[
X2
]

= p

∞∑
k=0

k (k − 1) qk+q/p = pq2
∞∑
k=2

k (k − 1) qk−2+q/p = pq2 2
(1− q)3 +q/p = 2

q2

p2
+q/p (12.8)

Var [X] = 2
q2

p2
+ q/p− (q/p)2 = q/p2 (12.9)

5. Poisson(µ)P (X = k) = e−µ µk

k! ∀k ≥ 0
Using E

[
X2
]

= E [X (X − 1)] + E [X], we have

E
[
X2
]

= e−µ
∞∑
k=2

k (k − 1)
µk

k!
+ µ = e−µµ2

∞∑
k=2

µk−2

(k − 2)!
+ µ = µ2 + µ (12.10)

Thus, Var [X] = µ2 + µ− µ2 = µ. Note that both the mean and the variance have common value µ.

Some absolutely continuous distributions

1. Uniform on (a, b)fX (t) = 1
b−aa < t < bE [X] = a+b

2

E
[
X2
]

=
1

b− a

∫ b

a

t2dt =
b3 − a3

3 (b− a)
soVar [X] =

b3 − a3

3 (b− a)
− (a+ b)2

4
=

(b− a)2

12
(12.11)

2. Symmetric triangular(a, b) Because of the shift property (V2) ("(V2)", p. 346), we may center the
distribution at the origin. Then the distribution is symmetric triangular (−c, c), where c = (b− a) /2.
Because of the symmetry

Var [X] = E
[
X2
]

=
∫ c

−c
t2fX (t) dt = 2

∫ c

0

t2fX (t) dt (12.12)

Now, in this case,

fX (t) =
c− t
c2

0 ≤ t ≤ cso thatE
[
X2
]

=
2
c2

∫ c

0

(
ct2 − t3

)
dt =

c2

6
=

(b− a)2

24
(12.13)

3. Exponential (λ) fX (t) = λe−λt, t ≥ 0E [X] = 1/λ

E
[
X2
]

=
∫ ∞

0

λt2e−λtdt =
2
λ2

sothatVar [X] = 1/λ2 (12.14)

4. Gamma(α, λ)fX (t) = 1
Γ(α)λ

αtα−1e−λtt ≥ 0E [X] = α
λ

E
[
X2
]

=
1

Γ (α)

∫ ∞
0

λαtα+1e−λtdt =
Γ (α+ 2)
λ2Γ (α)

=
α (α+ 1)

λ2
(12.15)

Hence Var [X] = α/λ2.
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5. Normal
(
µ, σ2

)
E [X] = µ

Consider Y ∼ N (0, 1) , E [Y ] = 0,Var [Y ] = 2√
2π

∫∞
0
t2e−t

2/2dt = 1.

X = σY + µimpliesVar [X] = σ2Var [Y ] = σ2 (12.16)

Extensions of some previous examples
In the unit on expectations, we calculate the mean for a variety of cases. We revisit some of those

examples and calculate the variances.

Example 12.1: Expected winnings (Example 8 (Example 11.8: Expected winnings)
from "Mathematical Expectation: Simple Random Variables")
A bettor places three bets at $2.00 each. The �rst pays $10.00 with probability 0.15, the second
$8.00 with probability 0.20, and the third $20.00 with probability 0.10.

SOLUTION
The net gain may be expressed

X = 10IA + 8IB + 20IC − 6, with P (A) = 0.15, P (B) = 0.20, P (C) = 0.10 (12.17)

We may reasonbly suppose the class {A, B, C} is independent (this assumption is not necessary
in computing the mean). Then

Var [X] = 102P (A) [1− P (A)] + 82P (B) [1− P (B)] + 202P (C) [1− P (C)] (12.18)

Calculation is straightforward. We may use MATLAB to perform the arithmetic.

c = [10 8 20];

p = 0.01*[15 20 10];

q = 1 - p;

VX = sum(c.^2.*p.*q)

VX = 58.9900

Example 12.2: A function of X (Example 9 (Example 11.9: Expectation of a function
of X) from "Mathematical Expectation: Simple Random Variables")
Suppose X in a primitive form is

X = −3IC1 − IC2 + 2IC3 − 3IC4 + 4IC5 − IC6 + IC7 + 2IC8 + 3IC9 + 2IC10 (12.19)

with probabilities P (Ci) = 0.08, 0.11, 0.06, 0.13, 0.05, 0.08, 0.12, 0.07, 0.14, 0.16.
Let g (t) = t2 + 2t. Determine E [g (X)] and Var [g (X)]

c = [-3 -1 2 -3 4 -1 1 2 3 2]; % Original coefficients

pc = 0.01*[8 11 6 13 5 8 12 7 14 16]; % Probabilities for C_j

G = c.^2 + 2*c % g(c_j)

EG = G*pc' % Direct calculation E[g(X)]

EG = 6.4200

VG = (G.^2)*pc' - EG^2 % Direct calculation Var[g(X)]

VG = 40.8036

[Z,PZ] = csort(G,pc); % Distribution for Z = g(X)

EZ = Z*PZ' % E[Z]

EZ = 6.4200

VZ = (Z.^2)*PZ' - EZ^2 % Var[Z]

VZ = 40.8036

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



349

Example 12.3: Z = g (X, Y ) (Example 10 (Example 11.10: Expectation for Z = g (X, Y ))
from "Mathematical Expectation: Simple Random Variables")
We use the same joint distribution as for Example 10 (Example 11.10: Expectation for Z =
g (X, Y )) from "Mathematical Expectation: Simple Random Variables" and let g (t, u) = t2 +
2tu− 3u. To set up for calculations, we use jcalc.

jdemo1 % Call for data

jcalc % Set up

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X

Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P

G = t.^2 + 2*t.*u - 3*u; % Calculation of matrix of [g(t_i, u_j)]

EG = total(G.*P) % Direct calculation of E[g(X,Y)]

EG = 3.2529

VG = total(G.^2.*P) - EG^2 % Direct calculation of Var[g(X,Y)]

VG = 80.2133

[Z,PZ] = csort(G,P); % Determination of distribution for Z

EZ = Z*PZ' % E[Z] from distribution

EZ = 3.2529

VZ = (Z.^2)*PZ' - EZ^2 % Var[Z] from distribution

VZ = 80.2133

Example 12.4: A function with compound de�nition (Example 12 (Example 11.22:
A function with a compound de�nition: truncated exponential) from "Mathematical
Expectation; General Random Variables")
Suppose X ∼ exponential (0.3). Let

Z = {
X2 for X ≤ 4

16 for X > 4
= I[0,4] (X)X2 + I(4,∞] (X) 16 (12.20)

Determine E [Z] and Var [Z].
ANALYTIC SOLUTION

E [g (X)] =
∫
g (t) fX (t) dt =

∫ ∞
0

I[0,4] (t) t20.3e−0.3t dt+ 16E
[
I(4,∞] (X)

]
(12.21)

=
∫ 4

0

t20.3e−0.3t dt+ 16P (X > 4) ≈ 7.4972 (by Maple) (12.22)

Z2 = I[0,4] (X)X4 + I(4,∞] (X) 256 (12.23)

E
[
Z2
]

=
∫ ∞

0

I[0,4] (t) t40.3e−0.3t dt+ 256E
[
I(4,∞] (X)

]
=
∫ 4

0

t40.3e−0.3t dt+ 256e−1.2 ≈ 100.0562 (12.24)

Var [Z] = E
[
Z2
]
− E2 [Z] ≈ 43.8486 (by Maple) (12.25)

APPROXIMATION
To obtain a simple aproximation, we must approximate by a bounded random variable. Since

P (X > 50) = e−15 ≈ 3 · 10−7 we may safely truncate X at 50.
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tappr

Enter matrix [a b] of x-range endpoints [0 50]

Enter number of x approximation points 1000

Enter density as a function of t 0.3*exp(-0.3*t)

Use row matrices X and PX as in the simple case

M = X <= 4;

G = M.*X.^2 + 16*(1 - M); % g(X)

EG = G*PX' % E[g(X)]

EG = 7.4972

VG = (G.^2)*PX' - EG^2 % Var[g(X)]

VG = 43.8472 % Theoretical = 43.8486

[Z,PZ] = csort(G,PX); % Distribution for Z = g(X)

EZ = Z*PZ' % E[Z] from distribution

EZ = 7.4972

VZ = (Z.^2)*PZ' - EZ^2 % Var[Z]

VZ = 43.8472

Example 12.5: Stocking for random demand (Example 13 (Example 11.23: Stocking
for random demand (see Exercise 4 (Exercise 10.4.4) from "Problems on Functions of
Random Variables")) from "Mathematical Expectation; General Random Variables")
The manager of a department store is planning for the holiday season. A certain item costs c
dollars per unit and sells for p dollars per unit. If the demand exceeds the amount m ordered,
additional units can be special ordered for s dollars per unit (s > c). If demand is less than the
amount ordered, the remaining stock can be returned (or otherwise disposed of) at r dollars per
unit (r < c). Demand D for the season is assumed to be a random variable with Poisson (µ)
distribution. Suppose µ = 50, c = 30, p = 50, s = 40, r = 20. What amount m should the manager
order to maximize the expected pro�t?

PROBLEM FORMULATION
Suppose D is the demand and X is the pro�t. Then

For D ≤ m, X = D (p− c)− (m−D) (c− r) = D (p− r) +m (r − c)
For D > m, X = m (p− c) + (D −m) (p− s) = D (p− s) +m (s− c)

It is convenient to write the expression for X in terms of IM, where M = (−∞,m]. Thus

X = IM (D) [D (p− r) +m (r − c)] + [1− IM (D)] [D (p− s) +m (s− c)] (12.26)

= D (p− s) +m (s− c) + IM (D) [D (p− r) +m (r − c)−D (p− s)−m (s− c)] (12.27)

= D (p− s) +m (s− c) + IM (D) (s− r) [D −m] (12.28)

Then

E [X] = (p− s)E [D] +m (s− c) + (s− r)E [IM (D)D]− (s− r)mE [IM (D)] (12.29)

We use the discrete approximation.
APPROXIMATION

� mu = 50;

� n = 100;

� t = 0:n;

� pD = ipoisson(mu,t); % Approximate distribution for D
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� c = 30;

� p = 50;

� s = 40;

� r = 20;

� m = 45:55;

� for i = 1:length(m) % Step by step calculation for various m

M = t<=m(i);
G(i,:) = (p-s)*t + m(i)*(s-c) + (s-r)*M.*(t - m(i));

end

� EG = G*pD';

� VG = (G.^2)*pD' - EG.^2;

� SG =sqrt(VG);

� disp([EG';VG';SG']')

1.0e+04 *

0.0931 1.1561 0.0108

0.0936 1.3117 0.0115

0.0939 1.4869 0.0122

0.0942 1.6799 0.0130

0.0943 1.8880 0.0137

0.0944 2.1075 0.0145

0.0943 2.3343 0.0153

0.0941 2.5637 0.0160

0.0938 2.7908 0.0167

0.0934 3.0112 0.0174

0.0929 3.2206 0.0179

Example 12.6: A jointly distributed pair (Example 14 (Example 11.24: A jointly
distributed pair) from "Mathematical Expectation; General Random Variables")
Suppose the pair {X, Y } has joint density fXY (t, u) = 3u on the triangular region bounded by
u = 0, u = 1 + t, u = 1− t. Let Z = g (X, Y ) = X2 + 2XY .

Determine E [Z] and Var [Z].
ANALYTIC SOLUTION

E [Z] =
∫ ∫

(t2 + 2tu) fXY (t, u) dudt = 3
∫ 0

−1

∫ 1+t

0
u (t2 + 2tu) dudt +

3
∫ 1

0

∫ 1−t

0
u (t2 + 2tu) dudt = 1/10

(12.30)

E
[
Z2
]

= 3
∫ 0

−1

∫ 1+t

0

u
(
t2 + 2tu

)2
dudt+ 3

∫ 1

0

∫ 1−t

0

u
(
t2 + 2tu

)2
dudt = 3/35 (12.31)

Var [Z] = E
[
Z2
]
− E2 [Z] = 53/700 ≈ 0.0757 (12.32)

APPROXIMATION

tuappr

Enter matrix [a b] of X-range endpoints [-1 1]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 400

Enter number of Y approximation points 200

Enter expression for joint density 3*u.*(u<=min(1+t,1-t))
Use array operations on X, Y, PX, PY, t, u, and P

G = t.^2 + 2*t.*u; % g(X,Y) = X^2 + 2XY

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



352 CHAPTER 12. VARIANCE, COVARIANCE, LINEAR REGRESSION

EG = total(G.*P) % E[g(X,Y)]

EG = 0.1006 % Theoretical value = 1/10

VG = total(G.^2.*P) - EG^2

VG = 0.0765 % Theoretical value 53/700 = 0.0757

[Z,PZ] = csort(G,P); % Distribution for Z

EZ = Z*PZ' % E[Z] from distribution

EZ = 0.1006

VZ = Z.^2*PZ' - EZ^2

VZ = 0.0765

Example 12.7: A function with compound de�nition (Example 15 (Example 11.25:
A function with a compound de�nition) from "Mathematical Expectation; General
Random Variables")
The pair {X, Y } has joint density fXY (t, u) = 1/2 on the square region bounded by u = 1 + t,
u = 1− t, u = 3− t, and u = t− 1.

W = {
X formax{X, Y } ≤ 1

2Y formax{X, Y } > 1
= IQ (X, Y )X + IQc (X, Y ) 2Y (12.33)

where Q = {(t, u) : max{t, u} ≤ 1} = {(t, u) : t ≤ 1, u ≤ 1}.
Determine E [W ] and Var [W ].
ANALYTIC SOLUTION
The intersection of the region Q and the square is the set for which 0 ≤ t ≤ 1 and 1− t ≤ u ≤ 1.

Reference to Figure 11.3.2 shows three regions of integration.

E [W ] =
1
2

∫ 1

0

∫ 1

1−t
t dudt+

1
2

∫ 1

0

∫ 1+t

1

2u dudt+
1
2

∫ 2

1

∫ 3−t

t−1

2u dudt = 11/6 ≈ 1.8333 (12.34)

E
[
W 2
]

=
1
2

∫ 1

0

∫ 1

1−t
t2 dudt+

1
2

∫ 1

0

∫ 1+t

1

4u2 dudt+
1
2

∫ 2

1

∫ 3−t

t−1

4u2 dudt = 103/24 (12.35)

Var [W ] = 103/24− (11/6)2 = 67/72 ≈ 0.9306 (12.36)

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density ((u<=min(t+1,3-t))& ...

(u$gt;=max(1-t,t-1)))/2

Use array operations on X, Y, PX, PY, t, u, and P

M = max(t,u)<=1;
G = t.*M + 2*u.*(1 - M); % Z = g(X,Y)

EG = total(G.*P) % E[g(X,Y)]

EG = 1.8340 % Theoretical 11/6 = 1.8333

VG = total(G.^2.*P) - EG^2

VG = 0.9368 % Theoretical 67/72 = 0.9306

[Z,PZ] = csort(G,P); % Distribution for Z

EZ = Z*PZ' % E[Z] from distribution

EZ = 1.8340

VZ = (Z.^2)*PZ' - EZ^2

VZ = 0.9368
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Example 12.8: A function with compound de�nition

fXY (t, u) = 3 on 0 ≤ u ≤ t2 ≤ 1 (12.37)

Z = IQ (X, Y )X + IQc (X, Y ) for Q = {(t, u) : u+ t ≤ 1} (12.38)

The value t0 where the line u = 1− t and the curve u = t2 meet satis�es t20 = 1− t0.

E [Z] = 3
∫ t0

0

t

∫ t2

0

dudt+ 3
∫ 1

t0

t

∫ 1−t

0

dudt+ 3
∫ 1

t0

∫ t2

1−t
dudt =

3
4

(5t0 − 2) (12.39)

For E
[
Z2
]
replace t by t2 in the integrands to get E

[
Z2
]

= (25t0 − 1) /20.
Using t0 =

(√
5− 1

)
/2 ≈ 0.6180, we get Var [Z] = (2125t0 − 1309) /80 ≈ 0.0540.

APPROXIMATION

% Theoretical values

t0 = (sqrt(5) - 1)/2

t0 = 0.6180

EZ = (3/4)*(5*t0 -2)

EZ = 0.8176

EZ2 = (25*t0 - 1)/20

EZ2 = 0.7225

VZ = (2125*t0 - 1309)/80

VZ = 0.0540

tuappr

Enter matrix [a b] of X-range endpoints [0 1]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density 3*(u <= t.^2)

Use array operations on X, Y, t, u, and P

G = (t+u <= 1).*t + (t+u > 1);

EG = total(G.*P)

EG = 0.8169 % Theoretical = 0.8176

VG = total(G.^2.*P) - EG^2

VG = 0.0540 % Theoretical = 0.0540

[Z,PZ] = csort(G,P);

EZ = Z*PZ'

EZ = 0.8169

VZ = (Z.^2)*PZ' - EZ^2

VZ = 0.0540

Standard deviation and the Chebyshev inequality
In Example 5 (Example 10.5: The normal distribution and standardized normal distribution) from "Func-

tions of a Random Variable," we show that if X ∼ N
(
µ, σ2

)
then Z = X−µ

σ ∼ N (0, 1). Also, E [X] = µ
and Var [X] = σ2. Thus

P

(
|X − µ|

σ
≤ t
)

= P (|X − µ| ≤ tσ) = 2Φ (t)− 1 (12.40)

For the normal distribution, the standard deviation σ seems to be a natural measure of the variation away
from the mean.

For a general distribution with mean µ and variance σ2, we have the
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Chebyshev inequality

P

(
|X − µ|

σ
≥ a

)
≤ 1
a2

or P (|X − µ| ≥ aσ) ≤ 1
a2

(12.41)

In this general case, the standard deviation appears as a measure of the variation from the mean value. This
inequality is useful in many theoretical applications as well as some practical ones. However, since it must
hold for any distribution which has a variance, the bound is not a particularly tight. It may be instructive
to compare the bound on the probability given by the Chebyshev inequality with the actual probability for
the normal distribution.

t = 1:0.5:3;

p = 2*(1 - gaussian(0,1,t));

c = ones(1,length(t))./(t.^2);

r = c./p;

h = [' t Chebyshev Prob Ratio'];

m = [t;c;p;r]';

disp(h)

t Chebyshev Prob Ratio

disp(m)

1.0000 1.0000 0.3173 3.1515

1.5000 0.4444 0.1336 3.3263

2.0000 0.2500 0.0455 5.4945

2.5000 0.1600 0.0124 12.8831

3.0000 0.1111 0.0027 41.1554

� �
DERIVATION OF THE CHEBYSHEV INEQUALITY
Let A = {|X − µ| ≥ aσ} = {(X − µ)2 ≥ a2σ2}. Then a2σ2IA ≤ (X − µ)2

.
Upon taking expectations of both sides and using monotonicity, we have

a2σ2P (A) ≤ E
[
(X − µ)2

]
= σ2 (12.42)

from which the Chebyshev inequality follows immediately.
� �
We consider three concepts which are useful in many situations.
De�nition. A random variable X is centered i� E [X] = 0.

X ' = X − µ is always centered. (12.43)

De�nition. A random variable X is standardized i� E [X] = 0 and Var [X] = 1.

X∗ =
X − µ
σ

=
X '

σ
is standardized (12.44)

De�nition. A pair {X, Y } of random variables is uncorrelated i�

E [XY ]− E [X]E [Y ] = 0 (12.45)

It is always possible to derive an uncorrelated pair as a function of a pair {X, Y }, both of which have �nite
variances. Consider

U = (X∗ + Y ∗) V = (X∗ − Y ∗) , where X∗ =
X − µX
σX

, Y ∗ =
Y − µY
σY

(12.46)
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Now E [U ] = E [V ] = 0 and

E [UV ] = E (X∗ + Y ∗) (X∗ − Y ∗) = E
[
(X∗)2

]
− E

[
(Y ∗)2

]
= 1− 1 = 0 (12.47)

so the pair is uncorrelated.

Example 12.9: Determining an uncorrelated pair
We use the distribution for Examples Example 10 (Example 11.10: Expectation for Z = g (X, Y ))
from "Mathematical Expectation: Simple Random Variables" and Example 12.3 (Z = g (X, Y )
(Example 10 (Example 11.10: Expectation for Z = g (X, Y )) from "Mathematical Expectation:
Simple Random Variables")), for which

E [XY ]− E [X]E [Y ] 6= 0 (12.48)

jdemo1

jcalc

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X

Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P

EX = total(t.*P)

EX = 0.6420

EY = total(u.*P)

EY = 0.0783

EXY = total(t.*u.*P)

EXY = -0.1130

c = EXY - EX*EY

c = -0.1633 % {X,Y} not uncorrelated

VX = total(t.^2.*P) - EX^2

VX = 3.3016

VY = total(u.^2.*P) - EY^2

VY = 3.6566

SX = sqrt(VX)

SX = 1.8170

SY = sqrt(VY)

SY = 1.9122

x = (t - EX)/SX; % Standardized random variables

y = (u - EY)/SY;

uu = x + y; % Uncorrelated random variables

vv = x - y;

EUV = total(uu.*vv.*P) % Check for uncorrelated condition

EUV = 9.9755e-06 % Differs from zero because of roundoff

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



356 CHAPTER 12. VARIANCE, COVARIANCE, LINEAR REGRESSION

12.2 Covariance and the Correlation Coe�cient2

12.2.1 Covariance and the Correlation Coe�cient

The mean value µX = E [X] and the variance σ2
X = E

[
(X − µX)2

]
give important information about the

distribution for real random variable X. Can the expectation of an appropriate function of (X, Y ) give useful
information about the joint distribution? A clue to one possibility is given in the expression

Var [X ± Y ] = Var [X] + Var [Y ]± 2 (E [XY ]− E [X]E [Y ]) (12.49)

The expression E [XY ]−E [X]E [Y ] vanishes if the pair is independent (and in some other cases). We note
also that for µX = E [X] and µY = E [Y ]

E [(X − µX) (Y − µY )] = E [XY ]− µXµY (12.50)

To see this, expand the expression (X − µX) (Y − µY ) and use linearity to get

E [(X − µX) (Y − µY )] = E [XY − µYX − µXY + µXµY ] = E [XY ] − µYE [X] −
µXE [Y ] + µXµY

(12.51)

which reduces directly to the desired expression. Now for given ω, X (ω)−µX is the variation of X from
its mean and Y (ω)− µY is the variation of Y from its mean. For this reason, the following terminology is
used.

De�nition. The quantity Cov [X,Y ] = E [(X − µX) (Y − µY )] is called the covariance of X and Y.
If we let X ' = X − µX and Y ' = Y − µY be the centered random variables, then

Cov [X,Y ] = E
[
X 'Y '

]
(12.52)

Note that the variance of X is the covariance of X with itself.
If we standardize, with X∗ = (X − µX) /σX and Y ∗ = (Y − µY ) /σY , we have
De�nition. The correlation coe�cientρ = ρ [X,Y ] is the quantity

ρ [X,Y ] = E [X∗Y ∗] =
E [(X − µX) (Y − µY )]

σXσY
(12.53)

Thus ρ = Cov [X,Y ] /σXσY . We examine these concepts for information on the joint distribution. By
Schwarz' inequality (E15), we have

ρ2 = E2 [X∗Y ∗] ≤ E
[
(X∗)2

]
E
[
(Y ∗)2

]
= 1 with equality i� Y ∗ = cX∗ (12.54)

Now equality holds i�

1 = c2E2
[
(X∗)2

]
= c2 which implies c = ±1 and ρ = ±1 (12.55)

We conclude −1 ≤ ρ ≤ 1, with ρ = ± 1 i� Y ∗ = ±X∗
Relationship between ρ and the joint distribution

• We consider �rst the distribution for the standardized pair (X∗, Y ∗)
• Since P (X∗ ≤ r, Y ∗ ≤ s) = P

(
X−µX
σX

≤ r, Y−µYσY
≤ s
)

= P (X ≤ t = σXr + µX , Y ≤ u = σY s+ µY ) (12.56)

2This content is available online at <http://cnx.org/content/m23460/1.6/>.
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we obtain the results for the distribution for (X, Y ) by the mapping

t = σXr + µX

u = σY s+ µY
(12.57)

Joint distribution for the standardized variables (X∗, Y ∗), (r, s) = (X∗, Y ∗) (ω)

ρ = 1 i� X∗ = Y ∗ i� all probability mass is on the line s = r.
ρ = −1 i� X∗ = −Y ∗ i� all probability mass is on the line s = −r.

If −1 < ρ < 1, then at least some of the mass must fail to be on these lines.

Figure 12.1: Distance from point (r,s) to the line s = r.

The ρ = ±1 lines for the (X, Y ) distribution are:

u− µY
σY

= ± t− µX
σX

or u = ±σY
σX

(t− µX) + µY (12.58)

Consider Z = Y ∗ − X∗. Then E
[

1
2Z

2
]

= 1
2E
[
(Y ∗ −X∗)2

]
. Reference to Figure 12.1 shows this is the

average of the square of the distances of the points (r, s) = (X∗, Y ∗) (ω) from the line s = r (i.e., the variance
about the line s = r). Similarly for W = Y ∗ +X∗, E

[
W 2/2

]
is the variance about s = −r. Now

1
2
E
[
(Y ∗ ±X∗)2

]
=

1
2
{E
[
(Y ∗)2

]
+ E

[
(X∗)2

]
± 2E [X∗Y ∗]} = 1± ρ (12.59)

Thus

1− ρ is the variance about s = r (the ρ = 1 line)
1 + ρ is the variance about s = −r (the ρ = −1 line)

Now since

E
[
(Y ∗ −X∗)2

]
= E

[
(Y ∗ +X∗)2

]
i� ρ = E [X∗Y ∗] = 0 (12.60)
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the condition ρ = 0 is the condition for equality of the two variances.
Transformation to the (X,Y ) plane

t = σXr + µX u = σY s+ µY r =
t− µX
σX

s =
u− µY
σY

(12.61)

The ρ = 1 line is:

u− µY
σY

=
t− µX
σX

or u =
σY
σX

(t− µX) + µY (12.62)

The ρ = −1 line is:

u− µY
σY

= − t− µX
σX

or u = −σY
σX

(t− µX) + µY (12.63)

1− ρ is proportional to the variance abut the ρ = 1 line and 1 + ρ is proportional to the variance about the
ρ = −1 line. ρ = 0 i� the variances about both are the same.

Example 12.10: Uncorrelated but not independent
Suppose the joint density for {X, Y } is constant on the unit circle about the origin. By the rectangle
test, the pair cannot be independent. By symmetry, the ρ = 1 line is u = t and the ρ = −1 line is
u = −t. By symmetry, also, the variance about each of these lines is the same. Thus ρ = 0, which
is true i� Cov [X,Y ] = 0. This fact can be veri�ed by calculation, if desired.

Example 12.11: Uniform marginal distributions

Figure 12.2: Uniform marginals but di�erent correlation coe�cients.
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Consider the three distributions in Figure 12.2. In case (a), the distribution is uniform over
the square centered at the origin with vertices at (1,1), (-1,1), (-1,-1), (1,-1). In case (b), the
distribution is uniform over two squares, in the �rst and third quadrants with vertices (0,0), (1,0),
(1,1), (0,1) and (0,0),

(-1,0), (-1,-1), (0,-1). In case (c) the two squares are in the second and fourth quadrants. The
marginals are uniform on (-1,1) in each case, so that in each case

E [X] = E [Y ] = 0 and Var [X] = Var [Y ] = 1/3 (12.64)

This means the ρ = 1 line is u = t and the ρ = −1 line is u = −t.

a. By symmetry, E [XY ] = 0 (in fact the pair is independent) and ρ = 0.
b. For every pair of possible values, the two signs must be the same, so E [XY ] > 0 which implies

ρ > 0. The actual value may be calculated to give ρ = 3/4. Since 1− ρ < 1 + ρ, the variance
about the ρ = 1 line is less than that about the ρ = −1 line. This is evident from the �gure.

c. E [XY ] < 0 and ρ < 0. Since 1 + ρ < 1 − ρ, the variance about the ρ = −1 line is less than
that about the ρ = 1 line. Again, examination of the �gure con�rms this.

Example 12.12: A pair of simple random variables
With the aid of m-functions and MATLAB we can easily caluclate the covariance and the correlation
coe�cient. We use the joint distribution for Example 9 (Example 12.9: Determining an uncorrelated
pair) in "Variance." In that example calculations show

E [XY ]− E [X]E [Y ] = −0.1633 = Cov [X,Y ] , σX = 1.8170 and σY = 1.9122 (12.65)

so that ρ = −0.04699.

Example 12.13: An absolutely continuous pair
The pair {X,Y } has joint density function fXY (t, u) = 6

5 (t+ 2u) on the triangular region bounded
by t = 0, u = t, and u = 1. By the usual integration techniques, we have

fX (t) =
6
5
(
1 + t− 2t2

)
, 0 ≤ t ≤ 1 and fY (u) = 3u2, 0 ≤ u ≤ 1 (12.66)

From this we obtain E [X] = 2/5, Var [X] = 3/50, E [Y ] = 3/4, and Var [Y ] = 3/80. To
complete the picture we need

E [XY ] =
6
5

∫ 1

0

∫ 1

t

(
t2u+ 2tu2

)
dudt = 8/25 (12.67)

Then

Cov [X,Y ] = E [XY ]− E [X]E [Y ] = 2/100 and ρ =
Cov [X,Y ]
σXσY

=
4
30

√
10 ≈ 0.4216 (12.68)

APPROXIMATION

tuappr

Enter matrix [a b] of X-range endpoints [0 1]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density (6/5)*(t + 2*u).*(u>=t)
Use array operations on X, Y, PX, PY, t, u, and P

EX = total(t.*P)

EX = 0.4012 % Theoretical = 0.4
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EY = total(u.*P)

EY = 0.7496 % Theoretical = 0.75

VX = total(t.^2.*P) - EX^2

VX = 0.0603 % Theoretical = 0.06

VY = total(u.^2.*P) - EY^2

VY = 0.0376 % Theoretical = 0.0375

CV = total(t.*u.*P) - EX*EY

CV = 0.0201 % Theoretical = 0.02

rho = CV/sqrt(VX*VY)

rho = 0.4212 % Theoretical = 0.4216

Coe�cient of linear correlation
The parameter ρ is usually called the correlation coe�cient. A more descriptive name would be coe�cient

of linear correlation. The following example shows that all probability mass may be on a curve, so that
Y = g (X) (i.e., the value of Y is completely determined by the value of X), yet ρ = 0.

Example 12.14: Y = g (X) but ρ = 0
Suppose X ∼ uniform (-1,1), so that fX (t) = 1/2, − 1 < t < 1 and E [X] = 0. Let Y = g (X) =
cosX. Then

Cov [X,Y ] = E [XY ] =
1
2

∫ 1

−1

tcos t dt = 0 (12.69)

Thus ρ = 0. Note that g could be any even function de�ned on (-1,1). In this case the integrand
tg (t) is odd, so that the value of the integral is zero.

Variance and covariance for linear combinations
We generalize the property (V4) ("(V4)", p. 346) on linear combinations. Consider the linear combina-

tions

X =
n∑
i=1

aiXi and Y =
m∑
j=1

bjYj (12.70)

We wish to determine Cov [X,Y ] and Var [X]. It is convenient to work with the centered random variables
X ' = X − µX and Y ' = Y − µy. Since by linearity of expectation,

µX =
n∑
i=1

aiµXi and µY =
m∑
j=1

bjµYj (12.71)

we have

X ' =
n∑
i=1

aiXi −
n∑
i=1

aiµXi =
n∑
i=1

ai (Xi − µXi) =
n∑
i=1

aiX
'
i (12.72)

and similarly for Y'. By de�nition

Cov (X,Y ) = E
[
X 'Y '

]
= E

∑
i,j

aibjX
'
iY

'
j

 =
∑
i,j

aibjE
[
X '
iY

'
j

]
=
∑
i,j

aibjCov (Xi, Yj) (12.73)

In particular

Var (X) = Cov (X,X) =
∑
i,j

aiajCov (Xi, Xj) =
n∑
i=1

a2
iCov (Xi, Xi) +

∑
i 6=j

aiajCov (Xi, Xj) (12.74)
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Using the fact that aiajCov (Xi, Xj) = ajaiCov (Xj , Xi), we have

Var [X] =
n∑
i=1

a2
iVar [Xi] + 2

∑
i<j

aiajCov (Xi, Xj) (12.75)

Note that ai
2 does not depend upon the sign of ai. If the Xi form an independent class, or are otherwise

uncorrelated, the expression for variance reduces to

Var [X] =
n∑
i=1

a2
iVar [Xi] (12.76)

12.3 Linear Regression3

12.3.1 Linear Regression

Suppose that a pair {X, Y } of random variables has a joint distribution. A value X (ω) is observed. It is
desired to estimate the corresponding value Y (ω). Obviously there is no rule for determining Y (ω) unless
Y is a function of X. The best that can be hoped for is some estimate based on an average of the errors, or
on the average of some function of the errors.

Suppose X (ω) is observed, and by some rule an estimate
^
Y (ω) is returned. The error of the estimate is

Y (ω)−
^
Y (ω). The most common measure of error is the mean of the square of the error

E

[(
Y−

^
Y

)2
]

(12.77)

The choice of the mean square has two important properties: it treats positive and negative errors alike,
and it weights large errors more heavily than smaller ones. In general, we seek a rule (function) r such that

the estimate
^
Y (ω) is r (X (ω)). That is, we seek a function r such that

E
[
(Y − r (X))2

]
is a minimum. (12.78)

The problem of determining such a function is known as the regression problem. In the unit on Regression
(Section 14.1.5: The regression problem), we show that this problem is solved by the conditional expectation
of Y, given X. At this point, we seek an important partial solution.

The regression line of Y on X

We seek the best straight line function for minimizing the mean squared error. That is, we seek a function
r of the form u = r (t) = at+ b. The problem is to determine the coe�cients a, b such that

E
[
(Y − aX − b)2

]
is a minimum (12.79)

We write the error in a special form, then square and take the expectation.

Error = Y − aX − b = (Y − µY )− a (X − µX) + µY − aµX − b = (Y − µY )− a (X − µX)− β (12.80)

Error squared = (Y − µY )2 + a2(X − µX)2 + β2 − 2β (Y − µY ) + 2aβ (X − µX)−
2a (Y − µY ) (X − µX)

(12.81)

3This content is available online at <http://cnx.org/content/m23468/1.6/>.
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E
[
(Y − aX − b)2

]
= σ2

Y + a2σ2
X + β2 − 2aCov [X,Y ] (12.82)

Standard procedures for determining a minimum (with respect to a) show that this occurs for

a =
Cov [X,Y ]

Var [X]
b = µY − aµX (12.83)

Thus the optimum line, called the regression line of Y on X, is

u =
Cov [X,Y ]

Var [X]
(t− µX) + µY = ρ

σY
σX

(t− µX) + µY = α (t) (12.84)

The second form is commonly used to de�ne the regression line. For certain theoretical purposes, this is
the preferred form. But for calculation, the �rst form is usually the more convenient. Only the covariance
(which requres both means) and the variance of X are needed. There is no need to determine Var [Y ] or ρ.

Example 12.15: The simple pair of Example 3 (Example 12.3: Z = g (X, Y ) (Example
10 (Example 11.10: Expectation for Z = g (X, Y )) from "Mathematical Expectation:
Simple Random Variables")) from "Variance"

jdemo1

jcalc

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X

Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P

EX = total(t.*P)

EX = 0.6420

EY = total(u.*P)

EY = 0.0783

VX = total(t.^2.*P) - EX^2

VX = 3.3016

CV = total(t.*u.*P) - EX*EY

CV = -0.1633

a = CV/VX

a = -0.0495

b = EY - a*EX

b = 0.1100 % The regression line is u = -0.0495t + 0.11

Example 12.16: The pair in Example 6 (Example 12.6: A jointly distributed pair
(Example 14 (Example 11.24: A jointly distributed pair) from "Mathematical Expec-
tation; General Random Variables")) from "Variance"
Suppose the pair {X, Y } has joint density fXY (t, u) = 3u on the triangular region bounded by
u = 0, u = 1 + t, u = 1− t. Determine the regression line of Y on X.

ANALYTIC SOLUTION
By symmetry, E [X] = E [XY ] = 0, so Cov [X,Y ] = 0. The regression curve is

u = E [Y ] = 3
∫ 1

0

u2

∫ 1−u

u−1

dtdu = 6
∫ 1

0

u2 (1− u) du = 1/2 (12.85)

Note that the pair is uncorrelated, but by the rectangle test is not independent. With zero values of
E [X] and E [XY ], the approximation procedure is not very satisfactory unless a very large number
of approximation points are employed.
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Example 12.17: Distribution of Example 5 (Example 8.11: Marginal distribution with
compound expression) from "Random Vectors and MATLAB" and Example 12 (Ex-
ample 10.26: Continuation of Example 5 (Example 8.5: Marginals for a discrete distri-
bution) from "Random Vectors and Joint Distributions") from "Function of Random
Vectors"
The pair {X, Y } has joint density fXY (t, u) = 6

37 (t+ 2u) on the region 0 ≤ t ≤ 2, 0 ≤ u ≤
max{1, t} (see Figure Figure 12.3). Determine the regression line of Y on X. If the valueX (ω) = 1.7
is observed, what is the best mean-square linear estimate of Y (ω)?

Figure 12.3: Regression line for Example 12.17 (Distribution of Example 5 (Example 8.11: Marginal
distribution with compound expression) from "Random Vectors and MATLAB" and Example 12 (Exam-
ple 10.26: Continuation of Example 5 (Example 8.5: Marginals for a discrete distribution) from "Random
Vectors and Joint Distributions") from "Function of Random Vectors").

ANALYTIC SOLUTION

E [X] =
6
37

∫ 1

0

∫ 1

0

(
t2 + 2tu

)
dudt+

6
37

∫ 2

1

∫ t

0

(
t2 + 2tu

)
dudt = 50/37 (12.86)

The other quantities involve integrals over the same regions with appropriate integrands, as follows:

Quantity Integrand Value

E
[
X2
]

t3 + 2t2u 779/370

E [Y ] tu+ 2u2 127/148

E [XY ] t2u+ 2tu2 232/185

Table 12.1
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Then

Var [X] =
779
370
−
(

50
37

)2

=
3823
13690

Cov [X,Y ] =
232
185
− 50

37
· 127

148
=

1293
13690

(12.87)

and

a = Cov [X,Y ] /Var [X] =
1293
3823

≈ 0.3382, b = E [Y ]− aE [X] =
6133
15292

≈ 0.4011 (12.88)

The regression line is u = at + b. If X (ω) = 1.7, the best linear estimate (in the mean square

sense) is
^
Y (ω) = 1.7a+ b = 0.9760 (see Figure 12.3 for an approximate plot).

APPROXIMATION

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 400

Enter number of Y approximation points 400

Enter expression for joint density (6/37)*(t+2*u).*(u<=max(t,1))
Use array operations on X, Y, PX, PY, t, u, and P

EX = total(t.*P)

EX = 1.3517 % Theoretical = 1.3514

EY = total(u.*P)

EY = 0.8594 % Theoretical = 0.8581

VX = total(t.^2.*P) - EX^2

VX = 0.2790 % Theoretical = 0.2793

CV = total(t.*u.*P) - EX*EY

CV = 0.0947 % Theoretical = 0.0944

a = CV/VX

a = 0.3394 % Theoretical = 0.3382

b = EY - a*EX

b = 0.4006 % Theoretical = 0.4011

y = 1.7*a + b

y = 0.9776 % Theoretical = 0.9760

An interpretation of ρ2

The analysis above shows the minimum mean squared error is given by

E

[(
Y−

^
Y

)2
]

= E

[(
Y − ρσY

σX
(X − µX)− µY

)2
]

= σ2
Y E

[
(Y ∗ − ρX∗)2

]
(12.89)

= σ2
Y E

[
(Y ∗)2 − 2ρX∗Y ∗ + ρ2(X∗)2

]
= σ2

Y

(
1− 2ρ2 + ρ2

)
= σ2

Y

(
1− ρ2

)
(12.90)

If ρ = 0, then E

[(
Y−

^
Y

)2
]

= σ2
Y , the mean squared error in the case of zero linear correlation. Then,

ρ2 is interpreted as the fraction of uncertainty removed by the linear rule and X. This interpretation should
not be pushed too far, but is a common interpretation, often found in the discussion of observations or
experimental results.

More general linear regression
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Consider a jointly distributed class. {Y,X1, X2, · · · , Xn}. We wish to deterimine a function U of the
form

U =
n∑
i=0

aiXi, with X0 = 1, such that E
[
(Y − U)2

]
is a minimum (12.91)

If U satis�es this minimum condition, then E [(Y − U)V ] = 0, or, equivalently

E [Y V ] = E [UV ] for all V of the form V =
n∑
i=0

ciXi (12.92)

To see this, set W = Y − U and let d2 = E
[
W 2
]
. Now, for any α

d2 ≤ E
[
(W + αV )2

]
= d2 + 2αE [WV ] + α2E

[
V 2
]

(12.93)

If we select the special

α = −E [WV ]
E [V 2]

then 0 ≤ −2E[WV ]2

E [V 2]
+
E[WV ]2

E[V 2]2
E
[
V 2
]

(12.94)

This implies E[WV ]2 ≤ 0, which can only be satis�ed by E [WV ] = 0, so that

E [Y V ] = E [UV ] (12.95)

On the other hand, if E [(Y − U)V ] = 0 for all V of the form above, then E
[
(Y − U)2

]
is a minimum.

Consider

E
[
(Y − V )2

]
= E

[
(Y − U + U − V )2

]
= E

[
(Y − U)2

]
+ E

[
(U − V )2

]
+ 2E [(Y − U) (U − V )] (12.96)

Since U − V is of the same form as V, the last term is zero. The �rst term is �xed. The second term is

nonnegative, with zero value i� U − V = 0 a.s. Hence, E
[
(Y − V )2

]
is a minimum when V = U .

If we take V to be 1, X1, X2, · · · , Xn, successively, we obtain n+1 linear equations in the n+1 unknowns
a0, a1, · · · , an, as follows.

1. E [Y ] = a0 + a1E [X1] + · · ·+ anE [Xn]
2. E [Y Xi] = a0E [Xi] + a1E [X1Xi] + · · ·+ anE [XnXi] for 1 ≤ i ≤ n

For each i = 1, 2, · · · , n, we take (2) − E [Xi] · (1) and use the calculating expressions for variance and
covariance to get

Cov [Y,Xi] = a1Cov [X1, Xi] + a2Cov [X2, Xi] + · · ·+ anCov [Xn, Xi] (12.97)

These n equations plus equation (1) may be solved alagebraically for the ai.
In the important special case that the Xi are uncorrelated (i.e., Cov [Xi, Xj ] = 0 for i 6= j), we have

ai =
Cov [Y,Xi]

Var [Xi]
1 ≤ i ≤ n (12.98)

and

a0 = E [Y ]− a1E [X1]− a2E [X2]− · · · − anE [Xn] (12.99)

In particular, this condition holds if the class {Xi : 1 ≤ i ≤ n} is iid as in the case of a simple random
sample (see the section on "Simple Random Samples and Statistics (Section 13.3)).
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Examination shows that for n = 1, with X1 = X, a0 = b, and a1 = a, the result agrees with that obtained
in the treatment of the regression line, above.

Example 12.18: Linear regression with two variables.
Suppose E [Y ] = 3, E [X1] = 2, E [X2] = 3, Var [X1] = 3, Var [X2] = 8, Cov [Y,X1] = 5,
Cov [Y,X2] = 7, and Cov [X1, X2] = 1. Then the three equations are

a0 + 2a2 + 3a3 = 3

0 + 3a1 + 1a2 = 5

0 + 1a1 + 8a2 = 7

(12.100)

Solution of these simultaneous linear equations with MATLAB gives the results
a0 = −1.9565, a1 = 1.4348, and a2 = 0.6957.

12.4 Problems on Variance, Covariance, Linear Regression4

Exercise 12.4.1 (Solution on p. 374.)

(See Exercise 1 (Exercise 7.3.1) from "Problems on Distribution and Density Functions ", and
Exercise 1 (Exercise 11.3.1) from "Problems on Mathematical Expectation", m-�le npr07_01.m
(Section 17.8.30: npr07_01)). The class {Cj : 1 ≤ j ≤ 10} is a partition. Random variable X has
values {1, 3, 2, 3, 4, 2, 1, 3, 5, 2} on C1 through C10, respectively, with probabilities 0.08, 0.13, 0.06,
0.09, 0.14, 0.11, 0.12, 0.07, 0.11, 0.09. Determine Var [X].
Exercise 12.4.2 (Solution on p. 374.)

(See Exercise 2 (Exercise 7.3.2) from "Problems on Distribution and Density Functions ", and
Exercise 2 (Exercise 11.3.2) from "Problems on Mathematical Expectation", m-�le npr07_02.m
(Section 17.8.31: npr07_02)). A store has eight items for sale. The prices are $3.50, $5.00, $3.50,
$7.50, $5.00, $5.00, $3.50, and $7.50, respectively. A customer comes in. She purchases one of the
items with probabilities 0.10, 0.15, 0.15, 0.20, 0.10 0.05, 0.10 0.15. The random variable expressing
the amount of her purchase may be written

X = 3.5IC1 + 5.0IC2 + 3.5IC3 + 7.5IC4 + 5.0IC5 + 5.0IC6 + 3.5IC7 + 7.5IC8 (12.101)

Determine Var [X].
Exercise 12.4.3 (Solution on p. 374.)

(See Exercise 12 (Exercise 6.2.12) from "Problems on Random Variables and Probabilities", Ex-
ercise 3 (Exercise 11.3.3) from "Problems on Mathematical Expectation", m-�le npr06_12.m (Sec-
tion 17.8.28: npr06_12)). The class {A, B, C, D} has minterm probabilities

pm = 0.001 ∗ [5 7 6 8 9 14 22 33 21 32 50 75 86 129 201 302] (12.102)

Consider X = IA + IB + IC + ID, which counts the number of these events which occur on a trial.
Determine Var [X].
Exercise 12.4.4 (Solution on p. 374.)

(See Exercise 4 (Exercise 11.3.4) from "Problems on Mathematical Expectation"). In a thunder-
storm in a national park there are 127 lightning strikes. Experience shows that the probability of
each lightning strike starting a �re is about 0.0083. Determine Var [X].

4This content is available online at <http://cnx.org/content/m24379/1.5/>.
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Exercise 12.4.5 (Solution on p. 374.)

(See Exercise 5 (Exercise 11.3.5) from "Problems on Mathematical Expectation"). Two coins are
�ipped twenty times. Let X be the number of matches (both heads or both tails). Determine
Var [X].
Exercise 12.4.6 (Solution on p. 374.)

(See Exercise 6 (Exercise 11.3.6) from "Problems on Mathematical Expectation"). A residential
College plans to raise money by selling �chances� on a board. Fifty chances are sold. A player pays
$10 to play; he or she wins $30 with probability p = 0.2. The pro�t to the College is

X = 50 · 10− 30N, where N is the number of winners (12.103)

Determine Var [X].
Exercise 12.4.7 (Solution on p. 374.)

(See Exercise 7 (Exercise 11.3.7) from "Problems on Mathematical Expectation"). The number
of noise pulses arriving on a power circuit in an hour is a random quantity X having Poisson (7)
distribution. Determine Var [X].
Exercise 12.4.8 (Solution on p. 374.)

(See Exercise 24 (Exercise 7.3.24) from "Problems on Distribution and Density Functions", and
Exercise 8 (Exercise 11.3.8) from "Problems on Mathematical Expectation"). The total operating
time for the units in Exercise 24 (Exercise 7.3.24) from "Problems on Distribution and Density
Functions" is a random variable T ∼ gamma (20, 0.0002). Determine Var [T ].
Exercise 12.4.9 (Solution on p. 374.)

The class {A, B, C, D, E, F} is independent, with respective probabilities
0.43, 0.53, 0.46, 0.37, 0.45, 0.39. Let

X = 6IA + 13IB − 8IC , Y = −3ID + 4IE + IF − 7 (12.104)

a. Use properties of expectation and variance to obtain E [X], Var [X], E [Y ], and Var [Y ]. Note
that it is not necessary to obtain the distributions for X or Y.

b. Let Z = 3Y − 2X.
Determine E [Z], and Var [Z].

Exercise 12.4.10 (Solution on p. 375.)

Consider X = −3.3IA − 1.7IB + 2.3IC + 7.6ID − 3.4. The class {A,B,C,D} has minterm
probabilities (data are in m-�le npr12_10.m (Section 17.8.43: npr12_10))

pmx = [0.0475 0.0725 0.0120 0.0180 0.1125 0.1675 0.0280 0.0420 · · · (12.105)

0.0480 0.0720 0.0130 0.0170 0.1120 0.1680 0.0270 0.0430 (12.106)

a. Calculate E [X] and Var [X].
b. Let W = 2X2 − 3X + 2.

Calculate E [W ] and Var [W ].
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Exercise 12.4.11 (Solution on p. 375.)

Consider a second random variable Y = 10IE + 17IF + 20IG − 10 in addition to that in Exer-
cise 12.4.10. The class {E, F, G} has minterm probabilities (in m�le npr12_10.m (Section 17.8.43:
npr12_10))

pmy = [0.06 0.14 0.09 0.21 0.06 0.14 0.09 0.21] (12.107)

The pair {X, Y } is independent.

a. Calculate E [Y ] and Var [Y ].
b. Let Z = X2 + 2XY − Y .

Calculate E [Z] and Var [Z].

Exercise 12.4.12 (Solution on p. 376.)

Suppose the pair {X, Y } is independent, with X ∼ gamma (3,0.1) and
Y ∼ Poisson (13). Let Z = 2X − 5Y . Determine E [Z] and Var [Z].

Exercise 12.4.13 (Solution on p. 376.)

The pair {X, Y } is jointly distributed with the following parameters:

E [X] = 3, E [Y ] = 4, E [XY ] = 15, E
[
X2
]

= 11, Var [Y ] = 5 (12.108)

Determine Var [3X − 2Y ].
Exercise 12.4.14 (Solution on p. 376.)

The class {A,B,C,D,E, F} is independent, with respective probabilities

0.47, 0.33, 0.46, 0.27, 0.41, 0.37 (12.109)

Let

X = 8IA + 11IB − 7IC , Y = −3ID + 5IE + IF − 3, andZ = 3Y − 2X (12.110)

a. Use properties of expectation and variance to obtain E [X], Var [X], E [Y ], and Var [Y ].
b. Determine E [Z], and Var [Z].
c. Use appropriate m-programs to obtain E [X], Var [X], E [Y ], Var [Y ], E [Z], and Var [Z].

Compare with results of parts (a) and (b).

Exercise 12.4.15 (Solution on p. 377.)

For the Beta (r, s) distribution,

a. Determine E [Xn], where n is a positive integer.
b. Use the result of part (a) to determine E [X] and Var [X].

Exercise 12.4.16 (Solution on p. 377.)

The pair {X,Y } has joint distribution. Suppose

E [X] = 3, E
[
X2
]

= 11, E [Y ] = 10, E
[
Y 2
]

= 101, E [XY ] = 30 (12.111)

Determine Var [15X − 2Y ].
Exercise 12.4.17 (Solution on p. 377.)

The pair {X,Y } has joint distribution. Suppose

E [X] = 2, E
[
X2
]

= 5, E [Y ] = 1, E
[
Y 2
]

= 2, E [XY ] = 1 (12.112)
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Determine Var [3X + 2Y ].
Exercise 12.4.18 (Solution on p. 378.)

The pair {X,Y } is independent, with

E [X] = 2, E [Y ] = 1, Var [X] = 6, Var [Y ] = 4 (12.113)

Let Z = 2X2 +XY 2 − 3Y + 4..
Determine E [Z] .
Exercise 12.4.19 (Solution on p. 378.)

(See Exercise 9 (Exercise 11.3.9) from "Problems on Mathematical Expectation"). Random variable
X has density function

fX (t) = {
(6/5) t2 for 0 ≤ t ≤ 1

(6/5) (2− t) for 1 < t ≤ 2
= I [0, 1] (t)

6
5
t2 + I(1,2] (t)

6
5

(2− t) (12.114)

E [X] = 11/10. Determine Var [X].
For the distributions in Exercises 20-22

Determine Var [X], Cov [X,Y ], and the regression line of Y on X.

Exercise 12.4.20 (Solution on p. 378.)

(See Exercise 7 (Exercise 8.3.7) from "Problems On Random Vectors and Joint Distributions", and
Exercise 17 (Exercise 11.3.17) from "Problems on Mathematical Expectation"). The pair {X, Y }
has the joint distribution (in �le npr08_07.m (Section 17.8.38: npr08_07)):

P (X = t, Y = u) (12.115)

t = -3.1 -0.5 1.2 2.4 3.7 4.9

u = 7.5 0.0090 0.0396 0.0594 0.0216 0.0440 0.0203

4.1 0.0495 0 0.1089 0.0528 0.0363 0.0231

-2.0 0.0405 0.1320 0.0891 0.0324 0.0297 0.0189

-3.8 0.0510 0.0484 0.0726 0.0132 0 0.0077

Table 12.2

Exercise 12.4.21 (Solution on p. 378.)

(See Exercise 8 (Exercise 8.3.8) from "Problems On Random Vectors and Joint Distributions", and
Exercise 18 (Exercise 11.3.18) from "Problems on Mathematical Expectation"). The pair {X, Y }
has the joint distribution (in �le npr08_08.m (Section 17.8.39: npr08_08)):

P (X = t, Y = u) (12.116)
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t = 1 3 5 7 9 11 13 15 17 19

u = 12 0.0156 0.0191 0.0081 0.0035 0.0091 0.0070 0.0098 0.0056 0.0091 0.0049

10 0.0064 0.0204 0.0108 0.0040 0.0054 0.0080 0.0112 0.0064 0.0104 0.0056

9 0.0196 0.0256 0.0126 0.0060 0.0156 0.0120 0.0168 0.0096 0.0056 0.0084

5 0.0112 0.0182 0.0108 0.0070 0.0182 0.0140 0.0196 0.0012 0.0182 0.0038

3 0.0060 0.0260 0.0162 0.0050 0.0160 0.0200 0.0280 0.0060 0.0160 0.0040

-1 0.0096 0.0056 0.0072 0.0060 0.0256 0.0120 0.0268 0.0096 0.0256 0.0084

-3 0.0044 0.0134 0.0180 0.0140 0.0234 0.0180 0.0252 0.0244 0.0234 0.0126

-5 0.0072 0.0017 0.0063 0.0045 0.0167 0.0090 0.0026 0.0172 0.0217 0.0223

Table 12.3

Exercise 12.4.22 (Solution on p. 379.)

(See Exercise 9 (Exercise 8.3.9) from "Problems On Random Vectors and Joint Distributions", and
Exercise 19 (Exercise 11.3.19) from "Problems on Mathematical Expectation"). Data were kept on
the e�ect of training time on the time to perform a job on a production line. X is the amount of
training, in hours, and Y is the time to perform the task, in minutes. The data are as follows (in
�le npr08_09.m (Section 17.8.40: npr08_09)):

P (X = t, Y = u) (12.117)

t = 1 1.5 2 2.5 3

u = 5 0.039 0.011 0.005 0.001 0.001

4 0.065 0.070 0.050 0.015 0.010

3 0.031 0.061 0.137 0.051 0.033

2 0.012 0.049 0.163 0.058 0.039

1 0.003 0.009 0.045 0.025 0.017

Table 12.4

For the joint densities in Exercises 23-30 below

a. Determine analytically Var [X], Cov [X,Y ], and the regression line of Y on X.
b. Check these with a discrete approximation.

Exercise 12.4.23 (Solution on p. 379.)

(See Exercise 10 (Exercise 8.3.10) from "Problems On Random Vectors and Joint Distributions",
and Exercise 20 (Exercise 11.3.20) from "Problems on Mathematical Expectation"). fXY (t, u) = 1
for 0 ≤ t ≤ 1, 0 ≤ u ≤ 2 (1− t).

E [X] =
1
3
, E

[
X2
]

=
1
6
, E [Y ] =

2
3

(12.118)
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Exercise 12.4.24 (Solution on p. 379.)

(See Exercise 13 (Exercise 8.3.13) from "Problems On Random Vectors and Joint Distributions",
and Exercise 23 (Exercise 11.3.23) from "Problems on Mathematical Expectation"). fXY (t, u) =
1
8 (t+ u) for 0 ≤ t ≤ 2, 0 ≤ u ≤ 2.

E [X] = E [Y ] =
7
6
, E

[
X2
]

=
5
3

(12.119)

Exercise 12.4.25 (Solution on p. 380.)

(See Exercise 15 (Exercise 8.3.15) from "Problems On Random Vectors and Joint Distributions",
and Exercise 25 (Exercise 11.3.25) from "Problems on Mathematical Expectation"). fXY (t, u) =
3
88

(
2t+ 3u2

)
for 0 ≤ t ≤ 2, 0 ≤ u ≤ 1 + t.

E [X] =
313
220

, E [Y ] =
1429
880

, E
[
X2
]

=
49
22

(12.120)

Exercise 12.4.26 (Solution on p. 380.)

(See Exercise 16 (Exercise 8.3.16) from "Problems On Random Vectors and Joint Distributions",
and Exercise 26 (Exercise 11.3.26) from "Problems on Mathematical Expectation"). fXY (t, u) =
12t2u on the parallelogram with vertices

(−1, 0) , (0, 0) , (1, 1) , (0, 1) (12.121)

E [X] =
2
5
, E [Y ] =

11
15
, E

[
X2
]

=
2
5

(12.122)

Exercise 12.4.27 (Solution on p. 380.)

(See Exercise 17 (Exercise 8.3.17) from "Problems On Random Vectors and Joint Distributions",
and Exercise 27 (Exercise 11.3.27) from "Problems on Mathematical Expectation"). fXY (t, u) =
24
11 tu for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{1, 2− t}.

E [X] =
52
55
, E [Y ] =

32
55
, E

[
X2
]

=
627
605

(12.123)

Exercise 12.4.28 (Solution on p. 380.)

(See Exercise 18 (Exercise 8.3.18) from "Problems On Random Vectors and Joint Distributions",
and Exercise 28 (Exercise 11.3.28) from "Problems on Mathematical Expectation"). fXY (t, u) =
3
23 (t+ 2u) for 0 ≤ t ≤ 2, 0 ≤ u ≤ max{2− t, t}.

E [X] =
53
46
, E [Y ] =

22
23
, E

[
X2
]

=
9131
5290

(12.124)

Exercise 12.4.29 (Solution on p. 381.)

(See Exercise 21 (Exercise 8.3.21) from "Problems On Random Vectors and Joint Distributions",
and Exercise 31 (Exercise 11.3.31) from "Problems on Mathematical Expectation"). fXY (t, u) =
2
13 (t+ 2u), for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{2t, 3− t}.

E [X] =
16
13
, E [Y ] =

11
12
, E

[
X2
]

=
2847
1690

(12.125)

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



372 CHAPTER 12. VARIANCE, COVARIANCE, LINEAR REGRESSION

Exercise 12.4.30 (Solution on p. 381.)

(See Exercise 22 (Exercise 8.3.22) from "Problems On Random Vectors and Joint Distributions",
and Exercise 32 (Exercise 11.3.32) from "Problems on Mathematical Expectation"). fXY (t, u) =
I[0,1] (t) 3

8

(
t2 + 2u

)
+ I(1,2] (t) 9

14 t
2u2, for 0 ≤ u ≤ 1.

E [X] =
243
224

, E [Y ] =
11
16
, E

[
X2
]

=
107
70

(12.126)

Exercise 12.4.31 (Solution on p. 381.)

The class {X, Y, Z} of random variables is iid (independent, identically distributed) with common
distribution

X = [−5 − 1 3 4 7] PX = 0.01 ∗ [15 20 30 25 10] (12.127)

Let W = 3X − 4Y + 2Z. Determine E [W ] and Var [W ]. Do this using icalc, then repeat with
icalc3 and compare results.

Exercise 12.4.32 (Solution on p. 382.)

fXY (t, u) = 3
88

(
2t+ 3u2

)
for 0 ≤ t ≤ 2, 0 ≤ u ≤ 1 + t (see Exercise 25 (Exercise 11.3.25) and

Exercise 37 (Exercise 11.3.37) from "Problems on Mathematical Expectation").

Z = I[0,1] (X) 4X + I(1,2] (X) (X + Y ) (12.128)

E [X] =
313
220

, E [Z] =
5649
1760

, E
[
Z2
]

=
4881
440

(12.129)

Determine Var [Z] and Cov [X,Z]. Check with discrete approximation.

Exercise 12.4.33 (Solution on p. 382.)

fXY (t, u) = 24
11 tu for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{1, 2 − t} (see Exercise 27 (Exercise 11.3.27) and

Exercise 38 (Exercise 11.3.38) from "Problems on Mathematical Expectation").

Z = IM (X,Y )
1
2
X + IMc (X,Y )Y 2, M = {(t, u) : u > t} (12.130)

E [X] =
52
55
, E [Z] =

16
55
, E

[
Z2
]

=
39
308

(12.131)

Determine Var [Z] and Cov [X,Z]. Check with discrete approximation.

Exercise 12.4.34 (Solution on p. 383.)

fXY (t, u) = 3
23 (t+ 2u) for 0 ≤ t ≤ 2, 0 ≤ u ≤ max{2 − t, t} (see Exercise 28 (Exercise 11.3.28)

and Exercise 39 (Exercise 11.3.39) from "Problems on Mathematical Expectation").

Z = IM (X,Y ) (X + Y ) + IMc (X,Y ) 2Y, M = {(t, u) : max (t, u) ≤ 1} (12.132)

E [X] =
53
46
, E [Z] =

175
92

, E
[
Z2
]

=
2063
460

(12.133)

Determine Var [Z] and Cov [Z]. Check with discrete approximation.

Exercise 12.4.35 (Solution on p. 383.)

fXY (t, u) = 12
179

(
3t2 + u

)
, for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{2, 3− t} (see Exercise 29 (Exercise 11.3.29)

and Exercise 40 (Exercise 11.3.40) from "Problems on Mathematical Expectation").

Z = IM (X,Y ) (X + Y ) + IMc (X,Y ) 2Y 2, M = {(t, u) : t ≤ 1, u ≥ 1} (12.134)
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E [X] =
2313
1790

, E [Z] =
1422
895

, E
[
Z2
]

=
28296
6265

(12.135)

Determine Var [Z] and Cov [X,Z]. Check with discrete approximation.

Exercise 12.4.36 (Solution on p. 383.)

fXY (t, u) = 12
227 (3t+ 2tu), for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{1+ t, 2} (see Exercise 30 (Exercise 11.3.30)

and Exercise 41 (Exercise 11.3.41) from "Problems on Mathematical Expectation").

Z = IM (X,Y )X + IMc (X,Y )XY, M = {(t, u) : u ≤ min (1, 2− t)} (12.136)

E [X] =
1567
1135

, E [Z] =
5774
3405

, E
[
Z2
]

=
56673
15890

(12.137)

Determine Var [Z] and Cov [X,Z]. Check with discrete approximation.

Exercise 12.4.37 (Solution on p. 384.)

(See Exercise 12.4.20, and Exercises 9 (Exercise 10.4.9) and 10 (Exercise 10.4.10) from "Problems
on Functions of Random Variables"). For the pair {X,Y } in Exercise 12.4.20, let

Z = g (X,Y ) = 3X2 + 2XY − Y 2 (12.138)

W = h (X,Y ) = {
X for X + Y ≤ 4

2Y for X + Y > 4
= IM (X,Y )X + IMc (X,Y ) 2Y (12.139)

Determine the joint distribution for the pair {Z,W} and determine the regression line of W on Z.
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Solutions to Exercises in Chapter 12

Solution to Exercise 12.4.1 (p. 366)

npr07_01 (Section~17.8.30: npr07_01)

Data are in T and pc

EX = T*pc'

EX = 2.7000

VX = (T.^2)*pc' - EX^2

VX = 1.5500

[X,PX] = csort(T,pc); % Alternate

Ex = X*PX'

Ex = 2.7000

Vx = (X.^2)*PX' - EX^2

Vx = 1.5500

Solution to Exercise 12.4.2 (p. 366)

npr07_02 (Section~17.8.31: npr07_02)

Data are in T, pc

EX = T*pc';

VX = (T.^2)*pc' - EX^2

VX = 2.8525

Solution to Exercise 12.4.3 (p. 366)

npr06_12 (Section~17.8.28: npr06_12)

Minterm probabilities in pm, coefficients in c

canonic

Enter row vector of coefficients c

Enter row vector of minterm probabilities pm

Use row matrices X and PX for calculations

Call for XDBN to view the distribution

VX = (X.^2)*PX' - (X*PX')^2

VX = 0.7309

Solution to Exercise 12.4.4 (p. 366)
X ∼ binomial (127,0.0083). Var [X] = 127 · 0.0083 · (1− 0.0083) = 1.0454.
Solution to Exercise 12.4.5 (p. 367)
X ∼ binomial (20,1/2). Var [X] = 20 · (1/2)2 = 5.
Solution to Exercise 12.4.6 (p. 367)
N ∼ binomial (50,0.2). Var [N ] = 50 · 0.2 · 0.8 = 8. Var [X] = 302Var [N ] = 7200.
Solution to Exercise 12.4.7 (p. 367)
X ∼ Poisson (7). Var [X] = µ = 7.
Solution to Exercise 12.4.8 (p. 367)
T ∼ gamma (20,0.0002). Var [T ] = 20/0.00022 = 500, 000, 000.
Solution to Exercise 12.4.9 (p. 367)

cx = [6 13 -8 0];

cy = [-3 4 1 -7];

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



375

px = 0.01*[43 53 46 100];

py = 0.01*[37 45 39 100];

EX = dot(cx,px)

EX = 5.7900

EY = dot(cy,py)

EY = -5.9200

VX = sum(cx.^2.*px.*(1-px))

VX = 66.8191

VY = sum(cy.^2.*py.*(1-py))

VY = 6.2958

EZ = 3*EY - 2*EX

EZ = -29.3400

VZ = 9*VY + 4*VX

VZ = 323.9386

Solution to Exercise 12.4.10 (p. 367)

npr12_10 (Section~17.8.43: npr12_10)

Data are in cx, cy, pmx and pmy

canonic

Enter row vector of coefficients cx

Enter row vector of minterm probabilities pmx

Use row matrices X and PX for calculations

Call for XDBN to view the distribution

EX = dot(X,PX)

EX = -1.2200

VX = dot(X.^2,PX) - EX^2

VX = 18.0253

G = 2*X.^2 - 3*X + 2;

[W,PW] = csort(G,PX);

EW = dot(W,PW)

EW = 44.6874

VW = dot(W.^2,PW) - EW^2

VW = 2.8659e+03

Solution to Exercise 12.4.11 (p. 367)
(Continuation of Exercise 12.4.10)

[Y,PY] = canonicf(cy,pmy);

EY = dot(Y,PY)

EY = 19.2000

VY = dot(Y.^2,PY) - EY^2

VY = 178.3600

icalc

Enter row matrix of X-values X

Enter row matrix of Y-values Y

Enter X probabilities PX

Enter Y probabilities PY

Use array operations on matrices X, Y, PX, PY, t, u, and P

H = t.^2 + 2*t.*u - u;

[Z,PZ] = csort(H,P);

EZ = dot(Z,PZ)
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EZ = -46.5343

VZ = dot(Z.^2,PZ) - EZ^2

VZ = 3.7165e+04

Solution to Exercise 12.4.12 (p. 368)
X ∼ gamma (3, 0.1) implies E [X] = 30 and Var [X] = 300. Y ∼ Poisson (13) implies E [Y ] = Var [Y ] = 13.
Then

E [Z] = 2 · 30− 5 · 13 = −5, Var [Z] = 4 · 300 + 25 · 13 = 1525 (12.140)

Solution to Exercise 12.4.13 (p. 368)

EX = 3;

EY = 4;

EXY = 15;

EX2 = 11;

VY = 5;

VX = EX2 - EX^2

VX = 2

CV = EXY - EX*EY

CV = 3

VZ = 9*VX + 4*VY - 6*2*CV

VZ = 2

Solution to Exercise 12.4.14 (p. 368)

px = 0.01*[47 33 46 100];

py = 0.01*[27 41 37 100];

cx = [8 11 -7 0];

cy = [-3 5 1 -3];

ex = dot(cx,px)

ex = 4.1700

ey = dot(cy,py)

ey = -1.3900

vx = sum(cx.^2.*px.*(1 - px))

vx = 54.8671

vy = sum(cy.^2.*py.*(1-py))

vy = 8.0545

[X,PX] = canonicf(cx,minprob(px(1:3)));

[Y,PY] = canonicf(cy,minprob(py(1:3)));

icalc

Enter row matrix of X-values X

Enter row matrix of Y-values Y

Enter X probabilities PX

Enter Y probabilities PY

Use array operations on matrices X, Y, PX, PY, t, u, and P

EX = dot(X,PX)

EX = 4.1700

EY = dot(Y,PY)

EY = -1.3900

VX = dot(X.^2,PX) - EX^2

VX = 54.8671
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VY = dot(Y.^2,PY) - EY^2

VY = 8.0545

EZ = 3*EY - 2*EX

EZ = -12.5100

VZ = 9*VY + 4*VX

VZ = 291.9589

Solution to Exercise 12.4.15 (p. 368)

E [Xn] =
Γ (r + s)
Γ (r) Γ (s)

∫ 1

0

tr+n−1(1− t)s−1
dt =

Γ (r + s)
Γ (r) Γ (s)

· Γ (r + n) Γ (s)
Γ (r + s+ n)

= (12.141)

Γ (r + n) Γ (r + s)
Γ (r + s+ n) Γ (r)

(12.142)

Using Γ (x+ 1) = xΓ (x) we have

E [X] =
r

r + s
, E

[
X2
]

=
r (r + 1)

(r + s) (r + s+ 1)
(12.143)

Some algebraic manipulations show that

Var [X] = E
[
X2
]
− E2 [X] =

rs

(r + s)2 (r + s+ 1)
(12.144)

Solution to Exercise 12.4.16 (p. 368)

EX = 3;

EX2 = 11;

EY = 10;

EY2 = 101;

EXY = 30;

VX = EX2 - EX^2

VX = 2

VY = EY2 - EY^2

VY = 1

CV = EXY - EX*EY

CV = 0

VZ = 15^2*VX + 2^2*VY

VZ = 454

Solution to Exercise 12.4.17 (p. 368)

EX = 2;

EX2 = 5;

EY = 1;

EY2 = 2;

EXY = 1;

VX = EX2 - EX^2

VX = 1

VY = EY2 - EY^2

VY = 1

CV = EXY - EX*EY

CV = -1

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



378 CHAPTER 12. VARIANCE, COVARIANCE, LINEAR REGRESSION

VZ = 9*VX + 4*VY + 2*6*CV

VZ = 1

Solution to Exercise 12.4.18 (p. 369)

EX = 2;

EY = 1;

VX = 6;

VY = 4;

EX2 = VX + EX^2

EX2 = 10

EY2 = VY + EY^2

EY2 = 5

EZ = 2*EX2 + EX*EY2 - 3*EY + 4

EZ = 31

Solution to Exercise 12.4.19 (p. 369)

E
[
X2
]

=
∫
t2fX (t) dt =

6
5

∫ 1

0

t4 dt+
6
5

∫ 2

1

(
2t2 − t3

)
dt =

67
50

(12.145)

Var [X] = E
[
X2
]
− E2 [X] =

13
100

(12.146)

Solution to Exercise 12.4.20 (p. 369)

npr08_07 (Section~17.8.38: npr08_07)

Data are in X, Y, P

jcalc

- - - - - - - - - - -

EX = dot(X,PX);

EY = dot(Y,PY);

VX = dot(X.^2,PX) - EX^2

VX = 5.1116

CV = total(t.*u.*P) - EX*EY

CV = 2.6963

a = CV/VX

a = 0.5275

b = EY - a*EX

b = 0.6924 % Regression line: u = at + b

Solution to Exercise 12.4.21 (p. 369)

npr08_08 (Section~17.8.39: npr08_08)

Data are in X, Y, P

jcalc

- - - - - - - - - - - -

EX = dot(X,PX);

EY = dot(Y,PY);

VX = dot(X.^2,PX) - EX^2

VX = 31.0700

CV = total(t.*u.*P) - EX*EY
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CV = -8.0272

a = CV/VX

a = -0.2584

b = EY - a*EX

b = 5.6110 % Regression line: u = at + b

Solution to Exercise 12.4.22 (p. 370)

npr08_09 (Section~17.8.40: npr08_09)

Data are in X, Y, P

jcalc

- - - - - - - - - - - -

EX = dot(X,PX);

EY = dot(Y,PY);

VX = dot(X.^2,PX) - EX^2

VX = 0.3319

CV = total(t.*u.*P) - EX*EY

CV = -0.2586

a = CV/VX

a = -0.77937/6;

b = EY - a*EX

b = 4.3051 % Regression line: u = at + b

Solution to Exercise 12.4.23 (p. 370)

E [XY ] =
∫ 1

0

∫ 2(1−t)

0

tu dudt = 1/6 (12.147)

Cov [X,Y ] =
1
6
− 1

3
· 2

3
= −1/18 Var [X] = 1/6− (1/3)2 = 1/18 (12.148)

a = Cov [X,Y ] /Var [X] = −1 b = E [Y ]− aE [X] = 1 (12.149)

tuappr: [0 1] [0 2] 200 400 u<=2*(1-t)
EX = dot(X,PX);

EY = dot(Y,PY);

VX = dot(X.^2,PX) - EX^2

VX = 0.0556

CV = total(t.*u.*P) - EX*EY

CV = -0.0556

a = CV/VX

a = -1.0000

b = EY - a*EX

b = 1.0000

Solution to Exercise 12.4.24 (p. 370)

E [XY ] =
1
8

∫ 2

0

∫ 2

0

tu (t+ u) dudt = 4/3, Cov [X,Y ] = −1/36, Var [X] = 11/36 (12.150)

a = Cov [X,Y ] /Var [X] = −1/11, b = E [Y ]− aE [X] = 14/11 (12.151)
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tuappr: [0 2] [0 2] 200 200 (1/8)*(t+u)

VX = 0.3055 CV = -0.0278 a = -0.0909 b = 1.2727

Solution to Exercise 12.4.25 (p. 371)

E [XY ] =
3
88

∫ 2

0

∫ 1+t

0

tu
(
2t+ 3u2

)
dudt =

2153
880

Cov [X,Y ] =
26383

1933600
, Var [X] =

9831
48400

(12.152)

a = Cov [X,Y ] /Var [X] =
26383
39324

b = E [Y ]− aE [X] =
26321
39324

(12.153)

tuappr: [0 2] [0 3] 200 300 (3/88)*(2*t + 3*u.^2).*(u<=1+t)
VX = 0.2036 CV = 0.1364 a = 0.6700 b = 0.6736

Solution to Exercise 12.4.26 (p. 371)

E [XY ] = 12
∫ 0

−1

∫ t+1

0

t3u2 dudt+ 12
∫ 1

0

∫ 1

t

t3u2 dudt =
2
5

(12.154)

Cov [X,Y ] =
8
75
, Var [X] =

6
25

(12.155)

a = Cov [X,Y ] /Var [X] = 4/9 b = E [Y ]− aE [X] = 5/9 (12.156)

tuappr: [-1 1] [0 1] 400 200 12*t.^2.*u.*(u>= max(0,t)).*(u<= min(1+t,1))

VX = 0.2383 CV = 0.1056 a = 0.4432 b = 0.5553

Solution to Exercise 12.4.27 (p. 371)

E [XY ] =
24
11

∫ 1

0

∫ 1

0

t2u2 dudt+
24
11

∫ 2

1

∫ 2−t

0

t2u2 dudt =
28
55

(12.157)

Cov [XY ] = − 124
3025

, Var [X] =
431
3025

(12.158)

a = Cov [X,Y ] /Var [X] = −124
431

b = E [Y ]− aE [X] =
368
431

(12.159)

tuappr: [0 2] [0 1] 400 200 (24/11)*t.*u.*(u<=min(1,2-t))
VX = 0.1425 CV =-0.0409 a = -0.2867 b = 0.8535

Solution to Exercise 12.4.28 (p. 371)

E [XY ] =
3
23

∫ 1

0

∫ 2−t

0

tu (t+ 2u) dudt+
3
23

∫ 2

1

∫ t

0

tu (t+ 2u) dudt =
251
230

(12.160)

Cov [X,Y ] = − 57
5290

, Var [X] =
4217
10580

(12.161)

a = Cov [X,Y ] /Var [X] = − 114
4217

b = E [Y ]− aE [X] =
4165
4217

(12.162)
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tuappr: [0 2] [0 2] 200 200 (3/23)*(t + 2*u).*(u<=max(2-t,t))
VX = 0.3984 CV = -0.0108 a = -0.0272 b = 0.9909

Solution to Exercise 12.4.29 (p. 371)

E [XY ] =
2
13

∫ 1

0

∫ 3−t

0

tu (t+ 2u) dudt+
2
13

∫ 2

1

∫ 2t

0

tu (t+ 2u) dudt =
431
390

(12.163)

Cov [X,Y ] = − 3
130

Var [X] =
287
1690

(12.164)

a = Cov [X,Y ] /Var [X] = − 39
297

b = E [Y ]− aE [X] =
3733
3444

(12.165)

tuappr: [0 2] [0 2] 400 400 (2/13)*(t + 2*u).*(u<=min(2*t,3-t))
VX = 0.1698 CV = -0.0229 a = -0.1350 b = 1.0839

Solution to Exercise 12.4.30 (p. 371)

E [XY ] =
3
8

∫ 1

0

∫ 1

0

tu
(
t2 + 2u

)
dudt+

9
14

∫ 2

1

∫ 1

0

t3u3 dudt =
347
448

(12.166)

Cov [X,Y ] =
103
3584

, Var [X] =
88243
250880

(12.167)

a = Cov [X,Y ] /Var [X] =
7210
88243

b = E [Y ]− aE [X] =
105691
176486

(12.168)

tuappr: [0 2] [0 1] 400 200 (3/8)*(t.^2 + 2*u).*(t<=1) + (9/14)*t.^2.*u.^2.*(t>1)
VX = 0.3517 CV = 0.0287 a = 0.0817 b = 0.5989

Solution to Exercise 12.4.31 (p. 372)

x = [-5 -1 3 4 7];

px = 0.01*[15 20 30 25 10];

EX = dot(x,px) % Use of properties

EX = 1.6500

VX = dot(x.^2,px) - EX^2

VX = 12.8275

EW = (3 - 4+ 2)*EX

EW = 1.6500

VW = (3^2 + 4^2 + 2^2)*VX

VW = 371.9975

icalc % Iterated use of icalc

Enter row matrix of X-values x

Enter row matrix of Y-values x

Enter X probabilities px

Enter Y probabilities px

Use array operations on matrices X, Y, PX, PY, t, u, and P

G = 3*t - 4*u;

[R,PR] = csort(G,P);

icalc
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Enter row matrix of X-values R

Enter row matrix of Y-values x

Enter X probabilities PR

Enter Y probabilities px

Use array operations on matrices X, Y, PX, PY, t, u, and P

H = t + 2*u;

[W,PW] = csort(H,P);

EW = dot(W,PW)

EW = 1.6500

VW = dot(W.^2,PW) - EW^2

VW = 371.9975

icalc3 % Use of icalc3

Enter row matrix of X-values x

Enter row matrix of Y-values x

Enter row matrix of Z-values x

Enter X probabilities px

Enter Y probabilities px

Enter Z probabilities px

Use array operations on matrices X, Y, Z,

PX, PY, PZ, t, u, v, and P

S = 3*t - 4*u + 2*v;

[w,pw] = csort(S,P);

Ew = dot(w,pw)

Ew = 1.6500

Vw = dot(w.^2,pw) - Ew^2

Vw = 371.9975

Solution to Exercise 12.4.32 (p. 372)

E [XZ] =
3
88

∫ 1

0

∫ 1+t

0

4t2
(
2t+ 3u2

)
dudt+

3
88

∫ 2

1

∫ 1+t

0

t (t+ u)
(
2t+ 3u2

)
dudt =

16931
3520

(12.169)

Var [Z] = E
[
Z2
]
− E2 [Z] =

2451039
3097600

Cov [X,Z] = E [XZ]− E [X]E [Z] =
94273
387200

(12.170)

tuappr: [0 2] [0 3] 200 300 (3/88)*(2*t+3*u.^2).*(u<=1+t)
G = 4*t.*(t<=1) + (t+u).*(t>1);
EZ = total(G.*P)

EZ = 3.2110

EX = dot(X,PX)

EX = 1.4220

CV = total(G.*t.*P) - EX*EZ

CV = 0.2445 % Theoretical 0.2435

VZ = total(G.^2.*P) - EZ^2

VZ = 0.7934 % Theoretical 0.7913

Solution to Exercise 12.4.33 (p. 372)

E [XZ] =
24
11

∫ 1

0

∫ 1

t

t (t/2) tu dudt+
24
11

∫ 1

0

∫ t

0

tu2tu dudt+
24
11

∫ 2

1

∫ 2−t

0

ttu2tu dudt =
211
770

(12.171)

Var [Z] = E
[
Z2
]
− E2 [Z] =

3557
84700

Cov [Z,X] = E [XZ]− E [X]E [Z] = − 43
42350

(12.172)

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



383

tuappr: [0 2] [0 1] 400 200 (24/11)*t.*u.*(u<=min(1,2-t))
G = (t/2).*(u>t) + u.^2.*(u<=t);
VZ = total(G.^2.*P) - EZ^2

VZ = 0.0425

CV = total(t.*G.*P) - EZ*dot(X,PX)

CV = -9.2940e-04

Solution to Exercise 12.4.34 (p. 372)

E [ZX] =
3
23

∫ 1

0

∫ 1

0

t (t+ u) (t+ 2u) dudt+
3
23

∫ 1

0

∫ 2−t

1

2tu (t+ 2u) dudt + (12.173)

3
23

∫ 2

1

∫ t

1

2tu (t+ 2u) dudt =
1009
460

(12.174)

Var [Z] = E
[
Z2
]
− E2 [Z] =

36671
42320

Cov [Z,X] = E [ZX]− E [Z]E [X] =
39

21160
(12.175)

tuappr: [0 2] [0 2] 400 400 (3/23)*(t+2*u).*(u<=max(2-t,t))
M = max(t,u)<=1;
G = (t+u).*M + 2*u.*(1-M);

EZ = total(G.*P);

EX = dot(X,PX);

CV = total(t.*G.*P) - EX*EZ

CV = 0.0017

Solution to Exercise 12.4.35 (p. 372)

E [ZX] =
12
179

∫ 1

0

∫ 2

1

t (t+ u)
(
3t2 + u

)
dudt+

12
179

∫ 1

0

∫ 1

0

2tu2
(
3t2 + u

)
dudt+ (12.176)

12
179

∫ 2

1

∫ 3−t

0

2tu2
(
3t2 + u

)
dudt =

24029
12530

(12.177)

Var [Z] = E
[
Z2
]
− E2 [Z] =

11170332
5607175

Cov [Z,X] = E [ZX]− E [Z]E [X] = − 1517647
11214350

(12.178)

tuappr: [0 2] [0 2] 400 400 (12/179)*(3*t.^2 + u).*(u <= min(2,3-t))

M = (t<=1)&(u>=1);
G = (t + u).*M + 2*u.^2.*(1 - M);

EZ = total(G.*P);

EX = dot(X,PX);

CV = total(t.*G.*P) - EZ*EX

CV = -0.1347

Solution to Exercise 12.4.36 (p. 373)

E [ZX] =
12
227

∫ 1

0

∫ 1

0

t2 (3t+ 2tu) dudt+
12
227

∫ 2

1

∫ 2−t

0

t2 (3t+ 2tu) dudt + (12.179)

12
227

∫ 1

0

∫ 1+t

1

t2u (3t+ 2tu) dudt+
12
227

∫ 2

1

∫ 2

2−t
t2u (3t+ 2tu) dudt =

20338
7945

(12.180)

Var [Z] = E
[
Z2
]
− E2 [Z] =

112167631
162316350

Cov [Z,X] = E [ZX]− E [Z]E [X] =
5915884
27052725

(12.181)
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tuappr: [0 2] [0 2] 400 400 (12/227)*(3*t + 2*t.*u).*(u <= min(1+t,2))

EX = dot(X,PX);

M = u <= min(1,2-t);

G = t.*M + t.*u.*(1 - M);

EZ = total(G.*P);

EZX = total(t.*G.*P)

EZX = 2.5597

CV = EZX - EX*EZ

CV = 0.2188

VZ = total(G.^2.*P) - EZ^2

VZ = 0.6907

Solution to Exercise 12.4.37 (p. 373)

npr08_07 (Section~17.8.38: npr08_07)

Data are in X, Y, P

jointzw

Enter joint prob for (X,Y) P

Enter values for X X

Enter values for Y Y

Enter expression for g(t,u) 3*t.^2 + 2*t.*u - u.^2

Enter expression for h(t,u) t.*(t+u<=4) + 2*u.*(t+u>4)
Use array operations on Z, W, PZ, PW, v, w, PZW

EZ = dot(Z,PZ)

EZ = 5.2975

EW = dot(W,PW)

EW = 4.7379

VZ = dot(Z.^2,PZ) - EZ^2

VZ = 1.0588e+03

CZW = total(v.*w.*PZW) - EZ*EW

CZW = -12.1697

a = CZW/VZ

a = -0.0115

b = EW - a*EZ

b = 4.7988 % Regression line: w = av + b

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



Chapter 13

Transform Methods

13.1 Transform Methods1

As pointed out in the units on Expectation (Section 11.1) and Variance (Section 12.1), the mathematical
expectation E [X] = µX of a random variable X locates the center of mass for the induced distribution, and
the expectation

E [g (X)] = E
[
(X − E [X])2

]
= Var [X] = σ2

X (13.1)

measures the spread of the distribution about its center of mass. These quantities are also known, respec-
tively, as the mean (moment) of X and the second moment of X about the mean. Other moments give added

information. For example, the third moment about the mean E
[
(X − µX)3

]
gives information about the

skew, or asymetry, of the distribution about the mean. We investigate further along these lines by exam-
ining the expectation of certain functions of X. Each of these functions involves a parameter, in a manner
that completely determines the distribution. For reasons noted below, we refer to these as transforms. We
consider three of the most useful of these.

13.1.1 Three basic transforms

We de�ne each of three transforms, determine some key properties, and use them to study various proba-
bility distributions associated with random variables. In the section on integral transforms (Section 13.1.2:
Integral transforms), we show their relationship to well known integral transforms. These have been studied
extensively and used in many other applications, which makes it possible to utilize the considerable literature
on these transforms.

De�nition. The moment generating functionMX for random variable X (i.e., for its distribution) is the
function

MX (s) = E
[
esX

]
(s is a real or complex parameter) (13.2)

The characteristic functionφX for random variable X is

φX (u) = E
[
eiuX

] (
i2 = −1, u is a real parameter)(13.3)

The generating functiongX (s) for a nonnegative, integer-valued random variable X is

gX (s) = E
[
sX
]

=
∑
k

skP (X = k) (13.4)

1This content is available online at <http://cnx.org/content/m23473/1.8/>.
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The generating function E
[
sX
]
has meaning for more general random variables, but its usefulness is greatest

for nonnegative, integer-valued variables, and we limit our consideration to that case.
The de�ning expressions display similarities which show useful relationships. We note two which are

particularly useful.

MX (s) = E
[
esX

]
= E

[
(es)X

]
= gX (es) and φX (u) = E

[
eiuX

]
= MX (iu) (13.5)

Because of the latter relationship, we ordinarily use the moment generating function instead of the char-
acteristic function to avoid writing the complex unit i. When desirable, we convert easily by the change of
variable.

The integral transform character of these entities implies that there is essentially a one-to-one relationship
between the transform and the distribution.

Moments
The name and some of the importance of the moment generating function arise from the fact that the

derivatives of MX evaluateed at s = 0 are the moments about the origin. Speci�cally

M
(k)
X (0) = E

[
Xk
]
, provided the kth moment exists (13.6)

Since expectation is an integral and because of the regularity of the integrand, we may di�erentiate inside
the integral with respect to the parameter.

M '
X (s) =

d

ds
E
[
esX

]
= E

[
d

ds
esX

]
= E

[
XesX

]
(13.7)

Upon setting s = 0, we have M '
X (0) = E [X]. Repeated di�erentiation gives the general result. The

corresponding result for the characteristic function is φ(k) (0) = ikE
[
Xk
]
.

Example 13.1: The exponential distribution
The density function is fX (t) = λe−λt for t ≥ 0.

MX (s) = E
[
esX

]
=
∫ ∞

0

λe−(λ−s)t dt =
λ

λ− s
(13.8)

M '
X (s) =

λ

(λ− s)2 M ''
X (s) =

2λ
(λ− s)3 (13.9)

E [X] = M '
X (0) =

λ

λ2
=

1
λ

E
[
X2
]

= M ''
X (0) =

2λ
λ3

=
2
λ2

(13.10)

From this we obtain Var [X] = 2/λ2 − 1/λ2 = 1/λ2.

The generating function does not lend itself readily to computing moments, except that

g'X (s) =
∞∑
k=1

ksk−1P (X = k) so that g'X (1) =
∞∑
k=1

kP (X = k) = E [X] (13.11)

For higher order moments, we may convert the generating function to the moment generating function by
replacing s with es, then work with MX and its derivatives.

Example 13.2: The Poisson (µ) distribution
P (X = k) = e−µ µ

k

k! , k ≥ 0, so that

gX (s) = e−µ
∞∑
k=0

sk
µk

k!
= e−µ

∞∑
k=0

(sµ)k

k!
= e−µeµs = eµ(s−1) (13.12)
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We convert to MX by replacing s with es to get MX (s) = eµ(es−1). Then

M '
X (s) = eµ(es−1)µes M ''

X (s) = eµ(es−1)
[
µ2e2s + µes

]
(13.13)

so that

E [X] = M '
X (0) = µ, E

[
X2
]

= M ''
X (0) = µ2 + µ, and Var [X] = µ2 + µ− µ2 = µ (13.14)

These results agree, of course, with those found by direct computation with the distribution.

Operational properties
We refer to the following as operational properties.

(T1): If Z = aX + b, then

MZ (s) = ebsMX (as) , φZ (u) = eiubφX (au) , gZ (s) = sbgX (sa) (13.15)

For the moment generating function, this pattern follows from

E
[
e(aX+b)s

]
= sbsE

[
e(as)X

]
(13.16)

Similar arguments hold for the other two.
(T2): If the pair {X, Y } is independent, then

MX+Y (s) = MX (s)MY (s) , φX+Y (u) = φX (u)φY (u) , gX+Y (s) = gX (s) gY (s)
(13.17)

For the moment generating function, esX and esY form an independent pair for each value of the
parameter s. By the product rule for expectation

E
[
es(X+Y )

]
= E

[
esXesY

]
= E

[
esX

]
E
[
esY
]

(13.18)

Similar arguments are used for the other two transforms.
A partial converse for (T2) is as follows:

(T3): If MX+Y (s) = MX (s)MY (s), then the pair {X, Y } is uncorrelated. To show this, we obtain two

expressions for E
[
(X + Y )2

]
, one by direct expansion and use of linearity, and the other by taking

the second derivative of the moment generating function.

E
[
(X + Y )2

]
= E

[
X2
]

+ E
[
Y 2
]

+ 2E [XY ] (13.19)

M ''
X+Y (s) = [MX (s)MY (s)]'' = M ''

X (s)MY (s) +MX (s)M ''
Y (s) + 2M '

X (s)M '
Y (s) (13.20)

On setting s = 0 and using the fact that MX (0) = MY (0) = 1, we have

E
[
(X + Y )2

]
= E

[
X2
]

+ E
[
Y 2
]

+ 2E [X]E [Y ] (13.21)

which implies the equality E [XY ] = E [X]E [Y ].

Note that we have not shown that being uncorrelated implies the product rule.
We utilize these properties in determining the moment generating and generating functions for several of

our common distributions.
Some discrete distributions

1. Indicator function X = IE P (E) = p

gX (s) = s0q + s1p = q + ps MX (s) = gX (es) = q + pes (13.22)
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2. Simple random variableX =
∑n
i=1 tiIAi (primitive form) P (Ai) = pi

MX (s) =
n∑
i=1

estipi (13.23)

3. Binomial(n, p). X =
∑n
i=1 IEi with {IEi : 1 ≤ i ≤ n} iid P (Ei) = p

We use the product rule for sums of independent random variables and the generating function for the
indicator function.

gX (s) =
n∏
i=1

(q + ps) = (q + ps)n MX (s) = (q + pes)n (13.24)

4. Geometric(p). P (X = k) = pqk∀k ≥ 0E [X] = q/p We use the formula for the geometric series to get

gX (s) =
∞∑
k=0

pqksk = p
∞∑
k=0

(qs)k =
p

1− qs
MX (s) =

p

1− qes
(13.25)

5. Negative binomial(m, p) If Ym is the number of the trial in a Bernoulli sequence on which the mth
success occurs, and Xm = Ym −m is the number of failures before the mth success, then

P (Xm = k) = P (Ym −m = k) = C (−m, k) (−q)kpm (13.26)

whereC (−m, k) =
−m (−m− 1) (−m− 2) · · · (−m− k + 1)

k!
(13.27)

The power series expansion about t = 0 shows that

(1 + t)−m = 1 + C (−m, 1) t+ C (−m, 2) t2 + · · · for− 1 < t < 1 (13.28)

Hence

MXm (s) = pm
∞∑
k=0

C (−m, k) (−q)kesk =
[

p

1− qes

]m
(13.29)

Comparison with the moment generating function for the geometric distribution shows that Xm =
Ym − m has the same distribution as the sum of m iid random variables, each geometric (p). This
suggests that the sequence is characterized by independent, successive waiting times to success. This
also shows that the expectation and variance of Xm are m times the expectation and variance for the
geometric. Thus

E [Xm] = mq/pandVar [Xm] = mq/p2 (13.30)

6. Poisson(µ)P (X = k) = e−µ µ
k

k! ∀k ≥ 0 In Example 13.2 (The Poisson (µ) distribution), above, we

establish gX (s) = eµ(s−1) and MX (s) = eµ(es−1). If {X,Y } is an independent pair, with X ∼ Poisson
(λ) and Y ∼ Poisson (µ), then Z = X + Y ∼ Poisson (λ+ µ). Follows from (T1) and product of
exponentials.

Some absolutely continuous distributions

1. Uniform on (a, b)fX (t) = 1
b−a a < t < b

MX (s) =
∫
estfX (t) dt =

1
b− a

∫ b

a

est dt =
esb − esa

s (b− a)
(13.31)
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2. Symmetric triangular(−c, , c)

fX (t) = I[−c,0) (t)
c+ t

c2
+ I[0,c] (t)

c− t
c2

(13.32)

MX (s) =
1
c2

∫ 0

−c
(c+ t) est dt+

1
c2

∫ c

0

(c− t) est dt =
ecs + e−cs − 2

c2s2
(13.33)

=
ecs − 1
cs

· 1− e−cs

cs
= MY (s)MZ (−s) = MY (s)M−Z (s) (13.34)

where MY is the moment generating function for Y ∼ uniform (0, c) and similarly for MZ. Thus,
X has the same distribution as the di�erence of two independent random variables, each uniform on
(0, c).

3. Exponential(λ)fX (t) = λe−λt, t ≥ 0
In example 1, above, we show that MX (s) = λ

λ−s .

4. Gamma(α, λ)fX (t) = 1
Γ(α)λ

αtα−1e−λt t ≥ 0

MX (s) =
λα

Γ (α)

∫ ∞
0

tα−1e−(λ−s)t dt =
[

λ

λ− s

]α
(13.35)

For α = n, a positive integer,

MX (s) =
[

λ

λ− s

]n
(13.36)

which shows that in this case X has the distribution of the sum of n independent random variables
each exponential (λ).

5. Normal
(
µ, σ2

)
.

• The standardized normal, Z ∼ N (0, 1)

MZ (s) =
1√
2π

∫ ∞
−∞

este−t
2/2 dt (13.37)

Now st− t2

2 = s2

2 −
1
2 (t− s)2

so that

MZ (s) = es
2/2 1√

2π

∫ ∞
−∞

e−(t−s)2/2 dt = es
2/2 (13.38)

since the integrand (including the constant 1/
√

2π) is the density for N (s, 1).
• X = σZ + µ implies by property (T1)

MX (s) = esµeσ
2s2/2 = exp

(
σ2s2

2
+ sµ

)
(13.39)

Example 13.3: A�ne combination of independent normal random variables
Suppose {X, Y } is an independent pair with X ∼ N

(
µX , σ

2
X

)
and Y ∼ N

(
µY , σ

2
Y

)
. Let Z =

aX + bY + c. Then Z is normal, for by properties of expectation and variance

µZ = aµX + bµY + c and σ2
Z = a2σ2

X + b2σ2
Y (13.40)

and by the operational properties for the moment generating function

MZ (s) = escMX (as)MY (bs) = exp

((
a2σ2

X + b2σ2
Y

)
s2

2
+ s (aµX + bµY + c)

)
(13.41)
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= exp

(
σ2
Zs

2

2
+ sµZ

)
(13.42)

The form of MZ shows that Z is normally distributed.

Moment generating function and simple random variables
Suppose X =

∑n
i=1 tiIAi in canonical form. That is, Ai is the event {X = ti} for each of the distinct

values in the range of X, with pi = P (Ai) = P (X = ti). Then the moment generating function for X is

MX (s) =
n∑
i=1

pie
sti (13.43)

The moment generating function MX is thus related directly and simply to the distribution for random
variable X.

Consider the problem of determining the sum of an independent pair {X,Y } of simple random variables.
The moment generating function for the sum is the product of the moment generating functions. Now if
Y =

∑m
j=1 ujIBj , with P (Y = uj) = πj , we have

MX (s)MY (s) =

(
n∑
i=1

pie
sti

) m∑
j=1

πje
suj

 =
∑
i,j

piπje
s(ti+uj) (13.44)

The various values are sums ti + uj of pairs (ti, uj) of values. Each of these sums has probability piπj
for the values corresponding to ti, uj . Since more than one pair sum may have the same value, we need to
sort the values, consolidate like values and add the probabilties for like values to achieve the distribution
for the sum. We have an m-function mgsum for achieving this directly. It produces the pair-products for
the probabilities and the pair-sums for the values, then performs a csort operation. Although not directly
dependent upon the moment generating function analysis, it produces the same result as that produced by
multiplying moment generating functions.

Example 13.4: Distribution for a sum of independent simple random variables
Suppose the pair {X, Y } is independent with distributions

X = [1 3 5 7] Y = [2 3 4] PX = [0.2 0.4 0.3 0.1] PY = [0.3 0.5 0.2] (13.45)

Determine the distribution for Z = X + Y .

X = [1 3 5 7];

Y = 2:4;

PX = 0.1*[2 4 3 1];

PY = 0.1*[3 5 2];

[Z,PZ] = mgsum(X,Y,PX,PY);

disp([Z;PZ]')

3.0000 0.0600

4.0000 0.1000

5.0000 0.1600

6.0000 0.2000

7.0000 0.1700

8.0000 0.1500

9.0000 0.0900

10.0000 0.0500

11.0000 0.0200
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This could, of course, have been achieved by using icalc and csort, which has the advantage that other
functions of X and Y may be handled. Also, since the random variables are nonnegative, integer-valued,
the MATLAB convolution function may be used (see Example 13.7 (Sum of independent simple random
variables)). By repeated use of the function mgsum, we may obtain the distribution for the sum of more
than two simple random variables. The m-functions mgsum3 and mgsum4 utilize this strategy.

The techniques for simple random variables may be used with the simple approximations to absolutely
continuous random variables.

Example 13.5: Di�erence of uniform distribution
The moment generating functions for the uniform and the symmetric triangular show that the latter
appears naturally as the di�erence of two uniformly distributed random variables. We consider X
and Y iid, uniform on [0,1].

tappr

Enter matrix [a b] of x-range endpoints [0 1]

Enter number of x approximation points 200

Enter density as a function of t t<=1
Use row matrices X and PX as in the simple case

[Z,PZ] = mgsum(X,-X,PX,PX);

plot(Z,PZ/d) % Divide by d to recover f(t)

% plotting details --- see Figure~13.1

Figure 13.1: Density for the di�erence of an independent pair, uniform (0,1).

The generating function
The form of the generating function for a nonnegative, integer-valued random variable exhibits a number

of important properties.

X =
∞∑
k=0

kIAi (canonical form) pk = P (Ak) = P (X = k) gX (s) =
∞∑
k=0

skpk (13.46)
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1. As a power series in s with nonnegative coe�cients whose partial sums converge to one, the series
converges at least for |s| ≤ 1.

2. The coe�cients of the power series display the distribution: for value k the probability pk = P (X = k)
is the coe�cient of sk.

3. The power series expansion about the origin of an analytic function is unique. If the generating function
is known in closed form, the unique power series expansion about the origin determines the distribution.
If the power series converges to a known closed form, that form characterizes the distribution,

4. For a simple random variable (i.e., pk = 0 for k > n), gX is a polynomial.

Example 13.6: The Poisson distribution
In Example 13.2 (The Poisson (µ) distribution), above, we establish the generating function for
X ∼ Poisson (µ) from the distribution. Suppose, however, we simply encounter the generating
function

gX (s) = em(s−1) = e−mems (13.47)

From the known power series for the exponential, we get

gX (s) = e−m
∞∑
k=0

(ms)k

k!
= e−m

∞∑
k=0

sk
mk

k!
(13.48)

We conclude that

P (X = k) = e−m
mk

k!
, 0 ≤ k (13.49)

which is the Poisson distribution with parameter µ = m.

For simple, nonnegative, integer-valued random variables, the generating functions are polynomials. Because
of the product rule (T2) ("(T2)", p. 387), the problem of determining the distribution for the sum of
independent random variables may be handled by the process of multiplying polynomials. This may be done
quickly and easily with the MATLAB convolution function.

Example 13.7: Sum of independent simple random variables
Suppose the pair {X, Y } is independent, with

gX (s) =
1
10
(
2 + 3s+ 3s2 + 2s5

)
gY (s) =

1
10
(
2s+ 4s2 + 4s3

)
(13.50)

In the MATLAB function convolution, all powers of s must be accounted for by including zeros
for the missing powers.

gx = 0.1*[2 3 3 0 0 2]; % Zeros for missing powers 3, 4

gy = 0.1*[0 2 4 4]; % Zero for missing power 0

gz = conv(gx,gy);

a = [' Z PZ'];

b = [0:8;gz]';

disp(a)

Z PZ % Distribution for Z = X + Y

disp(b)

0 0

1.0000 0.0400

2.0000 0.1400

3.0000 0.2600

4.0000 0.2400

5.0000 0.1200
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6.0000 0.0400

7.0000 0.0800

8.0000 0.0800

If mgsum were used, it would not be necessary to be concerned about missing powers and the
corresponding zero coe�cients.

13.1.2 Integral transforms

We consider brie�y the relationship of the moment generating function and the characteristic function with
well known integral transforms (hence the name of this chapter).

Moment generating function and the Laplace transform
When we examine the integral forms of the moment generating function, we see that they represent forms

of the Laplace transform, widely used in engineering and applied mathematics. Suppose FX is a probability
distribution function with FX (−∞) = 0. The bilateral Laplace transform for FX is given by∫ ∞

−∞
e−stFX (t) dt (13.51)

The Laplace-Stieltjes transform for FX is ∫ ∞
−∞

e−stFX (dt) (13.52)

Thus, if MX is the moment generating function for X, then MX (−s) is the Laplace-Stieltjes transform for
X (or, equivalently, for FX).

The theory of Laplace-Stieltjes transforms shows that under conditions su�ciently general to include all
practical distribution functions

MX (−s) =
∫ ∞
−∞

e−stFX (dt) = s

∫ ∞
−∞

e−stFX (t) dt (13.53)

Hence

1
s
MX (−s) =

∫ ∞
−∞

e−stFX (t) dt (13.54)

The right hand expression is the bilateral Laplace transform of FX. We may use tables of Laplace transforms
to recover FX when MX is known. This is particularly useful when the random variable X is nonnegative,
so that FX (t) = 0 for t < 0.

If X is absolutely continuous, then

MX (−s) =
∫ ∞
−∞

e−stfX (t) dt (13.55)

In this case, MX (−s) is the bilateral Laplace transform of fX. For nonnegative random variable X, we may
use ordinary tables of the Laplace transform to recover fX.

Example 13.8: Use of Laplace transform
Suppose nonnegative X has moment generating function

MX (s) =
1

(1− s)
(13.56)
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We know that this is the moment generating function for the exponential (1) distribution. Now,

1
s
MX (−s) =

1
s (1 + s)

=
1
s
− 1

1 + s
(13.57)

From a table of Laplace transforms, we �nd 1/s is the transform for the constant 1 (for t ≥ 0) and
1/ (1 + s) is the transform for e−t, t ≥ 0, so that FX (t) = 1− e−tt ≥ 0, as expected.

Example 13.9: Laplace transform and the density
Suppose the moment generating function for a nonnegative random variable is

MX (s) =
[

λ

λ− s

]α
(13.58)

From a table of Laplace transforms, we �nd that for α > 0,

Γ (α)
(s− a)α

is the Laplace transform of tα−1eat t ≥ 0 (13.59)

If we put a = −λ, we �nd after some algebraic manipulations

fX (t) =
λαtα−1e−λt

Γ (α)
, t ≥ 0 (13.60)

Thus, X ∼ gamma (α, λ), in keeping with the determination, above, of the moment generating
function for that distribution.

The characteristic function
Since this function di�ers from the moment generating function by the interchange of parameter s and

iu, where i is the imaginary unit, i2 = −1, the integral expressions make that change of parameter. The
result is that Laplace transforms become Fourier transforms. The theoretical and applied literature is even
more extensive for the characteristic function.

Not only do we have the operational properties (T1) ("(T1)", p. 387) and (T2) ("(T2)", p. 387) and
the result on moments as derivatives at the origin, but there is an important expansion for the characteristic
function.

An expansion theorem
If E [|X|n] <∞, then

φ(k) (0) = ikE
[
Xk
]
, for 0 ≤ k ≤ n and φ (u) =

n∑
k=0

(iu)k

k!
E
[
Xk
]

+ o (un) as u→ 0 (13.61)

We note one limit theorem which has very important consequences.
A fundamental limit theorem
Suppose {Fn : 1 ≤ n} is a sequence of probability distribution functions and {φn : 1 ≤ n} is the

corresponding sequence of characteristic functions.

1. If F is a distribution function such that Fn (t)→ F (t) at every point of continuity for F, and φ is the
characteristic function for F, then

φn (u)→ φ (u) ∀ u (13.62)

2. If φn (u)→ φ (u) for all u and φ is continuous at 0, then φ is the characteristic function for distribution
function F such that

Fn (t)→ F (t) at each point of continuity of F (13.63)

� �
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13.2 Convergence and the central Limit Theorem2

13.2.1 The Central Limit Theorem

The central limit theorem (CLT) asserts that if random variable X is the sum of a large class of independent
random variables, each with reasonable distributions, then X is approximately normally distributed. This
celebrated theorem has been the object of extensive theoretical research directed toward the discovery of the
most general conditions under which it is valid. On the other hand, this theorem serves as the basis of an
extraordinary amount of applied work. In the statistics of large samples, the sample average is a constant
times the sum of the random variables in the sampling process . Thus, for large samples, the sample average
is approximately normal�whether or not the population distribution is normal. In much of the theory of
errors of measurement, the observed error is the sum of a large number of independent random quantities
which contribute additively to the result. Similarly, in the theory of noise, the noise signal is the sum of
a large number of random components, independently produced. In such situations, the assumption of a
normal population distribution is frequently quite appropriate.

We consider a form of the CLT under hypotheses which are reasonable assumptions in many practical
situations. We sketch a proof of this version of the CLT, known as the Lindeberg-Lévy theorem, which utilizes
the limit theorem on characteristic functions, above, along with certain elementary facts from analysis. It
illustrates the kind of argument used in more sophisticated proofs required for more general cases.

Consider an independent sequence {Xn : 1 ≤ n} of random variables. Form the sequence of partial sums

Sn =
n∑
i=1

Xi ∀ n ≥ 1 with E [Sn] =
n∑
i=1

E [Xi] and Var [Sn] =
n∑
i=1

Var [Xi] (13.64)

Let S∗n be the standardized sum and let Fn be the distribution function for S∗n. The CLT asserts that under
appropriate conditions, Fn (t) → Φ (t) as n → ∞ for all t. We sketch a proof of the theorem under the
condition the Xi form an iid class.

Central Limit Theorem (Lindeberg-Lévy form)
If {Xn : 1 ≤ n} is iid, with

E [Xi] = µ, Var [Xi] = σ2, and S∗n =
Sn − nµ
σ
√
n

(13.65)

then

Fn (t)→ Φ (t) as n→∞, for all t (13.66)

IDEAS OF A PROOF
There is no loss of generality in assuming µ = 0. Let φ be the common characteristic function for the Xi,

and for each n let φn be the characteristic function for S∗n. We have

φ (t) = E
[
eitX

]
and φn (t) = E

[
eitS

∗
n

]
= φn

(
t/σ
√
n
)

(13.67)

Using the power series expansion of φ about the origin noted above, we have

φ (t) = 1− σ2t2

2
+ β (t) where β (t) = o

(
t2
)

as t→ 0 (13.68)

This implies

|φ
(
t/σ
√
n
)
−
(
1− t2/2n

)
| = |β

(
t/σ
√
n
)
| = o

(
t2/σ2n

)
(13.69)

so that

n|φ
(
t/σ
√
n
)
−
(
1− t2/2n

)
| → 0 as n→∞ (13.70)

2This content is available online at <http://cnx.org/content/m23475/1.6/>.
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A standard lemma of analysis ensures

|φn
(
t/σ
√
n
)
−
(
1− t2/2n

)n| ≤ n|φ (t/σ√n)− (1− t2/2n) | → 0 as n→∞ (13.71)

It is a well known property of the exponential that(
1− t2

2n

)n
→ e−t

2/2 as n→∞ (13.72)

so that

φ
(
t/σ
√
n
)
→ e−t

2/2 as n→∞ for all t (13.73)

By the convergence theorem on characteristic functions, above, Fn (t)→ Φ (t).
� �
The theorem says that the distribution functions for sums of increasing numbers of the Xi converge to

the normal distribution function, but it does not tell how fast. It is instructive to consider some examples,
which are easily worked out with the aid of our m-functions.

Demonstration of the central limit theorem
Discrete examples
We �rst examine the gaussian approximation in two cases. We take the sum of �ve iid simple random

variables in each case. The �rst variable has six distinct values; the second has only three. The discrete
character of the sum is more evident in the second case. Here we use not only the gaussian approximation,
but the gaussian approximation shifted one half unit (the so called continuity correction for integer-values
random variables). The �t is remarkably good in either case with only �ve terms.

A principal tool is the m-function diidsum (sum of discrete iid random variables). It uses a designated
number of iterations of mgsum.

Example 13.10: First random variable

X = [-3.2 -1.05 2.1 4.6 5.3 7.2];

PX = 0.1*[2 2 1 3 1 1];

EX = X*PX'

EX = 1.9900

VX = dot(X.^2,PX) - EX^2

VX = 13.0904

[x,px] = diidsum(X,PX,5); % Distribution for the sum of 5 iid rv

F = cumsum(px); % Distribution function for the sum

stairs(x,F) % Stair step plot

hold on

plot(x,gaussian(5*EX,5*VX,x),'-.') % Plot of gaussian distribution function

% Plotting details (see Figure~13.2)
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Figure 13.2: Distribution for the sum of �ve iid random variables.

Example 13.11: Second random variable

X = 1:3;

PX = [0.3 0.5 0.2];

EX = X*PX'

EX = 1.9000

EX2 = X.^2*PX'

EX2 = 4.1000

VX = EX2 - EX^2

VX = 0.4900

[x,px] = diidsum(X,PX,5); % Distribution for the sum of 5 iid rv

F = cumsum(px); % Distribution function for the sum

stairs(x,F) % Stair step plot

hold on

plot(x,gaussian(5*EX,5*VX,x),'-.') % Plot of gaussian distribution function

plot(x,gaussian(5*EX,5*VX,x+0.5),'o') % Plot with continuity correction

% Plotting details (see Figure~13.3)
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Figure 13.3: Distribution for the sum of �ve iid random variables.

As another example, we take the sum of twenty one iid simple random variables with integer values. We
examine only part of the distribution function where most of the probability is concentrated. This e�ectively
enlarges the x-scale, so that the nature of the approximation is more readily apparent.

Example 13.12: Sum of twenty-one iid random variables

X = [0 1 3 5 6];

PX = 0.1*[1 2 3 2 2];

EX = dot(X,PX)

EX = 3.3000

VX = dot(X.^2,PX) - EX^2

VX = 4.2100

[x,px] = diidsum(X,PX,21);

F = cumsum(px);

FG = gaussian(21*EX,21*VX,x);

stairs(40:90,F(40:90))

hold on

plot(40:90,FG(40:90))

% Plotting details (see Figure~13.4)
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Figure 13.4: Distribution for the sum of twenty one iid random variables.

Absolutely continuous examples
By use of the discrete approximation, we may get approximations to the sums of absolutely continuous

random variables. The results on discrete variables indicate that the more values the more quickly the
conversion seems to occur. In our next example, we start with a random variable uniform on (0, 1).

Example 13.13: Sum of three iid, uniform random variables.
Suppose X ∼ uniform (0, 1). Then E [X] = 0.5 and Var [X] = 1/12.

tappr

Enter matrix [a b] of x-range endpoints [0 1]

Enter number of x approximation points 100

Enter density as a function of t t<=1
Use row matrices X and PX as in the simple case

EX = 0.5;

VX = 1/12;

[z,pz] = diidsum(X,PX,3);

F = cumsum(pz);

FG = gaussian(3*EX,3*VX,z);

length(z)

ans = 298

a = 1:5:296; % Plot every fifth point

plot(z(a),F(a),z(a),FG(a),'o')

% Plotting details (see Figure~13.5)
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Figure 13.5: Distribution for the sum of three iid uniform random variables.

For the sum of only three random variables, the �t is remarkably good. This is not entirely surprising, since
the sum of two gives a symmetric triangular distribution on (0, 2). Other distributions may take many more
terms to get a good �t. Consider the following example.

Example 13.14: Sum of eight iid random variables
Suppose the density is one on the intervals (−1,−0.5) and (0.5, 1). Although the density is sym-
metric, it has two separate regions of probability. From symmetry, E [X] = 0. Calculations show
Var [X] = E

[
X2
]

= 7/12. The MATLAB computations are:

tappr

Enter matrix [a b] of x-range endpoints [-1 1]

Enter number of x approximation points 200

Enter density as a function of t (t<=-0.5)|(t>=0.5)
Use row matrices X and PX as in the simple case

[z,pz] = diidsum(X,PX,8);

VX = 7/12;

F = cumsum(pz);

FG = gaussian(0,8*VX,z);

plot(z,F,z,FG)

% Plottting details (see Figure~13.6)
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Figure 13.6: Distribution for the sum of eight iid uniform random variables.

Although the sum of eight random variables is used, the �t to the gaussian is not as good as that for the
sum of three in Example 4 (Example 13.13: Sum of three iid, uniform random variables.). In either case,
the convergence is remarkable fast�only a few terms are needed for good approximation.

13.2.2 Convergence phenomena in probability theory

The central limit theorem exhibits one of several kinds of convergence important in probability theory,
namely convergence in distribution (sometimes called weak convergence). The increasing concentration of
values of the sample average random variable An with increasing n illustrates convergence in probability.
The convergence of the sample average is a form of the so-called weak law of large numbers. For large enough
n the probability that An lies within a given distance of the population mean can be made as near one as
desired. The fact that the variance of An becomes small for large n illustrates convergence in the mean (of
order 2).

E
[
|An − µ|2

]
→ 0 as n→∞ (13.74)

In the calculus, we deal with sequences of numbers. If {an : 1 ≤ n} is a sequence of real numbers, we say
the sequence converges i� for N su�ciently large an approximates arbitrarily closely some number L for all
n ≥ N . This unique number L is called the limit of the sequence. Convergent sequences are characterized
by the fact that for large enough N, the distance |an − am| between any two terms is arbitrarily small for
all n, m ≥ N . Such a sequence is said to be fundamental (or Cauchy). To be precise, if we let ε > 0 be the
error of approximation, then the sequence is

• Convergent i� there exists a number L such that for any ε > 0 there is an N such that

|L− an| ≤ ε for all n ≥ N (13.75)

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



402 CHAPTER 13. TRANSFORM METHODS

• Fundamental i� for any ε > 0 there is an N such that

|an − am| ≤ ε for all n, m ≥ N (13.76)

As a result of the completeness of the real numbers, it is true that any fundamental sequence converges
(i.e., has a limit). And such convergence has certain desirable properties. For example the limit of a linear
combination of sequences is that linear combination of the separate limits; and limits of products are the
products of the limits.

The notion of convergent and fundamental sequences applies to sequences of real-valued functions with
a common domain. For each x in the domain, we have a sequence
{fn (x) : 1 ≤ n} of real numbers. The sequence may converge for some x and fail to converge for others.
A somewhat more restrictive condition (and often a more desirable one) for sequences of functions is

uniform convergence. Here the uniformity is over values of the argument x. In this case, for any ε > 0 there
exists an N which works for all x (or for some suitable prescribed set of x).

These concepts may be applied to a sequence of random variables, which are real-valued functions with
domain Ω and argument ω. Suppose {Xn : 1 ≤ n} is a sequence of real random variables. For each argument
ω we have a sequence {Xn (ω) : 1 ≤ n} of real numbers. It is quite possible that such a sequence converges
for some ω and diverges (fails to converge) for others. As a matter of fact, in many important cases the
sequence converges for all ω except possibly a set (event) of probability zero. In this case, we say the seqeunce
converges almost surely (abbreviated a.s.). The notion of uniform convergence also applies. In probability
theory we have the notion of almost uniform convergence. This is the case that the sequence converges
uniformly for all ω except for a set of arbitrarily small probability.

The notion of convergence in probability noted above is a quite di�erent kind of convergence. Rather
than deal with the sequence on a pointwise basis, it deals with the random variables as such. In the case
of sample average, the �closeness� to a limit is expressed in terms of the probability that the observed value
Xn (ω) should lie close the the value X (ω) of the limiting random variable. We may state this precisely as
follows:

A sequence {Xn : 1 ≤ n} converges to Xin probability, designated Xn
P→ X i� for any ε > 0,

lim
n
P (|X −Xn| > ε) = 0 (13.77)

There is a corresponding notion of a sequence fundamental in probability.
The following schematic representation may help to visualize the di�erence between almost-sure conver-

gence and convergence in probability. In setting up the basic probability model, we think in terms of �balls�
drawn from a jar or box. Instead of balls, consider for each possible outcome ω a �tape� on which there is
the sequence of values X1 (ω) , X2 (ω) , X3 (ω) , · · ·.

• If the sequence of random variable converges a.s. to a random variable X, then there is an set of
�exceptional tapes� which has zero probability. For all other tapes, Xn (ω) → X (ω). This means
that by going far enough out on any such tape, the values Xn (ω) beyond that point all lie within a
prescribed distance of the value X (ω) of the limit random variable.

• If the sequence converges in probability, the situation may be quite di�erent. A tape is selected. For
n su�ciently large, the probability is arbitrarily near one that the observed value Xn (ω) lies within a
prescribed distance of X (ω). This says nothing about the values Xm (ω) on the selected tape for any
larger m. In fact, the sequence on the selected tape may very well diverge.

It is not di�cult to construct examples for which there is convergence in probability but pointwise convergence
for no ω. It is easy to confuse these two types of convergence. The kind of convergence noted for the sample
average is convergence in probability (a �weak� law of large numbers). What is really desired in most cases
is a.s. convergence (a �strong� law of large numbers). It turns out that for a sampling process of the kind
used in simple statistics, the convergence of the sample average is almost sure (i.e., the strong law holds).
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To establish this requires much more detailed and sophisticated analysis than we are prepared to make in
this treatment.

The notion of mean convergence illustrated by the reduction of Var [An] with increasing n may be
expressed more generally and more precisely as follows. A sequence {Xn : 1 ≤ n} converges in the mean of
order p to X i�

E [|X −Xn|p]→ 0 as n→∞ designated Xn
Lp→ X; as n→∞ (13.78)

If the order p is one, we simply say the sequence converges in the mean. For p = 2, we speak of mean-square
convergence.

The introduction of a new type of convergence raises a number of questions.

1. There is the question of fundamental (or Cauchy) sequences and convergent sequences.
2. Do the various types of limits have the usual properties of limits? Is the limit of a linear combination

of sequences the linear combination of the limits? Is the limit of products the product of the limits?
3. What conditions imply the various kinds of convergence?
4. What is the relation between the various kinds of convergence?

Before sketching brie�y some of the relationships between convergence types, we consider one important
condition known as uniform integrability. According to the property (E9b) (list, p. 600) for integrals

X is integrable i� E
[
I{|Xt|>a}|Xt|

]
→ 0 as a→∞ (13.79)

Roughly speaking, to be integrable a random variable cannot be too large on too large a set. We use
this characterization of the integrability of a single random variable to de�ne the notion of the uniform
integrability of a class.

De�nition. An arbitrary class {Xt : t ∈ T} is uniformly integrable (abbreviated u.i.) with respect to
probability measure P i�

sup
t∈T

E
[
I{|Xt|>a}|Xt|

]
→ 0 as a→∞ (13.80)

This condition plays a key role in many aspects of theoretical probability.
The relationships between types of convergence are important. Sometimes only one kind can be estab-

lished. Also, it may be easier to establish one type which implies another of more immediate interest. We
simply state informally some of the important relationships. A somewhat more detailed summary is given
in PA, Chapter 17. But for a complete treatment it is necessary to consult more advanced treatments of
probability and measure.

Relationships between types of convergence for probability measures
Consider a sequence {Xn : 1 ≤ n} of random variables.

1. It converges almost surely i� it converges almost uniformly.
2. If it converges almost surely, then it converges in probability.
3. It converges in mean, order p, i� it is uniformly integrable and converges in probability.
4. If it converges in probability, then it converges in distribution (i.e. weakly).

Various chains of implication can be traced. For example

• Almost sure convergence implies convergence in probability implies convergence in distribution.
• Almost sure convergence and uniform integrability implies convergence in mean p.

We do not develop the underlying theory. While much of it could be treated with elementary ideas, a
complete treatment requires considerable development of the underlying measure theory. However, it is
important to be aware of these various types of convergence, since they are frequently utilized in advanced
treatments of applied probability and of statistics.
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13.3 Simple Random Samples and Statistics3

13.3.1 Simple Random Samples and Statistics

We formulate the notion of a (simple) random sample, which is basic to much of classical statistics. Once
formulated, we may apply probability theory to exhibit several basic ideas of statistical analysis.

We begin with the notion of a population distribution. A population may be most any collection of
individuals or entities. Associated with each member is a quantity or a feature that can be assigned a
number. The quantity varies throughout the population. The population distribution is the distribution of
that quantity among the members of the population.

If each member could be observed, the population distribution could be determined completely. However,
that is not always feasible. In order to obtain information about the population distribution, we select �at
random� a subset of the population and observe how the quantity varies over the sample. Hopefully, the
sample distribution will give a useful approximation to the population distribution.

The sampling process
We take a sample of size n, which means we select n members of the population and observe the quantity

associated with each. The selection is done in such a manner that on any trial each member is equally
likely to be selected. Also, the sampling is done in such a way that the result of any one selection does not
a�ect, and is not a�ected by, the others. It appears that we are describing a composite trial. We model the
sampling process as follows:

Let Xi, 1 ≤ i ≤ n be the random variable for the ith component trial. Then the class {Xi : 1 ≤ i ≤ n}
is iid, with each member having the population distribution.

This provides a model for sampling either from a very large population (often referred to as an in�nite
population) or sampling with replacement from a small population.

The goal is to determine as much as possible about the character of the population. Two important
parameters are the mean and the variance. We want the population mean and the population variance.
If the sample is representative of the population, then the sample mean and the sample variance should
approximate the population quantities.

• The sampling process is the iid class {Xi : 1 ≤ i ≤ n}.
• A random sample is an observation, or realization, (t1, t2, · · · , tn) of the sampling process.

The sample average and the population mean
Consider the numerical average of the values in the sample x = 1

n

∑n
i=1 ti. This is an observation of the

sample average

An =
1
n

n∑
i=1

Xi =
1
n
Sn (13.81)

The sample sum Sn and the sample average An are random variables. If another observation were made
(another sample taken), the observed value of these quantities would probably be di�erent. Now Sn and
An are functions of the random variables {Xi : 1 ≤ i ≤ n} in the sampling process. As such, they have
distributions related to the population distribution (the common distribution of the Xi). According to the
central limit theorem, for any reasonable sized sample they should be approximately normally distributed.
As the examples demonstrating the central limit theorem show, the sample size need not be large in many
cases. Now if the population mean E [X] is µ and the population varianceVar [X] is σ2, then

E [Sn] =
n∑
i=1

E [Xi] = nE [X] = nµ and Var [Sn] =
n∑
i=1

Var [Xi] = nVar [X] = nσ2 (13.82)

3This content is available online at <http://cnx.org/content/m23496/1.8/>.
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so that

E [An] =
1
n
E [Sn] = µ and Var [An] =

1
n2

Var [Sn] = σ2/n (13.83)

Herein lies the key to the usefulness of a large sample. The mean of the sample average An is the same as
the population mean, but the variance of the sample average is 1/n times the population variance. Thus,
for large enough sample, the probability is high that the observed value of the sample average will be close
to the population mean. The population standard deviation, as a measure of the variation is reduced by a
factor 1/

√
n.

Example 13.15: Sample size
Suppose a population has mean µ and variance σ2. A sample of size n is to be taken. There are
complementary questions:

1. If n is given, what is the probability the sample average lies within distance a from the
population mean?

2. What value of n is required to ensure a probability of at least p that the sample average lies
within distance a from the population mean?

SOLUTION
Suppose the sample variance is known or can be approximated reasonably. If the sample size n is

reasonably large, depending on the population distribution (as seen in the previous demonstrations),
then An is approximately N

(
µ, σ2/n

)
.

1. Sample size given, probability to be determined.

p = P (|An − µ| ≤ a) = P

(∣∣∣∣An − µσ/
√
n

∣∣∣∣ ≤ a
√
n

σ

)
= 2Φ

(
a
√
n/σ

)
− 1 (13.84)

2. Sample size to be determined, probability speci�ed.

2Φ
(
a
√
n/σ

)
− 1 ≥ p i� Φ

(
a
√
n/σ

)
≥ p+ 1

2
(13.85)

Find from a table or by use of the inverse normal function the value of x = a
√
n/σ required

to make Φ (x) at least (p+ 1) /2. Then

n ≥ σ2(x/a)2 =
(σ
a

)2

x2 (13.86)

We may use the MATLAB function norminv to calculate values of x for various p.

p = [0.8 0.9 0.95 0.98 0.99];

x = norminv(0,1,(1+p)/2);

disp([p;x;x.^2]')

0.8000 1.2816 1.6424

0.9000 1.6449 2.7055

0.9500 1.9600 3.8415

0.9800 2.3263 5.4119

0.9900 2.5758 6.6349

For p = 0.95, σ = 2, a = 0.2, n ≥ (2/0.2)23.8415 = 384.15. Use at least 385 or perhaps 400 because
of uncertainty about the actual σ2

The idea of a statistic
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As a function of the random variables in the sampling process, the sample average is an example of a
statistic.

De�nition. A statistic is a function of the class {Xi : 1 ≤ i ≤ n} which uses explicitly no unknown
parameters of the population.

Example 13.16: Statistics as functions of the sampling process
The random variable

W =
1
n

n∑
i=1

(Xi − µ)2
, where µ = E [X] (13.87)

is not a statistic, since it uses the unknown parameter µ. However, the following is a statistic.

V ∗n =
1
n

n∑
i=1

(Xi −An)2 =
1
n

n∑
i=1

X2
i − A2

n (13.88)

It would appear that V ∗n might be a reasonable estimate of the population variance. However, the following
result shows that a slight modi�cation is desirable.

Example 13.17: An estimator for the population variance
The statistic

Vn =
1

n− 1

n∑
i=1

(Xi −An)2
(13.89)

is an estimator for the population variance.
VERIFICATION
Consider the statistic

V ∗n =
1
n

n∑
i=1

(Xi −An)2 =
1
n

n∑
i=1

X2
i − A2

n (13.90)

Noting that E
[
X2
]

= σ2 + µ2, we use the last expression to show

E [V ∗n ] =
1
n
n
(
σ2 + µ2

)
−
(
σ2

n
+ µ2

)
=
n− 1
n

σ2 (13.91)

The quantity has a bias in the average. If we consider

Vn =
n

n− 1
V ∗n =

1
n− 1

n∑
i=1

(Xi −An)2
, then E [Vn] =

n

n− 1
n− 1
n

σ2 = σ2 (13.92)

The quantity Vn with 1/ (n− 1) rather than 1/n is often called the sample variance to distinguish
it from the population variance. If the set of numbers

(t1, t2, · · · , tN ) (13.93)

represent the complete set of values in a population of N members, the variance for the population
would be given by

σ2 =
1
N

N∑
i=1

t2i −

(
1
N

N∑
i=1

ti

)2

(13.94)

Here we use 1/N rather than 1/ (N − 1).
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Since the statistic Vn has mean value σ2, it seems a reasonable candidate for an estimator of the population
variance. If we ask how good is it, we need to consider its variance. As a random variable, it has a variance.
An evaluation similar to that for the mean, but more complicated in detail, shows that

Var [Vn] =
1
n

(
µ4 −

n− 3
n− 1

σ4

)
where µ4 = E

[
(X − µ)4

]
(13.95)

For large n, Var [Vn] is small, so that Vn is a good large-sample estimator for σ2.

Example 13.18: A sampling demonstration of the CLT
Consider a population random variable X ∼ uniform [-1, 1]. Then E [X] = 0 and Var [X] = 1/3.
We take 100 samples of size 100, and determine the sample sums. This gives a sample of size 100 of
the sample sum random variable S100, which has mean zero and variance 100/3. For each observed
value of the sample sum random variable, we plot the fraction of observed sums less than or equal
to that value. This yields an experimental distribution function for S100, which is compared with
the distribution function for a random variable Y ∼ N (0, 100/3).

rand('seed',0) % Seeds random number generator for later comparison

tappr % Approximation setup

Enter matrix [a b] of x-range endpoints [-1 1]

Enter number of x approximation points 100

Enter density as a function of t 0.5*(t<=1)
Use row matrices X and PX as in the simple case

qsample % Creates sample

Enter row matrix of VALUES X

Enter row matrix of PROBABILITIES PX

Sample size n = 10000 % Master sample size 10,000

Sample average ex = 0.003746

Approximate population mean E(X) = 1.561e-17

Sample variance vx = 0.3344

Approximate population variance V(X) = 0.3333

m = 100;

a = reshape(T,m,m); % Forms 100 samples of size 100

A = sum(a); % Matrix A of sample sums

[t,f] = csort(A,ones(1,m)); % Sorts A and determines cumulative

p = cumsum(f)/m; % fraction of elements <= each value

pg = gaussian(0,100/3,t); % Gaussian dbn for sample sum values

plot(t,p,'k-',t,pg,'k-.') % Comparative plot

% Plotting details (see Figure~13.7)
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Figure 13.7: The central limit theorem for sample sums.

13.4 Problems on Transform Methods4

Exercise 13.4.1 (Solution on p. 412.)

Calculate directly the generating function gX (s) for the geometric (p) distribution.
Exercise 13.4.2 (Solution on p. 412.)

Calculate directly the generating function gX (s) for the Poisson (µ) distribution.
Exercise 13.4.3 (Solution on p. 412.)

A projection bulb has life (in hours) represented by X ∼ exponential (1/50). The unit will be
replaced immediately upon failure or at 60 hours, whichever comes �rst. Determine the moment
generating function for the time Y to replacement.

Exercise 13.4.4 (Solution on p. 412.)

Simple random variable X has distribution

X = [−3 − 2 0 1 4] PX = [0.15 0.20 0.30 0.25 0.10] (13.96)

a. Determine the moment generating function for X.
b. Show by direct calculation the M '

X (0) = E [X] and M ''
X (0) = E

[
X2
]
.

4This content is available online at <http://cnx.org/content/m24424/1.6/>.
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Exercise 13.4.5 (Solution on p. 412.)

Use the moment generating function to obtain the variances for the following distributions
Exponential (λ) Gamma (α, λ) Normal

(
µ, σ2

)
Exercise 13.4.6 (Solution on p. 413.)

The pair {X,Y } is iid with common moment generating function λ3

(λ−s)3 . Determine the moment

generating function for Z = 2X − 4Y + 3.
Exercise 13.4.7 (Solution on p. 413.)

The pair {X,Y } is iid with common moment generating functionMX (s) =(0.6 + 0.4es). Determine
the moment generating function for Z = 5X + 2Y .
Exercise 13.4.8 (Solution on p. 413.)

Use the moment generating function for the symmetric triangular distribution (list, p. 388) on
(−c, c) as derived
in the section "Three Basic Transforms".

a. Obtain an expression for the symmetric triangular distribution on (a, b) for any a < b.
b. Use the result of part (a) to show that the sum of two independent random variables uniform

on (a, b) has symmetric triangular distribution on (2a, 2b).

Exercise 13.4.9 (Solution on p. 413.)

Random variable X has moment generating function p2

(1−qes)2 .

a. Use derivatives to determine E [X] and Var [X].
b. Recognize the distribution from the form and compare E [X] and Var [X] with the result of

part (a).

Exercise 13.4.10 (Solution on p. 413.)

The pair {X,Y } is independent. X ∼ Poisson (4) and Y ∼ geometric (0.3). Determine the
generating function gZ for Z = 3X + 2Y .
Exercise 13.4.11 (Solution on p. 413.)

Random variable X has moment generating function

MX (s) =
1

1− 3s
· exp

(
16s2/2 + 3s

)
(13.97)

By recognizing forms and using rules of combinations, determine E [X] and Var [X].
Exercise 13.4.12 (Solution on p. 413.)

Random variable X has moment generating function

MX (s) =
exp (3 (es − 1))

1− 5s
· exp

(
16s2/2 + 3s

)
(13.98)

By recognizing forms and using rules of combinations, determine E [X] and Var [X].
Exercise 13.4.13 (Solution on p. 414.)

Suppose the class {A, B, C} of events is independent, with respective probabilities 0.3, 0.5, 0.2.
Consider

X = −3IA + 2IB + 4IC (13.99)

a. Determine the moment generating functions for IA, IB , IC and use properties of moment
generating functions to determine the moment generating function for X.

b. Use the moment generating function to determine the distribution for X.
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c. Use canonic to determine the distribution. Compare with result (b).
d. Use distributions for the separate terms; determine the distribution for the sum with mgsum3.

Compare with result (b).

Exercise 13.4.14 (Solution on p. 414.)

Suppose the pair {X,Y } is independent, with both X and Y binomial. Use generating functions
to show under what condition, if any, X + Y is binomial.

Exercise 13.4.15 (Solution on p. 414.)

Suppose the pair {X,Y } is independent, with both X and Y Poisson.

a. Use generating functions to show under what condition X + Y is Poisson.
b. What about X − Y ? Justify your answer.

Exercise 13.4.16 (Solution on p. 414.)

Suppose the pair {X,Y } is independent, Y is nonnegative integer-valued, X is Poisson and X +Y
is Poisson. Use the generating functions to show that Y is Poisson.

Exercise 13.4.17 (Solution on p. 414.)

Suppose the pair {X,Y } is iid, binomial (6, 0.51). By the result of Exercise 13.4.14
X + Y is binomial. Use mgsum to obtain the distribution for Z = 2X + 4Y . Does Z have the

binomial distribution? Is the result surprising? Examine the �rst few possible values for Z. Write
the generating function for Z ; does it have the form for the binomial distribution?

Exercise 13.4.18 (Solution on p. 415.)

Suppose the pair {X,Y } is independent, with X ∼ binomial (5, 0.33) and
Y ∼ binomial (7, 0.47).
Let G = g (X) = 3X2 − 2X and H = h (Y ) = 2Y 2 + Y + 3.

a. Use the mgsum to obtain the distribution for G+H.
b. Use icalc and csort to obtain the distribution for G+H and compare with the result of part

(a).

Exercise 13.4.19 (Solution on p. 415.)

Suppose the pair {X,Y } is independent, with X ∼ binomial (8, 0.39) and
Y ∼ uniform on {−1.3, − 0.5, 1.3, 2.2, 3.5}. Let

U = 3X2 − 2X + 1 and V = Y 3 + 2Y − 3 (13.100)

a. Use mgsum to obtain the distribution for U + V .
b. Use icalc and csort to obtain the distribution for U + V and compare with the result of part

(a).

Exercise 13.4.20 (Solution on p. 416.)

If X is a nonnegative integer-valued random variable, express the generating function as a power
series.

a. Show that the kth derivative at s = 1 is

g
(k)
X (1) = E [X (X − 1) (X − 2) · · · (X − k + 1)] (13.101)

b. Use this to show the Var [X] = g''X (1) + g'X (1)−
[
g'X (1)

]2
.
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Exercise 13.4.21 (Solution on p. 416.)

Let MX (·) be the moment generating function for X.

a. Show that Var [X] is the second derivative of e−sµMX (s) evaluated at s = 0.
b. Use this fact to show that if X ∼ N

(
µ, σ2

)
, then Var [X] = σ2.

Exercise 13.4.22 (Solution on p. 416.)

Use derivatives of MXm (s) to obtain the mean and variance of the negative binomial (m, p)
distribution.

Exercise 13.4.23 (Solution on p. 416.)

Use moment generating functions to show that variances add for the sum or di�erence of indepen-
dent random variables.

Exercise 13.4.24 (Solution on p. 416.)

The pair {X,Y } is iid N (3, 5). Use the moment generating function to show that Z = 3X−2Y +3
is is normal (see Example 3 (Example 13.3: A�ne combination of independent normal random
variables) from "Transform Methods" for general result).

Exercise 13.4.25 (Solution on p. 417.)

Use the central limit theorem to show that for large enough sample size (usually 20 or more), the
sample average

An =
1
n

n∑
i=1

Xi (13.102)

is approximately N
(
µ, σ2/n

)
for any reasonable population distribution having mean value µ and

variance σ2.

Exercise 13.4.26 (Solution on p. 417.)

A population has standard deviation approximately three. It is desired to determine the sample
size n needed to ensure that with probability 0.95 the sample average will be within 0.5 of the mean
value.

a. Use the Chebyshev inequality to estimate the needed sample size.
b. Use the normal approximation to estimate n (see Example 1 (Example 13.15: Sample size)

from "Simple Random Samples and Statistics").
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Solutions to Exercises in Chapter 13

Solution to Exercise 13.4.1 (p. 408)

gX (s) = E
[
sX
]

=
∞∑
k=0

pks
k = p

∞∑
k=0

qksk =
p

1− qs
(geometric series) (13.103)

Solution to Exercise 13.4.2 (p. 408)

gX (s) = E
[
sX
]

=
∞∑
k=0

pks
k = e−µ

∞∑
k=0

µksk

k!
= e−µeµs = eµ(s−1) (13.104)

Solution to Exercise 13.4.3 (p. 408)

Y = I[0,a] (X)X + I(a,∞) (X) a esY = I[0,a] (X) esX + I(a,∞) (X) eas (13.105)

MY (s) =
∫ a

0

estλe−λtdt+ esa
∫ ∞
a

λe−λt dt (13.106)

=
λ

λ− s

[
1− e−(λ−s)a

]
+ e−(λ−s)a (13.107)

Solution to Exercise 13.4.4 (p. 408)

MX (s) = 0.15e−3s + 0.20e−2s + 0.30 + 0.25es + 0.10e4s (13.108)

M '
X (s) = −3 · 0.15e−3s − 2 · 0.20e−2s + 0 + 0.25es + 4 · 0.10e4s (13.109)

M ''
X (s) = (−3)2 · 0.15e−3s + (−2)2 · 0.20e−2s + 0 + 0.25es + 42 · 0.10e4s (13.110)

Setting s = 0 and using e0 = 1 give the desired results.
Solution to Exercise 13.4.5 (p. 409)

a. Exponential:

MX (s) =
λ

λ− s
M '
X (s) =

λ

(λ− s)2 M ''
X (s) =

2λ
(λ− s)3 (13.111)

E [X] =
λ

λ2
=

1
λ

E
[
X2
]

=
2λ
λ3

=
2
λ2

Var [X] =
2
λ2
−
(

1
λ

)2

=
1
λ2

(13.112)

b. Gamma (α, λ):

MX (s) =
(

λ

λ− s

)α
M '
X (s) = α

(
λ

λ− s

)α−1
λ

(λ− s)2 = α

(
λ

λ− s

)α 1
λ− s

(13.113)

M ''
X (s) = α2

(
λ

λ− s

)α 1
λ− s

1
λ− s

+ α

(
λ

λ− s

)α 1
(λ− s)2 (13.114)

E [X] =
α

λ
E
[
X2
]

=
α2 + α

λ2
Var [X] =

α

λ2
(13.115)
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c. Normal(µ, σ):

MX (s) = exp

(
σ2s2

2
+ µs

)
M '
X (s) = MX (s) ·

(
σ2s+ µ

)
(13.116)

M ''
X (s) = MX (s) ·

(
σ2s+ µ

)2
+MX (s)σ2 (13.117)

E [X] = µ E
[
X2
]

= µ2 + σ2 Var [X] = σ2 (13.118)

Solution to Exercise 13.4.6 (p. 409)

MZ (s) = e3s

(
λ

λ− 2s

)3(
λ

λ+ 4s

)3

(13.119)

Solution to Exercise 13.4.7 (p. 409)

MZ (s) =
(
0.6 + 0.4e5s

) (
0.6 + 0.4e2s

)
(13.120)

Solution to Exercise 13.4.8 (p. 409)
Let m = (a+ b) /2 and c = (b− a) /2. If Y ∼ symetric triangular on (−c, c), then X = Y +m is symmetric
triangular on (m− c,m+ c) = (a, b) and

MX (s) = emsMY (s) =
ecs + e−cs − 2

c2s2
ems =

e(m+c)s + e(m−c)s − 2ems

c2s2
=
ebs + eas − 2e

a+b
2 s(

b−a
2

)2
s2

(13.121)

MX+Y (s) =
[
esb − esa

s (b− a)

]2

=
es2b + es2a − 2es(b+a)

s2(b− a)2 (13.122)

Solution to Exercise 13.4.9 (p. 409)[
p2(1− qes)−2

]'
=

2p2qes

(1− qes)3 so that E [X] = 2q/p (13.123)

[
p2(1− qes)−2

]''
=

6p2q2es

(1− qes)4 +
2p2qes

(1− qes)3 so that E
[
X2
]

=
6q2

p2
+

2q
p

(13.124)

Var [X] =
2q2

p2
+

2q
p

=
2
(
q2 + pq

)
p2

=
2q
p2

(13.125)

X ∼ negative binomial (2, p), which has E [X] = 2q/p and Var [X] = 2q/p2.
Solution to Exercise 13.4.10 (p. 409)

gZ (s) = gX
(
s3
)
gY
(
s2
)

= e4(s3−1) · 0.3
1− qs2

(13.126)

Solution to Exercise 13.4.11 (p. 409)

X = X1 +X2 with X1 ∼ exponential(1/3) X2 ∼ N (3, 16) (13.127)

E [X] = 3 + 3 = 6 Var [X] = 9 + 16 = 25 (13.128)

Solution to Exercise 13.4.12 (p. 409)

X = X1 +X2 +X3, with X1 ∼ Poisson (3) , X2 ∼ exponential (1/5), X3 ∼ N (3, 16) (13.129)

E [X] = 3 + 5 + 3 = 11 Var [X] = 3 + 25 + 16 = 44 (13.130)
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Solution to Exercise 13.4.13 (p. 409)

MX (s) =
(
0.7 + 0.3e−3s

) (
0.5 + 0.5e2s

) (
0.8 + 0.2e4s

)
= (13.131)

0.12e−3s + 0.12e−s + 0.28 + 0.03es + 0.28e2s + 0.03e3s + 0.07e4s + 0.07e6s (13.132)

The distribution is

X = [−3 − 1 0 1 2 3 4 6] PX = [0.12 0.12 0.28 0.03 0.28 0.03 0.07 0.07] (13.133)

c = [-3 2 4 0];

P = 0.1*[3 5 2];

canonic

Enter row vector of coefficients c

Enter row vector of minterm probabilities minprob(P)

Use row matrices X and PX for calculations

Call for XDBN to view the distribution

P1 = [0.7 0.3];

P2 = [0.5 0.5];

P3 = [0.8 0.2];

X1 = [0 -3];

X2 = [0 2];

X3 = [0 4];

[x,px] = mgsum3(X1,X2,X3,P1,P2,P3);

disp([X;PX;x;px]')

-3.0000 0.1200 -3.0000 0.1200

-1.0000 0.1200 -1.0000 0.1200

0 0.2800 0 0.2800

1.0000 0.0300 1.0000 0.0300

2.0000 0.2800 2.0000 0.2800

3.0000 0.0300 3.0000 0.0300

4.0000 0.0700 4.0000 0.0700

6.0000 0.0700 6.0000 0.0700

Solution to Exercise 13.4.14 (p. 410)
Binomial i� both have same p, as shown below.

gX+Y (s) = (q1 + p1s)
n(q2 + p2s)

m = (q + ps)n+m
i� p1 = p2 (13.134)

Solution to Exercise 13.4.15 (p. 410)
Always Poisson, as the argument below shows.

gX+Y (s) = eµ(s−1)eν(s−1) = e(µ+ν)(s−1) (13.135)

However, Y −X could have negative values.
Solution to Exercise 13.4.16 (p. 410)
E [X + Y ] = µ + ν, where ν = E [Y ] > 0. gX (s) = eµ(s−1) and gX+Y (s) = gX (s) gY (s) = e(µ+ν)(s−1).
Division by gX (s) gives gY (s) = eν(s−1).
Solution to Exercise 13.4.17 (p. 410)
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x = 0:6;

px = ibinom(6,0.51,x);

[Z,PZ] = mgsum(2*x,4*x,px,px);

disp([Z(1:5);PZ(1:5)]')

0 0.0002 % Cannot be binomial, since odd values missing

2.0000 0.0012

4.0000 0.0043

6.0000 0.0118

8.0000 0.0259

- - - - - - - -

gX (s) = gY (s) = (0.49 + 0.51s)6
gZ (s) =

(
0.49 + 0.51s2

)6(
0.49 + 0.51s4

)6
(13.136)

Solution to Exercise 13.4.18 (p. 410)

X = 0:5;

Y = 0:7;

PX = ibinom(5,0.33,X);

PY = ibinom(7,0.47,Y);

G = 3*X.^2 - 2*X;

H = 2*Y.^2 + Y + 3;

[Z,PZ] = mgsum(G,H,PX,PY);

icalc

Enter row matrix of X-values X

Enter row matrix of Y-values Y

Enter X probabilities PX

Enter Y probabilities PY

Use array operations on matrices X, Y, PX, PY, t, u, and P

M = 3*t.^2 - 2*t + 2*u.^2 + u + 3;

[z,pz] = csort(M,P);

e = max(abs(pz - PZ)) % Comparison of p values

e = 0

Solution to Exercise 13.4.19 (p. 410)

X = 0:8;

Y = [-1.3 -0.5 1.3 2.2 3.5];

PX = ibinom(8,0.39,X);

PY = (1/5)*ones(1,5);

U = 3*X.^2 - 2*X + 1;

V = Y.^3 + 2*Y - 3;

[Z,PZ] = mgsum(U,V,PX,PY);

icalc

Enter row matrix of X-values X

Enter row matrix of Y-values Y

Enter X probabilities PX

Enter Y probabilities PY

Use array operations on matrices X, Y, PX, PY, t, u, and P

M = 3*t.^2 - 2*t + 1 + u.^3 + 2*u - 3;
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[z,pz] = csort(M,P);

e = max(abs(pz - PZ))

e = 0

Solution to Exercise 13.4.20 (p. 410)
Since power series may be di�erentiated term by term

g
(n)
X (s) =

∞∑
k=n

k (k − 1) · · · (k − n+ 1) pksk−n so that (13.137)

g
(n)
X (1) =

∞∑
k=n

k (k − 1) · · · (k − n+ 1) pk = E [X (X − 1) · · · (X − n+ 1)] (13.138)

Var [X] = E
[
X2
]
− E2 [X] = E [X (X − 1)] + E [X]− E2 [X] = g''X (1) + g'X (1)−

[
g'X (1)

]2
(13.139)

Solution to Exercise 13.4.21 (p. 411)

f (s) = e−sµMX (s) f '' (s) = e−sµ
[
−µM '

X (s) + µ2MX (s) +M ''
X (s)− µM '

X (s)
]

(13.140)

Setting s = 0 and using the result on moments gives

f '' (0) = −µ2 + µ2 + E
[
X2
]
− µ2 = Var [X] (13.141)

Solution to Exercise 13.4.22 (p. 411)
To simplify writing use f (s) for MX (S).

f (s) =
pm

(1− qes)m
f ' (s) =

mpmqes

(1− qes)m+1 f '' (s) =
mpmqes

(1− qes)m+1 +
m (m+ 1) pmq2e2s

(1− qes)m+2 (13.142)

E [X] =
mpmq

(1− q)m+1 =
mq

p
E
[
X2
]

=
mq

p
+
m (m+ 1) pmq2

(1− q)m+2 (13.143)

Var [X] =
mq

p
+
m (m+ 1) q2

p2
− m2q2

p2
=
mq

p2
(13.144)

Solution to Exercise 13.4.23 (p. 411)
To simplify writing, set f (s) = MX (s), g (s) = MY (s), and h (s) = MX (s)MY (s)

h' (s) = f ' (s) g (s) + f (s) g' (s) h'' (s) = f '' (s) g (s) + f ' (s) g' (s) + f ' (s) g' (s) + f (s) g'' (s) (13.145)

Setting s = 0 yields

E [X + Y ] = E [X] + E [Y ] E
[
(X + Y )2

]
= E

[
X2
]

+ 2E [X]E [Y ] + E
[
Y 2
]
E2 [X + Y ] = (13.146)

E2 [X] + 2E [X]E [Y ] + E2 [Y ] (13.147)

Taking the di�erence gives Var [X + Y ] = Var [X] + Var [Y ]. A similar treatment with g (s) replaced by
g (−s) shows Var [X − Y ] = Var [X] + Var [Y ].
Solution to Exercise 13.4.24 (p. 411)

M3X (s) = MX (3s) = exp

(
9 · 5s2

2
+ 3 · 3s

)
M−2Y (s) = MY (−2s) = exp

(
4 · 5s2

2
− 2 · 3s

)
(13.148)

MZ (s) = e3sexp

(
(45 + 20) s2

2
+ (9− 6) s

)
= exp

(
65s2

2
+ 6s

)
(13.149)
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Solution to Exercise 13.4.25 (p. 411)

E [An] =
1
n

n∑
i=1

µ = µ Var [An] =
1
n2

n∑
i=1

σ2 =
σ2

n
(13.150)

By the central limit theorem, An is approximately normal, with the mean and variance above.
Solution to Exercise 13.4.26 (p. 411)

Chebyshev inequality:

P

(
|An − µ|
σ/
√
n
≥ 0.5

√
n

3

)
≤ 32

0.52n
≤ 0.05 implies n ≥ 720 (13.151)

Normal approximation: Use of the table in Example 1 (Example 13.15: Sample size) from "Simple
Random Samples and Statistics" shows

n ≥ (3/0.5)23.84 = 128 (13.152)
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Chapter 14

Conditional Expectation, Regression

14.1 Conditional Expectation, Regression1

Conditional expectation, given a random vector, plays a fundamental role in much of modern probability
theory. Various types of �conditioning� characterize some of the more important random sequences and pro-
cesses. The notion of conditional independence is expressed in terms of conditional expectation. Conditional
independence plays an essential role in the theory of Markov processes and in much of decision theory.

We �rst consider an elementary form of conditional expectation with respect to an event. Then we
consider two highly intuitive special cases of conditional expectation, given a random variable. In examin-
ing these, we identify a fundamental property which provides the basis for a very general extension. We
discover that conditional expectation is a random quantity. The basic property for conditional expectation
and properties of ordinary expectation are used to obtain four fundamental properties which imply the �ex-
pectationlike� character of conditional expectation. An extension of the fundamental property leads directly
to the solution of the regression problem which, in turn, gives an alternate interpretation of conditional
expectation.

14.1.1 Conditioning by an event

If a conditioning event C occurs, we modify the original probabilities by introducing the conditional proba-
bility measure P (·|C). In making the change from

P (A) to P (A|C) =
P (AC)
P (C)

(14.1)

we e�ectively do two things:

- We limit the possible outcomes to event C
- We �normalize� the probability mass by taking P (C) as the new unit

It seems reasonable to make a corresponding modi�cation of mathematical expectation when the occurrence
of event C is known. The expectation E [X] is the probability weighted average of the values taken on by
X. Two possibilities for making the modi�cation are suggested.

• We could replace the prior probability measure P (·) with the conditional probability measure P (·|C)
and take the weighted average with respect to these new weights.

• We could continue to use the prior probability measure P (·) and modify the averaging process as
follows:

1This content is available online at <http://cnx.org/content/m23634/1.6/>.
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- Consider the values X (ω) for only those ω ∈ C. This may be done by using the random variable
ICX which has value X (ω) for ω ∈ C and zero elsewhere. The expectation E [ICX] is the
probability weighted sum of those values taken on in C.

- The weighted average is obtained by dividing by P (C).

These two approaches are equivalent. For a simple random variable X =
∑n
k=1 tkIAk in canonical form

E [ICX] /P (C) =
n∑
k=1

E [tkICIAk ] /P (C) =
n∑
k=1

tkP (CAk) /P (C) =
n∑
k=1

tkP (Ak|C) (14.2)

The �nal sum is expectation with respect to the conditional probability measure. Arguments using basic
theorems on expectation and the approximation of general random variables by simple random variables
allow an extension to a general random variable X. The notion of a conditional distribution, given C, and
taking weighted averages with respect to the conditional probability is intuitive and natural in this case.
However, this point of view is limited. In order to display a natural relationship with more the general
concept of conditioning with repspect to a random vector, we adopt the following

De�nition. The conditional expectation of X, given event C with positive probability, is the quantity

E [X|C] =
E [ICX]
P (C)

=
E [ICX]
E [IC ]

(14.3)

Remark. The product form E [X|C]P (C) = E [ICX] is often useful.

Example 14.1: A numerical example
Suppose X ∼ exponential (λ) and C = {1/λ ≤ X ≤ 2/λ}. Now IC = IM (X) where M =
[1/λ, 2/λ].

P (C) = P (X ≥ 1/λ)− P (X > 2/λ) = e−1 − e−2 and (14.4)

E [ICX] =
∫
IM (t) tλe−λt dt =

∫ 2/λ

1/λ

tλe−λt dt =
1
λ

(
2e−1 − 3e−2

)
(14.5)

Thus

E [X|C] =
2e−1 − 3e−2

λ (e−1 − e−2)
≈ 1.418

λ
(14.6)

14.1.2 Conditioning by a random vector�discrete case

Suppose X =
∑n
i=1 tiIAi and Y =

∑m
j=1 ujIBj in canonical form. We supposeP (Ai) = P (X = ti) > 0 and

P (Bj) = P (Y = uj) > 0, for each permissible i, j. Now

P (Y = uj |X = ti) =
P (X = ti, Y = uj)

P (X = ti)
(14.7)

We take the expectation relative to the conditional probability P (·|X = ti) to get

E [g (Y ) |X = ti] =
m∑
j=1

g (uj)P (Y = uj |X = ti) = e (ti) (14.8)
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Since we have a value for each ti in the range of X, the function e (·) is de�ned on the range of X. Now
consider any reasonable set M on the real line and determine the expectation

E [IM (X) g (Y )] =
n∑
i=1

m∑
j=1

IM (ti) g (uj)P (X = ti, Y = uj) (14.9)

=
n∑
i=1

IM (ti)

 m∑
j=1

g (uj)P (Y = uj |X = ti)

P (X = ti) (14.10)

=
n∑
i=1

IM (ti) e (ti)P (X = ti) = E [IM (X) e (X)] (14.11)

We have the pattern

(A) E [IM (X) g (Y )] = E [IM (X) e (X)] where e (ti) = E [g (Y ) |X = ti] (14.12)

for all ti in the range of X.
We return to examine this property later. But �rst, consider an example to display the nature of the

concept.

Example 14.2: Basic calculations and interpretation
Suppose the pair {X, Y } has the joint distribution

P (X = ti, Y = uj) (14.13)

X = 0 1 4 9

Y = 2 0.05 0.04 0.21 0.15

0 0.05 0.01 0.09 0.10

-1 0.10 0.05 0.10 0.05

PX 0.20 0.10 0.40 0.30

Table 14.1

Calculate E [Y |X = ti] for each possible value ti taken on by X

E [Y |X = 0] = −1 0.10
0.20 + 0 0.05

0.20 + 2 0.05
0.20

= (−1 · 0.10 + 0 · 0.05 + 2 · 0.05) /0.20 = 0
E [Y |X = 1] = (−1 · 0.05 + 0 · 0.01 + 2 · 0.04) /0.10 = 0.30
E [Y |X = 4] = (−1 · 0.10 + 0 · 0.09 + 2 · 0.21) /0.40 = 0.80
E [Y |X = 9] = (−1 · 0.05 + 0 · 0.10 + 2 · 0.15) /0.10 = 0.83

The pattern of operation in each case can be described as follows:

• For the ith column, multiply each value uj by P (X = ti, Y = uj), sum, then divide by
P (X = ti).

The following interpretation helps visualize the conditional expectation and points to an important
result in the general case.
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• For each ti we use the mass distributed �above� it. This mass is distributed along a vertical
line at values uj taken on by Y. The result of the computation is to determine the center of
mass for the conditional distribution above t = ti. As in the case of ordinary expectations,
this should be the best estimate, in the mean-square sense, of Y when X = ti. We examine
that possibility in the treatment of the regression problem in Section 14.1.5 (The regression
problem).

Although the calculations are not di�cult for a problem of this size, the basic pattern can be
implemented simply with MATLAB, making the handling of much larger problems quite easy. This
is particularly useful in dealing with the simple approximation to an absolutely continuous pair.

X = [0 1 4 9]; % Data for the joint distribution

Y = [-1 0 2];

P = 0.01*[ 5 4 21 15; 5 1 9 10; 10 5 10 5];

jcalc % Setup for calculations

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X

Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P

EYX = sum(u.*P)./sum(P); % sum(P) = PX (operation sum yields column sums)

disp([X;EYX]') % u.*P = u_j P(X = t_i, Y = u_j) for all i, j

0 0

1.0000 0.3000

4.0000 0.8000

9.0000 0.8333

The calculations extend to E [g (X,Y ) |X = ti]. Instead of values of uj we use values of g (ti, uj) in
the calculations. Suppose Z = g (X,Y ) = Y 2 − 2XY .

G = u.^2 - 2*t.*u; % Z = g(X,Y) = Y^2 - 2XY

EZX = sum(G.*P)./sum(P); % E[Z|X=x]

disp([X;EZX]')

0 1.5000

1.0000 1.5000

4.0000 -4.0500

9.0000 -12.8333

14.1.3 Conditioning by a random vector � absolutely continuous case

Suppose the pair {X, Y } has joint density function fXY . We seek to use the concept of a conditional
distribution, given X = t. The fact that P (X = t) = 0 for each t requires a modi�cation of the approach
adopted in the discrete case. Intuitively, we consider the conditional density

fY |X (u|t) = {
fXY (t, u) /fX (t) for fX (t) > 0

0 elsewhere
(14.14)

The condition fX (t) > 0 e�ectively determines the range of X. The function fY |X (·|t) has the properties
of a density for each �xed t for which fX (t) > 0.

fY |X (u|t) ≥ 0,
∫
fY |X (u|t) du =

1
fX (t)

∫
fXY (t, u) du = fX (t) /fX (t) = 1 (14.15)
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We de�ne, in this case,

E [g (Y ) |X = t] =
∫
g (u) fY |X (u|t) du = e (t) (14.16)

The function e (·) is de�ned for fX (t) > 0, hence e�ectively on the range of X. For any reasonable set M
on the real line,

E [IM (X) g (Y )] =
∫ ∫

IM (t) g (u) fXY (t, u) dudt =
∫
IM (t)

[∫
g (u) fY |X (u|t) du

]
fX (t) dt (14.17)

=
∫
IM (t) e (t) fX (t) dt, where e (t) = E [g (Y ) |X = t] (14.18)

Thus we have, as in the discrete case, for each t in the range of X.

(A) E [IM (X) g (Y )] = E [IM (X) e (X)] where e (t) = E [g (Y ) |X = t] (14.19)

Again, we postpone examination of this pattern until we consider a more general case.

Example 14.3: Basic calculation and interpretation
Suppose the pair {X, Y } has joint density fXY (t, u) = 6

5 (t+ 2u) on the triangular region bounded
by t = 0, u = 1, and u = t (see Figure 14.1). Then

fX (t) =
6
5

∫ 1

t

(t+ 2u) du =
6
5
(
1 + t− 2t2

)
, 0 ≤ t ≤ 1 (14.20)

By de�nition, then,

fY |X (u|t) =
t+ 2u

1 + t− 2t2
on the triangle (zero elsewhere) (14.21)

We thus have

E [Y |X = t] =
∫
ufY |X (u|t) du =

1
1 + t− 2t2

∫ 1

t

(
tu+ 2u2

)
du =

4 + 3t− 7t3

6 (1 + t− 2t2)
0 ≤ t < 1 (14.22)

Theoretically, we must rule out t = 1 since the denominator is zero for that value of t. This causes
no problem in practice.
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Figure 14.1: The density function for Example 14.3 (Basic calculation and interpretation).

We are able to make an interpretation quite analogous to that for the discrete case. This also points the
way to practical MATLAB calculations.

• For any t in the range of X (between 0 and 1 in this case), consider a narrow vertical strip of width
∆t with the vertical line through t at its center. If the strip is narrow enough, then fXY (t, u) does
not vary appreciably with t for any u.

• The mass in the strip is approximately

Mass ≈ ∆t
∫
fXY (t, u) du = ∆tfX (t) (14.23)

• The moment of the mass in the strip about the line u = 0 is approximately

Moment ≈ ∆t
∫
ufXY (t, u) du (14.24)

• The center of mass in the strip is

Center of mass =
Moment

Mass
≈

∆t
∫
ufXY (t, u) du
∆tfX (t)

=
∫
ufY |X (u|t) du = e (t) (14.25)

This interpretation points the way to the use of MATLAB in approximating the conditional expectation.
The success of the discrete approach in approximating the theoretical value in turns supports the validity
of the interpretation. Also, this points to the general result on regression in the section, "The Regression
Problem" (Section 14.1.5: The regression problem).

In the MATLAB handling of joint absolutely continuous random variables, we divide the region into
narrow vertical strips. Then we deal with each of these by dividing the vertical strips to form the grid
structure. The center of mass of the discrete distribution over one of the t chosen for the approximation
must lie close to the actual center of mass of the probability in the strip. Consider the MATLAB treatment
of the example under consideration.
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f = '(6/5)*(t + 2*u).*(u>=t)'; % Density as string variable

tuappr

Enter matrix [a b] of X-range endpoints [0 1]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density eval(f) % Evaluation of string variable

Use array operations on X, Y, PX, PY, t, u, and P

EYx = sum(u.*P)./sum(P); % Approximate values

eYx = (4 + 3*X - 7*X.^3)./(6*(1 + X - 2*X.^2)); % Theoretical expression

plot(X,EYx,X,eYx)

% Plotting details (see Figure~14.2)

� �

Figure 14.2: Theoretical and approximate conditional expectation for above (p. 424).

The agreement of the theoretical and approximate values is quite good enough for practical purposes. It
also indicates that the interpretation is reasonable, since the approximation determines the center of mass
of the discretized mass which approximates the center of the actual mass in each vertical strip.

14.1.4 Extension to the general case

Most examples for which we make numerical calculations will be one of the types above. Analysis of
these cases is built upon the intuitive notion of conditional distributions. However, these cases and this
interpretation are rather limited and do not provide the basis for the range of applications�theoretical and
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practical�which characterize modern probability theory. We seek a basis for extension (which includes the
special cases). In each case examined above, we have the property

(A) E [IM (X) g (Y )] = E [IM (X) e (X)] where e (t) = E [g (Y ) |X = t] (14.26)

for all t in the range of X.
We have a tie to the simple case of conditioning with respect to an event. If C = {X ∈M} has positive

probability, then using IC = IM (X) we have

(B) E [IM (X) g (Y )] = E [g (Y ) |X ∈M ]P (X ∈M) (14.27)

Two properties of expectation are crucial here:

1. By the uniqueness property (E5) ("(E5) ", p. 600), since (A) holds for all reasonable (Borel) sets, then
e (X) is unique a.s. (i.e., except for a set of ω of probability zero).

2. By the special case of the Radon Nikodym theorem (E19) ("(E19)", p. 600), the function e (·)always
exists and is such that random variable e (X) is unique a.s.

We make a de�nition based on these facts.
De�nition. The conditional expectationE [g (Y ) |X = t] = e (t) is the a.s. unique function de�ned on

the range of X such that

(A) E [IM (X) g (Y )] = E [IM (X) e (X)] for all Borel setsM (14.28)

Note that e (X) is a random variable and e (·) is a function. Expectation E [g (Y )] is always a constant.
The concept is abstract. At this point it has little apparent signi�cance, except that it must include the
two special cases studied in the previous sections. Also, it is not clear why the term conditional expectation
should be used. The justi�cation rests in certain formal properties which are based on the de�ning condition
(A) and other properties of expectation.

In Appendix F we tabulate a number of key properties of conditional expectation. The condition (A)
is called property (CE1) (p. 426). We examine several of these properties. For a detailed treatment and
proofs, any of a number of books on measure-theoretic probability may be consulted.

(CE1) De�ning condition. e (X) = E [g (Y ) |X] a.s. i�

E [IM (X) g (Y )] = E [IM (X) e (X)] for each Borel set M on the codomain of X (14.29)

Note that X and Y do not need to be real valued, although g (Y ) is real valued. This extension to possible
vector valued X and Y is extremely important. The next condition is just the property (B) noted above.

(CE1a) If P (X ∈M) > 0, then E [IM (X) e (X)] = E [g (Y ) |X ∈M ]P (X ∈M)
The special case which is obtained by setting M to include the entire range of X so that IM (X (ω)) = 1

for all ω is useful in many theoretical and applied problems.
(CE1b) Law of total probability. E [g (Y )] = E{E [g (Y ) |X]}
It may seem strange that we should complicate the problem of determining E [g (Y )] by �rst getting the

conditional expectation e (X) = E [g (Y ) |X] then taking expectation of that function. Frequently, the data
supplied in a problem makes this the expedient procedure.

Example 14.4: Use of the law of total probability
Suppose the time to failure of a device is a random quantity X ∼ exponential (u), where the
parameter u is the value of a parameter random variable H. Thus

fX|H (t|u) = ue−ut for t ≥ 0 (14.30)

If the parameter random variable H ∼ uniform (a, b), determine the expected life E [X] of the
device.

SOLUTION
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We use the law of total probability:

E [X] = E{E [X|H]} =
∫
E [X|H = u] fH (u) du (14.31)

Now by assumption

E [X|H = u] = 1/u and fH (u) =
1

b− a
, a < u < b (14.32)

Thus

E [X] =
1

b− a

∫ b

a

1
u
du =

ln (b/a)
b− a

(14.33)

For a = 1/100, b = 2/100, E [X] = 100ln (2) ≈ 69.31.
The next three properties, linearity, positivity/monotonicity, and monotone convergence, along with the
de�ning condition provide the �expectation like� character. These properties for expectation yield most
of the other essential properties for expectation. A similar development holds for conditional expectation,
with some reservation for the fact that e (X) is a random variable, unique a.s. This restriction causes little
problem for applications at the level of this treatment.

In order to get some sense of how these properties root in basic properties of expectation, we examine
one of them.

(CE2) Linearity. For any constants a, b

E [ag (Y ) + bh (Z) |X] = aE [g (Y ) |X] + bE [h (Z) |X] a.s. (14.34)

VERIFICATION
Let e1 (X) = E [g (Y ) |X] , e2 (X) = E [h (Z) |X] , and e (X) = E [ag (Y ) + bh (Z) |X] a.s. .

E [IM (X) e (X)] = E{IM (X) [ag (Y ) + bh (Z)]} a.s. by (CE1)

= aE [IM (X) g (Y )] + bE [IM (X)h (Z)] a.s. by linearity of expectation

= aE [IM (X) e1 (X)] + bE [IM (X) e2 (X)] a.s. by (CE1)

= E{IM (X) [ae1 (X) + be2 (X)]} a.s. by linearity of expectation

Since the equalities hold for any Borel M, the uniqueness property (E5) ("(E5) ", p. 600) for expectation
implies

e (X) = ae1 (X) + be2 (X) a.s. (14.35)

This is property (CE2) (p. 427). An extension to any �nite linear combination is easily established by
mathematical induction.

� �
Property (CE5) (p. 427) provides another condition for independence.
(CE5) Independence. {X,Y } is an independent pair

i� E [g (Y ) |X] = E [g (Y )] a.s. for all Borel functions g
i� E [IN (Y ) |X] = E [IN (Y )] a.s. for all Borel sets N on the codomain of Y

Since knowledge of X does not a�ect the likelihood that Y will take on any set of values, then conditional
expectation should not be a�ected by the value of X. The resulting constant value of the conditional expec-
tation must be E [g (Y )] in order for the law of total probability to hold. A formal proof utilizes uniqueness
(E5) ("(E5) ", p. 600) and the product rule (E18) ("(E18)", p. 600) for expectation.

Property (CE6) (p. 427) forms the basis for the solution of the regresson problem in the next section.
(CE6) e (X) = E [g (Y ) |X] a.s. i� E [h (X) g (Y )] = E [h (X) e (X)] a.s. for any Borel function h
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Examination shows this to be the result of replacing IM (X) in (CE1) (p. 426) with arbitrary h (X).
Again, to get some insight into how the various properties arise, we sketch the ideas of a proof of (CE6) (p.
427).

IDEAS OF A PROOF OF (CE6) (p. 427)

1. For h (X) = IM (X), this is (CE1) (p. 426).
2. For h (X) =

∑n
i=1 aiIMi

(X), the result follows by linearity.
3. For h ≥ 0, g ≥ 0, there is a seqence of nonnegative, simple hn[U+2197]h. Now by positivity, e (X) ≥ 0.

By monotone convergence (CE4),

E [hn (X) g (Y )] [U+2197]E [h (X) g (Y )] and E [hn (X) e (X)] [U+2197]E [h (X) e (X)] (14.36)

Since corresponding terms in the sequences are equal, the limits are equal.
4. For h = h+ − h−, g ≥ 0, the result follows by linearity (CE2) (p. 427).
5. For g = g+ − g−, the result again follows by linearity.

� �
Properties (CE8) (p. 428) and (CE9) (p. 428) are peculiar to conditional expectation. They play an

essential role in many theoretical developments. They are essential in the study of Markov sequences and
of a class of random sequences known as submartingales. We list them here (as well as in Appendix F) for
reference.

(CE8) E [h (X) g (Y ) |X] = h (X)E [g (Y ) |X] a.s. for any Borel function h
This property says that any function of the conditioning random vector may be treated as a constant

factor. This combined with (CE10) (p. 428) below provide useful aids to computation.
(CE9) Repeated conditioning

If X = h (W ) , then E{E [g (Y ) |X] |W} = E{E [g (Y ) |W ] |X} = E [g (Y ) |X] a.s. (14.37)

This somewhat formal property is highly useful in many theoretical developments. We provide an interpre-
tation after the development of regression theory in the next section.

The next property is highly intuitive and very useful. It is easy to establish in the two elementary cases
developed in previous sections. Its proof in the general case is quite sophisticated.

(CE10) Under conditions on g that are nearly always met in practice

a. E [g (X, Y ) |X = t] = E [g (t, Y ) |X = t] a.s. [PX ]
b. If {X, Y } is independent, then E [g (X, Y ) |X = t] = E [g (t, Y )] a.s. [PX ]

It certainly seem reasonable to suppose that if X = t, then we should be able to replace X by t in
E [g (X, Y ) |X = t] to get E [g (t, Y ) |X = t]. Property (CE10) (p. 428) assures this. If {X, Y } is an indepen-
dent pair, then the value of X should not a�ect the value of Y, so that E [g (t, Y ) |X = t] = E [g (t, Y )] a.s. .

Example 14.5: Use of property (CE10) (p. 428)
Consider again the distribution for Example 14.3 (Basic calculation and interpretation). The pair
{X, Y } has density

fXY (t, u) =
6
5

(t+ 2u) on the triangular region bounded by t = 0, u = 1, and u = t (14.38)

We show in Example 14.3 (Basic calculation and interpretation) that

E [Y |X = t] =
4 + 3t− 7t3

6 (1 + t− 2t2)
0 ≤ t < 1 (14.39)

Let Z = 3X2 + 2XY . Determine E [Z|X = t].
SOLUTION
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By linearity, (CE8) (p. 428), and (CE10) (p. 428)

E [Z|X = t] = 3t2 + 2tE [Y |X = t] = 3t2 +
4t+ 3t2 − 7t4

3 (1 + t− 2t2)
(14.40)

Conditional probability
In the treatment of mathematical expectation, we note that probability may be expressed as an expec-

tation

P (E) = E [IE ] (14.41)

For conditional probability, given an event, we have

E [IE |C] =
E [IEIC ]
P (C)

=
P (EC)
P (C)

= P (E|C) (14.42)

In this manner, we extend the concept conditional expectation.
De�nition. The conditional probability of event E, given X, is

P (E|X) = E [IE |X] (14.43)

Thus, there is no need for a separate theory of conditional probability. We may de�ne the conditional
distribution function

FY |X (u|X) = P (Y ≤ u|X) = E
[
I(−∞,u] (Y ) |X

]
(14.44)

Then, by the law of total probability (CE1b) (p. 426),

FY (u) = E
[
FY |X (u|X)

]
=
∫
FY |X (u|t)FX (dt) (14.45)

If there is a conditional density fY |X such that

P (Y ∈M |X = t) =
∫
M

fY |X (r|t) dr (14.46)

then

FY |X (u|t) =
∫ u

−∞
fY |X (r|t) dr so that fY |X (u|t) =

∂

∂u
FY |X (u|t) (14.47)

A careful, measure-theoretic treatment shows that it may not be true that FY |X (· |t) is a distribution function
for all t in the range of X. However, in applications, this is seldom a problem. Modeling assumptions often
start with such a family of distribution functions or density functions.

Example 14.6: The conditional distribution function
As in Example 14.4 (Use of the law of total probability), suppose X ∼ exponential (u), where the
parameter u is the value of a parameter random variable H. If the parameter random variable H ∼
uniform (a, b), determine the distribution function FX.

SOLUTON
As in Example 14.4 (Use of the law of total probability), take the assumption on the conditional

distribution to mean

fX|H (t|u) = ue−ut t ≥ 0 (14.48)

Then

FX|H (t|u) =
∫ t

0

ue−us ds = 1− e−ut 0 ≤ t (14.49)
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By the law of total probability

FX (t) =
∫
FX|H (t|u) fH (u) du =

1
b− a

∫ b

a

(
1− e−ut

)
du = 1− 1

b− a

∫ b

a

e−ut du (14.50)

= 1− 1
t (b− a)

[
e−bt − e−at

]
(14.51)

Di�erentiation with respect to t yields the expression for fX (t)

fX (t) =
1

b− a

[(
1
t2

+
b

t

)
e−bt −

(
1
t2

+
a

t

)
e−at

]
t > 0 (14.52)

The following example uses a discrete conditional distribution and marginal distribution to obtain the joint
distribution for the pair.

Example 14.7: A random number N of Bernoulli trials
A number N is chosen by a random selection from the integers from 1 through 20 (say by drawing
a card from a box). A pair of dice is thrown N times. Let S be the number of �matches� (i.e., both
ones, both twos, etc.). Determine the joint distribution for {N,S}.

SOLUTION
N ∼ uniform on the integers 1 through 20. P (N = i) = 1/20 for 1 ≤ i ≤ 20. Since there are

36 pairs of numbers for the two dice and six possible matches, the probability of a match on any
throw is 1/6. Since the i throws of the dice constitute a Bernoulli sequence with probability 1/6
of a success (a match), we have S conditionally binomial (i, 1/6), given N = i. For any pair (i, j),
0 ≤ j ≤ i,

P (N = i, S = j) = P (S = j|N = i)P (N = i) (14.53)

Now E [S|N = i] = i/6. so that

E [S] =
1
6
· 1

20

20∑
i=1

i =
20 · 21

6 · 20 · 2
=

7
4

= 1.75 (14.54)

The following MATLAB procedure calculates the joint probabilities and arranges them �as on the
plane.�

% file randbern.m

p = input('Enter the probability of success ');

N = input('Enter VALUES of N ');

PN = input('Enter PROBABILITIES for N ');

n = length(N);

m = max(N);

S = 0:m;

P = zeros(n,m+1);

for i = 1:n

P(i,1:N(i)+1) = PN(i)*ibinom(N(i),p,0:N(i));

end

PS = sum(P);

P = rot90(P);

disp('Joint distribution N, S, P, and marginal PS')

randbern % Call for the procedure

Enter the probability of success 1/6

Enter VALUES of N 1:20
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Enter PROBABILITIES for N 0.05*ones(1,20)

Joint distribution N, S, P, and marginal PS

ES = S*PS'

ES = 1.7500 % Agrees with the theoretical value

14.1.5 The regression problem

We introduce the regression problem in the treatment of linear regression. Here we are concerned with
more general regression. A pair {X,Y } of real random variables has a joint distribution. A value X (ω)
is observed. We desire a rule for obtaining the �best� estimate of the corresponding value Y (ω). If Y (ω)
is the actual value and r (X (ω)) is the estimate, then Y (ω) − r (X (ω)) is the error of estimate. The best
estimation rule (function) r (·) is taken to be that for which the average square of the error is a minimum.
That is, we seek a function r such that

E
[
(Y − r (X))2

]
is a minimum. (14.55)

In the treatment of linear regression, we determine the best a�ne function, u = at + b. The optimum
function of this form de�nes the regression line of Y on X. We now turn to the problem of �nding the best
function r, which may in some cases be an a�ne function, but more often is not.

We have some hints of possibilities. In the treatment of expectation, we �nd that the best constant to
approximate a random variable in the mean square sense is the mean value, which is the center of mass for
the distribution. In the interpretive Example 14.2.1 for the discrete case, we �nd the conditional expectation
E [Y |X = ti] is the center of mass for the conditional distribution atX = ti. A similar result, considering thin
vertical strips, is found in Example 14.2 (Basic calculations and interpretation) for the absolutely continuous
case. This suggests the possibility that e (t) = E [Y |X = t] might be the best estimate for Y when the value
X (ω) = t is observed. We investigate this possibility. The property (CE6) (p. 427) proves to be key to
obtaining the result.

Let e (X) = E [Y |X]. We may write (CE6) (p. 427) in the form E [h (X) (Y − e (X))] = 0 for any
reasonable function h. Consider

E
[
(Y − r (X))2

]
= E

[
(Y − e (X) + e (X)− r (X))2

]
(14.56)

= E
[
(Y − e (X))2

]
+ E

[
(e (X)− r (X))2

]
+ 2E [(Y − e (X)) (r (X)− e (X))] (14.57)

Now e (X) is �xed (a.s.) and for any choice of r we may take h (X) = r (X)− e (X) to assert that

E [(Y − e (X)) (r (X)− e (X))] = E [(Y − e (X))h (X)] = 0 (14.58)

Thus

E
[
(Y − r (X))2

]
= E

[
(Y − e (X))2

]
+ E

[
(e (X)− r (X))2

]
(14.59)

The �rst term on the right hand side is �xed; the second term is nonnegative, with a minimum at zero i�
r (X) = e (X) a.s. Thus, r = e is the best rule. For a given value X (ω) = t the best mean square estimate
of Y is

u = e (t) = E [Y |X = t] (14.60)

The graph of u = e (t) vs t is known as the regression curve of Y on X. This is de�ned for argument t in
the range of X, and is unique except possibly on a set N such that P (X ∈ N) = 0. Determination of the
regression curve is thus determination of the conditional expectation.
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Example 14.8: Regression curve for an independent pair
If the pair {X, Y } is independent, then u = E [Y |X = t] = E [Y ], so that the regression curve of
Y on X is the horizontal line through u = E [Y ]. This, of course, agrees with the regression line,
since Cov [X,Y ] = 0 and the regression line is u = 0 + E [Y ].

The result extends to functions of X and Y. Suppose Z = g (X, Y ). Then the pair {X, Z} has a joint
distribution, and the best mean square estimate of Z given X = t is E [Z|X = t].

Example 14.9: Estimate of a function of {X, Y }
Suppose the pair {X, Y } has joint density fXY (t, u) = 60t2u for 0 ≤ t ≤ 1, 0 ≤ u ≤ 1− t. This is
the triangular region bounded by t = 0, u = 0, and u = 1− t (see Figure 14.3). Integration shows
that

fX (t) = 30t2(1− t)2
, 0 ≤ t ≤ 1 and fY |X (u|t) =

2u
(1− t)2 on the triangle (14.61)

Consider

Z = {
X2 for X ≤ 1/2

2Y for X > 1/2
= IM (X)X2 + IN (X) 2Y (14.62)

where M = [0, 1/2] and N = (1/2, 1]. Determine E [Z|X = t].

Figure 14.3: The density function for Example 14.9 (Estimate of a function of {X, Y }).

SOLUTION By linearity and (CE8) (p. 428),

E [Z|X = t] = E
[
IM (X)X2||X = t

]
+ E [IN (X) 2Y ||X = t] = IM (t) t2 + IN (t) 2E [Y |X = t] (14.63)

Now

E [Y |X = t] =
∫
ufY |X (u|t) du =

1
(1− t)2

∫ 1−t

0

2u2 du =
2
3
· (1− t)3

(1− t)2 =
2
3

(1− t) , 0 ≤ t < 1 (14.64)
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so that

E [Z|X = t] = IM (t) t2 + IN (t)
4
3

(1− t) (14.65)

Note that the indicator functions separate the two expressions. The �rst holds on the interval
M = [0, 1/2] and the second holds on the interval N = (1/2, 1]. The two expressions t2 and
(4/3) (1− t)must not be added, for this would give an expression incorrect for all t in the range of
X.

APPROXIMATION

tuappr

Enter matrix [a b] of X-range endpoints [0 1]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 100

Enter number of Y approximation points 100

Enter expression for joint density 60*t.^2.*u.*(u<=1-t)
Use array operations on X, Y, PX, PY, t, u, and P

G = (t<=0.5).*t.^2 + 2*(t>0.5).*u;
EZx = sum(G.*P)./sum(P); % Approximation

eZx = (X<=0.5).*X.^2 + (4/3)*(X>0.5).*(1-X); % Theoretical

plot(X,EZx,'k-',X,eZx,'k-.')

% Plotting details % See Figure~14.4

The �t is quite su�cient for practical purposes, in spite of the moderate number of approximation
points. The di�erence in expressions for the two intervals of X values is quite clear.
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Figure 14.4: Theoretical and approximate regression curves for Example 14.9 (Estimate of a function
of {X, Y }).

Example 14.10: Estimate of a function of {X, Y }
Suppose the pair {X, Y } has joint density fXY (t, u) = 6

5

(
t2 + u

)
, on the unit square 0 ≤ t ≤ 1,

0 ≤ u ≤ 1 (see Figure 14.5). The usual integration shows

fX (t) =
3
5
(
2t2 + 1

)
, 0 ≤ t ≤ 1, and fY |X (u|t) = 2

t2 + u

2t2 + 1
on the square (14.66)

Consider

Z = {
2X2 for X ≤ Y
3XY for X > Y

= IQ (X, Y ) 2X2 + IQc (X, Y ) 3XY, where Q = {(t, u) : u ≥ t} (14.67)

Determine E [Z|X = t].
SOLUTION

E [Z|X = t] = 2t2
∫
IQ (t, u) fY |X (u|t) du+ 3t

∫
IQc (t, u)ufY |X (u|t) du (14.68)

=
4t2

2t2 + 1

∫ 1

t

(
t2 + u

)
du+

6t
2t2 + 1

∫ t

0

(
t2u+ u2

)
du =

−t5 + 4t4 + 2t2

2t2 + 1
, 0 ≤ t ≤ 1 (14.69)
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Figure 14.5: The density and regions for Example 14.10 (Estimate of a function of {X, Y })

Note the di�erent role of the indicator functions than in Example 14.9 (Estimate of a function
of {X, Y }). There they provide a separation of two parts of the result. Here they serve to set the
e�ective limits of integration, but sum of the two parts is needed for each t.
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Figure 14.6: Theoretical and approximate regression curves for Example 14.10 (Estimate of a function
of {X, Y }).

APPROXIMATION

tuappr

Enter matrix [a b] of X-range endpoints [0 1]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density (6/5)*(t.^2 + u)

Use array operations on X, Y, PX, PY, t, u, and P

G = 2*t.^2.*(u>=t) + 3*t.*u.*(u<t);
EZx = sum(G.*P)./sum(P); % Approximate

eZx = (-X.^5 + 4*X.^4 + 2*X.^2)./(2*X.^2 + 1); % Theoretical

plot(X,EZx,'k-',X,eZx,'k-.')

% Plotting details % See Figure~14.6

The theoretical and approximate are barely distinguishable on the plot. Although the same number
of approximation points are use as in Figure 14.4 (Example 14.9 (Estimate of a function of {X, Y })),
the fact that the entire region is included in the grid means a larger number of e�ective points in
this example.

Given our approach to conditional expectation, the fact that it solves the regression problem is a matter
that requires proof using properties of of conditional expectation. An alternate approach is simply to de�ne
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the conditional expectation to be the solution to the regression problem, then determine its properties.
This yields, in particular, our de�ning condition (CE1) (p. 426). Once that is established, properties of
expectation (including the uniqueness property (E5) ("(E5) ", p. 600)) show the essential equivalence of
the two concepts. There are some technical di�erences which do not a�ect most applications. The alternate
approach assumes the second moment E

[
X2
]
is �nite. Not all random variables have this property. However,

those ordinarily used in applications at the level of this treatment will have a variance, hence a �nite second
moment.

We use the interpretation of e (X) = E [g (Y ) |X] as the best mean square estimator of g (Y ), given X,
to interpret the formal property (CE9) (p. 437). We examine the special form

(CE9a) E{E [g (Y ) |X] |X,Z} = E{E [g (Y ) |X,Z] |X} = E [g (Y ) |X]
Put e1 (X, Z) = E [g (Y ) |X,Z], the best mean square estimator of g (Y ), given (X, Z). Then (CE9b)

can be expressed

E [e (X) |X, Z] = e (X) a.s. and E [e1 (X, Z) |X] = e (X) a.s. (14.70)

In words, if we take the best estimate of g (Y ), given X, then take the best mean sqare estimate of that,
given (X, Z), we do not change the estimate of g (Y ). On the other hand if we �rst get the best mean sqare
estimate of g (Y ), given (X, Z), and then take the best mean square estimate of that, given X, we get the
best mean square estimate of g (Y ), given X.

14.2 Problems on Conditional Expectation, Regression2

For the distributions in Exercises 1-3

a. Determine the regression curve of Y on X and compare with the regression line of Y on X.
b. For the function Z = g (X,Y ) indicated in each case, determine the regression curve of Z on X.

Exercise 14.2.1 (Solution on p. 444.)

(See Exercise 17 (Exercise 11.3.17) from "Problems on Mathematical Expectation"). The pair
{X,Y } has the joint distribution (in �le npr08_07.m (Section 17.8.38: npr08_07)):

P (X = t, Y = u) (14.71)

t = -3.1 -0.5 1.2 2.4 3.7 4.9

u = 7.5 0.0090 0.0396 0.0594 0.0216 0.0440 0.0203

4.1 0.0495 0 0.1089 0.0528 0.0363 0.0231

-2.0 0.0405 0.1320 0.0891 0.0324 0.0297 0.0189

-3.8 0.0510 0.0484 0.0726 0.0132 0 0.0077

Table 14.2

The regression line of Y on X is u = 0.5275t+ 0.6924.

Z = X2Y + |X + Y | (14.72)

2This content is available online at <http://cnx.org/content/m24441/1.5/>.
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Exercise 14.2.2 (Solution on p. 444.)

(See Exercise 18 (Exercise 11.3.18) from "Problems on Mathematical Expectation"). The pair
{X, Y } has the joint distribution (in �le npr08_08.m (Section 17.8.39: npr08_08)):

P (X = t, Y = u) (14.73)

t = 1 3 5 7 9 11 13 15 17 19

u = 12 0.0156 0.0191 0.0081 0.0035 0.0091 0.0070 0.0098 0.0056 0.0091 0.0049

10 0.0064 0.0204 0.0108 0.0040 0.0054 0.0080 0.0112 0.0064 0.0104 0.0056

9 0.0196 0.0256 0.0126 0.0060 0.0156 0.0120 0.0168 0.0096 0.0056 0.0084

5 0.0112 0.0182 0.0108 0.0070 0.0182 0.0140 0.0196 0.0012 0.0182 0.0038

3 0.0060 0.0260 0.0162 0.0050 0.0160 0.0200 0.0280 0.0060 0.0160 0.0040

-1 0.0096 0.0056 0.0072 0.0060 0.0256 0.0120 0.0268 0.0096 0.0256 0.0084

-3 0.0044 0.0134 0.0180 0.0140 0.0234 0.0180 0.0252 0.0244 0.0234 0.0126

-5 0.0072 0.0017 0.0063 0.0045 0.0167 0.0090 0.0026 0.0172 0.0217 0.0223

Table 14.3

The regression line of Y on X is u = −0.2584t+ 5.6110.

Z = IQ (X,Y )
√
X (Y − 4) + IQc (X,Y )XY 2 Q = {(t, u) : u ≤ t} (14.74)

Exercise 14.2.3 (Solution on p. 445.)

(See Exercise 19 (Exercise 11.3.19) from "Problems on Mathematical Expectation"). Data were
kept on the e�ect of training time on the time to perform a job on a production line. X is the
amount of training, in hours, and Y is the time to perform the task, in minutes. The data are as
follows (in �le npr08_09.m (Section 17.8.40: npr08_09)):

P (X = t, Y = u) (14.75)

t = 1 1.5 2 2.5 3

u = 5 0.039 0.011 0.005 0.001 0.001

4 0.065 0.070 0.050 0.015 0.010

3 0.031 0.061 0.137 0.051 0.033

2 0.012 0.049 0.163 0.058 0.039

1 0.003 0.009 0.045 0.025 0.017

Table 14.4

The regression line of Y on X is u = −0.7793t+ 4.3051.

Z = (Y − 2.8) /X (14.76)

For the joint densities in Exercises 4-11 below
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a. Determine analytically the regression curve of Y on X and compare with the regression line of Y on
X.

b. Check these with a discrete approximation.

Exercise 14.2.4 (Solution on p. 445.)

(See Exercise 10 (Exercise 8.3.10) from "Problems On Random Vectors and Joint Distributions",
Exercise 20 (Exercise 11.3.20) from "Problems on Mathematical Expectation", and Exercise 23
(Exercise 12.4.23) from "Problems on Variance, Covariance, Linear Regression"). fXY (t, u) = 1
for 0 ≤ t ≤ 1, 0 ≤ u ≤ 2 (1− t).

The regression line of Y on X is u = 1− t.

fX (t) = 2 (1− t) , 0 ≤ t ≤ 1 (14.77)

Exercise 14.2.5 (Solution on p. 445.)

(See Exercise 13 (Exercise 8.3.13) from " Problems On Random Vectors and Joint Distributions",
Exercise 23 (Exercise 11.3.23) from "Problems on Mathematical Expectation", and Exercise 24
(Exercise 12.4.24) from "Problems on Variance, Covariance, Linear Regression"). fXY (t, u) =
1
8 (t+ u) for 0 ≤ t ≤ 2, 0 ≤ u ≤ 2.

The regression line of Y on X is u = −t/11 + 35/33.

fX (t) =
1
4

(t+ 1) , 0 ≤ t ≤ 2 (14.78)

Exercise 14.2.6 (Solution on p. 446.)

(See Exercise 15 (Exercise 8.3.15) from "Problems On Random Vectors and Joint Distributions",
Exercise 25 (Exercise 11.3.25) from "Problems on Mathematical Expectation", and Exercise 25
(Exercise 12.4.25) from "Problems on Variance, Covariance, Linear Regression"). fXY (t, u) =
3
88

(
2t+ 3u2

)
for 0 ≤ t ≤ 2, 0 ≤ u ≤ 1 + t.

The regression line of Y on X is u = 0.0958t+ 1.4876.

fX (t) =
3
88

(1 + t)
(
1 + 4t+ t2

)
=

3
88
(
1 + 5t+ 5t2 + t3

)
, 0 ≤ t ≤ 2 (14.79)

Exercise 14.2.7 (Solution on p. 446.)

(See Exercise 16 (Exercise 8.3.16) from " Problems On Random Vectors and Joint Distributions",
Exercise 26 (Exercise 11.3.26) from "Problems on Mathematical Expectation", and Exercise 26
(Exercise 12.4.26) from "Problems on Variance, Covariance, Linear Regression"). fXY (t, u) = 12t2u
on the parallelogram with vertices

(−1, 0) , (0, 0) , (1, 1) , (0, 1) (14.80)

The regression line of Y on X is u = (4t+ 5) /9.

fX (t) = I[−1,0] (t) 6t2(t+ 1)2 + I(0,1] (t) 6t2
(
1− t2

)
(14.81)

Exercise 14.2.8 (Solution on p. 446.)

(See Exercise 17 (Exercise 8.3.17) from " Problems On Random Vectors and Joint Distributions",
Exercise 27 (Exercise 11.3.27) from "Problems on Mathematical Expectation", and Exercise 27
(Exercise 12.4.27) from "Problems on Variance, Covariance, Linear Regression"). fXY (t, u) = 24

11 tu
for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{1, 2− t}.
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The regression line of Y on X is u = (−124t+ 368) /431

fX (t) = I[0,1] (t)
12
11
t+ I(1,2] (t)

12
11
t(2− t)2

(14.82)

Exercise 14.2.9 (Solution on p. 447.)

(See Exercise 18 (Exercise 8.3.18) from " Problems On Random Vectors and Joint Distributions",
Exercise 28 (Exercise 11.3.28) from "Problems on Mathematical Expectation", and Exercise 28
(Exercise 12.4.28) from "Problems on Variance, Covariance, Linear Regression"). fXY (t, u) =
3
23 (t+ 2u) for 0 ≤ t ≤ 2, 0 ≤ u ≤ max{2− t, t}.

The regression line of Y on X is u = 1.0561t− 0.2603.

fX (t) = I[0,1] (t)
6
23

(2− t) + I(1,2] (t)
6
23
t2 (14.83)

Exercise 14.2.10 (Solution on p. 447.)

(See Exercise 21 (Exercise 8.3.21) from " Problems On Random Vectors and Joint Distributions",
Exercise 31 (Exercise 11.3.31) from "Problems on Mathematical Expectation", and Exercise 29
(Exercise 12.4.29) from "Problems on Variance, Covariance, Linear Regression"). fXY (t, u) =
2
13 (t+ 2u), for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{2t, 3− t}.

The regression line of Y on X is u = −0.1359t+ 1.0839.

fX (t) = I[0,1] (t)
12
13
t2 + I(1,2] (t)

6
13

(3− t) (14.84)

Exercise 14.2.11 (Solution on p. 447.)

(See Exercise 22 (Exercise 8.3.22) from " Problems On Random Vectors and Joint Distributions",
Exercise 32 (Exercise 11.3.32) from "Problems on Mathematical Expectation", and Exercise 30
(Exercise 12.4.30) from "Problems on Variance, Covariance, Linear Regression"). fXY (t, u) =
I[0,1] (t) 3

8

(
t2 + 2u

)
+ I(1,2] (t) 9

14 t
2u2,

for 0 ≤ u ≤ 1.
The regression line of Y on X is u = 0.0817t+ 0.5989.

fX (t) = I[0,1] (t)
3
8
(
t2 + 1

)
+ I(1,2] (t)

3
14
t2 (14.85)

For the distributions in Exercises 12-16 below

a. Determine analytically E [Z|X = t]
b. Use a discrete approximation to calculate the same functions.

Exercise 14.2.12 (Solution on p. 448.)

fXY (t, u) = 3
88

(
2t+ 3u2

)
for 0 ≤ t ≤ 2, 0 ≤ u ≤ 1 + t (see Exercise 37 (Exercise 11.3.37) from

"Problems on Mathematical Expectation", and Exercise 14.2.6).

fX (t) =
3
88

(1 + t)
(
1 + 4t+ t2

)
=

3
88
(
1 + 5t+ 5t2 + t3

)
, 0 ≤ t ≤ 2 (14.86)

Z = I[0,1] (X) 4X + I(1,2] (X) (X + Y ) (14.87)
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Exercise 14.2.13 (Solution on p. 448.)

fXY (t, u) = 24
11 tu for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{1, 2 − t} (see Exercise 38 (Exercise 11.3.38) from

"Problems on Mathematical Expectaton", Exercise 14.2.8).

fX (t) = I[0,1] (t)
12
11
t+ I(1,2] (t)

12
11
t(2− t)2

(14.88)

Z = IM (X,Y )
1
2
X + IMc (X,Y )Y 2, M = {(t, u) : u > t} (14.89)

Exercise 14.2.14 (Solution on p. 448.)

fXY (t, u) = 3
23 (t+ 2u) for 0 ≤ t ≤ 2, 0 ≤ u ≤ max{2 − t, t} (see Exercise 39 (Exercise 11.3.39),

and Exercise 14.2.9).

fX (t) = I[0,1] (t)
6
23

(2− t) + I(1,2] (t)
6
23
t2 (14.90)

Z = IM (X,Y ) (X + Y ) + IMc (X,Y ) 2Y, M = {(t, u) : max (t, u) ≤ 1} (14.91)

Exercise 14.2.15 (Solution on p. 449.)

fXY (t, u) = 2
13 (t+ 2u), for 0 ≤ t ≤ 2, 0 ≤ u ≤ min{2t, 3− t}. (see Exercise 31 (Exercise 11.3.31)

from "Problems on Mathematical Expectation", and Exercise 14.2.10).

fX (t) = I[0,1] (t)
12
13
t2 + I(1,2] (t)

6
13

(3− t) (14.92)

Z = IM (X,Y ) (X + Y ) + IMc (X,Y ) 2Y 2, M = {(t, u) : t ≤ 1, u ≥ 1} (14.93)

Exercise 14.2.16 (Solution on p. 449.)

fXY (t, u) = I[0,1] (t) 3
8

(
t2 + 2u

)
+I(1,2] (t) 9

14 t
2u2, for 0 ≤ u ≤ 1. (see Exercise 32 (Exercise 11.3.32)

from "Problems on Mathematical Expectation", and Exercise 14.2.11).

fX (t) = I[0,1] (t)
3
8
(
t2 + 1

)
+ I(1,2] (t)

3
14
t2 (14.94)

Z = IM (X,Y )X + IMc (X,Y )XY, M = {(t, u) : u ≤ min (1, 2− t)} (14.95)

Exercise 14.2.17 (Solution on p. 450.)

Suppose X ∼ uniform on 0 through n and Y ∼ conditionally uniform on 0 through i, given X = i.

a. Determine E [Y ] from E [Y |X = i].
b. Determine the joint distribution for {X,Y } for n = 50 (see Example 7 (Example 14.7: A

random number N of Bernoulli trials) from "Conditional Expectation, Regression" for a
possible approach). Use jcalc to determine E [Y ]; compare with the theoretical value.

Exercise 14.2.18 (Solution on p. 450.)

Suppose X ∼ uniform on 1 through n and Y ∼ conditionally uniform on 1 through i, given X = i.

a. Determine E [Y ] from E [Y |X = i].
b. Determine the joint distribution for {X,Y } for n = 50 (see Example 7 (Example 14.7: A

random number N of Bernoulli trials) from "Conditional Expectation, Regression" for a
possible approach). Use jcalc to determine E [Y ]; compare with the theoretical value.
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Exercise 14.2.19 (Solution on p. 451.)

Suppose X ∼ uniform on 1 through n and Y ∼ conditionally binomial (i, p), given X = i.

a. Determine E [Y ] from E [Y |X = k].
b. Determine the joint distribution for {X,Y } for n = 50 and p = 0.3. Use jcalc to determine

E [Y ]; compare with the theoretical value.

Exercise 14.2.20 (Solution on p. 451.)

A number X is selected randomly from the integers 1 through 100. A pair of dice is thrown X
times. Let Y be the number of sevens thrown on the X tosses. Determine the joint distribution
for {X, Y } and then determine E [Y ].
Exercise 14.2.21 (Solution on p. 451.)

A number X is selected randomly from the integers 1 through 100. Each of two people draw X
times, independently and randomly, a number from 1 to 10. Let Y be the number of matches (i.e.,
both draw ones, both draw twos, etc.). Determine the joint distribution and then determine E [Y ].
Exercise 14.2.22 (Solution on p. 452.)

E [Y |X = t] = 10t and X has density function fX (t) = 4− 2t for 1 ≤ t ≤ 2. Determine E [Y ].
Exercise 14.2.23 (Solution on p. 452.)

E [Y |X = t] = 2
3 (1− t) for 0 ≤ t < 1 and X has density function fX (t) = 30t2(1− t)2

for
0 ≤ t ≤ 1. Determine E [Y ].
Exercise 14.2.24 (Solution on p. 452.)

E [Y |X = t] = 2
3 (2− t) and X has density function fX (t) = 15

16 t
2(2− t)2 0 ≤ t < 2. Determine

E [Y ].
Exercise 14.2.25 (Solution on p. 452.)

Suppose the pair {X,Y } is independent, with X ∼ Poisson (µ) and Y ∼ Poisson (λ). Show that
X is conditionally binomial (n, µ/ (µ+ λ)), given X + Y = n. That is, show that

P (X = k|X + Y = n) = C (n, k) pk(1− p)n−k, 0 ≤ k ≤ n, for p = µ/ (µ+ λ) (14.96)

Exercise 14.2.26 (Solution on p. 452.)

Use the fact that g (X,Y ) = g∗ (X,Y, Z), where g∗ (t, u, v) does not vary with v. Extend property
(CE10) to show

E [g (X,Y ) |X = t, Z = v] = E [g (t, Y ) |X = t, Z = v] a.s. [PXZ ] (14.97)

Exercise 14.2.27 (Solution on p. 452.)

Use the result of Exercise 14.2.26 and properties (CE9a) ("(CE9a)", p. 601) and (CE10) to show
that

E [g (X,Y ) |Z = v] =
∫
E [g (t, Y ) |X = t, Z = v]FX|Z (dt|v) a.s. [PZ ] (14.98)

Exercise 14.2.28 (Solution on p. 452.)

A shop which works past closing time to complete jobs on hand tends to speed up service on any
job received during the last hour before closing. Suppose the arrival time of a job in hours before
closing time is a random variable T ∼ uniform [0, 1]. Service time Y for a unit received in that
period is conditionally exponential β (2− u), given T = u. Determine the distribution function for
Y.
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Exercise 14.2.29 (Solution on p. 453.)

Time to failure X of a manufactured unit has an exponential distribution. The parameter is
dependent upon the manufacturing process. Suppose the parameter is the value of random variable
H ∼ uniform on[0.005, 0.01], and X is conditionally exponential (u), given H = u. Determine
P (X > 150). Determine E [X|H = u] and use this to determine E [X].
Exercise 14.2.30 (Solution on p. 453.)

A system has n components. Time to failure of the ith component is Xi and the class
{Xi : 1 ≤ i ≤ n} is iid exponential (λ). The system fails if any one or more of the components

fails. Let W be the time to system failure. What is the probability the failure is due to the ith
component?

Suggestion. Note that W = Xi i� Xj > Xi for all j 6= i. Thus

{W = Xi} = {(X1, X2, · · · , Xn) ∈ Q}, Q = {(t1, t2, · · · tn) : tk > ti, ∀ k 6= i} (14.99)

P (W = Xi) = E [IQ (X1, X2, · · · , Xn)] = E{E [IQ (X1, X2, · · · , Xn) |Xi]} (14.100)
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Solutions to Exercises in Chapter 14

Solution to Exercise 14.2.1 (p. 437)
The regression line of Y on X is u = 0.5275t+ 0.6924.

npr08_07 (Section~17.8.38: npr08_07)

Data are in X, Y, P

jcalc

- - - - - - - - - - -

EYx = sum(u.*P)./sum(P);

disp([X;EYx]')

-3.1000 -0.0290

-0.5000 -0.6860

1.2000 1.3270

2.4000 2.1960

3.7000 3.8130

4.9000 2.5700

G = t.^2.*u + abs(t+u);

EZx = sum(G.*P)./sum(P);

disp([X;EZx]')

-3.1000 4.0383

-0.5000 3.5345

1.2000 6.0139

2.4000 17.5530

3.7000 59.7130

4.9000 69.1757

Solution to Exercise 14.2.2 (p. 437)
The regression line of Y on X is u = −0.2584t+ 5.6110.

npr08_08 (Section~17.8.39: npr08_08)

Data are in X, Y, P

jcalc

- - - - - - - - - - - -

EYx = sum(u.*P)./sum(P);

disp([X;EYx]')

1.0000 5.5350

3.0000 5.9869

5.0000 3.6500

7.0000 2.3100

9.0000 2.0254

11.0000 2.9100

13.0000 3.1957

15.0000 0.9100

17.0000 1.5254

19.0000 0.9100

M = u<=t;
G = (u-4).*sqrt(t).*M + t.*u.^2.*(1-M);

EZx = sum(G.*P)./sum(P);

disp([X;EZx]')

1.0000 58.3050

3.0000 166.7269

5.0000 175.9322
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7.0000 185.7896

9.0000 119.7531

11.0000 105.4076

13.0000 -2.8999

15.0000 -11.9675

17.0000 -10.2031

19.0000 -13.4690

Solution to Exercise 14.2.3 (p. 438)
The regression line of Y on X is u = −0.7793t+ 4.3051.

npr08_09 (Section~17.8.40: npr08_09)

Data are in X, Y, P

jcalc

- - - - - - - - - - - -

EYx = sum(u.*P)./sum(P);

disp([X;EYx]')

1.0000 3.8333

1.5000 3.1250

2.0000 2.5175

2.5000 2.3933

3.0000 2.3900

G = (u - 2.8)./t;

EZx = sum(G.*P)./sum(P);

disp([X;EZx]')

1.0000 1.0333

1.5000 0.2167

2.0000 -0.1412

2.5000 -0.1627

3.0000 -0.1367

Solution to Exercise 14.2.4 (p. 439)
The regression line of Y on X is u = 1− t.

fY |X (u|t) =
1

2 (1− t)
, 0 ≤ t ≤ 1, 0 ≤ u ≤ 2 (1− t) (14.101)

E [Y |X = t] =
1

2 (1− t)

∫ 2(1−t)

0

udu = 1− t, 0 ≤ t ≤ 1 (14.102)

tuappr: [0 1] [0 2] 200 400 u<=2*(1-t)
- - - - - - - - - - - - -

EYx = sum(u.*P)./sum(P);

plot(X,EYx) % Straight line thru (0,1), (1,0)

Solution to Exercise 14.2.5 (p. 439)
The regression line of Y on X is u = −t/11 + 35/33.

fY |X (u|t) =
(t+ u)

2 (t+ 1)
0 ≤ t ≤ 2, 0 ≤ u ≤ 2 (14.103)

E [Y |X = t] =
1

2 (t+ 1)

∫ 2

0

(
tu+ u2

)
du = 1 +

1
3t+ 3

0 ≤ t ≤ 2 (14.104)
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tuappr: [0 2] [0 2] 200 200 (1/8)*(t+u)

EYx = sum(u.*P)./sum(P);

eyx = 1 + 1./(3*X+3);

plot(X,EYx,X,eyx) % Plots nearly indistinguishable

Solution to Exercise 14.2.6 (p. 439)
The regression line of Y on X is u = 0.0958t+ 1.4876.

fY |X (u|t) =
2t+ 3u2

(1 + t) (1 + 4t+ t2)
0 ≤ u ≤ 1 + t (14.105)

E [Y |X = t] =
1

(1 + t) (1 + 4t+ t2)

∫ 1+t

0

(
2tu+ 3u3

)
du (14.106)

=
(t+ 1) (t+ 3) (3t+ 1)

4 (1 + 4t+ t2)
, 0 ≤ t ≤ 2 (14.107)

tuappr: [0 2] [0 3] 200 300 (3/88)*(2*t + 3*u.^2).*(u<=1+t)
EYx = sum(u.*P)./sum(P);

eyx = (X+1).*(X+3).*(3*X+1)./(4*(1 + 4*X + X.^2));

plot(X,EYx,X,eyx) % Plots nearly indistinguishable

Solution to Exercise 14.2.7 (p. 439)
The regression line of Y on X is u = (23t+ 4) /18.

fY |X (u|t) = I[−1,0] (t)
2u

(t+ 1)2 + I(0,1] (t)
2u

(1− t2)
on the parallelogram (14.108)

E [Y |X = t] = I[−1,0] (t)
1

(t+ 1)2

∫ t+1

0

2u du+ I(0,1] (t)
1

(1− t2)

∫ 1

t

2u du (14.109)

= I[−1,0] (t)
2
3

(t+ 1) + I(0,1] (t)
2
3
t2 + t+ 1
t+ 1

(14.110)

tuappr: [-1 1] [0 1] 200 100 12*t.^2.*u.*((u<= min(t+1,1))&(u>=max(0,t)))
EYx = sum(u.*P)./sum(P);

M = X<=0;
eyx = (2/3)*(X+1).*M + (2/3)*(1-M).*(X.^2 + X + 1)./(X + 1);

plot(X,EYx,X,eyx) % Plots quite close

Solution to Exercise 14.2.8 (p. 439)
The regression line of Y on X is u = (−124t+ 368) /431.

fY |X (u|t) = I[0,1] (t) 2u+ I(1,2] (t)
2u

(2− t)2 (14.111)

E [Y |X = t] = I[0,1] (t)
∫ 1

0

2u2 du+ I(1,2] (t)
1

(2− t)2

∫ 2−t

0

2u2 du (14.112)

= I[0,1] (t)
2
3

+ I(1,2] (t)
2
3

(2− t) (14.113)
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tuappr: [0 2] [0 1] 200 100 (24/11)*t.*u.*(u<=min(1,2-t))
EYx = sum(u.*P)./sum(P);

M = X <= 1;

eyx = (2/3)*M + (2/3).*(2 - X).*(1-M);

plot(X,EYx,X,eyx) % Plots quite close

Solution to Exercise 14.2.9 (p. 440)
The regression line of Y on X is u = 1.0561t− 0.2603.

fY |X (u|t) = I[0,1] (t)
t+ 2u

2 (2− t)
+ I(1,2] (t)

t+ 2u
2t2

0 ≤ u ≤ max (2− t, t) (14.114)

E [Y |X = t] = I[0,1] (t)
1

2 (2− t)

∫ 2−t

0

(
tu+ 2u2

)
du+ I(1,2] (t)

1
2t2

∫ t

0

(
tu+ 2u2

)
du (14.115)

= I[0,1] (t)
1
12

(t− 2) (t− 8) + I(1,2] (t)
7
12
t (14.116)

tuappr: [0 2] [0 2] 200 200 (3/23)*(t+2*u).*(u<=max(2-t,t))
EYx = sum(u.*P)./sum(P);

M = X<=1;
eyx = (1/12)*(X-2).*(X-8).*M + (7/12)*X.*(1-M);

plot(X,EYx,X,eyx) % Plots quite close

Solution to Exercise 14.2.10 (p. 440)
The regression line of Y on X is u = −0.1359t+ 1.0839.

fY |X (t|u) = I[0,1] (t)
t+ 2u

6t2
+ I(1,2] (t)

t+ 2u
3 (3− t)

0 ≤ u ≤ max (2t, 3− t) (14.117)

E [Y |X = t] = I[0,1] (t)
1

6t2

∫ t

0

(
tu+ 2u2

)
du+ I(1,2] (t)

1
3 (3− t)

∫ 3−t

0

(
tu+ 2u2

)
du (14.118)

= I[0,1] (t)
11
9
t+ I(1,2] (t)

1
18
(
t2 − 15t+ 36

)
(14.119)

tuappr: [0 2] [0 2] 200 200 (2/13)*(t+2*u).*(u<=min(2*t,3-t))
EYx = sum(u.*P)./sum(P);

M = X<=1;
eyx = (11/9)*X.*M + (1/18)*(X.^2 - 15*X + 36).*(1-M);

plot(X,EYx,X,eyx) % Plots quite close

Solution to Exercise 14.2.11 (p. 440)
The regression line of Y on X is u = 0.0817t+ 0.5989.

fY |X (t|u) = I[0,1] (t)
t2 + 2u
t2 + 1

+ I(1,2] (t) 3u2 0 ≤ u ≤ 1 (14.120)

E [Y |X = t] = I[0,1] (t)
1

t2 + 1

∫ 1

0

(
t2u+ 2u2

)
du+ I(1,2] (t)

∫ 1

0

3u3du (14.121)

= I[0,1] (t)
3t2 + 4

6 (t2 + 1)
+ I(1,2] (t)

3
4

(14.122)
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tuappr: [0 2] [0 1] 200 100 (3/8)*(t.^2 + 2*u).*(t<=1) + ...

(9/14)*t.^2.*u.^2.*(t>1)
EYx = sum(u.*P)./sum(P);

M = X<=1;
eyx = M.*(3*X.^2 + 4)./(6*(X.^2 + 1)) + (3/4)*(1 - M);

plot(X,EYx,X,eyx) % Plots quite close

Solution to Exercise 14.2.12 (p. 440)
Z = IM (X) 4X + IN (X) (X + Y ), Use of linearity, (CE8) ("(CE8)", p. 601), and (CE10) ("(CE10)", p.
601) gives

E [Z|X = t] = IM (t) 4t+ IN (t) (t+ E [Y |X = t]) (14.123)

= IM (t) 4t+ IN (t)
(
t+

(t+ 1) (t+ 3) (3t+ 1)
4 (1 + 4t+ t2)

)
(14.124)

% Continuation of Exercise~14.2.6

G = 4*t.*(t<=1) + (t + u).*(t>1);
EZx = sum(G.*P)./sum(P);

M = X<=1;
ezx = 4*X.*M + (X + (X+1).*(X+3).*(3*X+1)./(4*(1 + 4*X + X.^2))).*(1-M);

plot(X,EZx,X,ezx) % Plots nearly indistinguishable

Solution to Exercise 14.2.13 (p. 440)

Z = IM (X,Y )
1
2
X + IMc (X,Y )Y 2, M = {(t, u) : u > t} (14.125)

IM (t, u) = I[0,1] (t) I[t,1] (u) IMc (t, u) = I[0,1] (t) I[0,t] (u) + I(1,2] (t) I[0,2−t] (u) (14.126)

E [Z|X = t] = I[0,1] (t)
[
t

2

∫ 1

t

2u du+
∫ t

0

u2 · 2u du
]

+ I(1,2] (t)
∫ 2−t

0

u2 · 2u
(2− t)2 du (14.127)

= I[0,1] (t)
1
2
t
(
1− t2 + t3

)
+ I(1,2] (t)

1
2

(2− t)2
(14.128)

% Continuation of Exercise~14.2.6

Q = u>t;
G = (1/2)*t.*Q + u.^2.*(1-Q);

EZx = sum(G.*P)./sum(P);

M = X <= 1;

ezx = (1/2)*X.*(1-X.^2+X.^3).*M + (1/2)*(2-X).^2.*(1-M);

plot(X,EZx,X,ezx) % Plots nearly indistinguishable

Solution to Exercise 14.2.14 (p. 441)

Z = IM (X,Y ) (X + Y ) + IMc (X,Y ) 2Y, M = {(t, u) : max (t, u) ≤ 1} (14.129)

IM (t, u) = I[0,1] (t) I[0,1] (u) IMc (t, u) = I[0,1] (t) I[1,2−t] (u) + I(1,2] (t) I[0,t] (u) (14.130)
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E [Z|X = t] = I[0,1] (t) 1
2(2−t)

∫ 1

0
(t+ u) (t+ 2u) du + 1

(2−t)

∫ 2−t

1
u (t+ 2u) du +

I(1,2] (t) 2E [Y |X = t]

(14.131)

= I[0,1] (t)
1
12
· 2t3 − 30t2 + 69t− 60

t− 2
+ I(1,2] (t)

7
6

2t (14.132)

% Continuation of Exercise~14.2.9

M = X <= 1;

Q = (t<=1)&(u<=1);
G = (t+u).*Q + 2*u.*(1-Q);

EZx = sum(G.*P)./sum(P);

ezx = (1/12)*M.*(2*X.^3 - 30*X.^2 + 69*X -60)./(X-2) + (7/6)*X.*(1-M);

plot(X,EZx,X,ezx)

Solution to Exercise 14.2.15 (p. 441)

Z = IM (X,Y ) (X + Y ) + IMc (X,Y ) 2Y 2, M = {(t, u) : t ≤ 1, u ≥ 1} (14.133)

IM (t, u) = I[0,1] (t) I[1,2] (u) IMc (t, u) = I[0,1] (t) I[0,1) (u) + I(1,2] (t) I[0,3−t] (u) (14.134)

E [Z|X = t] = I[0,1/2] (t)
1

6t2

∫ 2t

0

2u2 (t+ 2u) du+ (14.135)

I(1/2,1] (t)
[

1
6t2

∫ 1

0

2u2 (t+ 2u) du+
1

6t2

∫ 2t

1

(t+ u) (t+ 2u) du
]

+ I(1,2] (t)
1

3 (3− t)

∫ 3−t

0

2u2 (t+ 2u) du

(14.136)

= I[0,1/2] (t)
32
9
t2 + I(1/2,1] (t)

1
36
· 80t3 − 6t2 − 5t+ 2

t2
+ I(1,2] (t)

1
9
(
−t3 + 15t2 − 63t+ 81

)
(14.137)

tuappr: [0 2] [0 2] 200 200 (2/13)*(t + 2*u).*(u<=min(2*t,3-t))
M = (t<=1)&(u>=1);
Q = (t+u).*M + 2*(1-M).*u.^2;

EZx = sum(Q.*P)./sum(P);

N1 = X <= 1/2;

N2 = (X > 1/2)&(X<=1);
N3 = X > 1;

ezx = (32/9)*N1.*X.^2 + (1/36)*N2.*(80*X.^3 - 6*X.^2 - 5*X + 2)./X.^2 ...

+ (1/9)*N3.*(-X.^3 + 15*X.^2 - 63.*X + 81);

plot(X,EZx,X,ezx)

Solution to Exercise 14.2.16 (p. 441)

Z = IM (X,Y )X + IMc (X,Y )XY, M = {(t, u) : u ≤ min (1, 2− t)} (14.138)

E [|X = t] = I[0,1] (t)
∫ 1

0

t3 + 2tu
t2 + 1

du+ I(1,2] (t)
[∫ 2−t

0

3tu2 du+
∫ 1

2−t
3tu3 du

]
(14.139)
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= I[0,1] (t) t+ I(1,2] (t)
(
−13

4
t+ 12t2 − 12t3 + 5t4 − 3

4
t5
)

(14.140)

tuappr: [0 2] [0 1] 200 100 (t<=1).*(t.^2 + 2*u)./(t.^2 + 1) +3*u.^2.*(t>1)
M = u<=min(1,2-t);
G = M.*t + (1-M).*t.*u;

EZx = sum(G.*P)./sum(P);

N = X<=1;
ezx = X.*N + (1-N).*(-(13/4)*X + 12*X.^2 - 12*X.^3 + 5*X.^4 - (3/4)*X.^5);

plot(X,EZx,X,ezx)

Solution to Exercise 14.2.17 (p. 441)

a. E [Y |X = i] = i/2, so

E [Y ] =
n∑
i=0

E [Y |X = i]P (X = i) =
1

n+ 1

n∑
i=1

i/2 = n/4 (14.141)

b. P (X = i) = 1/ (n+ 1) , 0 ≤ i ≤ n, P (Y = k|X = i) = 1/ (i+ 1) , 0 ≤ k ≤ i; hence
P (X = i, Y = k) = 1/ (n+ 1) (i+ 1) 0 ≤ i ≤ n, 0 ≤ k ≤ i.

n = 50; X = 0:n; Y = 0:n;

P0 = zeros(n+1,n+1);

for i = 0:n

P0(i+1,1:i+1) = (1/((n+1)*(i+1)))*ones(1,i+1);

end

P = rot90(P0);

jcalc: X Y P

- - - - - - - - - - -

EY = dot(Y,PY)

EY = 12.5000 % Comparison with part (a): 50/4 = 12.5

Solution to Exercise 14.2.18 (p. 441)

a. E [Y |X = i] = (i+ 1) /2, so

E [Y ] =
n∑
i=1

E [Y |X = i]P (X = i) =
1
n

n∑
i=1

i+ 1
2

=
n+ 3

4
(14.142)

b. P (X = i) = 1/n, 1 ≤ i ≤ n, P (Y = k|X = i) = 1/i, 1 ≤ k ≤ i; hence P (X = i, Y = k) = 1/ni 1 ≤
i ≤ n, 1 ≤ k ≤ i.

n = 50; X = 1:n; Y = 1:n;

P0 = zeros(n,n);

for i = 1:n

P0(i,1:i) = (1/(n*i))*ones(1,i);

end

P = rot90(P0);

jcalc: P X Y

- - - - - - - - - - - -

EY = dot(Y,PY)

EY = 13.2500 % Comparison with part (a): 53/4 = 13.25

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



451

Solution to Exercise 14.2.19 (p. 442)

a. E [Y |X = i] = ip, so

E [Y ] =
n∑
i=1

E [Y |X = i]P (X = i) =
p

n

n∑
i=1

i =
p (n+ 1)

2
(14.143)

b. P (X = i) = 1/n, 1 ≤ i ≤ n, P (Y = k|X = i) = ibinom (i, p, 0 : i) , 0 ≤ k ≤ i.

n = 50; p = 0.3; X = 1:n; Y = 0:n;

P0 = zeros(n,n+1); % Could use randbern

for i = 1:n

P0(i,1:i+1) = (1/n)*ibinom(i,p,0:i);

end

P = rot90(P0);

jcalc: X Y P

- - - - - - - - - - -

EY = dot(Y,PY)

EY = 7.6500 % Comparison with part (a): 0.3*51/2 = 0.765

Solution to Exercise 14.2.20 (p. 442)

a. P (X = i) = 1/n, E [Y |X = i] = i/6, so

E [Y ] =
1
6

n∑
i=0

i/n =
(n+ 1)

12
(14.144)

b.

n = 100; p = 1/6; X = 1:n; Y = 0:n; PX = (1/n)*ones(1,n);

P0 = zeros(n,n+1); % Could use randbern

for i = 1:n

P0(i,1:i+1) = (1/n)*ibinom(i,p,0:i);

end

P = rot90(P0);

jcalc

EY = dot(Y,PY)

EY = 8.4167 % Comparison with part (a): 101/12 = 8.4167

Solution to Exercise 14.2.21 (p. 442)
Same as Exercise 14.2.20, except p = 1/10. E [Y ] = (n+ 1) /20.

n = 100; p = 0.1; X = 1:n; Y = 0:n; PX = (1/n)*ones(1,n);

P0 = zeros(n,n+1); % Could use randbern

for i = 1:n

P0(i,1:i+1) = (1/n)*ibinom(i,p,0:i);

end

P = rot90(P0);

jcalc

- - - - - - - - - -

EY = dot(Y,PY)

EY = 5.0500 % Comparison with part (a): EY = 101/20 = 5.05
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Solution to Exercise 14.2.22 (p. 442)

E [Y ] =
∫
E [Y |X = t] fX (t) dt =

∫ 2

1

10t (4− 2t) dt = 40/3 (14.145)

Solution to Exercise 14.2.23 (p. 442)

E [Y ] =
∫
E [Y |X = t] fX (t) dt =

∫ 1

0

20t2(1− t)3
dt = 1/3 (14.146)

Solution to Exercise 14.2.24 (p. 442)

E [Y ] =
∫
E [Y |X = t] fX (t) dt =

5
8

∫ 2

0

t2(2− t)3
dt = 2/3 (14.147)

Solution to Exercise 14.2.25 (p. 442)
X ∼ Poisson (µ), Y ∼ Poisson (λ), Use of property (T1) ("(T1)", p. 387) and generating functions shows
that X + Y ∼ Poisson (µ+ λ)

P (X = k|X + Y = n) =
P (X = k,X + Y = n)

P (X + Y = n)
=
P (X = k, Y = n− k)

P (X + Y = n)
(14.148)

=
e−µ µ

k

k! e
−λ λn−k

(n−k)!

e−(µ+λ) (µ+λ)n

n!

=
n!

k! (n− k)!
µkλn−k

(µ+ λ)n
(14.149)

Put p = µ/ (µ+ λ) and q = 1− p = λ/ (µ+ λ) to get the desired result.
Solution to Exercise 14.2.26 (p. 442)

E [g (X,Y ) |X = t, Z = v] = E [g∗ (X,Z, Y ) | (X,Z) = (t, v)] = E [g∗ (t, v, Y ) | (X,Z) = (t, v)] (14.150)

= E [g (t, Y ) |X = t, Z = v] a.s. [PXZ ] by (CE10) (14.151)

Solution to Exercise 14.2.27 (p. 442)
By (CE9) ("(CE9)", p. 601), E [g (X,Y ) |Z] = E{E [g (X,Y ) |X,Z] |Z} = E [e (X,Z) |Z] a.s.

By (CE10),

E [e (X,Z) |Z = v] = E [e (X, v) |Z = v] = (14.152)

∫
e (t, v)FX|Z (dt|v) a.s. (14.153)

By Exercise 14.2.26, ∫
E [g (X,Y ) |X = t, Z = v]FX|Z (dt|v) = (14.154)

∫
E [g (t, Y ) |X = t, Z = v]FX|Z (dt|v) a.s. [PZ ] (14.155)

Solution to Exercise 14.2.28 (p. 442)

FY (v) =
∫
FY |T (v|u) fT (u) du =

∫ 1

0

(
1− e−β(2−u)v

)
du = (14.156)

1− e−2βv e
βv − 1
βv

= 1− e−βv
[

1− e−βv

βv

]
, 0 < v (14.157)
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Solution to Exercise 14.2.29 (p. 443)

FX|H (t|u) = 1− e−ut fH (u) =
1

0.005
= 200, 0.005 ≤ u ≤ 0.01 (14.158)

FX (t) = 1− 200
∫ 0.01

0.005

e−ut du = 1− 200
t

[
e−0.005t − e−0.01t

]
(14.159)

P (X > 150) =
200
150

[
e−0.75 − e−1.5

]
≈ 0.3323 (14.160)

E [X|H = u] = 1/u E [X] = 200
∫ 0.01

0.005

du

u
= 200ln2 (14.161)

Solution to Exercise 14.2.30 (p. 443)
Let Q = {(t1, t2, · · · , tn) : tk > ti, k 6= i}. Then

P (W = Xi) = E [IQ (X1, X2, · · · , Xn)] = E{E [IQ (X1, X2, · · · , Xn) |Xi]} (14.162)

=
∫
E [IQ (X1, X2, · · · , ti, · · · Xn)]FX (dt) (14.163)

E [IQ (X1, X2, · · · , ti, · · · Xn)] =
∏
k 6=i

P (Xk > t) = [1− FX (t)]n−1
(14.164)

If FX is continuous, strictly increasing, zero for t < 0, put u = FX (t), du = fX (t) dt. t = 0 ∼ u = 0,
t =∞ ∼ u = 1. Then

P (W = Xi) =
∫ 1

0

(1− u)n−1
du =

∫ 1

0

un−1 du = 1/n (14.165)
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Chapter 15

Random Selection

15.1 Random Selection1

15.1.1 Introduction

The usual treatments deal with a single random variable or a �xed, �nite number of random variables,
considered jointly. However, there are many common applications in which we select at random a member of
a class of random variables and observe its value, or select a random number of random variables and obtain
some function of those selected. This is formulated with the aid of a counting or selecting random variable
N, which is nonegative, integer valued. It may be independent of the class selected, or may be related in
some sequential way to members of the class. We consider only the independent case. Many important
problems require optional random variables, sometimes called Markov times. These involve more theory
than we develop in this treatment.

Some common examples:

1. Total demand of N customers� N independent of the individual demands.
2. Total service time for N units� N independent of the individual service times.
3. Net gain in N plays of a game� N independent of the individual gains.
4. Extreme values of N random variables� N independent of the individual values.
5. Random sample of size N� N is usually determined by propereties of the sample observed.
6. Decide when to play on the basis of past results� N dependent on past.

15.1.2 A useful model�random sums

As a basic model, we consider the sum of a random number of members of an iid class. In order to have a
concrete interpretation to help visualize the formal patterns, we think of the demand of a random number of
customers. We suppose the number of customers N is independent of the individual demands. We formulate
a model to be used for a variety of applications.

A basic sequence {Xn : 0 ≤ n} [Demand of n customers]
An incremental sequence {Yn : 0 ≤ n} [Individual demands]
These are related as follows:

Xn =
n∑
k=0

Yk for n ≥ 0 and Xn = 0 for n < 0 Yn = Xn −Xn−1 for all n (15.1)

1This content is available online at <http://cnx.org/content/m23652/1.6/>.
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A counting random variable N. If N = n then n of the Yk are added to give the compound demand
D (the random sum)

D =
N∑
k=0

Yk =
∞∑
k=0

I{N=k}Xk =
∞∑
k=0

I{k} (N)Xk (15.2)

Note. In some applications the counting random variable may take on the idealized value ∞. For example,
in a game that is played until some speci�ed result occurs, this may never happen, so that no �nite value
can be assigned to N. In such a case, it is necessary to decide what value X∞ is to be assigned. For N
independent of the Yn (hence of the Xn), we rarely need to consider this possibility.

Independent selection from an iid incremental sequence
We assume throughout, unless speci�cally stated otherwise, that:

1. X0 = Y0 = 0
2. {Yk : 1 ≤ k} is iid
3. {N, Yk : 0 ≤ k} is an independent class

We utilize repeatedly two important propositions:

1. E [h (D) |N = n] = E [h (Xn)] , n ≥ 0.
2. MD (s) = gN [MY (s)]. If the Yn are nonnegative integer valued, then so is D and gD (s) = gN [gY (s)]

DERIVATION
We utilize properties of generating functions, moment generating functions, and conditional expectation.

1. E
[
I{n} (N)h (D)

]
= E [h (D) |N = n]P (N = n) by de�nition of conditional expectation, given an

event. Now, I{n} (N)h (D) = I{n} (N)h (Xn) and E
[
I{n} (N)h (Xn)

]
= P (N = n)E [h (Xn)]. Hence

E [h (D) |N = n]P (N = n) = P (N = n)E [h (Xn)]. Division by P (N = n) gives the desired result.
2. By the law of total probability (CE1b), MD (s) = E

[
esD
]

= E{E
[
esD|N

]
}. By proposition 1 and the

product rule for moment generating functions,

E
[
esD|N = n

]
= E

[
esXn

]
=

n∏
k=1

E
[
esYk

]
= Mn

Y (s) (15.3)

Hence

MD (s) =
∞∑
n=0

Mn
Y (s)P (N = n) = gN [MY (s)] (15.4)

A parallel argument holds for gD in the integer-valued case.

� �
Remark. The result on MD and gD may be developed without use of conditional expectation.

MD (s) = E
[
esD
]

=
∞∑
k=0

E
[
I{N=n}e

sXn
]

=
∞∑
k=0

P (N = n)E
[
esXn

]
(15.5)

=
∞∑
k=0

P (N = n)Mn
Y (s) = gN [MY (s)] (15.6)

� �

Example 15.1: A service shop
Suppose the number N of jobs brought to a service shop in a day is Poisson (8). One fourth of
these are items under warranty for which no charge is made. Others fall in one of two categories.
One half of the arriving jobs are charged for one hour of shop time; the remaining one fourth are
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charged for two hours of shop time. Thus, the individual shop hour charges Yk have the common
distribution

Y = [0 1 2] with probabilities PY = [1/4 1/2 1/4] (15.7)

Make the basic assumptions of our model. Determine P (D ≤ 4).
SOLUTION

gN (s) = e8(s−1) gY (s) =
1
4
(
1 + 2s+ s2

)
(15.8)

According to the formula developed above,

gD (s) = gN [gY (s)] = exp
(
(8/4)

(
1 + 2s+ s2

)
− 8
)

= e4se2s2e−6 (15.9)

Expand the exponentials in power series about the origin, multiply out to get enough terms. The
result of straightforward but somewhat tedious calculations is

gD (s) = e−6

(
1 + 4s+ 10s2 +

56
3
s3 +

86
3
s4 + · · ·

)
(15.10)

Taking the coe�cients of the generating function, we get

P (D ≤ 4) ≈ e−6

(
1 + 4 + 10 +

56
3

+
86
3

)
= e−6 187

3
≈ 0.1545 (15.11)

Example 15.2: A result on Bernoulli trials
Suppose the counting random variable N ∼ binomial (n, p) and Yi = IEi , with P (Ei) = p0. Then

gN = (q + ps)n and gY (s) = q0 + p0s (15.12)

By the basic result on random selection, we have

gD (s) = gN [gY (s)] = [q + p (q0 + p0s)]
n = [(1− pp0) + pp0s]

n
(15.13)

so that D ∼ binomial (n, pp0).
In the next section we establish useful m-procedures for determining the generating function gD and the mo-
ment generating function MD for the compound demand for simple random variables, hence for determining
the complete distribution. Obviously, these will not work for all problems. It may helpful, if not entirely
su�cient, in such cases to be able to determine the mean value E [D] and variance Var [D]. To this end, we
establish the following expressions for the mean and variance.

Example 15.3: Mean and variance of the compound demand

E [D] = E [N ]E [Y ] and Var [D] = E [N ] Var [Y ] + Var [N ]E2 [Y ] (15.14)

DERIVATION

E [D] = E

[ ∞∑
n=0

I{N=n}Xn

]
=
∞∑
n=0

P (N = n)E [Xn] (15.15)

= E [Y ]
∞∑
n=0

nP (N = n) = E [Y ]E [N ] (15.16)

E
[
D2
]

=
∞∑
n=0

P (N = n)E
[
X2
n

]
=
∞∑
n=0

P (N = n) {Var [Xn] + E2 [Xn]} (15.17)
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=
∞∑
n=0

P (N = n) {nVar [Y ] + n2E2 [Y ]} = E [N ] Var [Y ] + E
[
N2
]
E2 [Y ] (15.18)

Hence

Var [D] = E [N ] Var [Y ] + E
[
N2
]
E2 [Y ]− E[N ]2E2 [Y ] = E [N ] Var [Y ] + Var [N ]E2 [Y ] (15.19)

Example 15.4: Mean and variance for Example 15.1 ( A service shop)
E [N ] = Var [N ] = 8. By symmetry E [Y ] = 1. Var [Y ] = 0.25 (0 + 2 + 4)− 1 = 0.5. Hence,

E [D] = 8 · 1 = 8, Var [D] = 8 · 0.5 + 8 · 1 = 12 (15.20)

15.1.3 Calculations for the compound demand

We have m-procedures for performing the calculations necessary to determine the distribution for a composite
demand D when the counting random variable N and the individual demands Yk are simple random variables
with not too many values. In some cases, such as for a Poisson counting random variable, we are able to
approximate by a simple random variable.

The procedure gend
If the Yi are nonnegative, integer valued, then so is D, and there is a generating function. We examine

a strategy for computation which is implemented in the m-procedure gend. Suppose

gN (s) = p0 + p1s+ p2s
2 + · · ·+ pns

n (15.21)

gY (s) = π0 + π1s+ π2s
2 + · · ·+ πms

m (15.22)

The coe�cients of gN and gY are the probabilities of the values of N and Y, respectively. We enter these
and calculate the coe�cients for powers of gY:

gN = [p0 p1 · · · pn] 1× (n+ 1) Coe�cients of gN

y = [π0 π1 · · · πm] 1× (m+ 1) Coe�cients of gY

· · ·
y2 = conv (y, y) 1× (2m+ 1) Coe�cients of g2

Y

y3 = conv (y, y2) 1× (3m+ 1) Coe�cients of g3
Y

· · ·
yn = conv (y, y (n− 1)) 1× (nm+ 1) Coe�cients of gnY

(15.23)

We wish to generate a matrix P whose rows contain the joint probabilities. The probabilities in the ith row
consist of the coe�cients for the appropriate power of gY multiplied by the probability N has that value.
To achieve this, we need a matrix, each of whose n + 1 rows has nm + 1 elements, the length of yn. We
begin by �preallocating� zeros to the rows. That is, we set P = zeros (n+ 1, n ∗m+ 1). We then replace the
appropriate elements of the successive rows. The replacement probabilities for the ith row are obtained by
the convolution of gY and the power of gY for the previous row. When the matrix P is completed, we remove
zero rows and columns, corresponding to missing values of N and D (i.e., values with zero probability). To
orient the joint probabilities as on the plane, we rotate P ninety degrees counterclockwise. With the joint
distribution, we may then calculate any desired quantities.
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Example 15.5: A compound demand
The number of customers in a major appliance store is equally likely to be 1, 2, or 3. Each customer
buys 0, 1, or 2 items with respective probabilities 0.5, 0.4, 0.1. Customers buy independently,
regardless of the number of customers. First we determine the matrices representing gN and gY. The
coe�cients are the probabilities that each integer value is observed. Note that the zero coe�cients
for any missing powers must be included.

gN~=~(1/3)*[0~1~1~1];~~~~%~Note~zero~coefficient~for~missing~zero~power

gY~=~0.1*[5~4~1];~~~~~~~~%~All~powers~0~thru~2~have~positive~coefficients

gend

~Do~not~forget~zero~coefficients~for~missing~powers

Enter~the~gen~fn~COEFFICIENTS~for~gN~gN~~~~%~Coefficient~matrix~named~gN

Enter~the~gen~fn~COEFFICIENTS~for~gY~gY~~~~%~Coefficient~matrix~named~gY

Results~are~in~N,~PN,~Y,~PY,~D,~PD,~P

May~use~jcalc~or~jcalcf~on~N,~D,~P

To~view~distribution~for~D,~call~for~gD

disp(gD)~~~~~~~~~~~~~~~~~~%~Optional~display~of~complete~distribution

~~~~~~~~~0~~~~0.2917

~~~~1.0000~~~~0.3667

~~~~2.0000~~~~0.2250

~~~~3.0000~~~~0.0880

~~~~4.0000~~~~0.0243

~~~~5.0000~~~~0.0040

~~~~6.0000~~~~0.0003

EN~=~N*PN'

EN~=~~~2

EY~=~Y*PY'

EY~=~~0.6000

ED~=~D*PD'

ED~=~~1.2000~~~~~~~~~~~~~~~~%~Agrees~with~theoretical~EN*EY

P3~=~(D>=3)*PD'
P3~~=~0.1167~~~~~~~~~~~~~~~~

[N,D,t,u,PN,PD,PL]~=~jcalcf(N,D,P);

EDn~=~sum(u.*P)./sum(P);

disp([N;EDn]')

~~~~1.0000~~~~0.6000~~~~~~~~%~Agrees~with~theoretical~E[D|N=n]~=~n*EY

~~~~2.0000~~~~1.2000

~~~~3.0000~~~~1.8000

VD~=~(D.^2)*PD'~-~ED^2

VD~=~~1.1200~~~~~~~~~~~~~~~~%~Agrees~with~theoretical~EN*VY~+~VN*EY^2

Example 15.6: A numerical example

gN (s) =
1
5
(
1 + s+ s2 + s3 + s4

)
gY (s) = 0.1

(
5s+ 3s2 + 2s3

)
(15.24)

Note that the zero power is missing from gY , corresponding to the fact that P (Y = 0) = 0.

gN~=~0.2*[1~1~1~1~1];

gY~=~0.1*[0~5~3~2];~~~~~~%~Note~the~zero~coefficient~in~the~zero~position

gend

Do~not~forget~zero~coefficients~for~missing~powers

Enter~the~gen~fn~COEFFICIENTS~for~gN~~gN
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Enter~the~gen~fn~COEFFICIENTS~for~gY~~gY

Results~are~in~N,~PN,~Y,~PY,~D,~PD,~P

May~use~jcalc~or~jcalcf~on~N,~D,~P

To~view~distribution~for~D,~call~for~gD

disp(gD)~~~~~~~~~~~~~~~~~%~Optional~display~of~complete~distribution

~~~~~~~~~0~~~~0.2000

~~~~1.0000~~~~0.1000

~~~~2.0000~~~~0.1100

~~~~3.0000~~~~0.1250

~~~~4.0000~~~~0.1155

~~~~5.0000~~~~0.1110

~~~~6.0000~~~~0.0964

~~~~7.0000~~~~0.0696

~~~~8.0000~~~~0.0424

~~~~9.0000~~~~0.0203

~~~10.0000~~~~0.0075

~~~11.0000~~~~0.0019

~~~12.0000~~~~0.0003

p3~=~(D~==~3)*PD'~~~~~~~~%~P(D=3)

P3~=~~0.1250

P4_12~=~((D~>=~4)&(D~<=~12))*PD'
P4_12~=~0.4650~~~~~~~~~~~%~P(4~<=~D~<=~12)

Example 15.7: Number of successes for random number N of trials.
We are interested in the number of successes in N trials for a general counting random variable. This
is a generalization of the Bernoulli case in Example 15.2 ( A result on Bernoulli trials). Suppose,
as in Example 15.5 (A compound demand), the number of customers in a major appliance store is
equally likely to be 1, 2, or 3, and each buys at least one item with probability p = 0.6. Determine
the distribution for the number D of buying customers.

SOLUTION
We use gN, gY , and gend.

gN~=~(1/3)*[0~1~1~1];~%~Note~zero~coefficient~for~missing~zero~power

gY~=~[0.4~0.6];~~~~~~~%~Generating~function~for~the~indicator~function

gend

Do~not~forget~zero~coefficients~for~missing~powers

Enter~gen~fn~COEFFICIENTS~for~gN~~gN

Enter~gen~fn~COEFFICIENTS~for~gY~~gY

Results~are~in~N,~PN,~Y,~PY,~D,~PD,~P

May~use~jcalc~or~jcalcf~on~N,~D,~P

To~view~distribution~for~D,~call~for~gD

disp(gD)

~~~~~~~~~0~~~~0.2080

~~~~1.0000~~~~0.4560

~~~~2.0000~~~~0.2640

~~~~3.0000~~~~0.0720

The procedure gend is limited to simple N and Yk, with nonnegative integer values. Sometimes, a random
variable with unbounded range may be approximated by a simple random variable. The solution in the
following example utilizes such an approximation procedure for the counting random variable N.

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



461

Example 15.8: Solution of the shop time Example 15.1 ( A service shop)
The number N of jobs brought to a service shop in a day is Poisson (8). The individual shop hour
charges Yk have the common distribution Y = [012] with probabilities PY = [1/41/21/4].

Under the basic assumptions of our model, determine P (D ≤ 4).
SOLUTION
Since Poisson N is unbounded, we need to check for a su�cient number of terms in a simple

approximation. Then we proceed as in the simple case.

pa~=~cpoisson(8,10:5:30)~~~~~%~Check~for~sufficient~number~of~terms

pa~=~~~0.2834~~~~0.0173~~~~0.0003~~~~0.0000~~~~0.0000

p25~=~cpoisson(8,25)~~~~~~~~~%~Check~on~choice~of~n~=~25

p25~=~~1.1722e-06

gN~=~ipoisson(8,0:25);~~~~~~~%~Approximate~gN

gY~=~0.25*[1~2~1];

gend

Do~not~forget~zero~coefficients~for~missing~powers

Enter~gen~fn~COEFFICIENTS~for~gN~~gN

Enter~gen~fn~COEFFICIENTS~for~gY~~gY

Results~are~in~N,~PN,~Y,~PY,~D,~PD,~P

May~use~jcalc~or~jcalcf~on~N,~D,~P

To~view~distribution~for~D,~call~for~gD

disp(gD(D<=20,:))~~~~~~~~~~~~%~Calculated~values~to~D~=~50
~~~~~~~~~0~~~~0.0025~~~~~~~~~%~Display~for~D~<=~20
~~~~1.0000~~~~0.0099

~~~~2.0000~~~~0.0248

~~~~3.0000~~~~0.0463

~~~~4.0000~~~~0.0711

~~~~5.0000~~~~0.0939

~~~~6.0000~~~~0.1099

~~~~7.0000~~~~0.1165

~~~~8.0000~~~~0.1132

~~~~9.0000~~~~0.1021

~~~10.0000~~~~0.0861

~~~11.0000~~~~0.0684

~~~12.0000~~~~0.0515

~~~13.0000~~~~0.0369

~~~14.0000~~~~0.0253

~~~15.0000~~~~0.0166

~~~16.0000~~~~0.0105

~~~17.0000~~~~0.0064

~~~18.0000~~~~0.0037

~~~19.0000~~~~0.0021

~~~20.0000~~~~0.0012

sum(PD)~~~~~~~~~~~~~~~~~~~~~~~%~Check~on~sufficiency~of~approximation

ans~=~~1.0000

P4~=~(D<=4)*PD'
P4~=~~~0.1545~~~~~~~~~~~~~~~~~%~Theoretical~value~(4~~places)~=~0.1545

ED~=~D*PD'

ED~=~~~8.0000~~~~~~~~~~~~~~~~~%~Theoretical~=~8~~(Example~15.4 (Mean and variance for Example~15.1 ( A service shop)))

VD~=~(D.^2)*PD'~-~ED^2

VD~=~~11.9999~~~~~~~~~~~~~~~~~%~Theoretical~=~12~(Example~15.4 (Mean and variance for Example~15.1 ( A service shop)))
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The m-procedures mgd and jmgd
The next example shows a fundamental limitation of the gend procedure. The values for the individual

demands are not limited to integers, and there are considerable gaps between the values. In this case, we
need to implement the moment generating function MD rather than the generating function gD.

In the generating function case, it is as easy to develop the joint distribution for {N,D} as to develop the
marginal distribution for D. For the moment generating function, the joint distribution requires considerably
more computation. As a consequence, we �nd it convenient to have two m-procedures: mgd for the marginal
distribution and jmgd for the joint distribution.

Instead of the convolution procedure used in gend to determine the distribution for the sums of the
individual demands, the m-procedure mgd utilizes the m-function mgsum to obtain these distributions. The
distributions for the various sums are concatenated into two row vectors, to which csort is applied to obtain
the distribution for the compound demand. The procedure requires as input the generating function for N
and the actual distribution, Y and PY , for the individual demands. For gN , it is necessary to treat the
coe�cients as in gend. However, the actual values and probabilities in the distribution for Y are put into a
pair of row matrices. If Y is integer valued, there are no zeros in the probability matrix for missing values.

Example 15.9: Noninteger values
A service shop has three standard charges for a certain class of warranty services it performs: $10,
$12.50, and $15. The number of jobs received in a normal work day can be considered a random
variable N which takes on values 0, 1, 2, 3, 4 with equal probabilities 0.2. The job types for arrivals
may be represented by an iid class {Yi : 1 ≤ i ≤ 4}, independent of the arrival process. The Yi

take on values 10, 12.5, 15 with respective probabilities 0.5, 0.3, 0.2. Let C be the total amount of
services rendered in a day. Determine the distribution for C.

SOLUTION

gN~=~0.2*[1~1~1~1~1];~~~~~~~~~%~Enter~data

Y~=~[10~12.5~15];

PY~=~0.1*[5~3~2];

mgd~~~~~~~~~~~~~~~~~~~~~~~~~~~%~Call~for~procedure

Enter~gen~fn~COEFFICIENTS~for~gN~~gN

Enter~VALUES~for~Y~~Y

Enter~PROBABILITIES~for~Y~~PY

Values~are~in~row~matrix~D;~probabilities~are~in~PD.

To~view~the~distribution,~call~for~mD.

disp(mD)~~~~~~~~~~~~~~~~~~~~~~%~Optional~display~of~distribution

~~~~~~~~~0~~~~0.2000

~~~10.0000~~~~0.1000

~~~12.5000~~~~0.0600

~~~15.0000~~~~0.0400

~~~20.0000~~~~0.0500

~~~22.5000~~~~0.0600

~~~25.0000~~~~0.0580

~~~27.5000~~~~0.0240

~~~30.0000~~~~0.0330

~~~32.5000~~~~0.0450

~~~35.0000~~~~0.0570

~~~37.5000~~~~0.0414

~~~40.0000~~~~0.0353

~~~42.5000~~~~0.0372

~~~45.0000~~~~0.0486

~~~47.5000~~~~0.0468

~~~50.0000~~~~0.0352

~~~52.5000~~~~0.0187
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~~~55.0000~~~~0.0075

~~~57.5000~~~~0.0019

~~~60.0000~~~~0.0003

We next recalculate Example 15.6 (A numerical example), above, using mgd rather than gend.

Example 15.10: Recalculation of Example 15.6 (A numerical example)
In Example 15.6 (A numerical example), we have

gN (s) =
1
5
(
1 + s+ s2 + s3 + s4

)
gY (s) = 0.1

(
5s+ 3s2 + 2s3

)
(15.25)

This means that the distribution for Y is Y = [123] and PY = 0.1 ∗ [532].
We use the same expression for gN as in Example 15.6 (A numerical example).

gN~=~0.2*ones(1,5);

Y~=~1:3;

PY~=~0.1*[5~3~2];

mgd

Enter~gen~fn~COEFFICIENTS~for~gN~~gN

Enter~VALUES~for~Y~~Y

Enter~PROBABILITIES~for~Y~~PY

Values~are~in~row~matrix~D;~probabilities~are~in~PD.

To~view~the~distribution,~call~for~mD.

disp(mD)

~~~~~~~~~0~~~~0.2000

~~~~1.0000~~~~0.1000

~~~~2.0000~~~~0.1100

~~~~3.0000~~~~0.1250

~~~~4.0000~~~~0.1155

~~~~5.0000~~~~0.1110

~~~~6.0000~~~~0.0964

~~~~7.0000~~~~0.0696

~~~~8.0000~~~~0.0424

~~~~9.0000~~~~0.0203

~~~10.0000~~~~0.0075

~~~11.0000~~~~0.0019

~~~12.0000~~~~0.0003

P3~=~(D==3)*PD'

P3~=~~~0.1250

ED~=~D*PD'

ED~=~~~3.4000

P_4_12~=~((D>=4)&(D<=12))*PD'
P_4_12~=~~0.4650

P7~=~(D>=7)*PD'
P7~=~~~0.1421

As expected, the results are the same as those obtained with gend.

If it is desired to obtain the joint distribution for {N,D}, we use a modi�cation of mgd called jmgd. The
complications come in placing the probabilities in the P matrix in the desired positions. This requires
some calculations to determine the appropriate size of the matrices used as well as a procedure to put each
probability in the position corresponding to its D value. Actual operation is quite similar to the operation
of mgd, and requires the same data format.
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A principle use of the joint distribution is to demonstrate features of the model, such as E [D|N = n] =
nE [Y ], etc. This, of course, is utilized in obtaining the expressions for MD (s) in terms of gN (s) and
MY (s). This result guides the development of the computational procedures, but these do not depend upon
this result. However, it is usually helpful to demonstrate the validity of the assumptions in typical examples.

Remark. In general, if the use of gend is appropriate, it is faster and more e�cient than mgd (or jmgd).
And it will handle somewhat larger problems. But both m-procedures work quite well for problems of
moderate size, and are convenient tools for solving various �compound demand� type problems.

15.2 Some Random Selection Problems2

In the unit on Random Selection (Section 15.1), we develop some general theoretical results and compu-
tational procedures using MATLAB. In this unit, we extend the treatment to a variety of problems. We
establish some useful theoretical results and in some cases use MATLAB procedures, including those in the
unit on random selection.

15.2.1 The Poisson decomposition

In many problems, the individual demands may be categorized in one of m types. If the random variable Ti
is the type of the ith arrival and the class {Ti : 1 ≤ i} is iid, we have multinomial trials. For m = 2 we have
the Bernoulli or binomial case, in which one type is called a success and the other a failure.

Multinomial trials
We analyze such a sequence of trials as follows. Suppose there arem types, which we number 1 throughm.

Let Eki be the event that type k occurs on the ith component trial. For each i, the class {Eki : 1 ≤ k ≤ m}
is a partition, since on each component trial exactly one of the types will occur. The type on the ith trial
may be represented by the type random variable

Ti =
m∑
k=1

kIEki (15.26)

We assume

{Ti : 1 ≤ i} is iid, with P (Ti = k) = P (Eki) = pk invariant with i (15.27)

In a sequence of n trials, we let Nkn be the number of occurrences of type k. Then

Nkn =
n∑
i=1

IEki with

m∑
k=1

Nkn = n (15.28)

Now each Nkn ∼ binomial (n, pk). The class {Nkn : 1 ≤ k ≤ m} cannot be independent, since it sums to
n. If the values of m− 1 of them are known, the value of the other is determined. If n1 +n2 + · · ·+nm = n,
the event

{N1n = n1, N2n = n2, · · · , Nmn = nm} (15.29)

is one of the

C (n; n1, n2, · · · , nm) = n!/ (n1!n2! · · ·nm!) (15.30)

ways of arranging n1 of the E1i, n2 of the E2i, · · · , nm of the Emi. Each such arrangement has probability
pn1

1 pn2
2 · · · pnmm , so that

P (N1n = n1, N2n = n2, · · · Nmn = nm) = n!
m∏
k=1

pnkk
nk!

(15.31)

2This content is available online at <http://cnx.org/content/m23664/1.7/>.
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This set of joint probabilities constitutes the multinomial distribution. For m = 2, and type 1 a success,
this is the binomial distribution with parameter (n, p1).

A random number of multinomial trials
We consider, in particular, the case of a random number N of multinomial trials, where N ∼ Poisson

(µ). Let Nk be the number of results of type k in a random number N of multinomial trials.

Nk =
N∑
i=1

IEki =
∞∑
n=1

I{N=n}Nkn with

m∑
k=1

Nk = N (15.32)

Poisson decomposition
Suppose

1. N ∼ Poisson (µ)
2. {Ti : 1 ≤ i} is iid with P (Ti = k) = pk, 1 ≤ k ≤ m
3. {N, Ti : 1 ≤ i} is independent

Then

a. Each Nk ∼ Poisson (µpk)
b. {Nk : 1 ≤ k ≤ m} is independent.

� �
The usefulness of this remarkable result is enhanced by the fact that the sum of independent Poisson

random variables is also Poisson, with µ for the sum the sum of the µi for the variables added. This is readily
established with the aid of the generating function. Before verifying the propositions above, we consider some
examples.

Example 15.11: A shipping problem
The number N of orders per day received by a mail order house is Poisson (300). Orders are
shipped by next day express, by second day priority, or by regular parcel mail. Suppose 4/10 of
the customers want next day express, 5/10 want second day priority, and 1/10 require regular mail.
Make the usual assumptions on compound demand. What is the probability that fewer than 150
want next day express? What is the probability that fewer than 300 want one or the other of the
two faster deliveries?

SOLUTION
Model as a random number of multinomial trials, with three outcome types: Type 1 is next day

express, Type 2 is second day priority, and Type 3 is regular mail, with respective probabilities p1 =
0.4, p2 = 0.5, and p3 = 0.1. Then N1 ∼ Poisson (0.4 · 300 = 120), N2 ∼ Poisson (0.5 · 300 = 150),
and N3 ∼ Poisson (0.1 · 300 = 30). Also N1 +N2 ∼ Poisson (120 + 150 = 270).

P1 = 1 - cpoisson(120,150)

P1 = 0.9954

P12 = 1 - cpoisson(270,300)

P12 = 0.9620

Example 15.12: Message routing
A junction point in a network has two incoming lines and two outgoing lines. The number of
incoming messages N1 on line one in one hour is Poisson (50); on line 2 the number is N2 ∼ Poisson
(45). On incoming line 1 the messages have probability p1a = 0.33 of leaving on outgoing line a
and 1 − p1a of leaving on line b. The messages coming in on line 2 have probability p2a = 0.47 of
leaving on line a. Under the usual independence assumptions, what is the distribution of outgoing
messages on line a? What are the probabilities of at least 30, 35, 40 outgoing messages on line a?

SOLUTION
By the Poisson decomposition, Na ∼ Poisson (50 · 0.33 + 45 · 0.47 = 37.65).
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ma = 50*0.33 + 45*0.47

ma = 37.6500

Pa = cpoisson(ma,30:5:40)

Pa = 0.9119 0.6890 0.3722

VERIFICATION of the Poisson decomposition

a. Nk =
∑N
i=1 IEki .

This is composite demand with Yk = IEki , so that gYk (s) = qk + spk = 1 + pk (s− 1). Therefore,

gNk (s) = gN [gYk (s)] = eµ(1+pk(s−1)−1) = eµpk(s−1) (15.33)

which is the generating function for Nk ∼ Poisson (µpk).
b. For any n1, n2, · · · , nm, let n = n1 + n2 + · · ·+ nm, and consider

A = {N1 = n1, N2 = n2, · · · , Nm = nm} = {N = n} ∩ {N1n = n1, N2n = n2, · · · , Nmn = nm}
(15.34)

Since N is independent of the class of IEki , the class

{{N = n}, {N1n = n1, N2n = n2, · · · , Nmn = nm}} (15.35)

is independent. By the product rule and the multinomial distribution

P (A) = e−µ
µn

n!
· n!

m∏
k=1

pnkk
(nk)!

=
m∏
k=1

e−µpk
pnkk
nk!

=
m∏
k=1

P (Nk = nk) (15.36)

The second product uses the fact that

eµ = eµ(p1+p2+···+pm) =
m∏
k=1

eµpk (15.37)

Thus, the product rule holds for the class {Nk : 1 ≤ k ≤ m}, so that it is independent.

15.2.2 Extreme values

Consider an iid class {Yi : 1 ≤ i} of nonnegative random variables. For any positive integer n we let

Vn = min{Y1, Y2, · · · , Yn} and Wn = max{Y1, Y2, · · · , Yn} (15.38)

Then

P (Vn > t) = Pn (Y > t) and P (Wn ≤ t) = Pn (Y ≤ t) (15.39)

Now consider a random number N of the Yi. The minimum and maximum random variables are

VN =
∞∑
n=0

I{N=n}Vn and WN =
∞∑
n=0

I{N=n}Wn (15.40)

� �
Computational formulas
If we set V0 = W0 = 0, then

a. FV (t) = P (V ≤ t) = 1 + P (N = 0)− gN [P (Y > t)]
b. FW (t) = gN [P (Y ≤ t)]
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These results are easily established as follows. {VN > t} =
∞∨
n=0
{N = n}{Vn > t}. By additivity and

independence of {N, Vn} for each n

P (VN > t) =
∞∑
n=0

P (N = n)P (Vn > t) =
∞∑
n=1

P (N = n)Pn (Y > t) , since P (V0 > t) = 0 (15.41)

If we add into the last sum the term P (N = 0)P 0 (Y > t) = P (N = 0) then subtract it, we have

P (VN > t) =
∞∑
n=0

P (N = n)Pn (Y > t)− P (N = 0) = gN [P (Y > t)]− P (N = 0) (15.42)

A similar argument holds for proposition (b). In this case, we do not have the extra term for {N = 0},
since P (W0 ≤ t) = 1.

Special case. In some cases, N = 0 does not correspond to an admissible outcome (see Example 15.14
(Lowest Bidder ), below, on lowest bidder and Example 15.16 (Batch testing)). In that case

FV (t) =
∑∞

n=1 P (Vn ≤ t)P (N = n) =
∑∞

n=1 [1− P n (Y > t)]P (N = n) =∑∞
n=1 P (N = n)−

∑∞
n=1 P

n (Y > t)P (N = n)
(15.43)

Add P (N = 0) = P 0 (Y > t)P (N = 0) to each of the sums to get

FV (t) = 1−
∞∑
n=0

Pn (Y > t)P (N = n) = 1− gN [P (Y > t)] (15.44)

� �

Example 15.13: Maximum service time
The number N of jobs coming into a service center in a week is a random quantity having a Poisson
(20) distribution. Suppose the service times (in hours) for individual units are iid, with common
distribution exponential (1/3). What is the probability the maximum service time for the units is
no greater than 6, 9, 12, 15, 18 hours? SOLUTION
SOLUTION

P (WN ≤ t) = gN [P (Y ≤ t)] = e20[FY (t)−1] = exp
(
−20e−t/3

)
(15.45)

t = 6:3:18;

PW = exp(-20*exp(-t/3));

disp([t;PW]')

6.0000 0.0668

9.0000 0.3694

12.0000 0.6933

15.0000 0.8739

18.0000 0.9516

Example 15.14: Lowest Bidder
A manufacturer seeks bids on a modi�cation of one of his processing units. Twenty contractors are
invited to bid. They bid with probability 0.3, so that the number of bids N ∼ binomial (20,0.3).
Assume the bids Yi (in thousands of dollars) form an iid class. The market is such that the bids
have a common distribution symmetric triangular on (150,250). What is the probability of at least
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one bid no greater than 170, 180, 190, 200, 210? Note that no bid is not a low bid of zero, hence
we must use the special case.
Solution

P (V ≤ t) = 1− gN [P (Y > t)] = 1− (0.7 + 0.3p)20
where p = P (Y > t)

Solving graphically for p = P (V > t) , we get
p = [23/25 41/50 17/25 1/2 8/25] for t = [170 180 190 200 210]
Now gN (s) = (0.7 + 0.3s)20

. We use MATLAB to obtain

t = [170 180 190 200 210];

p = [23/25 41/50 17/25 1/2 8/25];

PV = 1 - (0.7 + 0.3*p).^20;

disp([t;p;PV]')

170.0000 0.9200 0.3848

180.0000 0.8200 0.6705

190.0000 0.6800 0.8671

200.0000 0.5000 0.9612

210.0000 0.3200 0.9896

Example 15.15: Example 15.14 (Lowest Bidder ) with a general counting variable
Suppose the number of bids is 1, 2 or 3 with probabilities 0.3, 0.5, 0.2, respectively.

Determine P (V ≤ t) in each case.
SOLUTION.
The minimum of the selected Y 's is no greater than t if and only if there is at least one Y less

than or equal to t. We determine in each case probabilities for the number of bids satisfying Y ≤ t.
For each t, we are interested in the probability of one or more occurrences of the event Y ≤ t. This
is essentially the problem in Example 7 (Example 15.7: Number of successes for random number N
of trials.) from "Random Selection", with probability p = P (Y ≤ t).

t = [170 180 190 200 210];

p = [23/25 41/50 17/25 1/2 8/25]; % Probabilities Y <= t are 1 - p

gN = [0 0.3 0.5 0.2]; % Zero for missing value

PV = zeros(1,length(t));

for i=1:length(t)

gY = [p(i),1 - p(i)];

[d,pd] = gendf(gN,gY);

PV(i) = (d>0)*pd'; % Selects positions for d > 0 and

end % adds corresponding probabilities

disp([t;PV]')

170.0000 0.1451

180.0000 0.3075

190.0000 0.5019

200.0000 0.7000

210.0000 0.8462

Example 15.14 (Lowest Bidder ) may be worked in this manner by using gN =

ibinom(20,0.3,0:20). The results, of course, are the same as in the previous solution. The
fact that the probabilities in this example are lower for each t than in Example 15.14 (Lowest
Bidder ) re�ects the fact that there are probably fewer bids in each case.

Example 15.16: Batch testing
Electrical units from a production line are �rst inspected for operability. However, experience
indicates that a fraction p of those passing the initial operability test are defective. All operable
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units are subsequenly tested in a batch under continuous operation ( a �burn in� test). Statistical
data indicate the defective units have times to failure Yi iid, exponential (λ), whereas good units
have very long life (in�nite from the point of view of the test). A batch of n units is tested. Let V
be the time of the �rst failure and N be the number of defective units in the batch. If the test goes
t units of time with no failure (i.e., V > t), what is the probability of no defective units?

SOLUTION
Since no defective units implies no failures in any reasonable test time, we have

{N = 0} ⊂ {V > t} so that P (N = 0|V > t) =
P (N = 0)
P (V > t)

(15.46)

Since N = 0 does not yield a minimum value, we have P (V > t) = gN [P (Y > t)]. Now under the
condition above, the number of defective units N ∼ binomial (n, p), so that gN (s) = (q + ps)n. If
N is large and p is reasonably small, N is approximately Poisson (np) with gN (s) = enp(s−1) and
P (N = 0) = e−np. Now P (Y > t) = e−λt; for large n

P (N = 0|V > t) =
e−np

enp[P (Y >t)−1]
= e−npP (Y >t) = e−npe

−λt
(15.47)

For n = 5000, p = 0.001, λ = 2, and t = 1, 2, 3, 4, 5, MATLAB calculations give

t = 1:5;

n = 5000;

p = 0.001;

lambda = 2;

P = exp(-n*p*exp(-lambda*t));

disp([t;P]')

1.0000 0.5083

2.0000 0.9125

3.0000 0.9877

4.0000 0.9983

5.0000 0.9998

It appears that a test of three to �ve hours should give reliable results. In actually designing the
test, one should probably make calculations with a number of di�erent assumptions on the fraction
of defective units and the life duration of defective units. These calculations are relatively easy to
make with MATLAB.

15.2.3 Bernoulli trials with random execution times or costs

Consider a Bernoulli sequence with probability p of success on any component trial. Let N be the number
of the trial on which the �rst success occurs. Let Yi be the time (or cost) to execute the ith trial. Then the
total time (or cost) from the beginning to the completion of the �rst success is

T =
N∑
i=1

Yi (composite �demand� with N − 1 ∼ geometric p (15.48)

We suppose the Yi form an iid class, independent of N. Now N − 1 ∼ geometric (p) implies
gN (s) = ps/ (1− qs), so that

MT (s) = gN [MY (s)] =
pMY (s)

1− qMY (s)
(15.49)

There are two useful special cases:
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1. Yi ∼ exponential (λ), so that MY (s) = λ
λ−s .

MT (s) =
pλ/ (λ− s)

1− qλ/ (λ− s)
=

pλ

pλ− s
(15.50)

which implies T ∼ exponential (pλ).
2. Yi − 1 ∼ geometric (p0), so that gY (s) = p0s

1−q0s

gT (s) =
pp0s/ (1− q0s)

1− pp0s/ (1− q0s)
=

pp0s

1− (1− pp0) s
(15.51)

so that T − 1 ∼ geometric (pp0).

Example 15.17: Job interviews
Suppose a prospective employer is interviewing candidates for a job from a pool in which twenty
percent are quali�ed. Interview times (in hours) Yi are presumed to form an iid class, each expo-
nential (3). Thus, the average interview time is 1/3 hour (twenty minutes). We take the probability
for success on any interview to be p = 0.2. What is the probability a satisfactory candidate will
be found in four hours or less? What is the probability the maximum interview time will be no
greater than 0.5, 0.75, 1, 1.25, 1.5 hours?

SOLUTION
T ∼ exponential (0.2 · 3 = 0.6), so that P (T ≤ 4) = 1− e−0.6·4 = 0.9093.

P (W ≤ t) = gN [P (Y ≤ t)] =
0.2
(
1− e−3t

)
1− 0.8 (1− e−3t)

=
1− e−3t

1 + 4e−3t
(15.52)

MATLAB computations give

t = 0.5:0.25:1.5;

PWt = (1 - exp(-3*t))./(1 + 4*exp(-3*t));

disp([t;PWt]')

0.5000 0.4105

0.7500 0.6293

1.0000 0.7924

1.2500 0.8925

1.5000 0.9468

The average interview time is 1/3 hour; with probability 0.63 the maximum is 3/4 hour or less;
with probability 0.79 the maximum is one hour or less; etc.

In the general case, solving for the distribution of T requires transform theory, and may be handled best by
a program such as Maple or Mathematica.

For the case of simple Yi, we may use approximation procedures based on properties of the geometric
series. Since N − 1 ∼ geometric (p),

gN (s) = ps
1−qs

= ps
∑∞

k=0 (qs)k = ps
[∑n

k=0 (qs)k +
∑∞

k=n+1 (qs)k
]

=

ps
[∑n

k=0 (qs)k + (qs)n+1∑∞
k=0 (qs)k

] (15.53)

= ps

[
n∑
k=0

(qs)k
]

+ (qs)n+1
gN (s) = gn (s) + (qs)n+1

gN (s) (15.54)
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Note that gn (s) has the form of the generating function for a simple approximation Nn which matches
values and probabilities with N up to k = n. Now

gT (s) = gn [gY (s)] + (qs)n+1
gN [gY (s)] (15.55)

The evaluation involves convolution of coe�cients which e�ectively sets s = 1. Since gN (1) = gY (1) = 1,

(qs)n+1
gN [gY (s)] for s = 1 reduces to qn+1 = P (N > n) (15.56)

which is negligible if n is large enough. Suitable n may be determined in each case. With such an n, if the
Yi are nonnegative, integer-valued, we may use the gend procedure on gn [gY (s)], where

gn (s) = ps+ pqs2 + pq2s3 + · · ·+ pqnsn+1 (15.57)

For the integer-valued case, as in the general case of simple Yi, we could use mgd. However, gend is usually
faster and more e�cient for the integer-valued case. Unless q is small, the number of terms needed to
approximate gn is likely to be too great.

Example 15.18: Approximating the generating function
Let p = 0.3 and Y be uniformly distributed on {1, 2, · · · , 10}. Determine the distribution for

T =
N∑
k=1

Yk (15.58)

SOLUTION

p = 0.3;

q = 1 - p;

a = [30 35 40]; % Check for suitable n

b = q.^a

b = 1.0e-04 * % Use n = 40

0.2254 0.0379 0.0064

n = 40;

k = 1:n;

gY = 0.1*[0 ones(1,10)];

gN = p*[0 q.^(k-1)]; % Probabilities, 0 <= k <= 40

gend

Do not forget zero coefficients for missing powers

Enter gen fn COEFFICIENTS for gN gN

Enter gen fn COEFFICIENTS for gY gY

Values are in row matrix D; probabilities are in PD.

To view the distribution, call for gD.

sum(PD) % Check sum of probabilities

ans = 1.0000

FD = cumsum(PD); % Distribution function for D

plot(0:100,FD(1:101)) % See Figure~15.1

P50 = (D<=50)*PD'
P50 = 0.9497

P30 = (D<=30)*PD'
P30 = 0.8263
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Figure 15.1: Execution Time Distribution Function FD.

The same results may be achieved with mgd, although at the cost of more computing time. In that case,
use gN as in Example 15.18 ( Approximating the generating function), but use the actual distribution for
Y.

15.2.4 Arrival times and counting processes

Suppose we have phenomena which take place at discrete instants of time, separated by random waiting
or interarrival times. These may be arrivals of customers in a store, of noise pulses on a communications
line, vehicles passing a position on a road, the failures of a system, etc. We refer to these occurrences as
arrivals and designate the times of occurrence as arrival times. A stream of arrivals may be described in
three equivalent ways.

• Arrival times: {Sn : 0 ≤ n}, with 0 = S0 < S1 < · · · a.s. (basic sequence)
• Interarrival times: {Wi : 1 ≤ i}, with each Wi > 0 a.s. (incremental sequence)

The strict inequalities imply that with probability one there are no simultaneous arrivals. The relations
between the two sequences are simply

S0 = 0, Sn =
n∑
i=1

Wi and Wn = Sn − Sn−1 for all n ≥ 1 (15.59)

The formulation indicates the essential equivalence of the problem with that of the compound demand
(Section 15.1.3: Calculations for the compound demand). The notation and terminology are changed to
correspond to that customarily used in the treatment of arrival and counting processes.

The stream of arrivals may be described in a third way.
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• Counting processes: Nt = N (t) is the number of arrivals in time period (0, t]. It should be clear that
this is a random quantity for each nonnegative t. For a given t, ω the value is N (t, ω). Such a family of
random variables constitutes a random process. In this case the random process is a counting process.

We thus have three equivalent descriptions for the stream of arrivals.

{Sn : 0 ≤ n} {Wn : 1 ≤ n} {Nt : 0 ≤ t} (15.60)

Several properties of the counting process N should be noted:

1. N (t+ h) − N (t) counts the arrivals in the interval (t, t+ h], h > 0, so that N (t+ h) ≥ N (t) for
h > 0.

2. N0 = 0 and for t > 0 we have

Nt =
∞∑
i=1

I(0,t] (Si) = max{n : Sn ≤ t} = min{n : Sn+1 > t} (15.61)

3. For any given ω, N (·, ω) is a nondecreasing, right-continuous, integer-valued function de�ned on [0, ∞),
with N (0, ω) = 0.

The essential relationships between the three ways of describing the stream of arrivals is displayed in

Wn = Sn − Sn−1, {Nt ≥ n} = {Sn ≤ t}, {Nt = n} = {Sn ≤ t < Sn+1} (15.62)

This imples

P (Nt = n) = P (Sn ≤ t)− P (Sn+1 ≤ t) = P (Sn+1 > t)− P (Sn > t) (15.63)

Although there are many possibilities for the interarrival time distributions, we assume

{Wi : 1 ≤ i} is iid, with Wi > 0 a.s. (15.64)

Under such assumptions, the counting process is often referred to as a renewal process and the interrarival
times are called renewal times. In the literature on renewal processes, it is common for the random variable
to count an arrival at t = 0. This requires an adjustment of the expressions relating Nt and the Si. We use
the convention above.

Exponential iid interarrival times
The case of exponential interarrival times is natural in many applications and leads to important math-

ematical results. We utilize the following propositions about the arrival times Sn, the interarrival times Wi,
and the counting process N.

a. If {Wi : 1 ≤ i} is iid exponential (λ), then Sn ∼ gamma (n, λ) for all n ≥ 1. This is worked out
in the unit on TRANSFORM METHODS, in the discussion of the connection between the gamma
distribution and the exponential distribution.

b. Sn ∼ gamma (n, λ) for all n ≥ 1, and S0 = 0, i� Nt ∼ Poisson (λt) for all t > 0. This follows the
result in the unit DISTRIBUTION APPROXI9MATIONS on the relationship between the Poisson
and gamma distributions, along with the fact that {Nt ≥ n} = {Sn ≤ t}.

Remark. The counting process is a Poisson process in the sense that Nt ∼ Poisson (λt) for all t > 0. More
advanced treatments show that the process has independent, stationary increments. That is

1. N (t+ h)−N (t) = N (h) for all t, h > 0, and
2. For t1 < t2 ≤ t3 < t4 ≤ · · · ≤ tm−1 < tm, the class {N (t2)−N (N1) , N (t4)−N (t3) , · · · , N (tm)−
N (tm−1)} is independent.

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



474 CHAPTER 15. RANDOM SELECTION

In words, the number of arrivals in any time interval depends upon the length of the interval and not its
location in time, and the numbers of arrivals in nonoverlapping time intervals are independent.

Example 15.19: Emergency calls
Emergency calls arrive at a police switchboard with interarrival times (in hours) exponential (15).
Thus, the average interarrival time is 1/15 hour (four minutes). What is the probability the number
of calls in an eight hour shift is no more than 100, 120, 140?

p = 1 - cpoisson(8*15,[101 121 141])

p = 0.0347 0.5243 0.9669

We develop next a simple computational result for arrival processes for which Sn ∼ gamma (n, λ).

Example 15.20: Gamma arrival times
Suppose the arrival times Sn ∼ gamma (n, λ) and g is such that∫ ∞

0

|g| <∞ and E

[ ∞∑
n=1

|g (Sn) |

]
<∞ (15.65)

Then

E

[ ∞∑
n=1

g (Sn)

]
= λ

∫ ∞
0

g (15.66)

VERIFICATION
We use the countable sums property (E8b) (list, p. 600) for expectation and the corresponding

property for integrals to assert

E

[ ∞∑
n=1

g (Sn)

]
=
∞∑
n=1

E [g (Sn)] =
∞∑
n=1

∫ ∞
0

g (t) fn (t) dt where fn (t) =
λe−λt(λt)n−1

(n− 1)!
(15.67)

We may apply (E8b) (list, p. 600) to assert

∞∑
n=1

∫ ∞
0

gfn =
∫ ∞

0

g

∞∑
n=1

fn (15.68)

Since

∞∑
n=1

fn (t) = λe−λt
∞∑
n=1

(λt)n−1

(n− 1)!
= λe−λteλt = λ (15.69)

the proposition is established.

Example 15.21: Discounted replacement costs
A critical unit in a production system has life duration exponential (λ). Upon failure the unit is
replaced immediately by a similar unit. Units fail independently. Cost of replacement of a unit is
c dollars. If money is discounted at a rate α, then a dollar spent t units of time in the future has a
current value e−αt. If Sn is the time of replacement of the nth unit, then Sn ∼ gamma (n, λ) and
the present value of all future replacements is

C =
∞∑
n=1

ce−αSn (15.70)
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The expected replacement cost is

E [C] = E

[ ∞∑
n=1

g (Sn)

]
where g (t) = ce−αt (15.71)

Hence

E [C] = λ

∫ ∞
0

ce−αt dt =
λc

α
(15.72)

Suppose unit replacement cost c = 1200, average time (in years) to failure 1/λ = 1/4, and the
discount rate per year α = 0.08 (eight percent). Then

E [C] =
1200 · 4

0.08
= 60, 000 (15.73)

Example 15.22: Random costs
Suppose the cost of the nth replacement in Example 15.21 ( Discounted replacement costs) is a
random quantity Cn, with {Cn, Sn} independent and E [Cn] = c, invariant with n. Then

E [C] = E

[ ∞∑
n=1

Cne
−αSn

]
=
∞∑
n=1

E [Cn]E
[
e−αSn

]
=
∞∑
n=1

cE
[
e−αSn

]
=
λc

α
(15.74)

The analysis to this point assumes the process will continue endlessly into the future. Often, it is desirable
to plan for a speci�c, �nite period. The result of Example 15.20 ( Gamma arrival times) may be modi�ed
easily to account for a �nite period, often referred to as a �nite horizon.

Example 15.23: Finite horizon
Under the conditions assumed in Example 15.20 ( Gamma arrival times), above, let Nt be the
counting random variable for arrivals in the interval (0, t].

If Zt =
Nt∑
n=1

g (Sn) , then E [Zt] = λ

∫ t

0

g (u) du (15.75)

VERIFICATION
Since Nt ≥ n i� Sn ≤ t,

∑Nt
n=1 g (Sn) =

∑∞
n=0 I(0, t] (Sn) g (Sn). In the result of Example 15.20

( Gamma arrival times), replace g by I(0,t]g and note that∫ ∞
0

I(0,t] (u) g (u) du =
∫ t

0

g (u) du (15.76)

Example 15.24: Replacement costs, �nite horizon
Under the conditions of Example 15.21 ( Discounted replacement costs), consider the replacement
costs over a two-year period.

SOLUTION

E [C] = λc

∫ t

0

e−αu du =
λc

α

(
1− e−αt

)
(15.77)

Thus, the expected cost for the in�nite horizon λc/α is reduced by the factor 1 − e−αt. For
t = 2 and the numbers in Example 15.21 ( Discounted replacement costs), the reduction factor is
1− e−0.16 = 0.1479 to give E [C] = 60000 · 0.1479 = 8, 871.37.
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In the important special case that g (u) = ce−αu, the expression for E [
∑∞
n=1 g (Sn)] may be put into a form

which does not require the interarrival times to be exponential.

Example 15.25: General interarrival, exponential g
Suppose S0 = 0 and Sn =

∑n
i=1Wi, where {Wi : 1 ≤ i} is iid. Let {Vn : 1 ≤ n} be a class such

that each E [Vn] = c and each pair {Vn, Sn} is independent. Then for α > 0

E [C] = E

[ ∞∑
n=1

Vne
−αSn

]
= c · MW (−α)

1−MW (−α)
(15.78)

where MW is the moment generating function for W.
DERIVATION
First we note that

E
[
Vne
−αSn

]
= cMSn (−α) = cMn

W (−α) (15.79)

Hence, by properties of expectation and the geometric series

E [C] = c

∞∑
n=1

Mn
W (−α) =

MW (−α)
1−MW (−α)

, provided |MW (−α) | < 1 (15.80)

Since α > 0 and W > 0, we have 0 < e−αW < 1, so that MW (−α) = E
[
e−αW

]
< 1.

Example 15.26: Uniformly distributed interarrival times
Suppose each Wi ∼ uniform (a, b). Then (see Appendix C (Section 17.3)),

MW (−α) =
e−aα − e−bα

α (b− a)
so that E [C] = c · e−aα − e−bα

α (b− a)− [e−aα − e−bα]
(15.81)

Let a = 1, b = 5, c = 100 and α = 0.08. Then,

a = 1;

b = 5;

c = 100;

A = 0.08;

MW = (exp(-a*A) - exp(-b*A))/(A*(b - a))

MW = 0.7900

EC = c*MW/(1 - MW)

EC = 376.1643

15.3 Problems on Random Selection3

Exercise 15.3.1 (Solution on p. 482.)

(See Exercise 3 (Exercise 8.3.3) from "Problems on Random Variables and Joint Distributions")
A die is rolled. Let X be the number of spots that turn up. A coin is �ipped X times. Let Y be
the number of heads that turn up. Determine the distribution for Y.

Exercise 15.3.2 (Solution on p. 482.)

(See Exercise 4 (Exercise 8.3.4) from "Problems on Random Variables and Joint Distributions")
As a variation of Exercise 15.3.1, suppose a pair of dice is rolled instead of a single die. Determine
the distribution for Y.

3This content is available online at <http://cnx.org/content/m24531/1.5/>.
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Exercise 15.3.3 (Solution on p. 482.)

(See Exercise 5 (Exercise 8.3.5) from "Problems on Random Variables and Joint Distributions")
Suppose a pair of dice is rolled. Let X be the total number of spots which turn up. Roll the pair
an additional X times. Let Y be the number of sevens that are thrown on the X rolls. Determine
the distribution for Y. What is the probability of three or more sevens?

Exercise 15.3.4 (Solution on p. 483.)

(See Example 7 (Example 14.7: A random number N of Bernoulli trials) from "Conditional
Expectation, Regression") A number X is chosen by a random selection from the integers 1 through
20 (say by drawing a card from a box). A pair of dice is thrown X times. Let Y be the number of
�matches� (i.e., both ones, both twos, etc.). Determine the distribution for Y.

Exercise 15.3.5 (Solution on p. 484.)

(See Exercise 20 (Exercise 14.2.20) from "Problems on Conditional Expectation, Regression") A
number X is selected randomly from the integers 1 through 100. A pair of dice is thrown X times.
Let Y be the number of sevens thrown on the X tosses. Determine the distribution for Y. Determine
E [Y ] and P (Y ≤ 20).
Exercise 15.3.6 (Solution on p. 484.)

(See Exercise 21 (Exercise 14.2.21) from "Problems on Conditional Expectation, Regression") A
number X is selected randomly from the integers 1 through 100. Each of two people draw X
times independently and randomly a number from 1 to 10. Let Y be the number of matches (i.e.,
both draw ones, both draw twos, etc.). Determine the distribution for Y. Determine E [Y ] and
P (Y ≤ 10).
Exercise 15.3.7 (Solution on p. 484.)

Suppose the number of entries in a contest is N ∼ binomial (20, 0.4). There are four questions.
Let Yi be the number of questions answered correctly by the ith contestant. Suppose the Yi are
iid, with common distribution

Y = [1 2 3 4] PY = [0.2 0.4 0.3 0.1] (15.82)

Let D be the total number of correct answers. Determine E [D] , Var [D], P (15 ≤ D ≤ 25), and
P (10 ≤ D ≤ 30).
Exercise 15.3.8 (Solution on p. 485.)

Game wardens are making an aerial survey of the number of deer in a park. The number of herds
to be sighted is assumed to be a random variable N ∼ binomial (20, 0.5). Each herd is assumed to
be from 1 to 10 in size, with probabilities

Value 1 2 3 4 5 6 7 8 9 10

Probability 0.05 0.10 0.15 0.20 0.15 0.10 0.10 0.05 0.05 0.05

Table 15.1

Let D be the number of deer sighted under this model. Determine P (D ≤ t) for t =
25, 50, 75, 100
and P (D ≥ 90).
Exercise 15.3.9 (Solution on p. 485.)

A supply house stocks seven popular items. The table below shows the values of the items and the
probability of each being selected by a customer.

Value 12.50 25.00 30.50 40.00 42.50 50.00 60.00

Probability 0.10 0.15 0.20 0.20 0.15 0.10 0.10
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Table 15.2

Suppose the purchases of customers are iid, and the number of customers in a day is binomial
(10,0.5). Determine the distribution for the total demand D.

a. How many di�erent possible values are there? What is the maximum possible total sales?
b. Determine E [D] and P (D ≤ t) for t = 100, 150, 200, 250, 300.

Determine P (100 < D ≤ 200).

Exercise 15.3.10 (Solution on p. 486.)

A game is played as follows:

1. A wheel is spun, giving one of the integers 0 through 9 on an equally likely basis.
2. A single die is thrown the number of times indicated by the result of the spin of the wheel.

The number of points made is the total of the numbers turned up on the sequence of throws
of the die.

3. A player pays sixteen dollars to play; a dollar is returned for each point made.

Let Y represent the number of points made and X = Y − 16 be the net gain (possibly negative) of
the player. Determine the maximum value of

X, E [X], Var [X], P (X > 0), P (X > = 10), P (X > = 16).
Exercise 15.3.11 (Solution on p. 486.)

Marvin calls on four customers. With probability p1 = 0.6 he makes a sale in each case. Geraldine
calls on �ve customers, with probability p2 = 0.5 of a sale in each case. Customers who buy do so
on an iid basis, and order an amount Yi (in dollars) with common distribution:

Y = [200 220 240 260 280 300] PY = [0.10 0.15 0.25 0.25 0.15 0.10] (15.83)

Let D1 be the total sales for Marvin and D2 the total sales for Geraldine. Let D = D1 + D2.
Determine the distribution and mean and variance for D1, D2, and D. Determine P (D1 ≥ D2) and
P (D ≥ 1500), P (D ≥ 1000), and P (D ≥ 750).
Exercise 15.3.12 (Solution on p. 487.)

A questionnaire is sent to twenty persons. The number who reply is a random number N ∼
binomial (20, 0.7). If each respondent has probability p = 0.8 of favoring a certain proposition,
what is the probability of ten or more favorable replies? Of �fteen or more?

Exercise 15.3.13 (Solution on p. 487.)

A random number N of students take a qualifying exam. A grade of 70 or more earns a pass.
Suppose N ∼ binomial (20, 0.3). If each student has probability p = 0.7 of making 70 or more,
what is the probability all will pass? Ten or more will pass?

Exercise 15.3.14 (Solution on p. 487.)

Five hundred questionnaires are sent out. The probability of a reply is 0.6. The probability that
a reply will be favorable is 0.75. What is the probability of at least 200, 225, 250 favorable replies?

Exercise 15.3.15 (Solution on p. 488.)

Suppose the number of Japanese visitors to Florida in a week is N1 ∼ Poisson (500) and the
number of German visitors is N2 ∼ Poisson (300). If 25 percent of the Japanese and 20 percent of
the Germans visit Disney World, what is the distribution for the total number D of German and
Japanese visitors to the park? Determine P (D ≥ k) for k = 150, 155, · · · , 245, 250.
Exercise 15.3.16 (Solution on p. 488.)

A junction point in a network has two incoming lines and two outgoing lines. The number of
incoming messages N1 on line one in one hour is Poisson (50); on line 2 the number is N2 ∼ Poisson
(45). On incoming line 1 the messages have probability p1a = 0.33 of leaving on outgoing line a
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and 1 − p1a of leaving on line b. The messages coming in on line 2 have probability p2a = 0.47 of
leaving on line a. Under the usual independence assumptions, what is the distribution of outgoing
messages on line a? What are the probabilities of at least 30, 35, 40 outgoing messages on line a?

Exercise 15.3.17 (Solution on p. 488.)

A computer store sells Macintosh, HP, and various other IBM compatible personal computers. It
has two major sources of customers:

1. Students and faculty from a nearby university
2. General customers for home and business computing. Suppose the following assumptions are

reasonable for monthly purchases.

• The number of university buyers N1 ∼ Poisson (30). The probabilities for Mac, HP, others
are 0.4, 0.2, 0.4, respectively.

• The number of non-university buyers N2 ∼ Poisson (65). The respective probabilities for
Mac, HP, others are 0.2, 0.3, 0.5.

• For each group, the composite demand assumptions are reasonable, and the two groups buy
independently.

What is the distribution for the number of Mac sales? What is the distribution for the total number
of Mac and Dell sales?

Exercise 15.3.18 (Solution on p. 488.)

The number N of �hits� in a day on a Web site on the internet is Poisson (80). Suppose the
probability is 0.10 that any hit results in a sale, is 0.30 that the result is a request for information,
and is 0.60 that the inquirer just browses but does not identify an interest. What is the probability
of 10 or more sales? What is the probability that the number of sales is at least half the number of
information requests (use suitable simple approximations)?

Exercise 15.3.19 (Solution on p. 489.)

The number N of orders sent to the shipping department of a mail order house is Poisson (700).
Orders require one of seven kinds of boxes, which with packing costs have distribution

Cost (dollars) 0.75 1.25 2.00 2.50 3.00 3.50 4.00

Probability 0.10 0.15 0.15 0.25 0.20 0.10 0.05

Table 15.3

What is the probability the total cost of the $2.50 boxes is no greater than $475? What is the
probability the cost of the $2.50 boxes is greater than the cost of the $3.00 boxes? What is the
probability the cost of the $2.50 boxes is not more than $50.00 greater than the cost of the $3.00
boxes? Suggestion. Truncate the Poisson distributions at about twice the mean value.

Exercise 15.3.20 (Solution on p. 489.)

One car in 5 in a certain community is a Volvo. If the number of cars passing a tra�c check point
in an hour is Poisson (130), what is the expected number of Volvos? What is the probability of at
least 30 Volvos? What is the probability the number of Volvos is between 16 and 40 (inclusive)?

Exercise 15.3.21 (Solution on p. 489.)

A service center on an interstate highway experiences customers in a one-hour period as follows:

• Northbound: Total vehicles: Poisson (200). Twenty percent are trucks.
• Southbound: Total vehicles: Poisson (180). Twenty �ve percent are trucks.
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- Each truck has one or two persons, with respective probabilities 0.7 and 0.3.
- Each car has 1, 2, 3, 4, or 5 persons, with probabilities 0.3, 0.3, 0.2, 0.1, 0.1, respectively

Under the usual independence assumptions, let D be the number of persons to be served. Determine
E [D], Var [D], and the generating function gD (s).
Exercise 15.3.22 (Solution on p. 490.)

The number N of customers in a shop in a given day is Poisson (120). Customers pay with cash or
by MasterCard or Visa charge cards, with respective probabilties 0.25, 0.40, 0.35. Make the usual
independence assumptions. Let N1, N2, N3 be the numbers of cash sales, MasterCard charges, Visa
card charges, respectively. Determine P (N1 ≥ 30), P (N2 ≥ 60), P (N3 ≥ 50), and P (N2 > N3).
Exercise 15.3.23 (Solution on p. 490.)

A discount retail store has two outlets in Houston, with a common warehouse. Customer requests
are phoned to the warehouse for pickup. Two items, a and b, are featured in a special sale. The
number of orders in a day from store A is NA ∼ Poisson (30); from store B, the nember of orders
is NB ∼ Poisson (40).

For store A, the probability an order for a is 0.3, and for b is 0.7.
For store B, the probability an order for a is 0.4, and for b is 0.6. What is the probability the

total order for item b in a day is 50 or more?

Exercise 15.3.24 (Solution on p. 490.)

The number of bids on a job is a random variable N ∼ binomial (7, 0.6). Bids (in thousands of
dollars) are iid with Y uniform on [3, 5]. What is the probability of at least one bid of $3,500 or
less? Note that �no bid� is not a bid of 0.

Exercise 15.3.25 (Solution on p. 491.)

The number of customers during the noon hour at a bank teller's station is a random number N
with distribution

N = 1 : 10, PN = 0.01 ∗ [5 7 10 11 12 13 12 11 10 9] (15.84)

The amounts they want to withdraw can be represented by an iid class having the common
distribution Y ∼ exponential (0.01). Determine the probabilities that the maximum withdrawal is
less than or equal to t for t = 100, 200, 300, 400, 500.
Exercise 15.3.26 (Solution on p. 491.)

A job is put out for bids. Experience indicates the number N of bids is a random variable having
values 0 through 8, with respective probabilities

Value 0 1 2 3 4 5 6 7 8

Probability 0.05 0.10 0.15 0.20 0.20 0.10 0.10 0.07 0.03

Table 15.4

The market is such that bids (in thousands of dollars) are iid, uniform [100, 200]. Determine
the probability of at least one bid of $125,000 or less.

Exercise 15.3.27 (Solution on p. 491.)

A property is o�ered for sale. Experience indicates the number N of bids is a random variable
having values 0 through 10, with respective probabilities

Value 0 1 2 3 4 5 6 7 8 9 10

Probability 0.05 0.15 0.15 0.20 0.10 0.10 0.05 0.05 0.05 0.05 0.05
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Table 15.5

The market is such that bids (in thousands of dollars) are iid, uniform [150, 200] Determine the
probability of at least one bid of $180,000 or more.

Exercise 15.3.28 (Solution on p. 491.)

A property is o�ered for sale. Experience indicates the number N of bids is a random variable
having values 0 through 8, with respective probabilities

Number 0 1 2 3 4 5 6 7 8

Probability 0.05 0.15 0.15 0.20 0.15 0.10 0.10 0.05 0.05

Table 15.6

The market is such that bids (in thousands of dollars) are iid symmetric triangular on [150 250].
Determine the probability of at least one bid of $210,000 or more.

Exercise 15.3.29 (Solution on p. 491.)

Suppose N ∼ binomial (10, 0.3) and the Yi are iid, uniform on [10, 20]. Let V be the minimum
of the N values of the Yi. Determine P (V > t) for integer values from 10 to 20.

Exercise 15.3.30 (Solution on p. 492.)

Suppose a teacher is equally likely to have 0, 1, 2, 3 or 4 students come in during o�ce hours on a
given day. If the lengths of the individual visits, in minutes, are iid exponential (0.1), what is the
probability that no visit will last more than 20 minutes.

Exercise 15.3.31 (Solution on p. 492.)

Twelve solid-state modules are installed in a control system. If the modules are not defective,
they have practically unlimited life. However, with probability p = 0.05 any unit could have a
defect which results in a lifetime (in hours) exponential (0.0025). Under the usual independence
assumptions, what is the probability the unit does not fail because of a defective module in the �rst
500 hours after installation?

Exercise 15.3.32 (Solution on p. 492.)

The number N of bids on a painting is binomial (10, 0.3). The bid amounts (in thousands of
dollars) Yi form an iid class, with common density function fY (t) = 0.005 (37− 2t)2 ≤ t ≤ 10.
What is the probability that the maximum amount bid is greater than $5,000?

Exercise 15.3.33 (Solution on p. 493.)

A computer store o�ers each customer who makes a purchase of $500 or more a free chance
at a drawing for a prize. The probability of winning on a draw is 0.05. Suppose the times, in
hours, between sales qualifying for a drawing is exponential (4). Under the usual independence
assumptions, what is the expected time between a winning draw? What is the probability of three
or more winners in a ten hour day? Of �ve or more?

Exercise 15.3.34 (Solution on p. 493.)

Noise pulses arrrive on a data phone line according to an arrival process such that for each t > 0 the
number Nt of arrivals in time interval (0, t], in hours, is Poisson (7t). The ith pulse has an �intensity�
Yi such that the class {Yi : 1 ≤ i} is iid, with the common distribution function FY (u) = 1− e−2u2

for u ≥ 0. Determine the probability that in an eight-hour day the intensity will not exceed two.

Exercise 15.3.35 (Solution on p. 493.)

The number N of noise bursts on a data transmission line in a period (0, t] is Poisson (µt). The
number of digit errors caused by the ith burst is Yi, with the class {Yi : 1 ≤ i} iid, Yi − 1 ∼
geometric (p). An error correcting system is capable or correcting �ve or fewer errors in any burst.
Suppose µ = 12 and p = 0.35. What is the probability of no uncorrected error in two hours of
operation?
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Solutions to Exercises in Chapter 15

Solution to Exercise 15.3.1 (p. 476)

PX = [0 (1/6)*ones(1,6)];

PY = [0.5 0.5];

gend

Do not forget zero coefficients for missing powers

Enter gen fn COEFFICIENTS for gN PX

Enter gen fn COEFFICIENTS for gY PY

Results are in N, PN, Y, PY, D, PD, P

May use jcalc or jcalcf on N, D, P

To view the distribution, call for gD.

disp(gD) % Compare with P8-3

0 0.1641

1.0000 0.3125

2.0000 0.2578

3.0000 0.1667

4.0000 0.0755

5.0000 0.0208

6.0000 0.0026

Solution to Exercise 15.3.2 (p. 476)

PN = (1/36)*[0 0 1 2 3 4 5 6 5 4 3 2 1];

PY = [0.5 0.5];

gend

Do not forget zero coefficients for missing powers

Enter gen fn COEFFICIENTS for gN PN

Enter gen fn COEFFICIENTS for gY PY

Results are in N, PN, Y, PY, D, PD, P

May use jcalc or jcalcf on N, D, P

To view the distribution, call for gD.

disp(gD)

0 0.0269

1.0000 0.1025

2.0000 0.1823

3.0000 0.2158

4.0000 0.1954

5.0000 0.1400

6.0000 0.0806

7.0000 0.0375

8.0000 0.0140 % (Continued next page)

9.0000 0.0040

10.0000 0.0008

11.0000 0.0001

12.0000 0.0000

Solution to Exercise 15.3.3 (p. 477)

PX = (1/36)*[0 0 1 2 3 4 5 6 5 4 3 2 1];
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PY = [5/6 1/6];

gend

Do not forget zero coefficients for missing powers

Enter gen fn COEFFICIENTS for gN PX

Enter gen fn COEFFICIENTS for gY PY

Results are in N, PN, Y, PY, D, PD, P

May use jcalc or jcalcf on N, D, P

To view the distribution, call for gD.

disp(gD)

0 0.3072

1.0000 0.3660

2.0000 0.2152

3.0000 0.0828

4.0000 0.0230

5.0000 0.0048

6.0000 0.0008

7.0000 0.0001

8.0000 0.0000

9.0000 0.0000

10.0000 0.0000

11.0000 0.0000

12.0000 0.0000

P = (D>=3)*PD'
P = 0.1116

Solution to Exercise 15.3.4 (p. 477)

gN = (1/20)*[0 ones(1,20)];

gY = [5/6 1/6];

gend

Do not forget zero coefficients for missing powers

Enter gen fn COEFFICIENTS for gN gN

Enter gen fn COEFFICIENTS for gY gY

Results are in N, PN, Y, PY, D, PD, P

May use jcalc or jcalcf on N, D, P

To view the distribution, call for gD.

disp(gD)

0 0.2435

1.0000 0.2661

2.0000 0.2113

3.0000 0.1419

4.0000 0.0795

5.0000 0.0370

6.0000 0.0144

7.0000 0.0047

8.0000 0.0013

9.0000 0.0003

10.0000 0.0001

11.0000 0.0000

12.0000 0.0000

13.0000 0.0000
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14.0000 0.0000

15.0000 0.0000

16.0000 0.0000

17.0000 0.0000

18.0000 0.0000

19.0000 0.0000

20.0000 0.0000

Solution to Exercise 15.3.5 (p. 477)

gN = 0.01*[0 ones(1,100)];

gY = [5/6 1/6];

gend

Do not forget zero coefficients for missing powers

Enter gen fn COEFFICIENTS for gN gN

Enter gen fn COEFFICIENTS for gY gY

Results are in N, PN, Y, PY, D, PD, P

May use jcalc or jcalcf on N, D, P

To view the distribution, call for gD.

EY = dot(D,PD)

EY = 8.4167

P20 = (D<=20)*PD'
P20 = 0.9837

Solution to Exercise 15.3.6 (p. 477)

gN = 0.01*[0 ones(1,100)];

gY = [0.9 0.1];

gend

Do not forget zero coefficients for missing powers

Enter gen fn COEFFICIENTS for gN gN

Enter gen fn COEFFICIENTS for gY gY

Results are in N, PN, Y, PY, D, PD, P

May use jcalc or jcalcf on N, D, P

To view the distribution, call for gD.

EY = dot(D,PD)

EY = 5.0500

P10 = (D<=10)*PD'
P10 = 0.9188

Solution to Exercise 15.3.7 (p. 477)

gN = ibinom(20,0.4,0:20);

gY = 0.1*[0 2 4 3 1];

gend

Do not forget zero coefficients for missing powers

Enter gen fn COEFFICIENTS for gN gN

Enter gen fn COEFFICIENTS for gY gY

Results are in N, PN, Y, PY, D, PD, P

May use jcalc or jcalcf on N, D, P

To view the distribution, call for gD.
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ED = dot(D,PD)

ED = 18.4000

VD = (D.^2)*PD' - ED^2

VD = 31.8720

P1 = ((15<=D)&(D<=25))*PD'
P1 = 0.6386

P2 = ((10<=D)&(D<=30))*PD'
P2 = 0.9290

Solution to Exercise 15.3.8 (p. 477)

gN = ibinom(20,0.5,0:20);

gY = 0.01*[0 5 10 15 20 15 10 10 5 5 5];

gend

Do not forget zero coefficients for missing powers

Enter gen fn COEFFICIENTS for gN gN

Enter gen fn COEFFICIENTS for gY gY

Results are in N, PN, Y, PY, D, PD, P

May use jcalc or jcalcf on N, D, P

To view the distribution, call for gD.

k = [25 50 75 100];

P = zeros(1,4);

for i = 1:4

P(i) = (D<=k(i))*PD';
end

disp(P)

0.0310 0.5578 0.9725 0.9998

Solution to Exercise 15.3.9 (p. 477)

gN = ibinom(10,0.5,0:10);

Y = [12.5 25 30.5 40 42.5 50 60];

PY = 0.01*[10 15 20 20 15 10 10];

mgd

Enter gen fn COEFFICIENTS for gN gN

Enter VALUES for Y Y

Enter PROBABILITIES for Y PY

Values are in row matrix D; probabilities are in PD.

To view the distribution, call for mD.

s = size(D)

s = 1 839

M = max(D)

M = 590

t = [100 150 200 250 300];

P = zeros(1,5);

for i = 1:5

P(i) = (D<=t(i))*PD';
end

disp(P)

0.1012 0.3184 0.6156 0.8497 0.9614

P1 = ((100<D)&(D<=200))*PD'
P1 = 0.5144
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Solution to Exercise 15.3.10 (p. 478)

gn = 0.1*ones(1,10);

gy = (1/6)*[0 ones(1,6)];

[Y,PY] = gendf(gn,gy);

[X,PX] = csort(Y-16,PY);

M = max(X)

M = 38

EX = dot(X,PX) % Check EX = En*Ey - 16 = 4.5*3.5

EX = -0.2500 % 4.5*3.5 - 16 = -0.25

VX = dot(X.^2,PX) - EX^2

VX = 114.1875

Ppos = (X>0)*PX'
Ppos = 0.4667

P10 = (X>=10)*PX'
P10 = 0.2147

P16 = (X>=16)*PX'
P16 = 0.0803

Solution to Exercise 15.3.11 (p. 478)

gnM = ibinom(4,0.6,0:4);

gnG = ibinom(5,0.5,0:5);

Y = 200:20:300;

PY = 0.01*[10 15 25 25 15 10];

[D1,PD1] = mgdf(gnM,Y,PY);

[D2,PD2] = mgdf(gnG,Y,PY);

ED1 = dot(D1,PD1)

ED1 = 600.0000 % Check: ED1 = EnM*EY = 2.4*250

VD1 = dot(D1.^2,PD1) - ED1^2

VD1 = 6.1968e+04

ED2 = dot(D2,PD2)

ED2 = 625.0000 % Check: ED2 = EnG*EY = 2.5*250

VD2 = dot(D2.^2,PD2) - ED2^2

VD2 = 8.0175e+04

[D1,D2,t,u,PD1,PD2,P] = icalcf(D1,D2,PD1,PD2);

Use array opertions on matrices X, Y, PX, PY, t, u, and P

[D,PD] = csort(t+u,P);

ED = dot(D,PD)

ED = 1.2250e+03

eD = ED1 + ED2 % Check: ED = ED1 + ED2

eD = 1.2250e+03 % (Continued next page)

VD = dot(D.^2,PD) - ED^2

VD = 1.4214e+05

vD = VD1 + VD2 % Check: VD = VD1 + VD2

vD = 1.4214e+05

P1g2 = total((t>u).*P)
P1g2 = 0.4612

k = [1500 1000 750];

PDk = zeros(1,3);
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for i = 1:3

PDk(i) = (D>=k(i))*PD';
end

disp(PDk)

0.2556 0.7326 0.8872

Solution to Exercise 15.3.12 (p. 478)

gN = ibinom(20,0.7,0:20);

gY = [0.2 0.8];

gend

Do not forget zero coefficients for missing powers

Enter gen fn COEFFICIENTS for gN gN

Enter gen fn COEFFICIENTS for gY gY

Results are in N, PN, Y, PY, D, PD, P

May use jcalc or jcalcf on N, D, P

To view the distribution, call for gD.

P10 = (D>=10)*PD'
P10 = 0.7788

P15 = (D>=15)*PD'
P15 = 0.0660

pD = ibinom(20,0.7*0.8,0:20); % Alternate: use D binomial (pp0)

D = 0:20;

p10 = (D>=10)*pD'
p10 = 0.7788

p15 = (D>=15)*pD'
p15 = 0.0660

Solution to Exercise 15.3.13 (p. 478)

gN = ibinom(20,0.3,0:20);

gY = [0.3 0.7];

gend

Do not forget zero coefficients for missing powers

Enter gen fn COEFFICIENTS for gN gN

Enter gen fn COEFFICIENTS for gY gY

Results are in N, PN, Y, PY, D, PD, P

May use jcalc or jcalcf on N, D, P

To view the distribution, call for gD.

Pall = (D==20)*PD'

Pall = 2.7822e-14

pall = (0.3*0.7)^20 % Alternate: use D binomial (pp0)

pall = 2.7822e-14

P10 = (D >= 10)*PD'

P10 = 0.0038

Solution to Exercise 15.3.14 (p. 478)

n = 500;

p = 0.6;

p0 = 0.75;
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D = 0:500;

PD = ibinom(500,p*p0,D);

k = [200 225 250];

P = zeros(1,3);

for i = 1:3

P(i) = (D>=k(i))*PD';
end

disp(P)

0.9893 0.5173 0.0140

Solution to Exercise 15.3.15 (p. 478)
JD ∼ Poisson (500*0.25 = 125); GD ∼ Poisson (300*0.20 = 60); D ∼ Poisson (185).

k = 150:5:250;

PD = cpoisson(185,k);

disp([k;PD]')

150.0000 0.9964

155.0000 0.9892

160.0000 0.9718

165.0000 0.9362

170.0000 0.8736

175.0000 0.7785

180.0000 0.6532

185.0000 0.5098

190.0000 0.3663

195.0000 0.2405

200.0000 0.1435

205.0000 0.0776

210.0000 0.0379

215.0000 0.0167

220.0000 0.0067

225.0000 0.0024

230.0000 0.0008

235.0000 0.0002

240.0000 0.0001

245.0000 0.0000

250.0000 0.0000

Solution to Exercise 15.3.16 (p. 478)

m1a = 50*0.33; m2a = 45*0.47; ma = m1a + m2a;

PNa = cpoisson(ma,[30 35 40])

PNa = 0.9119 0.6890 0.3722

Solution to Exercise 15.3.17 (p. 479)
Mac sales Poisson (30*0.4 + 65*0.2 = 25); HP sales Poisson (30*0.2 + 65*0.3 = 25.5); total Mac plus HP
sales Poisson(50.5).
Solution to Exercise 15.3.18 (p. 479)

X = 0:30;

Y = 0:80;

PX = ipoisson(80*0.1,X);
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PY = ipoisson(80*0.3,Y);

icalc: X Y PX PY

- - - - - - - - - - - -

PX10 = (X>=10)*PX' % Approximate calculation

PX10 = 0.2834

pX10 = cpoisson(8,10) % Direct calculation

pX10 = 0.2834

M = t>=0.5*u;
PM = total(M.*P)

PM = 0.1572

Solution to Exercise 15.3.19 (p. 479)

X = 0:400;

Y = 0:300;

PX = ipoisson(700*0.25,X);

PY = ipoisson(700*0.20,Y);

icalc

Enter row matrix of X-values X

Enter row matrix of Y-values Y

Enter X probabilities PX

Enter Y probabilities PY

Use array operations on matrices X, Y, PX, PY, t, u, and P

P1 = (2.5*X<=475)*PX'
P1 = 0.8785

M = 2.5*t<=(3*u + 50);

PM = total(M.*P)

PM = 0.7500

Solution to Exercise 15.3.20 (p. 479)

P1 = cpoisson(130*0.2,30) = 0.2407

P2 = cpoisson(26,16) - cpoisson(26,41) = 0.9819

Solution to Exercise 15.3.21 (p. 479)
T ∼ Poisson (200*0.2 + 180*0.25 = 85), P ∼ Poisson (200*0.8 + 180*0.75 = 295).

a = 85

b = 200*0.8 + 180*0.75

b = 295

YT = [1 2];

PYT = [0.7 0.3];

EYT = dot(YT,PYT)

EYT = 1.3000

VYT = dot(YT.^2,PYT) - EYT^2

VYT = 0.2100

YP = 1:5;

PYP = 0.1*[3 3 2 1 1];

EYP = dot(YP,PYP)

EYP = 2.4000

VYP = dot(YP.^2,PYP) - EYP^2

VYP = 1.6400
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EDT = 85*EYT

EDT = 110.5000

EDP = 295*EYP

EDP = 708.0000

ED = EDT + EDP

ED = 818.5000

VT = 85*(VYT + EYT^2)

VT = 161.5000

VP = 295*(VYP + EYP^2)

VP = 2183

VD = VT + VP

VD = 2.2705e+03

NT = 0:180; % Possible alternative

gNT = ipoisson(85,NT);

gYT = 0.1*[0 7 3];

[DT,PDT] = gendf(gNT,gYT);

EDT = dot(DT,PDT)

EDT = 110.5000

VDT = dot(DT.^2,PDT) - EDT^2

VDT = 161.5000

NP = 0:500;

gNP = ipoisson(295,NP);

gYP = 0.1*[0 3 2 2 1 1];

[DP,PDP] = gendf(gNP,gYP); % Requires too much memory

gDT (s) = exp
(
85
(
0.7s+ 0.3s2 − 1

))
gDP (s) = exp

(
295

(
0.1
(
3s+ 3s22s3 + s4 + s5

)
− 1
))

(15.85)

gD (s) = gDT (s) gDP (s) (15.86)

Solution to Exercise 15.3.22 (p. 480)

X = 0:120;

PX = ipoisson(120*0.4,X);

Y = 0:120;

PY = ipoisson(120*0.35,Y);

icalc

Enter row matrix of X values X

Enter row matrix of Y values Y

Enter X probabilities PX

Enter Y probabilities PY

Use array opertions on matrices X, Y, PX, PY, t, u, and P

M = t > u;

PM = total(M.*P)

PM = 0.7190

Solution to Exercise 15.3.23 (p. 480)
P = cpoisson(30*0.7+40*0.6,50) = 0.2468

Solution to Exercise 15.3.24 (p. 480)
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% First solution --- FY(t) = 1 - gN[P(Y>t)]
P = 1-(0.4 + 0.6*0.75)^7

P = 0.6794

% Second solution --- Positive number of satisfactory bids,

% i.e. the outcome is indicator for event E, with P(E) = 0.25

pN = ibinom(7,0.6,0:7);

gY = [3/4 1/4]; % Generator function for indicator

[D,PD] = gendf(pN,gY); % D is number of successes

Pa = (D>0)*PD' % D>0 means at least one successful bid

Pa = 0.6794

Solution to Exercise 15.3.25 (p. 480)
Use FW (t) = gN [P (Y ≤ T )]

gN = 0.01*[0 5 7 10 11 12 13 12 11 10 9];

t = 100:100:500;

PY = 1 - exp(-0.01*t);

FW = polyval(fliplr(gN),PY) % fliplr puts coeficients in

% descending order of powers

FW = 0.1330 0.4598 0.7490 0.8989 0.9615

Solution to Exercise 15.3.26 (p. 480)
Probability of a successful bid PY = (125− 100) /100 = 0.25

PY =0.25;

gN = 0.01*[5 10 15 20 20 10 10 7 3];

P = 1 - polyval(fliplr(gN),PY)

P = 0.9116

Solution to Exercise 15.3.27 (p. 480)
Consider a sequence of N trials with probabiliy p = (180− 150) /50 = 0.6.

gN = 0.01*[5 15 15 20 10 10 5 5 5 5 5];

gY = [0.4 0.6];

[D,PD] = gendf(gN,gY);

P = (D>0)*PD'
P = 0.8493

Solution to Exercise 15.3.28 (p. 481)

gN = 0.01*[5 15 15 20 15 10 10 5 5];

PY = 0.5 + 0.5*(1 - (4/5)^2)

PY = 0.6800

� PW = 1 - polyval(fliplr(gN),PY)

PW = 0.6536

%alternate

gY = [0.68 0.32];

[D,PD] = gendf(gN,gY);

P = (D>0)*PD'
P = 0.6536

Solution to Exercise 15.3.29 (p. 481)
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gN = ibinom(10,0.3,0:10);

t = 10:20;

p = 0.1*(20 - t);

P = polyval(fliplr(gN),p) - 0.7^10

P =

Columns 1 through 7

0.9718 0.7092 0.5104 0.3612 0.2503 0.1686 0.1092

Columns 8 through 11

0.0664 0.0360 0.0147 0

Pa = (0.7 + 0.3*p).^10 - 0.7^10 % Alternate form of gN

Pa =

Columns 1 through 7

0.9718 0.7092 0.5104 0.3612 0.2503 0.1686 0.1092

Columns 8 through 11

0.0664 0.0360 0.0147 0

Solution to Exercise 15.3.30 (p. 481)

gN = 0.2*ones(1,5);

p = 1 - exp(-2);

FW = polyval(fliplr(gN),p)

FW = 0.7635

gY = [p 1-p]; % Alternate

[D,PD] = gendf(gN,gY);

PW = (D==0)*PD'

PW = 0.7635

Solution to Exercise 15.3.31 (p. 481)

p = 1 - exp(-0.0025*500);

FW = (0.95 + 0.05*p)^12

FW = 0.8410

gN = ibinom(12,0.05,0:12);

gY = [p 1-p];

[D,PD] = gendf(gN,gY);

PW = (D==0)*PD'

PW = 0.8410

Solution to Exercise 15.3.32 (p. 481)

P (Y ≤ 5) = 0.005
∫ 5

2

(37− 2t) dt = 0.45 (15.87)

p = 0.45;

P = 1 - (0.7 + 0.3*p)^10

P = 0.8352

gN = ibinom(10,0.3,0:10);

gY = [p 1-p];

[D,PD] = gendf(gN,gY); % D is number of "successes"

Pa = (D>0)*PD'
Pa = 0.8352
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Solution to Exercise 15.3.33 (p. 481)
Nt ∼ Poisson (λt), NDt ∼ Poisson (λpt), WDt exponential (λp).

p = 0.05;

t = 10;

lambda = 4;

EW = 1/(lambda*p)

EW = 5

PND10 = cpoisson(lambda*p*t,[3 5])

PND10 = 0.3233 0.0527

Solution to Exercise 15.3.34 (p. 481)
N8 is Poisson (7*8 = 56) gN (s) = e56(s−1).

t = 2;

FW2 = exp(56*(1 - exp(-t^2) - 1))

FW2 = 0.3586

Solution to Exercise 15.3.35 (p. 481)
FW (k) = gN [P (Y ≤ k)]P (Y ≤ k)− 1− qk−1Nt ∼ Poisson (12t)

q = 1 - 0.35;

k = 5;

t = 2;

mu = 12;

FW = exp(mu*t*(1 - q^(k-1) - 1))

FW = 0.0138
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Chapter 16

Conditional Independence, Given a

Random Vector

16.1 Conditional Independence, Given a Random Vector1

In the unit on Conditional Independence (Section 5.1) , the concept of conditional independence of events
is examined and used to model a variety of common situations. In this unit, we investigate a more general
concept of conditional independence, based on the theory of conditional expectation. This concept lies at the
foundations of Bayesian statistics, of many topics in decision theory, and of the theory of Markov systems.
We examine in this unit, very brie�y, the �rst of these. In the unit on Markov Sequences (Section 16.2), we
provide an introduction to the third.

16.1.1 The concept

The de�nition of conditional independence of events is based on a product rule which may be expressed in
terms of conditional expectation, given an event. The pair {A, B} is conditionally independent, given C, i�

E [IAIB |C] = P (AB|C) = P (A|C)P (B|C) = E [IA|C]E [IB |C] (16.1)

If we let A = X−1 (M) and B = Y −1 (N), then IA = IM (X) and IB = IN (Y ). It would be reasonable to
consider the pair {X, Y } conditionally independent, given event C, i� the product rule

E [IM (X) IN (Y ) |C] = E [IM (X) |C]E [IN (Y ) |C] (16.2)

holds for all reasonable M and N (technically, all Borel M and N). This suggests a possible extension to
conditional expectation, given a random vector. We examine the following concept.

De�nition. The pair {X,Y } is conditionally independent, givenZ, designated {X, Y } ci |Z, i�

E [IM (X) IN (Y ) |Z] = E [IM (X) |Z]E [IN (Y ) |Z] for all Borel M. N (16.3)

Remark. Since it is not necessary that X, Y , or Z be real valued, we understand that the sets M and N
are on the codomains for X and Y, respectively. For example, if X is a three dimensional random vector,
then M is a subset of R3.

As in the case of other concepts, it is useful to identify some key properties, which we refer to by the
numbers used in the table in Appendix G. We note two kinds of equivalences. For example, the following
are equivalent.

(CI1) E [IM (X) IN (Y ) |Z] = E [IM (X) |Z]E [IN (Y ) |Z] a.s. for all Borel setsM, N

1This content is available online at <http://cnx.org/content/m23813/1.6/>.
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(CI5) E [g (X, Z)h (Y, Z) |Z] = E [g (X, Z) |Z]E [h (Y, Z) |Z] a.s. for all Borel functions g, h
Because the indicator functions are special Borel functions, (CI1) (p. 496) is a special case of (CI5)

(p. 495). To show that (CI1) (p. 496) implies (CI5) (p. 495), we need to use linearity, monotonicity, and
monotone convergence in a manner similar to that used in extending properties (CE1) (p. 426) to (CE6)
(p. 427) for conditional expectation. A second kind of equivalence involves various patterns. The properties
(CI1) (p. 496), (CI2) (p. 496), (CI3) (p. 496), and (CI4) (p. 496) are equivalent, with (CI1) (p. 496) being
the de�ning condition for {X, Y } ci |Z.

(CI1) E [IM (X) IN (Y ) |Z] = E [IM (X) |Z]E [IN (Y ) |Z] a.s. for all Borel setsM, N
(CI2) E [IM (X) |Z, Y ] = E [IM (X) |Z] a.s. for all Borel setsM
(CI3) E [IM (X) IQ (Z) |Z, Y ] = E [IM (X) IQ (Z) |Z] a.s. for all Borel setsM, Q
(CI4) E [IM (X) IQ (Z) |Y ] = E{E [IM (X) IQ (Z) |Z] |Y } a.s. for all Borel setsM, Q
As an example of the kinds of argument needed to verify these equivalences, we show the equivalence of

(CI1) (p. 496) and (CI2) (p. 496).

• (CI1) (p. 496) implies (CI2) (p. 496). Set e1 (Y, Z) = E [IM (X) |Z, Y ] and e2 (Y, Z) = E [IM (X) |Z].
If we show

E [IN (Y ) IQ (Z) e1 (Y, Z)] = E [IN (Y ) IQ (Z) e2 (Y, Z)] for all Borel N, Q (16.4)

then by the uniqueness property (E5b) (list, p. 600) for expectation we may assert e1 (Y, Z) =
e2 (Y, Z) a.s. Using the de�ning property (CE1) (p. 426) for conditional expectation, we have

E{IN (Y ) IQ (Z)E [IM (X) |Z, Y ]} = E [IN (Y ) IQ (Z) IM (X)] (16.5)

On the other hand, use of (CE1) (p. 426), (CE8) (p. 428), (CI1) (p. 496), and (CE1) (p. 426) yields

E{IN (Y ) IQ (Z)E [IM (X) |Z]} = E{IQ (Z)E [IN (Y )E [IM (X) |Z] |Z]} (16.6)

= E{IQ (Z)E [IM (X) |Z]E [IN (Y ) |Z]} = E{IQ (Z)E [IM (X) IN (Y ) |Z]} (16.7)

= E [IN (Y ) IQ (Z) IM (X)] (16.8)

which establishes the desired equality.
• (CI2) (p. 496) implies (CI1) (p. 496). Using (CE9) (p. 428), (CE8) (p. 428), (CI2) (p. 496), and

(CE8) (p. 428), we have

E [IM (X) IN (Y ) |Z] = E{E [IM (X) IN (Y ) |Z, Y ] |Z} (16.9)

= E{IN (Y )E [IM (X) |Z, Y ] |Z} = E{IN (Y )E [IM (X) |Z] |Z} (16.10)

= E [IM (X) |Z]E [IN (Y ) |Z] (16.11)

Use of property (CE8) (p. 428) shows that (CI2) (p. 496) and (CI3) (p. 496) are equivalent. Now just as
(CI1) (p. 496) extends to (CI5) (p. 495), so also (CI3) (p. 496) is equivalent to

(CI6) E [g (X, Z) |Z, Y ] = E [g (X, Z) |Z] a.s. for all Borel functions g
Property (CI6) (p. 496) provides an important interpretation of conditional independence:
E [g (X, Z) |Z] is the best mean-square estimator for g (X, Z), given knowledge of Z. The condition

{X, Y } ci |Z implies that additional knowledge about Y does not modify that best estimate. This interpre-
tation is often the most useful as a modeling assumption.

Similarly, property (CI4) (p. 496) is equivalent to
(CI8) E [g (X, Z) |Y ] = E{E [g (X, Z) |Z] |Y } a.s. for all Borel functions g
Property (CI7) ("(CI7) ", p. 602) is an alternate way of expressing (CI6) (p. 496). Property (CI9)

("(CI9) ", p. 602) is just a convenient way of expressing the other conditions.
The additional properties in Appendix G (Section 17.7) are useful in a variety of contexts, particularly

in establishing properties of Markov systems. We refer to them as needed.
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16.1.2 The Bayesian approach to statistics

In the classical approach to statistics, a fundamental problem is to obtain information about the population
distribution from the distribution in a simple random sample. There is an inherent di�culty with this
approach. Suppose it is desired to determine the population mean µ. Now µ is an unknown quantity
about which there is uncertainty. However, since it is a constant, we cannot assign a probability such as
P (a < µ ≤ b). This has no meaning.

The Bayesian approach makes a fundamental change of viewpoint. Since the population mean is a
quantity about which there is uncertainty, it is modeled as a random variable whose value is to be determined
by experiment. In this view, the population distribution is conceived as randomly selected from a class of such
distributions. One way of expressing this idea is to refer to a state of nature. The population distribution
has been �selected by nature� from a class of distributions. The mean value is thus a random variable whose
value is determined by this selection. To implement this point of view, we assume

1. The value of the parameter (say µ in the discussion above) is a �realization� of a parameter random
variable H. If two or more parameters are sought (say the mean and variance), they may be considered
components of a parameter random vector.

2. The population distribution is a conditional distribution, given the value of H.

The Bayesian model
If X is a random variable whose distribution is the population distribution and H is the parameter

random variable, then {X, H} have a joint distribution.

1. For each u in the range of H, we have a conditional distribution for X, given H = u.
2. We assume a prior distribution for H. This is based on previous experience.
3. We have a random sampling process, given H : i.e., {Xi : 1 ≤ i ≤ n} is conditionally iid, given H. Let
W = (X1, X2, · · · , Xn) and consider the joint conditional distribution function

FW |H (t1, t2, · · · , tn|u) = P (X1 ≤ t1, X2 ≤ t2, · · ·Xn ≤ tn|H = u) (16.12)

= E

[
n∏
i=1

I(−∞,ti] (Xi) |H = u

]
=

n∏
i=1

E
[
I(−∞,ti] (Xi) |H = u

]
=

n∏
i=1

FX|H (ti|u) (16.13)

If X has conditional density, given H, then a similar product rule holds.

Population proportion
We illustrate these ideas with one of the simplest, but most important, statistical problems: that of

determining the proportion of a population which has a particular characteristic. Examples abound. We
mention only a few to indicate the importance.

1. The proportion of a population of voters who plan to vote for a certain candidate.
2. The proportion of a given population which has a certain disease.
3. The fraction of items from a production line which meet speci�cations.
4. The fraction of women between the ages eighteen and �fty �ve who hold full time jobs.

The parameter in this case is the proportion p who meet the criterion. If sampling is at random, then the
sampling process is equivalent to a sequence of Bernoulli trials. If H is the parameter random variable and
Sn is the number of �successes� in a sample of size n, then the conditional distribution for Sn, given H = u,
is binomial (n, u). To see this, consider

Xi = IEi , with P (Ei|H = u) = E [Xi|H = u] = e (u) = u (16.14)
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Anaysis is carried out for each �xed u as in the ordinary Bernoulli case. If

Sn =
n∑
i=1

Xi =
n∑
i=1

IEi is the number of successes in n component trials (16.15)

we have the result

E
[
I{k} (Si) |H = u

]
= P (Sn = k|H = u) = C (n, k)uk(1− u)n−k and E [Sn|H = u] = nu (16.16)

The objective
We seek to determine the best mean-square estimate of H, given Sn = k. Two steps must be taken:

1. If H = u, we know E [Sn|H = u] = nu. Sampling gives Sn = k. We make a Bayesian reversal to get
an exression for E [H|Sn = k].

2. To complete the task, we must assume a prior distribution for H on the basis of prior knowledge, if
any.

The Bayesian reversal
Since {Sn = k} is an event with positive probability, we use the de�nition of the conditional expectation,

given an event, and the law of total probability (CE1b) (p. 426) to obtain

E [H|Sn = k] =
E
[
HI{k} (Sn)

]
E
[
I{k} (Sn)

] =
E{HE

[
I{k} (Sn) |H

]
}

E{E
[
I{k} (Sn) |H

]
}

=

∫
uE
[
I{k} (Sn) |H = u

]
fH (u) du∫

E
[
I{k} (Sn) |H = u

]
fH (u) du

(16.17)

=
C (n, k)

∫
uk+1(1− u)n−kfH (u) du

C (n, k)
∫
uk(1− u)n−kfH (u) du

(16.18)

A prior distribution for H
The beta (r, s) distribution (see Appendix G (Section 17.7)), proves to be a �natural� choice for this

purpose. Its range is the unit interval, and by proper choice of parameters r, s, the density function can
be given a variety of forms (see Figures 1 (Figure 16.1) and 2 (Figure 16.2)).
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Figure 16.1: The Beta(r,s) density for r = 2, s = 1, 2, 10.
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Figure 16.2: The Beta(r,s) density for r = 5, s = 2, 5, 10.

Its analysis is based on the integrals∫ 1

0

ur−1(1− u)s−1
du =

Γ (r) Γ (s)
Γ (r + s)

with Γ (a+ 1) = aΓ (a) (16.19)

For H ∼ beta (r, s), the density is given by

fH (t) =
Γ (r + s)
Γ (r) Γ (s)

tr−1(1− t)s−1 = A (r, s) tr−1(1− t)s−1 0 < t < 1 (16.20)

For r ≥ 2, s ≥ 2, fH has a maximum at (r − 1) / (r + s− 2). For r, s positive integers, fH is a polynomial
on [0, 1], so that determination of the distribution function is easy. In any case, straightforward integration,
using the integral formula above, shows

E [H] =
r

r + s
and Var [H] =

rs

(r + s)2 (r + s+ 1)
(16.21)

If the prior distribution for H is beta (r, s) , we may complete the determination of E [H|Sn = k] as follows.

E [H|Sn = k] =
A (r, s)

∫ 1

0
uk+1(1− u)n−kur−1(1− u)s−1

du

A (r, s)
∫ 1

0
uk(1− u)n−kur−1(1− u)s−1

du
=

∫ 1

0
uk+r(1− u)n+s−k−1

du∫ 1

0
uk+r−1(1− u)n+s−k−1

du
(16.22)

=
Γ (r + k + 1) Γ (n+ s− k)

Γ (r + s+ n+ 1)
· Γ (r + s+ n)

Γ (r + k) Γ (n+ s− k)
=

k + r

n+ r + s
(16.23)

We may adapt the analysis above to show that H is conditionally beta (r + k, s+ n− k) , given Sn = k.

FH|S (t|k) =
E
[
It (H) I{k} (Sn)

]
E
[
I{k} (Sn)

] where It (H) = I[0,t] (H) (16.24)
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The analysis goes through exactly as for E [H|Sn = k], except that H is replaced by It (H). In the integral
expression for the numerator, one factor u is replaced by It (u). ForH ∼ beta (r, s), we get

FH|S (t|k) =
Γ (r + s+ n)

Γ (r + k) Γ (n+ s− k)

∫ t

0

uk+r−1(1− u)n+s−k−1
du =

∫ t

0

fH|S (u|k) du (16.25)

The integrand is the density for beta (r + k, n+ s− k).
Any prior information on the distribution for H can be utilized to select suitable r, s. If there is no prior

information, we simply take r = 1, s = 1, which corresponds to
H ∼ uniform on (0, 1). The value is as likely to be in any subinterval of a given length as in any other

of the same length. The information in the sample serves to modify the distribution for H, conditional upon
that information.

Example 16.1: Population proportion with a beta prior
It is desired to estimate the portion of the student body which favors a proposed increase in the
student blanket tax to fund the campus radio station. A sample of size n = 20 is taken. Fourteen
respond in favor of the increase. Assuming prior ignorance (i.e., thatH ∼ beta (1,1)), what is
the conditional distribution given S20 = 14? After the �rst sample is taken, a second sample of
size n = 20 is taken, with thirteen favorable responses. Analysis is made using the conditional
distribution for the �rst sample as the prior for the second. Make a new estimate of H.

Figure 16.3: Conditional densities for repeated sampling, Example 16.1 (Population proportion with a
beta prior).

SOLUTION
For the �rst sample the parameters are r = s = 1. According the treatment

above, H is conditionally beta (k + r, n+ s− k) = (15, 7). The density has a maxi-
mum at (r + k − 1) / (r + k + n+ s− k − 2) = k/n. The conditional expecation, however, is
(r + k) / (r + s+ n) = 15/22 ≈ 0.6818.
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For the second sample, with the conditional distribution as the new prior, we should expect more
sharpening of the density about the new mean-square estimate. For the new sample, n = 20, k = 13,
and the prior H ∼ beta (15, 7). The new conditional distribution has parameters r∗ = 15+13 = 28
and s∗ = 20 + 7− 13 = 14. The density has a maximum at t = (28− 1) / (28 + 14− 2) = 27/40 =
0.6750. The best estimate of H is 28/ (28 + 14) = 2/3. The conditonal densities in the two cases
may be plotted with MATLAB (see Figure 1).

t = 0:0.01:1;

plot(t,beta(15,7,t),'k-',t,beta(28,14,t),'k--')

As expected, the maximum for the second is somewhat larger and occurs at a slightly smaller t,
re�ecting the smaller k. And the density in the second case shows less spread, resulting from the
fact that prior information from the �rst sample is incorporated into the analysis of the second
sample.

The same result is obtained if the two samples are combined into one sample of size 40.

It may be well to compare the result of Bayesian analysis with that for classical statistics. Since, in the
latter, case prior information is not utilized, we make the comparison with the case of no prior knowledge
(r = s = 1). For the classical case, the estimator for µ is the sample average; for the Bayesian case with
beta prior, the estimate is the conditional expectation of H, given Sn.

If Sn = k: Classical estimate = k/n Bayesian estimate = (k + 1) / (n+ 2) (16.26)

For large sample size n, these do not di�er signi�cantly. For small samples, the di�erence may be quite
important. The Bayesian estimate is often referred to as the small sample estimate, although there is nothing
in the Bayesian procedure which calls for small samples. In any event, the Bayesian estimate seems preferable
for small samples, and it has the advantage that prior information may be utilized. The sampling procedure
upgrades the prior distribution.

The essential idea of the Bayesian approach is the view that an unknown parameter about which there
is uncertainty is modeled as the value of a random variable. The name Bayesian comes from the role of
Bayesian reversal in the analysis.

The application of Bayesian analysis to the population proportion required Bayesian reversal in the case
of discrete Sn. We consider, next, this reversal process when all random variables are absolutely continuous.

The Bayesian reversal for a joint absolutely continuous pair
In the treatment above, we utilize the fact that the conditioning random variable Sn is discrete. Suppose

the pair {W,H} is jointly absolutely continuous, and fW |H (t|u) and fH (u) are speci�ed. To determine

E [H|W = t] =
∫
ufH|W (u|t) du (16.27)

we need fH|W (u|t). This requires a Bayesian reversal of the conditional densities. Now by de�nition

fH|W (u|t) =
fWH (t, u)
fW (t)

and fWH (t, u) = fW |H (t|u) fH (u) (16.28)

Since by the rule for determining the marginal density

fW (t) =
∫
fWH (t. u) du =

∫
fW |H (t|u) fH (u) du (16.29)

we have

fH|W (u|t) =
fW |H (t|u) fH (u)∫
fW |H (t|u) fH (u) du

and E [H|W = t] =

∫
ufW |H (t|u) fH (u) du∫
fW |H (t|u) fH (u) du

(16.30)
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Example 16.2: A Bayesian reversal
Suppose H ∼ exponential (λ) and the Xi are conditionally iid, exponential (u), given H = u. A
sample of size n is taken. Put W = (X1, X2, · · · , Xn), t = (t1, t2, · · · , tn), and t∗ = t1 + t2 +
· · ·+ tn. Determine the best mean-square estimate of H, given W = t.

SOLUTION

fXi|H (ti|u) = ue−uti so that fW |H (t|u) =
n∏
i=1

ue−uti = une−ut
∗

(16.31)

Hence

E [H|W = t] =
∫
ufH|W (u|t) du =

∫∞
0
un+1e−ut

∗
λe−λu du∫∞

0
une−ut∗λe−λu du

(16.32)

=

∫∞
0
un+1e−(λ+t∗)u du∫∞

0
une−(λ+t∗)u du

=
(n+ 1)!

(λ+ t∗)n+2 ·
(λ+ t∗)n+1

n!
=

n+ 1
(λ+ t∗)

where t∗ =
n∑
i=1

ti (16.33)

16.2 Elements of Markov Sequences2

16.2.1 Elements of Markov Sequences

Markov sequences (Markov chains) are often studied at a very elementary level, utilizing algebraic tools
such as matrix analysis. In this section, we show that the fundamental Markov property is an expression of
conditional independence of �past� and �future," given the �present.� The essential Chapman-Kolmogorov
equation is seen as a consequence of this conditional independence. In the usual time-homogeneous case
with �nite state space, the Chapman-Kolmogorov equation leads to the algebraic formulation that is widely
studied at a variety of levels of mathematical sophistication. With the background laid, we only sketch some
of the more common results. This should provide a probabilistic perspective for a more complete study of
the algebraic analysis.

Markov sequences
We wish to model a system characterized by a sequence of states taken on at discrete instants which

we call transition times. At each transition time, there is either a change to a new state or a renewal
of the state immediately before the transition. Each state is maintained unchanged during the period
or stage between transitions. At any transition time, the move to the next state is characterized by a
conditional transition probability distribution. We suppose that the system is memoryless, in the sense that
the transition probabilities are dependent upon the current state (and perhaps the period number), but not
upon the manner in which that state was reached. The past in�uences the future only through the present.
This is the Markov property, which we model in terms of conditional independence.

For period i, the state is represented by a value of a random variable Xi, whose value is one of the
members of a set E, known as the state space. We consider only a �nite state space and identify the states
by integers from 1 to M. We thus have a sequence

XN = {Xn : n ∈ N}, where N = {0, 1, 2, · · · } (16.34)

We view an observation of the system as a composite trial. Each ω yields a sequence of states
{X0 (ω) , X1 (ω) , · · · } which is referred to as a realization of the sequence, or a trajectory. We suppose
the system is evolving in time. At discrete instants of time t1, t2, · · · the system makes a transition from one
state to the succeeding one (which may be the same).

2This content is available online at <http://cnx.org/content/m23824/1.6/>.
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Initial period: n = 0, t ∈ [0, t1), state is X0 (ω); at t1 the transition is to X1 (ω)

Period one: n = 1, t ∈ [t1, t2), state is X1 (ω); at t2 the transition is to X2 (ω)

.....

Period k: n = k, t ∈ [tk, tk+1), state is Xk (ω); at tk+1 move to Xk+1 (ω)

.....

Table 16.1

The parameter n indicates the period t∈ [tn, tn+1). If the periods are of unit length, then tn = n. At
tn+1, there is a transition from the state Xn (ω) to the state Xn+1 (ω) for the next period. To simplify
writing, we adopt the following convention:

Un = (X0, X1, · · · , Xn) ∈ En Um,n = (Xm, · · · , Xn) and Un = (Xn, Xn+1, · · · ) ∈ En (16.35)

The random vector Un is called the past at n of the sequence XN and Un is the future at n. In order to
capture the notion that the system is without memory, so that the future is a�ected by the present, but not
by how the present is reached, we utilize the notion of conditional independence, given a random vector, in
the following

De�nition. The sequence XN is Markov i�

(M) {Xn+1, Un} ci |Xn for all n ≥ 0 (16.36)

Several conditions equivalent to the Markov condition (M) may be obtained with the aid of properties of
conditional independence. We note �rst that (M) is equivalent to

P (Xn+1 = k|Xn = j, Un−1 ∈ Q) = P (Xn+1 = k|Xn = j) for each n ≥ 0, j, k ∈
E, and Q ⊂ En−1

(16.37)

The state in the next period is conditioned by the past only through the present state, and not by the
manner in which the present state is reached. The statistics of the process are determined by the initial
state probabilities and the transition probabilities

P (Xn+1 = k|Xn = j) ∀ j, k ∈ E, n ≥ 0 (16.38)

The following examples exhibit a pattern which implies the Markov condition and which can be exploited
to obtain the transition probabilities.

Example 16.3: One-dimensional random walk
An object starts at a given initial position. At discrete instants t1, t2, · · · the object moves a random
distance along a line. The various moves are independent of each other. Let

Y0 be the initial position
Yk be the amount the object moves at time t = tk {Yk : 1 ≤ k} iid
Xn =

∑n
k=0 Yk be the position after n moves.

We note that Xn+1 = g (Xn, Yn+1). Since the position after the transition at tn+1 is a�ected by
the past only by the value of the position Xn and not by the sequence of positions which led to this
position, it is reasonable to suppose that the process XN is Markov. We verify this below.

Example 16.4: A class of branching processes
Each member of a population is able to reproduce. For simplicity, we suppose that at certain
discrete instants the entire next generation is produced. Some mechanism limits each generation
to a maximum population of M members. Let
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Zin be the number propagated by the ith member of the nth generation.
Zin = 0 indicates death and no o�spring, Zin = k indicates a net of k propagated by the ith
member (either death and k o�spring or survival and k − 1 o�spring).

The population in generation n+ 1 is given by

Xn+1 = min {M,

Xn∑
i=1

Zin} (16.39)

We suppose the class {Zin : 1 ≤ i ≤ M, 0 ≤ n} is iid. Let Yn+1 = (Z1n, Z2n, · · · , ZMn). Then
{Yn+1, Un} is independent. It seems reasonable to suppose the sequence XN is Markov.

Example 16.5: An inventory problem
A certain item is stocked according to an (m,M) inventory policy, as follows:

• If stock at the end of a period is less than m, order up to M.
• If stock at the end of a period is m or greater, do not order.

Let X0 be the initial stock, and Xn be the stock at the end of the nth period (before restocking),
and let Dn be the demand during the nth period. Then for n ≥ 0,

Xn+1 = {
max{M −Dn+1, 0} if 0 ≤ Xn < m

max{Xn −Dn+1, 0} if m ≤ Xn

= g (Xn, Dn+1) (16.40)

If we suppose {Dn : 1 ≤ n} is independent, then {Dn+1, Un} is independent for each n ≥ 0, and
the Markov condition seems to be indicated.

Remark. In this case, the actual transition takes place throughout the period. However, for purposes of
analysis, we examine the state only at the end of the period (before restocking). Thus, the transitions are
dispersed in time, but the observations are at discrete instants.

Example 16.6: Remaining lifetime
A piece of equipment has a lifetime which is an integral number of units of time. When a unit
fails, it is replaced immediately with another unit of the same type. Suppose

� Xn is the remaining lifetime of the unit in service at time n
� Yn+1 is the lifetime of the unit installed at time n, with {Yn : 1 ≤ n} iid

Then Xn+1 = {
Xn − 1 if Xn ≥ 1

Yn+1 − 1 if Xn = 0
= g (Xn, Yn+1) (16.41)

Remark. Each of these four examples exhibits the pattern

i. {X0, Yn : 1 ≤ n} is independent
ii. Xn+1 = gn+1 (Xn, Yn+1) , n ≥ 0

We now verify the Markov condition and obtain a method for determining the transition probabilities.
A pattern yielding Markov sequences
Suppose {Yn : 0 ≤ n} is independent (call these the driving random variables). Set

X0 = g0 (Y0) and Xn+1 = gn+1 (Xn, Yn+1) ∀ n ≥ 0 (16.42)

Then
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a. XN is Markov
b. P (Xn+1 ∈ Q|Xn = u) = P [gn+1 (u, Yn + 1) ∈ Q] for all n, u, and any Borel set Q.

VERIFICATION

a. It is apparent that if Y0, Y1, · · · , Yn are known, then Un is known. Thus Un = hn (Y0, Y1, · · · , Yn)
, which ensures each pair {Yn+1, Un} is independent. By property (CI13) ("(CI13)", p. 603), with
X = Yn+1, Y = Xn, and Z = Un−1, we have

{Yn+1, Un−1}ci|Xn (16.43)

Since Xn+1 = gn+1 (Yn+1, Xn) and Un = hn (Xn, Un−1), property (CI9) ("(CI9) ", p. 602) ensures

{Xn+1, Un}ci|Xn∀n ≥ 0 (16.44)

which is the Markov property.
b. P (Xn+1 ∈ Q|Xn = u) = E{IQ [gn+1 (Xn, Yn+1)] |Xn = u} a.s. = E{IQ [gn+1 (u, Yn+1)]}a.s. [PX ] by

(CE10b) ("(CE10)", p. 601) = P [gn+1 (u, Yn+1) ∈ Q] by (E1a) ("(E1a) ", p. 599)

� �
The application of this proposition, below, to the previous examples shows that the transition probabilities

are invariant with n. This case is important enough to warrant separate classi�cation.
De�nition. If P (Xn+1 ∈ Q|Xn = u) is invariant with n, for all Borel sets Q, all u ∈ E, the Markov

process XN is said to be homogeneous.
As a matter of fact, this is the only case usually treated in elementary texts. In this regard, we note the

following special case of the proposition above.
Homogenous Markov sequences
If {Yn : 1 ≤ n} is iid and gn+1 = g for all n, then the process is a homogeneous Markov process, and

P (Xn+1 ∈ Q|Xn = u) = P [g (u, Yn+1) ∈ Q] , invariant with n (16.45)

� �
Remark.
In the homogeneous case, the transition probabilities are invariant with n. In this case, we write

P (Xn+1 = j|Xn = i) = p (i, j) or pij (invariant with n (16.46)

These are called the (one-step) transition probabilities.
The transition probabilities may be arranged in a matrix P called the transition probability matrix,

usually referred to as the transition matrix,

P = [p (i, j)] (16.47)

The element p (i, j) on row i and column j is the probability P (Xn+1 = j|Xn = i). Thus, the elements on
the ith row constitute the conditional distribution for Xn+1, given Xn = i. The transition matrix thus has
the property that each row sums to one. Such a matrix is called a stochastic matrix. We return to the
examples. From the propositions on transition probabilities, it is apparent that each is Markov. Since the
function g is the same for all n and the driving random variables corresponding to the Yi form an iid class,
the sequences must be homogeneous. We may utilize part (b) of the propositions to obtain the one-step
transition probabilities.

Example 16.7: Random walk continued
gn (u, Yn+1) = u+ Yn+1, so that gn is invariant with n. Since {Yn : 1 ≤ n} is iid,

P (Xn+1 = k|Xn = j) = P (j + Y = k) = P (Y = k − j) = pk−j where pk = P (Y = k) (16.48)
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Example 16.8: Branching process continued
g (j, Yn+1) = min{M,

∑j
i=1 Zin} and E = {0, 1, · · · , M}. If {Zin : 1 ≤ i ≤ M, 1 ≤ n} is iid,

then

Wjn =
j∑
i=1

Zin ensures {Wjn : 1 ≤ n} is iid for each j ∈ E (16.49)

We thus have

P (Xn+1 = k|Xn = j) = {
P (Wjn = k) for 0 ≤ k < M

P (Wjn ≥M) for k ≥M
0 ≤ j ≤M (16.50)

With the aid of moment generating functions, one may determine distributions for

W1 = Z1, W2 = Z1 + Z2, · · · , WM = Z1 + · · ·+ ZM (16.51)

These calculations are implemented in an m-procedure called branchp. We simply need the distri-
bution for the iid Zin.

% file branchp.m

% Calculates transition matrix for a simple branching

% process with specified maximum population.

disp('Do not forget zero probabilities for missing values of Z')

PZ = input('Enter PROBABILITIES for individuals ');

M = input('Enter maximum allowable population ');

mz = length(PZ) - 1;

EZ = dot(0:mz,PZ);

disp(['The average individual propagation is ',num2str(EZ),])

P = zeros(M+1,M+1);

Z = zeros(M,M*mz+1);

k = 0:M*mz;

a = min(M,k);

z = 1;

P(1,1) = 1;

for i = 1:M % Operation similar to genD

z = conv(PZ,z);

Z(i,1:i*mz+1) = z;

[t,p] = csort(a,Z(i,:));

P(i+1,:) = p;

end

disp('The transition matrix is P')

disp('To study the evolution of the process, call for branchdbn')

PZ = 0.01*[15 45 25 10 5]; % Probability distribution for individuals

branchp % Call for procedure

Do not forget zero probabilities for missing values of Z

Enter PROBABILITIES for individuals PZ

Enter maximum allowable population 10

The average individual propagation is 1.45

The transition matrix is P

To study the evolution of the process, call for branchdbn
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disp(P) % Optional display of generated P

Columns 1 through 7

1.0000 0 0 0 0 0 0

0.1500 0.4500 0.2500 0.1000 0.0500 0 0

0.0225 0.1350 0.2775 0.2550 0.1675 0.0950 0.0350

0.0034 0.0304 0.1080 0.1991 0.2239 0.1879 0.1293

0.0005 0.0061 0.0307 0.0864 0.1534 0.1910 0.1852

0.0001 0.0011 0.0075 0.0284 0.0702 0.1227 0.1623

0.0000 0.0002 0.0017 0.0079 0.0253 0.0579 0.1003

0.0000 0.0000 0.0003 0.0020 0.0078 0.0222 0.0483

0.0000 0.0000 0.0001 0.0005 0.0021 0.0074 0.0194

0.0000 0.0000 0.0000 0.0001 0.0005 0.0022 0.0068

0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0022

Columns 8 through 11

0 0 0 0

0 0 0 0

0.0100 0.0025 0 0

0.0705 0.0315 0.0119 0.0043

0.1481 0.0987 0.0559 0.0440

0.1730 0.1545 0.1179 0.1625

0.1381 0.1574 0.1528 0.3585

0.0832 0.1179 0.1412 0.5771

0.0406 0.0698 0.1010 0.7591

0.0169 0.0345 0.0590 0.8799

0.0062 0.0147 0.0294 0.9468

Note that p (0, 0) = 1. If the population ever reaches zero, it is extinct and no more births can
occur. Also, if the maximum population (10 in this case) is reached, there is a high probability of
returning to that value and very small probability of becoming extinct (reaching zero state).

Example 16.9: Inventory problem (continued)
In this case,

g (j,Dn+1) = {
max{M −Dn+1, 0} for 0 ≤ j < m

max{j −Dn+1, 0} for m ≤ j ≤M
(16.52)

Numerical example

m = 1 M = 3 Dn is Poisson (1) (16.53)

To simplify writing, use D for Dn. Because of the invariance with n, set

P (Xn+1 = k|Xn = j) = p (j, k) = P [g (j, Dn+1) = k] (16.54)

The various cases yield
g (0, D) = max{3−D, 0}

g (0, D) = 0 i� D ≥ 3 implies p (0, 0) = P (D ≥ 3)
g (0, D) = 1 i� D = 2 implies p (0, 1) = P (D = 2)
g (0, D) = 2 i� D = 1 implies p (0, 2) = P (D = 1)
g (0, D) = 3 i� D = 0 implies p (0, 3) = P (D = 0)

g (1, D) = max{1−D, 0}

g (1, D) = 0 i� D ≥ 1 implies p (1, 0) = P (D ≥ 1)
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g (1, D) = 1 i� D = 0 implies p (1, 1) = P (D = 0)
g (1, D) = 2, 3 is impossible

g (2, D) = max{2−D, 0}

g (2, D) = 0 i� D ≥ 2 implies p (2, 0) = P (D ≥ 2)
g (2, D) = 1 i� D = 1 implies p (2, 1) = P (D = 1)
g (2, D) = 2 i� D = 0 implies p (2, 2) = P (D = 0)
g (2, D) = 3 is impossible

g (3, D) = max{3−D, 0} = g (0, D) so that p (3, k) = p (0, k)
The various probabilities for D may be obtained from a table (or may be calculated easily with

cpoisson) to give the transition probability matrix

P =


0.0803 0.1839 0.3679 0.3679

0.6321 0.3679 0 0

0.2642 0.3679 0.3679 0

0.0803 0.1839 0.3679 0.3679

 (16.55)

The calculations are carried out �by hand� in this case, to exhibit the nature of the calculations.
This is a standard problem in inventory theory, involving costs and rewards. An m-procedure
inventory1 has been written to implement the function g.

% file inventory1.m

% Version of 1/27/97

% Data for transition probability calculations

% for (m,M) inventory policy

M = input('Enter value M of maximum stock ');

m = input('Enter value m of reorder point ');

Y = input('Enter row vector of demand values ');

PY = input('Enter demand probabilities ');

states = 0:M;

ms = length(states);

my = length(Y);

% Calculations for determining P

[y,s] = meshgrid(Y,states);

T = max(0,M-y).*(s < m) + max(0,s-y).*(s >= m);

P = zeros(ms,ms);

for i = 1:ms

[a,b] = meshgrid(T(i,:),states);

P(i,:) = PY*(a==b)';

end

P

We consider the caseM = 5, the reorder point m = 3, and demand is Poisson (3). We approximate
the Poisson distribution with values up to 20.

inventory1

Enter value M of maximum stock 5 % Maximum stock

Enter value m of reorder point 3 % Reorder point

Enter row vector of demand values 0:20 % Truncated set of demand values

Enter demand probabilities ipoisson(3,0:20) % Demand probabilities

P =
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0.1847 0.1680 0.2240 0.2240 0.1494 0.0498

0.1847 0.1680 0.2240 0.2240 0.1494 0.0498

0.1847 0.1680 0.2240 0.2240 0.1494 0.0498

0.5768 0.2240 0.1494 0.0498 0 0

0.3528 0.2240 0.2240 0.1494 0.0498 0

0.1847 0.1680 0.2240 0.2240 0.1494 0.0498

Example 16.10: Remaining lifetime (continued)
g (0, Y ) = Y − 1, so that p (0, k) = P (Y − 1 = k) = P (Y = k + 1)
g (j, Y ) = j − 1 for j ≥ 1, so that p (j, k) = δj−1,k for j ≥ 1
The resulting transition probability matrix is

P =



p1 p2 p3 · · ·
1 0 0 · · ·
0 1 0 · · ·
· · · · · ·
· · · · · ·


(16.56)

The matrix is an in�nite matrix, unless Y is simple. If the range of Y is {1, 2, · · · , M} then the
state space E is {0, 1, · · · , M − 1}.

Various properties of conditional independence, particularly (CI9) ("(CI9) ", p. 602), (CI10) ("(CI10)", p.
603), and (CI12) ("(CI12)", p. 603), may be used to establish the following. The immediate future Xn+1 may
be replaced by any �nite futureUn,n+p and the present Xn may be replaced by any extended presentUm,n.
Some results of abstract measure theory show that the �nite future Un,n+p may be replaced by the entire
future Un. Thus, we may assert

Extended Markov property
XN is Markov i�

(M
∗ {Un, Um} ci |Um,n ∀ 0 ≤ m ≤ n (16.57)

� �
The Chapman-Kolmogorov equation and the transition matrix
As a special case of the extended Markov property, we have

{Un+k, Un} ci |Xn+k for all n ≥ 0, k,≥ 1 (16.58)

Setting g
(
Un+k, Xn+k

)
= Xn+k+m and h (Un, Xn+k) = Xn in (CI9) ("(CI9) ", p. 602), we get

{Xn+k+m, Xn} ci |Xn+k for all n ≥ 0, k, m ≥ 1 (16.59)

By the iterated conditioning rule (CI9) ("(CI8) ", p. 602) for conditional independence, it follows that

(CK) E [g (Xn+k+m) |Xn] = E{E [g (Xn+k+m) |Xn+k] |Xn} ∀ n ≥ 0, k, m ≥ 1 (16.60)

This is the Chapman-Kolmogorov equation, which plays a central role in the study of Markov sequences.
For a discrete state space E, with

P (Xn = j|Xm = i) = pm,n (i, j) (16.61)

this equation takes the form(
CK '

)
pm,q (i, k) =

∑
j∈E

pm,n (i, j) pn,q (j, k) 0 ≤ m < n < q (16.62)
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To see that this is so, consider

P (Xq = k|Xm = i) = E
[
I{k} (Xq) |Xm = i

]
= E{E

[
I{k} (Xq) |Xn

]
|Xm = i} (16.63)

=
∑
j

E
[
I{k} (Xq) |Xn = j

]
pm,n (i, j) =

∑
j

pn,q (j, k) pm,n (i, j) (16.64)

Homogeneous case
For this case, we may put

(
CK '

)
in a useful matrix form. The conditional probabilities pm of the form

pm (i, k) = P (Xn+m = k|Xn = i) invariant in n (16.65)

are known as the m-step transition probabilities. The Chapman-Kolmogorov equation in this case becomes(
CK ''

)
pm+n (i, k) =

∑
j∈E

pm (i, j) pn (j, k) ∀ i, j ∈ E (16.66)

In terms of the m-step transition matrix P(m) = [pm (i, k)], this set of sums is equivalent to the matrix
product (

CK ''
)

P(m+n) = P(m)P(n) (16.67)

Now

P(2) = P(1)P(1) = PP = P2, P(3) = P(2)P(1) = P3, etc. (16.68)

A simple inductive argument based on
(
CK ''

)
establishes

The product rule for transition matrices
The m-step probability matrix P(m) = Pm, the mth power of the transition matrix P
� �

Example 16.11: The inventory problem (continued)
For the inventory problem in Example 16.9 (Inventory problem (continued)), the three-step tran-
sition probability matrix P(3) is obtained by raising P to the third power to get

P(3) = P3 =


0.2930 0.2917 0.2629 0.1524

0.2619 0.2730 0.2753 0.1898

0.2993 0.2854 0.2504 0.1649

0.2930 0.2917 0.2629 0.1524

 (16.69)

� �

We consider next the state probabilities for the various stages. That is, we examine the distributions for the
various Xn, letting pk (n) = P (Xn = k) for each k ∈ E. To simplify writing, we consider a �nite state space
E = {1, · · · , M}. We use π (n) for the row matrix

π (n) = [p1 (n) p2 (n) · · · pM (n)] (16.70)

As a consequence of the product rule, we have
Probability distributions for any period
For a homogeneous Markov sequence, the distribution for any Xn is determined by the initial distribution

(i.e., for X0) and the transition probability matrix P.
VERIFICATION
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Suppose the homogeneous sequence XN has �nite state-space E = {1, 2, · · · , M}. For any n ≥ 0, let
pj (n) = P (Xn = j) for each j ∈ E. Put

π (n) = [p1 (n) p2 (n) · · · pM (n)] (16.71)

Then

π (0) = the initial probability distribution
π (1) = π (0) P
.....
π (n) = π (n− 1) P = π (0) P(n) = π (0) Pn = the nth-period distribution

The last expression is an immediate consequence of the product rule.
� �

Example 16.12: Inventory problem (continued)
In the inventory system for Examples 3 (Example 16.5: An inventory problem), 7 (Example 16.9:
Inventory problem (continued)) and 9 (Example 16.11: The inventory problem (continued)), sup-
pose the initial stock is M = 3. This means that

π (0) = [0 0 0 1] (16.72)

The product of π (0) and P3 is the fourth row of P3, so that the distribution for X3 is

π (3) = [p0 (3) p1 (3) p2 (3) p3 (3)] = [0.2930 0.2917 0.2629 0.1524] (16.73)

Thus, given a stock of M = 3 at startup, the probability is 0.2917 that X3 = 1. This is the
probability of one unit in stock at the end of period number three.

Remarks

• A similar treatment shows that for the nonhomogeneous case the distribution at any stage is determined
by the initial distribution and the class of one-step transition matrices. In the nonhomogeneous case,
transition probabilities pn,n+1 (i, j) depend on the stage n.

• A discrete-parameter Markov process, or Markov sequence, is characterized by the fact that each
member Xn+1 of the sequence is conditioned by the value of the previous member of the sequence.
This one-step stochastic linkage has made it customary to refer to a Markov sequence as aMarkov chain.
In the discrete-parameter Markov case, we use the terms process, sequence, or chain interchangeably.

The transition diagram and the transition matrix
The previous examples suggest that a Markov chain is a dynamic system, evolving in time. On the

other hand, the stochastic behavior of a homogeneous chain is determined completely by the probability
distribution for the initial state and the one-step transition probabilities p (i, j) as presented in the transition
matrix P. The time-invariant transition matrix may convey a static impression of the system. However, a
simple geometric representation, known as the transition diagram, makes it possible to link the unchanging
structure, represented by the transition matrix, with the dynamics of the evolving system behavior.

De�nition. A transition diagram for a homogeneous Markov chain is a linear graph with one node for
each state and one directed edge for each possible one-step transition between states (nodes).

We ignore, as essentially impossible, any transition which has zero transition probability. Thus, the edges
on the diagram correspond to positive one-step transition probabilities between the nodes connected. Since
for some pair (i, j) of states, we may have p (i, j) > 0 but p (j, i) = 0, we may have a connecting edge between
two nodes in one direction, but none in the other. The system can be viewed as an object jumping from
state to state (node to node) at the successive transition times. As we follow the trajectory of this object,
we achieve a sense of the evolution of the system.
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Example 16.13: Transition diagram for inventory example
Consider, again, the transition matrix P for the inventory problem (rounded to three decimals).

P =


0.080 0.184 0.368 0.368

0.632 0.368 0 0

0.264 0.368 0.368 0

0.080 0.184 0.368 0.368

 (16.74)

Figure 1 shows the transition diagram for this system. At each node corresponding to one of the
possible states, the state value is shown. In this example, the state value is one less than the state
number. For convenience, we refer to the node for state k+1, which has state value k, as node k. If
the state value is zero, there are four possibilities: remain in that condition with probability 0.080;
move to node 1 with probability 0.184; move to node 2 with probability 0.368; or move to node 3
with probability 0.368. These are represented by the �self loop� and a directed edge to each of the
nodes representing states. Each of these directed edges is marked with the (conditional) transition
probability. On the other hand, probabilities of reaching state value 0 from each of the others is
represented by directed edges into the node for state value 0. A similar situation holds for each
other node. Note that the probabilities on edges leaving a node (including a self loop) must total
to one, since these correspond to the transition probability distribution from that node. There is
no directed edge from the node 2 to node 3, since the probability of a transition from value 2 to
value 3 is zero. Similary, there is no directed edge from node 1 to either node 2 or node 3.

Figure 16.4: Transition diagram for the inventory system of Example 16.13 ( Transition diagram for
inventory example).

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



514
CHAPTER 16. CONDITIONAL INDEPENDENCE, GIVEN A RANDOM

VECTOR

There is a one-one relation between the transition diagram and the transition matrix P. The transition
diagram not only aids in visualizing the dynamic evolution of a chain, but also displays certain structural
properties. Often a chain may be decomposed usefully into subchains. Questions of communication and
recurrence may be answered in terms of the transition diagram. Some subsets of states are essentially
closed, in the sense that if the system arrives at any one state in the subset it can never reach a state outside
the subset. Periodicities can sometimes be seen, although it is usually easier to use the diagram to show
that periodicities cannot occur.

Classi�cation of states
Many important characteristics of a Markov chain can be studied by considering the number of visits to

an arbitrarily chosen, but �xed, state.
De�nition. For a �xed state j, let

T1 = the time (stage number) of the �rst visit to state j (after the initial period).
Fk (i, j) = P (Ti = k|X0 = i), the probability of reaching state j for the �rst time from state i in k
steps.
F (i, j) = P (Ti <∞|X0 = i) =

∑∞
k=1 Fk (i, j), the probability of ever reaching state j from state i.

A number of important theorems may be developed for Fk and F, although we do not develop them in this
treatment. We simply quote them as needed. An important classi�cation of states is made in terms of F.

De�nition. State j is said to be transient i� F (j, j) < 1,
and is said to be recurrent i� F (j, j) = 1.
Remark. If the state space E is in�nite, recurrent states fall into one of two subclasses: positive or null.

Only the positive case is common in the in�nite case, and that is the only possible case for systems with
�nite state space.

Sometimes there is a regularity in the structure of a Markov sequence that results in periodicities.
De�nition. For state j, let

δ = greatest common denominator of {n : pn (j, j) > 0} (16.75)

If δ > 1, then state j is periodic with period δ; otherwise, state j is aperiodic.
Usually if there are any self loops in the transition diagram (positive probabilities on the diagonal of the

transition matrix P) the system is aperiodic. Unless stated otherwise, we limit consideration to the aperiodic
case.

De�nition. A state j is called ergodic i� it is positive, recurrent, and aperiodic.
It is called absorbing i� p (j, j) = 1.
A recurrent state is one to which the system eventually returns, hence is visited an in�nity of times. If

it is absorbing, then once it is reached it returns each step (i.e., never leaves).
An arrow notation is used to indicate important relations between states.
De�nition. We say

State i reaches j, denoted i→ j, i� pn (i, j) > 0 for some n > 0.
States i and j communicate, denoted i↔ j i� both i reaches j and j reaches i.

By including j reaches j in all cases, the relation ↔ is an equivalence relation (i.e., is re�exive, transitive,
and idempotent). With this relationship, we can de�ne important classes.

De�nition. A class of states is communicating i� every state in the class may be reached from every
other state in the class (i.e. every pair communicates). A class is closed if no state outside the class can be
reached from within the class.

The following important conditions are intuitive and may be established rigorously:

i↔ j implies i is recurrent i� j is recurrent
i→ j and i recurrent implies i↔ j
i→ j and i recurrent implies j recurrent
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Limit theorems for �nite state space sequences
The following propositions may be established for Markov sequences with �nite state space:

• There are no null states, and not all states are transient.
• If a class of states is irreducible (i.e.,has no proper closed subsets), then

- All states are recurrent
- All states are aperiodic or all are periodic with the same period.
- If a class C is closed, irreducible, and i is a transient state (necessarily not in C),

then F (i, j) = F (i, k) for all j, k ∈ C.

A limit theorem
If the states in a Markov chain are ergodic (i.e., positive, recurrent, aperiodic), then

lim
n
pn (i, j) = πj > 0

M∑
j=1

πj = 1 πj =
M∑
i=1

πip (i, j) (16.76)

If, as above, we let

π (n) = [p1 (n) p1 (n) · · · pM (n)] so that π (n) = π (0) Pn (16.77)

the result above may be written

π (n) = π (0) Pn → π (0) P0 (16.78)

where

P0 =


π1 π2 · · · πm

π1 π2 · · · πm

· · · · · · · · · · · ·
π1 π2 · · · πm

 (16.79)

Each row of P0 = lim
n

Pn is the long run distribution π = lim
n
π (n).

De�nition. A distribution is stationary i�

π = πP (16.80)

The result above may be stated by saying that the long-run distribution is the stationary distribution. A
generating function analysis shows the convergence is exponential in the following sense

|Pn −P0| ≤ a|λ|n (16.81)

where |λ| is the largest absolute value of the eigenvalues for P other than λ = 1.

Example 16.14: The long run distribution for the inventory example
We use MATLAB to check the eigenvalues for the transition probability P and to obtain increasing
powers of P. The convergence process is readily evident.

P =

0.0803 0.1839 0.3679 0.3679

0.6321 0.3679 0 0

0.2642 0.3679 0.3679 0

0.0803 0.1839 0.3679 0.3679

E = abs(eig(P))

E =
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1.0000

0.2602

0.2602

0.0000

format long

N = E(2).^[4 8 12]

N = 0.00458242348096 0.00002099860496 0.00000009622450

� P4 = P^4

P4 =

0.28958568915950 0.28593792666752 0.26059678211310 0.16387960205989

0.28156644866011 0.28479107531968 0.26746979455342 0.16617268146679

0.28385952806702 0.28250048636032 0.26288737107246 0.17075261450021

0.28958568915950 0.28593792666752 0.26059678211310 0.16387960205989

� P8 = P^8

P8 =

0.28580046500309 0.28471421248816 0.26315895715219 0.16632636535655

0.28577030590344 0.28469190218618 0.26316681807503 0.16637097383535

0.28581491438224 0.28471028095839 0.26314057837998 0.16633422627939

0.28580046500309 0.28471421248816 0.26315895715219 0.16632636535655

� P12 = P^12

P12 =

0.28579560683438 0.28470680858266 0.26315641543927 0.16634116914369

0.28579574073314 0.28470680714781 0.26315628010643 0.16634117201261

0.28579574360207 0.28470687626748 0.26315634631961 0.16634103381085

0.28579560683438 0.28470680858266 0.26315641543927 0.16634116914369

� error4 = max(max(abs(P^16 - P4))) % Use P^16 for P_0

error4 = 0.00441148012334 % Compare with 0.0045824...

� error8 = max(max(abs(P^16 - P8)))

error8 = 2.984007206519035e-05 % Compare with 0.00002099

� error12 = max(max(abs(P^16 - P12)))

error12 = 1.005660185959822e-07 % Compare with 0.00000009622450

The convergence process is clear, and the agreement with the error is close to the predicted. We
have not determined the factor a, and we have approximated the long run matrix P0 with P

16. This
exhibits a practical criterion for su�cient convergence. If the rows of Pn agree within acceptable
precision, then n is su�ciently large. For example, if we consider agreement to four decimal places
su�cient, then

P10 = P^10

P10 =

0.2858 0.2847 0.2632 0.1663

0.2858 0.2847 0.2632 0.1663

0.2858 0.2847 0.2632 0.1663

0.2858 0.2847 0.2632 0.1663

shows that n = 10 is quite su�cient.
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16.2.2 Simulation of �nite homogeneous Markov sequences

In the section, "The Quantile Function" (Section 10.3), the quantile function is used with a random number
generator to obtain a simple random sample from a given population distribution. In this section, we adapt
that procedure to the problem of simulating a trajectory for a homogeneous Markov sequences with �nite
state space.

Elements and terminology

1. States and state numbers. We suppose there are m states, usually carrying a numerical value. For
purposes of analysis and simulation, we number the states 1 through m. Computation is carried out
with state numbers; if desired, these can be translated into the actual state values after computation
is completed.

2. Stages, transitions, period numbers, trajectories and time. We use the term stage and period
interchangeably. It is customary to number the periods or stages beginning with zero for the initial
stage. The period number is the number of transitions to reach that stage from the initial one. Zero
transitions are required to reach the original stage (period zero), one transition to reach the next
(period one), two transitions to reach period two, etc. We call the sequence of states encountered as
the system evolves a trajectory or a chain. The terms �sample path� or �realization of the process� are
also used in the literature. Now if the periods are of equal time length, the number of transitions is a
measure of the elapsed time since the chain originated. We �nd it convenient to refer to time in this
fashion. At time k the chain has reached the period numbered k. The trajectory is k + 1 stages long,
so time or period number is one less than the number of stages.

3. The transition matrix and the transition distributions. For each state, there is a conditional
transition probability distribution for the next state. These are arranged in a transition matrix. The
ith row consists of the transition distribution for selecting the next-period state when the current state
number is i. The transition matrix P thus has nonnegative elements, with each row summing to one.
Such a matrix is known as a stochastic matrix.

The fundamental simulation strategy

1. A fundamental strategy for sampling from a given population distribution is developed in the unit on
the Quantile Function. If Q is the quantile function for the population distribution and U is a random
variable distributed uniformly on the interval [0, 1], then X = Q (U) has the desired distribution.
To obtain a sample from the uniform distribution use a random number generator. This sample is
�transformed� by the quantile function into a sample from the desired distribution.

2. For a homogeneous chain, if we are in state k, we have a distribution for selecting the next state. If we
use the quantile function for that distribution and a number produced by a random number generator,
we make a selection of the next state based on that distribution. A succession of these choices, with
the selection of the next state made in each case from the distribution for the current state, constitutes
a valid simulation of a trajectory.

Arrival times and recurrence times
The basic simulation produces one or more trajectories of a speci�ed length. Sometimes we are interested

in continuing until �rst arrival at (or visit to) a speci�c target state or any one of a set of target states. The
time (in transitions) to reach a target state is one less than the number of stages in the trajectory which
begins with the initial state and ends with the target state reached.

• If the initial state is not in the target set, we speak of the arrival time.
• If the initial state is in the target set, the arrival time would be zero. In this case, we do not stop at

zero but continue until the next visit to a target state (possibly the same as the initial state). We call
the number of transitions in this case the recurrence time.

• In some instances, it may be desirable to know the time to complete visits to a prescribed number of
the target states. Again there is a choice of treatment in the case the initial set is in the target set.
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Data �les
For use of MATLAB in simulation, we �nd it convenient to organize the appropriate data in an m-�le.

• In every case, we need the transition matrix P. Its size indicates the number of states (say by the
length of any row or column).

• If the states are to have values other than the state numbers, these may be included in the data �le,
although they may be added later, in response to a prompt.

• If long trajectories are to be produced, it may be desirable to determine the fraction of times each state
is realized. A comparison with the long-run probabilities for the chain may be of interest. In this case,
the data �le may contain the long-run probability distribution. Usually, this is obtained by taking one
row of a su�ciently large power of the transition matrix. This operation may be performed after the
data �le is called for but before the simulation procedure begins.

An example data �le used to illustrate the various procedures is shown below. These data were generated
arti�cially and have no obvious interpretations in terms of a speci�c systems to be modeled. However, they
are su�ciently complex to provide nontrivial illustrations of the simulation procedures.

% file markovp1.m

% Artificial data for a Markov chain, used to

% illustrate the operation of the simulation procedures.

P = [0.050 0.011 0.155 0.155 0.213 0.087 0.119 0.190 0.008 0.012

0.103 0.131 0.002 0.075 0.013 0.081 0.134 0.115 0.181 0.165

0.103 0.018 0.128 0.081 0.137 0.180 0.149 0.051 0.009 0.144

0.051 0.098 0.118 0.154 0.057 0.039 0.153 0.112 0.117 0.101

0.016 0.143 0.200 0.062 0.099 0.175 0.108 0.054 0.062 0.081

0.029 0.085 0.156 0.158 0.011 0.156 0.088 0.090 0.055 0.172

0.110 0.059 0.020 0.212 0.016 0.113 0.086 0.062 0.204 0.118

0.084 0.171 0.009 0.138 0.140 0.150 0.023 0.003 0.125 0.157

0.105 0.123 0.121 0.167 0.149 0.040 0.051 0.059 0.086 0.099

0.192 0.093 0.191 0.061 0.094 0.123 0.106 0.065 0.040 0.035];

states = 10:3:37;

PI = [0.0849 0.0905 0.1125 0.1268 0.0883 0.1141 ...

0.1049 0.0806 0.0881 0.1093]; % Long-run distribution

The largest absolute value of the eigenvalues (other than one) is 0.1716. Since 0.171616 ≈ 5.6 ·10−13, we take
any row of P16 as the long-run probabilities. These are included in the matrix PI in the m-�le, above. The
examples for the various procedures below use this set of arti�cial data, since the purpose is to illustrate the
operation of the procedures.

The setup and the generating m-procedures
The m-procedure chainset sets up for simulation of Markov chains. It prompts for input of the transition

matrix P, the states (if di�erent from the state numbers), the long-run distribution (if available), and the set
of target states if it is desired to obtain arrival or recurrence times. The procedure determines the number
of states from the size of P and calculates the information needed for the quantile function. It then prompts
for a call for one of the generating procedures.

The m-procedure mchain, as do the other generating procedures below, assumes chainset has been run,
so that commonly used data are available in appropriate form. The procedure prompts for the number of
stages (length of the trajectory to be formed) and for the initial state. When the trajectory is produced, the
various states in the trajectory and the fraction or relative frequency of each is displayed. If the long-run
distribution has been supplied by chainset, this distribution is included for comparison. In the examples
below, we reset the random number generator (set the �seed� to zero) for purposes of comparison. However,
in practice, it may be desirable to make several runs without resetting the seed, to allow greater e�ective
�randomness.�
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Example 16.15

markovp1 % Call for data

chainset % Call for setup procedure

Enter the transition matrix P

Enter the states if not 1:ms states % Enter the states

States are

1 10

2 13

3 16

4 19

5 22

6 25

7 28

8 31

9 34

10 37

Enter the long-run probabilities PI % Enter the long-run distribution

Enter the set of target states [16 22 25] % Not used with mchain

Call for for appropriate chain generating procedure

rand('seed',0)

mchain % Call for generating procedure

Enter the number n of stages 10000 % Note the trajectory length

Enter the initial state 16

State Frac P0 % Statistics on the trajectory

10.0000 0.0812 0.0849

13.0000 0.0952 0.0905

16.0000 0.1106 0.1125

19.0000 0.1226 0.1268

22.0000 0.0880 0.0883

25.0000 0.1180 0.1141

28.0000 0.1034 0.1049

31.0000 0.0814 0.0806

34.0000 0.0849 0.0881

37.0000 0.1147 0.1093

To view the first part of the trajectory of states, call for TR

disp(TR')

0 1 2 3 4 5 6 7 8 9 10

16 16 10 28 34 37 16 25 37 10 13

The fact that the fractions or relative frequencies approximate the long-run probabilities is an
expression of a fundamental limit property of probability theory. This limit property, which re-
quires somewhat sophisticated technique to establish, justi�es a relative frequency interpretation
of probability.

The procedure arrival assumes the setup provided by chainset, including a set E of target states.
The procedure prompts for the number r of repetitions and the initial state. Then it produces r
succesive trajectories, each starting with the prescribed initial state and ending on one of the target
states. The arrival times vary from one run to the next. Various statistics are computed and
displayed or made available. In the single-run case (r = 1), the trajectory may be displayed. An
auxiliary procedure plotdbn may be used in the multirun case to plot the distribution of arrival
times.
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Example 16.16: Arrival time to a target set of states

rand('seed',0)

arrival % Assumes chainset has been run, as above

Enter the number of repetitions 1 % Single run case

The target state set is:

16 22 25

Enter the initial state 34 % Specified initial state

The arrival time is 6 % Data on trajectory

The state reached is 16

To view the trajectory of states, call for TR

disp(TR') % Optional call to view trajectory

0 1 2 3 4 5 6

34 13 10 28 34 37 16

rand('seed',0)

arrival

Enter the number of repetitions 1000 % Call for 1000 repetitions

The target state set is:

16 22 25

Enter the initial state 34 % Specified initial state

The result of 1000 repetitions is: % Run data (see optional calls below)

Term state Rel Freq Av time

16.0000 0.3310 3.3021

22.0000 0.3840 3.2448

25.0000 0.2850 4.3895

The average arrival time is 3.59

The standard deviation is 3.207

The minimum arrival time is 1

The maximum arrival time is 23

To view the distribution of arrival times, call for dbn

To plot the arrival time distribution, call for plotdbn

plotdbn % See Figure~16.5
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Figure 16.5: Time distribution for Example 16.16 ( Arrival time to a target set of states).

It would be di�cult to establish analytically estimates of arrival times. The simulation procedure
gives a reasonable �feel� for these times and how they vary.

The procedure recurrence is similar to the procedure arrival. If the initial state is not in the
target set, it behaves as does the procedure arrival and stops on the �rst visit to the target set.
However, if the initial state is in the target set, the procedures are di�erent. The procedure arrival
stops with zero transitions, since it senses that it has �arrived.� We are usually interested in having
at least one transition� back to the same state or to another state in the target set. We call these
times recurrence times.

Example 16.17

rand('seed',0)

recurrence

Enter the number of repititions 1

The target state set is:

16 22 25

Enter the initial state 22
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Figure 16.6: Transition time distribution for Example 16.17.

The recurrence time is 1

The state reached is 16

To view the trajectory of state numbers, call for TR

disp(TR') 0 1

22 16

recurrence

Enter the number of repititions 1000

The target state set is:

16 22 25

Enter the initial state 25

The result of 1000 repetitions is:

Term state Rel Freq Av time

16.0000 0.3680 2.8723

22.0000 0.2120 4.6745

25.0000 0.4200 3.1690

The average recurrence time is 3.379

The standard deviation is 3.0902

The minimum recurrence time is 1

The maximum recurrence time is 20

To view the distribution of recurrence times, call for dbn

To plot the recurrence time distribution, call for plotdbn

% See Figure~16.6

The procedure kvis stops when a designated number k of states are visited. If k is greater than the number
of target states, or if no k is designated, the procedure stops when all have been visited. For k = 1, the
behavior is the same as arrival. However, that case is better handled by the procedure arrival, which provides
more statistics on the results.

Example 16.18
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rand('seed',0)

kvis % Assumes chainset has been run

Enter the number of repetitions 1

The target state set is:

16 22 25

Enter the number of target states to visit 2

Enter the initial state 34

The time for completion is 7

To view the trajectory of states, call for TR

disp(TR')

0 1 2 3 4 5 6 7

34 13 10 28 34 37 16 25

rand('seed',0)

kvis

Enter the number of repetitions 100

The target state set is:

16 22 25

Enter the number of target states to visit % Default-- visit all three

Enter the initial state 31

The average completion time is 17.57

The standard deviation is 8.783

The minimum completion time is 5

The maximum completion time is 42

To view a detailed count, call for D.

The first column shows the various completion times;

the second column shows the numbers of trials yielding those times

The �rst goal of this somewhat sketchy introduction to Markov processes is to provide a general setting which
gives insight into the essential character and structure of such systems. The important case of homogenous
chains is introduced in such a way that their algebraic structure appears as a logical consequence of the
Markov propertiy. The general theory is used to obtain some tools for formulating homogeneous chains in
practical cases. Some MATLAB tools for studying their behavior are applied to an arti�cial example, which
demonstrates their general usefulness in studying many practical, applied problems.

16.3 Problems on Conditional Independence, Given a Random

Vector3

Exercise 16.3.1 (Solution on p. 527.)

The pair {X,Y } ci |H. X ∼ exponential (u/3), given H = u; Y ∼ exponential (u/5), given
H = u; and H ∼ uniform [1, 2]. Determine a general formula for P (X > r, Y > s), then evaluate
for r = 3, s = 10.
Exercise 16.3.2 (Solution on p. 527.)

A small random sample of size n = 12 is taken to determine the proportion of the student body
which favors a proposal to expand the student Honor Council by adding two additional members
�at large.� Prior information indicates that this proportion is about 0.6 = 3/5. From a Bayesian
point of view, the population proportion is taken to be the value of a random variable H. It seems
reasonable to assume a prior distribution H ∼ beta (4, 3), giving a maximum of the density at
(4− 1) / (4 + 3− 2) = 3/5. Seven of the twelve interviewed favor the proposition. What is the best

3This content is available online at <http://cnx.org/content/m24604/1.5/>.
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mean-square estimate of the proportion, given this result? What is the conditional distribution of
H, given this result?

Exercise 16.3.3 (Solution on p. 527.)

Let {Xi : 1 ≤ i ≤ n} be a random sample, given H. Set W = (X1, X2, · · · , Xn). Suppose X

conditionally geometric (u), given H = u; i.e., suppose P (X = k|H = u) = u(1− u)k for all k ≥ 0.
If H ∼ uniform
on [0, 1], determine the best mean square estimator for H, given W.

Exercise 16.3.4 (Solution on p. 527.)

Let {Xi : 1 ≤ i ≤ n} be a random sample, given H. Set W = (X1, X2, · · · , Xn). Suppose X
conditionally Poisson (u), given H = u; i.e., suppose P (X = k|H = u) = e−uuk/k!. If H ∼ gamma
(m,λ), determine the best mean square estimator for H, given W.

Exercise 16.3.5 (Solution on p. 527.)

Suppose {N,H} is independent and {N,Y } ci |H. Use properties of conditional expectation and
conditional independence to show that

E [g (N)h (Y ) |H] = E [g (N)]E [h (Y ) |H] a.s. (16.82)

Exercise 16.3.6 (Solution on p. 527.)

Consider the composite demand D introduced in the section on Random Sums (Section 15.1.2: A
useful model�random sums) in "Random Selecton"

D =
∞∑
n=0

I{k} (N)Xn where Xn =
n∑
k=0

Yk, Y0 = 0 (16.83)

Suppose {N,H} is independent, {N,Yi} ci |H for all i, and E [Yi|H] = e (H), invariant with i.
Show that E [D|H] = E [N ]E [Y |H] a.s. .
Exercise 16.3.7 (Solution on p. 528.)

The transition matrix P for a homogeneous Markov chain is as follows (in m-�le npr16_07.m
(Section 17.8.44: npr16_07)):

P =



0.23 0.32 0.02 0.22 0.21

0.29 0.41 0.10 0.08 0.12

0.22 0.07 0.31 0.14 0.26

0.32 0.15 0.05 0.33 0.15

0.08 0.23 0.31 0.09 0.29


(16.84)

a. Obtain the absolute values of the eigenvalues, then consider increasing powers of P to observe
the convergence to the long run distribution.

b. Take an arbitrary initial distribution p0 (as a row matrix). The product p0 ∗ P k is the
distribution for stage k. Note what happens as k becomes large enough to give convergence to
the long run transition matrix. Does the end result change with change of initial distribution
p0?
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Exercise 16.3.8 (Solution on p. 528.)

The transition matrix P for a homogeneous Markov chain is as follows (in m-�le npr16_08.m):

P =



0.2 0.5 0.3 0 0 0 0

0.6 0.1 0.3 0 0 0 0

0.2 0.7 0.1 0 0 0 0

0 0 0 0.6 0.4 0 0

0 0 0 0.5 0.5 0 0

0.1 0.3 0 0.2 0.1 0.1 0.2

0.1 0.2 0.1 0.2 0.2 0.2 0


(16.85)

a. Note that the chain has two subchains, with states {1, 2, 3} and {4, 5}. Draw a transition
diagram to display the two separate chains. Can any state in one subchain be reached from
any state in the other?

b. Check the convergence as in part (a) of Exercise 16.3.7. What happens to the state probabil-
ities for states 6 and 7 in the long run? What does that signify for these states? Can these
states be reached from any state in either of the subchains? How would you classify these
states?

Exercise 16.3.9 (Solution on p. 528.)

The transition matrix P for a homogeneous Markov chain is as follows (in m-�le npr16_09.m
(Section 17.8.45: npr16_09)):

P =



0.1 0.2 0.1 0.3 0.2 0 0.1

0 0.6 0 0 0 0 0.4

0 0 0.2 0.5 0 0.3 0

0 0 0.6 0.1 0 0.3 0

0.2 0.2 0.1 0.2 0 0.1 0.2

0 0 0.2 0.7 0 0.1 0

0 0.5 0 0 0 0 0.5


(16.86)

a. Check the transition matrix P for convergence, as in part (a) of Exercise 16.3.7. How many
steps does it take to reach convergence to four or more decimal places? Does this agree with
the theoretical result?

b. Examine the long run transition matrix. Identify transient states.
c. The convergence does not make all rows the same. Note, however, that there are two sub-

groups of similar rows. Rearrange rows and columns in the long run Matrix so that identical
rows are grouped. This suggests subchains. Rearrange the rows and columns in the transition
matrix P and see that this gives a pattern similar to that for the matrix in Exercise 16.3.8.
Raise the rearranged transition matrix to the power for convergence.

Exercise 16.3.10 (Solution on p. 529.)

Use the m-procedure inventory1 (in m-�le inventory1.m) to obtain the transition matrix for
maximum stock M = 8, reorder point m = 3, and demand D ∼ Poisson(4).

a. Suppose initial stock is six. What will the distribution for Xn, n = 1, 3, 5 (i.e., the stock at
the end of periods 1, 3, 5, before restocking)?
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b. What will the long run distribution be?
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Solutions to Exercises in Chapter 16

Solution to Exercise 16.3.1 (p. 523)

P (X > r, Y > s|H = u) = e−ur/3e−us/5 = e−au, a =
r

3
+
s

5
(16.87)

P (X > r, Y > s) =
∫
e−aufH (u) du =

∫ 2

1

e−au du =
1
a

[
e−a − e−2a

]
(16.88)

For r = 3, s = 10, a = 3, P (X > 3, Y > 10) =
1
3
(
e−3 − e−6

)
= 0.0158 (16.89)

Solution to Exercise 16.3.2 (p. 523)
H ∼ Beta (r, s), r = 4, s = 3, n = 12, k = 7

E [H|S = k] =
k + r

n+ r + s
=

7 + 4
12 + 4 + 3

=
11
19

(16.90)

Solution to Exercise 16.3.3 (p. 524)

E [H|W = k] =
E
[
HI{k} (W )

]
E
[
I{k} (W )

] =
E{HE

[
I{k} (W ) |H

]
}

E{E
[
I{k} (W ) |H

]
}

(16.91)

=
∫
uP (W = k|H = u) fH (u) du∫
P (W = k|H = u) fH (u) du

, k = (k1, k2, · · · , kn) (16.92)

P (W = k|H = u) =
n∏
i=1

u(1− u)ki = un(1− u)k
∗
k∗ =

n∑
i=1

ki (16.93)

E [H|W = k] =

∫ 1

0
un+1(1− u)k

∗
du∫ 1

0
un(1− u)k

∗
du

=
Γ (n+ 2) Γ (k∗ + 1)
Γ (n+ 1 + k∗ + 2)

· Γ (n+ k∗ + 2)
Γ (n+ 1) Γ (k∗ + 1)

= (16.94)

n+ 1
n+ k∗ + 2

(16.95)

Solution to Exercise 16.3.4 (p. 524)

E [H|W = k] =
∫
uP (W = k|H = u) fH (u) du∫
P (W = k|H = u) fH (u) du

(16.96)

P (W = k|H = u) =
n∏
i=1

e−u
uki

ki!
= e−nu

uk
∗

A
k∗ =

n∑
i=1

ki (16.97)

fH (u) =
λmum−1e−λu

Γ (m)
(16.98)

E [H|W = k] =

∫∞
0
uk

∗+me−(λ+n)u du∫∞
0
uk∗+m−1e−(λ+n)u du

=
Γ (m+ k∗ + 1)

(λ+ n)k
∗+m+1

· (λ+ n)k
∗+m

Γ (m+ k∗)
=
m+ k∗

λ+ n
(16.99)

Solution to Exercise 16.3.5 (p. 524)
E [g (N)h (H) |H] = E [g (N) |H]E [h (Y ) |H] a.s. by (CI6) ("(CI6) ", p. 602) and
E [g (N) |H] = E [g (N)] a.s. by (CE5) ("(CE5)", p. 601).

Solution to Exercise 16.3.6 (p. 524)

E [D|H] =
∞∑
n=1

E
[
I{n} (N)Xn|H

]
a.s. (16.100)
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E
[
I{n} (N)Xn|H

]
=

∑n
k=1E

[
I{n} (N)Yk|H

]
=

∑n
k=1 P (N = n)E [Y |H] =

P (N = n)nE [Y |H] a.s.
(16.101)

E [D|H] =
∞∑
n=1

nP (N = n)E [Y |H] = E [N ]E [Y |H] a.s. (16.102)

Solution to Exercise 16.3.7 (p. 524)

ev = abs(eig(P))'

ev = 1.0000 0.0814 0.0814 0.3572 0.2429

a = ev(4).^[2 4 8 16 24]

a = 0.1276 0.0163 0.0003 0.0000 0.0000

% By P^16 the rows agree to four places

p0 = [0.5 0 0 0.3 0.2]; % An arbitrarily chosen p0

p4 = p0*P^4

p4 = 0.2297 0.2622 0.1444 0.1644 0.1992

p8 = p0*P^8

p8 = 0.2290 0.2611 0.1462 0.1638 0.2000

p16 = p0*P^16

p16 = 0.2289 0.2611 0.1462 0.1638 0.2000

p0a = [0 0 0 0 1]; % A second choice of p0

p16a = p0a*P^16

p16a = 0.2289 0.2611 0.1462 0.1638 0.2000

Solution to Exercise 16.3.8 (p. 524)
Increasing power Pn show the probability of being in states 6, 7 go to zero. These states cannot be reached
from any of the other states.
Solution to Exercise 16.3.9 (p. 525)
Examination of P16 suggests sets {2, 7} and {3, 4, 6} of states form subchains. Rearrangement of P may be
done as follows:

PA = P([2 7 3 4 6 1 5], [2 7 3 4 6 1 5])

PA =

0.6000 0.4000 0 0 0 0 0

0.5000 0.5000 0 0 0 0 0

0 0 0.2000 0.5000 0.3000 0 0

0 0 0.6000 0.1000 0.3000 0 0

0 0 0.2000 0.7000 0.1000 0 0

0.2000 0.1000 0.1000 0.3000 0 0.1000 0.2000

0.2000 0.2000 0.1000 0.2000 0.1000 0.2000 0

PA16 = PA^16

PA16 =

0.5556 0.4444 0 0 0 0 0

0.5556 0.4444 0 0 0 0 0

0 0 0.3571 0.3929 0.2500 0 0

0 0 0.3571 0.3929 0.2500 0 0

0 0 0.3571 0.3929 0.2500 0 0

0.2455 0.1964 0.1993 0.2193 0.1395 0.0000 0.0000

0.2713 0.2171 0.1827 0.2010 0.1279 0.0000 0.0000

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



529

It is clear that original states 1 and 5 are transient.
Solution to Exercise 16.3.10 (p. 525)

inventory1

Enter value M of maximum stock 8

Enter value m of reorder point 3

Enter row vector of demand values 0:20

Enter demand probabilities ipoisson(4,0:20)

Result is in matrix P

p0 = [0 0 0 0 0 0 1 0 0];

p1 = p0*P

p1 =

Columns 1 through 7

0.2149 0.1563 0.1954 0.1954 0.1465 0.0733 0.0183

Columns 8 through 9

0 0

p3 = p0*P^3

p3 =

Columns 1 through 7

0.2494 0.1115 0.1258 0.1338 0.1331 0.1165 0.0812

Columns 8 through 9

0.0391 0.0096

p5 = p0*P^5

p5 =

Columns 1 through 7

0.2598 0.1124 0.1246 0.1311 0.1300 0.1142 0.0799

Columns 8 through 9

0.0386 0.0095

a = abs(eig(P))'

a =

Columns 1 through 7

1.0000 0.4427 0.1979 0.0284 0.0058 0.0005 0.0000

Columns 8 through 9

0.0000 0.0000

a(2)^16

ans =

2.1759e-06 % Convergence to at least five decimals for P^16

pinf = p0*P^16 % Use arbitrary p0, pinf approx p0*P^16

pinf = Columns 1 through 7

0.2622 0.1132 0.1251 0.1310 0.1292 0.1130 0.0789

Columns 8 through 9

0.0380 0.0093
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Chapter 17

Appendices

17.1 Appendix A to Applied Probability: Directory of m-functions

and m-procedures1

We use the termm-function to designate a user-de�ned function as distinct from the basic MATLAB functions
which are part of the MATLAB package. For example, the m-function minterm produces the speci�ed
minterm vector. An m-procedure (or sometimes a procedure) is an m-�le containing a set of MATLAB
commands which carry out a prescribed set of operations. Generally, these will prompt for (or assume)
certain data upon which the procedure is carried out. We use the term m-program to refer to either an
m-function or an m-procedure.

In addition to the m-programs there is a collection of m-�les with properly formatted data which can be
entered into the workspace by calling the �le.

Although the m-programs were written for MATLAB version 4.2, they work for versions 5.1, 5.2, and
7.04. The latter versions o�er some new features which may make more e�cient implementation of some
of the m-programs, and which make possible some new ones. With one exception (so noted), these are not
explored in this collection.

17.1.1 MATLAB features

Utilization of MATLAB resources is made possible by a systematic analysis of some features of the basic
probability model. In particular, the minterm analysis of logical (or Boolean) combinations of events and
the analysis of the structure of simple random variables with the aid of indicator functions and minterm
analysis are exploited.

A number of standard features of MATLAB are utilized extensively. In addition to standard matrix
algebra, we use:

1. Array arithmetic. This involves element by element calculations. For example, if a, b are matrices
of the same size, then a.*b is the matrix obtained by multiplying corresponding elements in the two
matrices to obtain a new matrix of the same size.

2. Relational operations, such as less than, equal, etc. to obtain zero-one matrices with ones at element
positions where the conditions are met.

3. Logical operations on zero-one matrices utilizing logical operators and, or, and not, as well as certain
related functions such as any, all, not, �nd, etc. Note. Relational operations and logical operations
produce zero-one arrays, called logical arrays, which MATLAB treats di�erently from zero-one numeric
arrays. A rectangular array in which some rows are logical arrays but others are not is treated as a

1This content is available online at <http://cnx.org/content/m23942/1.8/>.
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numeric array. Any zero-one rectangular array can be converted to a numeric array (matrix) by the
command A = ones(size(A)).*A,

4. Certain MATLAB functions, such as meshgrid, sum, cumsum, prod, cumprod are used repeatedly.
The function dot for dot product does not work if either array is a logical array. If one of the pair is
numeric, the command C = A*B' will work.

17.1.2 Auxiliary user-de�ned building blocks

csort.m 17.1.1
Description of Code
One of the most useful is a special sorting and consolidation operation implemented in the m-
function csort. A standard problem arises when each of a non distinct set of values has an associated
probability. To obtain the distribution, it is necessary to sort the values and add the probabilities
associated with each distinct value. The following m-function achieves these operations: function
[t,p] = csort(T,P). T and P are matrices with the same number of elements. Values of T are sorted
and identical values are consolidated; values of P corresponding to identical values of T are added.
A number of derivative functions and procedures utilize csort. The following two are useful.

Code

function [t,p] = csort(T,P)

% CSORT [t,p] = csort(T,P) Sorts T, consolidates P

% Version of 4/6/97

% Modified to work with Versions 4.2 and 5.1, 5.2

% T and P matrices with the same number of elements

% The vector T(:)' is sorted:

% * Identical values in T are consolidated;

% * Corresponding values in P are added.

T = T(:)';

n = length(T);

[TS,I] = sort(T);

d = find([1,TS(2:n) - TS(1:n-1) >1e-13]); % Determines distinct values

t = TS(d); % Selects the distinct values

m = length(t) + 1;

P = P(I); % Arranges elements of P

F = [0 cumsum(P(:)')];

Fd = F([d length(F)]); % Cumulative sums for distinct values

p = Fd(2:m) - Fd(1:m-1); % Separates the sums for these values

distinct.m 17.1.2
Description of Code
distinct.m function y = distinct(T) determines and sorts the distinct members of matrix T.

Code

function y = distinct(T)

% DISTINCT y = distinct(T) Disinct* members of T
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% Version of 5/7/96 Rev 4/20/97 for version 4 & 5.1, 5.2

% Determines distinct members of matrix T.

% Members which differ by no more than 10^{-13}

% are considered identical. y is a row

% vector of the distinct members.

TS = sort(T(:)');

n = length(TS);

d = [1 abs(TS(2:n) - TS(1:n-1)) >1e-13];
y = TS(find(d));

freq.m 17.1.3
Description of Code
freq.m sorts the distinct members of a matrix, counts the number of occurrences of each value,
and calculates the cumulative relative frequencies.

Code

% FREQ file freq.m Frequencies of members of matrix

% Version of 5/7/96

% Sorts the distinct members of a matrix, counts

% the number of occurrences of each value, and

% calculates the cumulative relative frequencies.

T = input('Enter matrix to be counted ');

[m,n] = size(T);

[t,f] = csort(T,ones(m,n));

p = cumsum(f)/(m*n);

disp(['The number of entries is ',num2str(m*n),])

disp(['The number of distinct entries is ',num2str(length(t)),] )

disp(' ')

dis = [t;f;p]';

disp(' Values Count Cum Frac')

disp(dis)

dsum.m 17.1.4
Description of Code
dsum.mfunction y = dsum(v,w) determines and sorts the distinct elements among the sums of
pairs of elements of row vectors v and w.

Code

function y = dsum(v,w)

% DSUM y = dsum(v,w) Distinct pair sums of elements

% Version of 5/15/97

% y is a row vector of distinct

% values among pair sums of elements

% of matrices v, w.
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% Uses m-function distinct

[a,b] = meshgrid(v,w);

t = a+b;

y = distinct(t(:)');

rep.m 17.1.5
Description of Code
rep.mfunction y = rep(A,m,n) replicates matrixA,m times vertically and n times horizontally.
Essentially the same as the function repmat in MATLAB version 5, released December, 1996.

Code

function y = rep(A,m,n)

% REP y = rep(A,m,n) Replicates matrix A

% Version of 4/21/96

% Replicates A,

% m times vertically,

% n times horizontally

% Essentially the same as repmat in version 5.1, 5.2

[r,c] = size(A);

R = [1:r]';

C = [1:c]';

v = R(:,ones(1,m));

w = C(:,ones(1,n));

y = A(v,w);

elrep.m 17.1.6
Description of Code
elrep.mfunction y = elrep(A,m,n) replicates each element of A,m times vertically and n times
horizontally.

Code

function y = elrep(A,m,n)

% ELREP y = elrep(A,m,n) Replicates elements of A

% Version of 4/21/96

% Replicates each element,

% m times vertically,

% n times horizontally

[r,c] = size(A);

R = 1:r;

C = 1:c;

v = R(ones(1,m),:);

w = C(ones(1,n),:);

y = A(v,w);
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kronf.m 17.1.7
Description of Code
kronf.mfunction y = kronf(A,B) determines the Kronecker product of matrices A, B.

Achieves the same result for full matrices as the MATLAB function kron.

Code

function y = kronf(A,B)

% KRONF y = kronf(A,B) Kronecker product

% Version of 4/21/96

% Calculates Kronecker product of full matrices.

% Uses m-functions elrep and rep

% Same result for full matrices as kron for version 5.1, 5.2

[r,c] = size(B);

[m,n] = size(A);

y = elrep(A,r,c).*rep(B,m,n);

colcopy.m 17.1.8
Description of Code
colcopy.mfunction y = colcopy(v,n) treats row or column vector v as a column vector and
makes a matrix with n columns of v.

Code

function y = colcopy(v,n)

% COLCOPY y = colcopy(v,n) n columns of v

% Version of 6/8/95 (Arguments reversed 5/7/96)

% v a row or column vector

% Treats v as column vector

% and makes n copies

% Procedure based on "Tony's trick"

[r,c] = size(v);

if r == 1

v = v';

end

y = v(:,ones(1,n));

colcopyi.m 17.1.9
Description of Code
colcopyi.mfunction y = colcopyi(v,n) treats row or column vector v as a column vector,
reverses the order of the elements, and makes a matrix with n columns of the reversed vector.

Code

function y = colcopyi(v,n)

% COLCOPYI y = colcopyi(v,n) n columns in reverse order

% Version of 8/22/96
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% v a row or column vector.

% Treats v as column vector,

% reverses the order of the

% elements, and makes n copies.

% Procedure based on "Tony's trick"

N = ones(1,n);

[r,c] = size(v);

if r == 1

v = v(c:-1:1)';

else

v = v(r:-1:1);

end

y = v(:,N);

rowcopy.m 17.1.10
Description of Code
rowcopy.mfunction y = rowcopy(v,n) treats row or column vector v as a row vector and makes
a matrix with n rows of v.

Code

function y = rowcopy(v,n)

% ROWCOPY y = rowcopy(v,n) n rows of v

% Version of 5/7/96

% v a row or column vector

% Treats v as row vector

% and makes n copies

% Procedure based on "Tony's trick"

[r,c] = size(v);

if c == 1

v = v';

end

y = v(ones(1,n),:);

repseq.m 17.1.11
Description of Code
repseq.mfunction y = repseq(V,n) replicates vector V n times�horizontally if V is a row
vector and vertically if V is a column vector.

Code

function y = repseq(V,n);

% REPSEQ y = repseq(V,n) Replicates vector V n times

% Version of 3/27/97

% n replications of vector V

% Horizontally if V a row vector

% Vertically if V a column vector

m = length(V);
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s = rem(0:n*m-1,m)+1;

y = V(s);

total.m 17.1.12
Description of Code
total.m Total of all elements in a matrix, calculated by: total(x) = sum(sum(x)).

Code

function y = total(x)

% TOTAL y = total(x)

% Version of 8/1/93

% Total of all elements in matrix x.

y = sum(sum(x));

dispv.m 17.1.13
Description of Code
dispv.m Matrices A,B are transposed and displayed side by side.

Code

function y = dispv(A,B)

% DISPV y = dispv(A,B) Transpose of A, B side by side

% Version of 5/3/96

% A, B are matrices of the same size

% They are transposed and displayed

% side by side.

y = [A;B]';

roundn.m 17.1.14
Description of Code
roundn.mfunction y = roundn(A,n) rounds matrix A to n decimal places.

Code

function y = roundn(A,n);

% ROUNDN y = roundn(A,n)

% Version of 7/28/97

% Rounds matrix A to n decimals

y = round(A*10^n)/10^n;
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arrep.m 17.1.15
Description of Code
arrep.mfunction y = arrep(n,k) forms all arrangements, with repetition, of k elements from
the sequence 1 : n.

Code

function y = arrep(n,k);

% ARREP y = arrep(n,k);

% Version of 7/28/97

% Computes all arrangements of k elements of 1:n,

% with repetition allowed. k may be greater than n.

% If only one input argument n, then k = n.

% To get arrangements of column vector V, use

% V(arrep(length(V),k)).

N = 1:n;

if nargin == 1

k = n;

end

y = zeros(k,n^k);

for i = 1:k

y(i,:) = rep(elrep(N,1,n^(k-i)),1,n^(i-1));

end

17.1.3 Minterm vectors and probabilities

The analysis of logical combinations of events (as sets) is systematized by the use of the minterm expansion.
This leads naturally to the notion of minterm vectors. These are zero-one vectors which can be combined
by logical operations. Production of the basic minterm patterns is essential to a number of operations. The
following m-programs are key elements of various other programs.

minterm.m 17.1.16
Description of Code
minterm.mfunction y = minterm(n,k) generates the kth minterm vector in a class of n.

Code

function y = minterm(n,k)

% MINTERM y = minterm(n,k) kth minterm of class of n

% Version of 5/5/96

% Generates the kth minterm vector in a class of n

% Uses m-function rep

y = rep([zeros(1,2^(n-k)) ones(1,2^(n-k))],1,2^(k-1));
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mintable.m 17.1.17
Description of Code
mintable.mfunction y = mintable(n) generates a table of minterm vectors by repeated use of
the m-function minterm.

Code

function y = mintable(n)

% MINTABLE y = mintable(n) Table of minterms vectors

% Version of 3/2/93

% Generates a table of minterm vectors

% Uses the m-function minterm

y = zeros(n,2^n);

for i = 1:n

y(i,:) = minterm(n,i);

end

minvec3.m 17.1.18
Description of Code
minvec3.m sets basic minterm vectors A,B,C,Ac,Bc,Cc for the class {A,B,C}. (Similarly for
minvec4.m, minvec5.m, etc.)

Code
% MINVEC3 file minvec3.m Basic minterm vectors % Version of 1/31/95 A =

minterm(3,1); B = minterm(3,2); C = minterm(3,3); Ac = ∼A; Bc = ∼B; Cc =

∼C; disp('Variables are A, B, C, Ac, Bc, Cc') disp('They may be renamed, if

desired.')

minmap 17.1.19
Description of Code
minmapfunction y = minmap(pm) reshapes a row or column vector pm of minterm probabilities
into minterm map format.

Code

function y = minmap(pm)

% MINMAP y = minmap(pm) Reshapes vector of minterm probabilities

% Version of 12/9/93

% Reshapes a row or column vector pm of minterm

% probabilities into minterm map format

m = length(pm);

n = round(log(m)/log(2));

a = fix(n/2);

if m ∼= 2^n

disp('The number of minterms is incorrect')

else

y = reshape(pm,2^a,2^(n-a));
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end

binary.m 17.1.20
Description of Code
binary.mfunction y = binary(d,n) converts a matrix d of �oating point nonnegative integers
to a matrix of binary equivalents, one on each row. Adapted from m-functions written by Hans
Olsson and by Simon Cooke. Each matrix row may be converted to an unspaced string of zeros
and ones by the device ys = setstr(y + '0').

Code

function y = binary(d,n)

% BINARY y = binary(d,n) Integers to binary equivalents

% Version of 7/14/95

% Converts a matrix d of floating point, nonnegative

% integers to a matrix of binary equivalents. Each row

% is the binary equivalent (n places) of one number.

% Adapted from the programs dec2bin.m, which shared

% first prize in an April 95 Mathworks contest.

% Winning authors: Hans Olsson from Lund, Sweden,

% and Simon Cooke from Glasgow, UK.

% Each matrix row may be converted to an unspaced string

% of zeros and ones by the device: ys = setstr(y + '0').

if nargin < 2, n = 1; end % Allows omission of argument n

[f,e] = log2(d);

n = max(max(max(e)),n);

y = rem(floor(d(:)*pow2(1-n:0)),2);

mincalc.m 17.1.21
Description of Code
mincalc.m The m-procedure mincalc determines minterm probabilities from suitable data. For a
discussion of the data formatting and certain problems, see 2.6.

Code

% MINCALC file mincalc.m Determines minterm probabilities

% Version of 1/22/94 Updated for version 5.1 on 6/6/97

% Assumes a data file which includes

% 1. Call for minvecq to set q basic minterm vectors, each (1 x 2^q)

% 2. Data vectors DV = matrix of md data Boolean combinations of basic sets--

% Matlab produces md minterm vectors-- one on each row.

% The first combination is always A|Ac (the whole space)

% 3. DP = row matrix of md data probabilities.

% The first probability is always 1.

% 4. Target vectors TV = matrix of mt target Boolean combinations.

% Matlab produces a row minterm vector for each target combination.
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% If there are no target combinations, set TV = [];

[md,nd] = size(DV);

ND = 0:nd-1;

ID = eye(nd); % Row i is minterm vector i-1

[mt,nt] = size(TV);

MT = 1:mt;

rd = rank(DV);

if rd < md

disp('Data vectors are NOT linearly independent')

else

disp('Data vectors are linearly independent')

end

% Identification of which minterm probabilities can be determined from the data

% (i.e., which minterm vectors are not linearly independent of data vectors)

AM = zeros(1,nd);

for i = 1:nd

AM(i) = rd == rank([DV;ID(i,:)]); % Checks for linear dependence of each

end

am = find(AM); % minterm vector

CAM = ID(am,:)/DV; % Determination of coefficients for the available minterms

pma = DP*CAM'; % Calculation of probabilities of available minterms

PMA = [ND(am);pma]';

if sum(pma < -0.001) > 0 % Check for data consistency

disp('Data probabilities are INCONSISTENT')

else

% Identification of which target probabilities are computable from the data

CT = zeros(1,mt);

for j = 1:mt

CT(j) = rd == rank([DV;TV(j,:)]);

end

ct = find(CT);

CCT = TV(ct,:)/DV; % Determination of coefficients for computable targets

ctp = DP*CCT'; % Determination of probabilities

disp(' Computable target probabilities')

disp([MT(ct); ctp]')

end % end for "if sum(pma < -0.001) > 0"

disp(['The number of minterms is ',num2str(nd),])

disp(['The number of available minterms is ',num2str(length(pma)),])

disp('Available minterm probabilities are in vector pma')

disp('To view available minterm probabilities, call for PMA')

mincalct.m 17.1.22
Description of Code
mincalct.m Modi�cation of mincalc. Assumes mincalc has been run, calls for new target vectors
and performs same calculations as mincalc.

Code
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% MINCALCT file mincalct.m Aditional target probabilities

% Version of 9/1/93 Updated for version 5 on 6/6/97

% Assumes a data file which includes

% 1. Call for minvecq to set q basic minterm vectors.

% 2. Data vectors DV. The first combination is always A|Ac.

% 3. Row matrix DP of data probabilities. The first entry is always 1.

TV = input('Enter matrix of target Boolean combinations ');

[md,nd] = size(DV);

[mt,nt] = size(TV);

MT = 1:mt;

rd = rank(DV);

CT = zeros(1,mt); % Identification of computable target probabilities

for j = 1:mt

CT(j) = rd == rank([DV;TV(j,:)]);

end

ct = find(CT);

CCT = TV(ct,:)/DV; % Determination of coefficients for computable targets

ctp = DP*CCT'; % Determination of probabilities

disp(' Computable target probabilities')

disp([MT(ct); ctp]')

17.1.4 Independent events

minprob.m 17.1.23
Description of Code
minprob.mfunction y = minprob(p) calculates minterm probabilities for the basic probabilities
in row or column vector p. Uses the m-functions mintable, colcopy.

Code

function y = minprob(p)

% MINPROB y = minprob(p) Minterm probs for independent events

% Version of 4/7/96

% p is a vector [P(A1) P(A2) ... P(An)], with

% {A1,A2, ... An} independent.

% y is the row vector of minterm probabilities

% Uses the m-functions mintable, colcopy

n = length(p);

M = mintable(n);

a = colcopy(p,2^n); % 2^n columns, each the vector p

m = a.*M + (1 - a).*(1 - M); % Puts probabilities into the minterm

% pattern on its side (n by 2^n)

y = prod(m); % Product of each column of m
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imintest.m 17.1.24
Description of Code
imintest.mfunction y = imintest(pm) checks minterm probabilities for independence.

Code

function y = imintest(pm)

% IMINTEST y = imintest(pm) Checks minterm probs for independence

% Version of 1/25//96

% Checks minterm probabilities for independence

% Uses the m-functions mintable and minprob

m = length(pm);

n = round(log(m)/log(2));

if m ∼= 2^n

y = 'The number of minterm probabilities is incorrect';

else

P = mintable(n)*pm';

pt = minprob(P');

a = fix(n/2);

s = abs(pm - pt) > 1e-7;

if sum(s) > 0

disp('The class is NOT independent')

disp('Minterms for which the product rule fails')

y = reshape(s,2^a,2^(n-a));

else

y = 'The class is independent';

end

end

ikn.m 17.1.25
Description of Code
ikn.mfunction y = ikn(P,k) determines the probability of the occurrence of exactly k of the n
independent events whose probabilities are in row or column vector P
(k may be a row or column vector of nonnegative integers less than or equal to n).

Code

function y = ikn(P,k)

% IKN y = ikn(P,k) Individual probabilities of k of n successes

% Version of 5/15/95

% Uses the m-functions mintable, minprob, csort

n = length(P);

T = sum(mintable(n)); % The number of successes in each minterm

pm = minprob(P); % The probability of each minterm

[t,p] = csort(T,pm); % Sorts and consolidates success numbers

% and adds corresponding probabilities

y = p(k+1);
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ckn.m 17.1.26
Description of Code
ckn.mfunction y = ckn(P,k) determines the probability of the occurrence of k or more of the n
independent events whose probabilities are in row or column vector P (k may be a row or column
vector)

Code

function y = ckn(P,k)

% CKN y = ckn(P,k) Probability of k or more successes

% Version of 5/15/95

% Probabilities of k or more of n independent events

% Uses the m-functions mintable, minprob, csort

n = length(P);

m = length(k);

T = sum(mintable(n)); % The number of successes in each minterm

pm = minprob(P); % The probability of each minterm

[t,p] = csort(T,pm); % Sorts and consolidates success numbers

% and adds corresponding probabilities

for i = 1:m % Sums probabilities for each k value

y(i) = sum(p(k(i)+1:n+1));

end

parallel.m 17.1.27
Description of Code
parallel.mfunction y = parallel(p) determines the probability of a parallel combination of
the independent events whose probabilities are in row or column vector p.

Code

function y = parallel(p)

% PARALLEL y = parallel(p) Probaaability of parallel combination

% Version of 3/3/93

% Probability of parallel combination.

% Individual probabilities in row matrix p.

y = 1 - prod(1 - p);
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17.1.5 Conditional probability and conditional idependence

bayes.m 17.1.28
Description of Code
bayes.m produces a Bayesian reversal of conditional probabilities. The input consists of P (E|Ai)
and P (Ai) for a disjoint class {Ai : 1 ≤ i ≤ n} whose union contains E. The procedure calculates
P (Ai|E) and P (Ai|Ec) for 1 ≤ i ≤ n.
Code

% BAYES file bayes.m Bayesian reversal of conditional probabilities

% Version of 7/6/93

% Input P(E|Ai) and P(Ai)

% Calculates P(Ai|E) and P(Ai|Ec)

disp('Requires input PEA = [P(E|A1) P(E|A2) ... P(E|An)]')

disp(' and PA = [P(A1) P(A2) ... P(An)]')

disp('Determines PAE = [P(A1|E) P(A2|E) ... P(An|E)]')

disp(' and PAEc = [P(A1|Ec) P(A2|Ec) ... P(An|Ec)]')

PEA = input('Enter matrix PEA of conditional probabilities ');

PA = input('Enter matrix PA of probabilities ');

PE = PEA*PA';

PAE = (PEA.*PA)/PE;

PAEc = ((1 - PEA).*PA)/(1 - PE);

disp(' ')

disp(['P(E) = ',num2str(PE),])

disp(' ')

disp(' P(E|Ai) P(Ai) P(Ai|E) P(Ai|Ec)')

disp([PEA; PA; PAE; PAEc]')

disp('Various quantities are in the matrices PEA, PA, PAE, PAEc, named above')

odds.m 17.1.29
Description of Code
odds.m The procedure calculates posterior odds for for a speci�ed pro�le E. Assumes data have
been entered by the procedure oddsf or oddsp.

Code

% ODDS file odds.m Posterior odds for profile

% Version of 12/4/93

% Calculates posterior odds for profile E

% Assumes data has been entered by oddsdf or oddsdp

E = input('Enter profile matrix E ');

C = diag(a(:,E))'; % aa = a(:,E) is an n by n matrix whose ith column

D = diag(b(:,E))'; % is the E(i)th column of a. The elements on the

% diagonal are b(i, E(i)), 1 <= i <= n

% Similarly for b(:,E)
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R = prod(C./D)*(p1/p2); % Calculates posterior odds for profile

disp(' ')

disp(['Odds favoring Group 1: ',num2str(R),])

if R > 1

disp('Classify in Group 1')

else

disp('Classify in Group 2')

end

oddsdf.m 17.1.30
Description of Code
oddsdf.m Sets up calibrating frequencies for calculating posterior odds.

Code

% ODDSDF file oddsdf.m Frequencies for calculating odds

% Version of 12/4/93

% Sets up calibrating frequencies

% for calculating posterior odds

A = input('Enter matrix A of frequencies for calibration group 1 ');

B = input('Enter matrix B of frequencies for calibration group 2 ');

n = length(A(:,1)); % Number of questions (rows of A)

m = length(A(1,:)); % Number of answers to each question

p1 = sum(A(1,:)); % Number in calibration group 1

p2 = sum(B(1,:)); % Number in calibration group 2

a = A/p1;

b = B/p2;

disp(' ') % Blank line in presentation

disp(['Number of questions = ',num2str(n),]) % Size of profile

disp(['Answers per question = ',num2str(m),]) % Usually 3: yes, no, uncertain

disp(' Enter code for answers and call for procedure "odds" ')

disp(' ')

oddsdp.m 17.1.31
Description of Code
oddsdp.m Sets up conditional probabilities for odds calculations.

Code

% ODDSDP file oddsdp.m Conditional probs for calculating posterior odds

% Version of 12/4/93

% Sets up conditional probabilities

% for odds calculations

a = input('Enter matrix A of conditional probabilities for Group 1 ');

b = input('Enter matrix B of conditional probabilities for Group 2 ');

p1 = input('Probability p1 an individual is from Group 1 ');

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



547

n = length(a(:,1));

m = length(a(1,:));

p2 = 1 - p1;

disp(' ') % Blank line in presentation

disp(['Number of questions = ',num2str(n),]) % Size of profile

disp(['Answers per question = ',num2str(m),]) % Usually 3: yes, no, uncertain

disp(' Enter code for answers and call for procedure "odds" ')

disp(' ')

17.1.6 Bernoulli and multinomial trials

btdata.m 17.1.32
Description of Code
btdata.m Sets parameter p and number n of trials for generating Bernoulli sequences. Prompts
for bt to generate the trials.

Code

% BTDATA file btdata.m Parameters for Bernoulli trials

% Version of 11/28/92

% Sets parameters for generating Bernoulli trials

% Prompts for bt to generate the trials

n = input('Enter n, the number of trials ');

p = input('Enter p, the probability of success on each trial ');

disp(' ')

disp(' Call for bt')

disp(' ')

bt.m 17.1.33
Description of Code
bt.m Generates Bernoulli sequence for parameters set by btdata. Calculates relative frequency of
�successes.�

Code

% BT file bt.m Generates Bernoulli sequence

% version of 8/11/95 Revised 7/31/97 for version 4.2 and 5.1, 5.2

% Generates Bernoulli sequence for parameters set by btdata

% Calculates relative frequency of 'successes'

clear SEQ;

B = rand(n,1) <= p; % ones for random numbers <= p

F = sum(B)/n; % relative frequency of ones
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N = [1:n]'; % display details

disp(['n = ',num2str(n),' p = ',num2str(p),])

disp(['Relative frequency = ',num2str(F),])

SEQ = [N B];

clear N;

clear B;

disp('To view the sequence, call for SEQ')

disp(' ')

binomial.m 17.1.34
Description of Code
binomial.m Uses ibinom and cbinom to generate tables of the individual and cumulative binomial
probabilities for speci�ed parameters. Note that for calculation in MATLAB it is usually much
more convenient and e�cient to use ibinom and/or cbinom.

Code

% BINOMIAL file binomial.m Generates binomial tables

% Version of 12/10/92 (Display modified 4/28/96)

% Calculates a TABLE of binomial probabilities

% for specified n, p, and row vector k,

% Uses the m-functions ibinom and cbinom.

n = input('Enter n, the number of trials ');

p = input('Enter p, the probability of success ');

k = input('Enter k, a row vector of success numbers ');

y = ibinom(n,p,k);

z = cbinom(n,p,k);

disp([' n = ',int2str(n),' p = ' num2str(p)])

H = [' k P(X = k) P(X >= k)'];

disp(H)

disp([k;y;z]')

multinom.m 17.1.35
Description of Code
multinom.m Multinomial distribution (small N,m).

Code

% MULTINOM file multinom.m Multinomial distribution

% Version of 8/24/96

% Multinomial distribution (small N, m)

N = input('Enter the number of trials ');

m = input('Enter the number of types ');

p = input('Enter the type probabilities ');
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M = 1:m;

T = zeros(m^N,N);

for i = 1:N

a = rowcopy(M,m^(i-1));

a = a(:);

a = colcopy(a,m^(N-i));

T(:,N-i+1) = a(:); % All possible strings of the types

end

MT = zeros(m^N,m);

for i = 1:m

MT(:,i) = sum(T'==i)';

end

clear T % To conserve memory

disp('String frequencies for type k are in column matrix MT(:,k)')

P = zeros(m^N,N);

for i = 1:N

a = rowcopy(p,m^(i-1));

a = a(:);

a = colcopy(a,m^(N-i));

P(:,N-i+1) = a(:); % Strings of type probabilities

end

PS = prod(P'); % Probability of each string

clear P % To conserve memory

disp('String probabilities are in row matrix PS')

17.1.7 Some matching problems

Cardmatch.m 17.1.36
Description of Code
Cardmatch.m Sampling to estimate the probability of one or more matches when one card is
drawn from each of nd identical decks of c cards. The number ns of samples is speci�ed.

Code

% CARDMATCH file cardmatch.m Prob of matches in cards from identical decks

% Version of 6/27/97

% Estimates the probability of one or more matches

% in drawing cards from nd decks of c cards each

% Produces a supersample of size n = nd*ns, where

% ns is the number of samples

% Each sample is sorted, and then tested for differences

% between adjacent elements. Matches are indicated by

% zero differences between adjacent elements in sorted sample

c = input('Enter the number c of cards in a deck ');

nd = input('Enter the number nd of decks ');
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ns = input('Enter the number ns of sample runs ');

X = 1:c; % Population values

PX = (1/c)*ones(1,c); % Population probabilities

N = nd*ns; % Length of supersample

U = rand(1,N); % Matrix of n random numbers

T = dquant(X,PX,U); % Supersample obtained with quantile function;

% the function dquant determines quantile

% function values of random number sequence U

ex = sum(T)/N; % Sample average

EX = dot(X,PX); % Population mean

vx = sum(T.^2)/N - ex^2; % Sample variance

VX = dot(X.^2,PX) - EX^2; % Population variance

A = reshape(T,nd,ns); % Chops supersample into ns samples of size nd

DS = diff(sort(A)); % Sorts each sample

m = sum(DS==0)>0; % Differences between elements in each sample

% Zero difference iff there is a match

pm = sum(m)/ns; % Fraction of samples with one or more matches

Pm = 1 - comb(c,nd)*gamma(nd + 1)/c^(nd); % Theoretical probability of match

disp('The sample is in column vector T') % Displays of results

disp(['Sample average ex = ', num2str(ex),])

disp(['Population mean E(X) = ',num2str(EX),])

disp(['Sample variance vx = ',num2str(vx),])

disp(['Population variance V(X) = ',num2str(VX),])

disp(['Fraction of samples with one or more matches pm = ', num2str(pm),])

disp(['Probability of one or more matches in a sample Pm = ', num2str(Pm),])

trialmatch.m 17.1.37
Description of Code
trialmatch.m Estimates the probability of matches in n independent trials from identical distri-
butions. The sample size and number of trials must be kept relateively small to avoid exceeding
available memory.

Code

% TRIALMATCH file trialmatch.m Estimates probability of matches

% in n independent trials from identical distributions

% Version of 8/20/97

% Estimates the probability of one or more matches

% in a random selection from n identical distributions

% with a small number of possible values

% Produces a supersample of size N = n*ns, where

% ns is the number of samples. Samples are separated.

% Each sample is sorted, and then tested for differences

% between adjacent elements. Matches are indicated by

% zero differences between adjacent elements in sorted sample.

X = input('Enter the VALUES in the distribution ');

PX = input('Enter the PROBABILITIES ');

c = length(X);
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n = input('Enter the SAMPLE SIZE n ');

ns = input('Enter the number ns of sample runs ');

N = n*ns; % Length of supersample

U = rand(1,N); % Vector of N random numbers

T = dquant(X,PX,U); % Supersample obtained with quantile function;

% the function dquant determines quantile

% function values for random number sequence U

ex = sum(T)/N; % Sample average

EX = dot(X,PX); % Population mean

vx = sum(T.^2)/N - ex^2; % Sample variance

VX = dot(X.^2,PX) - EX^2; % Population variance

A = reshape(T,n,ns); % Chops supersample into ns samples of size n

DS = diff(sort(A)); % Sorts each sample

m = sum(DS==0)>0; % Differences between elements in each sample

% -- Zero difference iff there is a match

pm = sum(m)/ns; % Fraction of samples with one or more matches

d = arrep(c,n);

p = PX(d);

p = reshape(p,size(d)); % This step not needed in version 5.1

ds = diff(sort(d))==0;

mm = sum(ds)>0;
m0 = find(1-mm);

pm0 = p(:,m0); % Probabilities for arrangements with no matches

P0 = sum(prod(pm0));

disp('The sample is in column vector T') % Displays of results

disp(['Sample average ex = ', num2str(ex),])

disp(['Population mean E(X) = ',num2str(EX),])

disp(['Sample variance vx = ',num2str(vx),])

disp(['Population variance V(X) = ',num2str(VX),])

disp(['Fraction of samples with one or more matches pm = ', num2str(pm),])

disp(['Probability of one or more matches in a sample Pm = ', num2str(1-P0),])

17.1.8 Distributions

comb.m 17.1.38
Description of Code
comb.mfunction y = comb(n,k) Calculates binomial coe�cients. k may be a matrix of integers
between 0 and n. The result y is a matrix of the same dimensions.

Code

function y = comb(n,k)

% COMB y = comb(n,k) Binomial coefficients

% Version of 12/10/92

% Computes binomial coefficients C(n,k)

% k may be a matrix of integers between 0 and n

% result y is a matrix of the same dimensions
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y = round(gamma(n+1)./(gamma(k + 1).*gamma(n + 1 - k)));

ibinom.m 17.1.39
Description of Code
ibinom.m Binomial distribution � individual terms. We have two m-functions ibinom and cbinom
for calculating individual and cumulative terms, P (Sn = k) and P (Sn ≥ k), respectively.

P (Sn = k) = C (n, k) pk(1− p)n−k and P (Sn ≥ k) =
n∑
r=k

P (Sn = r) 0 ≤ k ≤ n (17.1)

For these m-functions, we use a modi�cation of a computation strategy employed by S. Weintraub:
Tables of the Cumulative Binomial Probability Distribution for Small Values of

p, 1963. The book contains a particularly helpful error analysis, written by Leo J. Cohen. Exper-
imentation with sums and expectations indicates a precision for ibinom and cbinom calculations
that is better than 10−10 for n = 1000 and p from 0.01 to 0.99. A similar precision holds for values
of n up to 5000, provided np or nq are limited to approximately 500. Above this value for np or
nq, the computations break down. For individual terms, function y = ibinom(n,p,k) calculates
the probabilities for n a positive integer, k a matrix of integers between 0 and n. The output is a
matrix of the corresponding binomial probabilities.

Code

function y = ibinom(n,p,k)

% IBINOM y = ibinom(n,p,k) Individual binomial probabilities

% Version of 10/5/93

% n is a positive integer; p is a probability

% k a matrix of integers between 0 and n

% y = P(X>=k) (a matrix of probabilities)

if p > 0.5

a = [1 ((1-p)/p)*ones(1,n)];

b = [1 n:-1:1];

c = [1 1:n];

br = (p^n)*cumprod(a.*b./c);

bi = fliplr(br);

else

a = [1 (p/(1-p))*ones(1,n)];

b = [1 n:-1:1];

c = [1 1:n];

bi = ((1-p)^n)*cumprod(a.*b./c);

end

y = bi(k+1);

ipoisson.m 17.1.40
Description of Code
ipoisson.m Poisson distribution � individual terms. As in the case of the binomial distribution,
we have an m-function for the individual terms and one for the cumulative case. The m-functions
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ipoisson and cpoisson use a computational strategy similar to that used for the binomial case.
Not only does this work for large µ, but the precision is at least as good as that for the binomial
m-functions. Experience indicates that the m-functions are good for µ ≤ 700. They breaks down
at about 710, largely because of limitations of the MATLAB exponential function. For individual
terms, function y = ipoisson(mu,k) calculates the probabilities for mu a positive integer, k a
row or column vector of nonnegative integers. The output is a row vector of the corresponding
Poisson probabilities.

Code

function y = ipoisson(mu,k)

% IPOISSON y = ipoisson(mu,k) Individual Poisson probabilities

% Version of 10/15/93

% mu = mean value

% k may be a row or column vector of integer values

% y = P(X = k) (a row vector of probabilities)

K = max(k);

p = exp(-mu)*cumprod([1 mu*ones(1,K)]./[1 1:K]);

y = p(k+1);

cpoisson.m 17.1.41
Description of Code
cpoisson.m Poisson distribution�cumulative terms. function y = cpoisson(mu,k), calculates
P (X ≥ k), where k may be a row or a column vector of nonnegative integers. The output is a row
vector of the corresponding probabilities.

Code

function y = cpoisson(mu,k)

% CPOISSON y = cpoisson(mu,k) Cumulative Poisson probabilities

% Version of 10/15/93

% mu = mean value mu

% k may be a row or column vector of integer values

% y = P(X >= k) (a row vector of probabilities)

K = max(k);

p = exp(-mu)*cumprod([1 mu*ones(1,K)]./[1 1:K]);

pc = [1 1 - cumsum(p)];

y = pc(k+1);

nbinom.m 17.1.42
Description of Code
nbinom.m Negative binomial � function y = nbinom(m, p, k) calculates the probability that
the mth success in a Bernoulli sequence occurs on the kth trial.

Code
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function y = nbinom(m, p, k)

% NBINOM y = nbinom(m, p, k) Negative binomial probabilities

% Version of 12/10/92

% Probability the mth success occurs on the kth trial

% m a positive integer; p a probability

% k a matrix of integers greater than or equal to m

% y = P(X=k) (a matrix of the same dimensions as k)

q = 1 - p;

y = ((p^m)/gamma(m)).*(q.^(k - m)).*gamma(k)./gamma(k - m + 1);

gaussian.m 17.1.43
Description of Code
gaussian.mfunction y = gaussian(m, v, t) calculates the Gaussian (Normal) distribution
function for mean value m, variance v, and matrix t of values. The result y = P (X ≤ t) is a
matrix of the same dimensions as t.

Code

function y = gaussian(m,v,t)

% GAUSSIAN y = gaussian(m,v,t) Gaussian distribution function

% Version of 11/18/92

% Distribution function for X ∼ N(m, v)

% m = mean, v = variance

% t is a matrix of evaluation points

% y = P(X<=t) (a matrix of the same dimensions as t)

u = (t - m)./sqrt(2*v);

if u >= 0

y = 0.5*(erf(u) + 1);

else

y = 0.5*erfc(-u);

end

gaussdensity.m 17.1.44
Description of Code
gaussdensity.mfunction y = gaussdensity(m,v,t) calculates the Gaussian density function
fX (t) for mean value m, variance t, and matrix t of values.

Code

function y = gaussdensity(m,v,t)

% GAUSSDENSITY y = gaussdensity(m,v,t) Gaussian density

% Version of 2/8/96

% m = mean, v = variance
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% t is a matrix of evaluation points

y = exp(-((t-m).^2)/(2*v))/sqrt(v*2*pi);

norminv.m 17.1.45
Description of Code
norminv.mfunction y = norminv(m,v,p) calculates the inverse (the quantile function) of the
Gaussian distribution function for mean value m, variance v, and p a matrix of probabilities.

Code

function y = norminv(m,v,p)

% NORMINV y = norminv(m,v,p) Inverse gaussian distribution

% (quantile function for gaussian)

% Version of 8/17/94

% m = mean, v = variance

% t is a matrix of evaluation points

if p >= 0

u = sqrt(2)*erfinv(2*p - 1);

else

u = -sqrt(2)*erfinv(1 - 2*p);

end

y = sqrt(v)*u + m;

gammadbn.m 17.1.46
Description of Code
gammadbn.mfunction y = gammadbn(alpha, lambda, t) calculates the distribution function
for a gamma distribution with parameters alpha, lambda. t is a matrix of evaluation points. The
result is a matrix of the same size.

Code

function y = gammadbn(alpha, lambda, t)

% GAMMADBN y = gammadbn(alpha, lambda, t) Gamma distribution

% Version of 12/10/92

% Distribution function for X ∼ gamma (alpha, lambda)

% alpha, lambda are positive parameters

% t may be a matrix of positive numbers

% y = P(X<= t) (a matrix of the same dimensions as t)

y = gammainc(lambda*t, alpha);

beta.m 17.1.47
Description of Code
beta.mfunction y = beta(r,s,t) calculates the density function for the beta distribution with
parameters r, s. t is a matrix of numbers between zero and one. The result is a matrix of the same
size.
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Code

function y = beta(r,s,t)

% BETA y = beta(r,s,t) Beta density function

% Version of 8/5/93

% Density function for Beta (r,s) distribution

% t is a matrix of evaluation points between 0 and 1

% y is a matrix of the same dimensions as t

y = (gamma(r+s)/(gamma(r)*gamma(s)))*(t.^(r-1).*(1-t).^(s-1));

betadbn.m 17.1.48
Description of Code
betadbn.mfunction y = betadbn(r,s,t) calculates the distribution function for the beta dis-
tribution with parameters r, s. t is a matrix of evaluation points. The result is a matrix of the
same size.

Code

function y = betadbn(r,s,t)

% BETADBN y = betadbn(r,s,t) Beta distribution function

% Version of 7/27/93

% Distribution function for X beta(r,s)

% y = P(X<=t) (a matrix of the same dimensions as t)

y = betainc(t,r,s);

weibull.m 17.1.49
Description of Code
weibull.mfunction y = weibull(alpha,lambda,t) calculates the density function for the

Weibull distribution with parameters alpha, lambda. t is a matrix of evaluation points. The
result is a matrix of the same size.

Code

function y = weibull(alpha,lambda,t)

% WEIBULL y = weibull(alpha,lambda,t) Weibull density

% Version of 1/24/91

% Density function for X ∼ Weibull (alpha, lambda, 0)

% t is a matrix of positive evaluation points

% y is a matrix of the same dimensions as t

y = alpha*lambda*(t.^(alpha - 1)).*exp(-lambda*(t.^alpha));
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weibulld.m 17.1.50
Description of Code
weibulld.mfunction y = weibulld(alpha, lambda, t) calculates the distribution function for
the Weibull distribution with parameters alpha, lambda. t is a matrix of evaluation points. The
result is a matrix of the same size.

Code

function y = weibulld(alpha, lambda, t)

% WEIBULLD y = weibulld(alpha, lambda, t) Weibull distribution function

% Version of 1/24/91

% Distribution function for X ∼ Weibull (alpha, lambda, 0)

% t is a matrix of positive evaluation points

% y = P(X<=t) (a matrix of the same dimensions as t)

y = 1 - exp(-lambda*(t.^alpha));

17.1.9 Binomial, Poisson, and Gaussian dstributions

bincomp.m 17.1.51
Description of Code
bincomp.m Graphical comparison of the binomial, Poisson, and Gaussian distributions. The
procedure calls for binomial parameters n, p, determines a reasonable range of evaluation points
and plots on the same graph the binomial distribution function, the Poisson distribution function,
and the gaussian distribution function with the adjustment called the �continuity correction.�

Code

% BINCOMP file bincomp.m Approx of binomial by Poisson and gaussian

% Version of 5/24/96

% Gaussian adjusted for "continuity correction"

% Plots distribution functions for specified parameters n, p

n = input('Enter the parameter n ');

p = input('Enter the parameter p ');

a = floor(n*p-2*sqrt(n*p));

a = max(a,1); % Prevents zero or negative indices

b = floor(n*p+2*sqrt(n*p));

k = a:b;

Fb = cumsum(ibinom(n,p,0:n)); % Binomial distribution function

Fp = cumsum(ipoisson(n*p,0:n)); % Poisson distribution function

Fg = gaussian(n*p,n*p*(1 - p),k+0.5); % Gaussian distribution function

stairs(k,Fb(k+1)) % Plotting details

hold on

plot(k,Fp(k+1),'-.',k,Fg,'o')
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hold off

xlabel('t values') % Graph labeling details

ylabel('Distribution function')

title('Approximation of Binomial by Poisson and Gaussian')

grid

legend('Binomial','Poisson','Adjusted Gaussian')

disp('See Figure for results')

poissapp.m 17.1.52
Description of Code
poissapp.m Graphical comparison of the Poisson and Gaussian distributions. The procedure
calls for a value of the Poisson parameter mu, then calculates and plots the Poisson distribution
function, the Gaussian distribution function, and the adjusted Gaussian distribution function.

Code

% POISSAPP file poissapp.m Comparison of Poisson and gaussian

% Version of 5/24/96

% Plots distribution functions for specified parameter mu

mu = input('Enter the parameter mu ');

n = floor(1.5*mu);

k = floor(mu-2*sqrt(mu)):floor(mu+2*sqrt(mu));

FP = cumsum(ipoisson(mu,0:n));

FG = gaussian(mu,mu,k);

FC = gaussian(mu,mu,k-0.5);

stairs(k,FP(k))

hold on

plot(k,FG,'-.',k,FC,'o')

hold off

grid

xlabel('t values')

ylabel('Distribution function')

title('Gaussian Approximation to Poisson Distribution')

legend('Poisson','Gaussian','Adjusted Gaussian')

disp('See Figure for results')

17.1.10 Setup for simple random variables

If a simple random variable X is in canonical form, the distribution consists of the coe�cients of the indicator
funtions (the values of X) and the probabilities of the corresponding events. If X is in a primitive form other
than canonical, the csort operation is applied to the coe�cients of the indicator functions and the probabilities
of the corresponding events to obtain the distribution. If Z = g (X) and X is in a primitive form, then the
value of Z on the event in the partition associated with ti is g (ti). The distribution for Z is obtained by
applying csort to the g (ti) and the pi. Similarly, if Z = g (X,Y ) and the joint distribution is available, the
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value g (ti, uj) is associated with P (X = ti, Y = uj) . The distribution for Z is obtained by applying csort
to the matrix of values and the corresponding matrix of probabilities.

canonic.m 17.1.53
Description of Code
canonic.m The procedure determines the distribution for a simple random variable in a�ne
form, when the minterm probabilities are available. Input data are a row vector of coe�cients for
the indicator functions in the a�ne form (with the constant value last) and a row vector of the
probabilities of the minterm generated by the events. Results consist of a row vector of values and
a row vector of the corresponding probabilities.

Code

% CANONIC file canonic.m Distribution for simple rv in affine form

% Version of 6/12/95

% Determines the distribution for a simple random variable

% in affine form, when the minterm probabilities are available.

% Uses the m-functions mintable and csort.

% The coefficient vector must contain the constant term.

% If the constant term is zero, enter 0 in the last place.

c = input(' Enter row vector of coefficients ');

pm = input(' Enter row vector of minterm probabilities ');

n = length(c) - 1;

if 2^n ∼= length(pm)

error('Incorrect minterm probability vector length');

end

M = mintable(n); % Provides a table of minterm patterns

s = c(1:n)*M + c(n+1); % Evaluates X on each minterm

[X,PX] = csort(s,pm); % s = values; pm = minterm probabilities

XDBN = [X;PX]';

disp('Use row matrices X and PX for calculations')

disp('Call for XDBN to view the distribution')

canonicf.m 17.1.54
Description of Code
canonicf.mfunction [x,px] = canonicf(c,pm) is a function version of canonic, which allows
arbitrary naming of variables.

Code

function [x,px] = canonicf(c,pm)

% CANONICF [x,px] = canonicf(c,pm) Function version of canonic

% Version of 6/12/95

% Allows arbitrary naming of variables

n = length(c) - 1;

if 2^n ∼= length(pm)

error('Incorrect minterm probability vector length');

end

M = mintable(n); % Provides a table of minterm patterns
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s = c(1:n)*M + c(n+1); % Evaluates X on each minterm

[x,px] = csort(s,pm); % s = values; pm = minterm probabilities

jcalc.m 17.1.55
Description of Code
jcalc.m Sets up for calculations for joint simple random variables. The matrix P of

P (X = ti, Y = uj) is arranged as on the plane (i.e., values of Y increase upward). The MAT-
LAB function meshgrid is applied to the row matrix X and the reversed row matrix for Y to put
an appropriate X-value and Y -value at each position. These are in the �calculating matrices� t and
u, respectively, which are used in determining probabilities and expectations of various functions
of t, u.

Code

% JCALC file jcalc.m Calculation setup for joint simple rv

% Version of 4/7/95 (Update of prompt and display 5/1/95)

% Setup for calculations for joint simple random variables

% The joint probabilities arranged as on the plane

% (top row corresponds to largest value of Y)

P = input('Enter JOINT PROBABILITIES (as on the plane) ');

X = input('Enter row matrix of VALUES of X ');

Y = input('Enter row matrix of VALUES of Y ');

PX = sum(P); % probabilities for X

PY = fliplr(sum(P')); % probabilities for Y

[t,u] = meshgrid(X,fliplr(Y));

disp(' Use array operations on matrices X, Y, PX, PY, t, u, and P')

jcalcf.m 17.1.56
Description of Code
jcalcf.mfunction [x,y,t,u,px,py,p] = jcalcf(X,Y,P) is a function version of jcalc, which
allows arbitrary naming of variables.

Code

function [x,y,t,u,px,py,p] = jcalcf(X,Y,P)

% JCALCF [x,y,t,u,px,py,p] = jcalcf(X,Y,P) Function version of jcalc

% Version of 5/3/95

% Allows arbitrary naming of variables

if sum(size(P) ∼= [length(Y) length(X)]) > 0

error(' Incompatible vector sizes')

end

x = X;
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y = Y;

p = P;

px = sum(P);

py = fliplr(sum(P'));

[t,u] = meshgrid(X,fliplr(Y));

jointzw.m 17.1.57
Description of Code
jointzw.m Sets up joint distribution for Z = g (X,Y ) and W = h (X,Y ) and provides calculating
matrices as in jcalc. Inputs are P,X, and Y as well as array expressions for g (t, u) and h (t, u).
Outputs are matrices Z,W,PZW for the joint distribution, marginal probabilities PZ, PW , and
the calculating matrices v, w.

Code

% JOINTZW file jointzw.m Joint dbn for two functions of (X,Y)

% Version of 4/29/97

% Obtains joint distribution for

% Z = g(X,Y) and W = h(X,Y)

% Inputs P, X, and Y as well as array

% expressions for g(t,u) and h(t,u)

P = input('Enter joint prob for (X,Y) ');

X = input('Enter values for X ');

Y = input('Enter values for Y ');

[t,u] = meshgrid(X,fliplr(Y));

G = input('Enter expression for g(t,u) ');

H = input('Enter expression for h(t,u) ');

[Z,PZ] = csort(G,P);

[W,PW] = csort(H,P);

r = length(W);

c = length(Z);

PZW = zeros(r,c);

for i = 1:r

for j = 1:c

a = find((G==Z(j))&(H==W(i)));

if ∼isempty(a)
PZW(i,j) = total(P(a));

end

end

end

PZW = flipud(PZW);

[v,w] = meshgrid(Z,fliplr(W));

if (G==t)&(H==u)

disp(' ')

disp(' Note: Z = X and W = Y')

disp(' ')

elseif G==t

disp(' ')
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disp(' Note: Z = X')

disp(' ')

elseif H==u

disp(' ')

disp(' Note: W = Y')

disp(' ')

end

disp('Use array operations on Z, W, PZ, PW, v, w, PZW')

jdtest.m 17.1.58
Description of Code
jdtest.m Tests a joint probability matrix P for negative entries and unit total probability..

Code

function y = jdtest(P)

% JDTEST y = jdtest(P) Tests P for unit total and negative elements

% Version of 10/8/93

M = min(min(P));

S = sum(sum(P));

if M < 0

y = 'Negative entries';

elseif abs(1 - S) > 1e-7

y = 'Probabilities do not sum to one';

else

y = 'P is a valid distribution';

end

17.1.11 Setup for general random variables

tappr.m 17.1.59
Description of Code
tappr.m Uses the density function to set up a discrete approximation to the distribution for
absolutely continuous random variable X.

Code

% TAPPR file tappr.m Discrete approximation to ac random variable

% Version of 4/16/94

% Sets up discrete approximation to distribution for

% absolutely continuous random variable X

% Density is entered as a function of t

r = input('Enter matrix [a b] of x-range endpoints ');

n = input('Enter number of x approximation points ');
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d = (r(2) - r(1))/n;

t = (r(1):d:r(2)-d) +d/2;

PX = input('Enter density as a function of t ');

PX = PX*d;

PX = PX/sum(PX);

X = t;

disp('Use row matrices X and PX as in the simple case')

tuappr.m 17.1.60
Description of Code
tuappr.m Uses the joint density to set up discrete approximations to X,Y, t, u, and density.

Code

% TUAPPR file tuappr.m Discrete approximation to joint ac pair

% Version of 2/20/96

% Joint density entered as a function of t, u

% Sets up discrete approximations to X, Y, t, u, and density

rx = input('Enter matrix [a b] of X-range endpoints ');

ry = input('Enter matrix [c d] of Y-range endpoints ');

nx = input('Enter number of X approximation points ');

ny = input('Enter number of Y approximation points ');

dx = (rx(2) - rx(1))/nx;

dy = (ry(2) - ry(1))/ny;

X = (rx(1):dx:rx(2)-dx) + dx/2;

Y = (ry(1):dy:ry(2)-dy) + dy/2;

[t,u] = meshgrid(X,fliplr(Y));

P = input('Enter expression for joint density ');

P = dx*dy*P;

P = P/sum(sum(P));

PX = sum(P);

PY = fliplr(sum(P'));

disp('Use array operations on X, Y, PX, PY, t, u, and P')

dfappr.m 17.1.61
Description of Code
dfappr.m Approximate discrete distribution from distribution function entered as a function of t.

Code

% DFAPPR file dfappr.m Discrete approximation from distribution function
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% Version of 10/21/95

% Approximate discrete distribution from distribution

% function entered as a function of t

r = input('Enter matrix [a b] of X-range endpoints ');

s = input('Enter number of X approximation points ');

d = (r(2) - r(1))/s;

t = (r(1):d:r(2)-d) +d/2;

m = length(t);

f = input('Enter distribution function F as function of t ');

f = [0 f];

PX = f(2:m+1) - f(1:m);

PX = PX/sum(PX);

X = t - d/2;

disp('Distribution is in row matrices X and PX')

acsetup.m 17.1.62
Description of Code
acsetup.m Approximate distribution for absolutely continuous random variable X. Density is
entered as a string variable function of t.

Code

% ACSETUP file acsetup.m Discrete approx from density as string variable

% Version of 10/22/94

% Approximate distribution for absolutely continuous rv X

% Density is entered as a string variable function of t

disp('DENSITY f is entered as a STRING VARIABLE.')

disp('either defined previously or upon call.')

r = input('Enter matrix [a b] of x-range endpoints ');

s = input('Enter number of x approximation points ');

d = (r(2) - r(1))/s;

t = (r(1):d:r(2)-d) +d/2;

m = length(t);

f = input('Enter density as a function of t ');

PX = eval(f);

PX = PX*d;

PX = PX/sum(PX);

X = t;

disp('Distribution is in row matrices X and PX')

dfsetup.m 17.1.63
Description of Code
dfsetup.m Approximate discrete distribution from distribution function entered as a string vari-
able function of t.

Code
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% DFSETUP file dfsetup.m Discrete approx from string dbn function

% Version of 10/21/95

% Approximate discrete distribution from distribution

% function entered as string variable function of t

disp('DISTRIBUTION FUNCTION F is entered as a STRING')

disp('VARIABLE, either defined previously or upon call')

r = input('Enter matrix [a b] of X-range endpoints ');

s = input('Enter number of X approximation points ');

d = (r(2) - r(1))/s;

t = (r(1):d:r(2)-d) +d/2;

m = length(t);

F = input('Enter distribution function F as function of t ');

f = eval(F);

f = [0 f];

PX = f(2:m+1) - f(1:m);

PX = PX/sum(PX);

X = t - d/2;

disp('Distribution is in row matrices X and PX')

17.1.12 Setup for independent simple random variables

MATLAB version 5.1 has provisions for multidimensional arrays, which make possible more direct imple-
mentation of icalc3 and icalc4.

icalc.m 17.1.64
Description of Code
icalc.m Calculation setup for an independent pair of simple random variables. Input consists of
marginal distributions for X,Y , Output is joint distribution and calculating matrices t, u.

Code

% ICALC file icalc.m Calculation setup for independent pair

% Version of 5/3/95

% Joint calculation setup for independent pair

X = input('Enter row matrix of X-values ');

Y = input('Enter row matrix of Y-values ');

PX = input('Enter X probabilities ');

PY = input('Enter Y probabilities ');

[a,b] = meshgrid(PX,fliplr(PY));

P = a.*b; % Matrix of joint independent probabilities

[t,u] = meshgrid(X,fliplr(Y)); % t, u matrices for joint calculations

disp(' Use array operations on matrices X, Y, PX, PY, t, u, and P')
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icalcf.m 17.1.65
Description of Code
icalcf.m[x,y,t,u,px,py,p] = icalcf(X,Y,PX,PY) is a function version of icalc, which allows
arbitrary naming of variables.

Code

function [x,y,t,u,px,py,p] = icalcf(X,Y,PX,PY)

% ICALCF [x,y,t,u,px,py,p] = icalcf(X,Y,PX,PY) Function version of icalc

% Version of 5/3/95

% Allows arbitrary naming of variables

x = X;

y = Y;

px = PX;

py = PY;

if length(X) ∼= length(PX)

error(' X and PX of different lengths')

elseif length(Y) ∼= length(PY)

error(' Y and PY of different lengths')

end

[a,b] = meshgrid(PX,fliplr(PY));

p = a.*b; % Matrix of joint independent probabilities

[t,u] = meshgrid(X,fliplr(Y)); % t, u matrices for joint calculations

icalc3.m 17.1.66
Description of Code
icalc3.m Calculation setup for an independent class of three simple random variables.

Code

% ICALC3 file icalc3.m Setup for three independent rv

% Version of 5/15/96

% Sets up for calculations for three

% independent simple random variables

% Uses m-functions rep, elrep, kronf

X = input('Enter row matrix of X-values ');

Y = input('Enter row matrix of Y-values ');

Z = input('Enter row matrix of Z-values ');

PX = input('Enter X probabilities ');

PY = input('Enter Y probabilities ');

PZ = input('Enter Z probabilities ');

n = length(X);

m = length(Y);

s = length(Z);

[t,u] = meshgrid(X,Y);

t = rep(t,1,s);

u = rep(u,1,s);
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v = elrep(Z,m,n); % t,u,v matrices for joint calculations

P = kronf(PZ,kronf(PX,PY'));

disp('Use array operations on matrices X, Y, Z,')

disp('PX, PY, PZ, t, u, v, and P')

icalc4.m 17.1.67
Description of Code
icalc4.m Calculation setup for an independent class of four simple random variables.

Code

% ICALC4 file icalc4.m Setup for four independent rv

% Version of 5/15/96

% Sets up for calculations for four

% independent simple random variables

% Uses m-functions rep, elrep, kronf

X = input('Enter row matrix of X-values ');

Y = input('Enter row matrix of Y-values ');

Z = input('Enter row matrix of Z-values ');

W = input('Enter row matrix of W-values ');

PX = input('Enter X probabilities ');

PY = input('Enter Y probabilities ');

PZ = input('Enter Z probabilities ');

PW = input('Enter W probabilities ');

n = length(X);

m = length(Y);

s = length(Z);

r = length(W);

[t,u] = meshgrid(X,Y);

t = rep(t,r,s);

u = rep(u,r,s);

[v,w] = meshgrid(Z,W);

v = elrep(v,m,n); % t,u,v,w matrices for joint calculations

w = elrep(w,m,n);

P = kronf(kronf(PZ,PW'),kronf(PX,PY'));

disp('Use array operations on matrices X, Y, Z, W')

disp('PX, PY, PZ, PW, t, u, v, w, and P')

17.1.13 Calculations for random variables

ddbn.m 17.1.68
Description of Code
ddbn.m Uses the distribution of a simple random variable (or simple approximation) to plot a
step graph for the distribution function FX.
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Code

% DDBN file ddbn.m Step graph of distribution function

% Version of 10/25/95

% Plots step graph of dbn function FX from

% distribution of simple rv (or simple approximation)

xc = input('Enter row matrix of VALUES ');

pc = input('Enter row matrix of PROBABILITIES ');

m = length(xc);

FX = cumsum(pc);

xt = [xc(1)-1-0.1*abs(xc(1)) xc xc(m)+1+0.1*abs(xc(m))];

FX = [0 FX 1]; % Artificial extension of range and domain

stairs(xt,FX) % Plot of stairstep graph

hold on

plot(xt,FX,'o') % Marks values at jump

hold off

grid

xlabel('t')

ylabel('u = F(t)')

title('Distribution Function')

cdbn.m 17.1.69
Description of Code
cdbn.m Plots a continuous graph of a distribution function of a simple random variable (or simple
approximation).

Code

% CDBN file cdbn.m Continuous graph of distribution function

% Version of 1/29/97

% Plots continuous graph of dbn function FX from

% distribution of simple rv (or simple approximation)

xc = input('Enter row matrix of VALUES ');

pc = input('Enter row matrix of PROBABILITIES ');

m = length(xc);

FX = cumsum(pc);

xt = [xc(1)-0.01 xc xc(m)+0.01];

FX = [0 FX FX(m)]; % Artificial extension of range and domain

plot(xt,FX) % Plot of continuous graph

grid

xlabel('t')

ylabel('u = F(t)')

title('Distribution Function')
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simple.m 17.1.70
Description of Code
simple.m Calculates basic quantites for simple random variables from the distribution, input as
row matrices X and PX.

Code

% SIMPLE file simple.m Calculates basic quantites for simple rv

% Version of 6/18/95

X = input('Enter row matrix of X-values ');

PX = input('Enter row matrix PX of X probabilities ');

n = length(X); % dimension of X

EX = dot(X,PX) % E[X]

EX2 = dot(X.^2,PX) % E[X^2]

VX = EX2 - EX^2 % Var[X]

disp(' ')

disp('Use row matrices X and PX for further calculations')

jddbn.m 17.1.71
Description of Code
jddbn.m Representation of joint distribution function for simple pair by obtaining the value of
FXY at the lower left hand corners of each grid cell.

Code

% JDDBN file jddbn.m Joint distribution function

% Version of 10/7/96

% Joint discrete distribution function for

% joint matrix P (arranged as on the plane).

% Values at lower left hand corners of grid cells

P = input('Enter joint probability matrix (as on the plane) ');

FXY = flipud(cumsum(flipud(P)));

FXY = cumsum(FXY')';

disp('To view corner values for joint dbn function, call for FXY')

jsimple.m 17.1.72
Description of Code
jsimple.m Calculates basic quantities for a joint simple pair {X,Y } from the joint distrsibution
X,Y, P as in jcalc. Calculated quantities include means, variances, covariance, regression line, and
regression curve (conditional expectation E [Y |X = t]).

Code
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% JSIMPLE file jsimple.m Calculates basic quantities for joint simple rv

% Version of 5/25/95

% The joint probabilities are arranged as on the plane

% (the top row corresponds to the largest value of Y)

P = input('Enter JOINT PROBABILITIES (as on the plane) ');

X = input('Enter row matrix of VALUES of X ');

Y = input('Enter row matrix of VALUES of Y ');

disp(' ')

PX = sum(P); % marginal distribution for X

PY = fliplr(sum(P')); % marginal distribution for Y

XDBN = [X; PX]';

YDBN = [Y; PY]';

PT = idbn(PX,PY);

D = total(abs(P - PT)); % test for difference

if D > 1e-8 % to prevent roundoff error masking zero

disp('{X,Y} is NOT independent')

else

disp('{X,Y} is independent')

end

disp(' ')

[t,u] = meshgrid(X,fliplr(Y));

EX = total(t.*P) % E[X]

EY = total(u.*P) % E[Y]

EX2 = total((t.^2).*P) % E[X^2]

EY2 = total((u.^2).*P) % E[Y^2]

EXY = total(t.*u.*P) % E[XY]

VX = EX2 - EX^2 % Var[X]

VY = EY2 - EY^2 % Var[Y]

cv = EXY - EX*EY; % Cov[X,Y] = E[XY] - E[X]E[Y]

if abs(cv) > 1e-9 % to prevent roundoff error masking zero

CV = cv

else

CV = 0

end

a = CV/VX % regression line of Y on X is

b = EY - a*EX % u = at + b

R = CV/sqrt(VX*VY); % correlation coefficient rho

disp(['The regression line of Y on X is: u = ',num2str(a),'t + ',num2str(b),])

disp(['The correlation coefficient is: rho = ',num2str(R),])

disp(' ')

eYx = sum(u.*P)./PX;

EYX = [X;eYx]';

disp('Marginal dbns are in X, PX, Y, PY; to view, call XDBN, YDBN')

disp('E[Y|X = x] is in eYx; to view, call for EYX')

disp('Use array operations on matrices X, Y, PX, PY, t, u, and P')

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



571

japprox.m 17.1.73
Description of Code
japprox.m Assumes discrete setup and calculates basic quantities for a pair of random variables
as in jsimple. Plots the regression line and regression curve.

Code

% JAPPROX file japprox.m Basic quantities for ac pair {X,Y}

% Version of 5/7/96

% Assumes tuappr has set X, Y, PX, PY, t, u, P

EX = total(t.*P) % E[X]

EY = total(u.*P) % E[Y]

EX2 = total(t.^2.*P) % E[X^2]

EY2 = total(u.^2.*P) % E[Y^2]

EXY = total(t.*u.*P) % E[XY]

VX = EX2 - EX^2 % Var[X]

VY = EY2 - EY^2 % Var[Y]

cv = EXY - EX*EY; % Cov[X,Y] = E[XY] - E[X]E[Y]

if abs(cv) > 1e-9 % to prevent roundoff error masking zero

CV = cv

else

CV = 0

end

a = CV/VX % regression line of Y on X is

b = EY - a*EX % u = at + b

R = CV/sqrt(VX*VY);

disp(['The regression line of Y on X is: u = ',num2str(a),'t + ',num2str(b),])

disp(['The correlation coefficient is: rho = ',num2str(R),])

disp(' ')

eY = sum(u.*P)./sum(P); % eY(t) = E[Y|X = t]

RL = a*X + b;

plot(X,RL,X,eY,'-.')

grid

title('Regression line and Regression curve')

xlabel('X values')

ylabel('Y values')

legend('Regression line','Regression curve')

clear eY % To conserve memory

clear RL

disp('Calculate with X, Y, t, u, P, as in joint simple case')

17.1.14 Calculations and tests for independent random variables

mgsum.m 17.1.74
Description of Code
mgsum.mfunction [z,pz] = mgsum(x,y,px,py) determines the distribution for the sum of an
independent pair of simple random variables from their distributions.
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Code

function [z,pz] = mgsum(x,y,px,py)

% MGSUM [z,pz] = mgsum(x,y,px,py) Sum of two independent simple rv

% Version of 5/6/96

% Distribution for the sum of two independent simple random variables

% x is a vector (row or column) of X values

% y is a vector (row or column) of Y values

% px is a vector (row or column) of X probabilities

% py is a vector (row or column) of Y probabilities

% z and pz are row vectors

[a,b] = meshgrid(x,y);

t = a+b;

[c,d] = meshgrid(px,py);

p = c.*d;

[z,pz] = csort(t,p);

mgsum3.m 17.1.75
Description of Code
mgsum3.mfunction [w,pw] = mgsum3(x,y,z,px,py,pz) extends mgsum to three random vari-
ables by repeated application of mgsum. Similarly for mgsum4.m.

Code

function [w,pw] = mgsum3(x,y,z,px,py,pz)

% MGSUM3 [w,pw] = mgsum3(x,y,z,px,py,y) Sum of three independent simple rv

% Version of 5/2/96

% Distribution for the sum of three independent simple random variables

% x is a vector (row or column) of X values

% y is a vector (row or column) of Y values

% z is a vector (row or column) of Z values

% px is a vector (row or column) of X probabilities

% py is a vector (row or column) of Y probabilities

% pz is a vector (row or column) of Z probabilities

% W and pW are row vectors

[a,pa] = mgsum(x,y,px,py);

[w,pw] = mgsum(a,z,pa,pz);

mgnsum.m 17.1.76
Description of Code
mgnsum.mfunction [z,pz] = mgnsum(X,P) determines the distribution for a sum of n inde-
pendent random variables. X an n-row matrix of X-values and P an n-row matrix of P-values
(padded with zeros, if necessary, to make all rows the same length.
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Code

function [z,pz] = mgnsum(X,P)

% MGNSUM [z,pz] = mgnsum(X,P) Sum of n independent simple rv

% Version of 5/16/96

% Distribution for the sum of n independent simple random variables

% X an n-row matrix of X-values

% P an n-row matrix of P-values

% padded with zeros, if necessary

% to make all rows the same length

[n,r] = size(P);

z = 0;

pz = 1;

for i = 1:n

x = X(i,:);

p = P(i,:);

x = x(find(p>0));
p = p(find(p>0));
[z,pz] = mgsum(z,x,pz,p);

end

mgsumn.m 17.1.77
Description of Code
mgsumn.mfunction [z,pz] = mgsumn(varargin) is an alternate to mgnsum, utilizing varar-
gin in MATLAB version 5.1. The call is of the form [z,pz] = mgsumn([x1;p1],[x2;p2], ...,

[xn;pn]).

Code

function [z,pz] = mgsumn(varargin)

% MGSUMN [z,pz] = mgsumn([x1;p1],[x2;p2], ..., [xn;pn])

% Version of 6/2/97 Uses MATLAB version 5.1

% Sum of n independent simple random variables

% Utilizes distributions in the form [x;px] (two rows)

% Iterates mgsum

n = length(varargin); % The number of distributions

z = 0; % Initialization

pz = 1;

for i = 1:n % Repeated use of mgsum

[z,pz] = mgsum(z,varargin{i}(1,:),pz,varargin{i}(2,:));

end

diidsum.m 17.1.78
Description of Code
diidsum.mfunction [x,px] = diidsum(X,PX,n) determines the sum of n iid simple random
variables, with the common distribution X,PX.
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Code

function [x,px] = diidsum(X,PX,n)

% DIIDSUM [x,px] = diidsum(X,PX,n) Sum of n iid simple random variables

% Version of 10/14/95 Input rev 5/13/97

% Sum of n iid rv with common distribution X, PX

% Uses m-function mgsum

x = X; % Initialization

px = PX;

for i = 1:n-1

[x,px] = mgsum(x,X,px,PX);

end

itest.m 17.1.79
Description of Code
itest.m Tests for independence the matrix P of joint probabilities for a simple pair {X,Y } of
random variables.

Code

% ITEST file itest.m Tests P for independence

% Version of 5/9/95

% Tests for independence the matrix of joint

% probabilities for a simple pair {X,Y}

pt = input('Enter matrix of joint probabilities ');

disp(' ')

px = sum(pt); % Marginal probabilities for X

py = sum(pt'); % Marginal probabilities for Y (reversed)

[a,b] = meshgrid(px,py);

PT = a.*b; % Joint independent probabilities

D = abs(pt - PT) > 1e-9; % Threshold set above roundoff

if total(D) > 0

disp('The pair {X,Y} is NOT independent')

disp('To see where the product rule fails, call for D')

else

disp('The pair {X,Y} is independent')

end

idbn.m 17.1.80
Description of Code
idbn.mfunction p = idbn(px,py) uses marginal probabilities to determine the joint probability
matrix (arranged as on the plane) for an independent pair of simple random variables.
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Code

function p = idbn(px,py)

% IDBN p = idbn(px,py) Matrix of joint independent probabilities

% Version of 5/9/95

% Determines joint probability matrix for two independent

% simple random variables (arranged as on the plane)

[a,b] = meshgrid(px,fliplr(py));

p = a.*b

isimple.m 17.1.81
Description of Code
isimple.m Takes as inputs the marginal distributions for an independent pair {X,Y } of sim-
ple random variables. Sets up the joint distribution probability matrix P as in idbn, and forms
the calculating matrices t, u as in jcalc. Calculates basic quantities and makes available matrices
X,Y, PX,PY, P, t, u for additional calculations.

Code

% ISIMPLE file isimple.m Calculations for independent simple rv

% Version of 5/3/95

X = input('Enter row matrix of X-values ');

Y = input('Enter row matrix of Y-values ');

PX = input('Enter X probabilities ');

PY = input('Enter Y probabilities ');

[a,b] = meshgrid(PX,fliplr(PY));

P = a.*b; % Matrix of joint independent probabilities

[t,u] = meshgrid(X,fliplr(Y)); % t, u matrices for joint calculations

EX = dot(X,PX) % E[X]

EY = dot(Y,PY) % E[Y]

VX = dot(X.^2,PX) - EX^2 % Var[X]

VY = dot(Y.^2,PY) - EY^2 % Var[Y]

disp(' Use array operations on matrices X, Y, PX, PY, t, u, and P')

17.1.15 Quantile functions for bounded distributions

dquant.m 17.1.82
Description of Code
dquant.mfunction t = dquant(X,PX,U) determines the values of the quantile function for a
simple random variable with distribution X,PX at the probability values in row vector U. The
probability vector U is often determined by a random number generator.

Code
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function t = dquant(X,PX,U)

% DQUANT t = dquant(X,PX,U) Quantile function for a simple random variable

% Version of 10/14/95

% U is a vector of probabilities

m = length(X);

n = length(U);

F = [0 cumsum(PX)+1e-12];

F(m+1) = 1; % Makes maximum value exactly one

if U(n) >= 1 % Prevents improper values of probability U

U(n) = 1;

end

if U(1) <= 0

U(1) = 1e-9;

end

f = rowcopy(F,n); % n rows of F

u = colcopy(U,m); % m columns of U

t = X*((f(:,1:m) < u)&(u <= f(:,2:m+1)))';

dquanplot.m 17.1.83
Description of Code
dquanplot.m Plots as a stairs graph the quantile function for a simple random variable X. The
plot is the values of X versus the distribution function FX.

Code

% DQUANPLOT file dquanplot.m Plot of quantile function for a simple rv

% Version of 7/6/95

% Uses stairs to plot the inverse of FX

X = input('Enter VALUES for X ');

PX = input('Enter PROBABILITIES for X ');

m = length(X);

F = [0 cumsum(PX)];

XP = [X X(m)];

stairs(F,XP)

grid

title('Plot of Quantile Function')

xlabel('u')

ylabel('t = Q(u)')

hold on

plot(F(2:m+1),X,'o') % Marks values at jumps

hold off

dsample.m 17.1.84
Description of Code
dsample.m Calculates a sample from a discrete distribution, determines the relative frequencies
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of values, and compares with actual probabilities. Input consists of value and probability matrices
for X and the sample size n. A matrix U is determined by a random number generator, and the
m-function dquant is used to calculate the corresponding sample values. Various data on the sample
are calculated and displayed.

Code

% DSAMPLE file dsample.m Simulates sample from discrete population

% Version of 12/31/95 (Display revised 3/24/97)

% Relative frequencies vs probabilities for

% sample from discrete population distribution

X = input('Enter row matrix of VALUES ');

PX = input('Enter row matrix of PROBABILITIES ');

n = input('Sample size n ');

U = rand(1,n);

T = dquant(X,PX,U);

[x,fr] = csort(T,ones(1,length(T)));

disp(' Value Prob Rel freq')

disp([x; PX; fr/n]')

ex = sum(T)/n;

EX = dot(X,PX);

vx = sum(T.^2)/n - ex^2;

VX = dot(X.^2,PX) - EX^2;

disp(['Sample average ex = ',num2str(ex),])

disp(['Population mean E[X] = ',num2str(EX),])

disp(['Sample variance vx = ',num2str(vx),])

disp(['Population variance Var[X] = ',num2str(VX),])

quanplot.m 17.1.85
Description of Code
quanplot.m Plots the quantile function for a distribution function FX. Assumes the procedure
dfsetup or acsetup has been run. A suitable set U of probability values is determined and the
m-function dquant is used to determine corresponding values of the quantile function. The results
are plotted.

Code

% QUANPLOT file quanplot.m Plots quantile function for dbn function

% Version of 2/2/96

% Assumes dfsetup or acsetup has been run

% Uses m-function dquant

X = input('Enter row matrix of values ');

PX = input('Enter row matrix of probabilities ');

h = input('Probability increment h ');

U = h:h:1;

T = dquant(X,PX,U);

U = [0 U 1];
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Te = X(m) + abs(X(m))/20;

T = [X(1) T Te];

plot(U,T) % Plot rather than stairs for general case

grid

title('Plot of Quantile Function')

xlabel('u')

ylabel('t = Q(u)')

qsample.m 17.1.86
Description of Code
qsample.m Simulates a sample for a given population density. Determines sample parameters and
approximate population parameters. Assumes dfsetup or acsetup has been run. Takes as input the
distribution matrices X,PX and the sample size n. Uses a random number generator to obtain the
probability matrix U and uses the m-function dquant to determine the sample. Assumes dfsetup
or acsetup has been run.

Code

% QSAMPLE file qsample.m Simulates sample for given population density

% Version of 1/31/96

% Determines sample parameters

% and approximate population parameters.

% Assumes dfsetup or acsetup has been run

X = input('Enter row matrix of VALUES ');

PX = input('Enter row matrix of PROBABILITIES ');

n = input('Sample size n = ');

m = length(X);

U = rand(1,n);

T = dquant(X,PX,U);

ex = sum(T)/n;

EX = dot(X,PX);

vx = sum(T.^2)/n - ex^2;

VX = dot(X.^2,PX) - EX^2;

disp('The sample is in column vector T')

disp(['Sample average ex = ', num2str(ex),])

disp(['Approximate population mean E(X) = ',num2str(EX),])

disp(['Sample variance vx = ',num2str(vx),])

disp(['Approximate population variance V(X) = ',num2str(VX),])

targetset.m 17.1.87
Description of Code
targetset.m Setup for arrival at a target set of values. Used in conjunction with the m-procedure
targetrun to determine the number of trials needed to visit k of a speci�ed set of target values.
Input consists of the distribution matrices X,PX and the speci�ed set E of target values.
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Code

% TARGETSET file targetset.m Setup for sample arrival at target set

% Version of 6/24/95

X = input('Enter population VALUES ');

PX = input('Enter population PROBABILITIES ');

ms = length(X);

x = 1:ms; % Value indices

disp('The set of population values is')

disp(X);

E = input('Enter the set of target values ');

ne = length(E);

e = zeros(1,ne);

for i = 1:ne

e(i) = dot(E(i) == X,x); % Target value indices

end

F = [0 cumsum(PX)];

A = F(1:ms);

B = F(2:ms+1);

disp('Call for targetrun')

targetrun.m 17.1.88
Description of Code
targetrun.m Assumes the m-�le targetset has provided the basic data. Input consists of the
number r of repetitions and the number k of the target states to visit. Calculates and displays
various results.

Code

% TARGETRUN file targetrun.m Number of trials to visit k target values

% Version of 6/24/95 Rev for Version 5.1 1/30/98

% Assumes the procedure targetset has been run.

r = input('Enter the number of repetitions ');

disp('The target set is')

disp(E)

ks = input('Enter the number of target values to visit ');

if isempty(ks)

ks = ne;

end

if ks > ne

ks = ne;

end

clear T % Trajectory in value indices (reset)

R0 = zeros(1,ms); % Indicator for target value indices

R0(e) = ones(1,ne);

S = zeros(1,r); % Number of trials for each run (reset)

for k = 1:r
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R = R0;

i = 1;

while sum(R) > ne - ks

u = rand(1,1);

s = ((A < u)&(u <= B))*x';

if R(s) == 1 % Deletes indices as values reached

R(s) = 0;

end

T(i) = s;

i = i+1;

end

S(k) = i-1;

end

if r == 1

disp(['The number of trials to completion is ',int2str(i-1),])

disp(['The initial value is ',num2str(X(T(1))),])

disp(['The terminal value is ',num2str(X(T(i-1))),])

N = 1:i-1;

TR = [N;X(T)]';

disp('To view the trajectory, call for TR')

else

[t,f] = csort(S,ones(1,r));

D = [t;f]';

p = f/r;

AV = dot(t,p);

SD = sqrt(dot(t.^2,p) - AV^2);

MN = min(t);

MX = max(t);

disp(['The average completion time is ',num2str(AV),])

disp(['The standard deviation is ',num2str(SD),])

disp(['The minimum completion time is ',int2str(MN),])

disp(['The maximum completion time is ',int2str(MX),])

disp(' ')

disp('To view a detailed count, call for D.')

disp('The first column shows the various completion times;')

disp('the second column shows the numbers of trials yielding those times')

plot(t,cumsum(p))

grid

title('Fraction of Runs t Steps or Less')

ylabel('Fraction of runs')

xlabel('t = number of steps to complete run')

end
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17.1.16 Compound demand

The following pattern provides a useful model in many situations. Consider

D =
N∑
k=0

Yk (17.2)

where Y0 = 0, and the class {Yk : 1 ≤ k} is iid, independent of the counting random variable N. One natural
interpretation is to consider N to be the number of customers in a store and Yk the amount purchased by
the kth customer. Then D is the total demand of the actual customers. Hence, we call D the compound
demand.

gend.m 17.1.89
Description of Code
gend.m Uses coe�cients of the generating functions for N and Y to calculate, in the integer case,
the marginal distribution for the compound demand D and the joint distribution for {N,D}.
Code

% GEND file gend.m Marginal and joint dbn for integer compound demand

% Version of 5/21/97

% Calculates marginal distribution for compound demand D

% and joint distribution for {N,D} in the integer case

% Do not forget zero coefficients for missing powers

% in the generating functions for N, Y

disp('Do not forget zero coefficients for missing powers')

gn = input('Enter gen fn COEFFICIENTS for gN ');

gy = input('Enter gen fn COEFFICIENTS for gY ');

n = length(gn) - 1; % Highest power in gN

m = length(gy) - 1; % Highest power in gY

P = zeros(n + 1,n*m + 1); % Base for generating P

y = 1; % Initialization

P(1,1) = gn(1); % First row of P (P(N=0) in the first position)

for i = 1:n % Row by row determination of P

y = conv(y,gy); % Successive powers of gy

P(i+1,1:i*m+1) = y*gn(i+1); % Successive rows of P

end

PD = sum(P); % Probability for each possible value of D

a = find(gn); % Location of nonzero N probabilities

b = find(PD); % Location of nonzero D probabilities

P = P(a,b); % Removal of zero rows and columns

P = rot90(P); % Orientation as on the plane

N = 0:n;

N = N(a); % N values with positive probabilites

PN = gn(a); % Positive N probabilities

Y = 0:m; % All possible values of Y

Y = Y(find(gy)); % Y values with positive probabilities

PY = gy(find(gy)); % Positive Y proabilities

D = 0:n*m; % All possible values of D

PD = PD(b); % Positive D probabilities

D = D(b); % D values with positive probabilities

gD = [D; PD]'; % Display combination
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disp('Results are in N, PN, Y, PY, D, PD, P')

disp('May use jcalc or jcalcf on N, D, P')

disp('To view distribution for D, call for gD')

gendf.m 17.1.90
Description of Code
gendf.mfunction [d,pd] = gendf(gn,gy) is a function version of gend, which allows arbitrary
naming of the variables. Calculates the distribution for D, but not the joint distribution for {N,D}.
Code

function [d,pd] = gendf(gn,gy)

% GENDF [d,pd] = gendf(gN,gY) Function version of gend.m

% Calculates marginal for D in the integer case

% Version of 5/21/97

% Do not forget zero coefficients for missing powers

% in the generating functions for N, Y

n = length(gn) - 1; % Highest power in gN

m = length(gy) - 1; % Highest power in gY

P = zeros(n + 1,n*m + 1); % Base for generating P

y = 1; % Initialization

P(1,1) = gn(1); % First row of P (P(N=0) in the first position)

for i = 1:n % Row by row determination of P

y = conv(y,gy); % Successive powers of gy

P(i+1,1:i*m+1) = y*gn(i+1); % Successive rows of P

end

PD = sum(P); % Probability for each possible value of D

D = 0:n*m; % All possible values of D

b = find(PD); % Location of nonzero D probabilities

d = D(b); % D values with positive probabilities

pd = PD(b); % Positive D probabilities

mgd.m 17.1.91
Description of Code
mgd.m Uses coe�cients for the generating function for N and the distribution for simple Y to
calculate the distribution for the compound demand.

Code

% MGD file mgd.m Moment generating function for compound demand

% Version of 5/19/97

% Uses m-functions csort, mgsum

disp('Do not forget zeros coefficients for missing')

disp('powers in the generating function for N')
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disp(' ')

g = input('Enter COEFFICIENTS for gN ');

y = input('Enter VALUES for Y ');

p = input('Enter PROBABILITIES for Y ');

n = length(g); % Initialization

a = 0;

b = 1;

D = a;

PD = g(1);

for i = 2:n

[a,b] = mgsum(y,a,p,b);

D = [D a];

PD = [PD b*g(i)];

[D,PD] = csort(D,PD);

end

r = find(PD>1e-13);
D = D(r); % Values with positive probability

PD = PD(r); % Corresponding probabilities

mD = [D; PD]'; % Display details

disp('Values are in row matrix D; probabilities are in PD.')

disp('To view the distribution, call for mD.')

mgdf.m 17.1.92
Description of Code
mgdf.mfunction [d,pd] = mgdf(pn,y,py) is a function version of mgd, which allows arbitrary
naming of the variables. The input matrix pn is the coe�cient matrix for the counting random
variable generating function. Zeros for the missing powers must be included. The matrices y, py
are the actual values and probabilities of the demand random variable.

Code

function [d,pd] = mgdf(pn,y,py)

% MGDF [d,pd] = mgdf(pn,y,py) Function version of mgD

% Version of 5/19/97

% Uses m-functions mgsum and csort

% Do not forget zeros coefficients for missing

% powers in the generating function for N

n = length(pn); % Initialization

a = 0;

b = 1;

d = a;

pd = pn(1);

for i = 2:n

[a,b] = mgsum(y,a,py,b);

d = [d a];

pd = [pd b*pn(i)];

[d,pd] = csort(d,pd);

end

a = find(pd>1e-13); % Location of positive probabilities
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pd = pd(a); % Positive probabilities

d = d(a); % D values with positive probability

randbern.m 17.1.93
Description of Code
randbern.m Let S be the number of successes in a random number N of Bernoulli trials, with
probability p of success on each trial. The procedure randbern takes as inputs the probability p
of success and the distribution matrices N,PN for the counting random variable N and calculates
the joint distribution for {N,S} and the marginal distribution for S.

Code

% RANDBERN file randbern.m Random number of Bernoulli trials

% Version of 12/19/96; notation modified 5/20/97

% Joint and marginal distributions for a random number of Bernoulli trials

% N is the number of trials

% S is the number of successes

p = input('Enter the probability of success ');

N = input('Enter VALUES of N ');

PN = input('Enter PROBABILITIES for N ');

n = length(N);

m = max(N);

S = 0:m;

P = zeros(n,m+1);

for i = 1:n

P(i,1:N(i)+1) = PN(i)*ibinom(N(i),p,0:N(i));

end

PS = sum(P);

P = rot90(P);

disp('Joint distribution N, S, P, and marginal PS')

17.1.17 Simulation of Markov systems

inventory1.m 17.1.94
Description of Code
inventory1.m Calculates the transition matrix for an (m,M) inventory policy. At the end of
each period, if the stock is less than a reorder point m, stock is replenished to the level M. Demand
in each period is an integer valued random variable Y. Input consists of the parameters m, M and
the distribution for Y as a simple random variable (or a discrete approximation).

Code

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



585

% INVENTORY1 file inventory1.m Generates P for (m,M) inventory policy

% Version of 1/27/97

% Data for transition probability calculations

% for (m,M) inventory policy

M = input('Enter value M of maximum stock ');

m = input('Enter value m of reorder point ');

Y = input('Enter row vector of demand values ');

PY = input('Enter demand probabilities ');

states = 0:M;

ms = length(states);

my = length(Y);

% Calculations for determining P

[y,s] = meshgrid(Y,states);

T = max(0,M-y).*(s < m) + max(0,s-y).*(s >= m);

P = zeros(ms,ms);

for i = 1:ms

[a,b] = meshgrid(T(i,:),states);

P(i,:) = PY*(a==b)';

end

disp('Result is in matrix P')

branchp.m 17.1.95
Description of Code
branchp.m Calculates the transition matrix for a simple branching process with a speci�ed max-
imum population. Input consists of the maximum population value M and the coe�cient matrix
for the generating function for the individual propagation random variables Zi. The latter matrix
must include zero coe�cients for missing powers.

Code

% BRANCHP file branchp.m Transition P for simple branching process

% Version of 7/25/95

% Calculates transition matrix for a simple branching

% process with specified maximum population.

disp('Do not forget zero probabilities for missing values of Z')

PZ = input('Enter PROBABILITIES for individuals ');

M = input('Enter maximum allowable population ');

mz = length(PZ) - 1;

EZ = dot(0:mz,PZ);

disp(['The average individual propagation is ',num2str(EZ),])

P = zeros(M+1,M+1);

Z = zeros(M,M*mz+1);

k = 0:M*mz;

a = min(M,k);

z = 1;

P(1,1) = 1;

for i = 1:M % Operation similar to gend
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z = conv(PZ,z);

Z(i,1:i*mz+1) = z;

[t,p] = csort(a,Z(i,:));

P(i+1,:) = p;

end

disp('The transition matrix is P')

disp('To study the evolution of the process, call for branchdbn')

chainset.m 17.1.96
Description of Code
chainset.m Sets up for simulation of Markov chains. Inputs are the transition matrix P the set
of states, and an optional set of target states. The chain generating procedures listed below assume
this procedure has been run.

Code

% CHAINSET file chainset.m Setup for simulating Markov chains

% Version of 1/2/96 Revise 7/31/97 for version 4.2 and 5.1

P = input('Enter the transition matrix ');

ms = length(P(1,:));

MS = 1:ms;

states = input('Enter the states if not 1:ms ');

if isempty(states)

states = MS;

end

disp('States are')

disp([MS;states]')

PI = input('Enter the long-run probabilities ');

F = [zeros(1,ms); cumsum(P')]';

A = F(:,MS);

B = F(:,MS+1);

e = input('Enter the set of target states ');

ne = length(e);

E = zeros(1,ne);

for i = 1:ne

E(i) = MS(e(i)==states);

end

disp(' ')

disp('Call for for appropriate chain generating procedure')

mchain.m 17.1.97
Description of Code
mchain.m Assumes chainset has been run. Generates trajectory of speci�ed length, with speci�ed
initial state.

Code
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% MCHAIN file mchain.m Simulation of Markov chains

% Version of 1/2/96 Revised 7/31/97 for version 4.2 and 5.1

% Assumes the procedure chainset has been run

n = input('Enter the number n of stages ');

st = input('Enter the initial state ');

if ∼isempty(st)
s = MS(st==states);

else

s = 1;

end

T = zeros(1,n); % Trajectory in state numbers

U = rand(1,n);

for i = 1:n

T(i) = s;

s = ((A(s,:) < U(i))&(U(i) <= B(s,:)))*MS';

end

N = 0:n-1;

tr = [N;states(T)]';

n10 = min(n,11);

TR = tr(1:n10,:);

f = ones(1,n)/n;

[sn,p] = csort(T,f);

if isempty(PI)

disp(' State Frac')

disp([states; p]')

else

disp(' State Frac PI')

disp([states; p; PI]')

end

disp('To view the first part of the trajectory of states, call for TR')

arrival.m 17.1.98
Description of Code
arrival.m Assumes chainset has been run. Calculates repeatedly the arrival time to a prescribed
set of states.

Code

% ARRIVAL file arrival.m Arrival time to a set of states

% Version of 1/2/96 Revised 7/31/97 for version 4.2 and 5.1

% Calculates repeatedly the arrival

% time to a prescribed set of states.

% Assumes the procedure chainset has been run.

r = input('Enter the number of repetitions ');

disp('The target state set is:')

disp(e)
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st = input('Enter the initial state ');

if ∼isempty(st)
s1 = MS(st==states); % Initial state number

else

s1 = 1;

end

clear T % Trajectory in state numbers (reset)

S = zeros(1,r); % Arrival time for each rep (reset)

TS = zeros(1,r); % Terminal state number for each rep (reset)

for k = 1:r

R = zeros(1,ms); % Indicator for target state numbers

R(E) = ones(1,ne); % reset for target state numbers

s = s1;

T(1) = s;

i = 1;

while R(s) ∼= 1 % While s is not a target state number

u = rand(1,1);

s = ((A(s,:) < u)&(u <= B(s,:)))*MS';

i = i+1;

T(i) = s;

end

S(k) = i-1; % i is the number of stages; i-1 is time

TS(k) = T(i);

end

[ts,ft] = csort(TS,ones(1,r)); % ts = terminal state numbers ft = frequencies

fts = ft/r; % Relative frequency of each ts

[a,at] = csort(TS,S); % at = arrival time for each ts

w = at./ft; % Average arrival time for each ts

RES = [states(ts); fts; w]';

disp(' ')

if r == 1

disp(['The arrival time is ',int2str(i-1),])

disp(['The state reached is ',num2str(states(ts)),])

N = 0:i-1;

TR = [N;states(T)]';

disp('To view the trajectory of states, call for TR')

else

disp(['The result of ',int2str(r),' repetitions is:'])

disp('Term state Rel Freq Av time')

disp(RES)

disp(' ')

[t,f] = csort(S,ones(1,r)); % t = arrival times f = frequencies

p = f/r; % Relative frequency of each t

dbn = [t; p]';

AV = dot(t,p);

SD = sqrt(dot(t.^2,p) - AV^2);

MN = min(t);

MX = max(t);

disp(['The average arrival time is ',num2str(AV),])

disp(['The standard deviation is ',num2str(SD),])

disp(['The minimum arrival time is ',int2str(MN),])
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disp(['The maximum arrival time is ',int2str(MX),])

disp('To view the distribution of arrival times, call for dbn')

disp('To plot the arrival time distribution, call for plotdbn')

end

recurrence.m 17.1.99
Description of Code
recurrence.m Assumes chainset has been run. Calculates repeatedly the recurrence time to a
prescribed set of states, if initial state is in the set; otherwise calculates the arrival time.

Code

% RECURRENCE file recurrence.m Recurrence time to a set of states

% Version of 1/2/96 Revised 7/31/97 for version 4.2 and 5.1

% Calculates repeatedly the recurrence time

% to a prescribed set of states, if initial

% state is in the set; otherwise arrival time.

% Assumes the procedure chainset has been run.

r = input('Enter the number of repititions ');

disp('The target state set is:')

disp(e)

st = input('Enter the initial state ');

if ∼isempty(st)
s1 = MS(st==states); % Initial state number

else

s1 = 1;

end

clear T % Trajectory in state numbers (reset)

S = zeros(1,r); % Recurrence time for each rep (reset)

TS = zeros(1,r); % Terminal state number for each rep (reset)

for k = 1:r

R = zeros(1,ms); % Indicator for target state numbers

R(E) = ones(1,ne); % reset for target state numbers

s = s1;

T(1) = s;

i = 1;

if R(s) == 1

u = rand(1,1);

s = ((A(s,:) < u)&(u <= B(s,:)))*MS';

i = i+1;

T(i) = s;

end

while R(s) ∼= 1 % While s is not a target state number

u = rand(1,1);

s = ((A(s,:) < u)&(u <= B(s,:)))*MS';

i = i+1;

T(i) = s;
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end

S(k) = i-1; % i is the number of stages; i-1 is time

TS(k) = T(i);

end

[ts,ft] = csort(TS,ones(1,r)); % ts = terminal state numbers ft = frequencies

fts = ft/r; % Relative frequency of each ts

[a,tt] = csort(TS,S); % tt = total time for each ts

w = tt./ft; % Average time for each ts

RES = [states(ts); fts; w]';

disp(' ')

if r == 1

disp(['The recurrence time is ',int2str(i-1),])

disp(['The state reached is ',num2str(states(ts)),])

N = 0:i-1;

TR = [N;states(T)]';

disp('To view the trajectory of state numbers, call for TR')

else

disp(['The result of ',int2str(r),' repetitions is:'])

disp('Term state Rel Freq Av time')

disp(RES)

disp(' ')

[t,f] = csort(S,ones(1,r)); % t = recurrence times f = frequencies

p = f/r; % Relative frequency of each t

dbn = [t; p]';

AV = dot(t,p);

SD = sqrt(dot(t.^2,p) - AV^2);

MN = min(t);

MX = max(t);

disp(['The average recurrence time is ',num2str(AV),])

disp(['The standard deviation is ',num2str(SD),])

disp(['The minimum recurrence time is ',int2str(MN),])

disp(['The maximum recurrence time is ',int2str(MX),])

disp('To view the distribution of recurrence times, call for dbn')

disp('To plot the recurrence time distribution, call for plotdbn')

end

kvis.m 17.1.100
Description of Code
kvis.m Assumes chainset has been run. Calculates repeatedly the time to complete visits to a
speci�ed k of the states in a prescribed set.

Code

% KVIS file kvis.m Time to complete k visits to a set of states

% Version of 1/2/96 Revised 7/31/97 for version 4.2 and 5.1

% Calculates repeatedly the time to complete

% visits to k of the states in a prescribed set.

% Default is visit to all the target states.
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% Assumes the procedure chainset has been run.

r = input('Enter the number of repetitions ');

disp('The target state set is:')

disp(e)

ks = input('Enter the number of target states to visit ');

if isempty(ks)

ks = ne;

end

if ks > ne

ks = ne;

end

st = input('Enter the initial state ');

if ∼isempty(st)
s1 = MS(st==states); % Initial state number

else

s1 = 1;

end

disp(' ')

clear T % Trajectory in state numbers (reset)

R0 = zeros(1,ms); % Indicator for target state numbers

R0(E) = ones(1,ne); % reset

S = zeros(1,r); % Terminal transitions for each rep (reset)

for k = 1:r

R = R0;

s = s1;

if R(s) == 1

R(s) = 0;

end

i = 1;

T(1) = s;

while sum(R) > ne - ks

u = rand(1,1);

s = ((A(s,:) < u)&(u <= B(s,:)))*MS';

if R(s) == 1

R(s) = 0;

end

i = i+1;

T(i) = s;

end

S(k) = i-1;

end

if r == 1

disp(['The time for completion is ',int2str(i-1),])

N = 0:i-1;

TR = [N;states(T)]';

disp('To view the trajectory of states, call for TR')

else

[t,f] = csort(S,ones(1,r));

p = f/r;

D = [t;f]';

AV = dot(t,p);
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SD = sqrt(dot(t.^2,p) - AV^2);

MN = min(t);

MX = max(t);

disp(['The average completion time is ',num2str(AV),])

disp(['The standard deviation is ',num2str(SD),])

disp(['The minimum completion time is ',int2str(MN),])

disp(['The maximum completion time is ',int2str(MX),])

disp(' ')

disp('To view a detailed count, call for D.')

disp('The first column shows the various completion times;')

disp('the second column shows the numbers of trials yielding those times')

end

plotdbn 17.1.101
Description of Code
plotdbn Used after m-procedures arrival or recurrence to plot arrival or recurrence time distribu-
tion.

Code

% PLOTDBN file plotdbn.m

% Version of 1/23/98

% Plot arrival or recurrence time dbn

% Use after procedures arrival or recurrence

% to plot arrival or recurrence time distribution

plot(t,p,'-',t,p,'+')

grid

title('Time Distribution')

xlabel('Time in number of transitions')

ylabel('Relative frequency')

17.2 Appendix B to Applied Probability: some mathematical aids2

17.2.1 Series

1. : Geometric series From the expression (1− r)
(
1 + r + r2 + ...+ rn

)
= 1− rn+1, we obtain

n∑
k=0

rk =
1− rn+1

1− r
for r 6= 1 (17.3)

For |r| < 1, these sums converge to the geometric series
∑∞
k=0 r

k = 1
1−r

Di�erentiation yields the following two useful series:
∞∑
k=1

krk−1 =
1

(1− r)2 for |r| < 1 and

∞∑
k=2

k (k − 1) rk−2 =
2

(1− r)3 for |r| < 1 (17.4)

2This content is available online at <http://cnx.org/content/m23990/1.6/>.
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For the �nite sum, di�erentiation and algebraic manipulation yields

n∑
k=0

krk−1 =
1− rn [1 + n (1− r)]

(1− r)2 which converges to
1

(1− r)2 for |r| < 1 (17.5)

2. : Exponential series. ex =
∑∞
k=0

xk

k! and e−x =
∑∞
k=0 (−1)k x

k

k! for any x
Simple algebraic manipulation yields the following equalities useful for the Poisson distribution:

∞∑
k=n

k
xk

k!
= x

∞∑
k=n−1

xk

k!
and

∞∑
k=n

k (k − 1)
xk

k!
= x2

∞∑
k=n−2

xk

k!
(17.6)

3. : Sums of powers of integers
∑n
i=1 i = n(n+1)

2

∑n
i=1 i

2 = n(n+1)(2n+1)
6

17.2.2 Some useful integrals

1. : The gamma functionΓ (r) =
∫∞

0
tr−1e−t dt for r > 0

Integration by parts shows Γ (r) = (r − 1) Γ (r − 1) for r > 1
By induction Γ (r) = (r − 1) (r − 2) · · · (r − k) Γ (r − k) for r > k
For a positive integer n, Γ (n) = (n− 1)! with Γ (1) = 0! = 1

2. : By a change of variable in the gamma integral, we obtain∫ ∞
0

tre−λt dt =
Γ (r + 1)
λr+1

r > − 1, λ > 0 (17.7)

3. : A well known inde�nite integral gives∫ ∞
a

te−λt dt =
1
λ2

e−λa (1 + λa) and

∫ ∞
a

t2e−λat dt =
1
λ3

e−λa
[
1 + λa+ (λa)2

/2
]

(17.8)

For any positive integer m,∫ ∞
a

tme−λt dt =
m!
λm+1

e−λa

[
1 + λa+

(λa)2

2!
+ · · ·+ (λa)m

m!

]
(17.9)

4. : The following integrals are important for the Beta distribution.∫ 1

0

ur(1− u)s du =
Γ (r + 1) Γ (s+ 1)

Γ (r + s+ 2)
r > − 1, s > − 1 (17.10)

For nonnegative integers m,n
∫ 1

0
um(1− u)n du = m!n!

(m+n+1)!

17.2.3 Some basic counting problems

We consider three basic counting problems, which are used repeatedly as components of more complex
problems. The �rst two, arrangements and occupancy are equivalent. The third is a basic matching
problem.

I. Arrangements of r objects selected from among n distinguishable objects.

a. The order is signi�cant.
b. The order is irrelevant.
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For each of these, we consider two additional alternative conditions.

a. No element may be selected more than once.
b. Repitition is allowed.

II. Occupancy of n distinct cells by r objects. These objects are

a. Distinguishable.
b. Indistinguishable.

The occupancy may be

a. Exclusive.
b. Nonexclusive (i.e., more than one object per cell)

The results in the four cases may be summarized as follows:

a. 1. Ordered arrangements, without repetition (permutations). Distinguishable objects, exclu-
sive occupancy.

P (n, r) =
n!

(n− r)!
(17.11)

2. Ordered arrangements, with repitition allowed. Distinguishable objects, nonexclusive occu-
pancy.

U (n, r) = nr (17.12)

b. 1. Arrangements without repetition, order irrelevant (combinations). Indistinguishable ob-
jects, exclusive occupancy.

C (n, r) =
n!

r! (n− r)!
=
P (n, r)
r!

(17.13)

2. Unordered arrangements, with repetition. Indistinguishable objects, nonexclusive occupancy.

S (n, r) = C (n+ r − 1, r) (17.14)

III. Matchingn distinguishable elements to a �xed order. Let M (n, k) be the number of permutations
which give k matches.

Example 17.1: n = 5
Natural order 1 2 3 4 5

Permutation 3 2 5 4 1 (Two matches� positions 2, 4)

We reduce the problem to determining m (n, 0), as follows:

1. Select k places for matches in C (n, k) ways.
2. Order the n− k remaining elements so that no matches in the other n− k places.

M (n, k) = C (n, k)M (n− k, 0) (17.15)

Some algebraic trickery shows that M (n, 0) is the integer nearest n!/e. These are easily calculated by
the MATLAB command M = round(gamma(n+1)/exp(1)) For example

� M = round(gamma([3:10]+1)/exp(1));

� disp([3:6;M(1:4);7:10;M(5:8)]')

3 2 7 1854

4 9 8 14833

5 44 9 133496

6 265 10 1334961
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17.2.4 Extended binomial coe�cients and the binomial series

: The ordinary binomial coe�cient is C (n, k) = n!
k!(n−k)! for integers n > 0, 0 ≤ k ≤ n

For any real x, any integer k, we extend the de�nition by

C (x, 0) = 1, C (x, k) = 0 for k < 0, and C (n, k) = 0 for a positive integer k > n (17.16)

and

C (x, k) =
x (x− 1) (x− 2) · · · (x− k + 1)

k!
otherwise (17.17)

Then Pascal's relation holds: C (x, k) = C (x− 1, k − 1) + C (x− 1, k)
The power series expansion about t = 0 shows

(1 + t)x = 1 + C (x, 1) t+ C (x, 2) t2 + · · · ∀ x, − 1 < t < 1 (17.18)

For x = n, a positive integer, the series becomes a polynomial of degree n.

17.2.5 Cauchy's equation

1. Let f be a real-valued function de�ned on (0,∞), such that

a. f (t+ u) = f (t) + f (u) for t, u > 0, and
b. There is an open interval I on which f is bounded above (or is bounded below).

Then f (t) = f (1) t ∀ t > 0
2. Let f be a real-valued function de�ned on (0,∞) such that

a. f (t+ u) = f (t) f (u) ∀ t, u > 0, and
b. There is an interval on which f is bounded above.

Then, either f (t) = 0 for t > 0 , or there is a constant a such that f (t) = eat for t > 0

[For a proof, see Billingsley, Probability and Measure, second edition, appendix A20]

17.2.6 Countable and uncountable sets

A set (or class) is countable i� either it is �nite or its members can be put into a one-to-one correspondence
with the natural numbers.

Examples

• The set of odd integers is countable.
• The �nite set {n : 1 ≤ n ≤ 1000} is countable.
• The set of all rational numbers is countable. (This is established by an argument known as diagonal-

ization).
• The set of pairs of elements from two countable sets is countable.
• The union of a countable class of countable sets is countable.

A set is uncountable i� it is neither �nite nor can be put into a one-to-one correspondence with the natural
numbers.

Examples

• The class of positive real numbers is uncountable. A well known operation shows that the assumption
of countability leads to a contradiction.

• The set of real numbers in any �nite interval is uncountable, since these can be put into a one-to-one
correspondence of the class of all positive reals.
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17.3 Appendix C: Data on some common distributions3

17.3.1 Discrete distributions

1. Indicator functions X = IE P (X = 1) = P (E) = p P (X = 0) = q = 1− p

E [X] = p Var [X] = pq MX (s) = q + pes gX (s) = q + ps (17.19)

2. Simple random variable X =
∑n
i=1 tiIAi (a primitive form) P (Ai) = pi

E [X] =
n∑
i=1

tipi Var [X] =
n∑
i=1

t2i piqi − 2
∑
i<j

titjpipj MX (s) =
n∑
i=1

pie
sti (17.20)

3. Binomial(n, p)X =
∑n
i=1 IEi with {IEi : 1 ≤ i ≤ n} iid P (Ei) = p

P (X = k) = C (n, k) pkqn−k (17.21)

E [X] = np Var [X] = npq MX (s) = (q + pes)n gX (s) = (q + ps)n (17.22)

MATLAB: P (X = k) = ibinom (n, p, k) P (X ≥ k) = cbinom (n, p, k)
4. Geometric(p)P (X = k) = pqk ∀ k ≥ 0

E [X] = q/p Var [X] = q/p2 MX (s) =
p

1− qes
gX (s) =

p

1− qs
(17.23)

If Y − 1 ∼ geometric (p), so that P (Y = k) = pqk−1 ∀ k ≥ 1, then

E [Y ] = 1/p Var [X] = q/p2 MY (s) =
pes

1− qes
gY (s) =

ps

1− qs
(17.24)

5. Negative binomial(m, p). X is the number of failures before the mth success. P (X = k) =
C (m+ k − 1, m− 1) pmqk ∀ k ≥ 0.

E [X] = mq/p Var [X] = mq/p2 MX (s) =
(

p

1− qes

)m
gX (s) =

(
p

1− qs

)m
(17.25)

For Ym = Xm + m, the number of the trial on which mth success occurs. P (Y = k) =
C (k − 1, m− 1) pmqk−m ∀ k ≥ m.

E [Y ] = m/p Var [Y ] = mq/p2 MY (s) =
(

pes

1− qes

)m
gY (s) =

(
ps

1− qs

)m
(17.26)

MATLAB: P (Y = k) = nbinom (m, p, k)
6. Poisson(µ). P (X = k) = e−µ µk

k! ∀ k ≥ 0

E [X] = µ Var [X] = µ MX (s) = eµ(es−1) gX (s) = eµ(s−1) (17.27)

MATLAB: P (X = k) = ipoisson (m, k) P (X ≥ k) = cpoisson (m, k)

3This content is available online at <http://cnx.org/content/m23992/1.6/>.
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17.3.2 Absolutely continuous distributions

1. Uniform(a, b)fX (t) = 1
b−a a < t < b (zero elsewhere)

E [X] =
b+ a

2
Var [X] =

(b− a)2

12
MX (s) =

esb − esa

s (b− a)
(17.28)

2. Symmetric triangular (−a, a) fX (t) = {
(a+ t) /a2 −a ≤ t < 0

(a− t) /a2 0 ≤ t ≤ a

E [X] = 0 Var [X] =
a2

6
MX (s) =

eas + e−as − 2
a2s2

=
eas − 1
as

· 1− e−as

as
(17.29)

3. Exponential (λ) fX (t) = λ e−λt t ≥ 0

E [X] =
1
λ

Var [X] =
1
λ2

MX (s) =
λ

λ− s
(17.30)

4. Gamma(α, λ)fX (t) = λαtα−1e−λt

Γ(α) t ≥ 0

E [X] =
α

λ
Var [X] =

α

λ2
MX (s) =

(
λ

λ− s

)α
(17.31)

MATLAB: P (X ≤ t) = gammadbn (α, λ, t)
5. NormalN

(
µ, σ2

)
fX (t) = 1

σ
√

2π
exp

(
− 1

2

(
t−µ
σ

)2)
E [X] = µ Var [X] σ2 MX (s) = exp

(
σ2s2

2
+ µs

)
(17.32)

MATLAB: P (X ≤ t) = gaussian
(
µ, σ2, t

)
6. Beta(r, s)

fX (t) =
Γ (r + s)
Γ (r) Γ (s)

tr−1(1− t)s−1 0 < t < 1, r > 0, s > 0 (17.33)

E [X] =
r

r + s
Var [X] =

rs

(r + s)2 (r + s+ 1)
(17.34)

MATLAB: fX (t) = beta (r, s, t) P (X ≤ t) = betadbn (r, s, t)
7. Weibull(α, λ, ν)

FX (t) = 1− e−λ(t−ν)α , α > 0, λ > 0, ν ≥ 0, t ≥ ν (17.35)

E [X] =
1

λ1/α
Γ (1 + 1/α) + ν Var [X] =

1
λ2/α

[
Γ (1 + 2/λ)− Γ2 (1 + 1/λ)

]
(17.36)

MATLAB: (ν = 0 only)

fX (t) = weibull (a, l, t) P (X ≤ t) = weibulld (a, l, t) (17.37)

17.3.3 Relationship between gamma and Poisson distributions

• If X ∼ gamma (n, λ), then P (X ≤ t) = P (Y ≥ n) where Y ∼ Poisson (λt).
• If Y ∼ Poisson (λt), then P (Y ≥ n) = P (X ≤ t) where X ∼ gamma (n, λ).
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17.4 Appendix D to Applied Probability: The standard normal

distribution4

Φ (t) =
1√
2π

∫ t

−∞
e−u

2/2 dt Φ (−t) = 1− Φ (t) (17.38)

t 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7643 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 9.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

continued on next page

4This content is available online at <http://cnx.org/content/m23995/1.6/>.
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1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

Table 17.1

17.5 Appendix E to Applied Probability: Properties of mathematical

expectation5

E [g (X)] =
∫
g (X) dP (17.39)

We suppose, without repeated assertion, that the random variables and Borel functions of random variables
or random vectors are integrable. Use of an expression such as IM (X) involves the tacit assumption that M
is a Borel set on the codomain of X.

(E1) : E [aIA] = aP (A), any constant a, any event A
(E1a) : E [IM (X)] = P (X ∈M) and E [IM (X) IN (Y )] = P (X ∈M, Y ∈ N) for any Borel sets M, N

(Extends to any �nite product of such indicator functions of random vectors)
(E2) : Linearity. For any constants a, b, E [aX + bY ] = aE [X] + bE [Y ] (Extends to any �nite linear

combination)
(E3) : Positivity; monotonicity.

a. X ≥ 0 a.s. implies E [X] ≥ 0, with equality i� X = 0 a.s.
b. X ≥ Y a.s. implies E [X] ≥ E [Y ], with equality i� X = Y a.s.

(E4) : Fundamental lemma. If X ≥ 0 is bounded, and {Xn : 1 ≤ n} is a.s. nonnegative, nondecreasing,
with limnXn (ω) ≥ X (ω) for a.e. ω, then limnE [Xn] ≥ E [X]

5This content is available online at <http://cnx.org/content/m23998/1.7/>.

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



600 CHAPTER 17. APPENDICES

(E4a): Monotone convergence. If for all n, 0 ≤ Xn ≤ Xn+1 a.s . and Xn → X a.s . ,
then E [Xn]→ E [X] (The theorem also holds if E [X] =∞)

*****
(E5) : Uniqueness. ∗ is to be read as one of the symbols ≤, =, or ≥

a. E [IM (X) g (X)] ∗ E [IM (X)h (X)] for all M i� g (X) ∗ h (X) a.s.
b. E [IM (X) IN (Z) g (X, Z)] = E [IM (X) IN (Z)h (X, Z)] for allM,N i� g (X, Z) = h (X, Z) a.s.

(E6) : Fatou's lemma. If Xn ≥ 0 a.s. , for all n, then E [lim infXn] ≤ lim infE [Xn]
(E7) : Dominated convergence. If real or complex Xn → X a.s. , |Xn| ≤ Y a.s. for all n, and Y is

integrable, then limnE [Xn] = E [X]
(E8) : Countable additivity and countable sums.

a. If X is integrable over E, and E =
∞∨
i=1

Ei (disjoint union), then E [IEX] =
∑∞
i=1E [IEiX]

b. If
∑∞
n=1E [|Xn|] <∞, then

∑∞
n=1 |Xn| <∞a.s. and E [

∑∞
n=1 Xn] =

∑∞
n=1 E [Xn]

(E9) : Some integrability conditions

a. X is integrable i� both X+ and X- are integrable i� |X| is integrable.
b. X is integrable i� E

[
I{|X|>a}|X|

]
→ 0 as a→∞

c. If X is integrable, then X is a.s. �nite
d. If E [X] exists and P (A) = 0, then E [IAX] = 0

(E10): Triangle inequality. For integrable X, real or complex, |E [X] | ≤ E [|X|]
(E11): Mean-value theorem. If a ≤ X ≤ b a.s. on A, then aP (A) ≤ E [IAX] ≤ bP (A)
(E12): For nonnegative, Borel g, E [g (X)] ≥ aP (g (X) ≥ a)
(E13): Markov's inequality. If g ≥ 0 and nondecreasing for t ≥ 0 and a ≥ 0, then

g (a)P (|X| ≥ a) ≤ E [g (|X|)] (17.40)

(E14): Jensen's inequality. If g is convex on an interval which contains the range of random variable X,
then g (E [X]) ≤ E [g (X)]

(E15): Schwarz' inequality. For X, Y real or complex, |E [XY ] |2 ≤ E
[
|X|2

]
E
[
|Y |2

]
, with equality i�

there is a constant c such that X = cY a.s.
(E16): Hölder's inequality. For 1 ≤ p, q, with 1

p + 1
q = 1, and X,Y real or complex,

E [|XY |] ≤ E [|X|p]1/pE [|Y |q]1/q (17.41)

(E17): Minkowski's inequality. For 1 < p and X,Y real or complex,

E [|X + Y |p]1/p ≤ E [|X|p]1/p + E [|Y |p]1/p (17.42)

(E18): Independence and expectation. The following conditions are equivalent.

a. The pair {X, Y } is independent
b. E [IM (X) IN (Y )] = E [IM (X)] E [IN (Y )] for all Borel M, N
c. E [g (X)h (Y )] = E [g (X)] E [h (Y )] for all Borel g, h such that g (X) , h (Y ) are integrable.

(E19): Special case of the Radon-Nikodym theorem If g (Y ) is integrable and X is a random vector,
then there exists a real-valued Borel function e ( · ), de�ned on the range of X, unique a.s. [PX ], such
that E [IM (X) g (Y )] = E [IM (X) e (X)] for all Borel sets M on the codomain of X.

(E20): Some special forms of expectation
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a. Suppose F is nondecreasing, right-continuous on [0, ∞), with F (0−) = 0. Let F ∗ (t) = F (t− 0).
Consider X ≥ 0 with E [F (X)] <∞. Then,

(1) E [F (X)] =
∫ ∞

0

P (X ≥ t) F (dt) and (2) E [F ∗ (X)] =
∫ ∞

0

P (X > t) F (dt) (17.43)

b. If X is integrable, then E [X] =
∫∞
−∞ [u (t)− FX (t)] dt

c. If X, Y are integrable, then E [X − Y ] =
∫∞
−∞ [FY (t)− FX (t)] dt

d. If X ≥ 0 is integrable, then

∞∑
n=0

P (X ≥ n+ 1) ≤ E [X] ≤
∞∑
n=0

P (X ≥ n) ≤ N
∞∑
k=0

P (X ≥ kN) , for all N ≥ 1 (17.44)

e. If integrable X ≥ 0 is integer-valued, then E [X] =
∑∞
n=1 P (X ≥ n) =

∑∞
n=0 P (X > n)E

[
X2
]

=∑∞
n=1 (2n− 1)P (X ≥ n) =

∑∞
n=0 (2n+ 1)P (X > n)

f. If Q is the quantile function for FX, then E [g (X)] =
∫ 1

0
g [Q (u)] du

17.6 Appendix F to Applied Probability: Properties of conditional

expectation, given a random vector6

We suppose, without repeated assertion, that the random variables and functions of random vectors are
integrable, as needed.

(CE1): De�ning condition. e (X) = E [g (Y ) |X] a.s. i� E [IM (X) g (Y )] = E [IM (X) e (X)] for each
Borel set M on the codomain of X.

(CE1a): If P (X ∈M) > 0, then E [IM (X) e (X)] = E [g (Y ) |X ∈M ]P (X ∈M)
(CE1b): Law of total probability. E [g (Y )] = E{E [g (Y ) |X]}
(CE2): Linearity. For any constants a, b

E [ag (Y ) + bh (Z) |X] = aE [g (Y ) |X] + bE [h (Z) |X] a.s.
(Extends to any �nite linear combination)

(CE3): Positivity; monotonicity.

a. g (Y ) ≥ 0 a.s. implies E [g (Y ) |X] ≥ 0 a.s.
b. g (Y ) ≥ h (Z) a.s. implies E [g (Y ) |X] ≥ E [h (Z) |X] a.s.

(CE4): Monotone convergence. Yn → Y a.s. monotonically implies E [Yn|X]→ E [Y |X] a.s.
(CE5): Independence. {X,Y } is an independent pair

• i� E [g (Y ) |X] = E [g (Y )] a.s. for all Borel functions g
• i� E [IN (Y ) |X] = E [IN (Y )] a.s. for all Borel sets N on the codomain of Y

(CE6): e (X) = E [g (Y ) |X] a.s. i� E [h (X) g (Y )] = E [h (X) e (X)] a.s. for any Borel function h
(CE7): E [h (X) |X] = h (X) a.s. for any Borel function h
(CE8): E [h (X) g (Y ) |X] = h (X)E [g (Y ) |X] a.s. for any Borel function h
(CE9): If X = h (W ), then E{E [g (Y ) |X] |W} = E{E [g (Y ) |W ] |X} = E [g (Y ) |X], a.s.
(CE9a): E{E [g (Y ) |X] |X,Z} = E{E [g (Y ) |X,Z] |X} = E [g (Y ) |X] a.s.
(CE9b): If X = h (W ) and W = k (X), with h, k Borel functions, then E [g (Y ) |X] = E [g (Y ) |W ] a.s.
(CE10): If g is a Borel function such that E [g (t, Y )] is �nite for all t on the range of X and E [g (X,Y )]

is �nite, then

a. E [g (X, Y ) |X = t] = E [g (t, Y ) |X = t] a.s. [PX ]

6This content is available online at <http://cnx.org/content/m24001/1.7/>.
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b. If {X, Y } is independent, then E [g (X, Y ) |X = t] = E [g (t, Y )] a.s. [PX ]

(CE11): Suppose {X (t) : t ∈ T} is a real-valued, measurable random process whose parameter set T is a
Borel subset of the real line and S is a random variable whose range is a subset of T, so that X (S) is
a random variable.
If E [X (t)] is �nite for all t in T and E [X (S)] is �nite, then

a. E [X (S) |S = t] = E [X (t) |S = t] a.s. [PS ]
b. If, in addition, {S, XT } is independent, then E [X (S) |S = t] = E [X (t)] a.s. [PS ]

(CE12): Countable additivity and countable sums.

a. If Y is integrable on A and A =
∞∨
n=1

An,

then E [IAY |X] =
∑∞
n=1E [IAnY |X] a.s.

b. If
∑∞
n=1E [|Yn|] <∞ , then E [

∑∞
n=1 Yn |X] =

∑∞
n=1E [Yn|X] a.s.

(CE13): Triangle inequality. |E [g (Y ) |X] | ≤ E [|g (Y ) | |X] a.s.
(CE14): Jensen's inequality. If g is a convex function on an interval I which contains the range of a real

random variable Y, then g{E [Y |X]} ≤ E [g (Y ) |X] a.s.
(CE15): Suppose E [|Y |p] < ∞ and E [|Z|p] < ∞ for 1 ≤ p < ∞. Then

E{|E [Y |X]− E [Z|X] |p} ≤ E [|Y − Z|p] <∞

17.7 Appendix G to Applied Probability: Properties of conditional

independence, given a random vector7

De�nition. The pair {X, Y } is conditionally independent, givenZ, denoted {X, Y } ci |Z i�

E [IM (X) IN (Y ) |Z] = E [IM (X) |Z]E [IN (Y ) |Z] a.s. for all Borel setsM, N (17.45)

An arbitrary class {Xt : t ∈ T} of random vectors is conditionally independent, give Z, i� such a product
rule holds for each �nite subclass or two or more members of the class.

Remark. The expression �for all Borel sets M, N ,� here and elsewhere, implies the sets are on the
appropriate codomains. Also, the expressions below �for all Borel functions g,� etc., imply that the functions
are real-valued, such that the indicated expectations are �nite.

The following are equivalent. Each is necessary and su�cient that {X, Y } ci |Z.

(CI1) : E [IM (X) IN (Y ) |Z] = E [IM (X) |Z]E [IN (Y ) |Z] a.s. for all Borel setsM, N
(CI2) : E [IM (X) |Z, Y ] = E [IM (X) |Z] a.s. for all Borel setsM
(CI3) : E [IM (X) IQ (Z) |Z, Y ] = E [IM (X) IQ (Z) |Z] a.s. for all Borel setsM, Q
(CI4) : E [IM (X) IQ (Z) |Y ] = E{E [IM (X) IQ (Z) |Z] |Y } a.s. for all Borel setsM, Q

****
(CI5) : E [g (X, Z)h (Y, Z) |Z] = E [g (X, Z) |Z]E [h (Y, Z) |Z] a.s. for all Borel functions g, h
(CI6) : E [g (X, Z) |Z, Y ] = E [g (X, Z) |Z] a.s. for all Borel functions g
(CI7) : For any Borel function g, there exists a Borel function eg such that

E [g (X, Z) |Z, Y ] = eg (Z) a.s. (17.46)

(CI8) : E [g (X, Z) |Y ] = E{E [g (X, Z) |Z] |Y } a.s. for all Borel functions g

****

7This content is available online at <http://cnx.org/content/m24003/1.7/>.
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(CI9) : {U, V } ci |Z, where U = g (X, Z) and V = h (Y, Z), for any Borel functions g, h.

Additional properties of conditional independence

(CI10): {X, Y } ci |Z implies {X, Y } ci | (Z, U), {X, Y } ci | (Z, V ), and {X, Y } ci | (Z, U, V ), where U =
h (X) and V = k (Y ), with h, k Borel.

(CI11): {X, Z} ci |Y and {X, W} ci | (Y, Z) i� {X, (Z, W )} ci |Y .
(CI12): {X, Z} ci |Y and {(X, Y ) , W} ci |Z implies {X, (Z, W )} ci |Y .
(CI13): {X, Y } is independent and {X, Z} ci |Y i� {X, (Y, Z)} is independent.
(CI14): {X, Y } ci |Z implies E [g (X, Y ) |Y = u, Z = v] = E [g (X, u) |Z = v] a.s. [PY Z ]
(CI15): {X, Y } ci |Z implies

a. E [g (X, Z)h (Y, Z)] = E{E [g (X, Z) |Z]E [h (Y, Z) |Z]} = E [e1 (Z) e2 (Z)]
b. E [g (Y ) |X ∈M ]P (X ∈M) = E{E [IM (X) |Z]E [g (Y ) |Z]}

(CI16): {(X, Y ) , Z} ci |W i� E [IM (X) IN (Y ) IQ (Z) |W ] = E [IM (X) IN (Y ) |W ]E [IQ (Z) |W ] a.s.
for all Borel sets M, N, Q

17.8 Matlab �les for "Problems" in "Applied Probability"8

17.8.1 npr02_04

%~file~npr02_04.m

%~Data~for~problem~P2-4

pm~=~[0.0168~~0.0392~~0.0672~~0.1568~~0.0072~~0.0168~~0.0288~~0.0672~...

~~~~~~0.0252~~0.0588~~0.1008~~0.2352~~0.0108~~0.0252~~0.0432~~0.1008];

disp('Minterm~probabilities~are~in~pm.~~Use~mintable(4)')

17.8.2 npr02_05

%~file~npr02_05.m

%~Data~for~problem~P2-5

pm~=~[0.0216~~0.0144~~0.0504~~0.0336~~0.0324~~0.0216~~0.0756~~0.0504~~0.0216~...

~~~~~~0.0144~~0.0504~~0.0336~~0.0324~~0.0216~~0.0756~~0.0504~~0.0144~~0.0096~...

~~~~~~0.0336~~0.0224~~0.0216~~0.0144~~0.0504~~0.0336~~0.0144~~0.0096~~0.0336~...

~~~~~~0.0224~~0.0216~~0.0144~~0.0504~~0.0336];

disp('Minterm~probabilities~are~in~pm.~~Use~mintable(5)')

17.8.3 npr02_06

%~file~npr02_06.m

%~Data~for~problem~P2-6

minvec3

DV~=~[A|Ac;~A|(Bc&C);~A&C;~Ac&B;~Ac&Cc;~B&Cc];

DP~=~[1~~~~~~0.65~~~~~0.20~0.25~~0.25~~~0.30];

TV~=~[((A&Cc)|(Ac&C))&Bc;~((A&Bc)|Ac)&Cc;~Ac&(B|Cc)];

disp('Call~for~mincalc')

8This content is available online at <http://cnx.org/content/m24179/1.4/>.
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17.8.4 npr02_07

%~file~npr02_07.m

%~Data~for~problem~P2-7

minvec3

DV~=~[A|Ac;~((A&Bc)|(Ac&B))&C;~A&B;~Ac&Cc;~~A;~~C;~A&Bc&Cc];

DP~=~[~1~~~~~~~~0.4~~~~~~~~~~~~0.2~~~0.3~~~0.6~0.5~~~0.1];

TV~=~[(Ac&Cc)|(A&C);~((A&Bc)|Ac)&Cc;~Ac&(B|Cc)];

disp('Call~for~mincalc')

17.8.5 npr02_08

%~file~npr02_08.m

%~Data~for~problem~P2-8

minvec3

DV~=~[A|Ac;~A;~~C;~~A&C;~Ac&B;~Ac&Bc&Cc];

DP~=~[~1~~~0.6~0.4~~0.3~~0.2~~~~~0.1];

TV~=~[(A|B)&Cc;~(A&Cc)|(Ac&C);~(A&Cc)|(Ac&B)];

disp('Call~for~mincalc')

17.8.6 npr02_09

%~file~npr02_09.m

%~Data~for~problem~P2-9

minvec3

DV~=~[A|Ac;~~A;~A&B;~A&C;~A&B&Cc];

DP~=~[~1~~~~0.5~0.3~~0.3~~~0.1];

TV~=~[A&(∼(B&Cc));~(A&B)|(A&C)|(B&C)];
disp('Call~for~mincalc')

~

%~Modification~for~part~2

%~DV~=~[DV;~Ac&Bc&Cc;~Ac&B&C];

%~DP~=~[DP~0.1~0.05];

17.8.7 npr02_10

%~file~npr02_10.m

%~Data~for~problem~P2-10

minvec4

DV~=~[A|Ac;~~A;~~Ac&Bc;~A&Cc;~A&C&Dc];

DP~=~[1~~~~~0.6~~0.2~~~~0.4~~~~0.1];

TV~=~[(Ac&B)|(A&(Cc|D))];

disp('Call~for~mincalc')
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17.8.8 npr02_11

%~file~npr02_11.m

%~Data~for~problem~P2-11

%~A~=~male;~~B~=~on~campus;~~C~=~active~in~sports

minvec3

DV~=~[A|Ac;~~A;~~~B;~~A|C;~B&Cc;~A&B&C;~A&Bc;~A&Cc];

DP~=~[~1~~~~0.52~0.85~0.78~0.30~~0.32~~~0.08~0.17];

TV~=~[A&B;~A&B&Cc;~Ac&C];

disp('Call~for~mincalc')

17.8.9 npr02_12

%~file~npr02_12.m

%~Data~for~problem~P2-12

%~A~=~male;~~B~=~party~member;~C~=~voted~last~election

minvec3

DV~=~[A|Ac;~~A;~~A&Bc;~~B;~~Bc&C;~Ac&Bc&C];

DP~=~[~~1~~~0.60~0.30~~0.50~0.20~~0.10];

TV~=~[Bc&Cc];

disp('Call~for~mincalc')

17.8.10 npr02_13

%~file~npr02_13.m

%~Data~for~problem~P2-13

%~A~=~rain~in~Austin;~~B~=~rain~in~Houston;

%~C~=~rain~in~San~Antonio

minvec3

DV~=~[A|Ac;~A&B;~A&Bc;~A&C;~(A&Bc)|(Ac&B);~B&C;~Bc&C;~Ac&Bc&Cc];

DP~=~[~~1~~~0.35~0.15~~0.20~~~~0.45~~~~~~~~0.30~0.05~~~0.15];

TV~=~[A&B&C;~(A&B&Cc)|(A&Bc&C)|(Ac&B&C);~(A&Bc&Cc)|(Ac&B&Cc)|(Ac&Bc&C)];

disp('Call~for~mincalc')

17.8.11 npr02_14

%~file~npr02_14.m

%~Data~for~problem~P2-14

%~A~=~male;~~B~=~engineering;

%~C~=~foreign~language;~D~=~graduate~study

minvec4

DV~=~[A|Ac;~A;~B;~Ac&B;~C;~Ac&C;~A&D;~Ac&D;~A&B&D;~...

~~~~~~Ac&B&D;~B&C&D;~Bc&Cc&D;~Ac&Bc&C&D];

DP~=~[1~0.55~0.23~0.10~0.75~0.45~0.26~0.19~0.13~0.08~0.20~0.05~0.11];

TV~=~[C&D;~Ac&Dc;~A&((C&Dc)|(Cc&D))];

disp('Call~for~mincalc')
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17.8.12 npr02_15

%~file~npr02_15.m

%~Data~for~problem~P2-15

%~A~=~men;~B~=~on~campus;~C~=~readers;~D~=~active

minvec4

DV~=~[A|Ac;~A;~~B;~~Ac&B;~~C;~~Ac&C;~~D;~~B&D;~C&D;~...

~~~~~Ac&B&D;~Ac&Bc&D;~Ac&B&C&D;~Ac&Bc&C&D;~A&Bc&Cc&D];

DP~=~[1~~0.6~0.55~0.25~0.40~0.25~0.70~0.50~0.35~0.25~0.05~0.10~0.05~0.05];

TV~=~[A&D&(Cc|Bc);~A&Dc&Cc];

disp('Call~for~mincalc')

17.8.13 npr02_16

%~file~npr02_16.m

%~Data~for~problem~P2-16

minvec3

DV~=~[A|Ac;~A;~~~~B;~~~~C;~(A&B)|(A&C)|(B&C);~A&B&C;~A&C;~(A&B)-2*(B&C)];

DP~=~[~1~~0.221~0.209~0.112~~~0.197~~~~~~~~~~~0.045~~0.062~~~~~~0];

TV~=~[A|B|C;~(A&Bc&Cc)|(Ac&B&Cc)|(Ac&Bc&C)];

disp('Call~for~mincalc')

17.8.14 npr02_17

%~file~npr02_17.m

%~Data~for~problem~P2-17

%~A~=~alignment;~~B~=~brake~work;~~C~=~headlight

minvec3

DV~=~[A|Ac;~A&B&C;~(A&B)|(A&C)|(B&C);~B&C;~~~~A~~];

DP~=~[~1~~~~0.100~~~~~~0.325~~~~~~~~~~0.125~0.550];

TV~=~[A&Bc&Cc;~Ac&(∼(B&C))];
disp('Call~for~mincalc')

17.8.15 npr02_18

%~file~npr02_18.m

%~Date~for~problem~P2-18

minvec3

DV~=~[A|Ac;~A&(B|C);~Ac;~Ac&Bc&Cc];

DP~=~[~1~~~~~0.3~~~~~0.6~~~~0.1];

TV~=~[B|C;~(((A&B)|(Ac&Bc))&Cc)|(A&C);~Ac&(B|Cc)];

disp('Call~for~mincalc')

~

%~Modification

%~DV~=~[DV;~Ac&B&C;~Ac&B];

%~DP~=~[DP~~~0.2~~~~~0.3];
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17.8.16 npr02_19

%~file~npr02_19.m

%~Data~for~problem~P2-19

%~A~=~computer;~~B~=~monitor;~~C~=~printer

minvec3

DV~=~[A|Ac;~A&B;~A&B&Cc;~A&C;~B&C;~(A&Cc)|(Ac&C);~...

~~~~~~~~~~(A&Bc)|(Ac&B);~(B&Cc)|(Bc&C)];

DP~=~[1~0.49~0.17~0.45~0.39~0.50~0.43~0.43];

TV~=~[A;~B;~C;~(A&B&Cc)|(A&Bc&C)|(Ac&B&C);~(A&B)|(A&C)|(B&C);~A&B&C];

disp('Call~for~mincalc')

17.8.17 npr02_20

%~file~npr02_20.m

%~Data~for~problem~P2-20

minvec3

DV~=~[A|Ac;~A;~~~~~B;~~A&B&C;~A&C;~(A&B)|(A&C)|(B&C);~B&C~-~2*(A&C)];

DP~=~[~~1~~0.232~0.228~0.045~0.062~~~~~~0.197~~~~~~~~~~~~0];

TV~=~[A|B|C;~Ac&Bc&C];

disp('Call~for~mincalc')

%~Modification

%~DV~=~[DV;~C];

%~DP~=~[DP~~0.230~];

17.8.18 npr02_21

%~file~npr02_21.m

%~Data~for~problem~P2-21

minvec3

DV~=~[A|Ac;~A;~~A&B;~A&B&C;~~C;~~Ac&Cc];

DP~=~[~1~~~0.4 0.3~~0.25~~~0.65~~0.3~];

TV~=~[(A&Cc)|(Ac&C);~Ac&Bc;~A|B;~A&Bc];

disp('Call~for~mincalc')

%~Modification

%~DV~=~[DV;~Ac&B&Cc;~Ac&Bc];

%~DP~=~[DP~~~0.1~~~~~~0.3~];

17.8.19 npr02_22

%~file~npr02_22.m

%~Data~for~problem~P2-22

minvec3

DV~=~[A|Ac;~A;~~A&B;~A&B&C;~~C;~~Ac&Cc];

DP~=~[~1~~~0.4 0.5~~0.25~~~0.65~~0.3~];

TV~=~[(A&Cc)|(Ac&C);~Ac&Bc;~A|B;~A&Bc];

disp('Call~for~mincalc')

%~Modification

%~DV~=~[DV;~Ac&B&Cc;~Ac&Bc];

%~DP~=~[DP~~~0.1~~~~~~0.3~];
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17.8.20 npr02_23

%~file~npr02_23.m

%~Data~for~problem~P2-23

minvec3

DV~=~[A|Ac;~A;~~A&C;~A&B&C;~~C;~~Ac&Cc];

DP~=~[~1~~~0.4 0.3~~0.25~~~0.65~~0.3~];

TV~=~[(A&Cc)|(Ac&C);~Ac&Bc;~A|B;~A&Bc];

disp('Call~for~mincalc')

%~Modification

%~DV~=~[DV;~Ac&B&Cc;~Ac&Bc];

%~DP~=~[DP~~~0.1~~~~~~0.3~];

17.8.21 npr03_01

%~file~npr03_01.m

%~Data~for~problem~P3-1

minvec3

DV~=~[A|Ac;~A;~~A&B;~B&C;~Ac|(B&C);~Ac&B&Cc];

DP~=~[~1~~~0.55~0.30~0.20~~~0.55~~~~~0.15~~];

TV~=~[Ac&B;~B];

disp('Call~for~mincalc')

17.8.22 npr04_04

%~file~npr04_04.m

%~Data~for~problem~P4-4

pm~=~[0.032~0.016~0.376~0.011~0.364~0.073~0.077~0.051];

disp('Minterm~probabilities~for~P4-4~are~in~pm')

17.8.23 npr04_05

%~file~npr04_05.m

%~Data~for~problem~P4-5

pm~=~[0.084~0.196~0.036~0.084~0.085~0.196~0.035~0.084~...

~~~~~~~~~~0.021~0.049~0.009~0.021~0.020~0.049~0.010~0.021];

disp('Minterm~probabilities~for~P4-5~are~in~pm')

17.8.24 npr04_06

%~file~npr04_06.m

%~Data~for~problem~P4-6

pm~=~~[0.085~0.195~0.035~0.085~0.080~0.200~0.035~0.085~...

~~~~~~~~0.020~0.050~0.010~0.020~0.020~0.050~0.015~0.015];

disp('Minterm~probabilities~for~P4-6~are~in~pm')
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17.8.25 mpr05_16

%~file~mpr05_16.m

%~Data~for~Problem~P5-16

A~=~[51~26~~7;~42~32~10;~19~54~11;~24~53~~7;~27~52~~5;

~~~~~49~19~16;~16~59~~9;~47~32~~5;~55~17~12;~24~53~~7];

B~=~[27~34~~5;~19~43~~4;~39~22~~5;~38~19~~9;~28~33~~5;

~~~~~19~41~~6;~37~21~~8;~19~42~~5;~27~33~~6;~39~21~~6];

disp('Call~for~oddsdf')

17.8.26 npr05_17

%~file~npr05_17.m

%~Data~for~problem~P5-17

PG1~=~84/150;

PG2~=~66/125;

A~=~[0.61~0.31~0.08

~~~~~0.50~0.38~0.12

~~~~~0.23~0.64~0.13

~~~~~0.29~0.63~0.08

~~~~~0.32~0.62~0.06

~~~~~0.58~0.23~0.19

~~~~~0.19~0.70~0.11

~~~~~0.56~0.38~0.06

~~~~~0.65~0.20~0.15

~~~~~0.29~0.63~0.08];

B~=~[0.41~0.51~0.08

~~~~~0.29~0.65~0.06

~~~~~0.59~0.33~0.08

~~~~~0.57~0.29~0.14

~~~~~0.42~0.50~0.08

~~~~~0.29~0.62~0.09

~~~~~0.56~0.32~0.12

~~~~~0.29~0.64~0.08

~~~~~0.41~0.50~0.09

~~~~~0.59~0.32~0.09];

disp('Call~for~oddsdp')

17.8.27 npr06_10

%~file~npr06_10.m

%~Data~for~problem~P6-10

pm~=~[~0.072~0.048~0.018~0.012~0.168~0.112~0.042~0.028~...

~~~~~~~0.062~0.048~0.028~0.010~0.170~0.110~0.040~0.032];

c~~=~[-5.3~-2.5~2.3~4.2~-3.7];

disp('Minterm~probabilities~are~in~pm,~coefficients~in~c')
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17.8.28 npr06_12

%~file~npr06_12.m

%~Data~for~problem~P6-12

pm~=~0.001*[5~7~6~8~9~14~22~33~21~32~50~75~86~129~201~302];

c~=~[1~1~1~1~0];

disp('Minterm~probabilities~in~pm,~coefficients~in~c')

17.8.29 npr06_18.m

%~file~npr06_18.m

%~Data~for~problem~P6-18

cx~=~[5~17~21~8~15~0];

cy~=~[8~15~12~18~15~12~0];

pmx~=~minprob(0.01*[37~22~38~81~63]);

pmy~=~minprob(0.01*[77~52~23~41~83~58]);

disp('Data~in~cx,~cy,~pmx,~pmy')

17.8.30 npr07_01

\begin{verbatim}
% file npr07_01.m

% Data for problem P7-1

T = [1 3 2 3 4 2 1 3 5 2];

pc = 0.01*[ 8 13 6 9 14 11 12 7 11 9];

disp('Data are in T and pc')

\end{verbatim}

17.8.31 npr07_02

% file npr07_02.m

% Data for problem P7-2

T = [3.5 5.0 3.5 7.5 5.0 5.0 3.5 7.5];

pc = 0.01*[10 15 15 20 10 5 10 15];

disp('Data are in T, pc')

17.8.32 npr08_01

%~file~npr08_01.m

%~Solution~for~problem~P8-1

X~=~0:2;

Y~=~0:2;

Pn~=~[132~~24~~~0;~864~144~~6;~1260~216~6];

P~=~Pn/(52*51);

disp('Data~in~Pn,~P,~X,~Y')
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17.8.33 npr08_02

%~file~npr08_02.m

%~Solution~for~problem~P8-2

X~=~0:2;

Y~=~0:2;

Pn~=~[6~0~0;~18~12~0;~6~12~2];

P~=~Pn/56;

disp('Data~are~in~X,~Y,Pn,~P')

17.8.34 npr08_03

%~file~npr08_03.m

%~Solution~for~problem~~P8-3

X~=~1:6;

Y~=~0:6;

P0~=~zeros(6,7);~~~~~~~%~Initialize

for~i~=~1:6~~~~~~~~~~~~%~Calculate~rows~of~Y~probabilities

~~~~P0(i,1:i+1)~=~(1/6)*ibinom(i,1/2,0:i);

end

P~=~rot90(P0);~~~~~~~~~%~Rotate~to~orient~as~on~the~plane

PY~=~fliplr(sum(P'));~~%~Reverse~to~put~in~normal~order

disp('Answers~are~in~X,~Y,~P,~PY')

17.8.35 npr08_04

%~file~npr08_04.m

%~Solution~for~problem~P8-4

X~=~2:12;

Y~=~0:12;

PX~=~(1/36)*[1~2~3~4~5~6~5~4~3~2~1];

P0~=~zeros(11,13);

for~i~=~1:11

~~~~P0(i,1:i+2)~=~PX(i)*ibinom(i+1,1/2,0:i+1);

end

P~=~rot90(P0);

PY~=~fliplr(sum(P'));

disp('Answers~are~in~X,~Y,~PY,~P')

17.8.36 npr08_05

%~file~npr08_05.m

%~Data~and~basic~calculations~for~P8-5

PX~=~(1/36)*[1~2~3~4~5~6~5~4~3~2~1];

X~=~2:12;

Y~=~0:12;

P0~=~zeros(11,13);

for~i~=~1:11
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~~P0(i,1:i+2)~=~PX(i)*ibinom(i+1,1/6,0:i+1);

end

P~=~rot90(P0);

PY~=~fliplr(sum(P'));

disp('Answers~are~in~X,~Y,~P,~PY')

17.8.37 npr08_06

%~file~~Newprobs/pr08_06.m

%~Data~for~problem~P8-6~(from~Exam~2,~95f)

P~=~[0.0483~~~~0.0357~~~~0.0420~~~~0.0399~~~~0.0441

~~~~~0.0437~~~~0.0323~~~~0.0380~~~~0.0361~~~~0.0399

~~~~~0.0713~~~~0.0527~~~~0.0620~~~~0.0609~~~~0.0551

~~~~~0.0667~~~~0.0493~~~~0.0580~~~~0.0651~~~~0.0589];

X~=~[-2.3~-0.7~1.1~3.9~5.1];

Y~=~[~1.3~~2.5~4.1~5.3];

disp('Data~are~in~X,~Y,~P')

17.8.38 npr08_07

%~file~pr08_07.m~~(from~Exam3,~96s)

%~Data~for~problem~P8-7

X~=~[-3.1~-0.5~~1.2~~2.4~~3.7~4.9];

Y~=~[-3.8~-2.0~~4.1~~7.5];

P~=~[~0.0090~~~~0.0396~~~~0.0594~~~~0.0216~~~~0.0440~~~~0.0203;

~~~~~~0.0495~~~~~~~~~0~~~~0.1089~~~~0.0528~~~~0.0363~~~~0.0231;

~~~~~~0.0405~~~~0.1320~~~~0.0891~~~~0.0324~~~~0.0297~~~~0.0189;

~~~~~~0.0510~~~~0.0484~~~~0.0726~~~~0.0132~~~~~~~~~0~~~~0.0077];

disp('Data~are~in~X,~Y,~P')

17.8.39 npr08_08

%~file~Newprobs/pr08_08.m~(from~Exam~4~96s)

%~Data~for~problem~P8-8

P~=~[0.0156~~0.0191~~0.0081~~0.0035~~0.0091~~0.0070~~0.0098~~0.0056~~0.0091~~0.0049;

~~~~~0.0064~~0.0204~~0.0108~~0.0040~~0.0054~~0.0080~~0.0112~~0.0064~~0.0104~~0.0056;

~~~~~0.0196~~0.0256~~0.0126~~0.0060~~0.0156~~0.0120~~0.0168~~0.0096~~0.0056~~0.0084;

~~~~~0.0112~~0.0182~~0.0108~~0.0070~~0.0182~~0.0140~~0.0196~~0.0012~~0.0182~~0.0038;

~~~~~0.0060~~0.0260~~0.0162~~0.0050~~0.0160~~0.0200~~0.0280~~0.0060~~0.0160~~0.0040;

~~~~~0.0096~~0.0056~~0.0072~~0.0060~~0.0256~~0.0120~~0.0268~~0.0096~~0.0256~~0.0084;

~~~~~0.0044~~0.0134~~0.0180~~0.0140~~0.0234~~0.0180~~0.0252~~0.0244~~0.0234~~0.0126;

~~~~~0.0072~~0.0017~~0.0063~~0.0045~~0.0167~~0.0090~~0.0026~~0.0172~~0.0217~~0.0223];

~

X~=~1:2:19;

Y~=~[-5~~-3~~-1~~3~~5~9~10~12];

disp('Data~are~in~X,~Y,~P')
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17.8.40 npr08_09

%~file~pr08_09.m~~~(from~Exam3~95f)

%~Data~for~problem~P8-9

P~=~[0.0390~~~~0.0110~~~~0.0050~~~~0.0010~~~~0.0010;

~~~~~0.0650~~~~0.0700~~~~0.0500~~~~0.0150~~~~0.0100;

~~~~~0.0310~~~~0.0610~~~~0.1370~~~~0.0510~~~~0.0330;

~~~~~0.0120~~~~0.0490~~~~0.1630~~~~0.0580~~~~0.0390;

~~~~~0.0030~~~~0.0090~~~~0.0450~~~~0.0250~~~~0.0170];

X~=~[1~1.5~2~2.5~3];

Y~=~[1~2~3~4~5];

disp('Data~are~in~X,~Y,~P')

17.8.41 npr09_02

\begin{verbatim}
% file Newprobs/npr09_02.m

% Data for problem P9-2

P = [0.0589 0.0342 0.0304 0.0456 0.0209;

0.0961 0.0556 0.0498 0.0744 0.0341;

0.0682 0.0398 0.0350 0.0528 0.0242;

0.0868 0.0504 0.0448 0.0672 0.0308];

X = [-3.9 -1.7 1.5 2.8 4.1];

Y = [-2 1 2.6 5.1];

disp('Data are in X, Y, P')

\end{verbatim}

17.8.42 npr10_16

\begin{verbatim}
% file npr10_16.m

% Data for problem P10-16

cx = [-2 1 3 0];

pmx = 0.001*[255 25 375 45 108 12 162 18];

cy = [1 3 1 -3];

pmy = minprob(0.01*[32 56 40]);

Z = [-1.3 1.2 2.7 3.4 5.8];

PZ = 0.01*[12 24 43 13 8];

disp('Data are in cx, pmx, cy, pmy, Z, PZ')

\end{verbatim}

17.8.43 npr12_10
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% file npr12_10.m

% Data for problems P12-10, P12_11

cx = [-3.3 -1.7 2.3 7.6 -3.4];

pmx = 0.0001*[475 725 120 180 1125 1675 280 420 480 720 130 170 1120 1680 270 430];

cy = [10 17 20 -10];

pmy = 0.01*[6 14 9 21 6 14 9 21];

disp('Data are in cx, cy, pmx and pmy')

17.8.44 npr16_07

\begin{verbatim}
% file npr16_07.m

% Transition matrix for problem P16-7

P = [0.23 0.32 0.02 0.22 0.21;

0.29 0.41 0.10 0.08 0.12;

0.22 0.07 0.31 0.14 0.26;

0.32 0.15 0.05 0.33 0.15;

0.08 0.23 0.31 0.09 0.29];

disp('Transition matrix is P')

\end{verbatim}

17.8.45 npr16_09

%~file~npr16_09.m

%~Transition~matrix~for~problem~P16-9

P~=~[0.2~0.5~0.3~~0~~~0~~~0~~~0;

~~~~~0.6~0.1~0.3~~0~~~0~~~0~~~0;

~~~~~0.2~0.7~0.1~~0~~~0~~~0~~~0;

~~~~~~0~~~0~~~0~~0.6~0.4~~0~~~0;

~~~~~~0~~~0~~~0~~0.5~0.5~~0~~~0;

~~~~~0.1~0.3~~0~~0.2~0.1~0.1~0.2;

~~~~~0.1~0.2~0.1~0.2~0.2~0.2~~0~];

disp('Transition~matrix~is~P')
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Applied Probability
The present collection utilizes a number of user de�ned m-programs, in combination with built in MATLAB
functions, for solving a variety of probabilistic problems. These m-�les are included as text �les in the
collection New Prob m-�les. We use the term m-function to designate a user-de�ned function as distinct
from the basic MATLAB functions which are part of the MATLAB package. An m-procedure (or sometimes
a procedure) is an m-�le containing a set of MATLAB commands which carry out a prescribed set of
operations. Generally, these will prompt for (or assume) certain data upon which the procedure is carried
out. We use the term m-program (or often m-�le) to refer to either an m-function or an m-procedure.
Although most of the m-programs were written for MATLAB version 4.2, they work for versions 5.1, 5.2,
and 7.04. The latter versions o�er some new features which may make more e�cient implementation of some
of the m-programs, and which make possible some new ones. With one exception (so noted), these are not
exploited in this collection, because of the pedagogical value of dealing with explicitly developed procedures
whose dependence on basic MATLAB is displayed. These programs, with perhaps some exceptions, also run
on the MATLAB alternatives SCILAB and OCTAVE. Users of these latter programs should be able to make
appropriate adjustments if needed. In addition to the m-programs there is a collection of m-�les for speci�c
problems with properly formatted data which can be entered into the workspace by calling the �le. These
m-�les come from a variety of sources ( e.g., exams or problem sets, hence the odd names) and may be useful
for examples and exercises. This collection is in the text �le New Prob m�les.
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make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
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English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
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