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Preface 1

PREFACE

Welcome to Calculus Volume 1, an OpenStax resource. This textbook has been created with several goals in mind:
accessibility, customization, and student engagement—all while encouraging students toward high levels of academic
scholarship. Instructors and students alike will find that this textbook offers a strong foundation in calculus in an accessible
format.

About OpenStax

OpenStax is a non-profit organization committed to improving student access to quality learning materials. Our free
textbooks go through a rigorous editorial publishing process. Our texts are developed and peer-reviewed by educators
to ensure they are readable, accurate, and meet the scope and sequence requirements of today’s college courses. Unlike
traditional textbooks, OpenStax resources live online and are owned by the community of educators using them. Through
our partnerships with companies and foundations committed to reducing costs for students, OpenStax is working to improve
access to higher education for all. OpenStax is an initiative of Rice University and is made possible through the generous
support of several philanthropic foundations. Since our launch in 2012 our texts have been used by millions of learners
online and thousands of institutions worldwide.

About OpenStax's Resources

OpenStax resources provide quality academic instruction. Three key features set our materials apart from others: they can
be customized by instructors for each class, they are a "living" resource that grows online through contributions from
educators, and they are available free or for minimal cost.

Customization

OpenStax learning resources are designed to be customized for each course. Our textbooks provide a solid foundation on
which instructors can build, and our resources are conceived and written with flexibility in mind. Instructors can select the
sections most relevant to their curricula and create a textbook that speaks directly to the needs of their classes and student
body. Teachers are encouraged to expand on existing examples by adding unique context via geographically localized
applications and topical connections.

Calculus Volume 1 can be easily customized using our online platform (http://cnx.org/content/col11963/). Simply select the
content most relevant to your current semester and create a textbook that speaks directly to the needs of your class. Calculus
Volume 1 is organized as a collection of sections that can be rearranged, modified, and enhanced through localized examples
or to incorporate a specific theme of your course. This customization feature will ensure that your textbook truly reflects
the goals of your course.

Curation

To broaden access and encourage community curation, Calculus Volume 1 is “open source” licensed under a Creative
Commons Attribution Non-Commercial ShareAlike (CC BY-NC-SA) license. This license lets others remix, edit, build
upon the work non-commercially, as long as they credit OpenStax and license their new creations under the same
terms. The academic mathematics community is invited to submit examples, emerging research, and other feedback to
enhance and strengthen the material and keep it current and relevant for today’s students. Submit your suggestions to
info@openstaxcollege.org.

Cost

Our textbooks are available for free online, and in low-cost print and e-book editions.

About Calculus Volume 1

Calculus Volume 1 is the first of three volumes designed for the two- or three-semester calculus course. For many students,
this course provides the foundation to a career in mathematics, science, or engineering. As such, this textbook provides an
important opportunity for students to learn the core concepts of calculus and understand how those concepts apply to their
lives and the world around them. The text has been developed to meet the scope and sequence of most general calculus
courses. At the same time, the book includes several innovative features designed to enhance student learning. A strength of
Calculus Volume 1 is that instructors can customize the book, adapting it to the approach that works best in their classroom.
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Coverage and Scope

Our Calculus Volume 1 textbook adheres to the scope and sequence of most general calculus courses nationwide. We have
worked to make calculus interesting and accessible to students while maintaining the mathematical rigor inherent in the
subject. With this objective in mind, the content of the three volumes of Calculus have been developed and arranged to
provide a logical progression from fundamental to more advanced concepts, building upon what students have already
learned and emphasizing connections between topics and between theory and applications. The goal of each section is to
enable students not just to recognize concepts, but work with them in ways that will be useful in later courses and future
careers. The organization and pedagogical features were developed and vetted with feedback from mathematics educators
dedicated to the project.

Volume 1
Chapter 1: Functions and Graphs

Chapter 2: Limits

Chapter 3: Derivatives

Chapter 4: Applications of Derivatives
Chapter 5: Integration

Chapter 6: Applications of Integration

Volume 2
Chapter 1: Integration

Chapter 2: Applications of Integration

Chapter 3: Techniques of Integration

Chapter 4: Introduction to Differential Equations
Chapter 5: Sequences and Series

Chapter 6: Power Series

Chapter 7: Parametric Equations and Polar Coordinates

Volume 3
Chapter 1: Parametric Equations and Polar Coordinates

Chapter 2: Vectors in Space

Chapter 3: Vector-Valued Functions

Chapter 4: Differentiation of Functions of Several Variables

Chapter 5: Multiple Integration

Chapter 6: Vector Calculus

Chapter 7: Second-Order Differential Equations
Pedagogical Foundation

Throughout Calculus Volume 1 you will find examples and exercises that present classical ideas and techniques as well as
modern applications and methods. Derivations and explanations are based on years of classroom experience on the part
of long-time calculus professors, striving for a balance of clarity and rigor that has proven successful with their students.
Motivational applications cover important topics in probability, biology, ecology, business, and economics, as well as areas
of physics, chemistry, engineering, and computer science. Student Projects in each chapter give students opportunities to
explore interesting sidelights in pure and applied mathematics, from determining a safe distance between the grandstand and
the track at a Formula One racetrack, to calculating the center of mass of the Grand Canyon Skywalk or the terminal speed
of a skydiver. Chapter Opening Applications pose problems that are solved later in the chapter, using the ideas covered in
that chapter. Problems include the hydraulic force against the Hoover Dam, and the comparison of relative intensity of two
earthquakes. Definitions, Rules, and Theorems are highlighted throughout the text, including over 60 Proofs of theorems.

Assessments That Reinforce Key Concepts

In-chapter Examples walk students through problems by posing a question, stepping out a solution, and then asking students
to practice the skill with a “Checkpoint” question. The book also includes assessments at the end of each chapter so
students can apply what they’ve learned through practice problems. Many exercises are marked with a [T] to indicate they

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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are suitable for solution by technology, including calculators or Computer Algebra Systems (CAS). Answers for selected
exercises are available in the Answer Key at the back of the book.

Early or Late Transcendentals

Calculus Volume 1 is designed to accommodate both Early and Late Transcendental approaches to calculus. Exponential
and logarithmic functions are introduced informally in Chapter 1 and presented in more rigorous terms in Chapter 6.
Differentiation and integration of these functions is covered in Chapters 3-5 for instructors who want to include them with
other types of functions. These discussions, however, are in separate sections that can be skipped for instructors who prefer
to wait until the integral definitions are given before teaching the calculus derivations of exponentials and logarithms.

Comprehensive Art Program

Our art program is designed to enhance students’ understanding of concepts through clear and effective illustrations,
diagrams, and photographs.

fix) =x2-4x + 5

Pt X

A 10 15 fo 25

Z=Xx2+y?

Assessments That Reinforce Key Concepts

In-chapter Examples walk students through problems by posing a question, stepping out a solution, and then asking students
to practice the skill with a “Check Your Learning” component. The book also includes assessments at the end of each
chapter so students can apply what they’ve learned through practice problems.

Ancillaries

OpenStax projects offer an array of ancillaries for students and instructors. The following resources are available.
PowerPoint Slides
Instructor’s Answer and Solution Guide

Student Answer and Solution Guide
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Our resources are continually expanding, so please visit http://openstaxcollege.org to view an up-to-date list of the Learning
Resources for this title and to find information on accessing these resources.

WeBWorK

WeBWorK is a well-tested homework system for delivering individualized calculus problems over the Web. By providing
students with immediate feedback on the correctness of their answers, WeBWorK encourages students to make multiple
attempts until they succeed. With individualized problem sets, students can work together but will have to enter their own
work to receive credit. WeBWorK can present and grade any mathematics calculation problem from basic algebra through
calculus, matrix linear algebra, and differential equations. Its extensible answer evaluators correctly recognize and grade a
wide variety of answers, including numbers, functions, equations, answers with units and much more, allowing instructors
and students to concentrate on correct mathematics and ask the questions they should rather than just the questions they can.
More than 770 institutions currently use WeBWorK. WeBWork and its 30,000 plus library of Creative Commons-licensed
problems are open source and free for institutions to use.

Attempt Results

Entered Answer Preview Resuit Correct Answer

(Isin{a"x+b))/a)- .
(@-a)y sin(ax + b)

1 . ;
L SO - _%5m3(m+b)+c correct E(Bsu(ax+b)—sm3(ax+b))+c
sinfa”x+b)]*

The answer above is correct.

(1 point)
Assuming a # 0, compute / cos’(ax + b)dx in terms of a and b.

] cos’(ax + b)dx =  sin(ax+b)/a -(1/(3a))sin?3(ax+b) +C

About Our Team
Senior Contributing Authors

Gilbert Strang, PhD

Dr. Strang received his PhD from UCLA in 1959 and has been teaching mathematics at MIT ever since. His Calculus online
textbook is one of eleven that he has published and is the basis from which our final product has been derived and updated
for today’s student. Strang is a decorated mathematician and past Rhodes Scholar at Oxford University.

Edwin “Jed” Herman, PhD

Dr. Herman earned a BS in Mathematics from Harvey Mudd College in 1985, an MA in Mathematics from UCLA in
1987, and a PhD in Mathematics from the University of Oregon in 1997. He is currently a Professor at the University of
Wisconsin-Stevens Point. He has more than 20 years of experience teaching college mathematics, is a student research
mentor, is experienced in course development/design, and is also an avid board game designer and player.

Contributing Authors
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1| FUNCTIONS AND
GRAPHS

P )

Figure 1.1 A portion of the San Andreas Fault in California. Major faults like this are the sites of most of the strongest
earthquakes ever recorded. (credit: modification of work by Robb Hannawacker, NPS)

Chapter Outline

1.1 Review of Functions

1.2 Basic Classes of Functions
1.3 Trigonometric Functions
1.4 Inverse Functions

1.5 Exponential and Logarithmic Functions

Introduction

In the past few years, major earthquakes have occurred in several countries around the world. In January 2010, an
earthquake of magnitude 7.3 hit Haiti. A magnitude 9 earthquake shook northeastern Japan in March 2011. In April 2014,
an 8.2-magnitude earthquake struck off the coast of northern Chile. What do these numbers mean? In particular, how
does a magnitude 9 earthquake compare with an earthquake of magnitude 8.2? Or 7.3? Later in this chapter, we show
how logarithmic functions are used to compare the relative intensity of two earthquakes based on the magnitude of each
earthquake (see Example 1.39).

Calculus is the mathematics that describes changes in functions. In this chapter, we review all the functions necessary
to study calculus. We define polynomial, rational, trigonometric, exponential, and logarithmic functions. We review how
to evaluate these functions, and we show the properties of their graphs. We provide examples of equations with terms
involving these functions and illustrate the algebraic techniques necessary to solve them. In short, this chapter provides the
foundation for the material to come. It is essential to be familiar and comfortable with these ideas before proceeding to the
formal introduction of calculus in the next chapter.



8 Chapter 1 | Functions and Graphs

1.1 | Review of Functions

Learning Objectives

1.1.1 Use functional notation to evaluate a function.

1.1.2 Determine the domain and range of a function.

1.1.3 Draw the graph of a function.

1.1.4 Find the zeros of a function.

1.1.5 Recognize a function from a table of values.

1.1.6 Make new functions from two or more given functions.
1.1.7 Describe the symmetry properties of a function.

In this section, we provide a formal definition of a function and examine several ways in which functions are
represented—namely, through tables, formulas, and graphs. We study formal notation and terms related to functions. We
also define composition of functions and symmetry properties. Most of this material will be a review for you, but it serves
as a handy reference to remind you of some of the algebraic techniques useful for working with functions.

Functions

Given two sets A and B, a set with elements that are ordered pairs (x, y), where x is an element of A and y is an
element of B, is a relation from A to B. A relation from A to B defines a relationship between those two sets. A

function is a special type of relation in which each element of the first set is related to exactly one element of the second
set. The element of the first set is called the input; the element of the second set is called the output. Functions are used all
the time in mathematics to describe relationships between two sets. For any function, when we know the input, the output is
determined, so we say that the output is a function of the input. For example, the area of a square is determined by its side
length, so we say that the area (the output) is a function of its side length (the input). The velocity of a ball thrown in the
air can be described as a function of the amount of time the ball is in the air. The cost of mailing a package is a function of
the weight of the package. Since functions have so many uses, it is important to have precise definitions and terminology to
study them.

Definition

A function f consists of a set of inputs, a set of outputs, and a rule for assigning each input to exactly one output. The

set of inputs is called the domain of the function. The set of outputs is called the range of the function.

For example, consider the function f, where the domain is the set of all real numbers and the rule is to square the input.

Then, the input x = 3 is assigned to the output 32 =9. Since every nonnegative real number has a real-value square root,

every nonnegative number is an element of the range of this function. Since there is no real number with a square that is
negative, the negative real numbers are not elements of the range. We conclude that the range is the set of nonnegative real
numbers.

For a general function f with domain D, we often use x to denote the input and y to denote the output associated with
x. When doing so, we refer to x as the independent variable and y as the dependent variable, because it depends on x.

Using function notation, we write y = f(x), and we read this equation as “y equals f of x.” For the squaring function

described earlier, we write f(x) = %2

The concept of a function can be visualized using Figure 1.2, Figure 1.3, and Figure 1.4.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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Figure 1.2 A function can be visualized as an input/output

device.
f
P

i,

2
2

4
3

6
4

Domain Range

Figure 1.3 A function maps every element in the domain to
exactly one element in the range. Although each input can be
sent to only one output, two different inputs can be sent to the
same output.

Dependent

variable

y = f(x)
il
— (1, (1) =(1,2)
T 2+ e o
: (3.1(3)) = (3,2)
=] °
g (2. 1(2) = (2. 1)
@ 4 b 4 b =

0 X
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Domain = {1, 2, 3}  variable
Figure 1.4 In this case, a graph of a function f has a domain

of {1, 2, 3} and arange of {1, 2}. The independent variable

is x and the dependent variable is y.

. Visit this applet link (http://lwww.openstaxcollege.orgl/l/grapherrors) to see more about graphs of
functions.

We can also visualize a function by plotting points (x, y) in the coordinate plane where y = f(x). The graph of a function
is the set of all these points. For example, consider the function f, where the domain is the set D = {1, 2, 3} and the

rule is f(x) =3 — x. In Figure 1.5, we plot a graph of this function.


http://www.openstaxcollege.org/l/grapherrors
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Domain = {1, 2, 3}
Figure 1.5 Here we see a graph of the function f with

domain {1, 2, 3} andrule f(x) =3 — x. The graph consists

of the points (x, f(x)) forall x in the domain.

Every function has a domain. However, sometimes a function is described by an equation, as in f(x) = x%, with no

specific domain given. In this case, the domain is taken to be the set of all real numbers x for which f(x) is a real number.
For example, since any real number can be squared, if no other domain is specified, we consider the domain of f(x) = x?
to be the set of all real numbers. On the other hand, the square root function f(x) = vx only gives a real output if x is
nonnegative. Therefore, the domain of the function f(x) = vx is the set of nonnegative real numbers, sometimes called the

natural domain.

For the functions f(x) = x% and f(x) = vx, the domains are sets with an infinite number of elements. Clearly we cannot

list all these elements. When describing a set with an infinite number of elements, it is often helpful to use set-builder or
interval notation. When using set-builder notation to describe a subset of all real numbers, denoted R, we write

{x|x has some property].

We read this as the set of real numbers x such that x has some property. For example, if we were interested in the set of
real numbers that are greater than one but less than five, we could denote this set using set-builder notation by writing

{x]1 <x<5}.
A set such as this, which contains all numbers greater than a and less than b, can also be denoted using the interval

notation (a, b). Therefore,
(1,5 =1 <x <5l

The numbers 1 and 5 are called the endpoints of this set. If we want to consider the set that includes the endpoints, we
would denote this set by writing
[1, 5] = {x]1 <x < 5}.
We can use similar notation if we want to include one of the endpoints, but not the other. To denote the set of nonnegative
real numbers, we would use the set-builder notation
{x]0 < x}.

The smallest number in this set is zero, but this set does not have a largest number. Using interval notation, we would use
the symbol oo, which refers to positive infinity, and we would write the set as

[0, 00) = {x]0 < x}.

It is important to note that oo is not a real number. It is used symbolically here to indicate that this set includes all real
numbers greater than or equal to zero. Similarly, if we wanted to describe the set of all nonpositive numbers, we could write

(=00, 0] = {x|x < 0}.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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Here, the notation —oo refers to negative infinity, and it indicates that we are including all numbers less than or equal to
zero, no matter how small. The set

(=00, o0) = {x|x is any real number}

refers to the set of all real numbers.

Some functions are defined using different equations for different parts of their domain. These types of functions are known
as piecewise-defined functions. For example, suppose we want to define a function f with a domain that is the set of all

real numbers such that f(x) =3x+ 1 for x > 2 and f(x) = x? for x < 2. We denote this function by writing
3x+1 x>2

f = {V o

2 x<2

When evaluating this function for an input x, the equation to use depends on whether x > 2 or x < 2. For example,
since 5 > 2, we use the fact that f(x) =3x+ 1 for x > 2 and see that f(5) = 3(5) + 1 = 16. On the other hand, for

x = —1, we use the fact that f(x) = x% for x <2 and see that f(=1) =1

Example 1.1

Evaluating Functions

For the function f(x) = 3x2+2x—1, evaluate

a. f(=2)

b.  f(V2)

c. fla+h)
Solution

Substitute the given value for x in the formula for f(x).
a. f(=2)= 3(—2)2+ 2(-2)—-1=12-4-1=7
b. f(V2)=3(V2)2+2V2-1=6+2V2—-1=5+22

fla+h)=3@+mn*+2a+h) -1 =3(a>+2ah+h*)+2a+2h-1
=3a’ + 6ah + 3h* +2a +2h — 1

@ 1.1 For flx) = x2=3x+ 5, evaluate f(1) and f(a+ h).

Example 1.2

Finding Domain and Range

For each of the following functions, determine the i. domain and ii. range.
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a. f(x)=@x-4)>+5
b. f(x)=V3x+2-1

¢ f@=—25

Solution
a. Consider f(x) = (x—4)>+5.

i. Since f(x)=(x— 4)2 + 5 is a real number for any real number x, the domain of f is the

interval (—o0, 00).

ii. Since (x — 4)2 >0, weknow f(x)=(x— 4)2 + 5 > 5. Therefore, the range must be a subset
of {yly > 5}. To show that every element in this set is in the range, we need to show that for a
given y in that set, there is a real number x such that f(x) = (x — 4)2 + 5 =y. Solving this

equation for x, we see that we need x such that

(x—4)2=y-5.

This equation is satisfied as long as there exists a real number x such that

x—4= +\y-5.

Since y > 5, the square root is well-defined. We conclude that for x =4 +\y -5, f(x) =y,
and therefore the range is {y|ly > 5.

b. Consider f(x) =V3x+2—1.

i. To find the domain of f, we need the expression 3x+ 2 > 0. Solving this inequality, we

conclude that the domain is {x|x > —2/3}.

ii. To find the range of f, we note that since YV3x+2 > 0, f(x) = V3x+ 2 — 1 > —1. Therefore,
the range of f must be a subset of the set {y|y > —1}. To show that every element in this set is
in the range of f, we need to show that for all y in this set, there exists a real number x in the

domain such that f(x) =y. Let y > —1. Then, f(x) =y if and only if
V3x+2—-1=y.

Solving this equation for x, we see that x must solve the equation

V3x+2=y+1.

Since y > —1, such an x could exist. Squaring both sides of this equation, we have
3x+2=@G+ D>
Therefore, we need

3x=(+1)*-2,

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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which implies

We just need to verify that x is in the domain of f. Since the domain of f consists of all real

numbers greater than or equal to —2/3, and

there does exist an x in the domain of f. We conclude that the range of f is {yly > —1}.
c. Consider f(x)=3/(x—2).
i. Since 3/(x — 2) is defined when the denominator is nonzero, the domain is {x|x # 2}.

ii. To find the range of f, we need to find the values of y such that there exists a real number x

in the domain with the property that

2=

Solving this equation for x, we find that

x=%+2.

Therefore, as long as y # 0, there exists a real number x in the domain such that f(x) = y.

Thus, the range is {y|y # 0}.

@ 1.2 Find the domain and range for f(x) = V4 —2x + 5.

Representing Functions

Typically, a function is represented using one or more of the following tools:
¢ Atable
e A graph
¢ A formula

We can identify a function in each form, but we can also use them together. For instance, we can plot on a graph the values
from a table or create a table from a formula.

Tables

Functions described using a table of values arise frequently in real-world applications. Consider the following simple
example. We can describe temperature on a given day as a function of time of day. Suppose we record the temperature every
hour for a 24-hour period starting at midnight. We let our input variable x be the time after midnight, measured in hours,

and the output variable y be the temperature x hours after midnight, measured in degrees Fahrenheit. We record our data
in Table 1.1.
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Hours after Midnight | Temperature (°F) Hours after Midnight | Temperature (°F)
0 58 12 84
1 54 13 85
2 53 14 85
3 52 15 83
4 52 16 82
5 55 17 80
6 60 18 77
7 64 19 74
8 72 20 69
9 75 21 65
10 78 22 60
11 80 23 58

Table 1.1 Temperature as a Function of Time of Day

We can see from the table that temperature is a function of time, and the temperature decreases, then increases, and then
decreases again. However, we cannot get a clear picture of the behavior of the function without graphing it.

Graphs

Given a function f described by a table, we can provide a visual picture of the function in the form of a graph. Graphing

the temperatures listed in Table 1.1 can give us a better idea of their fluctuation throughout the day. Figure 1.6 shows the

plot of the temperature function.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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Temperature (°F)
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Figure 1.6 The graph of the data from Table 1.1 shows
temperature as a function of time.
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From the points plotted on the graph in Figure 1.6, we can visualize the general shape of the graph. It is often useful
to connect the dots in the graph, which represent the data from the table. In this example, although we cannot make any
definitive conclusion regarding what the temperature was at any time for which the temperature was not recorded, given
the number of data points collected and the pattern in these points, it is reasonable to suspect that the temperatures at other
times followed a similar pattern, as we can see in Figure 1.7.

Algebraic Formulas

Temperature (°F)

y

o 4 8 12 16 20 X
Hours after midnight

Figure 1.7 Connecting the dots in Figure 1.6 shows the
general pattern of the data.

Sometimes we are not given the values of a function in table form, rather we are given the values in an explicit formula.

Formulas arise in many applications. For example, the area of a circle of radius r is given by the formula A(r) = ar

2

When an object is thrown upward from the ground with an initial velocity v, ft/s, its height above the ground from the

time it is thrown until it hits the ground is given by the formula s(r) = —161> + vot. When P dollars are invested in an

account at an annual interest rate » compounded continuously, the amount of money after ¢ years is given by the formula

A(f) = Pe". Algebraic formulas are important tools to calculate function values. Often we also represent these functions

visually in graph form.
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Given an algebraic formula for a function f, the graph of f is the set of points (x, f(x)), where x is in the domain of
f and f(x) is in the range. To graph a function given by a formula, it is helpful to begin by using the formula to create
a table of inputs and outputs. If the domain of f consists of an infinite number of values, we cannot list all of them, but
because listing some of the inputs and outputs can be very useful, it is often a good way to begin.

When creating a table of inputs and outputs, we typically check to determine whether zero is an output. Those values of
x where f(x) =0 are called the zeros of a function. For example, the zeros of f(x) = x> =4 are x = +2. The zeros
determine where the graph of f intersects the x -axis, which gives us more information about the shape of the graph of

the function. The graph of a function may never intersect the x-axis, or it may intersect multiple (or even infinitely many)
times.

Another point of interest is the y -intercept, if it exists. The y -intercept is given by (0, f(0)).

Since a function has exactly one output for each input, the graph of a function can have, at most, one y -intercept. If x = 0
is in the domain of a function f, then f has exactly one y -intercept. If x = 0 is not in the domain of f, then f has
no Yy -intercept. Similarly, for any real number ¢, if ¢ is in the domain of f, there is exactly one output f(c), and the
line x = ¢ intersects the graph of f exactly once. On the other hand, if ¢ is not in the domain of f, f(c) is not defined

and the line x = ¢ does not intersect the graph of f. This property is summarized in the vertical line test.

Rule: Vertical Line Test

Given a function f, every vertical line that may be drawn intersects the graph of f no more than once. If any vertical

line intersects a set of points more than once, the set of points does not represent a function.

We can use this test to determine whether a set of plotted points represents the graph of a function (Figure 1.8).
Yy i

y =f(x) y # f(x)

A

@) (b)
Figure 1.8 (a) The set of plotted points represents the graph of
a function because every vertical line intersects the set of points,
at most, once. (b) The set of plotted points does not represent the
graph of a function because some vertical lines intersect the set
of points more than once.
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Finding Zeros and y -Intercepts of a Function

Consider the function f(x) = —4x + 2.
a. Find all zeros of f.
b. Find the y -intercept (if any).

c. Sketch a graph of f.

Solution
a. To find the zeros, solve f(x) = —4x + 2 = 0. We discover that f has one zero at x = 1/2.

b. The y -intercept is given by (0, f(0)) = (0, 2).

c. Giventhat f is alinear function of the form f(x) = mx + b that passes through the points (1/2, 0) and
(0, 2), we can sketch the graph of f (Figure 1.9).

yi

Tfo) = —ax + 2

0.2

o)

»xY

Figure 1.9 The function f(x) = —4x + 2 is a line with
x -intercept (1/2, 0) and y -intercept (0, 2).

Example 1.4

Using Zeros and y -Intercepts to Sketch a Graph

Consider the function f(x) =Vx+ 3+ 1.
a. Find all zeros of f.
b. Find the y -intercept (if any).

c. Sketch a graph of f.

Solution
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a. To find the zeros, solve Vx + 3 + 1 = 0. This equation implies Vx + 3 = —1. Since Yx+ 3 > 0 forall
X, this equation has no solutions, and therefore f has no zeros.

b. The y -intercept is given by (0, f(0)) = (0, V3 + 1).

c. To graph this function, we make a table of values. Since we need x +3 > 0, we need to choose values

of x > —3. We choose values that make the square-root function easy to evaluate.

X -3 -2 1
Sx) 1 2 3
Table 1.2

Making use of the table and knowing that, since the function is a square root, the graph of f should be similar to

the graph of y = vx, we sketch the graph (Figure 1.10).

yi

(0,1 +13) '/Efa)

Figure 1.10 The graphof f(x) =VYx+3+ 1 hasa

y -intercept but no x -intercepts.

@ 1.3 Find the zeros of f(x) = x3 = 5x% + 6x.

Example 1.5

Finding the Height of a Free-Falling Object

If a ball is dropped from a height of 100 ft, its height s at time ¢ is given by the function s(r) = — 16> + 100,
where s is measured in feet and ¢ is measured in seconds. The domain is restricted to the interval [0, c¢], where

t = 0 is the time when the ball is dropped and ¢ = ¢ is the time when the ball hits the ground.

a. Create a table showing the height s(#) when =0, 0.5, 1, 1.5, 2, and 2.5. Using the data from the

table, determine the domain for this function. That is, find the time ¢ when the ball hits the ground.
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b. Sketch a graph of s.

Solution
d.
t 0 0.5 1 1.5 2 2.5
s(@® 100 96 84 64 36 0
Table 1.3

Height s as a Function of Time ¢

Since the ball hits the ground when 7 = 2.5, the domain of this function is the interval [0, 2.5].

b.
s(t) 4
100 4
1 s(t) = —16t2 + 100
g -+
E 504
2
L
I e
o T 1 T2t

Time (s)

Note that for this function and the function f(x) = —4x+ 2 graphed in Figure 1.9, the values of f(x) are getting
smaller as x is getting larger. A function with this property is said to be decreasing. On the other hand, for the function
f(x) =Vx+3+ 1 graphed in Figure 1.10, the values of f(x) are getting larger as the values of x are getting larger.

A function with this property is said to be increasing. It is important to note, however, that a function can be increasing on
some interval or intervals and decreasing over a different interval or intervals. For example, using our temperature function
in Figure 1.6, we can see that the function is decreasing on the interval (0, 4), increasing on the interval (4, 14), and

then decreasing on the interval (14, 23). We make the idea of a function increasing or decreasing over a particular interval

more precise in the next definition.

Definition

We say that a function f is increasing on the interval I if forall x;, x, € /,

f(xl) < f(xz) when X1 < X9.
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We say f is strictly increasing on the interval / if forall xq, x5 € I,
f(xy) < f(x,) when x; < x,.
We say that a function f is decreasing on the interval I if forall x, x, € I,
[ = flxp)if xq < x5.
We say that a function f is strictly decreasing on the interval [ if forall xq, x5 € I,

f(xl) > f(.xz) lf.xl < Xz.

For example, the function f(x) = 3x is increasing on the interval (—co, co) because 3x; < 3x, whenever x| < x,.
On the other hand, the function f(x) = -3 is decreasing on the interval (—oo, co) because —x? > — x% whenever

x| < x, (Figure 1.11).

@ (b)

Figure 1.11 (a) The function f(x) = 3x is increasing on the interval (—oo, 00). (b) The

function f(x) = —x3 s decreasing on the interval (—o0, o).

Combining Functions

Now that we have reviewed the basic characteristics of functions, we can see what happens to these properties when we
combine functions in different ways, using basic mathematical operations to create new functions. For example, if the cost
for a company to manufacture x items is described by the function C(x) and the revenue created by the sale of x items is

described by the function R(x), then the profit on the manufacture and sale of x items is defined as P(x) = R(x) — C(x).
Using the difference between two functions, we created a new function.
Alternatively, we can create a new function by composing two functions. For example, given the functions f(x) = x* and

g(x) =3x+1, the composite function feg is defined such that
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(Fog)x) = flg) = (g(x)* = Bx + 1)

The composite function go f is defined such that

(8o f)x) = glf (X)) = 3f(x) + 1 =3x? + 1.
Note that these two new functions are different from each other.
Combining Functions with Mathematical Operators

To combine functions using mathematical operators, we simply write the functions with the operator and simplify. Given
two functions f and g, we can define four new functions:

(f + 8 = f(x) + g Sum

(f — 8)x) = f(x) — g(x) Diffe ence
(f- 8 = f(x)gx) Product
(%)(x) = % forg(x) #0  Quotient

Example 1.6

Combining Functions Using Mathematical Operations

Given the functions f(x) =2x—3 and g(x) = x> =1, find each of the following functions and state its

domain.
a. (f+W
b. (f—g®x
c (f-9W
o (Lo
Solution

a (f+gx)=Qx-3)+ (x2 -1)= x% + 2x — 4. The domain of this function is the interval (—o00, ).

b. (f—gx)=QR2x-3)— (x2 -1 = —x24+2x—2. The domain of this function is the interval

(—o00, ).

c (f-gx)=0Cx- 3)(x2 -1 = 2x3 —3x2—2x+3. The domain of this function is the interval

(—o00, 00).

d. (%)(x) = % The domain of this function is {x|x # +1}.
x —

@ 14 For f(x) =x>+3 and g(x) =2x—5, find (f/g)(x) and state its domain.
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Function Composition
When we compose functions, we take a function of a function. For example, suppose the temperature 7" on a given day is
described as a function of time ¢ (measured in hours after midnight) as in Table 1.1. Suppose the cost C, to heat or cool

a building for 1 hour, can be described as a function of the temperature 7. Combining these two functions, we can describe
the cost of heating or cooling a building as a function of time by evaluating C(7'(¢)). We have defined a new function,

denoted CoT, which is defined such that (C-T)(r) = C(T(¢)) for all ¢ in the domain of 7. This new function is called

a composite function. We note that since cost is a function of temperature and temperature is a function of time, it makes
sense to define this new function (CoT)(¢). It does not make sense to consider (7C)(f), because temperature is not a

function of cost.

Definition

Consider the function f with domain A and range B, and the function g with domain D and range E. If B isa

subset of D, then the composite function (go f)(x) is the function with domain A such that

(o f)x) = glf(x)). (1.1)

A composite function geo f can be viewed in two steps. First, the function f maps each input x in the domain of f to
its output f(x) in the range of f. Second, since the range of f is a subset of the domain of g, the output f(x) is an

element in the domain of g, and therefore it is mapped to an output g(f(x)) in the range of g. In Figure 1.12, we see a

visual image of a composite function.

Domain Domain of g
of f -

Range of g

Domain
of
gof gof
Figure 1.12 For the composite function g f, we have

(gof)1) =4, (g=f)2) =5, and (g f)(3) =4.

Example 1.7

Compositions of Functions Defined by Formulas

Range of f Range of
gof

Consider the functions f(x) = x>+ 1 and g(x) = 1/x.
a. Find (geof)(x) and state its domain and range.

b. Evaluate (gof)(4), (gof)(—1/2).

c. Find (f-g)(x) and state its domain and range.

d. Evaluate (fog)4), (feg)(—1/2).

Solution
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a. We can find the formula for (ge f)(x) in two different ways. We could write

(o)) = g(f(x) = gx? + 1) = =1 —.

+1

Alternatively, we could write

(82100 = gl () = 5 = 77

Since x2 + 1 # 0 for all real numbers x, the domain of (ge f)(x) is the set of all real numbers. Since
0< 1/(x2 + 1) <1, the range is, at most, the interval (0, 1]. To show that the range is this entire
interval, we let y = 1/(x2 + 1) and solve this equation for x to show that for all y in the interval
(0, 1], there exists a real number x such that y = 1/()c2 + 1). Solving this equation for x, we see

that x>+ 1 = 1/y, which implies that

If y isin the interval (0, 1], the expression under the radical is nonnegative, and therefore there exists

a real number x such that 1/()c2 + 1) = y. We conclude that the range of go f is the interval (0, 1].

b (ge /) = g(/4) = g(@>+ 1) = g(17) = {5

e n4) =) =) +1)= )=

c. We can find a formula for (feg)(x) in two ways. First, we could write

(1IN

(Fop)) = fis) = () = (1) + 1.

Alternatively, we could write

2
(Fo9)®) = fg) = (g)*+ 1= (1) +1.

The domain of feog is the set of all real numbers x such that x # 0. To find the range of f, we need

to find all values y for which there exists a real number x # O such that

Solving this equation for x, we see that we need x to satisfy

) =1

which simplifies to

=
Il
I+
<
|
—_
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Finally, we obtain

1 .
y—1

xX= +

Since 1/4/y — 1 is a real number if and only if y > 1, the range of f is the set {y|y > 1}.

A (fo® = flg@) = f(})= (%)2 =11
(Foo(~2) = 1(s(-1)) = f2 = 27 +1=5

In Example 1.7, we can see that (f°g)(x) # (go f)(x). This tells us, in general terms, that the order in which we compose

functions matters.

@/ 1.5 Let f(x) =2 —5x. Let g(x) = vx. Find (f°g)x).

Example 1.8

Composition of Functions Defined by Tables

Consider the functions f and g described by Table 1.4 and Table 1.5.

x -3 -2 -1 0 1 2 3 4
S 0 4 2 4 -2 0 -2 4
Table 1.4
x -4 -2 0 2 4
g(x) 1 0 3 0 5
Table 1.5

a. Evaluate (gof)(3), (g°f)0).

b. State the domain and range of (ge f)(x).

c. Evaluate (f°f)(3), (fef)(1).
d. State the domain and range of (f e f)(x).
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Solution
a. (gofI3)=gfB3)=g(-2)=0
(8°/)0) =g4) =5
b. The domain of geof is the set {-3, -2, —1,0, 1, 2, 3, 4}. Since the range of f is the set
{=2,0, 2,4}, therangeof gof istheset {0, 3, 5}.

e (fof)B3)=ffB) = f(-2)=4
(Fe (D) = f(F(1) = f(=2) = 4

d. The domain of feof is the set {-3, -2, —1,0, 1, 2, 3, 4}. Since the range of f is the set
{=2,0, 2,4}, therange of fof istheset {0, 4}.

Example 1.9

Application Involving a Composite Function

A store is advertising a sale of 20% off all merchandise. Caroline has a coupon that entitles her to an additional

15% off any item, including sale merchandise. If Caroline decides to purchase an item with an original price of
x dollars, how much will she end up paying if she applies her coupon to the sale price? Solve this problem by
using a composite function.

Solution

Since the sale price is 20% off the original price, if an item is x dollars, its sale price is given by f(x) = 0.80x.
Since the coupon entitles an individual to 15% off the price of any item, if an item is y dollars, the price, after
applying the coupon, is given by g(y) = 0.85y. Therefore, if the price is originally x dollars, its sale price will
be f(x) =0.80x and then its final price after the coupon will be g(f(x)) = 0.85(0.80x) = 0.68x.

1.6 If items are on sale for 10% off their original price, and a customer has a coupon for an additional 30%
off, what will be the final price for an item that is originally x dollars, after applying the coupon to the sale
price?

Symmetry of Functions

The graphs of certain functions have symmetry properties that help us understand the function and the shape of its graph.
For example, consider the function f(x) = x*=2x% =3 shown in Figure 1.13(a). If we take the part of the curve that
lies to the right of the y-axis and flip it over the y-axis, it lays exactly on top of the curve to the left of the y-axis. In this
case, we say the function has symmetry about the y-axis. On the other hand, consider the function f(x) = x> = 4x shown
in Figure 1.13(b). If we take the graph and rotate it 180° about the origin, the new graph will look exactly the same. In
this case, we say the function has symmetry about the origin.
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=V

(a) Symmetry about the y-axis (b) Symmetry about the origin
Figure 1.13 (a) A graph that is symmetric about the y -axis. (b) A graph that is symmetric

about the origin.

If we are given the graph of a function, it is easy to see whether the graph has one of these symmetry properties. But without
a graph, how can we determine algebraically whether a function f has symmetry? Looking at Figure 1.14 again, we see

that since f is symmetric about the y -axis, if the point (x, y) is on the graph, the point (—x, y) is on the graph. In other

words, f(—x) = f(x). If a function f has this property, we say f is an even function, which has symmetry about the

y-axis. For example, f(x) = x? is even because

f=0) = (0% =2 = f(2).
In contrast, looking at Figure 1.14 again, if a function f is symmetric about the origin, then whenever the point (x, y) is

on the graph, the point (—x, —y) is also on the graph. In other words, f(—x) = —f(x). If f has this property, we say f

3

is an odd function, which has symmetry about the origin. For example, f(x) = x~ is odd because

f(=x) = (=x)° = =x> = = f(x).

Definition

If f(x) = f(—x) forall x inthe domain of f, then f is an even function. An even function is symmetric about the
y-axis.
If f(—x) = —f(x) forall x inthe domain of f, then f isan odd function. An odd function is symmetric about the

origin.

Example 1.10

Even and Odd Functions

Determine whether each of the following functions is even, odd, or neither.

a. fx)= —5xt+7x% -2
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b. f(x)=2x—4x+5

—_3x
A X241

Solution

To determine whether a function is even or odd, we evaluate f(—x) and compare it to f(x) and —f(x).
a. f(-x)= —5(—)c)4 + 7(—x)2 —2=-5x*+7x2-2= f(x). Therefore, f is even.

b. f(—x)= 2(—)5)5 —4(—x)+5= —2x° +4x +5. Now, f(—x)# f(x). Furthermore, noting that

—f(x) = —20 4+ 4x — 5, we see that f(—x) # —f(x). Therefore, f is neither even nor odd.

e f(=x) =3(=0)/((=0)2>+ 1} = =3x/(x* + 1) = —[3x/(x> + 1)] = —f(x). Therefore, f is odd.

EVI 1.7 Determine whether flx) = 4x3 —5x is even, odd, or neither.

One symmetric function that arises frequently is the absolute value function, written as |x|. The absolute value function is
defined as

-x,x<0 (1.2)
x,x>0"

s =1

Some students describe this function by stating that it “makes everything positive.” By the definition of the absolute value
function, we see that if x < 0, then |x] = —-x>0, and if x>0, then |x| =x > 0. However, for x =0, |x| = 0.

Therefore, it is more accurate to say that for all nonzero inputs, the output is positive, but if x = 0, the output |x| = 0. We
conclude that the range of the absolute value function is {y|y > 0}. In Figure 1.14, we see that the absolute value function
is symmetric about the y-axis and is therefore an even function.

Y|

) =1Ix

Figure 1.14 The graph of f(x) = |x| is symmetric about the

y -axis.
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Example 1.11

Working with the Absolute Value Function
Find the domain and range of the function f(x) = 2|x — 3| + 4.

Solution
Since the absolute value function is defined for all real numbers, the domain of this function is (—oo0, o0). Since
|x —3] >0 forall x, thefunction f(x)=2|x— 3|+ 4 > 4. Therefore, the range is, at most, the set {y|y > 4}.
To see that the range is, in fact, this whole set, we need to show that for y > 4 there exists a real number x such
that

2lx=3|+4=1y.

A real number x satisfies this equation as long as
lx — 3l = %(y —4).

Since y > 4, weknow y—4 >0, and thus the right-hand side of the equation is nonnegative, so it is possible

that there is a solution. Furthermore,

—(x=3) ifx<3
Ix-3l= . .
x—=3 ifx>3

Therefore, we see there are two solutions:

X = i%(y—4)+3.

The range of this function is {y|y > 4.

@ 1.8 For the function f(x) =|x+ 2| —4, find the domain and range.
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1.1 EXERCISES

For the following exercises, (a) determine the domain and 4, ¥ y x y
the range of each relation, and (b) state whether the relation
is a function.
1 1 5 1
1.
X y x y
2 1 6 1
-3 9 1 1
3 1 7 1
-2 4 2 4
4 1
-1 1 3 9
0 0
3 X y X y
3 3 15 1
2.
x y x y
5 2 21 2
-3 -2 1 1
8 1 33 3
-2 -8 2 8
10 0
-1 -1 3 -2
0 0
6 x y x y
=7 11 1 -2
3.
x y X y
-2 5 3 4
1 -3 1 1
-2 1 6 11
2 -2 2 2
0 -1
3 -1 3 3
0 0 For the following exercises, find the values for each
function, if they exist, then simplify.

a. f(0) b. f(1) c. f(3) d. f(—x) e. f(a) . fla+h)

7. f(x)=5x-2
8. flx)=4x*—3x+1

S rw=%
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10. f(x)=Ix—-T71+8 23. f(x)=3x-6
11, f(x) =V6x+5 X Yy X Yy
12. _x=2 -3 | -15 | 1 -3

JO =337
13. f(x)=9 -2 | -12 | 2 0
For the following exercises, find the domain, range, and all
zeros/intercepts, if any, of the functions. -1 -9 3 3
14. f(x)=—2%

x2-16 0 6

15. g(x) = V8x —1

x“+4
x y x y
17. f(x)=-1+Vx+2
1 3
18. f(x)= 1 -3 —E 1 5
Vx—9
19. __3 2 1o 2 2
800 =—=7
20. f(x) =4x+ 3| 1 5
12 3 2
21. 7
g(x) - X — 5
0 1
For the following exercises, set up a table to sketch the
graph of each function using the following values:
x=-3,-2,-1,0,1, 2, 3.
25. f(x) =2«

22 f)=x*+1

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2



Chapter 1 | Functions and Graphs

26 f() = —?

x y X y
-3 -9 1 -1
-2 —4 2 -4
-1 -1 3 -9
0 0

x y x y
-3 -27 1 1
-2 -8 2 8
-1 -1 3 27
0 0

For the following exercises, use the vertical line test to
determine whether each of the given graphs represents a
function. Assume that a graph continues at both ends if
it extends beyond the given grid. If the graph represents a
function, then determine the following for each graph:

a.
b.

-~ ® o

5 Q@

Domain and range

x -intercept, if any (estimate where necessary)

y -Intercept, if any (estimate where necessary)

The intervals for which the function is increasing
The intervals for which the function is decreasing
The intervals for which the function is constant
Symmetry about any axis and/or the origin

Whether the function is even, odd, or neither

28.

o'

31

29.

w4

xY

30.

1)

5l

21

w4

xY

o+

xy
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31. Yi 34. Yi
51 51
44 a4t
3+ Al
21
21
1+
— — . 1T
1 5 -4 -3-2-190 1 2 3 a4 s5X
Lo | 14
- ol
—4}
-3
51
—4+
32. ) 5!
4__
35. 5!;
2l 1
2l . =
1+ 37
1 1 1 1 1 Il 1 1 1 1 2__
-5 -4 -3 -2 -1 N1 2 3 4 s5X Al
14
2 i ;%
-3
—4+
—51
33. %[ —5l
For the following exercises, for each pair of functions, find
3t a. f+gb. f—gc f-gd flg. Determine the domain
2l of each of these new functions.
1+ 36. f(x)=3x+4, gx)=x-2
T A T 3 4 5 5% 9 pgmres =i
—14
—2} 38 f)=3x2+dx+1, g0)=x+1
-3
A 39, f)=9-x% gx)=x>—2x-3
-5t 40. f(x)=vx, gx) =x—2

A f=6+1 g=1
For the following exercises, for each pair of functions, find

a. (fog)(x) andb. (go f)(x) Simplify the results. Find the

domain of each of the results.
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42.

43.

44,

45.

46.

47.

48.

f(x) =3x,gx)=x+5
f)=x+4, gx) =4x—1
f@) =2x+4, g) =x* -2
f@=x"+7, g0 =x"-3
) =vx g(x) =x+9

fO) =52 80 =%

@) =+ 1], gx) = x> +x—4

33

49. The table below lists the NBA championship winners
for the years 2001 to 2012.

d.

Year Winner

2001 LA Lakers

2002 LA Lakers

2003 San Antonio Spurs

2004 Detroit Pistons

2005 San Antonio Spurs

2006 Miami Heat

2007 San Antonio Spurs

2008 Boston Celtics

2009 LA Lakers

2010 LA Lakers

2011 Dallas Mavericks

2012 Miami Heat

Consider the relation in which the domain values
are the years 2001 to 2012 and the range is the
corresponding winner. Is this relation a function?
Explain why or why not.

Consider the relation where the domain values are
the winners and the range is the corresponding
years. Is this relation a function? Explain why or
why not.

50. [T] The area A of a square depends on the length of

the side s.
a. Write a function A(s) for the area of a square.
b. Find and interpret A(6.5).
c. Find the exact and the two-significant-digit

approximation to the length of the sides of a square
with area 56 square units.
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51. [T] The volume of a cube depends on the length of the
sides s.

a. Write a function V(s) for the area of a square.

b. Find and interpret V(11.8).

52. [T] A rental car company rents cars for a flat fee of $20
and an hourly charge of $10.25. Therefore, the total cost C

to rent a car is a function of the hours ¢ the car is rented
plus the flat fee.

a. Write the formula for the function that models this
situation.

b. Find the total cost to rent a car for 2 days and 7
hours.

c. Determine how long the car was rented if the bill is
$432.73.

53. [T] A vehicle has a 20-gal tank and gets 15 mpg. The
number of miles N that can be driven depends on the
amount of gas x in the tank.

a. Write a formula that models this situation.

b. Determine the number of miles the vehicle can
travel on (i) a full tank of gas and (ii) 3/4 of a tank
of gas.

Determine the domain and range of the function.

d. Determine how many times the driver had to stop
for gas if she has driven a total of 578 mi.

54. [T] The volume V of a sphere depends on the length of
its radius as V = (4/3)7rr3. Because Earth is not a perfect

sphere, we can use the mean radius when measuring from
the center to its surface. The mean radius is the average
distance from the physical center to the surface, based on a
large number of samples. Find the volume of Earth with

mean radius 6.371 x 10° m.

55. [T] A certain bacterium grows in culture in a circular
region. The radius of the circle, measured in centimeters, is

given by r(t)=6—[5/(t2+ l)], where t is time

measured in hours since a circle of a 1-cm radius of the
bacterium was put into the culture.

a. Express the area of the bacteria as a function of
time.

b. Find the exact and approximate area of the bacterial
culture in 3 hours.

c. Express the circumference of the bacteria as a
function of time.

d. Find the exact and approximate circumference of
the bacteria in 3 hours.
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56. [T] An American tourist visits Paris and must convert
U.S. dollars to Euros, which can be done using the function
E(x) =0.79x, where x is the number of U.S. dollars and

E(x) is the equivalent number of Euros. Since conversion

rates fluctuate, when the tourist returns to the United States
2 weeks later, the conversion from Euros to U.S. dollars is
D(x) = 1.245x, where x is the number of Euros and

D(x) is the equivalent number of U.S. dollars.

a. Find the composite function that converts directly
from U.S. dollars to U.S. dollars via Euros. Did this
tourist lose value in the conversion process?

b. Use (a) to determine how many U.S. dollars the
tourist would get back at the end of her trip if she
converted an extra $200 when she arrived in Paris.

57. [T] The manager at a skateboard shop pays his workers
a monthly salary S of $750 plus a commission of $8.50 for
each skateboard they sell.

a. Write a function y = S(x) that models a worker’s

monthly salary based on the number of skateboards
x he or she sells.

b. Find the approximate monthly salary when a
worker sells 25, 40, or 55 skateboards.

c. Use the INTERSECT feature on a graphing
calculator to determine the number of skateboards
that must be sold for a worker to earn a monthly
income of $1400. (Hint: Find the intersection of the
function and the line y = 1400.)

S(x) = 8.5x + 750

10 20 30 40 50 60 70 80 90 100%

(=]
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58. [T] Use a graphing calculator to graph the half-circle
y=Y25-(x—- 4)2. Then, use the INTERCEPT feature

to find the value of both the x - and y -intercepts.

Yi

35
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1.2 | Basic Classes of Functions

Learning Objectives

1.2.1 Calculate the slope of a linear function and interpret its meaning.

1.2.2 Recognize the degree of a polynomial.

1.2.3 Find the roots of a quadratic polynomial.

1.2.4 Describe the graphs of basic odd and even polynomial functions.

1.2.5 Identify a rational function.

1.2.6 Describe the graphs of power and root functions.

1.2.7 Explain the difference between algebraic and transcendental functions.
1.2.8 Graph a piecewise-defined function.

1.2.9 Sketch the graph of a function that has been shifted, stretched, or reflected from its initial
graph position.

We have studied the general characteristics of functions, so now let’s examine some specific classes of functions. We
begin by reviewing the basic properties of linear and quadratic functions, and then generalize to include higher-degree
polynomials. By combining root functions with polynomials, we can define general algebraic functions and distinguish
them from the transcendental functions we examine later in this chapter. We finish the section with examples of piecewise-
defined functions and take a look at how to sketch the graph of a function that has been shifted, stretched, or reflected from
its initial form.

Linear Functions and Slope

The easiest type of function to consider is a linear function. Linear functions have the form f(x) = ax+ b, where a and

b are constants. In Figure 1.15, we see examples of linear functions when a is positive, negative, and zero. Note that if
a > 0, the graph of the line rises as x increases. In other words, f(x) = ax + b is increasing on (—o0, o). If a <0,

the graph of the line falls as x increases. In this case, f(x) = ax + b is decreasing on (—o0, ). If a =0, the line is
horizontal.
Yi

t t t t t t I‘;
/ 1 h() = -3

Figure 1.15 These linear functions are increasing or
decreasing on (00, co0) and one function is a horizontal line.

As suggested by Figure 1.15, the graph of any linear function is a line. One of the distinguishing features of a line is its
slope. The slope is the change in y for each unit change in x. The slope measures both the steepness and the direction of

a line. If the slope is positive, the line points upward when moving from left to right. If the slope is negative, the line points
downward when moving from left to right. If the slope is zero, the line is horizontal. To calculate the slope of a line, we
need to determine the ratio of the change in y versus the change in x. To do so, we choose any two points (xy, y;) and

Yo=Y
X —X1°

(x5, ¥,) on the line and calculate In Figure 1.16, we see this ratio is independent of the points chosen.
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yQ—y1_9—3 2

X,—x, 5-2

Yo =¥ 5-1 2
X, =X, 3-1

Figure 1.16 For any linear function, the slope
(y2 = ¥1)/(x5 — x) is independent of the choice of points

(x1, ¥1) and (x,, y,) on the line.

Definition

Consider line L passing through points (x;, y;) and (x5, y,). Let Ay =y, —y; and Ax = x, —x; denote the

changes in y and x, respectively. The slope of the line is

_Y2=Yi_Ay (1.3)
Loha CIRVAY

m

We now examine the relationship between slope and the formula for a linear function. Consider the linear function given
by the formula f(x) = ax+ b. As discussed earlier, we know the graph of a linear function is given by a line. We

can use our definition of slope to calculate the slope of this line. As shown, we can determine the slope by calculating
(yo =y ) (xy—x;) for any points (x;, y;) and (x5, y,) on the line. Evaluating the function f at x =0, we see

that (0, b) is a point on this line. Evaluating this function at x = 1, we see that (1, @ + b) is also a point on this line.
Therefore, the slope of this line is

@th)=b_,
We have shown that the coefficient a is the slope of the line. We can conclude that the formula f(x) = ax + b describes
a line with slope a. Furthermore, because this line intersects the y -axis at the point (0, ), we see that the y -intercept
for this linear function is (0, ). We conclude that the formula f(x) = ax + b tells us the slope, a, and the y -intercept,

(0, b), for this line. Since we often use the symbol m to denote the slope of a line, we can write
fx)=mx+b

to denote the slope-intercept form of a linear function.

Sometimes it is convenient to express a linear function in different ways. For example, suppose the graph of a linear function
passes through the point (x{, y;) and the slope of the line is m. Since any other point (x, f(x)) on the graph of f must

satisfy the equation

() -
m= fx_xills
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this linear function can be expressed by writing
Jx) =y =mlx —x)).
We call this equation the point-slope equation for that linear function.

Since every nonvertical line is the graph of a linear function, the points on a nonvertical line can be described using the
slope-intercept or point-slope equations. However, a vertical line does not represent the graph of a function and cannot be
expressed in either of these forms. Instead, a vertical line is described by the equation x = k for some constant k. Since

neither the slope-intercept form nor the point-slope form allows for vertical lines, we use the notation

ax+by=c,

where a, b are both not zero, to denote the standard form of a line.

Definition

Consider a line passing through the point (x{, y;) with slope m. The equation
y—yp=mx—xp) (1.4)

is the point-slope equation for that line.

Consider a line with slope m and y -intercept (0, b). The equation
y=mx+b (1.5)

is an equation for that line in slope-intercept form.
The standard form of a line is given by the equation

ax + by = c, (1.6)

where a and b are both not zero. This form is more general because it allows for a vertical line, x = k.

Example 1.12

Finding the Slope and Equations of Lines

Consider the line passing through the points (11, —4) and (-4, 5), as shown in Figure 1.17.
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Figure 1.17 Finding the equation of a linear function with a graph that is a line between
two given points.

a. Find the slope of the line.

b. Find an equation for this linear function in point-slope form.

c. Find an equation for this linear function in slope-intercept form.

Solution

a. The slope of the line is

X=X —4-11 15 5
b. To find an equation for the linear function in point-slope form, use the slope m = —3/5 and choose any

point on the line. If we choose the point (11, —4), we get the equation

fO)+4= - 3-10.

c. To find an equation for the linear function in slope-intercept form, solve the equation in part b. for f(x).

When we do this, we get the equation

) = —%w%

@ 1.9 Consider the line passing through points (-3, 2) and (1, 4). Find the slope of the line.

Find an equation of that line in point-slope form. Find an equation of that line in slope-intercept form.

Example 1.13

A Linear Distance Function

Jessica leaves her house at 5:50 a.m. and goes for a 9-mile run. She returns to her house at 7:08 a.m. Answer the
following questions, assuming Jessica runs at a constant pace.
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a. Describe the distance D (in miles) Jessica runs as a linear function of her run time ¢ (in minutes).
b. Sketch a graph of D.

c. Interpret the meaning of the slope.

Solution
a. Attime =0, Jessica is at her house, so D(0) = 0. At time ¢ = 78 minutes, Jessica has finished
running 9 mi, so D(78) = 9. The slope of the linear function is

9-0 _3
78—0 26

m=

The y -intercept is (0, 0), so the equation for this linear function is

-3
D@ = 5 61‘.
b. To graph D, use the fact that the graph passes through the origin and has slope m = 3/26.
v (78, 9)
E _ 3
:: 1 D(t) o
3]
c
S 4
1]
o e, .
t
Time (min)
c. The slope m = 3/26 =~ 0.115 describes the distance (in miles) Jessica runs per minute, or her average
velocity.
Polynomials

A linear function is a special type of a more general class of functions: polynomials. A pelynomial function is any function
that can be written in the form

f(x)=anxn+an_1xn_l+...+a1x+a0 (1.7)

for some integer n > 0 and constants a,, a, _|,...,ag, where a, # 0. In the case when n =0, we allow for ay = 0;
if ag =0, the function f(x)=0 is called the zero function. The value n is called the degree of the polynomial; the
constant a, is called the leading coefficient. A linear function of the form f(x) = mx + b is a polynomial of degree 1
if m# 0 and degree 0 if m = 0. A polynomial of degree O is also called a constant function. A polynomial function
of degree 2 is called a quadratic function. In particular, a quadratic function has the form f(x) = ax® + bx + ¢, where

a # 0. A polynomial function of degree 3 is called a cubic function.

Power Functions

Some polynomial functions are power functions. A power function is any function of the form f(x) = ax”, where a and

b are any real numbers. The exponent in a power function can be any real number, but here we consider the case when the

exponent is a positive integer. (We consider other cases later.) If the exponent is a positive integer, then f(x) = ax” is a
polynomial. If 7 is even, then f(x) = ax” is an even function because f(—x) = a(—x)" = ax" if n is even. If n is odd,

then f(x) = ax” is an odd function because f(—x) = a(—x)" = —ax" if n is odd (Figure 1.18).
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Yi f(x) = x* Yi fix) = x°

@) (b)

Figure 1.18 (a) For any even integer 1, f(x) = ax” is an even function. (b) For any odd

integer 1, f(x) = ax” is an odd function.

Behavior at Infinity

To determine the behavior of a function f as the inputs approach infinity, we look at the values f(x) as the inputs,
x, become larger. For some functions, the values of f(x) approach a finite number. For example, for the function
f(x) =24 1/x, thevalues 1/x become closer and closer to zero for all values of x as they get larger and larger. For this
function, we say “f(x) approaches two as x goes to infinity,” and we write f(x) - 2 as x — oo. The line y=2 isa
horizontal asymptote for the function f(x) =2 + 1/x because the graph of the function gets closer to the line as x gets
larger.

For other functions, the values f(x) may not approach a finite number but instead may become larger for all values of x

as they get larger. In that case, we say “f(x) approaches infinity as x approaches infinity,” and we write f(x) —» co as
x — oo. For example, for the function f(x) = 3x2, the outputs f(x) become larger as the inputs x get larger. We can

conclude that the function f(x) = 3x2 approaches infinity as x approaches infinity, and we write 3x2 > o as x = oo.
The behavior as x - —oco and the meaning of f(x) > —co as x - co or x - —oo can be defined similarly. We can

describe what happens to the values of f(x) as x — oo and as x - —oo as the end behavior of the function.

To understand the end behavior for polynomial functions, we can focus on quadratic and cubic functions. The behavior for
higher-degree polynomials can be analyzed similarly. Consider a quadratic function f(x) = ax®>+bx+c. If a>0, the

values f(x) - o0 as x > +o00. If a <0, thevalues f(x) > —c0 as x — +o0. Since the graph of a quadratic function

is a parabola, the parabola opens upward if a > 0; the parabola opens downward if a < 0. (See Figure 1.19(a).)

Now consider a cubic function f(x) = ax> +bx>+ex+d. 1f a> 0, then f(x) > o as x - o0 and f(x) > —o0
as x > —oo. If a <0, then f(x) > —c0 as x > o0 and f(x) > co as x — —oo. As we can see from both of these

graphs, the leading term of the polynomial determines the end behavior. (See Figure 1.19(b).)
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yi f(x)=2x2 — 12x + 18

@ (b)

Figure 1.19 (a) For a quadratic function, if the leading coefficient @ > 0, the parabola opens
upward. If a < 0, the parabola opens downward. (b) For a cubic function f, if the leading
coefficient a > 0, the values f(x) = oo as x — oo and the values f(x) > —oo0 as

x — —oo. If the leading coefficient @ < 0, the opposite is true.

Zeros of Polynomial Functions

Another characteristic of the graph of a polynomial function is where it intersects the x -axis. To determine where a function
f intersects the x -axis, we need to solve the equation f(x) =0 for .n the case of the linear function f(x) = mx + b,

the x-intercept is given by solving the equation mx + b = 0. In this case, we see that the x-intercept is given by
(—=b/m, 0). In the case of a quadratic function, finding the x -intercept(s) requires finding the zeros of a quadratic equation:

ax?+ bx + ¢ = 0. In some cases, it is easy to factor the polynomial ax? + bx + ¢ to find the zeros. If not, we make use

of the quadratic formula.

Rule: The Quadratic Formula

Consider the quadratic equation
ax’+bx+c= 0,
where a # 0. The solutions of this equation are given by the quadratic formula

= —b+ b2 - 4ac. (1.8)

2a

If the discriminant % — 4ac > 0, this formula tells us there are two real numbers that satisfy the quadratic equation.

If b2 —4dac = 0, this formula tells us there is only one solution, and it is a real number. If b2 — 4ac < 0, no real

numbers satisfy the quadratic equation.

In the case of higher-degree polynomials, it may be more complicated to determine where the graph intersects the x -axis.
In some instances, it is possible to find the x -intercepts by factoring the polynomial to find its zeros. In other cases, it is
impossible to calculate the exact values of the x -intercepts. However, as we see later in the text, in cases such as this, we
can use analytical tools to approximate (to a very high degree) where the x -intercepts are located. Here we focus on the
graphs of polynomials for which we can calculate their zeros explicitly.
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Example 1.14

Graphing Polynomial Functions

For the following functions a. and b., i. describe the behavior of f(x) as x — +oo, ii. find all zeros of f, and
iii. sketch a graph of f.
a. f(x)=-2x’+4x-1

b, f(x)=x>—3x>—4x

Solution
a. The function f(x) = —2x%+4x—1isa quadratic function.
i. Because a = -2 <0, asx — +00, f(x) > —o0.
ii. To find the zeros of f, use the quadratic formula. The zeros are

—42 142 —4=2)(=D _ —4+\8 _-4+22 _2+\2

2(=2) i —4 2

iii. To sketch the graph of f, use the information from your previous answers and combine it with

X =

the fact that the graph is a parabola opening downward.
y
fp)=—-2x2+4x -1

(0.2929,0)| /' '\ (17071, 0)

b. The function f(x) = x3 = 3x2 — 4x is a cubic function.
i. Because a=1>0, asx = o0, f(x) > c0. As x »> —o0, f(x) > —c0.

ii. To find the zeros of f, we need to factor the polynomial. First, when we factor x out of all the

terms, we find

flx) = x()c2 —-3x—-4).

Then, when we factor the quadratic function x> —3x—4, we find

S =x(x =4 (x+1).
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Therefore, the zeros of f are x =0, 4, —1.

iii. Combining the results from parts i. and ii., draw a rough sketch of f.

Y i ) =x3—3x%2— 4x

1.10  Consider the quadratic function f(x) = 3x% — 6x + 2. Find the zeros of f- Does the parabola open

upward or downward?

Mathematical Models

A large variety of real-world situations can be described using mathematical models. A mathematical model is a method of
simulating real-life situations with mathematical equations. Physicists, engineers, economists, and other researchers develop
models by combining observation with quantitative data to develop equations, functions, graphs, and other mathematical
tools to describe the behavior of various systems accurately. Models are useful because they help predict future outcomes.
Examples of mathematical models include the study of population dynamics, investigations of weather patterns, and
predictions of product sales.

As an example, let’s consider a mathematical model that a company could use to describe its revenue for the sale of a
particular item. The amount of revenue R a company receives for the sale of n items sold at a price of p dollars per item

is described by the equation R = p - n. The company is interested in how the sales change as the price of the item changes.

Suppose the data in Table 1.6 show the number of units a company sells as a function of the price per item.
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n 19.4 18.5 16.2 13.8 12.2

Table 1.6 Number of Units Sold » (in Thousands) as a
Function of Price per Unit p (in Dollars)

In Figure 1.20, we see the graph the number of units sold (in thousands) as a function of price (in dollars). We note from
the shape of the graph that the number of units sold is likely a linear function of price per item, and the data can be closely
approximated by the linear function n = —1.04p +26 for 0 < p <25, where n predicts the number of units sold in

thousands. Using this linear function, the revenue (in thousands of dollars) can be estimated by the quadratic function
R(p) = p-(~1.04p +26) = —1.04p> + 26p

for 0 < p <25. In Example 1.15, we use this quadratic function to predict the amount of revenue the company receives

depending on the price the company charges per item. Note that we cannot conclude definitively the actual number of units
sold for values of p, for which no data are collected. However, given the other data values and the graph shown, it seems

reasonable that the number of units sold (in thousands) if the price charged is p dollars may be close to the values predicted

by the linear function n = —1.04p + 26.

n

[y~
o

=
o

Units sold (thousands)

n=-104p + 26

10 20 P
Price (dollars)

Figure 1.20 The data collected for the number of items sold as a function of

price is roughly linear. We use the linear function n = —1.04p + 26 to estimate

this function.
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Maximizing Revenue

A company is interested in predicting the amount of revenue it will receive depending on the price it charges for a
particular item. Using the data from Table 1.6, the company arrives at the following quadratic function to model
revenue R as a function of price per item p:

R(p) = p-(—1.04p + 26) = —1.04p> + 26p
for 0 < p <25.
a. Predict the revenue if the company sells the item at a price of p = $5 and p = $17.

b. Find the zeros of this function and interpret the meaning of the zeros.
c. Sketch a graph of R.

d. Use the graph to determine the value of p that maximizes revenue. Find the maximum revenue.

Solution

a. Evaluating the revenue functionat p =5 and p = 17, we can conclude that

R(5) = —1.04(5)2 +26(5) = 104, sorevenue = $104,000;
R(17) = —1.04(17)2 +26(17) = 141.44, sorevenue = $144,440.

b. The zeros of this function can be found by solving the equation —1.04p2 +26p = 0. When we factor
the quadratic expression, we get p(—1.04p +26) = 0. The solutions to this equation are given by
p =0, 25. For these values of p, the revenue is zero. When p = $0, the revenue is zero because the
company is giving away its merchandise for free. When p = $25, the revenue is zero because the price
is too high, and no one will buy any items.

c. Knowing the fact that the function is quadratic, we also know the graph is a parabola. Since the
leading coefficient is negative, the parabola opens downward. One property of parabolas is that they are
symmetric about the axis, so since the zeros are at p =0 and p = 25, the parabola must be symmetric

about the line halfway between them, or p = 12.5.
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R

150+

100

Revenue (in thousands of dollars)
o1
o

"

Price (dollars)
d. The function is a parabola with zeros at p =0 and p =25, and it is symmetric about the line

p =12.5, so the maximum revenue occurs at a price of p = $12.50 per item. At that price, the revenue

is R(p) = —1.04(12.5)% + 26(12.5) = $162, 500.

Algebraic Functions

By allowing for quotients and fractional powers in polynomial functions, we create a larger class of functions. An algebraic
function is one that involves addition, subtraction, multiplication, division, rational powers, and roots. Two types of
algebraic functions are rational functions and root functions.

Just as rational numbers are quotients of integers, rational functions are quotients of polynomials. In particular, a rational
function is any function of the form f(x) = p(x)/q(x), where p(x) and g(x) are polynomials. For example,

_3x—1 __ 4
f(-x)_ 5x+2 and g(x) _x2+1

In

are rational functions. A root function is a power function of the form f(x) = x" where n isa positive integer greater

/3 = 3% is the cube-root function. By

than one. For example, f(x) = x12 = vx is the square-root function and g(x) = x!
allowing for compositions of root functions and rational functions, we can create other algebraic functions. For example,

fx)=V4 - x% isan algebraic function.
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Example 1.16

Finding Domain and Range for Algebraic Functions

For each of the following functions, find the domain and range.

=)

b, f(x) = V4 —x?

Solution
a. It is not possible to divide by zero, so the domain is the set of real numbers x such that x # —2/5. To
find the range, we need to find the values y for which there exists a real number x such that

_3x-1
Y= 5x12

When we multiply both sides of this equation by 5x + 2, we see that x must satisfy the equation
Sxy+2y=3x-1.

From this equation, we can see that x must satisfy

2y+1=x(3->5y).

If y=3/5, this equation has no solution. On the other hand, as long as y # 3/5,

_2y+1
*T375y

satisfies this equation. We can conclude that the range of f is {y|y # 3/5}.
b. To find the domain of f, we need 4—x? >0. When we factor, we write

4—x>=Q2=x)Q2+x) >0. This inequality holds if and only if both terms are positive or both terms

are negative. For both terms to be positive, we need to find x such that

2—-x>0 and 24+x>0.

These two inequalities reduce to 2 > x and x > —2. Therefore, the set {x] —2 < x <2} must be part
of the domain. For both terms to be negative, we need

2—-x<0 and 24+x>0.

These two inequalities also reduce to 2 < x and x > —2. There are no values of x that satisfy both of
these inequalities. Thus, we can conclude the domain of this function is {x] —2 < x < 2}.

If -2<x<2, then 0<4-— P < 4. Therefore, 0<V4— %2 <2, and the range of f is
po<y<2i

@/ 1.11 Find the domain and range for the function f(x) = (5x + 2)/2x — 1).
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The root functions f(x) = x" have defining characteristics depending on whether 7 is odd or even. For all even integers

In In

n>2, the domain of f(x)= x" is the interval [0, o0). For all odd integers n > 1, the domain of f(x) = s

n

the set of all real numbers. Since x'/" = (—x)” " for odd integers n, f(x) = %" is an odd function if n is odd. See the

graphs of root functions for different values of »n in Figure 1.21.

yi yi

(a) (b)
Figure 1.21 (a) If n is even, the domain of f(x) =¥x is [0, 00). (b) If n is odd, the domain of f(x) = ¥x is

(—00, 0o) and the function f(x) = ¥x is an odd function.

Example 1.17

Finding Domains for Algebraic Functions

For each of the following functions, determine the domain of the function.

= 3
a.  f(x) 7]
2x+5
b. =2x+5
7 3x%+4
c. f(x)=v4-3x

d fo)=12x—1

Solution
a. You cannot divide by zero, so the domain is the set of values x such that ¥ -1 # 0. Therefore, the
domainis {x|x # +1}.
b. You need to determine the values of x for which the denominator is zero. Since 3x2 + 4 > 4 for all real

numbers x, the denominator is never zero. Therefore, the domain is (—o0, o0).

c. Since the square root of a negative number is not a real number, the domain is the set of values x for
which 4 — 3x > 0. Therefore, the domain is {x|x < 4/3}.

d. The cube root is defined for all real numbers, so the domain is the interval (—oo, c0).
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@/ 1.12  Find the domain for each of the following functions: f(x) = (5 — 2x)/(x2 +2) and g(x) =V5x—1.

Transcendental Functions

Thus far, we have discussed algebraic functions. Some functions, however, cannot be described by basic algebraic
operations. These functions are known as transcendental functions because they are said to “transcend,” or go beyond,
algebra. The most common transcendental functions are trigonometric, exponential, and logarithmic functions. A
trigonometric function relates the ratios of two sides of a right triangle. They are sinx, cosx, tanx, cotx, secx, and cscx.

(We discuss trigonometric functions later in the chapter.) An exponential function is a function of the form f(x) = b,
where the base b >0, b # 1. A logarithmic function is a function of the form f(x) =log,(x) for some constant
b>0,b#1, where log,(x) =y if and only if »¥ = x. (We also discuss exponential and logarithmic functions later in

the chapter.)

Example 1.18

Classifying Algebraic and Transcendental Functions

Classify each of the following functions, a. through c., as algebraic or transcendental.

a fx)= —VX3+1

dx+2

2
b. f(x)=2*
c. f(x) =sin(2x)

Solution
Since this function involves basic algebraic operations only, it is an algebraic function.

b. This function cannot be written as a formula that involves only basic algebraic operations, so it is
transcendental. (Note that algebraic functions can only have powers that are rational numbers.)

c. As in part b., this function cannot be written using a formula involving basic algebraic operations only;
therefore, this function is transcendental.

@ 1.13 Is f(x) = x/2 an algebraic or a transcendental function?

Piecewise-Defined Functions

Sometimes a function is defined by different formulas on different parts of its domain. A function with this property is
known as a piecewise-defined function. The absolute value function is an example of a piecewise-defined function because
the formula changes with the sign of x:

—x,x<0
x,x>0"

f =1

Other piecewise-defined functions may be represented by completely different formulas, depending on the part of the
domain in which a point falls. To graph a piecewise-defined function, we graph each part of the function in its respective
domain, on the same coordinate system. If the formula for a function is different for x < @ and x > a, we need to pay
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special attention to what happens at x = a when we graph the function. Sometimes the graph needs to include an open or
closed circle to indicate the value of the function at x = a. We examine this in the next example.

Example 1.19

Graphing a Piecewise-Defined Function

Sketch a graph of the following piecewise-defined function:

_{x+3, x<1
U NS

Solution

Graph the linear function y = x + 3 on the interval (—oo, 1) and graph the quadratic function y = (x — 2)2
on the interval [1, o0). Since the value of the function at x = 1 is given by the formula f(x) = (x —2) 2, we
see that f(1) = 1. To indicate this on the graph, we draw a closed circle at the point (1, 1). The value of the
function is given by f(x) =x+2 forall x < 1, butnotat x = 1. To indicate this on the graph, we draw an

open circle at (1, 4).

fix) = x + 3
forx <1

Figure 1.22 This piecewise-defined function is linear for
x < 1 and quadratic for x > 1.

@ 1.14 Sketch a graph of the function

2—x,x<2
f(x)_{x+2,x>2'

Example 1.20

Parking Fees Described by a Piecewise-Defined Function
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In a big city, drivers are charged variable rates for parking in a parking garage. They are charged $10 for the first
hour or any part of the first hour and an additional $2 for each hour or part thereof up to a maximum of $30 for
the day. The parking garage is open from 6 a.m. to 12 midnight.
a. Write a piecewise-defined function that describes the cost C to park in the parking garage as a function
of hours parked x.
b. Sketch a graph of this function C(x).
Solution
a. Since the parking garage is open 18 hours each day, the domain for this function is {x|0 < x < 18}. The
cost to park a car at this parking garage can be described piecewise by the function
10,0<x<1
12, 1 <x<2
<
Clx) = 14,2 <x<3 .
16,3 <x<4
30, 10 < x <18
b. The graph of the function consists of several horizontal line segments.
Y
30+ o} o
+ o—e
T o—e
m s o—e
s
= + o—o
3
< 20+ o—e
.g. 1 o—e
o 1 o—e
1 o—e
+ Oo—e
10
0] 5 10 15 x
Hours

@/ 1.15 The cost of mailing a letter is a function of the weight of the letter. Suppose the cost of mailing a letter is
49¢ for the first ounce and 21¢ for each additional ounce. Write a piecewise-defined function describing the

cost C as a function of the weight x for 0 < x <3, where C is measured in cents and x is measured in

ounces.

Transformations of Functions

We have seen several cases in which we have added, subtracted, or multiplied constants to form variations of simple
functions. In the previous example, for instance, we subtracted 2 from the argument of the function y = x% to get the

2

function f(x) = (x — 2)2. This subtraction represents a shift of the function y = x“ two units to the right. A shift,
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horizontally or vertically, is a type of transformation of a function. Other transformations include horizontal and vertical
scalings, and reflections about the axes.

A vertical shift of a function occurs if we add or subtract the same constant to each output y. For ¢ > 0, the graph of

f(x) + ¢ is a shift of the graph of f(x) up ¢ units, whereas the graph of f(x) — c is a shift of the graph of f(x) down
¢ units. For example, the graph of the function f(x) = x> +4 is the graphof y = x> shifted up 4 units; the graph of the

function f(x) = x> — 4 is the graph of y = x> shifted down 4 units (Figure 1.23).

A f(x) =x%+ 4

(a) (b)
Figure 1.23 (a) For ¢ > 0, the graph of y = f(x) + ¢ is a vertical shift up ¢ units of

the graph of y = f(x). (b) For ¢ > 0, the graph of y = f(x) — ¢ is a vertical shift down
¢ units of the graph of y = f(x).

A horizontal shift of a function occurs if we add or subtract the same constant to each input x. For ¢ > 0, the graph of
f(x+ ¢) is a shift of the graph of f(x) to the left ¢ units; the graph of f(x —c¢) is a shift of the graph of f(x) to the
right ¢ units. Why does the graph shift left when adding a constant and shift right when subtracting a constant? To answer
this question, let’s look at an example.

Consider the function f(x) = |x + 3| and evaluate this function at x — 3. Since f(x —3) =Ix| and x — 3 < x, the graph
of f(x) = |x+ 3| is the graph of y = |x| shifted left 3 units. Similarly, the graph of f(x) = |x — 3| is the graph of y = |x|
shifted right 3 units (Figure 1.24).



54 Chapter 1 | Functions and Graphs

(a) (b)
Figure 1.24 (a) For ¢ > 0, the graph of y = f(x + ¢) is a horizontal shift left ¢ units of the graph of y = f(x). (b) For

¢ >0, the graph of y = f(x — ¢) is a horizontal shift right ¢ units of the graph of y = f(x).

A vertical scaling of a graph occurs if we multiply all outputs y of a function by the same positive constant. For ¢ > 0,
the graph of the function cf(x) is the graph of f(x) scaled vertically by a factor of c. If ¢ > 1, the values of the
outputs for the function cf(x) are larger than the values of the outputs for the function f(x); therefore, the graph has been

stretched vertically. If 0 < ¢ < 1, then the outputs of the function cf(x) are smaller, so the graph has been compressed.
For example, the graph of the function f(x) = 3x2 is the graphof y = x? stretched vertically by a factor of 3, whereas the
graph of f(x) = x%/3 is the graph of y = x? compressed vertically by a factor of 3 (Figure 1.25).

Vi f(x) = 3x2

I
1

. 8f ]

flx) = x* \ '

(@) (b)
Figure 1.25 (a)If ¢ > 1, the graphof y = cf(x) is a vertical stretch of the graph

of y=f(x). ®)If 0 <c <1, thegraphof y= cf(x) is a vertical compression of
the graph of y = f(x).

The horizontal scaling of a function occurs if we multiply the inputs x by the same positive constant. For ¢ > 0, the
graph of the function f(cx) is the graph of f(x) scaled horizontally by a factor of ¢. If ¢ > 1, the graph of f(cx) is the
graph of f(x) compressed horizontally. If 0 < ¢ < 1, the graph of f(cx) is the graph of f(x) stretched horizontally. For
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example, consider the function f(x) = V2x and evaluate f at x/2. Since f(x/2) = vx, the graph of f(x) = V2x is the

graph of y = vx compressed horizontally. The graph of y = Vx/2 is a horizontal stretch of the graph of y = vx (Figure
1.26).

y y
fix) = V2x
) = VX __
/77 fx) = X 0 = 5
X :X
(a) (b)

Figure 1.26 (a)If ¢ > 1, the graphof y = f(cx) is a horizontal compression of the graph
of y=f(x). ®)If 0 <c <1, thegraphof y= f(cx) is a horizontal stretch of the graph of
y=fx).

We have explored what happens to the graph of a function f when we multiply f by a constant ¢ > 0 to get a new
function cf(x). We have also discussed what happens to the graph of a function f when we multiply the independent
variable x by ¢ > 0 to get a new function f(cx). However, we have not addressed what happens to the graph of the
function if the constant ¢ is negative. If we have a constant ¢ < 0, we can write ¢ as a positive number multiplied by
—1; but, what kind of transformation do we get when we multiply the function or its argument by —1? When we multiply

all the outputs by —1, we get a reflection about the x -axis. When we multiply all inputs by —1, we get a reflection
about the y -axis. For example, the graph of f(x) = —()c3 + 1) is the graph of y = ()c3 + 1) reflected about the x -axis.

The graph of f(x) = (=03 +1 is the graph of y = x>+ 1 reflected about the y -axis (Figure 1.27).
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yf{f{x) x3+1

B

>

Tro0) =~ + 1) = (-x)p3 + 1

(a) (b)
Figure 1.27 (a) The graph of y = —f(x) is the graph of

y = f(x) reflected about the x -axis. (b) The graph of
y = f(—x) is the graph of y = f(x) reflected about the

y -axis.
If the graph of a function consists of more than one transformation of another graph, it is important to transform the graph
in the correct order. Given a function f(x), the graph of the related function y = cf(a(x + b))+ d can be obtained from

the graph of y = f(x) by performing the transformations in the following order.

1. Horizontal shift of the graph of y = f(x). If b > 0, shiftleft. If b <0, shift right.
2. Horizontal scaling of the graph of y = f(x + b) by a factor of lal. If a < 0, reflect the graph about the y -axis.

3. Vertical scaling of the graph of y = f(a(x + b)) by a factor of |c|. If ¢ < 0, reflect the graph about the x -axis.

4. Vertical shift of the graph of y = cf(a(x + b)). If d > 0, shiftup.If d <0, shiftdown.

We can summarize the different transformations and their related effects on the graph of a function in the following table
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Transformation of f(c > 0) Effect on the graph of f

J&x) +c Vertical shift up ¢ units
f&x)—c Vertical shift down ¢ units
Slx+o) Shift left by ¢ units
flx=ro) Shift right by ¢ units

Vertical stretch if ¢ > 1;

cf(x) . o
vertical compression if 0 < ¢ <1
f(cx) Horizontal stretch if 0 < ¢ < 1; horizontal compression if ¢ > 1
—f(x) Reflection about the x -axis
Jf(=x) Reflection about the y -axis

Table 1.7 Transformations of Functions

Example 1.21

Transforming a Function

For each of the following functions, a. and b., sketch a graph by using a sequence of transformations of a well-
known function.

a. f(x)=-|x+2/-3
b. f(x)=3v=x+1
Solution

a. Starting with the graph of y = |x|, shift 2 units to the left, reflect about the x -axis, and then shift down

3 units.
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Yi

y = |x|

Starting function

>

“Y=—k+2

Transformed function |
Figure 1.28 The function f(x) = —|x + 2| — 3 can be

viewed as a sequence of three transformations of the function
y=lxl.

b. Starting with the graph of y = vx, reflect about the y -axis, stretch the graph vertically by a factor of 3,

and move up 1 unit.

Transformed function 1

Figure 1.29 The function f(x) =3v—x+ 1 can be viewed

as a sequence of three transformations of the function y = vx.

1.16  Describe how the function f(x) = —(x + 1)2 — 4 can be graphed using the graph of y = x* and a

sequence of transformations.
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1.2 EXERCISES

For the following exercises, for each pair of points, a.
find the slope of the line passing through the points and
b. indicate whether the line is increasing, decreasing,
horizontal, or vertical.

59. (=2, 4) and (1, 1)
60. (—1,4) and (3, 1)
61. (3,5) and (—1, 2)
62. (6,4) and (4, —3)
63. (2,3) and (5, 7)
64. (1,9) and (=8, 5)
65. (2, 4) and (1, 4)
66. (1,4) and (1, 0)

For the following exercises, write the equation of the line
satisfying the given conditions in slope-intercept form.

67. Slope = —6, passes through (1, 3)
68. Slope =3, passes through (-3, 2)

69.

Slope = =, passes through (0, 4)

L».)l»—a

70. Slope =

(111\S]

, X -intercept = 8

71. Passing through (2, 1) and (-2, —1)
72. Passing through (-3, 7) and (1, 2)

73. x-intercept =5 and y -intercept = -3
74. x-Intercept = —6 and y -intercept =9

For the following exercises, for each linear equation, a. give
the slope m and y -intercept b, if any, and b. graph the line.

75. y=2x-3
76. y= —%x+1
77. f(x) = —6x

78. f(x) = —5x+4
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79. 4y+24=0
80. 8x—-4=0
81. 2x+3y=6

82. 6x—5y+15=0

For the following exercises, for each polynomial, a. find the
degree; b. find the zeros, if any; c. find the y -intercept(s),

if any; d. use the leading coefficient to determine the
graph’s end behavior; and e. determine algebraically
whether the polynomial is even, odd, or neither.

83. f(x)=2x2=3x-5
84. f(x)=—3x+6x

85 fm =251

86. f(x)=x+3x?—x-3
87. f(x)=3x—x°

For the following exercises, use the graph of f(x) = x% to

graph each transformed function g.
88. gx)=x>—1

89. g(x)=(x+3)+1

For the following exercises, use the graph of f(x) = vx to

graph each transformed function g.
90. g(x)=Vx+2
91. glx)=—-vx—1

For the following exercises, use the graph of y = f(x) to

graph each transformed function g.



60

=
S
(e8]
F
[53]
xv¥

92, gx)=f)+1
93. gx)=f(x—-1+2

For the following exercises, for each of the piecewise-
defined functions, a. evaluate at the given values of the
independent variable and b. sketch the graph.

. 4
94 f(x)={ x+3, x <

0
—x + 1’ x> 0’ f(_3)7 f(o)’ f(z)

95. x2=-3,x<0
= ’ . _4. . 2
e {4x_ SN CURIUTNC)

. 1, x<
96 h(x)={x+ ,x<5,

4x>5 h(0); h(z); h(5)

97. 3 u»
o) = {x 222 500 g—4); 82)

4, x=2

For the following exercises, determine whether the
statement is true or false. Explain why.

98. f(x)=@x+1D/(7x-2) is a

function.

transcendental

99. glx) = % is an odd root function

100. A logarithmic function is an algebraic function.

101. A function of the form flx) = xb, where b is areal

valued constant, is an exponential function.

102. The domain of an even root function is all real
numbers.
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103. [T] A company purchases some computer equipment
for $20,500. At the end of a 3-year period, the value of the
equipment has decreased linearly to $12,300.

a. Find a function y = V(¢) that determines the value
V of the equipment at the end of t years.

b. Find and interpret the meaning of the x- and y-
intercepts for this situation.

c. What is the value of the equipment at the end of 5
years?

d. When will the value of the equipment be $3000?

104. [T] Total online shopping during the Christmas
holidays has increased dramatically during the past 5 years.
In 2012 (¢t =0), total online holiday sales were $42.3

billion, whereas in 2013 they were $48.1 billion.

a. Find a linear function S that estimates the total
online holiday sales in the year t.

b. Interpret the slope of the graph of S.

c. Use part a. to predict the year when online shopping
during Christmas will reach $60 billion.

105. [T] A family bakery makes cupcakes and sells them at
local outdoor festivals. For a music festival, there is a fixed
cost of $125 to set up a cupcake stand. The owner estimates
that it costs $0.75 to make each cupcake. The owner is
interested in determining the total cost C as a function of

number of cupcakes made.

a. Find a linear function that relates cost C to x, the
number of cupcakes made.

b. Find the cost to bake 160 cupcakes.

c. If the owner sells the cupcakes for $1.50 apiece,
how many cupcakes does she need to sell to start
making profit? (Hint: Use the INTERSECTION
function on a calculator to find this number.)

106. [T] A house purchased for $250,000 is expected to be
worth twice its purchase price in 18 years.

a. Find a linear function that models the price P of
the house versus the number of years t since the
original purchase.

b. Interpret the slope of the graph of P.
c. Find the price of the house 15 years from when it
was originally purchased.
107. [T] A car was purchased for $26,000. The value of the
car depreciates by $1500 per year.

a. Find a linear function that models the value V of the
car after t years.

b. Find and interpret V(4).
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108. [T] A condominium in an upscale part of the city was
purchased for $432,000. In 35 years it is worth $60,500.
Find the rate of depreciation.

109. [T] The total cost C (in thousands of dollars) to
produce a certain item is modeled by the function
C(x) = 10.50x + 28,500, where x is the number of items

produced. Determine the cost to produce 175 items.

110. [T] A professor asks her class to report the amount of
time ¢ they spent writing two assignments. Most students
report that it takes them about 45 minutes to type a four-
page assignment and about 1.5 hours to type a nine-page
assignment.

a. Find the linear function y = N(¢) that models this
situation, where N is the number of pages typed
and t is the time in minutes.

b. Use part a. to determine how many pages can be
typed in 2 hours.

c. Use part a. to determine how long it takes to type a
20-page assignment.

111. [T] The output (as a percent of total capacity) of
nuclear power plants in the United States can be modeled
by the function P(t) = 1.8576¢ + 68.052, where t is time
in years and t = 0 corresponds to the beginning of 2000.
Use the model to predict the percentage output in 2015.

112. [T] The admissions office at a public university
estimates that 65% of the students offered admission to the
class of 2019 will actually enroll.

a. Find the linear function y = N(x), where N is

the number of students that actually enroll and x is

the number of all students offered admission to the
class of 2019.

b. If the university wants the 2019 freshman class size
to be 1350, determine how many students should be
admitted.
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1.3 | Trigonometric Functions

Learning Objectives

1.3.1 Convert angle measures between degrees and radians.

1.3.2 Recognize the triangular and circular definitions of the basic trigonometric functions.
1.3.3 Write the basic trigonometric identities.

1.3.4 Identify the graphs and periods of the trigonometric functions.

1.3.5 Describe the shift of a sine or cosine graph from the equation of the function.

Trigonometric functions are used to model many phenomena, including sound waves, vibrations of strings, alternating
electrical current, and the motion of pendulums. In fact, almost any repetitive, or cyclical, motion can be modeled by some
combination of trigonometric functions. In this section, we define the six basic trigonometric functions and look at some of
the main identities involving these functions.

Radian Measure

To use trigonometric functions, we first must understand how to measure the angles. Although we can use both radians and
degrees, radians are a more natural measurement because they are related directly to the unit circle, a circle with radius 1.
The radian measure of an angle is defined as follows. Given an angle 8, let s be the length of the corresponding arc on

the unit circle (Figure 1.30). We say the angle corresponding to the arc of length 1 has radian measure 1.

Figure 1.30 The radian measure of an angle @ is the arc
length s of the associated arc on the unit circle.

Since an angle of 360° corresponds to the circumference of a circle, or an arc of length 2z, we conclude that an angle
with a degree measure of 360° has a radian measure of 2z. Similarly, we see that 180° is equivalent to 7z radians. Table
1.8 shows the relationship between common degree and radian values.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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Degrees Radians Degrees Radians
0 0 120 2n/3

30 7/6 135 3n/4

45 7l4 150 S5n/6

60 7/3 180 n

90 7l2

Table 1.8 Common Angles Expressed in Degrees and
Radians

63

Example 1.22

Converting between Radians and Degrees

a. Express 225° using radians.

b. Express 5z/3 rad using degrees.
Solution

180°

a. 225°=225°.- L — %Tﬂ rad

@/ 1.17 Express 210° using radians. Express 11z/6 rad using degrees.

The Six Basic Trigonometric Functions

o
Use the fact that 180° is equivalent to # radians as a conversion factor: 1 = zrad _ %.

Trigonometric functions allow us to use angle measures, in radians or degrees, to find the coordinates of a point on any
circle—not only on a unit circle—or to find an angle given a point on a circle. They also define the relationship among the

sides and angles of a triangle.

To define the trigonometric functions, first consider the unit circle centered at the origin and a point P = (x, y) on the unit

circle. Let @ be an angle with an initial side that lies along the positive x -axis and with a terminal side that is the line
segment OP. An angle in this position is said to be in standard position (Figure 1.31). We can then define the values of

the six trigonometric functions for  in terms of the coordinates x and y.
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Figure 1.31 The angle @ is in standard position. The values
of the trigonometric functions for @ are defined in terms of the

coordinates x and y.

Definition

Let P = (x, y) be a point on the unit circle centered at the origin O. Let € be an angle with an initial side along the

positive x -axis and a terminal side given by the line segment OP. The trigonometric functions are then defined as

sind=y  csch
cosf =x secH

tanf = % cotd

If x=0, secd and tan@ are undefined. If y = 0, then cotf and cscé are undefined.

<= = <=

(1.9)

We can see that for a point P = (x, y) on a circle of radius r with a corresponding angle 6, the coordinates x and y

satisfy

=X

cosf = G
X = rcosf
ing =2
sinf = <

y = rsiné.

The values of the other trigonometric functions can be expressed in terms of x, y, and r (Figure 1.32).

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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P = (x, y) = (r cos#, r sinf)

[

‘/1)( r x

Figure 1.32 For a point P = (x, y) on a circle of radius r,

AR

the coordinates x and y satisfy x = rcos€ and y = rsiné.

Table 1.9 shows the values of sine and cosine at the major angles in the first quadrant. From this table, we can determine
the values of sine and cosine at the corresponding angles in the other quadrants. The values of the other trigonometric
functions are calculated easily from the values of sinf and cosé.

(/] sin@ cos@
0 0 1

z 1 V3

6 2 2

z 2 2

4 2 2

z V3 1

3 2 2

p/3

2 1 0

Table 1.9 Values of sinf
and cos@ at Major Angles
6 in the First Quadrant

Example 1.23

Evaluating Trigonometric Functions

Evaluate each of the following expressions.
a. sin(z—”)

3
b. cos(—%[)
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C. tan(li—”)

Solution
a. On the unit circle, the angle 8 = 2T” corresponds to the point (—%, g) Therefore, sin(%—”) =y= g
( 3 3 ) Yi
L 2 2
1
b. An angle 6= —5?” corresponds to a revolution in the negative direction, as shown. Therefore,
_5_;:) —x= -3
cos( 6)=%X= 5"
y
1
(_ﬁ _1)
. 2" 2
c. Anangle 0 = % =27+ ?T” Therefore, this angle corresponds to more than one revolution, as shown.
Knowing the fact that an angle of 74—” corresponds to the point (%, - %), we can conclude that

tan(li—”) = % =-1.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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@ 1.18 Evaluate cos(37/4) and sin(—n/6).

As mentioned earlier, the ratios of the side lengths of a right triangle can be expressed in terms of the trigonometric functions
evaluated at either of the acute angles of the triangle. Let @ be one of the acute angles. Let A be the length of the adjacent

leg, O be the length of the opposite leg, and H be the length of the hypotenuse. By inscribing the triangle into a circle of
radius H, asshown in Figure 1.33, we see that A, H, and O satisfy the following relationships with 0:

=0 - H
smG—H cscH—O
_A - H
cosG—H secQ—A
_0 A
tanH—A cot9—0
Yi

H
(@]

[E]

A X

Figure 1.33 By inscribing a right triangle in a circle, we can
express the ratios of the side lengths in terms of the
trigonometric functions evaluated at 6.

Example 1.24

Constructing a Wooden Ramp
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A wooden ramp is to be built with one end on the ground and the other end at the top of a short staircase. If the
top of the staircase is 4 ft from the ground and the angle between the ground and the ramp is to be 10°, how

long does the ramp need to be?

Solution
Let x denote the length of the ramp. In the following image, we see that x needs to satisfy the equation
sin(10°) = 4/x. Solving this equation for x, we see that x = 4/sin(10°) ~ 23.035 ft.

o 4 feet
7 - 10°

1.19 A house painter wants to lean a 20 -ft ladder against a house. If the angle between the base of the ladder

and the ground is to be 60°, how far from the house should she place the base of the ladder?

Trigonometric Identities

A trigonometric identity is an equation involving trigonometric functions that is true for all angles € for which the

functions are defined. We can use the identities to help us solve or simplify equations. The main trigonometric identities are
listed next.

Rule: Trigonometric Identities

Reciprocal identities

cosf sin@
__1 __1
cscl = ey sec@ 050

Pythagorean identities
sin%@ + cos?0 = 1 1+ tan?0 = sec?6 1 +cot?60 = csc? 0
Addition and subtraction formulas
sin(ar = ) = sinacos 8 + cosasin 3

cos(a = ff) = cosacosf F sinasin f§

Double-angle formulas
sin(26) = 2sinfcosf

cos(26) = 2c0820—1=1—2sin%0 = cos?0 — sin% 0

Example 1.25

Solving Trigonometric Equations

For each of the following equations, use a trigonometric identity to find all solutions.

a. 1+ cos(26) = cosf

b. sin(20) = tand

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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d.

Solution

Using the double-angle formula for cos(28), we see that € is a solution of

1 + cos(26) = cosé

if and only if

142cos20—1= cos0,

which is true if and only if

2¢08260 — cosf = 0.

To solve this equation, it is important to note that we need to factor the left-hand side and not divide both
sides of the equation by cosf. The problem with dividing by cos@ is that it is possible that cos@ is

zero. In fact, if we did divide both sides of the equation by cosf, we would miss some of the solutions
of the original equation. Factoring the left-hand side of the equation, we see that @ is a solution of this
equation if and only if

cosd(2cosf — 1) = 0.

Since cos@ = 0 when

9=%,%iﬂ',%12ﬂ', ,
and cosé€ = 1/2 when
92%,%1277,...01'9: —%, —%i2n’, s
we conclude that the set of solutions to this equation is
9:%4-”77:, 9=%+2nﬂ, and 0 = —%+2mr, n=0, +1, +2,....

Using the double-angle formula for sin(26) and the reciprocal identity for tan(@), the equation can be
written as

2sinfcosf = M.
cos@

To solve this equation, we multiply both sides by cos@ to eliminate the denominator, and say that if 6
satisfies this equation, then @ satisfies the equation

25infcos26 — sind = 0.

However, we need to be a little careful here. Even if 0 satisfies this new equation, it may not satisfy the
original equation because, to satisfy the original equation, we would need to be able to divide both sides
of the equation by cosf. However, if cosd = 0, we cannot divide both sides of the equation by cosé.
Therefore, it is possible that we may arrive at extraneous solutions. So, at the end, it is important to check
for extraneous solutions. Returning to the equation, it is important that we factor sind out of both terms
on the left-hand side instead of dividing both sides of the equation by siné. Factoring the left-hand side
of the equation, we can rewrite this equation as

sinf(2cos%6 — 1) = 0.
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Therefore, the solutions are given by the angles & such that sinf =0 or cos?@ = 1/2. The solutions
of the first equation are 0 =0, +x, +2x,... The solutions of the second equation are
0 = /4, (n/4) + (x/2), (n/4) + x,.... After checking for extraneous solutions, the set of solutions to the
equation is

- — X T, _
0 =nr and 9—4+2,n 0, +1, +2,....

@ 1.20 Find all solutions to the equation cos(26) = siné.

Example 1.26

Proving a Trigonometric Identity

Prove the trigonometric identity 1 + tan” 6 = sec?6.

Solution
We start with the identity

sin2@ + cos20 = 1.

Dividing both sides of this equation by cos?6, we obtain

s 2

sin“ 6 1
222 4+ 1= .
cos26 cosZ6

Since sinf/cos@ = tan@ and 1/cos@ = secH, we conclude that

tanZ0 + 1 = sec?0.

@ 1.21  Pprove the trigonometric identity 1 + cot”@ = csc> 6.

Graphs and Periods of the Trigonometric Functions

We have seen that as we travel around the unit circle, the values of the trigonometric functions repeat. We can see this
pattern in the graphs of the functions. Let P = (x, y) be a point on the unit circle and let # be the corresponding angle

. Since the angle € and 0+ 2z correspond to the same point P, the values of the trigonometric functions at ¢ and

at @+ 2z are the same. Consequently, the trigonometric functions are periodic functions. The period of a function f is

defined to be the smallest positive value p such that f(x + p) = f(x) for all values x in the domain of f. The sine,

cosine, secant, and cosecant functions have a period of 2z. Since the tangent and cotangent functions repeat on an interval
of length 7z, their periodis z (Figure 1.34).

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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gi }’f
f(x) = sin(x)

2
/\ 1t \ /(\

_2.- _2__
Period = 27 Period = 27
f(x) = csc(x) ’2'_'1 i f(x) = sec(x)

Ji i\

1

B
1

TR IAT TIARNIA

Period = 27 Period = 27
f(x) = tan(x) jzfi gk f(x) = cot(x)

: R A i : : 1t : i
YA ki B N L A A L s X
2 2 T 2 /1] 2 T 2 2 2':1:' 2 ?T 2 \q1 5 1?' 2 2:‘::'
! tLol ! : : : _3l . :

Period = 7 Period = 7

Figure 1.34 The six trigonometric functions are periodic.

Just as with algebraic functions, we can apply transformations to trigonometric functions. In particular, consider the
following function:

f(x) = Asin(B(x — a)) + C. (1.10)

In Figure 1.35, the constant & causes a horizontal or phase shift. The factor B changes the period. This transformed
sine function will have a period 27/|B|. The factor A results in a vertical stretch by a factor of |Al. We say |A]| is the

“amplitude of f.” The constant C causes a vertical shift.
f(x) = Asin(B(x —«)) + C
Yi
amplitude = A

SN VANVANYA
Vertical C_)\/ \/ \j

shift |
e X
Period
2m/B|
Horizontal
shift

Figure 1.35 A graph of a general sine function.
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Notice in Figure 1.34 that the graph of y = cosx is the graph of y = sinx shifted to the left #/2 units. Therefore, we
can write cosx = sin(x + #/2). Similarly, we can view the graph of y = sinx as the graph of y = cosx shifted right z/2
units, and state that sinx = cos(x — 7/2).

A shifted sine curve arises naturally when graphing the number of hours of daylight in a given location as a function of
the day of the year. For example, suppose a city reports that June 21 is the longest day of the year with 15.7 hours and

December 21 is the shortest day of the year with 8.3 hours. It can be shown that the function

() = 3.7 sin(%(x - 80.5)) +12

is a model for the number of hours of daylight % as a function of day of the year ¢ (Figure 1.36).

hi
20+

h(t) = 3.7sin (2 (¢t - 80.5)) + 12

10+

Number of daylight hours

0 s 120 180 240 300 360t
Day of the year

Figure 1.36 The hours of daylight as a function of day of the year can be modeled
by a shifted sine curve.

Example 1.27

Sketching the Graph of a Transformed Sine Curve
Sketch a graph of f(x) =3 sin(Z(x - %)) +1.
Solution

This graph is a phase shift of y = sin(x) to the right by #/4 units, followed by a horizontal compression by a
factor of 2, a vertical stretch by a factor of 3, and then a vertical shift by 1 unit. The period of f is z.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2



Chapter 1 | Functions and Graphs 73

fx) = 3sin[:2{x - %_‘_]'} +1

yi
5__

@ 1.22 Describe the relationship between the graph of f(x) = 3sin(4x) — 5 and the graph of y = sin(x).
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1.3 EXERCISES

For the following exercises, convert each angle in degrees
to radians. Write the answer as a multiple of 7.
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113. 240°
114. 15°
115. —-60°
116. —225°
117. 330°

For the following exercises, convert each angle in radians

to degrees.
118. %rad
119. %nrad
120. llanad
121. —3zrad
122. ?grad

Evaluate the following functional values.

2 off)
i)
= )
2 i
7 i)
™ coff)

B
c
a
A b C

129. a=4,c="7

130. a=21,c=29

131. a=285.3,b=1255
132. b =40, c=41

133. a=84,b=13

134. b=28,c=35

For the following exercises, P is a point on the unit circle.
a. Find the (exact) missing coordinate value of each point

and b. find the values of the six trigonometric functions for
the angle @ with a terminal side that passes through point

P. Rationalize denominators.

1 P(275’y) y>0

136 p(=15,5) y <0

P(x, W) x<0

P(x,

For the following exercises, simplify each expression by
writing it in terms of sines and cosines, then simplify. The
final answer does not have to be in terms of sine and cosine
only.

)x>0

139. tanZx + sinxcscx

140. secxsinxcotx

For the following exercises, consider triangle ABC, a right
triangle with a right angle at C. a. Find the missing side of
the triangle. b. Find the six trigonometric function values
for the angle at A. Where necessary, round to one decimal
place.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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tan” x
secZx
142. secx — cosx
143. (1 + tan6)? — 2tan®
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144. sinx(cscx — sinx)

145. cost sint
sint 1+ cost

146. 1 + tan’a
1+ cot?a

For the following exercises, verify that each equation is an
identity.

147. tanfcotd

sl = siné
148. 2
sec"0 — gecheschd
tan6
149. sint , cost _
csct ' sect
150. __sinx cosx—1_

cosx+ 1 sinx
151. coty + tany = secycscy
152. sinzﬂ + tan2[1 + cosz/)’ = seczﬂ

153. 1 1
1—-sina 1+ sina

=2sec’a

154. tanf — cot@

2 2
: =sec“6 —csc 0
sinfcosd

For the following exercises, solve the trigonometric
equations on the interval 0 < 0 < 2x.

155. 2sind—1=0

156. 1 4 coso =%

157. 2tan?6 =2

158. 4sin?9-2=0

159. V3cotf+1=0

160. 3secd—2V3 =0

161. 2cos@sinf = sin@
162. csc?0+2cscf+1=0

For the following exercises, each graph is of the form
y=AsinBx or y = AcosBx, where B > (0. Write the

equation of the graph.

163.

164.

165.
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166.

Bow o & ;X

—A/-A-A -1 Ow i&; i; kﬂ 4)(
1+

For the following exercises, find a. the amplitude, b. the
period, and c. the phase shift with direction for each
function.

167. n

y= sin(x — Z)

168. y =3cos(2x + 3)

169. y= _Tlsin(%x)

170. y= ZCos(x - %)
171. y = —3sin(zx + 2)
172,y = 4cos(2x - %)

173. [T] The diameter of a wheel rolling on the ground is
40 in. If the wheel rotates through an angle of 120°, how

many inches does it move? Approximate to the nearest
whole inch.

174. [T] Find the length of the arc intercepted by central
angle 6 in a circle of radius r. Round to the nearest

hundredth.

a. r=12.8 cm, e=%ﬂ rad b. r = 4.378 cm, .9=7F”

rad c. r=0964 cm, 6=50° d r=28.55 cm,

0 = 325°

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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175. [T] As a point P moves around a circle, the measure
of the angle changes. The measure of how fast the angle is

changing is called angular speed, w, and is given by
w = 0/t, where 0 is in radians and t is time. Find the

angular speed for the given data. Round to the nearest
thousandth.

a. 9=%rad,t=10 sec b. 9=%rad,t=8 sec c.

0= %’rad, t=1 mind. 0=23.76rad, = 14 min

176. [T] A total of 250,000 m? of land is needed to build a
nuclear power plant. Suppose it is decided that the area on
which the power plant is to be built should be circular.

Find the radius of the circular land area.

b. If the land area is to form a 45° sector of a circle

instead of a whole circle, find the length of the
curved side.

177. [T] The area of an isosceles triangle with equal sides

of length x is
1.2
2x sind,

where 0 is the angle formed by the two sides. Find the area

of an isosceles triangle with equal sides of length 8 in. and
angle 6 = 5z/12 rad.

178. [T] A particle travels in a circular path at a constant
angular speed @. The angular speed is modeled by the

function @ = 9|cos(xt — #/12)|. Determine the angular

speed at t =9 sec.

179. [T] An alternating current for outlets in a home has
voltage given by the function

V(t) = 150cos368t,

where V is the voltage in volts at time t in seconds.

a. Find the period of the function and interpret its
meaning.

b. Determine the number of periods that occur when 1
sec has passed.
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180. [T] The number of hours of daylight in a northeast
city is modeled by the function

N@) =12+43 sin[%(t - 79)],

where t is the number of days after January 1.
a. Find the amplitude and period.

b. Determine the number of hours of daylight on the
longest day of the year.

c. Determine the number of hours of daylight on the
shortest day of the year.

d. Determine the number of hours of daylight 90 days
after January 1.

e. Sketch the graph of the function for one period
starting on January 1.

181. [T] Suppose that 7 =50+ IOSin[%(t - 8)] is a

mathematical model of the temperature (in degrees
Fahrenheit) at t hours after midnight on a certain day of the
week.

a. Determine the amplitude and period.
b. Find the temperature 7 hours after midnight.

c. At what time does 7 = 60°?

d. Sketch the graph of T over 0 <t < 24.

182. [T] The function H(¢) = 8 sin(%t) models the height

H (in feet) of the tide t hours after midnight. Assume that
t = 0 is midnight.

a. Find the amplitude and period.

b. Graph the function over one period.

c. What is the height of the tide at 4:30 a.m.?

7
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1.4 | Inverse Functions

Learning Objectives

1.4.1 Determine the conditions for when a function has an inverse.

1.4.2 Use the horizontal line test to recognize when a function is one-to-one.
1.4.3 Find the inverse of a given function.

1.4.4 Draw the graph of an inverse function.

1.4.5 Evaluate inverse trigonometric functions.

An inverse function reverses the operation done by a particular function. In other words, whatever a function does, the
inverse function undoes it. In this section, we define an inverse function formally and state the necessary conditions for an
inverse function to exist. We examine how to find an inverse function and study the relationship between the graph of a
function and the graph of its inverse. Then we apply these ideas to define and discuss properties of the inverse trigonometric
functions.

Existence of an Inverse Function
We begin with an example. Given a function f and an output y = f(x), we are often interested in finding what

value or values x were mapped to y by f. For example, consider the function f(x) = x> +4. Since any output
y= x>+ 4, we can solve this equation for x to find that the input is x = 3Vy — 4. This equation defines x as a function

of y. Denoting this function as f ~1 and writing x = f -1 y) = 3w/y — 4, we see that for any x in the domain of
£ )= 71 (x3 + 4) = x. Thus, this new function, f~', “undid” what the original function f did. A function

with this property is called the inverse function of the original function.

Definition

Given a function f with domain D and range R, its inverse function (if it exists) is the function f ~! with domain

R andrange D such that f -1 (y) = x if f(x) = y. In other words, for a function f and its inverse f -1

f_1 (f(x)) = xfor all xin D, and f(f_1 (y)) = yfor all yin R. (1.11)

Note that f ~1 is read as “f inverse.” Here, the —1 is not used as an exponent and f -1 (x) # 1/f(x). Figure 1.37 shows

the relationship between the domain and range of f and the domain and range of f -1

Domain of f 1 Range of f

Range of 1 Domain of f~1

Figure 1.37 Given a function f and its inverse
f_l, f_1 (y) = x ifand only if f(x) = y. The range of f
becomes the domain of f ~! and the domain of f becomes the

range of f_l.
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Recall that a function has exactly one output for each input. Therefore, to define an inverse function, we need to map each

input to exactly one output. For example, let’s try to find the inverse function for f(x) = x2. Solving the equation y = x?

for x, we arrive at the equation x = =+ 4/y. This equation does not describe x as a function of y because there are two
solutions to this equation for every y > 0. The problem with trying to find an inverse function for f(x) = x? is that two

inputs are sent to the same output for each output y > 0. The function f(x) = x> + 4 discussed earlier did not have this

problem. For that function, each input was sent to a different output. A function that sends each input to a different output
is called a one-to-one function.

Definition

Wesay a f is a one-to-one function if f(x;) # f(x,) when x| # x,.

One way to determine whether a function is one-to-one is by looking at its graph. If a function is one-to-one, then no two
inputs can be sent to the same output. Therefore, if we draw a horizontal line anywhere in the xy -plane, according to the

horizontal line test, it cannot intersect the graph more than once. We note that the horizontal line test is different from
the vertical line test. The vertical line test determines whether a graph is the graph of a function. The horizontal line test
determines whether a function is one-to-one (Figure 1.38).

Rule: Horizontal Line Test

A function f is one-to-one if and only if every horizontal line intersects the graph of f no more than once.

{4’ b ) =X {4’ bfx) =3
34 34
2+ 21
1t 1+
0 X : S X
=1+ ~14+
-2+ 2
_3__ T _3 L
(@) (b)

Figure 1.38 (a) The function f(x) = x?% is not one-to-one
because it fails the horizontal line test. (b) The function
flx) = x> is one-to-one because it passes the horizontal line

test.

Example 1.28

Determining Whether a Function Is One-to-One

For each of the following functions, use the horizontal line test to determine whether it is one-to-one.
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Yi
+ —o
T *—o
3 —o0
+ *—o
+ *—o
T *—o0
- —o0
+ *—o
+ e—o
——t—t———O——
0 X
d.
b.
Solution

a. Since the horizontal line y = n for any integer n > O intersects the graph more than once, this function

is not one-to-one.
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@ 1.23 Is the function f graphed in the following image one-to-one?

3

Y fx) = x* — x

»xVY

Yi
- *—o0
3 *—o
*—o0
+ o0
3 *—o0
3 *—o
*—o0
+ e—o0
—l—i—O—OlD—C- 1 t + t 1 t + t 7(

81



82 Chapter 1 | Functions and Graphs

Finding a Function’s Inverse

We can now consider one-to-one functions and show how to find their inverses. Recall that a function maps elements in
the domain of f to elements in the range of f. The inverse function maps each element from the range of f back to its

corresponding element from the domain of f. Therefore, to find the inverse function of a one-to-one function f, given
any y in the range of f, we need to determine which x in the domain of f satisfies f(x) =y. Since f is one-to-one,
there is exactly one such value x. We can find that value x by solving the equation f(x) =y for x. Doing so, we are
able to write x as a function of y where the domain of this function is the range of f and the range of this new function
is the domain of f. Consequently, this function is the inverse of f, and we write x = f _l(y). Since we typically use the
variable x to denote the independent variable and y to denote the dependent variable, we often interchange the roles of x

and y, andwrite y = f -1 (x). Representing the inverse function in this way is also helpful later when we graph a function

f and its inverse f ~1 on the same axes.

Problem-Solving Strategy: Finding an Inverse Function

1. Solve the equation y = f(x) for x.

2. Interchange the variables x and y and write y = f _1(x).

Example 1.29

Finding an Inverse Function

Find the inverse for the function f(x) = 3x — 4. State the domain and range of the inverse function. Verify that

) = x

Solution
Follow the steps outlined in the strategy.

Step 1. If y =3x—4, then 3x=y+4 and x:%y+%.
Step 2. Rewrite as y = %x +% and let y = f_1 (x).
Therefore, f -1 ) = %x + %

Since the domain of f is (—o0, o0), the range of f_1 is (—oo0, o). Since the range of f is (—o0, o), the

domain of f_] is (—o0, ).
You can verify that f _1( f(x)) = x by writing

@ =er-o =16 -9 +4=x-%+

W[

= X.

Note that for f _l(x) to be the inverse of f(x), both f _1( f(x)) =x and f(f _l(x)) = x for all x in the domain

of the inside function.
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@/ 1.24 Find the inverse of the function f(x) = 3x/(x —2). State the domain and range of the inverse function.

Graphing Inverse Functions
Let’s consider the relationship between the graph of a function f and the graph of its inverse. Consider the graph of f
shown in Figure 1.39 and a point (a, b) on the graph. Since b = f(a), then f -1 (b) = a. Therefore, when we graph

f ~1 the point (b, a) is on the graph. As a result, the graph of f ~1 is a reflection of the graph of f about the line

y=2X.

Yi
y = f(x)
(a, b)
. X
(@) (b)

Figure 1.39 (a) The graph of this function f shows point (a, b) on the graph of f. (b)
Since (a, b) is on the graph of f, the point (b, a) is on the graph of f =1 The graph of

f ~1 is a reflection of the graph of f about the line y = x.

Example 1.30

Sketching Graphs of Inverse Functions

For the graph of f in the following image, sketch a graph of f -1 by sketching the line y = x and using

symmetry. Identify the domain and range of f -1

yi

fx) = \x + 2

z./

2 -1 9 1 2

Bl
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Solution
Reflect the graph about the line y = x. The domain of f ~1 is [0, 00). The range of f ~1is [-2, o0). By using

the preceding strategy for finding inverse functions, we can verify that the inverse functionis f -1 ) = x2=2,

as shown in the graph.

@/ 1.25 Sketch the graph of f(x) = 2x+ 3 and the graph of its inverse using the symmetry property of inverse

functions.

Restricting Domains

As we have seen, f(x) = x2 does not have an inverse function because it is not one-to-one. However, we can choose a
subset of the domain of f such that the function is one-to-one. This subset is called a restricted domain. By restricting the
domain of f, we can define a new function g such that the domain of g is the restricted domain of f and g(x) = f(x)

for all x in the domain of g. Then we can define an inverse function for g on that domain. For example, since f(x) = x2

is one-to-one on the interval [0, 00), we can define a new function g such that the domain of g is [0, o0) and g(x) = x2
for all x in its domain. Since g is a one-to-one function, it has an inverse function, given by the formula g_l(x) =+vx. On
the other hand, the function f(x) = %2 is also one-to-one on the domain (=00, 0]. Therefore, we could also define a new

function & such that the domain of 4 is (—oo, 0] and A(x) = x2 forall x in the domain of h. Then & is a one-to-one

function and must also have an inverse. Its inverse is given by the formula h_l(x) = —vx (Figure 1.40).
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5

(@ (b)
Figure 1.40 (a) For g(x) = x? restricted to [0, o0), g_l (x) = vx. (b) For

h(x) = x? restricted to (—o0, 0], A~ (x) = —vx.

Example 1.31

Restricting the Domain

Consider the function f(x) = (x + 1)2.
a. Sketch the graph of f and use the horizontal line test to show that f is not one-to-one.

b. Show that f is one-to-one on the restricted domain [—1, co0). Determine the domain and range for the

inverse of f on this restricted domain and find a formula for f -1

Solution

a. The graph of f is the graph of y = x2 shifted left 1 unit. Since there exists a horizontal line intersecting

the graph more than once, f is not one-to-one.

b. On the interval [—1, c0), f is one-to-one.
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ljé’i f(x) = (x + 1)?

The domain and range of f ~1 are given by the range and domain of f, respectively. Therefore, the
domain of f_1 is [0, co0) and the range of f_1 is [-1, o). To find a formula for f_l, solve the

equation y = (x + 1)2 for x. If y=(x+ 1)2, then x = —1 ++/y. Since we are restricting the domain
to the interval where x > —1, we need ++4/y > 0. Therefore, x = —1 + v/y. Interchanging x and y,

we write y = —1 + vx and conclude that f_1 (x) =—-1+vx.

Es/l 1.26  Consider flx) = 1/x? restricted to the domain (—o0, 0). Verify that f is one-to-one on this domain.

Determine the domain and range of the inverse of f and find a formula for f -1

Inverse Trigonometric Functions

The six basic trigonometric functions are periodic, and therefore they are not one-to-one. However, if we restrict the domain
of a trigonometric function to an interval where it is one-to-one, we can define its inverse. Consider the sine function
(Figure 1.34). The sine function is one-to-one on an infinite number of intervals, but the standard convention is to restrict

the domain to the interval [—%, %] By doing so, we define the inverse sine function on the domain [—1, 1] such that

for any x in the interval [—1, 1], the inverse sine function tells us which angle @ in the interval [—%, %] satisfies
sinf = x. Similarly, we can restrict the domains of the other trigonometric functions to define inverse trigonometric

functions, which are functions that tell us which angle in a certain interval has a specified trigonometric value.

Definition

The inverse sine function, denoted sin~! or arcsin, and the inverse cosine function, denoted cos~! or arccos, are

defined on the domain D = {x| — 1 <x < 1} as follows:
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sin™! (x) = yif and only if sin(y) = xand — % < (1.12)
<

cos ™! (x) = yif and only if cos(y) = x and 0

The inverse tangent function, denoted tan~! or arctan, and inverse cotangent function, denoted cot™! or arccot, are

defined on the domain D = {x| — c0o < x < oo} as follows:

z (1.13)

tan ! (x) = yif and only if tan(y) = xand — Z<y< L
cot™ (x) = yif and only if cot(y) = xand 0 < y < 7.

The inverse cosecant function, denoted cse™! or arccsc, and inverse secant function, denoted sec”! or arcsec, are
defined on the domain D = {x|lx| > 1} as follows:

csc™!(x) = yif and only if csc(y) = xand — % <y< %, y # 0; (1.14)

sec™! (x) = yif and only if sec(y) = xand0 <y < z, y # n/2.

To graph the inverse trigonometric functions, we use the graphs of the trigonometric functions restricted to the domains
defined earlier and reflect the graphs about the line y = x (Figure 1.41).

Yi Yi i
L
1 1
| %) = sin () f(x) = cos (x) ) f(x) = tan~*(x)
Y ) Pl =
4 1 X 1 0 % X
~z1 s IaG LR
yi y yi
_________ B .
f(x) = cot™1(x) f(x) = sec™(x)
\ | fo) = csc™(x)
2 ER D e 7:
0 % 1 O] 1 X L o 3 %
7

Figure 1.41 The graph of each of the inverse trigonometric functions is a reflection about the line y = x of

the corresponding restricted trigonometric function.

’ Go to the following site (http://www.openstaxcollege.org/l/20_inversefun) for more comparisons of
functions and their inverses.
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When evaluating an inverse trigonometric function, the output is an angle. For example, to evaluate cos ™! (%), we need to

find an angle € such that cosd = % Clearly, many angles have this property. However, given the definition of cos™!, we

1

need the angle 6 that not only solves this equation, but also lies in the interval [0, z]. We conclude that cos™! (5) =Z

3"
We now consider a composition of a trigonometric function and its inverse. For example, consider the two expressions
sin(sin_1 (ig)) and sin_l(sin(ﬂ)). For the first one, we simplify as follows:

. \/_j — ( E) _ \/_f

sm(sm ( 5 )) sin{y 5

For the second one, we have

sin~! (sin(z)) = sin ! (0) = 0.
The inverse function is supposed to “undo” the original function, so why isn’t sin™! (sin(z)) = x? Recalling our definition
of inverse functions, a function f and its inverse f -1 satisfy the conditions f( f -1 (y)) =y forall y in the domain of
f ~1 and f -1 (f(x)) = x forall x inthe domain of f, so whathappened here? The issue is that the inverse sine function,

sin_l, is the inverse of the restricted sine function defined on the domain [—E E] Therefore, for x in the interval

2’2
[—%, E], it is true that sin~! (sinx) = x. However, for values of x outside this interval, the equation does not hold, even

though sin_l(sinx) is defined for all real numbers x.

What about sin(sin_1 y)? Does that have a similar issue? The answer is no. Since the domain of sin~! is the interval

[—1, 1], we conclude that sin(sin™! y)=y if =1 <y <1 and the expression is not defined for other values of y. To

summarize,

sin(sin"!y) = yif—-1<y<1
and

sin™! (sinx) = xif ~Z <x<Z

Similarly, for the cosine function,

cos(cos_ly) =yif-1<y<1
and

cos™! (cosx) =xif0 <x < 7.

Similar properties hold for the other trigonometric functions and their inverses.

Example 1.32

Evaluating Expressions Involving Inverse Trigonometric Functions

Evaluate each of the following expressions.

a. sin”! (—g)

b anfan! (1)
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—
+|

57r))
& sin! (cof2)

Solution

c. cos™! (cos

[\
st

a. Evaluating sin_l(—ﬂ/g/Z) is equivalent to finding the angle @ such that sinf = —V3/2 and

—n/2 <0< x/2. The angle @=-n/3 satisfies these two conditions. Therefore,
sin™! (—V3/2) = —a/3.

b. First we use the fact that tan—! (—1/V§) = —7/6. Then tan(z/6) = —1/V3. Therefore,
tan(tan_l (—1/\/5)) = —1/V3.

c. To evaluate cos™ (cos(57/4)), first use the fact that cos(5z/4) = —\2/2. Then we need to find the
angle @ such that cos(f) = —V2/2 and 0 < @ < 7. Since 3x/4 satisfies both these conditions, we have
cos(cos_1 (57[/4)) = cos(cos_1 (—\/5/2)) = 3n/4.

d. Since cos(2zn/3) = —1/2, we need to evaluate sin~! (—1/2). That is, we need to find the angle € such
that sin(@) = —1/2 and —z/2 < 8 < #/2. Since —x/6 satisfies both these conditions, we can conclude

that sin ! (cos(27/3)) = sin~! (=1/2) = —x/6.
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"Student PROJECT

The Maximum Value of a Function

In many areas of science, engineering, and mathematics, it is useful to know the maximum value a function can obtain,
even if we don’t know its exact value at a given instant. For instance, if we have a function describing the strength
of a roof beam, we would want to know the maximum weight the beam can support without breaking. If we have a
function that describes the speed of a train, we would want to know its maximum speed before it jumps off the rails.
Safe design often depends on knowing maximum values.

This project describes a simple example of a function with a maximum value that depends on two equation coefficients.
We will see that maximum values can depend on several factors other than the independent variable x.

1. Consider the graph in Figure 1.42 of the function y = sinx + cosx. Describe its overall shape. Is it periodic?

How do you know?

yi
4_.

21y = sinx + cosx

Figure 1.42 The graph of y = sinx + cosx.

Using a graphing calculator or other graphing device, estimate the x - and y -values of the maximum point for
the graph (the first such point where x > 0). It may be helpful to express the x -value as a multiple of m.

2. Now consider other graphs of the form y = Asinx 4+ Bcosx for various values of A and B. Sketch the graph

when A = 2 and B = 1, and find the x - and y-values for the maximum point. (Remember to express the x-value
as a multiple of m, if possible.) Has it moved?

3. Repeat for A =1, B = 2. Is there any relationship to what you found in part (2)?

Complete the following table, adding a few choices of your own for A and B:
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A B x|y A B x |y
0 1 V3|1

1 0 1 V3

1 1 12 5

1 2 5 12

2 1

2 2

3 4

4 3

Try to figure out the formula for the y-values.

The formula for the x-values is a little harder. The

most helpful points from the table are

(1, 1), (1, \/5), (\/3, 1). (Hint: Consider inverse trigonometric functions.)

7. If you found formulas for parts (5) and (6), show that they work together. That is, substitute the x-value

formula you found into y = Asinx + Bcosx and simplify it to arrive at the y -value formula you found.

91
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1.4 EXERCISES

For the following exercises, use the horizontal line test to 186. yi
determine whether each of the given graphs is one-to-one. 47
3__
183. v .l
3t 1t

2__

=+
M+
Bt

xY

1l
_al
3l

4l 187. v4

3l

184. v4 Al

Ll el
|
Bt
|
W
|
|

| =

e
=+
M+
4+
Bt
xY

0 23 | 45 67 X
1l -3+
—2l —44
—34
_al 188. )
4__
3__
185. 4 ol
14
P — —————>
-37 -11 15 4.1 6.7
1+ 1+
t t } 1 + } t - =27
—4-3-2-10 1 2 3 4%
a1l -3+
_2l —44
—34
—4l For the following exercises, a. find the inverse function,

and b. find the domain and range of the inverse function.

189. fx)=x>-4,x>0
190 ¢y =Vx—4

9L f)=x2+1

192, fy=@x-DEx<1

193. f(x) =Vx—-1
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194, __1
fo) = x+2

For the following exercises, use the graph of f to sketch

the graph of its inverse function.

195. [

EasnE Cus

Now s

WRERE

196.

WRERE

197.

198.

93

L ol T

WRERE

For the following exercises, use composition to determine
which pairs of functions are inverses.

199.

200.

201.

202.

203.

204.

205.

fx) =8x, gx) = %

f) = 8x+3, g(r) = 253

f0)=5x=7, gy = X4

f(x)=%x+2, g(x):%x+3
fo=—tox#lgm=t+1x20

fO=x*+1,g0x) =@-1"

fO=x>+2x+1,x>-1, g)=—1+vx, x>0

206.

f)=V4-x20<x<2, gx)=V4-x%0<x<2

For the following exercises, evaluate the functions. Give
the exact value.

207.

208.

209.

210.

211.

212.

- (3)

cos ™! (—%)

cot™1(1)
sin~!(=1)

cos ™! (?)

cos(tan_l (\/5))
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213. sin(cos -1 (g))

214. g1 (sin(%))

215, (ap~! (tan(—%))

216. The function C = T(F) = (5/9)(F — 32) converts

degrees Fahrenheit to degrees Celsius.
a. Find the inverse function F = T_I(C)

b. What is the inverse function used for?

217. [T] The velocity V (in centimeters per second) of
blood in an artery at a distance x cm from the center of the
artery can be modeled by the function

V = f(x) = 50000.04 — x?) for 0 < x <0.2.
a. Find x= f\(V).

b. Interpret what the inverse function is used for.
c. Find the distance from the center of an artery with
a velocity of 15 cm/sec, 10 cm/sec, and 5 cm/sec.

218. A function that converts dress sizes in the United
States to those in Europe is given by D(x) = 2x + 24.

a. Find the European dress sizes that correspond to
sizes 6, 8, 10, and 12 in the United States.

b. Find the function that converts European dress
sizes to U.S. dress sizes.

c. Use part b. to find the dress sizes in the United
States that correspond to 46, 52, 62, and 70.
219. [T] The cost to remove a toxin from a lake is modeled
by the function
C(p) =75p/(85 — p), where C is the cost (in thousands
of dollars) and p is the amount of toxin in a small lake

(measured in parts per billion [ppb]). This model is valid
only when the amount of toxin is less than 85 ppb.

a. Find the cost to remove 25 ppb, 40 ppb, and 50 ppb
of the toxin from the lake.

b. Find the inverse function. c. Use part b. to
determine how much of the toxin is removed for
$50,000.
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220. [T] A race car is accelerating at a velocity given by

v(t) = %f + 54,

where v is the velocity (in feet per second) at time t.
a. Find the velocity of the car at 10 sec.
b. Find the inverse function.
c. Use part b. to determine how long it takes for the

car to reach a speed of 150 ft/sec.

221. [T] An airplane’s Mach number M is the ratio of its
speed to the speed of sound. When a plane is flying at a
constant altitude, then its Mach angle is given by

u= 2sin~! (ﬁ)

Find the Mach angle (to the nearest degree) for the
following Mach numbers.

Speed of sound = a Mach = M > 1.0

Mach angle

Velocity = v

Mach wave

a. u=14
b. u=28
c. u=43

222. [T] Using u = 2sin~! (ﬁ), find the Mach number

M for the following angles.

a. ,u=%
b. ,u=27—”
¢ umi

223. [T] The temperature (in degrees Celsius) of a city in
the northern United States can be modeled by the function

T(x)=5+18 sin[%(x - 4.6)],

where x is time in months and x = 1.00 corresponds

to January 1. Determine the month and day when the
temperature is 21°C.
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224, [T] The depth (in feet) of water at a dock changes
with the rise and fall of tides. It is modeled by the function

D(t) = SSin(%t . %”) +8,

where ¢ is the number of hours after midnight. Determine
the first time after midnight when the depth is 11.75 ft.

225. [T] An object moving in simple harmonic motion is
modeled by the function

s(t) = -6 cos(%t),

where s is measured in inches and ¢ is measured in

seconds. Determine the first time when the distance moved
is 4.5 ft.

226. [T] A local art gallery has a portrait 3 ft in height that
is hung 2.5 ft above the eye level of an average person. The
viewing angle € can be modeled by the function

0= tan_l% - tan_l%,

where x is the distance (in feet) from the portrait. Find the
viewing angle when a person is 4 ft from the portrait.

227. [T Use a calculator to evaluate tan~! (tan(2.1)) and

cos ™! (cos(2.1)). Explain the results of each.

228. [T] Use a calculator to evaluate sin(sin_l(—2)) and

tan(tan_l(—Z)). Explain the results of each.

95
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1.5 | Exponential and Logarithmic Functions

Learning Objectives

1.5.1 Identify the form of an exponential function.
1.5.2 Explain the difference between the graphs of x? and b~
1.5.3 Recognize the significance of the number e.

1.5.4 Identify the form of a logarithmic function.

1.5.5 Explain the relationship between exponential and logarithmic functions.
1.5.6 Describe how to calculate a logarithm to a different base.

1.5.7 Identify the hyperbolic functions, their graphs, and basic identities.

In this section we examine exponential and logarithmic functions. We use the properties of these functions to solve
equations involving exponential or logarithmic terms, and we study the meaning and importance of the number e. We also

define hyperbolic and inverse hyperbolic functions, which involve combinations of exponential and logarithmic functions.
(Note that we present alternative definitions of exponential and logarithmic functions in the chapter Applications of
Integrations, and prove that the functions have the same properties with either definition.)

Exponential Functions
Exponential functions arise in many applications. One common example is population growth.
For example, if a population starts with P, individuals and then grows at an annual rate of 2%, its population after 1 year
is
P(1) =Py+0.02P5 = Py(1 + 0.02) = P((1.02).

Its population after 2 years is

P(2) = P(1) + 0.02P(1) = P(1)(1.02) = P0(1.02)2.
In general, its population after ¢ years is

P(1) = P (1.02)',

which is an exponential function. More generally, any function of the form f(x) =b*, where b>0,b# 1, is an
exponential function with base » and exponent x. Exponential functions have constant bases and variable exponents. Note

that a function of the form f(x) = x? for some constant b is not an exponential function but a power function.

To see the difference between an exponential function and a power function, we compare the functions y = x* and y=2%

In Table 1.10, we see that both 2* and x? approach infinity as x — oco. Eventually, however, 2* becomes larger than

2 2

x* and grows more rapidly as x — oo. In the opposite direction, as x — —oo, x° — oo, whereas 2* — 0. The line

y = 0 is a horizontal asymptote for y = 2%,

x -3 -2 -1 0 1 2 3 4 5 6

2% 1/8 1/4 172 1 2 4 8 16 32 64

Table 1.10 Values of xZ and 2*
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In Figure 1.43, we graph both y = x* and y = 2% to show how the graphs differ.

Y
50T

PR
Figure 1.43 Both 2% and x2 approach infinity as x — oo,
but 2* grows more rapidly than x2. As

X = —00, x> — 00, whereas 2% — 0.

Evaluating Exponential Functions
Recall the properties of exponents: If x is a positive integer, then we define b* = b-b --- b (with x factors of b). If x

is a negative integer, then x = —y for some positive integer y, and we define b* = b~ = 1/bY. Also, b° is defined

q
to be 1. If x is a rational number, then x = p/g, where p and g are integers and b* = b” f VbP. For example,

932 = \/973 = 27. However, how is b* defined if x is an irrational number? For example, what do we mean by Zﬁ?

This is too complex a question for us to answer fully right now; however, we can make an approximation. In Table 1.11,

we list some rational numbers approaching V2, and the values of 2* for each rational number x are presented as well.

We claim that if we choose rational numbers x getting closer and closer to V2, the values of 2* get closer and closer to

some number L. We define that number L to be 2ﬁ.

x 1.4 1.41 1.414 1.4142 1.41421 1.414213

2% 2.639 2.65737 2.66475 2.665119 2.665138 2.665143

Table 1.11 Values of 2* for a List of Rational Numbers Approximating V2

Example 1.33

Bacterial Growth

Suppose a particular population of bacteria is known to double in size every 4 hours. If a culture starts with
1000 bacteria, the number of bacteria after 4 hours is n(4) = 1000 - 2. The number of bacteria after 8 hours is

n(8) =n4)-2 =1000- 22 In general, the number of bacteria after 4m hours is n(4m) = 1000-2". Letting
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t =4m, we see that the number of bacteria after ¢ hours is n(¢) = 1000 - 2% Find the number of bacteria

after 6 hours, 10 hours, and 24 hours.

Solution
The number of bacteria after 6 hours is given by n(6) = 1000 - 204 ~ 2828 bacteria. The number of bacteria
after 10 hours is given by n(10) = 1000 - 210/% ~ 5657 bacteria. The number of bacteria after 24 hours is

given by n(24) = 1000 - 26 = 64,000 bacteria.

@ 1.27  Given the exponential function f(x) = 100 - 3 2, evaluate f(4) and f(10).

’ Go to World Population Balance (http://www.openstaxcollege.org/l/20_exponengrow) for another
example of exponential population growth.

Graphing Exponential Functions

Foranybase b > 0, b # 1, the exponential function f(x) = b* is defined for all real numbers x and b* > 0. Therefore,
the domain of f(x) = b" is (—0o, o) and the range is (0, o). To graph b*, we note that for b > 1, b” is increasing
on (—oo, 00) and b* — oo as x — oo, whereas b* — 0 as x - —oo. On the other hand, if 0 < b < 1, f(x) = b”* is

decreasing on (—o0, o0) and b* — 0 as x — oo whereas b* — oo as x - —co0 (Figure 1.44).

2] Yh f(x) = &

-1 1 X
Figure 1.44 If b > 1, then b” is increasing on (—o0, 00).

If 0<b<1, then b* is decreasing on (—oo0, c0).

. Visit this site (http://lwww.openstaxcollege.org/l/20_inverse) for more exploration of the graphs of
exponential functions.

Note that exponential functions satisfy the general laws of exponents. To remind you of these laws, we state them as rules.

Rule: Laws of Exponents

For any constants a > 0, b > 0, and for all x and y,

1. b5 -pY=p"""

b* _,x—y
2. ﬁ_b

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2


http://www.openstaxcollege.org/l/20_exponengrow
http://www.openstaxcollege.org/l/20_inverse

Chapter 1 | Functions and Graphs 929

3. Y =p"

4. (ab)* = a*b”*

Example 1.34

Using the Laws of Exponents

Use the laws of exponents to simplify each of the following expressions.

3
) (22)
(4)6-1/3)2
N (x3y_])22
(27
Solution

a. We can simplify as follows:

(2x2/3)32 _ 23(x2/3)32 _ szm _ x2)262/3 _ %
(4x—1/3) 42(x—1/3) 16x™
b. We can simplify as follows:
31V (3 (o—1) _
(E‘ 3’2)_)2 _ (x_)z ((yz)—)z _ xX_62)’y_24 = xOx2y 24 = 482
Xy X Yy

@ 1.28  yse the laws of exponents to simplify (6x_3 yz)/(IZx_4 ys).

The Number e

A special type of exponential function appears frequently in real-world applications. To describe it, consider the following
example of exponential growth, which arises from compounding interest in a savings account. Suppose a person invests P

dollars in a savings account with an annual interest rate #, compounded annually. The amount of money after 1 year is
Al)=P+rP=P1 +r).
The amount of money after 2 years is
AQ)=A() +rA() = P + 1) + rP(1 + 1) = P(1 + 12,
More generally, the amount after ¢ years is

A =P +7r).
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If the money is compounded 2 times per year, the amount of money after half a year is
AQ)=r+(g)p=r(1+(3))
The amount of money after 1 year is
0= ) Q)= 1+ 2+ (1) (5
After ¢ years, the amount of money in the account is
2t

A = P(l + %) .

More generally, if the money is compounded n times per year, the amount of money in the account after ¢ years is given
by the function

Aty = P(1 + %)m.

What happens as n — oo ? To answer this question, we let m = n/r and write

mrt

(A = ()

and examine the behavior of (1 + 1/m)"™ as m — oo, using a table of values (Table 1.12).

m 10 100 1000 10,000 100,000 1,000,000

m
(1 + L) 2.5937 2.7048 2.71692 2.71815 2.718268 2.718280

m
Table 1.12 Values of (1 +%) as m — o

Looking at this table, it appears that (1 + 1/m)™ is approaching a number between 2.7 and 2.8 as m — oo. In fact,

(1 4+ 1/m)™ does approach some number as m — co. We call this number e . To six decimal places of accuracy,

e~ 2.718282.

The letter e was first used to represent this number by the Swiss mathematician Leonhard Euler during the 1720s. Although
Euler did not discover the number, he showed many important connections between e and logarithmic functions. We still
use the notation e today to honor Euler’s work because it appears in many areas of mathematics and because we can use it
in many practical applications.

Returning to our savings account example, we can conclude that if a person puts P dollars in an account at an annual
interest rate r, compounded continuously, then A(f) = Pe’’. This function may be familiar. Since functions involving
base e arise often in applications, we call the function f(x) = e” the natural exponential function. Not only is this
function interesting because of the definition of the number e, but also, as discussed next, its graph has an important
property.

Since e > 1, we know e” is increasing on (—oo, o). In Figure 1.45, we show a graph of f(x) =e” along with a

tangent line to the graph of at x = 0. We give a precise definition of tangent line in the next chapter; but, informally, we
say a tangent line to a graph of f at x = a is a line that passes through the point (a, f(a)) and has the same “slope” as

f at that point . The function f(x) = e* is the only exponential function b* with tangent line at x = O that has a slope

of 1. As we see later in the text, having this property makes the natural exponential function the most simple exponential
function to use in many instances.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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yi
f(x) = e*

j/ slope =1

-1 1 .
Figure 1.45 The graph of f(x) = ¢ has a tangent line with

—t

slope 1 at x =0.

Example 1.35

Compounding Interest

Suppose $500 is invested in an account at an annual interest rate of r = 5.5%, compounded continuously.

a. Let ¢ denote the number of years after the initial investment and A(#) denote the amount of money in

the account at time ¢. Find a formula for A(?).

b. Find the amount of money in the account after 10 years and after 20 years.

Solution

a. If P dollars are invested in an account at an annual interest rate r, compounded continuously, then

A(f) = Pe'". Here P = $500 and r = 0.055. Therefore, A(r) = 500¢%-05.
b. After 10 years, the amount of money in the account is

A(10) = 5002203510 = 500,035 ~ $866.63.

After 20 years, the amount of money in the account is

A20) = 500¢%0% 20 = 500¢ 1! ~ $1, 502.08.

@/ 1.29 If $750 is invested in an account at an annual interest rate of 4%, compounded continuously, find a

formula for the amount of money in the account after ¢ years. Find the amount of money after 30 years.

Logarithmic Functions

Using our understanding of exponential functions, we can discuss their inverses, which are the logarithmic functions. These
come in handy when we need to consider any phenomenon that varies over a wide range of values, such as pH in chemistry
or decibels in sound levels.

The exponential function f(x) = b* is one-to-one, with domain (—oco, o) and range (0, co). Therefore, it has an inverse
function, called the logarithmic function with base b. For any b > 0, b # 1, the logarithmic function with base b,

denoted log;, has domain (0, oo) and range (—oo, c0), and satisfies
log, (x) = yif and only if b = x.

For example,
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10g,(8) = 3 since 23 =38,
log g (ﬁ) =-2  since 1072 = %02 = ﬁ,
log,(1) =0 since b = 1 for any base b > 0.
Furthermore, since y = log,(x) and y = b* are inverse functions,
log, (b*) = x and blogb(x) =X

The most commonly used logarithmic function is the function log,. Since this function uses natural e as its base, it is

called the natural logarithm. Here we use the notation In(x) or Inx to mean log, (x). For example,
In(e) = log, () = 1, In(e”) = log,(e?) = 3, In(1) = log, (1) = 0.

Since the functions f(x) = ¢* and g(x) = In(x) are inverses of each other,

Inx —

In(e*) = xand e X,
and their graphs are symmetric about the line y = x (Figure 1.46).
yi
f(x) = e~
////y = X

Figure 1.46 The functions y = ¢* and y = In(x) are

inverses of each other, so their graphs are symmetric about the
line y = x.

’ At this site (http:/lwww.openstaxcollege.org/l/20_logscale) you can see an example of a base-10
logarithmic scale.

In general, for any base b > 0, b # 1, the function g(x) = log,(x) is symmetric about the line y = x with the function
f(x) = b*. Using this fact and the graphs of the exponential functions, we graph functions log; for several values of

b > 1 (Figure 1.47).
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yi

y = log,(x)
y =In(x)
¥ = logyp(X)

Figure 1.47 Graphs of y = log;(x) are depicted for
b=2,e, 10.

Before solving some equations involving exponential and logarithmic functions, let’s review the basic properties of
logarithms.

Rule: Properties of Logarithms

If a, b,c >0, b # 1, and r is any real number, then
1. log,, (ac) = logy, (a) + log, (c)  (Product property)

2. log,, (%) =log, (a) —log, (c) (Quotient property)
3. log,, (a") = rlog;, (a) (Power property)

Example 1.36

Solving Equations Involving Exponential Functions

Solve each of the following equations for x.
a. 5%=2
b. e*+6e =5

Solution

a. Applying the natural logarithm function to both sides of the equation, we have

In5* = In2.

Using the power property of logarithms,
xIn5 =1n2.

Therefore, x = In2/In5.

b. Multiplying both sides of the equation by e*, we arrive at the equation

X 4+ 6 =5¢".
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Rewriting this equation as

e — 505+ 6=0,

we can then rewrite it as a quadratic equation in e”:

€2 =5 +6=0.

Now we can solve the quadratic equation. Factoring this equation, we obtain

(e*=3)e*-2)=0.

Therefore, the solutions satisfy e* = 3 and e* = 2. Taking the natural logarithm of both sides gives us
the solutions x = In3, In2.

@ 1.30  Solve ¢>/(3 + ¢*) = 1/2.

Example 1.37

Solving Equations Involving Logarithmic Functions

Solve each of the following equations for x.
a. ln(%) =4
b. loggvx+logpx =2

c. In(2x)-3In(x*)=0

Solution

a. By the definition of the natural logarithm function,

ln(%) = 4if and only if et = %

Therefore, the solution is x = 1/e%.

b. Using the product and power properties of logarithmic functions, rewrite the left-hand side of the equation
as

loggvx +log gx = log gxvx = log10x3/2 = %loglox.

Therefore, the equation can be rewritten as

3 3|
Eloglox =2orloggx = 3
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The solution is x = 1043 = 10%.

c. Using the power property of logarithmic functions, we can rewrite the equation as In(2x) — ln(xﬁ) =0.

2)_
In|=]=0.
(3

5
Therefore, 2% = 1, which implies x = V2. We should then check for any extraneous solutions.

Using the quotient property, this becomes

@ 1.31  solve ln(x3)—4ln(x) =1.

When evaluating a logarithmic function with a calculator, you may have noticed that the only options are log; or log,

called the common logarithm, or In, which is the natural logarithm. However, exponential functions and logarithm functions
can be expressed in terms of any desired base b. If you need to use a calculator to evaluate an expression with a different

base, you can apply the change-of-base formulas first. Using this change of base, we typically write a given exponential or
logarithmic function in terms of the natural exponential and natural logarithmic functions.

Rule: Change-of-Base Formulas
Leta>0,b>0, and a# 1, b # 1.

xlogya
1. a*=b""%0" for any real number x.

. . xlogea
If b=e, thisequation reducesto a*=e Bed _ pxlna

log,,
log,,

2. logyx= z for any real number x > 0.

If b =e, thisequation reduces to log,x = %II:_;

Proof
For the first change-of-base formula, we begin by making use of the power property of logarithmic functions. We know that
for any base b > 0, b # 1, logb(ax) = xlog, a. Therefore,

logb(ax) xlogya

b =b

In addition, we know that »* and log p(x) are inverse functions. Therefore,
log(a™)
p Y = g

o . o X XIOgba
Combining these last two equalities, we conclude that a* = b .

To prove the second property, we show that

(log,a) - (log, x) = log, x.
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Let u = log,a, v=1og,x, and w = log, x. We will show that u-v = w. By the definition of logarithmic functions, we

know that b = a, a" = x, and b" = x. From the previous equations, we see that
bW =0B" =a"=x=>b".

Therefore, b = b". Since exponential functions are one-to-one, we can conclude that u-v = w.

‘

Example 1.38

Changing Bases

Use a calculating utility to evaluate log;7 with the change-of-base formula presented earlier.

Solution

Use the second equation with ¢ =3 and e = 3:

=In7
logy7 = n3 ~ 1.77124.

@ 1.32  Use the change-of-base formula and a calculating utility to evaluate log, 6.

Example 1.39

Chapter Opener: The Richter Scale for Earthquakes

Figure 1.48 (credit: modification of work by Robb
Hannawacker, NPS)

In 1935, Charles Richter developed a scale (now known as the Richter scale) to measure the magnitude of an
earthquake. The scale is a base-10 logarithmic scale, and it can be described as follows: Consider one earthquake
with magnitude R; on the Richter scale and a second earthquake with magnitude R, on the Richter scale.

Suppose R > R,, which means the earthquake of magnitude R is stronger, but how much stronger is it than

the other earthquake? A way of measuring the intensity of an earthquake is by using a seismograph to measure
the amplitude of the earthquake waves. If A is the amplitude measured for the first earthquake and A, is the

amplitude measured for the second earthquake, then the amplitudes and magnitudes of the two earthquakes satisfy
the following equation:

A
Ry =R,y =logyg (A_;)

Consider an earthquake that measures 8 on the Richter scale and an earthquake that measures 7 on the Richter
scale. Then,
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8§—-7= lOglo(ﬁ—z).

A
o) = 1

which implies A;/A, =10 or A; =10A,. Since A is 10 times the size of A,, we say that the first

Therefore,

earthquake is 10 times as intense as the second earthquake. On the other hand, if one earthquake measures 8 on
the Richter scale and another measures 6, then the relative intensity of the two earthquakes satisfies the equation

A
loglo(A—z) =8-6=2.
Therefore, A; = 100A,. That is, the first earthquake is 100 times more intense than the second earthquake.

How can we use logarithmic functions to compare the relative severity of the magnitude 9 earthquake in Japan in
2011 with the magnitude 7.3 earthquake in Haiti in 2010?

Solution

To compare the Japan and Haiti earthquakes, we can use an equation presented earlier:

2

Therefore, A|/A, = 101'7, and we conclude that the earthquake in Japan was approximately 50 times more

intense than the earthquake in Haiti.

@ 1.33 Compare the relative severity of a magnitude 8.4 earthquake with a magnitude 7.4 earthquake.

Hyperbolic Functions

The hyperbolic functions are defined in terms of certain combinations of e* and e™™. These functions arise naturally

in various engineering and physics applications, including the study of water waves and vibrations of elastic membranes.
Another common use for a hyperbolic function is the representation of a hanging chain or cable, also known as a catenary
(Figure 1.49). If we introduce a coordinate system so that the low point of the chain lies along the y -axis, we can describe

the height of the chain in terms of a hyperbolic function. First, we define the hyperbolic functions.
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Definition

Figure 1.49 The shape of a strand of silk in a spider’s web
can be described in terms of a hyperbolic function. The same
shape applies to a chain or cable hanging from two supports with
only its own weight. (credit: “Mtpaley”, Wikimedia Commons)
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Hyperbolic cosine

Hyperbolic sine

Hyperbolic tangent

Hyperbolic cosecant

Hyperbolic secant

Hyperbolic cotangent

tanhx = Sinhx _ e” —e

coshx

cschx =

sinhx eX—e*

1 2
sechx = =
coshx e¥4+e*
_coshx _e*+e”*
cothx = = =

sinh x e —e”

The name cosh rhymes with “gosh,” whereas the name sinh is pronounced “cinch.” Tanh, sech, csch, and coth are
pronounced “tanch,” “seech,” “coseech,” and “cotanch,” respectively.

Using the definition of cosh(x) and principles of physics, it can be shown that the height of a hanging chain, such as the

one in Figure 1.49, can be described by the function /4(x) = acosh(x/a) + ¢ for certain constants a and c.

But why are these functions called hyperbolic functions? To answer this question, consider the quantity cosh? — sinh?1.
Using the definition of cosh and sinh, we see that
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2t 2t

e —2+e -1

cosh?t — sinh?¢ = 7

X +2+e”
4

This identity is the analog of the trigonometric identity cos”t +sin’t = 1. Here, given a value ¢, the point

(x, ¥) = (cosht, sinh?) lies on the unit hyperbola X - y2 =1 (Figure 1.50).

v
T XX —y2=1
1] (cosh(1), sinh(1))
X
1+

Figure 1.50 The unit hyperbola cosh?¢ — sinh?7 = 1.

Graphs of Hyperbolic Functions

To graph coshx and sinhx, we make use of the fact that both functions approach (1/2)e* as x — oo, since e ™ — 0
as x — 00. As x — —oo, coshx approaches 1/2¢™*, whereas sinhx approaches —1/2¢™*. Therefore, using the
graphs of 1/2¢*, 1/2¢™, and —1/2¢™* as guides, we graph coshx and sinhx. To graph tanhx, we use the fact that
tanh(0) = 1, —1 < tanh(x) < 1 for all x, tanhx — 1 as x - oo, and tanhx — —1 as x — —oo. The graphs of the

other three hyperbolic functions can be sketched using the graphs of coshx, sinhx, and tanhx (Figure 1.51).
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yi
¥ = sinh(x)
Lo AT
i
R = e
14
I Yo
J’f_ y
B T T U
-1+ 14
Y yi
T _—e T \ ¥ = coth(x)
y = tanh(x
y=1
- 1 X
_________}:_____1_

Figure 1.51 The hyperbolic functions involve combinations of ¢* and

e .

Identities Involving Hyperbolic Functions

The identity cosh?¢ — sinh?#, shown in Figure 1.50, is one of several identities involving the hyperbolic functions,

some of which are listed next. The first four properties follow easily from the definitions of hyperbolic sine and hyperbolic
cosine. Except for some differences in signs, most of these properties are analogous to identities for trigonometric functions.

Rule: Identities Involving Hyperbolic Functions

1. cosh(—x) = coshx
2. sinh(—x) = —sinhx

coshx + sinhx = e*

e

4. coshx —sinhx=e"*
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5. cosh?x —sinh?x = 1
6. 1—tanh?x =sech®x
7. coth?x — 1 =csch’x
8. sinh(x + y) = sinhxcoshy + coshxsinhy

9. cosh(x =+ y) = coshxcoshy =+ sinhxsinhy

Example 1.40

Evaluating Hyperbolic Functions
a. Simplify sinh(5lnx).

b. If sinhx = 3/4, find the values of the remaining five hyperbolic functions.

Solution

a. Using the definition of the sinh function, we write

Slnx _ _—5Inx 1“("5) 1n(x‘5) 5 -5

: _e e _e —e _X —x
sinh(51nx) = 5 = 3 = 5
b. Using the identity cosh?x —sinh?>x = 1, we see that
)
cosh’x =1+ (%) = %

Since coshx > 1 for all x, we must have coshx = 5/4. Then, using the definitions for the other

hyperbolic functions, we conclude that tanhx = 3/5, cschx = 4/3, sechx = 4/5, and cothx = 5/3.

@ 1.34 Simplify cosh(2Inx).

Inverse Hyperbolic Functions

From the graphs of the hyperbolic functions, we see that all of them are one-to-one except coshx and sechx. If we
restrict the domains of these two functions to the interval [0, o0), then all the hyperbolic functions are one-to-one, and we

can define the inverse hyperbolic functions. Since the hyperbolic functions themselves involve exponential functions, the
inverse hyperbolic functions involve logarithmic functions.

Definition

Inverse Hyperbolic Functions

sinh~! x = arcsinhx = ln(x +Vx%2+1 , cosh™! x = arccoshx = ln(x +

=
)
|
—

-1 _ _ 1. (1+x -1, _ _ 1y (x+
tanh™ " x = arctanhx = 2ln(—1 — x) coth™" x = arccotx = Zln(x — 1)
A/ 2 2
sech™! x = arcsechx = ln[%] csch™' x = arceschx = ln(% + lljc-lx ]
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Let’s look at how to derive the first equation. The others follow similarly. Suppose y = sinh™' x. Then, x = sinh y and,

y_ 7Y
by the definition of the hyperbolic sine function, x = %. Therefore,

eV —2x—e Y =0.

Multiplying this equation by e”, we obtain

e? —2xe¥ —1=0.
This can be solved like a quadratic equation, with the solution

A2
eyzwzxivxhrl,

Since e” > 0, the only solution is the one with the positive sign. Applying the natural logarithm to both sides of the

y= 1n(x+ Vx% +1 '
Example 1.41

Evaluating Inverse Hyperbolic Functions

equation, we conclude that

Evaluate each of the following expressions.
sinh~1(2)
tanh~!(1/4)

Solution

sinh~! (2) = 1n(2 +1224 1) = In(2 + V3) ~ 1.4436

tanh~1(1/4) = %m(%) - %m(%) - %m(%) ~ 0.2554

@ 1.35 Evaluate tanh™!(1/2).
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1.5 EXERCISES

For the following exercises, evaluate the given exponential
functions as indicated, accurate to two significant digits

after the decimal.

229. fx)=5%a. x=3b. x=

230. f(x)=(03) a.x=-1b.x=4c x=-15

1
5 ¢

X

V2

231. fx)=10"a. x=-2b.x=4c. x=

232. f(x)=e*a. x=2b.x=-32c x==x

For the following exercises, match the exponential equation

to the correct graph.
a. y=47°

b. y=3*"1

c. y=2X+1

X

d. y:(%) +4

e. y=-37"

f. y=1-5*
233.

5
3

234.

235.

113

—1.54

~4.5

—7.57

xY

15 3

w4
xY
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236. 239. f(x)=e " +2
Yi
5+
4__
___Z __________________
} - } - t b 4-; 14
-5 -4 -3 -2 3 4 5
S 32109 12 3 4 5%
—24 —14
-3+ el
—41 —34
_5_. -4+
—54+
Yi
237. 5!
4+ 240. f(x) = -2*
L i
3 A
21
4__
1+ 3l
-5 -4 -3 5 X 21
1+
S E e NEEEEE
Yi
238. 51
4__
3+
2
1+
S35 2109 12 3 4 5%
—1+
—ol
-3+
—44+
—54+

For the following exercises, sketch the graph of the
exponential function. Determine the domain, range, and
horizontal asymptote.
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241. fx) = g3r+1

242. f(x) =4 -1

=
a5
[e%3
.
o+

P ]

P ]

243. fx)=1-27*

244, fx) = 5¥x+l 9

P ]

115
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245. f(x)=e* -1

For the following exercises, write the equation in
equivalent exponential form.

246. log;81 =4

247. logg2 = %
248. logs1 =0

249. logs25=2

250. log0.1 = -1

251.
1n(L) =-3
63

252. logg3 =0.5
253. In1=0

For the following exercises, write the equation in
equivalent logarithmic form.

254. 23 _3g
255. 42 _ 1

4T =16
256. 102 =100

257. 90 =1

258. (1)3_L
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259. ¥z _4

260. e* =y

261. 9Y =150
262. 3 — 45

263. 4732 = 0.125

For the following exercises, sketch the graph of the
logarithmic function. Determine the domain, range, and
vertical asymptote.

264. f(x)=3+Inx

-10 -5

—104+

265. f(x)=In(x—1)

|
w4
|
Bt
|
w4
|
4
|
= 4
.
=
M
28]
.
w
xY
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266. f(x) = In(-x)

U1

B QO S S S S S X P
_1 L
—21
—34
—41
—54
267. f(x)=1-1Inx
Yi
5
8 9X
=al
34
—4+
—51
268. f(x) =1logx—1
Yi
5 -+
20%

-5 | 0('/57 10

—104+

269. f(x) =In(x+ 1)

=
S
(e8]
F
[53]
xv¥
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For the following exercises, use properties of logarithms to
write the expressions as a sum, difference, and/or product
of logarithms.

270

271.

272.

273.

274.

275.

: 10gx4y

3

In a%

log \/125xy3

3
X
log4q

£

For the following exercises, solve the exponential equation

exactly.
276. 5% =125
277. X~ 15=0
278. 8¥=4
279. 4*+1_32=0
280. 3/14 _ 1

10
281. 10% =7.21
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282. 4.23%_20=0
283. 73x-2_ 11

For the following exercises, solve the logarithmic equation
exactly, if possible.

284. log;x =10

285. logsx = -2

286. log,(x+35)=0

287. log(2x—T7)=0

288. InVx+3=2

289. logg(x+9) +loggx =2

290. logy(x+2)—logy(x—1)=0
291. Inx+In(x —2) =1n4

For the following exercises, use the change-of-base
formula and either base 10 or base e to evaluate the given
expressions. Answer in exact form and in approximate
form, rounding to four decimal places.

292. logs547
293. log; 82
294. logg 103
295. logg 5211
296. log, 7
297. logg,0.452

298. Rewrite the following expressions in terms of
exponentials and simplify.

a. 2cosh(Inx) b. cosh4x + sinh4x c. cosh2x — sinh2x
d. In(coshx + sinhx) + In(coshx — sinhx)

299. [T] The number of bacteria N in a culture after t days
can be modeled by the function N(¢) = 1300 - (2)” 4 Find

the number of bacteria present after 15 days.
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300. [T] The demand D (in millions of barrels) for oil in an
oil-rich  country is given by the function
D(p) = 150 (2.7)"0*F

of a barrel of oil. Find the amount of oil demanded (to the
nearest million barrels) when the price is between $15 and
$20.

, where p is the price (in dollars)

301. [T] The amount A of a $100,000 investment paying
continuously and compounded for t years is given by

A(r) = 100,000 - €005 Find the amount A accumulated

in 5 years.

302. [T] An investment is compounded monthly, quarterly,
.\ ht

or yearly and is given by the function A = P(l + %) ,
where A is the value of the investment at time #, P is the
initial principle that was invested, j is the annual interest

rate, and n is the number of time the interest is

compounded per year. Given a yearly interest rate of 3.5%
and an initial principle of $100,000, find the amount A

accumulated in 5 years for interest that is compounded a.
daily, b., monthly, c. quarterly, and d. yearly.

303. [T] The concentration of hydrogen ions in a substance
is denoted by [H+ ], measured in moles per liter. The pH

of a substance is defined by the logarithmic function
pH = —log[H+ ] This function is used to measure the

acidity of a substance. The pH of water is 7. A substance
with a pH less than 7 is an acid, whereas one that has a pH
of more than 7 is a base.

a. Find the pH of the following substances. Round
answers to one digit.

b. Determine whether the substance is an acid or a
base.

i. Eggs: [H+] =1.6x 1078 mol/L
ii. Beer: [H+] =3.16 x 1073 mol/L
iii. Tomato Juice: [H+] =7.94x 10> mol/L

304. [T] Iodine-131 is a radioactive substance that decays

04 ¢ 008664 here

according to the function Q(¢) =
Qy is the initial quantity of a sample of the substance and t

is in days. Determine how long it takes (to the nearest day)
for 95% of a quantity to decay.
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305. [T] According to the World Bank, at the end of 2013 (
t =0 ) the U.S. population was 316 million and was

increasing according to the following model:
P(r) = 316¢™0074,

where P is measured in millions of people and t is measured
in years after 2013.

a. Based on this model, what will be the population of
the United States in 20207

b. Determine when the U.S. population will be twice
what it is in 2013.

306. [T] The amount A accumulated after 1000 dollars is
invested for ¢ years at an interest rate of 4% is modeled by

the function A(f) = 1000(1.04)".

a. Find the amount accumulated after 5 years and 10
years.

b. Determine how long it takes for the original
investment to triple.

307. [T] A bacterial colony grown in a lab is known to
double in number in 12 hours. Suppose, initially, there are
1000 bacteria present.

a. Use the exponential function Q = Qoekt to

determine the value k, which is the growth rate of

the bacteria. Round to four decimal places.

b. Determine approximately how long it takes for
200,000 bacteria to grow.

308. [T] The rabbit population on a game reserve doubles
every 6 months. Suppose there were 120 rabbits initially.

a. Use the exponential function P =Pya’ to

determine the growth rate constant a. Round to
four decimal places.

b. Use the function in part a. to determine
approximately how long it takes for the rabbit
population to reach 3500.

309. [T] The 1906 earthquake in San Francisco had a
magnitude of 8.3 on the Richter scale. At the same time, in
Japan, an earthquake with magnitude 4.9 caused only minor
damage. Approximately how much more energy was
released by the San Francisco earthquake than by the
Japanese earthquake?

119
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CHAPTER 1 REVIEW

KEY TERMS

absolute value function —x, x<0

x, x>0

s ={
algebraic function a function involving any combination of only the basic operations of addition, subtraction,

multiplication, division, powers, and roots applied to an input variable x

base the number b in the exponential function f(x) = b* and the logarithmic function f(x) = log, x
composite function given two functions f and g, anew function, denoted go f, such that (g f)(x) = g(f(x))

cubic function , polynomial of degree 3; that is, a function of the form f(x) = ax’ + bx*+ cx+d, where a# 0
decreasing on the interval I afunction decreasing on the interval I if, forall x, x, € I, f(x) > f(x,) if x| <x,

degree for a polynomial function, the value of the largest exponent of any term
dependent variable the output variable for a function
domain the set of inputs for a function

even function a function is even if f(—x) = f(x) for all x in the domain of f

exponent the value x in the expression b*

function a set of inputs, a set of outputs, and a rule for mapping each input to exactly one output

graph of a function the set of points (x, y) such that x is in the domain of f and y = f(x)

horizontal line test a function f is one-to-one if and only if every horizontal line intersects the graph of f, at most,
once

hyperbolic functions the functions denoted sinh, cosh, tanh, csch, sech, and coth, which involve certain

combinations of e¢* and e ¥

increasing on the interval I a function increasing on the interval [ if forall x, x, € I, f(x)) < f(xy) if x; < x,

independent variable the input variable for a function

inverse function o 3 function f, the inverse function f~! satisfies f~!(y) = x if f(x) =y

inverse hyperbolic functions the inverses of the hyperbolic functions where cosh and sech are restricted to the
domain [0, o); each of these functions can be expressed in terms of a composition of the natural logarithm function

and an algebraic function

inverse trigonometric functions the inverses of the trigonometric functions are defined on restricted domains where
they are one-to-one functions

linear function a function that can be written in the form f(x) = mx + b

logarithmic function a function of the form f(x) = log; (x) for somebase b > 0, b # 1 such that y = log,(x) if and
only if bY = x
mathematical model A method of simulating real-life situations with mathematical equations

natural exponential function the function f(x) = e¢*

natural logarithm the function Inx = log, x
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number e as m gets larger, the quantity (1 + (1/m)™ gets closer to some real number; we define that real number to be

e; the value of e is approximately 2.718282
odd function a function is odd if f(—x) = —f(x) for all x in the domain of f

one-to-one function a function f is one-to-oneif f(x) # f(xy) if x| # x5

periodic function a function is periodic if it has a repeating pattern as the values of x move from left to right

piecewise-defined function a function that is defined differently on different parts of its domain

point-slope equation equation of a linear function indicating its slope and a point on the graph of the function

polynomial function ; function of the form f(x) = a,x"+a, X"~ '+...+a;x+a,
power function a function of the form f(x) = x" for any positive integer n > 1

quadratic function  polynomial of degree 2; that is, a function of the form f(x) = ax> + bx + ¢ where a # 0

radians for a circular arc of length s on a circle of radius 1, the radian measure of the associated angle @ is s

range the set of outputs for a function

rational function a function of the form f(x) = p(x)/q(x), where p(x) and g(x) are polynomials

restricted domain a subset of the domain of a function f

root function ; fynction of the form f(x) = x'/ for any integer n > 2

slope the change in y for each unit change in x
slope-intercept form equation of a linear function indicating its slope and y-intercept

symmetry about the origin the graph of a function f is symmetric about the origin if (—x, —y) is on the graph of f

whenever (x, y) is on the graph

symmetry about the y-axis the graph of a function f is symmetric about the y -axis if (—x, y) is on the graph of f

whenever (x, y) is on the graph

table of values a table containing a list of inputs and their corresponding outputs

transcendental function a function that cannot be expressed by a combination of basic arithmetic operations
transformation of a function a shift, scaling, or reflection of a function

trigonometric functions functions of an angle defined as ratios of the lengths of the sides of a right triangle

trigonometric identity an equation involving trigonometric functions that is true for all angles @ for which the functions
in the equation are defined

vertical line test given the graph of a function, every vertical line intersects the graph, at most, once

zeros of a function when a real number x is a zero of a function f, f(x) =0

KEY EQUATIONS

¢ Composition of two functions

(g flx) = g(f(x))

¢ Absolute value function

£ :{—x, x<0

x, x>0
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Point-slope equation of a line
y =y =mx—xy)

Slope-intercept form of a line
y=mx+b

Standard form of a line
ax+by=c

Polynomial function
f) =apx"+a,_x"" '+

Generalized sine function
f(x) =AsinB(x —a))+ C

Inverse functions

f_1 (f(x)) = xfor all xin D, and f(f_1 (y)) = yforall yinR.

KEY CONCEPTS

1.1 Review of Functions

oo +a1x+a0

Chapter 1 | Functions and Graphs

¢ A function is a mapping from a set of inputs to a set of outputs with exactly one output for each input.

If no domain is stated for a function y = f(x), the domain is considered to be the set of all real numbers x for

which the function is defined.

When sketching the graph of a function f, each vertical line may intersect the graph, at most, once.

A function may have any number of zeros, but it has, at most, one y-intercept.

To define the composition geo f, the range of f must be contained in the domain of g.

Even functions are symmetric about the y -axis whereas odd functions are symmetric about the origin.

1.2 Basic Classes of Functions

The power function f(x) = x" is an even function if 7 is even and n # 0, and it is an odd function if n is odd.

The root function f(x) = %" has the domain [0, o0) if n is even and the domain (—oco, o0) if n is odd. If n

is odd, then f(x) = x"" is an odd function.

The domain of the rational function f(x) = p(x)/q(x), where p(x) and g(x) are polynomial functions, is the set

of x such that g(x) # 0.

Functions that involve the basic operations of addition, subtraction, multiplication, division, and powers are
algebraic functions. All other functions are transcendental. Trigonometric, exponential, and logarithmic functions
are examples of transcendental functions.

A polynomial function f with degree n > 1 satisfies f(x) > +o0 as x — +oo. The sign of the output as

x — oo depends on the sign of the leading coefficient only and on whether 7 is even or odd.

Vertical and horizontal shifts, vertical and horizontal scalings, and reflections about the x- and y-axes are

examples of transformations of functions.

1.3 Trigonometric Functions

¢ Radian measure is defined such that the angle associated with the arc of length 1 on the unit circle has radian

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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e For acute angles 6, the values of the trigonometric functions are defined as ratios of two sides of a right triangle

in which one of the acute angles is 6.

¢ For a general angle #, let (x, y) be a point on a circle of radius r corresponding to this angle 6. The

trigonometric functions can be written as ratios involving x, y, and 7.

e The trigonometric functions are periodic. The sine, cosine, secant, and cosecant functions have period 2z. The
tangent and cotangent functions have period 7.

1.4 Inverse Functions

¢ For a function to have an inverse, the function must be one-to-one. Given the graph of a function, we can determine
whether the function is one-to-one by using the horizontal line test.

¢ [f a function is not one-to-one, we can restrict the domain to a smaller domain where the function is one-to-one and
then define the inverse of the function on the smaller domain.

e Fora function f and its inverse f -1 f( f -1 (x)) = x forall x in the domain of f ~! and f -1 (f(x)) = x forall

x in the domain of f.

¢ Since the trigonometric functions are periodic, we need to restrict their domains to define the inverse trigonometric
functions.

¢ The graph of a function f and its inverse f ~1 are symmetric about the line y = x.

1.5 Exponential and Logarithmic Functions

» The exponential function y = b* is increasing if b > 1 and decreasing if 0 < b < 1. Its domain is (—o0, c0)

and its range is (0, o0).
* The logarithmic function y = log,(x) is the inverse of y = b*. Its domainis (0, co) and its range is (—oo, o).
* The natural exponential function is y = ¢”* and the natural logarithmic function is y = Inx = log, x.

¢ Given an exponential function or logarithmic function in base a, we can make a change of base to convert this

function to any base b > 0, b # 1. We typically convert to base e.

 The hyperbolic functions involve combinations of the exponential functions e and e™. As a result, the inverse
hyperbolic functions involve the natural logarithm.

CHAPTER 1 REVIEW EXERCISES

True or False? Justify your answer with a proof or a f= x242x—3, g =In(x-5), h=—1
counterexample. x+4
310. A function is always one-to-one. 314. h
311. fog = gof, assuming fand g are functions. 315. g

316. hef

312. A relation that passes the horizontal and vertical line
tests is a one-to-one function.

317. geof
313. A relation passing the horizontal line test is a

function.
unction Find the degree, y-intercept, and zeros for the following

polynomial functions.
For the following problems, state the domain and range of

the given functions: 318. f(x) = 202+ 9x—5
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319. f(x) = X3 +2x% = 2x

Simplify the following trigonometric expressions.

2
320, ADX 4 o662y
sec”x

321. cos(2x) = sin® x

Solve the following trigonometric equations on the interval
0 = [-2n, 2x] exactly.

322. 6coslx—3=0

323. sec?x—2secx+1=0

Solve the following logarithmic equations.

324. 5*=16

325. log,(x+4)=3

Are the following functions one-to-one over their domain
of existence? Does the function have an inverse? If so, find

the inverse f ~1(x) of the function. Justify your answer.

326. f(x) = X2 +2x+1
327. f(x) =41

For the following problems, determine the largest domain
on which the function is one-to-one and find the inverse on
that domain.

328. f(x)=V9—x
329. f(x) = x> +3x+4

330. A caris racing along a circular track with diameter of
1 mi. A trainer standing in the center of the circle marks his
progress every 5 sec. After 5 sec, the trainer has to turn 55°
to keep up with the car. How fast is the car traveling?

For the following problems, consider a restaurant owner
who wants to sell T-shirts advertising his brand. He recalls
that there is a fixed cost and variable cost, although he does
not remember the values. He does know that the T-shirt
printing company charges $440 for 20 shirts and $1000 for
100 shirts.

331. a. Find the equation C = f(x) that describes the

total cost as a function of number of shirts and b. determine
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how many shirts he must sell to break even if he sells the
shirts for $10 each.

332. a. Find the inverse function x = f_l(C) and

describe the meaning of this function. b. Determine how
many shirts the owner can buy if he has $8000 to spend.

For the following problems, consider the population of
Ocean City, New Jersey, which is cyclical by season.

333. The population can be
P(t) = 82.5 — 67.5cos[(n/6)t], where t

months (¢ = 0 represents January 1) and P is population

modeled by
is time in

(in thousands). During a year, in what intervals is the
population less than 20,000? During what intervals is the
population more than 140,000?

334. In reality, the overall population is most likely
increasing or decreasing throughout each year. Let’s
reformulate the model as
P(t) = 82.5 — 67.5cos[(n/6)t]+ ¢, where ¢t is time in
months (¢ = 0 represents January 1) and P is population

(in thousands). When is the first time the population
reaches 200,000?

For the following problems, consider radioactive dating. A
human skeleton is found in an archeological dig. Carbon
dating is implemented to determine how old the skeleton is

by using the equation y = e’’, where y is the percentage
of radiocarbon still present in the material, ¢ is the number
of years passed, and r = —0.0001210 is the decay rate of
radiocarbon.

335. If the skeleton is expected to be 2000 years old, what
percentage of radiocarbon should be present?

336. Find the inverse of the carbon-dating equation. What
does it mean? If there is 25% radiocarbon, how old is the
skeleton?
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2 | LIMITS

Figure 2.1 The vision of human exploration by the National Aeronautics and Space Administration (NASA) to distant parts of
the universe illustrates the idea of space travel at high speeds. But, is there a limit to how fast a spacecraft can go? (credit:
NASA)

Chapter Outline

2.1 A Preview of Calculus

2.2 The Limit of a Function

2.3 The Limit Laws

2.4 Continuity

2.5 The Precise Definition of a Limit

Introduction

Science fiction writers often imagine spaceships that can travel to far-off planets in distant galaxies. However, back in 1905,
Albert Einstein showed that a limit exists to how fast any object can travel. The problem is that the faster an object moves,
the more mass it attains (in the form of energy), according to the equation

mgo
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where my is the object’s mass at rest, v is its speed, and c is the speed of light. What is this speed limit? (We explore this
problem further in Example 2.12.)

The idea of a limit is central to all of calculus. We begin this chapter by examining why limits are so important. Then, we
go on to describe how to find the limit of a function at a given point. Not all functions have limits at all points, and we
discuss what this means and how we can tell if a function does or does not have a limit at a particular value. This chapter has
been created in an informal, intuitive fashion, but this is not always enough if we need to prove a mathematical statement
involving limits. The last section of this chapter presents the more precise definition of a limit and shows how to prove
whether a function has a limit.

2.1 | A Preview of Calculus

Learning Objectives

2.1.1 Describe the tangent problem and how it led to the idea of a derivative.

2.1.2 Explain how the idea of a limit is involved in solving the tangent problem.

2.1.3 Recognize a tangent to a curve at a point as the limit of secant lines.

2.1.4 Identify instantaneous velocity as the limit of average velocity over a small time interval.
2.1.5 Describe the area problem and how it was solved by the integral.

2.1.6 Explain how the idea of a limit is involved in solving the area problem.

2.1.7 Recognize how the ideas of limit, derivative, and integral led to the studies of infinite series
and multivariable calculus.

As we embark on our study of calculus, we shall see how its development arose from common solutions to practical
problems in areas such as engineering physics—like the space travel problem posed in the chapter opener. Two key
problems led to the initial formulation of calculus: (1) the tangent problem, or how to determine the slope of a line tangent
to a curve at a point; and (2) the area problem, or how to determine the area under a curve.

The Tangent Problem and Differential Calculus

Rate of change is one of the most critical concepts in calculus. We begin our investigation of rates of change by looking at
the graphs of the three lines f(x) = —2x — 3, g(x) = %x + 1, and h(x) =2, shown in Figure 2.2.

¥ v ¥

=¥
B
x¥

fo) = —2x— 3 gx) =5 hx) = 2

Figure 2.2 The rate of change of a linear function is constant in each of these three graphs, with the constant determined by the
slope.

As we move from left to right along the graph of f(x) = —2x — 3, we see that the graph decreases at a constant rate. For

every 1 unit we move to the right along the x-axis, the y-coordinate decreases by 2 units. This rate of change is determined
by the slope (—2) of the line. Similarly, the slope of 1/2 in the function g(x) tells us that for every change in x of 1 unit

there is a corresponding change in y of 1/2 unit. The function A(x) = 2 has a slope of zero, indicating that the values of the

function remain constant. We see that the slope of each linear function indicates the rate of change of the function.
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Compare the graphs of these three functions with the graph of k(x) = x? (Figure 2.3). The graph of k(x) = x? starts from
the left by decreasing rapidly, then begins to decrease more slowly and level off, and then finally begins to increase—slowly
at first, followed by an increasing rate of increase as it moves toward the right. Unlike a linear function, no single number
represents the rate of change for this function. We quite naturally ask: How do we measure the rate of change of a nonlinear
function?

Yi

k(x) = x°
Figure 2.3 The function k(x) = x2 does not have a constant

rate of change.

We can approximate the rate of change of a function f(x) at a point (@, f(a)) on its graph by taking another point (x, f(x))
on the graph of f(x), drawing a line through the two points, and calculating the slope of the resulting line. Such a line is

called a secant line. Figure 2.4 shows a secant line to a function f(x) at a point (@, f(a)).

Yi

(@ f(a))

a X

&)
slope of secant line = ———

Figure 2.4 The slope of a secant line through a point
(@, f(a)) estimates the rate of change of the function at the

point (a, f(a)).

We formally define a secant line as follows:
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Definition

The secant to the function f(x) through the points (a, f(a)) and (x, f(x)) is the line passing through these points. Its
slope is given by

= J& = fl@) (2.2)
ec xX—a -

myg

The accuracy of approximating the rate of change of the function with a secant line depends on how close x is to a. As we
see in Figure 2.5, if x is closer to a, the slope of the secant line is a better measure of the rate of change of f(x) ata.

Yi

(x, f(x)) (x, F(x))

(a, f(a))
a x x X
: flx) — f(a
slope of secant line = %

Figure 2.5 As x gets closer to a, the slope of the secant line
becomes a better approximation to the rate of change of the
function f(x) ata.

The secant lines themselves approach a line that is called the tangent to the function f(x) at a (Figure 2.6). The slope of

the tangent line to the graph at a measures the rate of change of the function at a. This value also represents the derivative of
the function f(x) at a, or the rate of change of the function at a. This derivative is denoted by f’(a). Differential calculus

is the field of calculus concerned with the study of derivatives and their applications.

. For an interactive demonstration of the slope of a secant line that you can manipulate yourself, visit this
applet (Note: this site requires a Java browser plugin): Math Insight (http://lwww.openstaxcollege.orgl/l/
20_mathinsight) .

tangent
line
(x, f(x))

Figure 2.6 Solving the Tangent Problem: As x approaches a,
the secant lines approach the tangent line.
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Example 2.1 illustrates how to find slopes of secant lines. These slopes estimate the slope of the tangent line or,

equivalently, the rate of change of the function at the point at which the slopes are calculated.

Example 2.1

Finding Slopes of Secant Lines

a. (2,4

39

b (33)
Solution

a. mseczg%::%
21

b. Mgec =2 1=%=2.5
3

Yi
6+

5+

w =
1 +

Use the formula for the slope of a secant line from the definition.

through (1, 1) and each of the following points on the graph of f(x) = x2.

y

6l

5+

Estimate the slope of the tangent line (rate of change) to f(x) = x> at x=1 by finding slopes of secant lines

The point in part b. is closer to the point (1, 1), so the slope of 2.5 is closer to the slope of the tangent line. A

good estimate for the slope of the tangent would be in the range of 2 to 2.5 (Figure 2.7).

a4t

@)

(@ (2, 4) and (b) (%, %) provide successively closer

approximations to the tangent line to f(x) = x2 at (1, 1).

Figure 2.7 The secant lines to f(x) = %2 at (1, 1) through
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Es/l 2.1 Estimate the slope of the tangent line (rate of change) to f(x) = x> atx=1 by finding slopes of secant

lines through (1, 1) and the point (%, %) on the graph of f(x) = X%

We continue our investigation by exploring a related question. Keeping in mind that velocity may be thought of as the rate
of change of position, suppose that we have a function, s(¢), that gives the position of an object along a coordinate axis

at any given time t. Can we use these same ideas to create a reasonable definition of the instantaneous velocity at a given
time = a? We start by approximating the instantaneous velocity with an average velocity. First, recall that the speed of

an object traveling at a constant rate is the ratio of the distance traveled to the length of time it has traveled. We define the
average velocity of an object over a time period to be the change in its position divided by the length of the time period.

Definition

Let s() be the position of an object moving along a coordinate axis at time t. The average velocity of the object over

a time interval [a, 7] where a <t (or [z, a] if 1 < a) is

_ 5= s@ (2.2)

ave — t—a

As t is chosen closer to a, the average velocity becomes closer to the instantaneous velocity. Note that finding the average
velocity of a position function over a time interval is essentially the same as finding the slope of a secant line to a function.
Furthermore, to find the slope of a tangent line at a point a, we let the x-values approach a in the slope of the secant line.
Similarly, to find the instantaneous velocity at time a, we let the t-values approach a in the average velocity. This process
of letting x or t approach a in an expression is called taking a limit. Thus, we may define the instantaneous velocity as
follows.

Definition

For a position function s(¢), the instantaneous velocity at a time 7 = g is the value that the average velocities

approach on intervals of the form [a, f] and [¢, a] as the values of t become closer to a, provided such a value exists.

Example 2.2 illustrates this concept of limits and average velocity.

Example 2.2

Finding Average Velocity

A rock is dropped from a height of 64 ft. It is determined that its height (in feet) above ground t seconds later (for
0<t<?2) isgiven by s(t) = —16¢ + 64. Find the average velocity of the rock over each of the given time

intervals. Use this information to guess the instantaneous velocity of the rock at time 7 = 0.5.

a. [0.49, 0.5
b. [0.5, 0.51]
Solution

Substitute the data into the formula for the definition of average velocity.

8 Ve = %:5(25) —_15.84
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b vaye = 20D =303) 6016

The instantaneous velocity is somewhere between —15.84 and —16.16 ft/sec. A good guess might be —16 ft/sec.

2.2 An object moves along a coordinate axis so that its position at time t is given by s(f) = 3. Estimate its

instantaneous velocity at time ¢ = 2 by computing its average velocity over the time interval [2, 2.001].

The Area Problem and Integral Calculus

We now turn our attention to a classic question from calculus. Many quantities in physics—for example, quantities of
work—may be interpreted as the area under a curve. This leads us to ask the question: How can we find the area between
the graph of a function and the x-axis over an interval (Figure 2.8)?

yi
f(x)

A -

1 a b

Figure 2.8 The Area Problem: How do we find the area of the
shaded region?

As in the answer to our previous questions on velocity, we first try to approximate the solution. We approximate the area by
dividing up the interval [a, b] into smaller intervals in the shape of rectangles. The approximation of the area comes from

adding up the areas of these rectangles (Figure 2.9).
¥

f(x)

A -

e b

Figure 2.9 The area of the region under the curve is
approximated by summing the areas of thin rectangles.

As the widths of the rectangles become smaller (approach zero), the sums of the areas of the rectangles approach the area
between the graph of f(x) and the x-axis over the interval [a, b]. Once again, we find ourselves taking a limit. Limits

of this type serve as a basis for the definition of the definite integral. Integral calculus is the study of integrals and their
applications.
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Example 2.3

Estimation Using Rectangles

Estimate the area between the x-axis and the graph of f(x) = x% + 1 over the interval [0, 3] by using the three
rectangles shown in Figure 2.10.

fx) = x>+ 1
Figure 2.10 The area of the region under the curve of

fx) = x% + 1 can be estimated using rectangles.

Solution

The areas of the three rectangles are 1 unit?, 2 unit?, and 5 unit?. Using these rectangles, our area estimate is 8
)
unit-.
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s/ 2.3 Estimate the area between the x-axis and the graph of f(x) = x%+ 1 over the interval [0, 3] by using

the three rectangles shown here:

fx) = x>+ 1

Other Aspects of Calculus

So far, we have studied functions of one variable only. Such functions can be represented visually using graphs in two
dimensions; however, there is no good reason to restrict our investigation to two dimensions. Suppose, for example, that
instead of determining the velocity of an object moving along a coordinate axis, we want to determine the velocity of a
rock fired from a catapult at a given time, or of an airplane moving in three dimensions. We might want to graph real-value
functions of two variables or determine volumes of solids of the type shown in Figure 2.11. These are only a few of the
types of questions that can be asked and answered using multivariable calculus. Informally, multivariable calculus can be
characterized as the study of the calculus of functions of two or more variables. However, before exploring these and other
ideas, we must first lay a foundation for the study of calculus in one variable by exploring the concept of a limit.

Z)

z=1(xy)

x
Figure 2.11 We can use multivariable calculus to find the
volume between a surface defined by a function of two variables
and a plane.



134

2.1 EXERCISES

For the following exercises, points P(1, 2) and Q(x, y)

are on the graph of the function f(x) = X+ 1.

1. [T] Complete the following table with the appropriate
values: y-coordinate of Q, the point Q(x, y), and the slope

of the secant line passing through points P and Q. Round
your answer to eight significant digits.

X y O(x, y) Mgec
1.1 a. e. L
1.01 b. | f j.
1.001 c. g. k.
1.0001 d. h. L

2. Use the values in the right column of the table in the
preceding exercise to guess the value of the slope of the line
tangent to fat x = 1.

3. Use the value in the preceding exercise to find the

equation of the tangent line at point P. Graph f(x) and the

tangent line.
For the following exercises, points P(1, 1) and Q(x, y)
are on the graph of the function f(x) = X3,

4. [T] Complete the following table with the appropriate
values: y-coordinate of Q, the point Q(x, y), and the slope

of the secant line passing through points P and Q. Round
your answer to eight significant digits.

X y O(x, y) Mgec
1.1 a. e. L
1.01 b. | f. j.
1.001 c. g. k.
1.0001 d. h. L
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5. Use the values in the right column of the table in the
preceding exercise to guess the value of the slope of the
tangent line to fat x = 1.

6. Use the value in the preceding exercise to find the
equation of the tangent line at point P. Graph f(x) and the

tangent line.

For the following exercises, points P(4, 2) and Q(x, y)
are on the graph of the function f(x) = vx.

7. [T] Complete the following table with the appropriate
values: y-coordinate of Q, the point Q(x, y), and the slope

of the secant line passing through points P and Q. Round
your answer to eight significant digits.

X y O(x, y) Mgec
4.1 a. e. L.
4.01 b. f. j-
4.001 C. g. k.
4.0001 d. h. L

8. Use the values in the right column of the table in the
preceding exercise to guess the value of the slope of the
tangent line to fat x = 4.

9. Use the value in the preceding exercise to find the
equation of the tangent line at point P.

For the following exercises, points P(1.5, 0) and Q(¢, y)
are on the graph of the function f(¢) = cos(z¢).
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10. [T] Complete the following table with the appropriate
values: y-coordinate of Q, the point Q(x, y), and the slope

of the secant line passing through points P and Q. Round
your answer to eight significant digits.

X y 0, y) Mgec
1.4 a. e. i
1.49 b | £ i.
1.499 ¢ | e k.
1.4999 d. h. L.

11. Use the values in the right column of the table in the
preceding exercise to guess the value of the slope of the
tangent line to fat x = 4.

12. Use the value in the preceding exercise to find the
equation of the tangent line at point P.

For the following exercises, points P(—1, —1) and

O(x, y) are on the graph of the function f(x) = %

13. [T] Complete the following table with the appropriate
values: y-coordinate of Q, the point Q(x, y), and the slope

of the secant line passing through points P and Q. Round
your answer to eight significant digits.

X y O(x, y) Mgec
-1.05 a. e. i.
-1.01 b. f. j-
-1.005 c. g. k.
-1.001 d. h. L.

14. Use the values in the right column of the table in the
preceding exercise to guess the value of the slope of the line
tangent to fat x = —1.

15. Use the value in the preceding exercise to find the
equation of the tangent line at point P.

135

For the following exercises, the position function of a ball
dropped from the top of a 200-meter tall building is given

by s() = 200 — 4.9[2, where position s is measured in

meters and time t is measured in seconds. Round your
answer to eight significant digits.

16. [T] Compute the average velocity of the ball over the
given time intervals.

a. [4.99, 5
b. [5,5.01]
c. [4.999, 5]
d. [5,5.001]

17. Use the preceding exercise to guess the instantaneous
velocity of the ball at # =5 sec.

For the following exercises, consider a stone tossed into the
air from ground level with an initial velocity of 15 m/sec.

Its height in meters at time t seconds is h(¢) = 15¢ — 4.9¢2,

18. [T] Compute the average velocity of the stone over the
given time intervals.

a. [, 1.03]
b. [1, 1.01]
c. [1, 1.005]
d. [1, 1.001]

19. Use the preceding exercise to guess the instantaneous
velocity of the stone at # = 1 sec.

For the following exercises, consider a rocket shot into the
air that then returns to Earth. The height of the rocket in

meters is given by A(f) = 600 + 78.4¢ — 4.9¢%, where tis

measured in seconds.

20. [T] Compute the average velocity of the rocket over
the given time intervals.

a. [9,9.01]
b. [8.99, 9]
c. [9,9.001]
d. [8.999, 9]

21. Use the preceding exercise to guess the instantaneous
velocity of the rocket at # =9 sec.

For the following exercises, consider an athlete running
a 40-m dash. The position of the athlete is given by
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3
d(t) = % + 4¢, where d is the position in meters and ¢ is
the time elapsed, measured in seconds.
22. [T] Compute the average velocity of the runner over

the given time intervals.
a. [1.95, 2.05]

b. [1.995, 2.005]
c. [1.9995, 2.0005]
d. [2,2.00001]

23. Use the preceding exercise to guess the instantaneous
velocity of the runner at 7 = 2 sec.

For the following exercises, consider the function

S ) = Ixl.

24. Sketch the graph of f over the interval [—1, 2] and
shade the region above the x-axis.

25. Use the preceding exercise to find the exact value of
the area between the x-axis and the graph of f over the
interval [—1, 2] using rectangles. For the rectangles, use

the square units, and approximate both above and below the
lines. Use geometry to find the exact answer.

For the following exercises, consider the function
fx)=V1- x%. (Hint: This is the upper half of a circle of
radius 1 positioned at (0, 0).)

26. Sketch the graph of f over the interval [—1, 1].

27. Use the preceding exercise to find the exact area
between the x-axis and the graph of f over the interval
[—1, 1] using rectangles. For the rectangles, use squares

0.4 by 0.4 units, and approximate both above and below the
lines. Use geometry to find the exact answer.

For the following exercises, consider the function
f) = —x%+1.

28. Sketch the graph of f over the interval [—1, 1].

29. Approximate the area of the region between the x-axis
and the graph of f over the interval [—1, 1].
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2.2 | The Limit of a Function

Learning Objectives

2.2.1 Using correct notation, describe the limit of a function.

2.2.2 Use atable of values to estimate the limit of a function or to identify when the limit does not
exist.

2.2.3 Use a graph to estimate the limit of a function or to identify when the limit does not exist.
2.2.4 Define one-sided limits and provide examples.

2.2.5 Explain the relationship between one-sided and two-sided limits.

2.2.6 Using correct notation, describe an infinite limit.

2.2.7 Define a vertical asymptote.

The concept of a limit or limiting process, essential to the understanding of calculus, has been around for thousands of years.
In fact, early mathematicians used a limiting process to obtain better and better approximations of areas of circles. Yet, the
formal definition of a limit—as we know and understand it today—did not appear until the late 19th century. We therefore
begin our quest to understand limits, as our mathematical ancestors did, by using an intuitive approach. At the end of this
chapter, armed with a conceptual understanding of limits, we examine the formal definition of a limit.

We begin our exploration of limits by taking a look at the graphs of the functions

_x*-4 _ =2 __ 1
f(x)—);j, g(x)—xj, aﬂdh(x)—(x_—z)z,

which are shown in Figure 2.12. In particular, let’s focus our attention on the behavior of each graph at and around x = 2.

yi yi yi
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Figure 2.12 These graphs show the behavior of three different functions around x = 2.

Each of the three functions is undefined at x =2, but if we make this statement and no other, we give a very incomplete
picture of how each function behaves in the vicinity of x = 2. To express the behavior of each graph in the vicinity of 2
more completely, we need to introduce the concept of a limit.

Intuitive Definition of a Limit

Let’s first take a closer look at how the function f(x) = (x2 — 4)/(x — 2) behaves around x =2 in Figure 2.12. As the
values of x approach 2 from either side of 2, the values of y = f(x) approach 4. Mathematically, we say that the limit of

f(x) as x approaches 2 is 4. Symbolically, we express this limit as
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lim f(x) = 4.

From this very brief informal look at one limit, let’s start to develop an intuitive definition of the limit. We can think of the
limit of a function at a number a as being the one real number L that the functional values approach as the x-values approach
a, provided such a real number L exists. Stated more carefully, we have the following definition:

Definition

Let f(x) be a function defined at all values in an open interval containing a, with the possible exception of a itself,
and let L be a real number. If all values of the function f(x) approach the real number L as the values of x( # a)
approach the number a, then we say that the limit of f(x) as x approaches a is L. (More succinct, as x gets closer to a,

f(x) gets closer and stays close to L.) Symbolically, we express this idea as

Jim f(x) = L. (2.3)

We can estimate limits by constructing tables of functional values and by looking at their graphs. This process is described
in the following Problem-Solving Strategy.

Problem-Solving Strategy: Evaluating a Limit Using a Table of Functional Values

1. To evaluate xli_r)na f(x), we begin by completing a table of functional values. We should choose two sets of

x-values—one set of values approaching a and less than a, and another set of values approaching a and greater
than a. Table 2.1 demonstrates what your tables might look like.

x fx) x fx)

a—0.1 fla—0.1) a+0.1 fla+0.1)
a—0.01 fla—-0.01) a+0.01 fla+0.01)
a—0.001 f(a—0.001) a+0.001 f(a+0.001)

a —0.0001 f(a—10.0001) a +0.0001 f(a +0.0001)
Use additional values as necessary. Use additional values as necessary.

Table 2.1 Table of Functional Values for xlgnaf(x)

2. Next, let’s look at the values in each of the f(x) columns and determine whether the values seem to

be approaching a single value as we move down each column. In our columns, we look at the sequence
fla—0.1), f(a—0.01), f(a—0.001)., f(a —0.0001), and S0 on, and

fla+0.1), f(a+0.01), f(a+ 0.001), f(a+ 0.0001), and so on. (Note: Although we have chosen the x-
values a + 0.1, a +£ 0.01, a + 0.001, a + 0.0001, and so forth, and these values will probably work nearly
every time, on very rare occasions we may need to modify our choices.)

3. If both columns approach a common y-value L, we state xli_r)na f(x) = L. We can use the following strategy to

confirm the result obtained from the table or as an alternative method for estimating a limit.
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4. Using a graphing calculator or computer software that allows us graph functions, we can plot the function
f(x), making sure the functional values of f(x) for x-values near a are in our window. We can use the trace

feature to move along the graph of the function and watch the y-value readout as the x-values approach a. If
the y-values approach L as our x-values approach a from both directions, then xli_r)na f(x) = L. We may need

to zoom in on our graph and repeat this process several times.

We apply this Problem-Solving Strategy to compute a limit in Example 2.4.

Example 2.4

Evaluating a Limit Using a Table of Functional Values 1

Evaluate limo% using a table of functional values.
X —

Solution
We have calculated the values of f(x) = (sinx)/x for the values of x listed in Table 2.2.

x sips x | =
-0.1 0.998334166468 0.1 0.998334166468
—-0.01 0.999983333417 0.01 0.999983333417
—-0.001 0.999999833333 0.001 0.999999833333
—-0.0001 0.999999998333 0.0001 0.999999998333

Table 2.2

Table of Functional Values for lim SI0X

x—0 X

Note: The values in this table were obtained using a calculator and using all the places given in the calculator

output.

As we read down each (s1_)r;x) column, we see that the values in each column appear to be approaching

one. Thus, it is fairly reasonable to conclude that limo% = 1. A calculator-or computer-generated graph of
X —

flx) = w would be similar to that shown in Figure 2.13, and it confirms our estimate.
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0.6
0.4
0.2

_0_2__

-0.44

Figure 2.13 The graph of f(x) = (sinx)/x confirms the
estimate from Table 2.2,

Example 2.5

Evaluating a Limit Using a Table of Functional Values 2

Evaluate lim XX=2 using a table of functional values.
x—=4x—4

Solution
As before, we use a table—in this case, Table 2.3—to list the values of the function for the given values of x.
VX —2 VX —2
X x—4 X x—4
3.9 0.251582341869 4.1 0.248456731317
3.99 0.25015644562 4.01 0.24984394501
3.999 0.250015627 4.001 0.249984377
3.9999 0.250001563 4.0001 0.249998438
3.99999 0.25000016 4.00001 0.24999984
Table 2.3
Vx—=2

Table of Functional Values for lim
x—o4x—4
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After inspecting this table, we see that the functional values less than 4 appear to be decreasing toward
0.25 whereas the functional values greater than 4 appear to be increasing toward 0.25. We conclude that

lim YX=2 — 0.25. We confirm this estimate using the graph of f(x) = «f_—Z

c4x—4 _— shown in Figure 2.14.

0.40+
0.351

0.30+

0.254

o 2 4 &  8X

Figure 2.14 The graph of f(x) = f: 42 confirms the

estimate from Table 2.3.

24 1_1
@ Estimate limlj‘c I using a table of functional values. Use a graph to confirm your estimate.
X — -

At this point, we see from Example 2.4 and Example 2.5 that it may be just as easy, if not easier, to estimate a limit of
a function by inspecting its graph as it is to estimate the limit by using a table of functional values. In Example 2.6, we
evaluate a limit exclusively by looking at a graph rather than by using a table of functional values.

Example 2.6

Evaluating a Limit Using a Graph

For g(x) shown in Figure 2.15, evaluate lim 1g(x).
xX— —
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g(x)

»xY

Figure 2.15 The graph of g(x) includes one value not on a

smooth curve.

Solution
Despite the fact that g(—1) =4,

as the x-values approach —1 from either side, the g(x) values approach 3.

Therefore, lim | g(x) = 3. Note that we can determine this limit without even knowing the algebraic expression
x> -

of the function.

Based on Example 2.6, we make the following observation: It is possible for the limit of a function to exist at a point, and
for the function to be defined at this point, but the limit of the function and the value of the function at the point may be
different.

@/ 2.5 Use the graph of h(x) in Figure 2.16 to evaluate limzh(x), if possible.
X =

yi

Figure 2.16

h(x)

Looking at a table of functional values or looking at the graph of a function provides us with useful insight into the value
of the limit of a function at a given point. However, these techniques rely too much on guesswork. We eventually need to
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develop alternative methods of evaluating limits. These new methods are more algebraic in nature and we explore them in
the next section; however, at this point we introduce two special limits that are foundational to the techniques to come.

Theorem 2.1: Two Important Limits

Let a be a real number and ¢ be a constant.
i. limx=a (2.4)
X —>a

i. Jime=c (2.5)

We can make the following observations about these two limits.

i. For the first limit, observe that as x approaches a, so does f(x), because f(x) = x. Consequently, xli_r)nax =a.

ii. For the second limit, consider Table 2.4.

x flx)=c x flx)=c
a—0.1 c a+0.1 c
a—0.01 c a+0.01 c
a—0.001 c a +0.001 c
a —0.0001 c a + 0.0001 c

Table 2.4 Table of Functional Values for xli_lpac =c

Observe that for all values of x (regardless of whether they are approaching a), the values f(x) remain constant at c. We

have no choice but to conclude xli_r)nac =c.

The Existence of a Limit

As we consider the limit in the next example, keep in mind that for the limit of a function to exist at a point, the functional
values must approach a single real-number value at that point. If the functional values do not approach a single value, then
the limit does not exist.

Example 2.7

Evaluating a Limit That Fails to Exist

Evaluate limosin(l/x) using a table of values.
X —

Solution

Table 2.5 lists values for the function sin(1/x) for the given values of x.
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x sin(%) X sin(%)
-0.1 0.544021110889 0.1 -0.544021110889
-0.01 0.50636564111 0.01 -0.50636564111
-0.001 -0.8268795405312 0.001 0.826879540532
-0.0001 0.305614388888 0.0001 -0.305614388888
-0.00001 -0.035748797987 0.00001 0.035748797987
-0.000001 0.349993504187 0.000001 -0.349993504187
Table 2.5
Table of Functional Values for xli—I>nOSin (%)

After examining the table of functional values, we can see that the y-values do not seem to approach any one
single value. It appears the limit does not exist. Before drawing this conclusion, let’s take a more systematic
approach. Take the following sequence of x-values approaching 0:

2 2 2 2 2 2

The corresponding y-values are
1, -1,1,-1,1, —1,....

At this point we can indeed conclude that limosin(llx) does not exist. (Mathematicians frequently abbreviate
X -
“does not exist” as DNE. Thus, we would write limosin(llx) DNE.) The graph of f(x) = sin(1/x) is shown
x =

in Figure 2.17 and it gives a clearer picture of the behavior of sin(1/x) as x approaches 0. You can see that

sin(1/x) oscillates ever more wildly between —1 and 1 as x approaches 0.
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y
02 | 04 X
-1
Figure 2.17 The graph of f(x) = sin(1/x) oscillates rapidly
between -1 and 1 as x approaches 0.

-4
x—=2

2.6
@ Use a table of functional values to evaluate lim2 , if possible.
X —

One-Sided Limits

Sometimes indicating that the limit of a function fails to exist at a point does not provide us with enough information
about the behavior of the function at that particular point. To see this, we now revisit the function g(x) = |x — 2l/(x — 2)

introduced at the beginning of the section (see Figure 2.12(b)). As we pick values of x close to 2, g(x) does not approach
a single value, so the limit as x approaches 2 does not exist—that is, xli_I)nzg(x) DNE. However, this statement alone does
not give us a complete picture of the behavior of the function around the x-value 2. To provide a more accurate description,
we introduce the idea of a one-sided limit. For all values to the left of 2 (or the negative side of 2), g(x) = —1. Thus, as x
approaches 2 from the left, g(x) approaches —1. Mathematically, we say that the limit as x approaches 2 from the left is —1.
Symbolically, we express this idea as

i 6= -1

Similarly, as x approaches 2 from the right (or from the positive side), g(x) approaches 1. Symbolically, we express this
idea as

lim g(x) = 1.
X — ot

We can now present an informal definition of one-sided limits.

Definition

We define two types of one-sided limits.
Limit from the left: Let f(x) be a function defined at all values in an open interval of the form z, and let L be a real
number. If the values of the function f(x) approach the real number L as the values of x (where x < a) approach the

number a, then we say that L is the limit of f(x) as x approaches a from the left. Symbolically, we express this idea as
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lim_f(x) = L. (2.6)

Limit from the right: Let f(x) be a function defined at all values in an open interval of the form (a, c¢), andlet L be a
real number. If the values of the function f(x) approach the real number L as the values of x (where x > @) approach
the number a, then we say that L is the limit of f(x) as x approaches a from the right. Symbolically, we express this
idea as

lim+ f(x)=L. (2.7)

X—>da

Example 2.8

Evaluating One-Sided Limits

x+1 ifx<2
For the function f(x) =

5 . , evaluate each of the following limits.
x“—4 ifx>2

-l

b. lim f(x)
x—>2+
Solution

We can use tables of functional values again Table 2.6. Observe that for values of x less than 2, we use
f(x) = x+ 1 and for values of x greater than 2, we use f(x) = x*—4.

X Jo)=x+1 x fx) =x*—4

1.9 2.9 2.1 0.41

1.99 2.99 2.01 0.0401

1.999 2.999 2.001 0.004001

1.9999 2.9999 2.0001 0.00040001

1.99999 2.99999 2.00001 0.0000400001
Table 2.6

_ +1lifx<?2
Table of Functional Values for f(x) = {x2 l.x
x“—4ifx>2

Based on this table, we can conclude that a. lirrzl_ f(x)=3 andb. lim+ f(x) = 0. Therefore, the (two-sided)
X —

x—2

limit of f(x) does not exist at x = 2. Figure 2.18 shows a graph of f(x) and reinforces our conclusion about

these limits.
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. x+1lifx<2
Figure 2.18 The graph of f(x) = has a

x2—4ifx22
break at x = 2.

@ 2.7 Use a table of functional values to estimate the following limits, if possible.

e
a x1—1>HZl_ x—2

b, 1m 24
’ oot x—=2

Let us now consider the relationship between the limit of a function at a point and the limits from the right and left at that
point. It seems clear that if the limit from the right and the limit from the left have a common value, then that common value
is the limit of the function at that point. Similarly, if the limit from the left and the limit from the right take on different
values, the limit of the function does not exist. These conclusions are summarized in Relating One-Sided and Two-
Sided Limits.

Theorem 2.2: Relating One-Sided and Two-Sided Limits

Let f(x) be a function defined at all values in an open interval containing a, with the possible exception of a itself,
and let L be a real number. Then,
lim f(x) = L.if and only if lim_ f(x) = Land lim f(x)=L.
X—a x> a +

X —>a

Infinite Limits

Evaluating the limit of a function at a point or evaluating the limit of a function from the right and left at a point helps us to
characterize the behavior of a function around a given value. As we shall see, we can also describe the behavior of functions
that do not have finite limits.
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We now turn our attention to A(x) = 1/(x — 2)2, the third and final function introduced at the beginning of this section

(see Figure 2.12(c)). From its graph we see that as the values of x approach 2, the values of A(x) = 1/(x — 2)2 become
larger and larger and, in fact, become infinite. Mathematically, we say that the limit of A(x) as x approaches 2 is positive
infinity. Symbolically, we express this idea as

lim_A(x) = +o0.
x—2

More generally, we define infinite limits as follows:

Definition

We define three types of infinite limits.

Infinite limits from the left: Let f(x) be a function defined at all values in an open interval of the form (b, a).

i. If the values of f(x) increase without bound as the values of x (where x < @) approach the number a, then
we say that the limit as x approaches a from the left is positive infinity and we write
lim_ f(x) = +o0. (2.8)
X —>da

ii. If the values of f(x) decrease without bound as the values of x (where x < @) approach the number a, then
we say that the limit as x approaches a from the left is negative infinity and we write
lim_ f(x) = —o0. (2.9)
X—=da

Infinite limits from the right: Let f(x) be a function defined at all values in an open interval of the form (a, c).

i. If the values of f(x) increase without bound as the values of x (where x > a) approach the number a, then
we say that the limit as x approaches a from the left is positive infinity and we write
lim+ f(x) = +o0. (2.10)

X —>a

ii. If the values of f(x) decrease without bound as the values of x (where x > a) approach the number a, then
we say that the limit as x approaches a from the left is negative infinity and we write
1im+ f(x) = —o0. (2.11)

X—=>da
Two-sided infinite limit: Let f(x) be defined for all x # a in an open interval containing a.
i. If the values of f(x) increase without bound as the values of x (where x # a) approach the number q, then
we say that the limit as x approaches a is positive infinity and we write
xh_r)naf(x) = +00. (2.12)
ii. If the values of f(x) decrease without bound as the values of x (where x # a) approach the number a, then

we say that the limit as x approaches a is negative infinity and we write
xh_I)naf(x) = —00. (2.13)

It is important to understand that when we write statements such as xli_I)Ila f(x) =400 or xli_r)na f(x) = —oco we are

describing the behavior of the function, as we have just defined it. We are not asserting that a limit exists. For the
limit of a function f(x) to exist at a, it must approach a real number L as x approaches a. That said, if, for example,

xh_l)na f(x) = 400, we always write xli_r)na f(x) = +o0 rather than xli_r)na f(x) DNE.

Example 2.9
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lim_+
a x>0~ %
b, lim 1
x—0
lim 1
¢ X l—> 0¥
Solution

Recognizing an Infinite Limit

confirm your conclusion.

Begin by constructing a table of functional values.

Evaluate each of the following limits, if possible. Use a table of functional values and graph f(x) = 1/x to

x ! x !
-0.1 -10 0.1 10
-0.01 -100 0.01 100
-0.001 -1000 0.001 1000
-0.0001 -10,000 0.0001 10,000
-0.00001 -100,000 0.00001 100,000
—0.000001 —-1,000,000 0.000001 1,000,000
Table 2.7

Table of Functional Values for f(x) = %

The values of 1/x decrease without bound as x approaches 0 from the left. We conclude that

1

lim ¥ = —.

x—->0"

The values of 1/x increase without bound as x approaches 0 from the right. We conclude that

lim 1_ +00.
x—0 *
Since lirg_% =—o00 and lim % = 400 have different values, we conclude that
x = x—0
lim L DNE.
x—0

The graph of f(x) = 1/x in Figure 2.19 confirms these conclusions.
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yi

Figure 2.19 The graph of f(x) = 1/x confirms that the limit

as x approaches 0 does not exist.

2.8 Evaluate each of the following limits, if possible. Use a table of functional values and graph f(x) = 1/x?
to confirm your conclusion.

b.

It is useful to point out that functions of the form f(x) = 1/(x — a)", where n is a positive integer, have infinite limits as x

approaches a from either the left or right (Figure 2.20). These limits are summarized in Infinite Limits from Positive

Integers.
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Yi yi
i . N : .
—_— 'a x a x
S | P i
(x) = (x—a)’ | ) = (x—-a)' |
if n is an odd ! if n is an even :
positive integer ! positive integer :

Figure 2.20 The function f(x) = 1/(x — a)" has infinite limits at a.

Theorem 2.3: Infinite Limits from Positive Integers

If n is a positive even integer, then

xlgllam = 4+00.

If n is a positive odd integer, then

fm — Ly
x —1>r1;11+ (x— a)n 00
and

lim_— = —
e (x—a)"

We should also point out that in the graphs of f(x) = 1/(x — a)”, points on the graph having x-coordinates very near to a
are very close to the vertical line x = a. That is, as x approaches a, the points on the graph of f(x) are closer to the line

x = a. The line x = a is called a vertical asymptote of the graph. We formally define a vertical asymptote as follows:

Definition

Let f(x) be a function. If any of the following conditions hold, then the line x = a is a vertical asymptote of f(x).

lim_ f(x) = 4ocoor—oo
X —>da
lim f(x) = 4+ocoor—oo
X —>da
or
xlgllaf(x) = +4o0o00r—oo

Example 2.10
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Finding a Vertical Asymptote

Evaluate each of the following limits using Infinite Limits from Positive Integers. Identify any vertical

asymptotes of the function f(x) = 1/(x + 3)4.

a. lim _ 7
x= =37 (x+3)
b.  lim L
x— 3T x+3)
¢ lim —1—
¥==3(x+3)
Solution

We can use Infinite Limits from Positive Integers directly.

a. lim _ 7=
x—> -3 (x+3)

b. lim 7=
x— =37 (x+3)

¢ 1 1 +oo

m =
x==3(x+3)*

The function f(x) = 1/(x + 3)4 has a vertical asymptote of x = —3.

@ 2.9 Evaluate each of the following limits. Identify any vertical asymptotes of the function f(x) = % 12)3.
x—

a. lim_ 1 3
b. lim

xo2t(x=2)3

Jim —1 -
X=2(x—2)

In the next example we put our knowledge of various types of limits to use to analyze the behavior of a function at several

different points.

Example 2.11

Behavior of a Function at Different Points

Use the graph of f(x) in Figure 2.21 to determine each of the following values:

a. lim_fG); lim  fGo; lim fQ); f(=4)

x—- -4
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b. lim _ f(x); lim f(x); lim f(x); f(-=2)
x— =2 X = _2+ x— =2

C. lim_ f(x); lim f(x); lim f(x); f(1)
x =1 X = 1+ x—1

d. N EHSL FACIR ) Lm31+ f); xlgll3f(x); f3

B

Figure 2.21 The graph shows f(x).

Solution
Using Infinite Limits from Positive Integers and the graph for reference, we arrive at the following values:

a. iilg_ f) =0, lim_f(x)=0; xlin14f(X) =0, f(-H=0

x— —4

b. lim _ f(x)=3.; lim f(x)=3; lim_f(x) =3; f(—2) is undefined
x—= =2 + x— =2

x— =2

c lim_f()=6; lim_f(x)=3; lim f(x) DNE; f(1) = 6

X —

d. lim_ f(x) = —oo0; lim f(x) = —o0; lim f(x) = —o0; f(3) is undefined
x—=3 =3t x—=3

@ 2.10 Evaluate lim1 f(x) for f(x) shown here:
x>

yi

N
d
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Example 2.12

Chapter Opener: Einstein’s Equation

Figure 2.22 (credit: NASA)

In the chapter opener we mentioned briefly how Albert Einstein showed that a limit exists to how fast any object
can travel. Given Einstein’s equation for the mass of a moving object, what is the value of this bound?

Solution

Our starting point is Einstein’s equation for the mass of a moving object,
Mo

where m,, is the object’s mass at rest, v is its speed, and c is the speed of light. To see how the mass changes at

high speeds, we can graph the ratio of masses m/m, as a function of the ratio of speeds, v/c (Figure 2.23).

1

U

»xY

Ol 02 04 06 08 10
vic

Figure 2.23 This graph shows the ratio of masses as a

function of the ratio of speeds in Einstein’s equation for the

mass of a moving object.

We can see that as the ratio of speeds approaches 1—that is, as the speed of the object approaches the speed
of light—the ratio of masses increases without bound. In other words, the function has a vertical asymptote at
v/c = 1. We can try a few values of this ratio to test this idea.
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ol pen |
c
0.99 0.1411 7.089
0.999 0.0447 22.37
0.9999 0.0141 70.71
Table 2.8

Ratio of Masses and Speeds for a
Moving Object

Thus, according to Table 2.8, if an object with mass 100 kg is traveling at 0.9999c, its mass becomes 7071 kg.
Since no object can have an infinite mass, we conclude that no object can travel at or more than the speed of light.
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2.2 EXERCISES

For the following exercises,

foy =22=1

lx—1I°

consider the function

30. [T] Complete the following table for the function.
Round your solutions to four decimal places.

X fx) X fx)
0.9 a. 11 e.
0.99 b. 1.01 f.
0.999 C. 1.001 g.
0.9999 d. 1.0001 h.

31. What do your results in the preceding exercise indicate
about the two-sided limit lim1 f(x)? Explain your
X =

response.

For the following exercises, consider the function

f@=0+x0"

32. [T] Make a table showing the values of f for
x =-0.01, —0.001, —0.0001, —0.00001 and for

x =0.01, 0.001, 0.0001, 0.00001. Round your solutions

to five decimal places.

X f&x) x fx)
-0.01 a. 0.01 e.
-0.001 b. 0.001 f.
-0.0001 C. 0.0001 g.
—0.00001 d. 0.00001 h.

33. What does the table of values in the preceding exercise
indicate about the function f(x) = (1 + x) 1/xg

34. To which mathematical constant does the limit in the
preceding exercise appear to be getting closer?
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In the following exercises, use the given values to set up a
table to evaluate the limits. Round your solutions to eight
decimal places.

35 1M1 Jim SBAY +0.1, £0.01, +0.001, +.0001
X =

i sin2e |, | sinke
-0.1 a. 0.1 e.
-0.01 b. 0.01 f.
-0.001 C. 0.001 g.
-0.0001 d. 0.0001 h.

361 lim SIAX +0.1, £0.01, +0.001, £0.0001
X =

X % X %
-0.1 a. 0.1 e.
-0.01 b. 0.01 f.
-0.001 c. 0.001 g.
-0.0001 d. 0.0001 h.

37. Use the preceding two exercises to conjecture (guess)

the value of the following limit: limosm% for a, a

X —

positive real value.

[T] In the following exercises, set up a table of values to
find the indicated limit. Round to eight digits.
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38 i a2 =4 4 im 2=l
x=2x2 4 x—6 2= 0z2%(z+3)
2 2 z—1 z—1
x“—4 x“—4 -2 _c=1
X 2+x—6 X 2+x—6 2 22z +3) z 22z +3)
1.9 a. 2.1 e. -0.1 a. 0.1 e.
1.99 b. 2.01 f. -0.01 b. 0.01 f.
1.999 C. 2.001 g. -0.001 C. 0.001 g.
1.9999 d. 2.0001 h. -0.0001 d. 0.0001 h.
39. lim (1 —2x) 42, lim <ost
x—1 oot t
X 1 - 2x X 1 - Zx cost
t ;
0.9 a. 1.1 e.
0.1 a.
0.99 b. 1.01 f.
0.01 b.
0.999 C. 1.001 g.
0.001 C.
0.9999 d. 1.0001 h.
0.0001 d.
40. ; 5
xh—I>nOl — el 43, 1-2
lim X
x=2x2 4
5 5
X 1—el X 1—ellx -2 1_2
X L X L
x—4 x2—4
-0.1 a. 0.1 e.
1.9 a. 2.1
-0.01 b. 0.01 f.
1.99 b. 2.01
-0.001 C. 0.001 g.
1.999 C. 2.001
-0.0001 d. 0.0001 h.
1.9999 d. 2.0001

[T] In the following exercises, set up a table of values
and round to eight significant digits. Based on the table of
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values, make a guess about what the limit is. Then, use a
calculator to graph the function and determine the limit.
Was the conjecture correct? If not, why does the method of

tables fail?

“ e

o | wnlg) | o | sinlp)
-0.1 a. 0.1 e.
-0.01 b. 0.01 f.
-0.001 C. 0.001 g.
-0.0001 d. 0.0001 h.
5 tim, deos(l)

a areos(f)

0.1 a.

0.01 b.

0.001 c.

0.0001 d.

In the following exercises, consider the graph of the
function y = f(x) shown here. Which of the statements

about y = f(x) are true and which are false? Explain why

a statement is false.
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'
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o
=
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46. lim f(x)=0
x — 10

47. lim +f(x) =3

x— =2
48. lim f(x) = f(-8)
x— =8
49. lim f(x)=5
x—6
In the following exercises, use the following graph of the

function y = f(x) to find the values, if possible. Estimate

when necessary.
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50.  lim_ f(x)
x—1

51 lim_f(x)

x—1
52. lim f(x)
x—1
53. lim_f(x)
x—2
54. f(1)
In the following exercises, use the graph of the function

y = f(x) shown here to find the values, if possible.

Estimate when necessary.

55.  lim_ f(x)
x—=0

56.  lim_f(x)

x—=0
57. lim_f(x)
x—=0
58. lim_f(x)
x =2
In the following exercises, use the graph of the function

y = f(x) shown here to find the values, if possible.

Estimate when necessary.

159

59.  lim_ f(x)
x— =2

60. lim N fx)

x— =2

61 lim f(x)
x— =2

62.  lim_f(x)
x—2

63. lim_f(x)

x—2
64. lim_f(x)
x—2

In the following exercises, use the graph of the function
y = g(x) shown here to find the values, if possible.

Estimate when necessary.

yi
5.1

a4

65. lim_ g(x)
x—0
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66. lim+ g(x)

x—0

67. lim g(x)
x—=0

In the following exercises, use the graph of the function
y = h(x) shown here to find the values, if possible.

Estimate when necessary.

68. lim_ A(x)
x—=0

69. lim_h(x)

x—0

70. lim A(x)
x—0

In the following exercises, use the graph of the function
y = f(x) shown here to find the values, if possible.

Estimate when necessary.

yi

5.1

a4
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71.  lim_ f(x)
x—0

72. lim+ fx)

x—=0
73. lim f(x)
x—=0
74. lim_ f(x)
x—1
75. lim_f(x)
X — 2
In the following exercises, sketch the graph of a function

with the given properties.

76.
lim f() =1, lim_f(x)=3, lim f(x)=6,x=4
x—2 x—4 x— a7t

is not defined.
77. X _1)11’1;1 oof(x) = 0, B _l)ll'_l’ll_f(x) = —00,

lim  f(x) = co, lim f(x) = f(0), f(0) = 1, lim f(x) = —co

x— -1
78. lim _f(x)=2, . 1_1)H31_ f(x) = —o0,

lim+f(x) = 00, lemwf(x) =2, f(0) = —?1

x—3

79, dim f() =2, lim f(x)= —co,

im_f(x0) =2, f(0)=0

80

lim f)=0, lim_f()=o0, lim f(x)=—oo,
r= oo x = =1 xo -1t

i l_l>n11+ f(&) =00, lim f(x)=0

f(0)=-1, linll_f(x) = —o0,
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81. Shock waves arise in many physical applications,
ranging from supernovas to detonation waves. A graph of
the density of a shock wave with respect to distance, x, is
shown here. We are mainly interested in the location of the
front of the shock, labeled xgp in the diagram.

P
(51
2
Xse *
a. Evaluate lim = p(x).

x—)xSF

b. Evaluate lim _ p(x).
X = XSF

c. Evaluate xlir)rcls Fp(x). Explain the physical
meanings behind your answers.

82. A track coach uses a camera with a fast shutter to
estimate the position of a runner with respect to time. A
table of the values of position of the athlete versus time is
given here, where x is the position in meters of the runner
and t is time in seconds. What is tli_lgx(t)? What does it

mean physically?

t (sec) x (m)
1.75 4.5
1.95 6.1
1.99 6.42
2.01 6.58
2.05 6.9
2.25 8.5
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2.3 | The Limit Laws

Learning Objectives

2.3.1 Recognize the basic limit laws.

2.3.2 Use the limit laws to evaluate the limit of a function.

2.3.3 Evaluate the limit of a function by factoring.

2.3.4 Use the limit laws to evaluate the limit of a polynomial or rational function.
2.3.5 Evaluate the limit of a function by factoring or by using conjugates.

2.3.6 Evaluate the limit of a function by using the squeeze theorem.

In the previous section, we evaluated limits by looking at graphs or by constructing a table of values. In this section, we
establish laws for calculating limits and learn how to apply these laws. In the Student Project at the end of this section, you
have the opportunity to apply these limit laws to derive the formula for the area of a circle by adapting a method devised by
the Greek mathematician Archimedes. We begin by restating two useful limit results from the previous section. These two
results, together with the limit laws, serve as a foundation for calculating many limits.

Evaluating Limits with the Limit Laws

The first two limit laws were stated in Two Important Limits and we repeat them here. These basic results, together with
the other limit laws, allow us to evaluate limits of many algebraic functions.

Theorem 2.4: Basic Limit Results

For any real number a and any constant c,
i. limx=a (2.14)
X—a

ii. xli_l}nac =c (2.15)

Example 2.13

Evaluating a Basic Limit

Evaluate each of the following limits using Basic Limit Results.

a. limx
X —
b. lim5
X —
Solution

a. The limit of x as x approaches a is a: limzx =2.
X —

b. The limit of a constant is that constant: 1irn25 =35.
X —

We now take a look at the limit laws, the individual properties of limits. The proofs that these laws hold are omitted here.
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Theorem 2.5: Limit Laws

Let f(x) and g(x) be defined for all x # a over some open interval containing a. Assume that L and M are real

numbers such that xli_r)na f(x)=L and xli_r)nag(x) = M. Let c be a constant. Then, each of the following statements

holds:
Sum law for limits: xli_l)na(f )+ gx) = xli_I)na fx) + xli_I)nag(x) =L+M

Difference law for limits: xli_r)na(f(x) —gx) = xli_r)na fx) — xli_r)nag(x) =L-M
Constant multiple law for limits: xli_l;nac f(x)=c -xli_l)na f(x)=cL

Product law for limits: xli_I)na(f x)-gx) = xli_I)na f(x)- xli_I)nag(x) =

. C o f  im e
Quotient law for limits: th ) hm Y o =M for M # 0

Power law for limits: hm (f ()" (th f (x)) = L" for every positive integer n.

Root law for limits: xli_I)naKl/ f(x) = Kl/xli_l)na fx) = VL forall L if n is odd and for L > 0 if n is even.

We now practice applying these limit laws to evaluate a limit.

Example 2.14

Evaluating a Limit Using Limit Laws

Use the limit laws to evaluate lim (4x +2).

x— -3

Solution

Let’s apply the limit laws one step at a time to be sure we understand how they work. We need to keep in mind

the requirement that, at each application of a limit law, the new limits must exist for the limit law to be applied.
lim (4x +2) = lim 4x + hm 2 Apply the sum law.

X == xX— -

=4. 11m L ¥ + hm 2 Apply the constant multiple law.
X —

=4-(-3)+2= —10. Apply the basic limit results and simplify.

Example 2.15

Using Limit Laws Repeatedly

Use the limit laws to evaluate lim M
x=2 P44

Solution
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To find this limit, we need to apply the limit laws several times. Again, we need to keep in mind that as we rewrite
the limit in terms of other limits, each new limit must exist for the limit law to be applied.

52 apaq  Jm (2 -3x+1)
lim & —x+ 1 _x-2 Apply the quotient law, making sure that. @3+4#0

x=2 44 xli_I)nz(x3 +4)

2. limx?=3- lim x+ lim 1
x—2 x—>2 x—=2

3 Apply the sum law and constant multiple law.
lim x” + lim 4
x—2 x—2
2
2-((Jim x) =3+ Tim x+ Tim 1
— -2 xX—2 2

X —

3
tlimx) + lim 4
-2 x—2
_ 2B -32)+1 _ 1
2)3+4 4

Apply the power law.

Apply the basic limit laws and simplify.

@ 2,11  Use the limit laws to evaluate 1im6(2x — 1)Vx + 4. In each step, indicate the limit law applied.
X —

Limits of Polynomial and Rational Functions
By now you have probably noticed that, in each of the previous examples, it has been the case that xlgna f(x) = f(a). This

is not always true, but it does hold for all polynomials for any choice of a and for all rational functions at all values of a for
which the rational function is defined.

Theorem 2.6: Limits of Polynomial and Rational Functions

Let p(x) and g(x) be polynomial functions. Let a be a real number. Then,

lim p(x) = p(a)

X —=>a

xli_l)nazgg - % whenlg(z) 2 0,

To see that this theorem holds, consider the polynomial p(x) = c,x" + ¢, _ x"~ Ty oo te 1 X+ c¢q. By applying the

sum, constant multiple, and power laws, we end up with

1+ +Clx+C0)

n n—1
=cn(xlgnax) +cn_1(xlgnax) + - +c1(tli_r)nax)+xli_r)nac0
=cpa"+c,_1a" '+ o +ejateg
= p(a).

Jim p(x) = xli_r)na(cn e, x"T

It now follows from the quotient law that if p(x) and g(x) are polynomials for which g(a) # 0, then

i P _ 9@
AN = @

Example 2.16 applies this result.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2



Chapter 2 | Limits 165

Example 2.16

Evaluating a Limit of a Rational Function

2
Evaluate the lim 2X-—3x+1
x—3 S5x+4
Solution
2
Since 3 is in the domain of the rational function f(x) = 2)65;—_?_)64‘"1, we can calculate the limit by substituting

3 for x into the function. Thus,

. 2x2—3x+l_m
L A TS

@ 212 Evaluate lim (3x3 —2x + 7).

X = —

Additional Limit Evaluation Techniques

As we have seen, we may evaluate easily the limits of polynomials and limits of some (but not all) rational functions by
direct substitution. However, as we saw in the introductory section on limits, it is certainly possible for xliina f(x) to exist

when f(a) is undefined. The following observation allows us to evaluate many limits of this type:

If for all x # a, f(x) = g(x) over some open interval containing a, then xli_I)na flx) = xli_r)nag(x).

2
To understand this idea better, consider the limit liml); _11 .
X — -
The function
2
_x- =1
f (x) - X — 1
_G=D&x+D

x—1

and the function g(x) = x + 1 are identical for all values of x # 1. The graphs of these two functions are shown in Figure
2.24.
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xY

g0 =x+1 o) = <=2
Figure 2.24 The graphs of f(x) and g(x) are identical for all x # 1. Their limits at 1 are equal.
We see that
2 —
lim X =1 = jim &=DO+D
x>1x—1 x—1 x—1
= lim(x+1)
x—1
=2.
The limit has the form xlil)na%, where xli_r)na f(x) =0 and xli_r)nag(x) = 0. (In this case, we say that f(x)/g(x) has the

indeterminate form 0/0.) The following Problem-Solving Strategy provides a general outline for evaluating limits of this

type.

Problem-Solving Strategy: Calculating a Limit When f(x)/g(x) has the Indeterminate Form 0/0

1. First, we need to make sure that our function has the appropriate form and cannot be evaluated immediately
using the limit laws.

2. We then need to find a function that is equal to A(x) = f(x)/g(x) for all x # a over some interval containing
a. To do this, we may need to try one or more of the following steps:

a. If f(x) and g(x) are polynomials, we should factor each function and cancel out any common factors.

b. If the numerator or denominator contains a difference involving a square root, we should try

multiplying the numerator and denominator by the conjugate of the expression involving the square
root.

c. If f(x)/g(x) is a complex fraction, we begin by simplifying it.

3. Last, we apply the limit laws.

The next examples demonstrate the use of this Problem-Solving Strategy. Example 2.17 illustrates the factor-and-cancel
technique; Example 2.18 shows multiplying by a conjugate. In Example 2.19, we look at simplifying a complex fraction.
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Example 2.17

Evaluating a Limit by Factoring and Canceling

2
Evaluate lim %c;’jx
x—>32x%—5x-3

Solution

— 3x
—5x—
we get 0/0, which is undeflned. Factorlng and canceling is a good strategy:

Step 1. The function f(x) = is undefined for x = 3. In fact, if we substitute 3 into the function

2
: x“=3x  _ x(x—3)
o BN TG NS

2
x“=3x _ _ x
Step 2. For all x # 3, T2 s 3 4T Therefore,

x(x—3) . X
S Gt D)~ A T

Step 3. Evaluate using the limit laws:

3w

xh—I>n3 2x+1

2
@/ 2.13 Evaluate lim X~ t4x+3

x=>=3 x2_9

Example 2.18

Evaluating a Limit by Multiplying by a Conjugate

Evaluate lim JX+2=1
x=-1 x+1

Solution
Step 1. —uc;-fl—l has the form 0/0 at —1. Let’s begin by multiplying by Vx+2 + 1, the conjugate of

Vx+ 2 — 1, on the numerator and denominator:

lim Yx+2=1_ iy Vx+2-1 Vx+2+1
x—>-1 x+1 x—>—-1 x+1 Vx+2+1'

Step 2. We then multiply out the numerator. We don’t multiply out the denominator because we are hoping that
the (x + 1) in the denominator cancels out in the end:

lim x+1
x—>—1(x+ DVx+2+1)
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Step 3. Then we cancel:

= lim —L—
X—1>—1Vx+2+1

Step 4. Last, we apply the limit laws:

lim —L =1
xo>-Wx+2+4+1 2

@ 214 poaate limYx=1=2

X = x—5

Example 2.19

Evaluating a Limit by Simplifying a Complex Fraction

1 1

Evaluate lim £+1 2
x—=1 X— 1

Solution
1 1

Step 1. % has the form 0/0 at 1. We simplify the algebraic fraction by multiplying by

2x+ D/2(x+ 1) :

1 1 1 1
X+l 2 x+1_§.2(x+1)
UL ey L B T B

Step 2. Next, we multiply through the numerators. Do not multiply the denominators because we want to be able
to cancel the factor (x — 1):

L 2—(x+1)
= M ThGa T

Step 3. Then, we simplify the numerator:

T —x+1
= m TG D

Step 4. Now we factor out —1 from the numerator:

T —x-=1
= M T e+ D

Step 5. Then, we cancel the common factors of (x — 1):

= lim —=L1
G+ D
Step 6. Last, we evaluate using the limit laws:

. -1 _ _1
Ll Teaney) 4
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2.15 L4
@/ Evaluate lim *t2

i
x— -3 x+3

Example 2.20 does not fall neatly into any of the patterns established in the previous examples. However, with a little
creativity, we can still use these same techniques.

Example 2.20

Evaluating a Limit When the Limit Laws Do Not Apply

(1 5
Evaluate xh_r)no( *+ G=3) 5)).
Solution
Both 1/x and 5/x(x —5) fail to have a limit at zero. Since neither of the two functions has a limit at zero, we

cannot apply the sum law for limits; we must use a different strategy. In this case, we find the limit by performing
addition and then applying one of our previous strategies. Observe that

1, 5 _x=5+5
X x(x—=95) x(x—=95)

_ X
x(x=15)
Thus,
(1 5 . x
xh—l;nO(x TG =5 ) S G =)

: 1
xh—r>n0x -5

=

@ 2.16 Evaluate lim( 1__ 4 )
x=3\x—=3 2_929,_3

Let’s now revisit one-sided limits. Simple modifications in the limit laws allow us to apply them to one-sided limits. For

example, to apply the limit laws to a limit of the form lim_ A(x), we require the function %4(x) to be defined over an
X—da

open interval of the form (b, a); for a limit of the form lim A(x), we require the function 4(x) to be defined over an
X —>a

open interval of the form (a, ¢). Example 2.21 illustrates this point.

Example 2.21

Evaluating a One-Sided Limit Using the Limit Laws

Evaluate each of the following limits, if possible.

a. 1in31_ Vx —3
X —
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b. lim Vx—3
x— 3T
Solution

Figure 2.25 illustrates the function f(x) = Vx — 3 and aids in our understanding of these limits.

yi

Figure 2.25 The graph shows the function f(x) = Vx — 3.

a. The function f(x) = Vx — 3 is defined over the interval [3, 4+oc0). Since this function is not defined to

the left of 3, we cannot apply the limit laws to compute lin?}_ Vx — 3. In fact, since f(x) =Vx—3 is
X =

undefined to the left of 3, ling}_ Vx — 3 does not exist.
X —

b. Since f(x) =Vx — 3 is defined to the right of 3, the limit laws do apply to lim+ Vx — 3. By applying

x—3

these limit laws we obtain lim+ Vx—=3=0.

x—3

In Example 2.22 we look at one-sided limits of a piecewise-defined function and use these limits to draw a conclusion
about a two-sided limit of the same function.

Example 2.22

Evaluating a Two-Sided Limit Using the Limit Laws

4x -3 ifx<2

F = , luat h of the following limits:
or f(x) {(x—3)2 itx>2 evaluate each of the following limits

o i1

b lim_f(x)

x—2

c. xli—I>nz f(x)

Solution

Figure 2.26 illustrates the function f(x) and aids in our understanding of these limits.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2



Chapter 2 | Limits 171

fx)

AN

Figure 2.26 This graph shows a function f(x).

a. Since f(x) =4x—3 forall xin (—o0, 2), replace f(x) in the limit with 4x — 3 and apply the limit
laws:

lim_ f(x) = lim_(4x—-3)=>5.
x—=2 x—2

b. Since f(x) =(x— 3)2 for all x in (2, +00), replace f(x) in the limit with (x — 3)2 and apply the
limit laws:
li = i -3)2=1.
xirg1+f(x) xing_(x )

lim f(x) =1, we conclude that lim_f(x) does not exist.
+ x— 2

c. Since lim_ f(x) =5 and
x—2 x—2

@ 2.17 —x—2ifx< -1
Graph f(x) = 2ifx=—-1  and evaluate liml_ f(x).
X = —

ifx>—1

We now turn our attention to evaluating a limit of the form lim @, where lim f(x) = K, where K # 0 and
Xx—=a g( X) xX—=a

xli_r)nag(x) = 0. Thatis, f(x)/g(x) hasthe form K/0, K # 0 ata.

Example 2.23

Evaluating a Limit of the Form K/0, K # 0 Using the Limit Laws

Evaluate lim_ —X=3_
x—2 x2 —2x

Solution
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Step 1. After substituting in x =2, we see that this limit has the form —1/0. That is, as x approaches 2 from the

left, the numerator approaches —1; and the denominator approaches 0. Consequently, the magnitude of x(xx;_?’z)

becomes infinite. To get a better idea of what the limit is, we need to factor the denominator:

; x—3 x—3
x1—1>1r21_x2_2x_x—>2_x(x—2)‘

Step 2. Since x — 2 is the only part of the denominator that is zero when 2 is substituted, we then separate
1/(x — 2) from the rest of the function:

— im Xx=3 1
- X EHZI_ X x=2
Step 3. lim_u = -L1and lim_ l_- . Therefore, the product of (x — 3)/x and 1/(x —2) has
x—2 X 2 x—>2"x—2
a limit of +o0:
lim X=3 — 4+

x—>2_x2_2x

@/ 2.18  gyaluate limM

¥=1(x— 1

The Squeeze Theorem

The techniques we have developed thus far work very well for algebraic functions, but we are still unable to evaluate limits
of very basic trigonometric functions. The next theorem, called the squeeze theorem, proves very useful for establishing
basic trigonometric limits. This theorem allows us to calculate limits by “squeezing” a function, with a limit at a point a that
is unknown, between two functions having a common known limit at a. Figure 2.27 illustrates this idea.

Yi

AN

g(x)

Figure 2.27 The Squeeze Theorem applies when
f() < g(0) S h(x) and lim f(x) = lim h(x).
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Theorem 2.7: The Squeeze Theorem

Let f(x), g(x), and h(x) be defined for all x # a over an open interval containing a. If
S0 < g(x) < h(x)
for all x # a in an open interval containing a and
xli_l)na f(x)=L= xli_r)nah(x)

where L is a real number, then lim g(x) = L.
X —=da

Example 2.24

Applying the Squeeze Theorem

Apply the squeeze theorem to evaluate lim xcosx.

X —
Solution

Because —1 < cosx <1 for all x, we have —x < xcosx < x for x >0 and —x > xcosx > x for x <0 (if

x is negative the direction of the inequalities changes when we multiply). Since limo(—x) =0= limox, from
X — X —

the squeeze theorem, we obtain lim xcosx = 0. The graphs of f(x) = — x, g(x) = xcosx, and h(x) = x are

x—0

shown in Figure 2.28.

Figure 2.28 The graphs of f(x), g(x), and h(x) are shown

around the point x = 0.

E‘/II 2.19  yse the squeeze theorem to evaluate limox2 sind

X — X

We now use the squeeze theorem to tackle several very important limits. Although this discussion is somewhat lengthy,
these limits prove invaluable for the development of the material in both the next section and the next chapter. The first of

these limits is elimosin 6. Consider the unit circle shown in Figure 2.29. In the figure, we see that sin@ is the y-coordinate
—

on the unit circle and it corresponds to the line segment shown in blue. The radian measure of angle 0 is the length of the

arc it subtends on the unit circle. Therefore, we see that for 0 < 8 < %, 0 < sin@ < 6.
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i
(cos#, sinf)
7}
sinf \
0 -
1,0)%

For0<0<§,0<sino<o.

Figure 2.29 The sine function is shown as a line on the unit
circle.

Because lim 0=0 and lim 6 =0, by using the squeeze theorem we conclude that
60t x— 0t

lim sind = 0.
6ot

To see that p lirg_ sinf = 0 as well, observe that for —% <0<0,0<-0< % and hence, 0 < sin(—6) < —0.

Consequently, 0 < —sinf < —@. It follows that O > sinf > 6. An application of the squeeze theorem produces the
desired limit. Thus, since lim sinf = 0 and 0 lirg_ sind = 0,
-

60t
lim sind = 0. (2.16)
0—-0
Next, using the identity cos® = V1 — sin?@ for —% << %, we see that
Jim cos6 = lim V1 - sin?0 = 1. (2.17)

We now take a look at a limit that plays an important role in later chapters—namely, glimo%. To evaluate this limit,
-

we use the unit circle in Figure 2.30. Notice that this figure adds one additional triangle to Figure 2.30. We see that the
length of the side opposite angle 6 in this new triangle is tan®. Thus, we see that for 0 < # < Z, sinf) < § < tan.
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yi

\ tand

sing

1, 0)X

For0 <6 < % sing < @ < tano.

Figure 2.30 The sine and tangent functions are shown as lines
on the unit circle.

By dividing by sin@ in all parts of the inequality, we obtain

0 1

< sind ~ cos@’

Equivalently, we have

1 >¥>cos€.

Since lim 1=1= lim coséd, we conclude that lim % = 1. By applying a manipulation similar to that used
00" 00" 0-o0t

in demonstrating that p lin(}_ sind = 0, we can show that lim 311919 = 1. Thus,
-

6—-0"
lim sin@ =1. (2.18)
-0 0
1

In Example 2.25 we use this limit to establish glimo
-

Example 2.25

Evaluating an Important Trigonometric Limit

%059 = 0. This limit also proves useful in later chapters.

Evaluate lim 1.=C088.
0—-0 0

Solution

In the first step, we multiply by the conjugate so that we can use a trigonometric identity to convert the cosine in
the numerator to a sine:
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1 —cosd . 1——cosf . 1+cosb

90 0 0->0 6 1+ cos@
T 1 —cos?0
= A0 + coso)
.2
— 1 sin“ 6
= /MG + cosd)

— Tim SING  _ sinf
_911—I>nO 6 1+cosf

Therefore,

220 Eyaluate lim 1.=C088.
9—0 sin@
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Deriving the Formula for the Area of a Circle

Some of the geometric formulas we take for granted today were first derived by methods that anticipate some of the
methods of calculus. The Greek mathematician Archimedes (ca. 287-212; BCE) was particularly inventive, using
polygons inscribed within circles to approximate the area of the circle as the number of sides of the polygon increased.
He never came up with the idea of a limit, but we can use this idea to see what his geometric constructions could have
predicted about the limit.

We can estimate the area of a circle by computing the area of an inscribed regular polygon. Think of the regular
polygon as being made up of n triangles. By taking the limit as the vertex angle of these triangles goes to zero, you can
obtain the area of the circle. To see this, carry out the following steps:

1. Express the height h and the base b of the isosceles triangle in Figure 2.31 in terms of € and r.

Figure 2.31

2. Using the expressions that you obtained in step 1, express the area of the isosceles triangle in terms of 6 and r.
(Substitute (1/2)siné for sin(6/2)cos(f/2) in your expression.)

3. If an n-sided regular polygon is inscribed in a circle of radius r, find a relationship between 6 and n. Solve this
for n. Keep in mind there are 27 radians in a circle. (Use radians, not degrees.)
Find an expression for the area of the n-sided polygon in terms of r and 6.
To find a formula for the area of the circle, find the limit of the expression in step 4 as 6 goes to zero. (Hint:
(sinf@) _

lim ~—~ = 1).
9]—r>n0 0 )

The technique of estimating areas of regions by using polygons is revisited in Introduction to Integration.
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2.3 EXERCISES

In the following exercises, use the limit laws to evaluate
each limit. Justify each step by indicating the appropriate
limit law(s).

83. lim0(4x2 - 2x+ 3)

X —

84. . x43x245
=7

x—1

85 lim 2Vx2 —6x+3

X = =
86.  lim (9x+ 1)2
x— -1

In the following exercises, use direct substitution to
evaluate each limit.

87. lim x2

x—>7

88. lim (4x*—1)

X = —

1

89. im—1
x— 01+ sinx

2
0 iy 20w

X —

91. 1im2—7x
x—>1x+6

92, 1im Ine*
x—3

In the following exercises, use direct substitution to show
that each limit leads to the indeterminate form 0/0. Then,

evaluate the limit.

2
93. hmx —16
x—4 x—4
94, lim x—2

x—>2x2_2x

95. i, 3x—18
JmSy T2
96. 2 _

i A =1

x—0 h
97. 1., £—=9

xll—I>Il9W—3
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98. 1 _1
lim M, where a is a real-valued constant
h—0 h
99. {:., sinf
Hh—r>nntan9
100. 3
lim =1
X — 1)62 -1
101 L 2x2+3x—2
x—>12 2x-1
x—>-3 x+3

In the following exercises, use direct substitution to obtain
an undefined expression. Then, use the method of
Example 2.23 to simplify the function to help determine
the limit.

103. 2 -
lim_2X2+7X 4

x—= =2 x 4 x-2
104, . 2?4 7x—4

lim 3
xo 2t x 4+x-2

105. 2 —
lim_ 2x“+7x—4
x=17 2gx-2

x— 17 x2+x—2

In the following exercises, assume that
Iim f(x) =4, lim g(x) =9, and lim h(x) =6. Use
x—6 x—6 x—6

these three facts and the limit laws to evaluate each limit.

107. 1im62 f(x)g(x)

108. lim gx)—1

x—6 f(x)
109+ 450)

110. 3
i (100)
x—6 2

UL lim yg(x) = 709

112, lim x- h(x)
x—>6
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113. 1im6[(x + 1) f(x)]
114. limé(f(x) -8(x) = h(x))

[T] In the following exercises, use a calculator to draw
the graph of each piecewise-defined function and study the
graph to evaluate the given limits.

115. Fo) = {x2, x<3
x+4, x>3

a. Hm_f(x)

b. lim+ fx)

x—3
116. g(x):{x3_ I, x<0
1, x>0

a. gng_ g(x)

b. 1im+ g(x)

x—0

117. 2 _
h(x):{x 2x+1, x<2
3—x, x>2

a. . 1_1)1’[21_ h(x)

b. hm+ h(x)

x—>2

In the following exercises, use the following graphs and the
limit laws to evaluate each limit.

179

—10+

y =1f()

118.

119.

120.

121.

122.

123.

124.

y =9

fim _ () + ()

x— -3

L Aim_ (£0 = 3g(x)

lim S)g(x)
x—0 3

. 2+
X l—1>HlS f(x)

lim (/(x))?
Jim {70 = ()

im_{x-g(x)
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125. N Errlg[x-f(x) +2-g(x)]

For the following problems, evaluate the limit using the
squeeze theorem. Use a calculator to graph the functions
f(x), g(x), and h(x) when possible.

126. [T] True or False? If 2x — 1 < gx) < x2—2x+ 3,
then lim_g(x) = 0.
x—2

127. o (1

0, xrational

28.
xlgno f(x), where f(x) ={ )

x“, xirrrational

129. [T] In physics, the magnitude of an electric field

generated by a point charge at a distance r in vacuum is

governed by Coulomb’s law: E(r) = g L where E

drmeyr

represents the magnitude of the electric field, q is the
charge of the particle, r is the distance between the particle

1
471'80

and where the strength of the field is measured, and

is Coulomb’s constant: 8.988 x 10° N-m?/C2.
a. Use a graphing calculator to graph E(r) given that

the charge of the particle is g = 10719,

b. Evaluate lim E(r). What is the physical

r—0

meaning of this quantity? Is it physically relevant?
Why are you evaluating from the right?

130. [T] The density of an object is given by its mass
divided by its volume: p = m/V.

a. Use a calculator to plot the volume as a function of
density (V = m/p), assuming you are examining

something of mass 8 kg (m = 8).

b. Evaluate lim+ V(r) and explain the physical

x—0

meaning.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2

Chapter 2 | Limits



Chapter 2 | Limits 181

2.4 | Continuity

Learning Objectives

2.4.1 Explain the three conditions for continuity at a point.
2.4.2 Describe three kinds of discontinuities.

2.4.3 Define continuity on an interval.

2.4.4 State the theorem for limits of composite functions.
2.4.5 Provide an example of the intermediate value theorem.

Many functions have the property that their graphs can be traced with a pencil without lifting the pencil from the page. Such
functions are called continuous. Other functions have points at which a break in the graph occurs, but satisfy this property
over intervals contained in their domains. They are continuous on these intervals and are said to have a discontinuity at a
point where a break occurs.

We begin our investigation of continuity by exploring what it means for a function to have continuity at a point. Intuitively,
a function is continuous at a particular point if there is no break in its graph at that point.

Continuity at a Point

Before we look at a formal definition of what it means for a function to be continuous at a point, let’s consider various
functions that fail to meet our intuitive notion of what it means to be continuous at a point. We then create a list of conditions
that prevent such failures.

Our first function of interest is shown in Figure 2.32. We see that the graph of f(x) has a hole at a. In fact, f(a) is

undefined. At the very least, for f(x) to be continuous at a, we need the following condition:

i. f(a) is defined.
Y
f(x)

e

/ a

xY

Figure 2.32 The function f(x) is not continuous at a

because f(a) is undefined.

However, as we see in Figure 2.33, this condition alone is insufficient to guarantee continuity at the point a. Although
f(a) is defined, the function has a gap at a. In this example, the gap exists because xli_I)na f(x) does not exist. We must add

another condition for continuity at a—namely,

ii. xh_r)na f(x) exists.
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yi

)]
B3

Figure 2.33 The function f(x) is not continuous at a

because lim f(x) does not exist.
X —=>a

However, as we see in Figure 2.34, these two conditions by themselves do not guarantee continuity at a point. The function
in this figure satisfies both of our first two conditions, but is still not continuous at a. We must add a third condition to our
list:

1ii. xli_r)na f(x) = f(a).
yi

)

e

/ a

B3

Figure 2.34 The function f(x) is not continuous at a
because xll_r)na f(x) # f(a).

Now we put our list of conditions together and form a definition of continuity at a point.

Definition

A function f(x) is continuous at a point a if and only if the following three conditions are satisfied:
i. f(a) is defined
ii. xh_r)na f(x) exists
iii. xh_r)naf(x) = f(a)

A function is discontinuous at a poeint a if it fails to be continuous at a.

The following procedure can be used to analyze the continuity of a function at a point using this definition.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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Problem-Solving Strategy: Determining Continuity at a Point

1. Check to see if f(a) is defined. If f(a) is undefined, we need go no further. The function is not continuous
ata. If f(a) is defined, continue to step 2.
2. Compute xli_r)na f(x). In some cases, we may need to do this by first computing lim_ f(x) and lim+ fx).
L= xX—>a

If xli_I;na f(x) does not exist (that is, it is not a real number), then the function is not continuous at a and the
problem is solved. If xli_r)ng f(x) exists, then continue to step 3.

3. Compare f(a) and xli_l)na f(x). If lim f(x) # f(a), then the function is not continuous at a. If

X —a

xli_r)na f(x) = f(a), then the function is continuous at a.

The next three examples demonstrate how to apply this definition to determine whether a function is continuous at a given
point. These examples illustrate situations in which each of the conditions for continuity in the definition succeed or fail.

Example 2.26

Determining Continuity at a Point, Condition 1

Using the definition, determine whether the function f(x) = (x2 —4)/(x —2) is continuous at x = 2. Justify

the conclusion.

Solution
Let’s begin by trying to calculate f(2). We can see that f(2) =0/0, which is undefined. Therefore,

2
flx) = ’; __24 is discontinuous at 2 because f(2) is undefined. The graph of f(x) is shown in Figure 2.35.

Yi

f(x)

Figure 2.35 The function f(x) is discontinuous at 2 because
f(2) is undefined.
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Example 2.27

Determining Continuity at a Point, Condition 2

2 .
Using the definition, determine whether the function f(x) = {—x +4ifx<3 is continuous at x = 3. Justify

4x—-8 ifx>3
the conclusion.

Solution
Let’s begin by trying to calculate £(3).

f@) = -3 +4=-5

Thus, f(3) is defined. Next, we calculate lim3 f(x). To do this, we must compute ling_ f(x) and
X = X =

s
lim_ f(x) = - BH+4=-5
and

lim f(x) =43)-8=4.
x -3t

Therefore, lim3 f(x) does not exist. Thus, f(x) is not continuous at 3. The graph of f(x) is shown in Figure
X -

2.36.
Yi

Figure 2.36 The function f(x) is not continuous at 3

because lim_f(x) does not exist.
x—3
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Example 2.28

Determining Continuity at a Point, Condition 3

. L . . SiNX gy
Using the definition, determine whether the function f(x) =4 X is continuous at x = 0.
1ifx=0
Solution
First, observe that
fO) =1
Next,
sinx _ 1.

xh_r)nof () = xlgno X
Last, compare f(0) and lirn1 f(x). We see that
X —
f(0)=1= lim f(x).
x—=0

Since all three of the conditions in the definition of continuity are satisfied, f(x) is continuous at x = 0.

@/ 2.21 2x+1 ifx<1
Using the definition, determine whether the function f(x) = 2 if x =1 is continuousat x = 1.
—x+4 ifx>1

If the function is not continuous at 1, indicate the condition for continuity at a point that fails to hold.

By applying the definition of continuity and previously established theorems concerning the evaluation of limits, we can
state the following theorem.

Theorem 2.8: Continuity of Polynomials and Rational Functions

Polynomials and rational functions are continuous at every point in their domains.

Proof

Previously, we showed that if p(x) and g¢(x) are polynomials, xli_r)nap(x) = p(a) for every polynomial p(x) and

PO _ p@
*Saglx) ~ qla)

d

as long as g(a) # 0. Therefore, polynomials and rational functions are continuous on their domains.

We now apply Continuity of Polynomials and Rational Functions to determine the points at which a given rational
function is continuous.

Example 2.29

Continuity of a Rational Function
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X+ é continuous?

For what values of x is f(x) =

Solution

The rational function f(x) = ; i‘ é

is continuous for every value of x except x = 5.

EZ 2.22  For what values of x is f(x) = 3x* = 4x? continuous?

Types of Discontinuities

As we have seen in Example 2.26 and Example 2.27, discontinuities take on several different appearances. We
classify the types of discontinuities we have seen thus far as removable discontinuities, infinite discontinuities, or jump
discontinuities. Intuitively, a removable discontinuity is a discontinuity for which there is a hole in the graph, a jump
discontinuity is a noninfinite discontinuity for which the sections of the function do not meet up, and an infinite
discontinuity is a discontinuity located at a vertical asymptote. Figure 2.37 illustrates the differences in these types of
discontinuities. Although these terms provide a handy way of describing three common types of discontinuities, keep in
mind that not all discontinuities fit neatly into these categories.

y i i

¢ 70

f(x)
A g M
/ a a
removable jump

discontinuity discontinuity

xY

infinite
discontinuity

xY
- o e -
xV

(@) (b) ©

Figure 2.37 Discontinuities are classified as (a) removable, (b) jump, or (c) infinite.

These three discontinuities are formally defined as follows:

Definition

If f(x) is discontinuous at a, then

1. f has a removable discontinuity at a if xlgna f(x) exists. (Note: When we state that xli_r)na f(x) exists, we

mean that xli_I)na f(x) =L, where L is a real number.)

2. f has a jump discontinuity at a if lim_ f(x) and lim+ f(x) both exist, but lim_ f(x) # lim+ fx).
X —=a xX—a

X —>a X —>a

(Note: When we state that lim_ f(x) and lim+ f(x) both exist, we mean that both are real-valued and that
L= xX—a

neither take on the values +o0.)

3. f has an infinite discontinuity at a if lim_ f(x) = £o0 or lim f(x) = +co.
L= X —>a
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Example 2.30

Classifying a Discontinuity

x>—4
x—=2

In Example 2.26, we showed that f(x) = is discontinuous at x = 2. Classify this discontinuity as

removable, jump, or infinite.

Solution

To classify the discontinuity at 2 we must evaluate lim2 fx):
X —

2
; — limX_ =4
Jmf 0= i
x=2D(x+2)

lel—r>112 x—2
lim_(x +2)
x—2

=4

Since fis discontinuous at 2 and lim2 f(x) exists, fhas a removable discontinuity at x = 2.
X =

Example 2.31

Classifying a Discontinuity

x> +4ifx<3

) is discontinuous at x = 3. Classify this
4x—-8 ifx>3

In Example 2.27, we showed that f(x) ={

discontinuity as removable, jump, or infinite.

Solution

Earlier, we showed that f is discontinuous at 3 because lim3 f(x) does not exist. However, since
X —

1irr31_ f(x) =-5 and lirr31_ f(x) =4 both exist, we conclude that the function has a jump discontinuity at 3.
X — X =

Example 2.32
Classifying a Discontinuity

x+2
x+1

discontinuity as removable, jump, or infinite.

Determine whether f(x) = is continuous at —1. If the function is discontinuous at —1, classify the

Solution
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The function value f(—1) is undefined. Therefore, the function is not continuous at —1. To determine the type of

discontinuity, we must determine the limit at —1. We see that  lim _ x+2 _ —0 and lim X% 2

x>-1"x+1 ot xt+1

= +00.

Therefore, the function has an infinite discontinuity at —1.

2.23 2
@/ For f(x)= {x3 1£x # 1, decide whether f is continuous at 1. If f is not continuous at 1, classify the
if x =

discontinuity as removable, jump, or infinite.

Continuity over an Interval

Now that we have explored the concept of continuity at a point, we extend that idea to continuity over an interval. As
we develop this idea for different types of intervals, it may be useful to keep in mind the intuitive idea that a function is
continuous over an interval if we can use a pencil to trace the function between any two points in the interval without lifting
the pencil from the paper. In preparation for defining continuity on an interval, we begin by looking at the definition of what
it means for a function to be continuous from the right at a point and continuous from the left at a point.

Continuity from the Right and from the Left

A function f(x) is said to be continuous from the right at a if 1im+ fx) = f(a).
X —a

A function f(x) is said to be continuous from the left at a if lim_ f(x) = f(a).
X —da

A function is continuous over an open interval if it is continuous at every point in the interval. A function f(x) is continuous
over a closed interval of the form [a, b] if it is continuous at every point in (a, b) and is continuous from the right at a
and is continuous from the left at b. Analogously, a function f(x) is continuous over an interval of the form (a, b] if it is
continuous over (a, b) and is continuous from the left at b. Continuity over other types of intervals are defined in a similar
fashion.

Requiring that lim+ f(x) = f(a) and lin[}_ f(x) = f(b) ensures that we can trace the graph of the function from the
x—a X =

point (a, f(a)) to the point (b, f(b)) without lifting the pencil. If, for example, lim+ f(x) # f(a), we would need to lift

X —=da

our pencil to jump from f(a) to the graph of the rest of the function over (a, b].

Example 2.33

Continuity on an Interval

x—1
x2+2x

State the interval(s) over which the function f(x) = is continuous.

Solution
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Since f(x) = )2‘ _; is a rational function, it is continuous at every point in its domain. The domain of
xX“+2x

f(x) is the set (—oo0, =2) U (=2, 0) U (0, +00). Thus, f(x) is continuous over each of the intervals
(=00, =2), (=2, 0), and (0, +00).

Example 2.34

Continuity over an Interval

State the interval(s) over which the function f(x) = V4 — x? is continuous.

Solution

From the limit laws, we know that xli_r)nav4 —x2=\4 = a? for all values of a in (-2, 2). We also know that

lim V4 —x%*=0 exists and lirrzl_ V4 —x2 =0 exists. Therefore, f(x) is continuous over the interval
X —

x— =2

[-2, 2].

@ 2.24  State the interval(s) over which the function f(x) = Vx + 3 is continuous.

The Composite Function Theorem allows us to expand our ability to compute limits. In particular, this theorem
ultimately allows us to demonstrate that trigonometric functions are continuous over their domains.

Theorem 2.9: Composite Function Theorem

If f(x) is continuous at L and xli_l)nag(x) =L, then

lim_ f(g(x)) = f( lim ¢(x)) = f(L).

Before we move on to Example 2.35, recall that earlier, in the section on limit laws, we showed limocosx =1 = cos(0).

X —

Consequently, we know that f(x) = cosx is continuous at 0. In Example 2.35 we see how to combine this result with

the composite function theorem.

Example 2.35

Limit of a Composite Cosine Function

Evaluate lim cos (x - E)

X = T 2
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Solution

The given function is a composite of cosx and x — % Since lim 2(x - %) =0 and cosx is continuous at 0,
X = T
we may apply the composite function theorem. Thus,

N l_i)nilﬂzcos( - %) = cos 1_i>n’1r/2(x - %)) =cos(0) = 1.

@ 2.25 Evaluate lim sin(x — 7).
X—=>7n

The proof of the next theorem uses the composite function theorem as well as the continuity of f(x) =sinx and

g(x) = cosx at the point 0 to show that trigonometric functions are continuous over their entire domains.

Theorem 2.10: Continuity of Trigonometric Functions

Trigonometric functions are continuous over their entire domains.

Proof
We begin by demonstrating that cosx is continuous at every real number. To do this, we must show that xlgnacosx = cosa

for all values of a.

lim cosx lim cos((x — a) + a) rewritex =x—a+a
X—a X—a

xli_r)ng(cos (x —a)cosa — sin(x — a)sina) apply the identity for the cosine of the sum of two angles
= cos (Xli_r)na(x - a))cosa - sin(xlgna(x - a))sina xlgna(x —a) =0, and sinx and cosx are continuous at

= cos(0)cosa — sin(0)sina evaluate cos(0) and sin(0) and simplify
=1-cosa—0-sina = cosa.

The proof that sinx is continuous at every real number is analogous. Because the remaining trigonometric functions may
be expressed in terms of sinx and cosx, their continuity follows from the quotient limit law.

O

As you can see, the composite function theorem is invaluable in demonstrating the continuity of trigonometric functions.
As we continue our study of calculus, we revisit this theorem many times.

The Intermediate Value Theorem

Functions that are continuous over intervals of the form [a, ], where a and b are real numbers, exhibit many useful

properties. Throughout our study of calculus, we will encounter many powerful theorems concerning such functions. The
first of these theorems is the Intermediate Value Theorem.

Theorem 2.11: The Intermediate Value Theorem

Let fbe continuous over a closed, bounded interval [a, b]. If z is any real number between f(a) and f(b), then there

is a number c in [a, b] satisfying f(c) = z in Figure 2.38.
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f(b)f====m==mmmmmmmmmmmmaee

flaT-""-

E:I c b
Figure 2.38 There is a number ¢ € [a, b] that satisfies

fle)=1z.

Example 2.36

Application of the Intermediate Value Theorem

Show that f(x) = x — cosx has at least one zero.

Solution
Since f(x) = x — cosx is continuous over (—oo0, +00), it is continuous over any closed interval of the form
la, b]. If you can find an interval [a, b] such that f(a) and f(b) have opposite signs, you can use the
Intermediate Value Theorem to conclude there must be a real number c in (a, b) that satisfies f(c) = 0. Note
that

f(0)=0-cos(0)=-1<0

and

)-5-cog =550

Using the Intermediate Value Theorem, we can see that there must be a real number c in [0, 7/2] that satisfies

f(c) = 0. Therefore, f(x) =x — cosx has at least one zero.

Example 2.37

When Can You Apply the Intermediate Value Theorem?

If f(x) is continuous over [0, 2], f(0) > 0 and f(2) >0, can we use the Intermediate Value Theorem to

conclude that f(x) has no zeros in the interval [0, 2]? Explain.
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Solution
No. The Intermediate Value Theorem only allows us to conclude that we can find a value between f(0) and

f(2); it doesn’t allow us to conclude that we can’t find other values. To see this more clearly, consider the

function f(x) = (x — 1)2. It satisfies f(0)=1>0, f(2)=1>0, and f(1)=0.

Example 2.38

When Can You Apply the Intermediate Value Theorem?

For f(x)=1/x, f(-1)=—-1<0 and f(1)=1> 0. Can we conclude that f(x) has a zero in the interval
[-1, 1]?

Solution

No. The function is not continuous over [—1, 1]. The Intermediate Value Theorem does not apply here.

@ 2.26  Show that f(x) = x> — x> = 3x + 1 has a zero over the interval [0, 1].
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2.4 EXERCISES

For the following exercises, determine the point(s), if any,
at which each function is discontinuous. Classify any
discontinuity as jump, removable, infinite, or other.

131. fx) = %

132 4y =

241

133, f(x) =

x—x

B34 eny=1"141

135. f(x)= 5
-2
136. f(x) = Ix 2|
137. H(x) = tan2x
138. t+3
f)=——""1=—
2+50+6

For the following exercises, decide if the function
continuous at the given point. If it is discontinuous, what
type of discontinuity is it?

139. 242 _5x+3

P at x=1
140. _ sin@ — cosé@ _
h(0) = anf at 0 =
guy=4 2u-1 2, atu=%
A ifu=41
2 2
142. _ sin(wy) _
fo) = tan(zy)’ aty=1
143. x“—e*ifx<0
, at x=0
fw= { -1 ifx>0 *

144. # )_{xsin(x)ifxsﬂ ot x = 1

~ xtan(x) if x > 77

In the following exercises, find the value(s) of k that makes
each function continuous over the given interval.

3x+2, x<k
2x—3, k<x<8

45. F) = {

193

146. siné, 0<49<72[
[ =

cos(@ + k), ’27§9§7r

148.

147. +3x+2
fx) = {x x+x2 » X# =2
fx) = {

149. Vkx, 0<x<3
+1,

f® ={
X

In the following exercises, use the Intermediate Value
Theorem (IVT).

150. 2_
Let h(x) ={3x 4, x<2 Over the interval
S5+4x, x>2
[0, 4], there is no value of x such that h(x) = 10,

although %(0) < 10 and h(4) > 10. Explain why this
does not contradict the IVT.

151. A particle moving along a line has at each time t a
position function s(¢), which is continuous. Assume
s(2) =5 and s(5) =
its position is given by h(r) = s(¢) — t. Explain why there

2. Another particle moves such that

must be a value ¢ for 2 < ¢ < 5 such that A(c) =

152. [T] Use the statement “The cosine of t is equal to t
cubed.”

Write a mathematical equation of the statement.

b. Prove that the equation in part a. has at least one
real solution.

c. Use a calculator to find an interval of length 0.01
that contains a solution.

153. Apply the IVT to determine whether 2* = x> has a

solution in one of the intervals [1.25, 1.375] or
[1.375, 1.5]. Briefly explain your response for each
interval.
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154. Consider the graph of the function y = f(x) shown
in the following graph.

'j/z -1 0 1
_1.-

a. Find all values for which the function is

discontinuous.

b. For each value in part a., state why the formal
definition of continuity does not apply.

c. Classify each discontinuity as
removable, or infinite.

either jump,

55. 3x, x> 1

Let f(x) = 3 .

x7,x<1

a. Sketch the graph of f.
b. Is it possible to find a value k such that f(1) =k,
which makes f(x)

numbers? Briefly explain.

continuous for all real

4
196y ot £ = T =Lforx# -1, 1.
x“ =1
a. Sketch the graph of f.
b. Is it possible to find values k; and k, such that
f(=1)=k and f(1) =k,, andthat makes f(x)

continuous for all real numbers? Briefly explain.

157. Sketch the graph of the function y = f(x) with
properties i. through vii.

i. The domain of fis (—oco, +00).

ii. fhas an infinite discontinuity at x = —6.
iii. f(-6)=3
iv. lim_f(x)= Ilim f(x)=2
x— =3 x— -3t
v. f(-3)=3
vi. f is left continuous but not right continuous at
x=3.
vii. x_l)in_loof(x) = —oo0 and x_l)inﬁ}oof(x) =400
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158. Sketch the graph of the function y = f(x) with
properties i. through iv.

i. The domain of fis [0, 5].

e

i. lim f(x) and lim_ f(x) exist and are equal.
x> 17 x=1

iii. f(x) is left continuous but not continuous at
x =2, and right continuous but not continuous at
x=3.

iv.  f(x) has a removable discontinuity at x =1, a

jump discontinuity at x =2, and the following

limits hold: 1in31_ f(x) =—o0 and
x =
lim f(x)=2.
X — 3+

In the following exercises, suppose y = f(x) is defined for

all x. For each description, sketch a graph with the indicated
property.

159. Discontinuous at x = 1 with lim . f(x) =—1 and
X = =

im0 =4

160. Discontinuous at x = 2 but continuous elsewhere

. . _1
with xh_r)no fx) = >

Determine whether each of the given statements is true.
Justify your response with an explanation or
counterexample.

161. f= # is continuous everywhere.

162. If the left- and right-hand limits of f(x) as x —» a
exist and are equal, then f cannot be discontinuous at
X =a.

163. If a function is not continuous at a point, then it is not
defined at that point.

164. According to the IVT, cosx —sinx —x =2 has a
solution over the interval [—1, 1].

165. If f(x) is continuous such that f(a) and f(b) have
opposite signs, then f(x) = 0 has exactly one solution in
[a, b].

2

166. 2_
The function f(x) = % is continuous over
x —

the interval [0, 3].
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167. It f(x) s
f(@, f(b) >0,

interval [a, b].

continuous  everywhere  and

then there is no root of f(x) in the

[T] The following problems consider the scalar form of
Coulomb’s law, which describes the electrostatic force
between two point charges, such as electrons. It is given by

the equation F(r) =k

e—|q132|, where k, is Coulomb’s

constant, g; are the magnitudes of the charges of the two
particles, and r is the distance between the two particles.
168. To simplify the calculation of a model with many
interacting particles, after some threshold value r =R,
we approximate F as zero.

a. Explain the physical
assumption.

reasoning behind this

b. What is the force equation?

c. Evaluate the force F using both Coulomb’s law
and our approximation, assuming two protons with
a charge magnitude of

1.6022 x 1071 coulombs (C), and  the
Coulomb constant k, = 8.988 x 10° Nm?%/C? are

1 m apart. Also, assume R < 1m. How much

inaccuracy does our approximation generate? Is our
approximation reasonable?

d. Is there any finite value of R for which this system
remains continuous at R?

169. Instead of making the force 0 at R, instead we let the

force be 10720 for r > R. Assume two protons, which have

a magnitude of charge 1.6022 x 107" ¢,

Coulomb constant k, = 8.988 x 10° Nm?%/C2. Is there a

value R that can make this system continuous? If so, find it.

and the

Recall the discussion on spacecraft from the chapter
opener. The following problems consider a rocket launch
from Earth’s surface. The force of gravity on the rocket is

given by F(d) = — mkld?, where m is the mass of the

rocket, d is the distance of the rocket from the center of
Earth, and k is a constant.

170. [T] Determine the value and units of k given that the
mass of the rocket on Earth is 3 million kg. (Hint: The
distance from the center of Earth to its surface is 6378 km.)

195

171. [T] After a certain distance D has passed, the
gravitational effect of Earth becomes quite negligible, so

we can approximate the force function by
~mk - if g < D
F(d) = d . Find the necessary condition

10,000 ifd > D

D such that the force function remains continuous.

172. As the rocket travels away from Earth’s surface, there
is a distance D where the rocket sheds some of its mass,
since it no longer needs the excess fuel storage. We can

—mlzkifd<D
. Is there a
ifd > D

write this function as F(d) =
_ my k
d2

D value such that this function is continuous, assuming
my ?é my ?
Prove the following functions are continuous everywhere

173. f(0) = sinf
174. g(x) = x|

0 if x is irrational

175 .
L K continuous?
1 if x is rational

* Where is f(x) ={
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2.5 | The Precise Definition of a Limit

Learning Objectives

2.5.1 Describe the epsilon-delta definition of a limit.

2.5.2 Apply the epsilon-delta definition to find the limit of a function.

2.5.3 Describe the epsilon-delta definitions of one-sided limits and infinite limits.
2.5.4 Use the epsilon-delta definition to prove the limit laws.

By now you have progressed from the very informal definition of a limit in the introduction of this chapter to the intuitive
understanding of a limit. At this point, you should have a very strong intuitive sense of what the limit of a function means
and how you can find it. In this section, we convert this intuitive idea of a limit into a formal definition using precise
mathematical language. The formal definition of a limit is quite possibly one of the most challenging definitions you will
encounter early in your study of calculus; however, it is well worth any effort you make to reconcile it with your intuitive
notion of a limit. Understanding this definition is the key that opens the door to a better understanding of calculus.

Quantifying Closeness

Before stating the formal definition of a limit, we must introduce a few preliminary ideas. Recall that the distance between
two points a and b on a number line is given by |a — b|.

* The statement |f(x) — L| < ¢ may be interpreted as: The distance between f(x) and L is less than ¢.
e The statement 0 < |x — al < 0 may be interpreted as: x # a and the distance between x and a is less than .

It is also important to look at the following equivalences for absolute value:

* The statement |f(x) — L| < ¢ is equivalent to the statement L — ¢ < f(x) < L + €.
¢ The statement 0 < |x —al < § is equivalent to the statement ¢ —§ < x < a+ 6 and x # a.

With these clarifications, we can state the formal epsilon-delta definition of the limit.

Definition

Let f(x) be defined for all x # a over an open interval containing a. Let L be a real number. Then
dim f(x) = L

if, for every € > 0, there existsa 6 > 0, suchthatif 0 < |x—a| <&, then |f(x)—L|<e.

This definition may seem rather complex from a mathematical point of view, but it becomes easier to understand if we
break it down phrase by phrase. The statement itself involves something called a universal quantifier (for every & > 0), an

existential quantifier (there exists a § > 0), and, last, a conditional statement (if 0 < |x —al < §, then |f(x) — L| < é).
Let’s take a look at Table 2.9, which breaks down the definition and translates each part.
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Definition Translation

1. Forevery &> 0, 1. For every positive distance & from L,

2. there existsa 6 > 0, 2. There is a positive distance § from a,

3. such that 3. such that

4.if 0<lx—al<é, then 4. if x is closer than § toaand x # a, then f(x) is closer than
lf(0) — L] <e. gtoL.

Table 2.9 Translation of the Epsilon-Delta Definition of the Limit

We can get a better handle on this definition by looking at the definition geometrically. Figure 2.39 shows possible values
of & for various choices of ¢ > 0 for a given function f(x), a number a, and a limit L at a. Notice that as we choose

smaller values of € (the distance between the function and the limit), we can always find a 6 small enough so that if we

have chosen an x value within & of a, then the value of f(x) is within ¢ of the limit L.

yi yi yi

e L+e H

e a+s . L-6e +—

a—=a \ f(x) f(x) f(x)

4

(@) (b) (©

Figure 2.39 These graphs show possible values of &, given successively smaller choices of €.

. Visit the following applet to experiment with finding values of 6 for selected values of &:

¢ The epsilon-delta definition of limit (http://www.openstaxcollege.org/l/20_epsilondelt)

Example 2.39 shows how you can use this definition to prove a statement about the limit of a specific function at a
specified value.

Example 2.39

Proving a Statement about the Limit of a Specific Function

Prove that liml(2x +1)=23.
X —

Solution



http://www.openstaxcollege.org/l/20_epsilondelt
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Let € > 0.

The first part of the definition begins “For every & > 0.” This means we must prove that whatever follows is true
no matter what positive value of ¢ is chosen. By stating “Let ¢ > 0,” we signal our intent to do so.

Choose 6 =

N[

The definition continues with “there exists a § > 0.” The phrase “there exists” in a mathematical statement is
always a signal for a scavenger hunt. In other words, we must go and find §. So, where exactly did 6 = &/2
come from? There are two basic approaches to tracking down §. One method is purely algebraic and the other is
geometric.

We begin by tackling the problem from an algebraic point of view. Since ultimately we want |(2x + 1) — 3| < ¢,
we begin by manipulating this expression: |(2x + 1) — 3| < ¢ is equivalent to [2x — 2| < &, which in turn
is equivalent to [2|lx — 1| < e. Last, this is equivalent to |x — 1| < &/2. Thus, it would seem that § = ¢/2 is
appropriate.

We may also find 6 through geometric methods. Figure 2.40 demonstrates how this is done.

Y
T B & is the length of the smaller of
e g =il the two distances marked in
T brown.
T d=min{l+5-1,1-(1-%5)
3 =min{%,5}

£
T 2

Figure 2.40 This graph shows how we find 6 geometrically.

Assume 0 <|x— 1] <. When 6 has been chosen, our goal is to show that if 0 <|x— 1] <, then
[(2x + 1) — 3| < e. To prove any statement of the form “If this, then that,” we begin by assuming “this” and
trying to get “that.”

Thus,
[Qx+1)=3] =12x-2] property of absolute value
=[2(x -1
=2lx - 1| 21=2
=2Ix—1]
<20 here’s where we use the assumption that0 < [x — 1| < &
=2 % =¢ here’s where we use our choice of § = ¢/2

Analysis
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In this part of the proof, we started with |(2x + 1) — 3| and used our assumption 0 < |x — 1| < § in a key part
of the chain of inequalities to get |(2x + 1) — 3| to be less than &. We could just as easily have manipulated the

assumed inequality 0 < |x — 1| < § to arrive at |(2x + 1) — 3| < € as follows:

O<ix—11<6 =>Ix—-11<6
> —0<x—1<9¢

_£E _ £
> 2<x 1<2

> —e<2x-2<e¢
> —e<2x-2<e¢
=>2x-2|<e¢

> |2x+1)-3|<e.

Therefore, lim1 (2x+ 1) = 3. (Having completed the proof, we state what we have accomplished.)
X —

After removing all the remarks, here is a final version of the proof:

Let € > 0.
Choose 6 = €/2.
Assume 0 < |x— 11 < 6.

Thus,
[2x+1)=3] =12x-2|
=[2(x = D)
=2lx -1
=2lx—1|
<26
=2

=E&.

-
2

Therefore, liml(2x +1)=3.
X —

The following Problem-Solving Strategy summarizes the type of proof we worked out in Example 2.39.

Problem-Solving Strategy: Proving That rli—l>naf(x) = L for a Specific Function f(x)

1. Let’s begin the proof with the following statement: Let & > 0.

2. Next, we need to obtain a value for §. After we have obtained this value, we make the following statement,
filling in the blank with our choice of 6 : Choose 6 =

3. The next statement in the proof should be (at this point, we fill in our given value for a):
Assume 0 < |x —al < 6.

4. Next, based on this assumption, we need to show that |f(x) — L| < &, where f(x) and L are our function

f(x) and our limit L. At some point, we need to use 0 < |x — al < 9.

5. We conclude our proof with the statement: Therefore, xlgna f(x)=L.
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Example 2.40

Proving a Statement about a Limit

Complete the proof that lim 1(4x + 1) = —3 by filling in the blanks.
X = -

Let
Choose 6 =

Assume 0 < |x — | < 6.

Thus, | - | = €.

Solution
We begin by filling in the blanks where the choices are specified by the definition. Thus, we have

Let € > 0.
Choose 6 =
Assume 0 < |x — (—1)| < 4. (or equivalently, 0 < |x + 1] < 8.)

Thus, |dx+1)—(=3)|=4x+4|=14llx+ 1] < 46 e.

Focusing on the final line of the proof, we see that we should choose § =

Alm

We now complete the final write-up of the proof:

Let £ > 0.

Choose & = %

Assume 0 < |x — (—1)| < 6 (or equivalently, 0 < |x+ 1| < §.)

Thus, [(4x+ 1) = (=3)| =l4x+ 4| = 14llx + 1| < 46 = 4(e/4) = e.

@’ 2.27 Complete the proof that lim2(3x —2) =4 by filling in the blanks.
X —

Let

Choose 6§ =
Assume 0 < |x — | <

Thus,

| - | = €.

Therefore, 1im2(3x -2)=4.
X —

In Example 2.39 and Example 2.40, the proofs were fairly straightforward, since the functions with which we were
working were linear. In Example 2.41, we see how to modify the proof to accommodate a nonlinear function.

Example 2.41
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Proving a Statement about the Limit of a Specific Function (Geometric Approach)

Prove that lim x2 = 4.
x—2

Solution

1. Let &€ > 0. The first part of the definition begins “For every & > (0,” so we must prove that whatever
follows is true no matter what positive value of € is chosen. By stating “Let € > 0,” we signal our intent
to do so.

2. Without loss of generality, assume & < 4. Two questions present themselves: Why do we want ¢ < 4
and why is it okay to make this assumption? In answer to the first question: Later on, in the process of
solving for 8, we will discover that & involves the quantity V4 — e. Consequently, we need & < 4. In
answer to the second question: If we can find 6 > O that “works” for ¢ <4, then it will “work” for any
e > 4 as well. Keep in mind that, although it is always okay to put an upper bound on &, it is never okay

to put a lower bound (other than zero) on «.

3. Choose 6 = min{2 —V4—¢e, Vd+¢e— 2}. Figure 2.41 shows how we made this choice of §.

yi
Aopl s & is the smaller of the
flx) = x two distances marked in
T red.
4 d=min{2-4—¢&,4+e-2}
: / : : : B
i
xXX=4-¢ X2=4+¢
X=1\4—¢ X=V4+e

Figure 2.41 This graph shows how we find § geometrically for a given €
for the proof in Example 2.41.

4. Wemust show: If 0 < |x—2| < &, then Ix?> -4l < ¢, sowe must begin by assuming

0<Ix—=2l<8é.

We don’t really need O<Ix—2| (in other words, x#2) for this proof. Since
0<Ix—2I<d=>Ix—2I <4, itisokaytodrop 0 < |x—2|.

lx =2l <.

Hence,
—-6<x—2<6.

Recall that &= min{2 —V4—¢e, V4 +e— 2}. Thus, 0>2-V4—¢ and consequently
—(2 —V4—¢)< —6. We also use 6 < V4 + e —2 here. We might ask at this point: Why did we
substitute 2 — V4 — & for & on the left-hand side of the inequality and V4 + & — 2 on the right-hand
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side of the inequality? If we look at Figure 2.41, we see that 2 — V4 — ¢ corresponds to the distance on
the left of 2 on the x-axis and V4 + &€ — 2 corresponds to the distance on the right. Thus,

—2-Vd—e)< —F<x-2<5<Vh+e-2,

We simplify the expression on the left:

24+V4—e<x-2<V44+e-2.

Then, we add 2 to all parts of the inequality:

V4 —e<x<V4+e.

We square all parts of the inequality. It is okay to do so, since all parts of the inequality are positive:

b—e<xP<d+e.

We subtract 4 from all parts of the inequality:

—e<xl-d<e

Last,
k2 —4l < e.
5. Therefore,
lim x? = 4.
X =

@ 2.28 Find § corresponding to € > O for a proof that limgﬁ =3.
x -

The geometric approach to proving that the limit of a function takes on a specific value works quite well for some functions.
Also, the insight into the formal definition of the limit that this method provides is invaluable. However, we may also
approach limit proofs from a purely algebraic point of view. In many cases, an algebraic approach may not only provide
us with additional insight into the definition, it may prove to be simpler as well. Furthermore, an algebraic approach is the
primary tool used in proofs of statements about limits. For Example 2.42, we take on a purely algebraic approach.

Example 2.42

Proving a Statement about the Limit of a Specific Function (Algebraic Approach)

Prove that lim (x2 —-2x+ 3) = 6.
X = —
Solution
Let’s use our outline from the Problem-Solving Strategy:

1. Let € > 0.
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2. Choose 6 =min{l, ¢/5}. This choice of 6 may appear odd at first glance, but it was obtained by

taking a look at our ultimate desired inequality: ‘(xz —2x+ 3) - 6| < e. This inequality is equivalent

€
-3

Unfortunately, our choice of § must depend on € only and no other variable. If we can replace |x — 3| by

to |x+ 1|-1x — 3] < e. At this point, the temptation simply to choose & = T is very strong.

a numerical value, our problem can be resolved. This is the place where assuming 6 < 1 comes into play.
The choice of 6§ < 1 here is arbitrary. We could have just as easily used any other positive number. In
some proofs, greater care in this choice may be necessary. Now, since § <1 and [x+ 1| <06 <1, we
are able to show that |x — 3| < 5. Consequently, |x+ 1]-1x — 3| < |x+ 1|-5. At this point we realize

that we also need & < &/5. Thus, we choose 6§ = min{1, &/5}.
3. Assume O < [x+ 1] < 6. Thus,

x+1] < 1and|x+l|<%.

Since |x + 1| < 1, we may conclude that —1 < x + 1 < 1. Thus, by subtracting 4 from all parts of the
inequality, we obtain —5 < x — 3 < —1. Consequently, |x — 3| < 5. This gives us

(=20 43) -6 =+ 1] k=31 <£-5=.

Therefore,

lim (x*—2x+3)=6.

X = —

Es/l 2.29  Complete the proof that limlx2 =1
X —

Let £ > 0; choose 6§ = min{1, ¢/3}; assume 0 < |x — 1| < 4.

Since |x — 11 < 1, we may conclude that —1 < x—1 < 1. Thus, 1 <x+ 1 < 3. Hence, |x+ 1| < 3.

You will find that, in general, the more complex a function, the more likely it is that the algebraic approach is the easiest to
apply. The algebraic approach is also more useful in proving statements about limits.

Proving Limit Laws

We now demonstrate how to use the epsilon-delta definition of a limit to construct a rigorous proof of one of the limit laws.
The triangle inequality is used at a key point of the proof, so we first review this key property of absolute value.

Definition

The triangle inequality states that if a and b are any real numbers, then |a + b| < lal + |b|.

Proof
We prove the following limit law: If xli_r)na f(x) =L and xli_r)ngg(x) =M, then xli_r)na(f ) +gx)=L+M.

Let € > 0.

Choose 6; > 0 sothatif 0 <|x—al <&y, then |[f(x)—L| < ¢&/2.
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Choose 6, > 0 sothatif 0 < |x —al < §,, then |g(x) — M| < &/2.
Choose 6 = min{§;, 5,}.

Assume 0 < |x—al < 6.

Thus,
O0<lx—al<d;and0 < |x —al < 5,.
Hence,

IFG) +8()) = (L + M) =|f(x) — L)+ (g(x) — M)
<|f) =L+ |gx) — M|
< %+ % =e.

|

We now explore what it means for a limit not to exist. The limit xli_r)na f(x) does not exist if there is no real number L for
which xli_r)na f(x) = L. Thus, for all real numbers L, xli_r)na f(x) # L. To understand what this means, we look at each part

of the definition of xli_I)na f(x) = L together with its opposite. A translation of the definition is given in Table 2.10.

Definition Opposite

1. Forevery € >0, 1. There exists ¢ > 0 so that

2. there existsa 6 > 0, so that 2. for every 6 >0,

3.if0<|x—al <4, then 3. There is an x satisfying 0 < |Ix —al < é so that
lfG) - Ll <e. [f@) - L > e.

Table 2.10 Translation of the Definition of xli_r)naf(x) = L and its Opposite

Finally, we may state what it means for a limit not to exist. The limit xli_r)na f(x) does not exist if for every real number L,

there exists a real number & > 0 so that for all § > 0, there is an x satisfying 0 < |Ix —al < §, so that |f(x) — L| > e.
Let’s apply this in Example 2.43 to show that a limit does not exist.

Example 2.43

Showing That a Limit Does Not Exist

Show that limo% does not exist. The graph of f(x) = |xI/x is shown here:
X —

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2



Chapter 2 | Limits 205

lo—

x|

e

Solution
Suppose that L is a candidate for a limit. Choose & = 1/2.

Let 6 > 0. Either L>0 or L<O0. If L >0, thenlet x = — 6/2. Thus,
_o=|-9%_pol=2
x-0=|-2-0=2<5s

and

=

o)

2

=|_1_L|=L+121>%=e.

On the other hand, if L < 0, thenlet x = §/2. Thus,

x-o=[2-0[=2<s

and
o)
Jj—L:H—U=MH1>1>l=8
s = 2 )
2
Thus, for any value of L, lim % #+ L.
x—0

One-Sided and Infinite Limits

Just as we first gained an intuitive understanding of limits and then moved on to a more rigorous definition of a limit,
we now revisit one-sided limits. To do this, we modify the epsilon-delta definition of a limit to give formal epsilon-delta
definitions for limits from the right and left at a point. These definitions only require slight modifications from the definition
of the limit. In the definition of the limit from the right, the inequality 0 < x —a < & replaces 0 < |x —al < 6, which

ensures that we only consider values of x that are greater than (to the right of) a. Similarly, in the definition of the limit from
the left, the inequality —6 < x —a < 0 replaces 0 < |x —al < §, which ensures that we only consider values of x that

are less than (to the left of) a.

Definition

Limit from the Right: Let f(x) be defined over an open interval of the form (a, b) where a < b. Then,
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lim_f(x) =L

X—=da
if for every € > 0, there existsa 6 > 0 such thatif 0 < x—a <8, then |f(x) —L| < e.

Limit from the Left: Let f(x) be defined over an open interval of the form (b, ¢) where b < c¢. Then,
lim_ f(x) =L
X —>a

if for every € > 0, there existsa 6§ > 0 such thatif —§ < x—a <0, then |f(x)—L| < e.

Example 2.44

Proving a Statement about a Limit From the Right

Prove that 1im+ Vx—4 =0.

x—=4

Solution
Let € > 0.

Choose & = ¢2. Since we ultimately want |\/x -4 - O| < &, we manipulate this inequality to get Vx —4 < ¢

or, equivalently, 0 < x — 4 < €2, making 6 = € a clear choice. We may also determine § geometrically, as
shown in Figure 2.42.
Y1

\\X—4=&:

X=g2+4
Figure 2.42 This graph shows how we find & for the proof in
Example 2.44.

Assume 0 < x —4 < §. Thus, 0 < x —4 < &% Hence, 0 < Vx — 4 < ¢. Finally, [Vx—4-0|<e.

Therefore, 1im+ Vx—4=0.

x—4

@ 2.30 Find & corresponding to ¢ for a proof that lirrll_ V1l —x=0.
X =
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We conclude the process of converting our intuitive ideas of various types of limits to rigorous formal definitions by
pursuing a formal definition of infinite limits. To have xli_r)na f(x) = 4+00, we want the values of the function f(x)

to get larger and larger as x approaches a. Instead of the requirement that |f(x) — L| < ¢ for arbitrarily small &€ when
0 < |x —al < 6 for small enough 6, we want f(x) > M for arbitrarily large positive M when 0 < |x — al < § for small

enough 6. Figure 2.43 illustrates this idea by showing the value of § for successively larger values of M.

yi yi
| M 5
" | s
! f(x) i f(x)
o o
a X a X
(a) (b)

In each graph, & is the smaller of the lengths of the two brown intervals.
Figure 2.43 These graphs plot values of ¢ for M to show that xli_r)na f(x) = 4o00.

Definition

Let f(x) be defined for all x # a in an open interval containing a. Then, we have an infinite limit
xli_r)na f(x) =400

if for every M > 0, there exists 6 > 0 such thatif 0 < |x —al < 8, then f(x) > M.

Let f(x) be defined for all x # a in an open interval containing a. Then, we have a negative infinite limit
xli_r)na f(x) =—o0

if for every M > 0, there exists 6 > 0 such thatif 0 < |x —al <, then f(x) < —M.
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2.5 EXERCISES

In the following exercises, write the appropriate &€ — 9
definition for each of the given statements.

176. xli_r)naf(x) =N
177. tli_I)nbg(t) =M
178. xli_r}n£h(x) =L
179. xli_r)na(p(x) =A

The following graph of the function f satisfies
1im2 f(x) =2. In the following exercises, determine a
X —

value of § > 0 that satisfies each statement.

yi
51

180. If 0 < Ix—2| < 8, then |f(x) —2| < 1.
181. If 0 < |Ix—2I < §, then [f(x)—2| < O0.5.

The following graph of the function f satisfies
lim3 f(x) = —1. In the following exercises, determine a
X —

value of § > 0 that satisfies each statement.
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Chapter 2 | Limits

182. If 0 <Ilx—3I< 8, then |[f(x)+ 1] < 1.
183. If 0 <Ilx—3I< 5, then [f(x)+ 1] <2.

The following graph of the function f satisfies
lirn3 f(x) = 2. In the following exercises, for each value
X —

of ¢, find a value of 6 > 0 such that the precise definition
of limit holds true.

yi
51

a4

184. e=1.5
185. ¢=3

[T] In the following exercises, use a graphing calculator to
find a number & such that the statements hold true.

186. ’sin(Zx) - %| < 0.1, whenever |x - %| <$é
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187. |Vx—4-2| < 0.1, whenever|x — 8| < §

In the following exercises, use the precise definition of
limit to prove the given limits.

188. lim (5x+ 8) =18
x—2

189. . 2_9

190. . 2x2—3x—2=5
x
191, Jim x* =

192 Jim (x> +2x) =8
x—2

In the following exercises, use the precise definition of
limit to prove the given one-sided limits.

193 lim_\5—x=0
X —

194.

. 8x—3, ifx<0
) l_l,n(;*'f(X) = -2, where f(x) = {4x 2, ifx>0
195, S5x=2, ifx<1

o m_ f(x) =3, where f(x) ={7x— 1, ifx>1

In the following exercises, use the precise definition of
limit to prove the given infinite limits.

196. 1

xli—r>n0? =

197, Jim —3 — oo
x=—1(x+1)2

198. lim 1 _

x—>2_(x_2)2_

199. An engineer is using a machine to cut a flat square of
Aerogel of area 144 cm?. If there is a maximum error
tolerance in the area of 8 cm?, how accurately must the
engineer cut on the side, assuming all sides have the same
length? How do these numbers relate to §, ¢, a, and L?

200. Use the precise definition of limit to prove that the

following limit does not exist: lim u.
x—->1XxXx—- 1

209

201. Using precise definitions of limits, prove that
lim0 f(x) does not exist, given that f(x) is the ceiling
X —

function. (Hint: Try any 6 < 1.)

202. Using precise definitions of limits, prove that
. . 1 if x is rational
| d t t: = { e T
xl—r>n0f (x) does not exist: f(x) 0 if x is irrational
(Hint: Think about how you can always choose a rational
number 0 < r <d, but [f(r)—0]=1.)

203. Using precise definitions of limits, determine
. if x is rational .

! f ={’“ . (Hint: Break
Jmf)for fO =10 if vis irrationar’ TN Bred

into two cases, x rational and x irrational.)

204. Using the function from the previous exercise, use the
precise definition of limits to show that xli_r}na f(x) does not

exist for a # 0.

For the following exercises, suppose that xli_r}na fx)=L
and xlgnag(x) = M both exist. Use the precise definition

of limits to prove the following limit laws:
205. xli_r)na(f(x) —g))=L-M
206. lim [cf(x)]=cL for any real constant ¢ (Hint:

Consider two cases: ¢ =0 and ¢ # 0.)

207. xli_I)na[f(x)g(x)] =LM. (Hint: |f(x)g(x)—LM|=

[f®)g(x) = fOM + fF)M — LM| < |f(0)llg(x) — M|+ 1M1 f(x) — L].)
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CHAPTER 2 REVIEW

KEY TERMS

average velocity the change in an object’s position divided by the length of a time period; the average velocity of an
object over a time interval [z, a] (if t<a or [a,t] if t>a), with a position given by s(¢), that is

_ s —s@@)
Vave—%

constant multiple law for limits the limit law xlgnacf(x) =c 'xlgnaf(x) =cL

continuity at a point A function f(x) is continuous at a point a if and only if the following three conditions are
satisfied: (1) f(a) is defined, (2) xli_r}ng f(x) exists, and (3) xli_I)na fx) = f(a)

continuity from the left A function is continuous from the left at b if lin}}_ fx) = f(b)
X =

continuity from the right A function is continuous from the right at a if lim+ fx) = f(a)

X —da

continuity over an interval a function that can be traced with a pencil without lifting the pencil; a function is
continuous over an open interval if it is continuous at every point in the interval; a function f(x) is continuous over a

closed interval of the form [a, b] if it is continuous at every point in (a, b), and it is continuous from the right at a

and from the left at b

difference law for limits the limit law xli_l)na(f(x) —glx) = xli_r)na flx) — xli_r)nag(x) =L-M

differential calculus the field of calculus concerned with the study of derivatives and their applications

discontinuity at a point A function is discontinuous at a point or has a discontinuity at a point if it is not continuous at
the point

epsilon-delta definition of the limit xlgnaf(x)=L if for every &> 0, there exists a >0 such that if

O0<lx—al<$é, then |[f(x)—L|<e

infinite discontinuity An infinite discontinuity occurs at a point a if lim_ f(x) = +c0 or lim+ f(x) =+00
A—a x—>a

infinite limit A function has an infinite limit at a point a if it either increases or decreases without bound as it approaches
a

instantaneous velocity The instantaneous velocity of an object with a position function that is given by s(¢) is the
value that the average velocities on intervals of the form [#, a] and [a, ] approach as the values of t move closer to

a, provided such a value exists
integral calculus the study of integrals and their applications
Intermediate Value Theorem Let fbe continuous over a closed bounded interval [a, b]; if z is any real number between

f(a) and f(b), then there is a number c in [a, b] satisfying f(c) =z

intuitive definition of the limit If all values of the function f(x) approach the real number L as the values of x( # a)
approach a, f(x) approaches L

jump discontinuity A jump discontinuity occurs at a point a if lim_ f(x) and lim+ f(x) both exist, but
x—a x—>a

lim_f(x)# lim_f(x)

X —=da
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limit e process of letting x or t approach a in an expression; the limit of a function f(x) as x approaches a is the value that

f(x) approaches as x approaches a

limit laws the individual properties of limits; for each of the individual laws, let f(x) and g(x) be defined for all x # a

over some open interval containing a; assume that L and M are real numbers so that xli_lpa f(x)=L and

lim g(x) = M, let c be a constant
X—=d

multivariable calculus the study of the calculus of functions of two or more variables
one-sided limit A one-sided limit of a function is a limit taken from either the left or the right

power law for limits the limit law llm (f x)" (Xhm f(x)) = L" for every positive integer n

product law for limits the limit law xl@g(f(x) -g(x) = xli_ﬁna f(x)- xli_r)nag(x) =L-M

quotient law for limits fo _ Jim fx) _L

the limit law hm =4

Moo = Tim goo ~ M M #0

removable discontinuity A removable discontinuity occurs at a point a if f(x) is discontinuous at a, but xli_r)nﬂ f(x)

exists

root law for limits - i B _ s _n oo e
the limit law xh_r)naW/ flx) = qlxh_r)na f(x) = VL forall L if n is odd and for L > 0 if n is even

secant A secant line to a function f(x) at a is a line through the point (a, f(a)) and another point on the function; the

slope of the secant line is given by migec f (x; — 5 (@)
squeeze theorem states that if f(x) < g(x) <h(x) for all x#a over an open interval containing a and

xli_l)na fx)y=L= xli_I)nah(x) where L is a real number, then xli_I)nag(x) =
sum law for limits The limit law xli_r)na(f x)+gx) = xlgna f(x) + xli_r)nag(x) =L+M

tangent A tangent line to the graph of a function at a point (a, f(a)) is the line that secant lines through (a, f(a))

approach as they are taken through points on the function with x-values that approach a; the slope of the tangent line to
a graph at a measures the rate of change of the function at a

triangle inequality If a and b are any real numbers, then |a + b| < lal + |b|

vertical asymptote A function has a vertical asymptote at x = a if the limit as x approaches a from the right or left is
infinite

KEY EQUATIONS

¢ Slope of a Secant Line

_ J® = fa) (X) f (a)

Mgec =

¢ Average Velocity over Interval [a, ]

=30 —s@

ave — t—a

¢ Intuitive Definition of the Limit

Jim, 1) =

¢ Two Important Limits
limx=a limc=c
X —a X —>d
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¢ One-Sided Limits
lim_ f(x) =L 1im+ fx)=L
X—d

X —>a
¢ Infinite Limits from the Left
lim_ f(x) = 400 lim_ f(x) = —o0
X —a X —>a
¢ Infinite Limits from the Right
lim f(x) =400 lim f(x) = -0
X — a+ X = a+
¢ Two-Sided Infinite Limits
lim f(x) =+o00: lim_f(x) =400 and lim f(x)=+oc0
r—a x—=a x—at
li =—-c0: li =— d =—
Jim f(x) = —oc0 Jlim_ Sf(x) = —co0 an R f2+ fx) = -0
¢ Basic Limit Results
limx=a limc=c
X—a X —>a

¢ Important Limits
lim sind =0
-0

lim cosf =1
0-0

Jim Si00 _ |
-0

lim 1—COS€=O
0-0

KEY CONCEPTS

2.1 A Preview of Calculus

« Differential calculus arose from trying to solve the problem of determining the slope of a line tangent to a curve at a
point. The slope of the tangent line indicates the rate of change of the function, also called the derivative. Calculating
a derivative requires finding a limit.

¢ Integral calculus arose from trying to solve the problem of finding the area of a region between the graph of a
function and the x-axis. We can approximate the area by dividing it into thin rectangles and summing the areas of
these rectangles. This summation leads to the value of a function called the integral. The integral is also calculated
by finding a limit and, in fact, is related to the derivative of a function.

e Multivariable calculus enables us to solve problems in three-dimensional space, including determining motion in
space and finding volumes of solids.

2.2 The Limit of a Function

¢ A table of values or graph may be used to estimate a limit.

e If the limit of a function at a point does not exist, it is still possible that the limits from the left and right at that point
may exist.

¢ If the limits of a function from the left and right exist and are equal, then the limit of the function is that common
value.

¢ We may use limits to describe infinite behavior of a function at a point.

2.3 The Limit Laws

¢ The limit laws allow us to evaluate limits of functions without having to go through step-by-step processes each
time.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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For polynomials and rational functions, xli_r)na f(x) = f(a).

You can evaluate the limit of a function by factoring and canceling, by multiplying by a conjugate, or by simplifying
a complex fraction.

The squeeze theorem allows you to find the limit of a function if the function is always greater than one function
and less than another function with limits that are known.

2.4 Continuity

For a function to be continuous at a point, it must be defined at that point, its limit must exist at the point, and the
value of the function at that point must equal the value of the limit at that point.

Discontinuities may be classified as removable, jump, or infinite.

A function is continuous over an open interval if it is continuous at every point in the interval. It is continuous over
a closed interval if it is continuous at every point in its interior and is continuous at its endpoints.

The composite function theorem states: If f(x) is continuous at L and xli_r)nag(x) =L, then

Jim f(g(x)) = f( lim ¢(x)) = f(L).

The Intermediate Value Theorem guarantees that if a function is continuous over a closed interval, then the function
takes on every value between the values at its endpoints.

2.5 The Precise Definition of a Limit

The intuitive notion of a limit may be converted into a rigorous mathematical definition known as the epsilon-delta
definition of the limit.

The epsilon-delta definition may be used to prove statements about limits.

The epsilon-delta definition of a limit may be modified to define one-sided limits.

CHAPTER 2 REVIEW EXERCISES

True or False. In the following exercises, justify your
answer with a proof or a counterexample.

208. A function has to be continuous at x = a if the
xl]_l)na f(x) exists.

209. You can use the quotient rule to evaluate limo%.
X —

210.
function f(x), then fis undefined at the point x = a.

If there is a vertical asymptote at x = a for the

211. If xli_r)nﬂ f(x) does not exist, then f is undefined at the
point x = a.

212. Using the graph, find each limit or explain why the
limit does not exist.

a. lirrl . fx)
b. lim1 fx)

c. lim f(x)
x-ot

d. lim f()

i

t

=2r =1
A
-2+

In the following exercises, evaluate the limit algebraically
or explain why the limit does not exist.

Of\
[
¢

213, lim 2X2=3x-2
x—2 x—-2
214. lim 3x2—2x+4
x—0
3 2
oxT —=2x =1
215. x11_1)113—3x )
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: cotx
216. . l_l,n,}/zcosx
. x2+25
217. lim =——=£=
x—>-5x+5
. 3x?—2x—38
218. lim S R
¥=2  x“—4
2
219, lim X =1
X lx? -1
2
s oxc—1
220. xh—{nlﬁ— 1
4—x
221. x — 4VX — 2
: 1
22 lim s

In the following exercises, use the squeeze theorem to
prove the limit.

223, lim0x2cos Qrx)=0
X —

224. lim x3sin(£)=0
x—0 (.x)
225. Determine the domain such that the function

f(x) =Vx —2+ xe” is continuous over its domain.

In the following exercises, determine the value of ¢ such
that the function remains continuous. Draw your resulting
function to ensure it is continuous.

2
+1,x>c
226. (x)={x ’
! 2x, x < ¢

27, f) = {\/x+ 1, x> -1

x2+c,xS -1

In the following exercises, use the precise definition of
limit to prove the limit.

228. liml(8x +16) =24
X —

lim x> =0
x—0

229.
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230. A ball is thrown into the air and the vertical position
is given by x(f) = —4.9¢2 + 25t + 5. Use the Intermediate

Value Theorem to show that the ball must land on the
ground sometime between 5 sec and 6 sec after the throw.

231. A particle moving along a line has a displacement
according to the function x(¢) = 2 =2t + 4, where x is

measured in meters and t is measured in seconds. Find the
average velocity over the time period ¢ = [0, 2].

232. From the previous exercises, estimate the
instantaneous velocity at ¢ =2 by checking the average

velocity within # = 0.01 sec.
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3 | DERIVATIVES

Figure 3.1 The Hennessey Venom GT can go from 0 to 200 mph in 14.51 seconds. (credit: modification of work by Codex41,
Flickr)

Chapter Outline

3.1 Defining the Derivative

3.2 The Derivative as a Function

3.3 Differentiation Rules

3.4 Derivatives as Rates of Change

3.5 Derivatives of Trigonometric Functions
3.6 The Chain Rule

3.7 Derivatives of Inverse Functions

3.8 Implicit Differentiation

3.9 Derivatives of Exponential and Logarithmic Functions

Introduction

The Hennessey Venom GT is one of the fastest cars in the world. In 2014, it reached a record-setting speed of 270.49 mph.
It can go from 0 to 200 mph in 14.51 seconds. The techniques in this chapter can be used to calculate the acceleration the
Venom achieves in this feat (see Example 3.8.)

Calculating velocity and changes in velocity are important uses of calculus, but it is far more widespread than that. Calculus
is important in all branches of mathematics, science, and engineering, and it is critical to analysis in business and health as
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well. In this chapter, we explore one of the main tools of calculus, the derivative, and show convenient ways to calculate
derivatives. We apply these rules to a variety of functions in this chapter so that we can then explore applications of these
techniques.

3.1 | Defining the Derivative

Learning Objectives

3.1.1 Recognize the meaning of the tangent to a curve at a point.

3.1.2 Calculate the slope of a tangent line.

3.1.3 Identify the derivative as the limit of a difference quotient.

3.1.4 Calculate the derivative of a given function at a point.

3.1.5 Describe the velocity as a rate of change.

3.1.6 Explain the difference between average velocity and instantaneous velocity.
3.1.7 Estimate the derivative from a table of values.

Now that we have both a conceptual understanding of a limit and the practical ability to compute limits, we have established
the foundation for our study of calculus, the branch of mathematics in which we compute derivatives and integrals.
Most mathematicians and historians agree that calculus was developed independently by the Englishman Isaac Newton
(1643-1727) and the German Gottfried Leibniz (1646—1716), whose images appear in Figure 3.2. When we credit

Newton and Leibniz with developing calculus, we are really referring to the fact that Newton and Leibniz were the first
to understand the relationship between the derivative and the integral. Both mathematicians benefited from the work of
predecessors, such as Barrow, Fermat, and Cavalieri. The initial relationship between the two mathematicians appears to
have been amicable; however, in later years a bitter controversy erupted over whose work took precedence. Although it
seems likely that Newton did, indeed, arrive at the ideas behind calculus first, we are indebted to Leibniz for the notation
that we commonly use today.

Figure 3.2 Newton and Leibniz are credited with developingcalculus independently.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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Tangent Lines

We begin our study of calculus by revisiting the notion of secant lines and tangent lines. Recall that we used the slope of
a secant line to a function at a point (a, f(a)) to estimate the rate of change, or the rate at which one variable changes in

relation to another variable. We can obtain the slope of the secant by choosing a value of x near a and drawing a line
through the points (a, f(a)) and (x, f(x)), as shown in Figure 3.3. The slope of this line is given by an equation in the

form of a difference quotient:

o) - f@

Mgec =

We can also calculate the slope of a secant line to a function at a value a by using this equation and replacing x with
a+h, where h is a value close to a. We can then calculate the slope of the line through the points (a, f(a)) and

(a+h, f(a+ h)). In this case, we find the secant line has a slope given by the following difference quotient with

increment h:

fla+h —fl@ _ flath) - f(a)
2 :

Msee = Th—a

Definition

Let f be a function defined on an interval / containing a. If x # a isin I, then

0= f(x) f(a) (3.1)

is a difference quotient.

Also, if h # 0 is chosen so that a + & isin I, then

Q=f(d+h)—f(a) (3-2)
h

is a difference quotient with increment #.

’ View several Java applets (http://www.openstaxcollege.org/l/20_calcapplets) on the development of the
derivative.

These two expressions for calculating the slope of a secant line are illustrated in Figure 3.3. We will see that each of these
two methods for finding the slope of a secant line is of value. Depending on the setting, we can choose one or the other. The
primary consideration in our choice usually depends on ease of calculation.
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(a+ h, fa+ h)

y=f(x) |(a f(a)) y =f(x) |(@ f(a)
I ]
TR % R TR
f(x) — f(a) fla + h) - f(a)
Mgy = 0210 My, = N -1
@ (b)

Figure 3.3 We can calculate the slope of a secant line in either of two ways.

In Figure 3.4(a) we see that, as the values of x approach a, the slopes of the secant lines provide better estimates of the
rate of change of the function at a. Furthermore, the secant lines themselves approach the tangent line to the function at
a, which represents the limit of the secant lines. Similarly, Figure 3.4(b) shows that as the values of /& get closer to 0,
the secant lines also approach the tangent line. The slope of the tangent line at a is the rate of change of the function at a,
as shown in Figure 3.4(c).

y i i

y = f(x) y = f(x) y = f(x)
(a f(@) (a. f(a))
a T h i fa +h
— =, | ( +he (= 2) g .
0 0 aa+h, a+h, * 0 2 X
m‘anzx@a% mtan:hETOf(a+hr)r_f(a)
(@) (b) ©)

Figure 3.4 The secant lines approach the tangent line (shown in green) as the second point approaches the first.

’ You can use this site (http://lwww.openstaxcollege.org/l/20_diffmicros) to explore graphs to see if they
have a tangent line at a point.

In Figure 3.5 we show the graph of f(x) = vx and its tangent line at (1, 1) in a series of tighter intervals about x = 1.

As the intervals become narrower, the graph of the function and its tangent line appear to coincide, making the values on
the tangent line a good approximation to the values of the function for choices of x close to 1. In fact, the graph of f(x)

itself appears to be locally linear in the immediate vicinity of x = 1.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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12}
124 |
2.%’-5 1.0+ Ll
204 081
15+ 0.6+
1.0 041
0.5 024
B 1 2 3 2 X 0 o5 ' 10 15 20X
GV (b)
124
124
1.0
0.8 F
0.6+
0.4+
024,
0 T g5 10 15 20X 0 000 095 100 105 110X
(©) (d)

Figure 3.5 For values of x closeto 1, the graphof f(x) = vx and its tangent line appear to coincide.

Formally we may define the tangent line to the graph of a function as follows.

Definition

Let f(x) be a function defined in an open interval containing a. The tangent line to f(x) at a is the line passing

through the point (a, f(a)) having slope
f&) - fla) (3.3)
X—a

mtan = xll—r)na—

provided this limit exists.
Equivalently, we may define the tangent line to f(x) at a to be the line passing through the point (a, f(a)) having
slope

Mgy = lim fla+h) - fa) (3.4)
h—0 h

provided this limit exists.

Just as we have used two different expressions to define the slope of a secant line, we use two different forms to define the
slope of the tangent line. In this text we use both forms of the definition. As before, the choice of definition will depend
on the setting. Now that we have formally defined a tangent line to a function at a point, we can use this definition to find
equations of tangent lines.
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Example 3.1

Finding a Tangent Line
Find the equation of the line tangent to the graph of f(x) = x% at x =3.

Solution
First find the slope of the tangent line. In this example, use Equation 3.3.

J@) = f3)

Mgn = xlgn3 3 Apply the definition.
L x2-9 i 2
= lim Substitute f(x) = x~ and f(3) = 9.
x—=3x—3
- lim (x—=3)(x+3)

= lim (x+3) =6  Factor the numerator to evaluate the limit.
x—3 x—3 x—3

Next, find a point on the tangent line. Since the line is tangent to the graph of f(x) at x =3, it passes through
the point (3, f(3)). Wehave f(3) =9, so the tangent line passes through the point (3, 9).

Using the point-slope equation of the line with the slope m = 6 and the point (3, 9), we obtain the line
y—9 = 6(x — 3). Simplifying, we have y = 6x — 9. The graph of f(x) = x? and its tangent line at 3 are
shown in Figure 3.6.

Figure 3.6 The tangent line to f(x) at x = 3.

Example 3.2

The Slope of a Tangent Line Revisited
Use Equation 3.4 to find the slope of the line tangent to the graph of f(x) = x% at x=3.

Solution
The steps are very similar to Example 3.1. See Equation 3.4 for the definition.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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f(3+h) /3

My = hh—I>n0 Apply the definition.
2
= lim OW Substitute £(3 + /) = (3 + ) and f(3) = 9
2
= hlimog +6h ';l' h”=9 Expand and simplify to evaluate the limit.
. h(6+h)
_hh—>0 A —lm(6+h)

We obtained the same value for the slope of the tangent line by using the other definition, demonstrating that the
formulas can be interchanged.

Finding the Equation of a Tangent Line
Find the equation of the line tangent to the graph of f(x) = 1/x at x = 2.

Solution

We can use Equation 3.3, but as we have seen, the results are the same if we use Equation 3.4.

Myn = x in 2f (x; ]ZC 2) Apply the definition.
1_1 1
— X 2 1 — = =
= xlgllzx 5 Substitute f(x) = 4 and f(2)
- lim 2 % - % 2x Multiply numerator and denominator by 2x to
x—>2x—2 2x simplify fractions.
_ 2-x) . .
= xlgllz—(x 3027 Simplify.
T __1 . . . 2 — X _ _
= xh_r}n2 o Simplify using P 1, for x # 2.
= - % Evaluate the limit.

We now know that the slope of the tangent line is —%. To find the equation of the tangent line, we also need a

point on the line. We know that f(2) = =. Since the tangent line passes through the point (2, 2) we can use

the point-slope equation of a line to flnd the equation of the tangent line. Thus the tangent line has the equation

y= —%x+ 1. The graphs of f(x) = 1 ¥ and y= — ix+ 1 are shown in Figure 3.7.

221

Example 3.3
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Figure 3.7 The line is tangent to f(x) at x = 2.

@ 3.1 Find the slope of the line tangent to the graph of f(x) = vx at x = 4.

The Derivative of a Function at a Point

The type of limit we compute in order to find the slope of the line tangent to a function at a point occurs in many applications
across many disciplines. These applications include velocity and acceleration in physics, marginal profit functions in
business, and growth rates in biology. This limit occurs so frequently that we give this value a special name: the derivative.
The process of finding a derivative is called differentiation.

Definition

Let f(x) be a function defined in an open interval containing a. The derivative of the function f(x) at a, denoted
by f’(a), is defined by

£ @ = Jim {O =@ (35)

provided this limit exists.

Alternatively, we may also define the derivative of f(x) at a as

£ (a) = f(a + h) fl@) (3.6)

Example 3.4

Estimating a Derivative
For f(x) = x2, use a table to estimate f'(3) using Equation 3.5.

Solution
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Create a table using values of x just below 3 and just above 3.

x x2-9

x=3
29 59
2.99 5.99
2.999 5.999
3.001 6.001
3.01 6.01
3.1 6.1

After examining the table, we see that a good estimate is [’ (3) = 6.

@ 3.2 For f(x) = x2, useatable to estimate f'(3) using Equation 3.6.

Example 3.5

Finding a Derivative
For f(x) = 3x>—4x+1, find f'(2) by using Equation 3.5.

Solution

Substitute the given function and value directly into the equation.

f'(x) = lim [ = /@) Apply the definition.
x—>2 x=2
. (Bx*—dx+1)-5 . s
= hm2 - Substitute f(x) = 3x“ —4x+ l and f(2) = 5.
X — -
= hmz% Simplify and factor the numerator.
X — -
= lim2(3x +2) Cancel the common factor.
X =

=8 Evaluate the limit.
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Example 3.6

Revisiting the Derivative
For f(x) = 3x*—4x+1, find f'(2) by using Equation 3.6.

Solution

Using this equation, we can substitute two values of the function into the equation, and we should get the same
value as in Example 3.5.

@2 = hﬁmow Apply the definition.

_ i BCH n2—4Q2+h)+1)—5 Substitute f(2) = 5and
h=0 h fQ+h) =32+ —4Q+h) + 1.
= hli_r)nog’hzT"'% Simplify the numerator.
= hh—{no@ Factor the numerator.
= hli_r)no(?)h + 8) Cancel the common factor.
=8 Evaluate the limit.

The results are the same whether we use Equation 3.5 or Equation 3.6.

@ 33 For f(x)=x>+3x+2, find £ (1).

Velocities and Rates of Change

Now that we can evaluate a derivative, we can use it in velocity applications. Recall that if s(¢) is the position of an object
moving along a coordinate axis, the average velocity of the object over a time interval [a, ¢] if £ > a or [t, a] if t <a is

given by the difference quotient

_ 5= s(@), (3.7)

ave — t—a

As the values of ¢ approach a, the values of v,ye approach the value we call the instantaneous velocity at a. That is,

instantaneous velocity at a, denoted v(a), is given by

v(a) =s"(a) = llgnaw. (3.8)

To better understand the relationship between average velocity and instantaneous velocity, see Figure 3.8. In this figure,
the slope of the tangent line (shown in red) is the instantaneous velocity of the object at time ¢ = @ whose position at time
t is given by the function s(). The slope of the secant line (shown in green) is the average velocity of the object over the

time interval [a, f].
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Tangent

s(f)

Secant

s(9)

0 . r 1
Figure 3.8 The slope of the secant line is the average velocity
over the interval [a, t]. The slope of the tangent line is the

instantaneous velocity.

We can use Equation 3.5 to calculate the instantaneous velocity, or we can estimate the velocity of a moving object by
using a table of values. We can then confirm the estimate by using Equation 3.7.

Example 3.7

Estimating Velocity

A lead weight on a spring is oscillating up and down. Its position at time ¢ with respect to a fixed horizontal
line is given by s(r) = sint (Figure 3.9). Use a table of values to estimate v(0). Check the estimate by using

Equation 3.5.

Figure 3.9 A lead weight suspended from a spring in vertical
oscillatory motion.

Solution
We can estimate the instantaneous velocity at = 0 by computing a table of average velocities using values of ¢

approaching 0, as shown in Table 3.2.
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t sinf —sin0 _ sin¢
t—0 t

-0.1 0.998334166

-0.01 0.9999833333

—-0.001 0.999999833

0.001 0.999999833

0.01 0.9999833333

0.1 0.998334166
Table 3.2

Average velocities using values of ¢
approaching O

From the table we see that the average velocity over the time interval [—0.1, 0] is 0.998334166, the average
velocity over the time interval [—0.01, 0] is 0.9999833333, and so forth. Using this table of values, it appears
that a good estimate is v(0) = 1.

By using Equation 3.5, we can see that

v(0) = 5 (0) = 112110% - zliinoSi?[ —1

Thus, in fact, v(0) = 1.

@/ 3.4 A rock is dropped from a height of 64 feet. Its height above ground at time ¢ seconds later is given by

s(f) = —161% + 64, 0 <t < 2. Find its instantaneous velocity 1 second after it is dropped, using Equation
3.5.

As we have seen throughout this section, the slope of a tangent line to a function and instantaneous velocity are related
concepts. Each is calculated by computing a derivative and each measures the instantaneous rate of change of a function, or
the rate of change of a function at any point along the function.

Definition

The instantaneous rate of change of a function f(x) ata value a is its derivative f'(a).
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Example 3.8

Chapter Opener: Estimating Rate of Change of Velocity

Figure 3.10 (credit: modification of work by Codex41,
Flickr)

Reaching a top speed of 270.49 mph, the Hennessey Venom GT is one of the fastest cars in the world. In tests it
went from 0 to 60 mphin 3.05 seconds, from 0to 100 mph in 5.88 seconds, from 0to 200 mph in 14.51

seconds, and from 0t0229.9 mphin 19.96 seconds. Use this data to draw a conclusion about the rate of change
of velocity (that is, its acceleration) as it approaches 229.9 mph. Does the rate at which the car is accelerating
appear to be increasing, decreasing, or constant?

Solution

First observe that 60 mph = 88 ft/s, 100 mph =~ 146.67 ft/s, 200 mph = 293.33 ft/s, and 229.9 mph
=~ 337.19 ft/s. We can summarize the information in a table.

t v(t)

0 0

3.05 88
5.88 147.67

14.51 293.33

19.96 337.19

Table 3.3
v(t) at different values

of t

Now compute the average acceleration of the car in feet per second on intervals of the form [z, 19.96] as ¢

approaches 19.96, as shown in the following table.
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Rate of Change of Temperature

Solution

@) = limLD=TG

t v(t) —v(19.96) _ v(¢) —337.19
t—1996 ~ t-19.96
0.0 16.89
3.05 14.74
5.88 13.46
14.51 8.05
Table 3.4
Average acceleration
The rate at which the car is accelerating is decreasing as its velocity approaches 229.9 mph (337.19 ft/s).

Example 3.9

A homeowner sets the thermostat so that the temperature in the house begins to drop from 70°F at 9 p.m.,
reaches a low of 60° during the night, and rises back to 70° by 7 a.m. the next morning. Suppose that the

temperature in the house is given by 7(¢) = 0.4t> — 4t + 70 for 0 << 10, where 7 is the number of hours

past 9 p.m. Find the instantaneous rate of change of the temperature at midnight.

Since midnight is 3 hours past 9 p.m., we want to compute 7(3). Refer to Equation 3.5.

Apply the definition.

t—3 t—3

— lim 0412 —41+70 = 61.6  Substitute 7(1) = 0.4t> — 4t + 70 and
1=3 =3 T(3) =61.6.

_ i 0412 — 41+ 8.4 S

= zll_r)n3 =3 Simplify.

_ i 040 =3)=7) _ i 040 =3 =7
P t—3 >3 t—3

= tlim30.4(t -7 Cancel.

=-1.6 Evaluate the limit.

The instantaneous rate of change of the temperature at midnight is —1.6°F per hour.
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Example 3.10

Rate of Change of Profit

A toy company can sell x electronic gaming systems at a price of p = —0.01x + 400 dollars per gaming
system. The cost of manufacturing x systems is given by C(x) = 100x + 10,000 dollars. Find the rate of change

of profit when 10,000 games are produced. Should the toy company increase or decrease production?

Solution
The profit P(x) earned by producing x gaming systems is R(x) — C(x), where R(x) is the revenue obtained

from the sale of x games. Since the company can sell x games at p = —0.01x + 400 per game,
R(x) = xp = x(-0.01x + 400) = —0.01x2 + 400x.
Consequently,
P(x) = —0.01x? + 300x — 10,000.

Therefore, evaluating the rate of change of profit gives
P(x) — P(10000)
x— 10000  x — 10000
—0.01x2 + 300x — 10000 — 1990000

P’ (10000) =

= ¢~ 10000 X — 10000

_ —0.01x% + 300x — 2000000
x — 10000 x — 10000

= 100.

Since the rate of change of profit P’(10,000) >0 and P(10,000) >0, the company should increase

production.

3.5 A coffee shop determines that the daily profit on scones obtained by charging s dollars per scone is
P(s) = =205 + 150s — 10. The coffee shop currently charges $3.25 per scone. Find P’(3.25), the rate of
change of profit when the price is $3.25 and decide whether or not the coffee shop should consider raising or

lowering its prices on scones.
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3.1 EXERCISES

For the following exercises, use Equation 3.3 to find the
slope of the secant line between the values x; and x, for

each function y = f(x).
1 f)=4x+T7;x1=2,x,=5
2. f)=8x=3;x;==-1,x,=3

3. f(x)=x2+2x+1;x1=3, x2:3‘5

4 f)=-x2+x+2x,=05 x,=15
5. f@=5tgx=1x=3

6 fw=4=Tix=-2x5,=0

7. f)=vxx;=1,x,=16

8. f(x)=Vx—9;x; =10, x, =13

9 f)=x"+1;x,=0,x,=8

100 fr) = 6x?3+2x3 x5, =1, x, =27

For the following functions,

a. use Equation 3.4 to find the slope of the tangent
line my,, = f'(a), and

b. find the equation of the tangent lineto f at x = a.
11. f(x)=3—-4x,a=2
12, f)=%+6,a=-1
B fy=x*+xa=1

14. f(x)=1—x—x2,a=0

15 =1 a=3

16. f(x)=Vx+8,a=1
17. fx)=2-3x%a=-2
18 f(x) = a=4
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5 =y o
20 fo=2,a=3
X

For the following functions y = f(x), find f’(a) using

Equation 3.3.
21. f(x)=5x+4,a=-1
22, fx)=-Tx+1,a=3

2. f)=x2+9x, a=2

24 fx)=3x2—x+2,a=1
25. f(x) =K, a=4
26. f(x) = ,a=6
7 fo)=4a=2

28 f=—tza=-1

2 fo =" a=1
X

30 fy =L a=4

For the following exercises, given the function y = f(x),

a. find the slope of the secant line PQ for each point
O(x, f(x)) with x value given in the table.

b. Use the answers from a. to estimate the value of the
slope of the tangent line at P.

c. Use the answer from b. to find the equation of the
tangent line to f at point P.
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3L.[T]  fx) =x>+3x+4, P(1, 8)

decimal places.)

(Round to

X Slope X Slope

mpg mpg
1.1 (i) 0.9 (vii)
1.01 (i) 0.99 (viii)
1.001 (iif) 0.999 (ix)
1.0001 (iv) 0.9999 )
1.00001 W) 0.99999 (xi)
1.000001 (vi) 0.999999 (xii)

3211 f) =L P, -1)
x“—1

X Slope X Slope

mpg mpg
0.1 o) -0.1 (vii)
0.01 (ii) -0.01 (viii)
0.001 (iif) —0.001 (ix)
0.0001 (iv) —0.0001 (x)
0.00001 ™) —0.00001 (xi)
0.000001 | (vi) —0.000001 (xii)
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33. [T] f(x) = 10e%*, P(0, 10) (Round to 4 decimal

places.)

X Slope mpg
-0.1 ()
-0.01 (ii)
-0.001 (iii)
—-0.0001 (iv)
—0.00001 (v)
—0.000001 (vi)

34. [T] f(x) =tan(x), P(x, 0)

X Slope mpg
3.1 @)

3.14 (ii)

3.141 (iii)

3.1415 (iv)
3.14159 V)
3.141592 | (vi)

[T] For the following position functions y = s(f), an

object is moving along a straight line, where ¢ is in seconds

and s is in meters. Find

a.

b.

the simplified expression for the average velocity
from t=2 to t=2+h;

the average

velocity between

t=2+h, where (i)h=0.1,
(iii) A = 0.001, and (iv) 2 = 0.0001; and

t=2 and
(i) h = 0.01,
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C. use the answer from a. to estimate the instantaneous
velocity at # =2 second.

35 5(n) = %l +5
36. 5(t)=1> -2t

37. sy =21 +3

[}

4
i

(%)

38. () =1
t

39. Use the following graph to evaluate a. f’(1) and b.
1 (6).

40. Use the following graph to evaluate a. f'(—3) and b.
f(1.5).

For the following exercises, use the limit definition of
derivative to show that the derivative does not exist at
x = a for each of the given functions.

4Ly =x"x=0

2. fx)y=xx=0

43. 1, x<1
= ’ =1
00 {x,le’x
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4 fo= r=0

45. [T] The position in feet of a race car along a straight
track after ¢ seconds is modeled by the function

_e2 1.3
s(t) = 8t 16t.

a. Find the average velocity of the vehicle over the
following time intervals to four decimal places:

i. [4,4.1]

ii. [4,4.01]
iii. [4, 4.001]
iv. [4,4.0001]

b. Use a. to draw a conclusion about the instantaneous
velocity of the vehicle at # = 4 seconds.

46. [T] The distance in feet that a ball rolls down an incline

is modeled by the function s(r) = 14¢2,  where ¢ is
seconds after the ball begins rolling.

a. Find the average velocity of the ball over the
following time intervals:

i. [5,5.1]

ii. [5,5.01]
iii. [5, 5.001]
iv. [5,5.0001]

b. Use the answers from a. to draw a conclusion about
the instantaneous velocity of the ball at =35

seconds.
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47. Two vehicles start out traveling side by side along a
straight road. Their position functions, shown in the
following graph, are given by s = f(r) and s = g(?),

where s is measured in feet and ¢ is measured in seconds.

a. Which vehicle has traveled farther at =2
seconds?

b. What is the approximate velocity of each vehicle at
t =3 seconds?

c. Which vehicle is traveling faster at = 4 seconds?

d. What is true about the positions of the vehicles at
t =4 seconds?

48. [T] The total cost C(x),

mayonnaise is

in hundreds of dollars, to
produce x jars of given by
Clx) = 0.000003x + 4x + 300.
a. Calculate the average cost per jar over the
following intervals:
i. [100, 100.1]
ii. [100, 100.01]
iii. [100, 100.001]
iv. [100, 100.0001]

b. Use the answers from a. to estimate the average
cost to produce 100 jars of mayonnaise.

49. [T] For the function f(x)= -2k 1x+ 12,
do the following.

a. Use a graphing calculator to graph f in an
appropriate viewing window.

b. Use the ZOOM feature on the calculator to
approximate the two values of x =a for which

Mg = f'(a) = 0.
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50. [T] For the function f(x)=—=X 5. do the
1+x

following.
a. Use a graphing calculator to graph f in an
appropriate viewing window.

b. Use the ZOOM feature on the calculator to
approximate the values of x=a for which

My = f'(a) = 0.

51. Suppose that N(x) computes the number of gallons of
gas used by a vehicle traveling x miles. Suppose the

vehicle gets 30 mpg.

a. Find a mathematical expression for N(x).
b. Whatis N(100)? Explain the physical meaning.

c. Whatis N’(100)? Explain the physical meaning.

52. [T] For the function fx) = x*—5x2 +4, do the
following.
a. Use a graphing calculator to graph f in an
appropriate viewing window.

b. Use the nDeriv function, which numerically finds
the derivative, on a graphing calculator to estimate

£1(=2), f'(=0.5), f/(1.7), and f'(2.718).

5

2
3 [T] For the function f(x)= 2x ., do the
x“+1

following.
a. Use a graphing calculator to graph f in an
appropriate viewing window.

b. Use the nDeriv function on a graphing calculator

to find f"(=4), f'(=2), f'(2), and f'(4).
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3.2 | The Derivative as a Function

Learning Objectives

3.2.1 Define the derivative function of a given function.

3.2.2 Graph a derivative function from the graph of a given function.

3.2.3 State the connection between derivatives and continuity.

3.2.4 Describe three conditions for when a function does not have a derivative.
3.2.5 Explain the meaning of a higher-order derivative.

As we have seen, the derivative of a function at a given point gives us the rate of change or slope of the tangent line to the
function at that point. If we differentiate a position function at a given time, we obtain the velocity at that time. It seems
reasonable to conclude that knowing the derivative of the function at every point would produce valuable information about
the behavior of the function. However, the process of finding the derivative at even a handful of values using the techniques
of the preceding section would quickly become quite tedious. In this section we define the derivative function and learn a
process for finding it.

Derivative Functions

The derivative function gives the derivative of a function at each point in the domain of the original function for which the
derivative is defined. We can formally define a derivative function as follows.

Definition

Let f be a function. The derivative function, denoted by f’, is the function whose domain consists of those values

of x such that the following limit exists:

Lo — i JEER) = f(X) (3.9)
S0 = i T

A function f(x) is said to be differentiable at a if f(a) exists. More generally, a function is said to be differentiable on
§ if it is differentiable at every point in an open set S, and a differentiable function is one in which f’(x) exists on its
domain.

In the next few examples we use Equation 3.9 to find the derivative of a function.

Example 3.11

Finding the Derivative of a Square-Root Function
Find the derivative of f(x) = vx.

Solution
Start directly with the definition of the derivative function. Use Equation 3.1.
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Substitute f(x + h) = Vx+ hand f(x) = vx
S&+h) - f(x)
7 .

f/(x) = lim V.x+h—ﬁ ' )
h—0 h into f' (x) = hhmO

Multiply numerator and denominator by

VX+h—vx Nx+h+vx

= hli—r>no n et i+ vx \x + h + vx without distributing in the
denominator.

= hli_r)nom Multiply the numerators and simplify.

= hli—r>nO(\/)c-|-7]11—+W) Cancel the A.

= 2+R Evaluate the limit.

Example 3.12

Finding the Derivative of a Quadratic Function
Find the derivative of the function f(x) = x% = 2x.

Solution
Follow the same procedure here, but without having to multiply by the conjugate.
Substitute f(x + h) = (x + h)? — 2(x + h) and

2 2 .
fx = hli_r)no((x +h)” - 20 -;z_ h) = (x~ = 2x) f(x) = x? = 2xinto

ey — i S R) — f(X)
fw= hh—r>no h :
2 2 2
= lim X +2xh+h” = ix —2h=X"+2X  gypand (x + h)% - 2(x + h).
2
= hlimow Simplify.
= hlimow Factor out 4 from the numerator.
= hlimO(Zx —24+h) Cancel the common factor of A.
=2x-2 Evaluate the limit.

@ 3.6  Find the derivative of f(x) = x>

We use a variety of different notations to express the derivative of a function. In Example 3.12 we showed that if
flx) = x> —2x, then f"(x) =2x—2. If we had expressed this function in the form y = x> —2x, we could have

expressed the derivative as y' =2x—2 or 23] = 2x — 2. We could have conveyed the same information by writing

dx

%(xz - 2x) = 2x — 2. Thus, for the function y = f(x), each of the following notations represents the derivative of

S
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f@ 2y, i)

d d . o . . . .
In place of f’(a) we may also use d—z Use of the d_)yc notation (called Leibniz notation) is quite common in
XxX=a
engineering and physics. To understand this notation better, recall that the derivative of a function at a point is the limit of
the slopes of secant lines as the secant lines approach the tangent line. The slopes of these secant lines are often expressed

in the form % where Ay is the difference in the y values corresponding to the difference in the x values, which are

expressed as Ax (Figure 3.11). Thus the derivative, which can be thought of as the instantaneous rate of change of y

with respect to x, is expressed as

@ g A
dx_A)chE}OAx'

f(a) + Ay 1

f(a) 1

yd

/0 a a + Ax o
Figure 3.11 The derivative is expressed as @ = lim ﬂ
dx  Ax— 0Ax

Graphing a Derivative

We have already discussed how to graph a function, so given the equation of a function or the equation of a derivative
function, we could graph it. Given both, we would expect to see a correspondence between the graphs of these two
functions, since f’(x) gives the rate of change of a function f(x) (or slope of the tangent line to f(x)).

In Example 3.11 we found that for f(x) = vx, f'(x) = 1/2vx. If we graph these functions on the same axes, as in Figure
3.12, we can use the graphs to understand the relationship between these two functions. First, we notice that f(x) is

increasing over its entire domain, which means that the slopes of its tangent lines at all points are positive. Consequently,
we expect f'(x) > O for all values of x in its domain. Furthermore, as x increases, the slopes of the tangent lines to f(x)

are decreasing and we expect to see a corresponding decrease in f'(x). We also observe that f(0) is undefined and that

1im+ f'(x) = 400, corresponding to a vertical tangent to f(x) at 0.
x—0
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Yi
3.5

3.0
2.51
2.0
15+
1.0+
0.5+

0 1 2 3 4 X
Figure 3.12 The derivative f'(x) is positive everywhere

because the function f(x) is increasing.

In Example 3.12 we found that for f(x) = x2 = 2x, f"(x) = 2x — 2. The graphs of these functions are shown in Figure
3.13. Observe that f(x) is decreasing for x < 1. For these same values of x, f’(x) < 0. For values of x > 1, f(x) is
increasing and f'(x) > 0. Also, f(x) has a horizontal tangentat x =1 and f' (1) = 0.

Yi
4__

A

Figure 3.13 The derivative f'(x) < O where the function
f(x) is decreasing and f’ (x) > 0 where f(x) is increasing.

The derivative is zero where the function has a horizontal
tangent.

Example 3.13

Sketching a Derivative Using a Function

Use the following graph of f(x) to sketch a graph of f’(x).
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Solution

The solution is shown in the following graph. Observe that f(x) is increasing and f’ (x) > 0 on (-2, 3). Also,
f(x) is decreasing and f’ (x) < 0 on (—o0, —2) and on (3, +o00). Also note that f(x) has horizontal tangents
at —2 and 3, and f'(-2)=0 and f'(3)=0.

A

B o N o

@ 3.7 Sketch the graph of f(x) = x% — 4. On what interval is the graph of f’(x) above the x -axis?

Derivatives and Continuity

Now that we can graph a derivative, let’s examine the behavior of the graphs. First, we consider the relationship between
differentiability and continuity. We will see that if a function is differentiable at a point, it must be continuous there;
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however, a function that is continuous at a point need not be differentiable at that point. In fact, a function may be continuous
at a point and fail to be differentiable at the point for one of several reasons.

Theorem 3.1: Differentiability Implies Continuity

Let f(x) be a function and a be in its domain. If f(x) is differentiable at @, then f is continuous at a.

Proof

If f(x) is differentiable at a, then f’(a) exists and

(@) = Jim L=/ @

X—=a

We want to show that f(x) is continuous at a by showing that xli_r)na f(x) = f(a). Thus,

Jim fQ) = lim (f(x) = f(@) + f(@)
= xlgna(f (’2 - gj @ (x—a)+ f(a)) Multiply and divide f(x) — f(a) by x — a.

XxX—=a X—a

= fl@)-0+ f(a)
= f(a).

Therefore, since f(a) is defined and xli_r)na f(x) = f(a), we conclude that f is continuous at a.

= (Jim L9 =19). (Xlgna(x — )+ lim f(@)

O

We have just proven that differentiability implies continuity, but now we consider whether continuity implies
differentiability. To determine an answer to this question, we examine the function f(x) = |x|. This function is continuous

everywhere; however, f'(0) is undefined. This observation leads us to believe that continuity does not imply

differentiability. Let’s explore further. For f(x) = |xl,

0) . xl =10 - xl
0 f(x) f( = lim = lim =
f() xl—>0 X — xl—>0x
This limit does not exist because
: |x] : |xl
1 —~=-—land 1 ==1
. m(}_ T an i 1%1 T

See Figure 3.14.
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Figure 3.14 The function f(x) = Ix| is continuous at O but

is not differentiable at 0.

Let’s consider some additional situations in which a continuous function fails to be differentiable. Consider the function
f) =

3
’ : —0 N 1
£(0) = lim XX = lim —— = 4o0.
- -0 > 03
x—>0X X O/xz

Thus f’(0) does not exist. A quick look at the graph of f(x) = % clarifies the situation. The function has a vertical
tangent line at 0 (Figure 3.15).

Yi

¥

Figure 3.15 The function f(x) = % has a vertical tangent at

x = 0. Itis continuous at 0 but is not differentiable at 0.

(1)
The function f(x) = {x s (x ) if x #0 also has a derivative that exhibits interesting behavior at 0. We see that
Oifx=0
reny — 1 Xsin(1/x)—0 L. L (]
F0) = lim SRS = xlgllos1n(x).

This limit does not exist, essentially because the slopes of the secant lines continuously change direction as they approach
zero (Figure 3.16).
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(1)
Figure 3.16 The function f(x) = {xsm(x)lfx #0
Oifx=0

is not

differentiable at 0.

In summary:

1.

We observe that if a function is not continuous, it cannot be differentiable, since every differentiable function must
be continuous. However, if a function is continuous, it may still fail to be differentiable.

We saw that f(x) = Ix| failed to be differentiable at 0 because the limit of the slopes of the tangent lines on the

left and right were not the same. Visually, this resulted in a sharp corner on the graph of the function at 0. From
this we conclude that in order to be differentiable at a point, a function must be “smooth” at that point.

As we saw in the example of f(x) = %5/)?, a function fails to be differentiable at a point where there is a vertical
tangent line.
(L)
As we saw with f(x) = {x s (x )1 x#0 a function may fail to be differentiable at a point in more complicated
Oifx=0

ways as well.

Example 3.14

A Piecewise Function that is Continuous and Differentiable

A toy company wants to design a track for a toy car that starts out along a parabolic curve and then converts
to a straight line (Figure 3.17). The function that describes the track is to have the form

L2 4 by +cifx < —10

10

1.5 _
4x+ 21f)c >-10

fx) =

where x and f(x) are in inches. For the car to move smoothly along the

track, the function f(x) must be both continuous and differentiable at —10. Find values of b and ¢ that make

f(x) both continuous and differentiable.
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yi

5_.
t ey -
-10 0 10 x

Figure 3.17 For the car to move smoothly along the track, the
function must be both continuous and differentiable.

Solution

For the function to be continuous at x = —10, li% _ f(x) = f(—10). Thus, since
x =

i =Ll102- =10—
x_}l{rllo_f(x)—lo( 10)*=10b+c=10—-10b + ¢

and f(—10) =5, we musthave 10 — 10b + ¢ = 5. Equivalently, we have ¢ = 10b — 5.

For the function to be differentiable at —10,

(10) = lim L@ =fC10
fag= xgn—llo x4+ 10
must exist. Since f(x) is defined using different rules on the right and the left, we must evaluate this limit from
the right and the left and then set them equal to each other:
1.2
— f(— —x“+bx+c—-5
fO =10 _ L 1o

yim 10 =, m X+ 10

x4 bx +(10b—5) - 5

= lim _ Substitute ¢ = 10b — 5.
x—=—10 x+10
—  lim X2—100+ 10bx + 100b
x— 10" 10(x + 10)
L (x+10)(x — 10+ 10b) .
= _)1111110_ T0Gx £ 10) Factor by grouping.
=b-2.
We also have
1 5
i f@-f10) L Ty
TS x+10 co—10t x+10
—(x+10)

m L F+10)

e

I o 1 _1 —10(1)-5=25
This givesus b — 2 = T Thus b 4andc 10(4) 5 >

ax+bifx <3

3.8
@/ Find values of a and b that make f(x) ={ 2 e >3 both continuous and differentiable at 3.
x“ifx >
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Higher-Order Derivatives

The derivative of a function is itself a function, so we can find the derivative of a derivative. For example, the derivative
of a position function is the rate of change of position, or velocity. The derivative of velocity is the rate of change of
velocity, which is acceleration. The new function obtained by differentiating the derivative is called the second derivative.
Furthermore, we can continue to take derivatives to obtain the third derivative, fourth derivative, and so on. Collectively,
these are referred to as higher-order derivatives. The notation for the higher-order derivatives of y = f(x) can be

expressed in any of the following forms:
F/@, £, £ D@ £ 0
@,y @, Y@,y @
Ay &y dly 'y
dx?’ dy3’ dy4,m’ dy™

- , : d* , d
It is interesting to note that the notation for d_%) may be viewed as an attempt to express % d_i more compactly.
x

2 3
d(d{(d\\_ d|ldy|_dy
Analogously, a(a(a)) = a( y] =5

Example 3.15

Finding a Second Derivative
For f(x)=2x?>=3x+1, find f"(x).
Solution

First find f”(x).

Substitute f(x) = 2x% — 3x + 1

, e +m? =3+ +1)-@x*-3x+1) and
f = lim, 7 fa+h) =2+ =3x+h)+1

. , . h) — f(x)
=1 f(x+—
into f’ (x) /] 1_1)n0 7
2
= hlimow Simplify the numerator.
Factor out the 4 in the numerator
= hli—1>n0(4x +h-3) and cancel with the 4 in the
denominator.
=4x-3 Take the limit.
Next, find f”(x) by taking the derivative of f'(x) = 4x — 3.
, . —fx) . .
P i fOF N
f’(x) = lim Lok = f hh) /&) Use f(x) ) h with f'(x) in
h=0 place of f(x).
— lim (@(x+ h) — 3)— (4x —3)  Substitute f' (x + h) = 4(x + h) — 3 and
T h=0 h f(x)=4x-3.
= hl1_r)no4 Simplify.

=4 Take the limit.
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@/ 3.9 Find f"(x) for f(x)=x2-

Example 3.16

Finding Acceleration

The position of a particle along a coordinate axis at time ¢ (in seconds) is given by s(¢) = 32— 4r+1 (in

meters). Find the function that describes its acceleration at time ¢.

Solution
Since v(f) = s'(¢) and a(¢) = Vv’ (¢) = s”(f), we begin by finding the derivative of s() :

s(t+ h) — s(t)

! — l'
'@ hl—r>n0 h
30+ -4+ +1- (37 —4r+1)
= lim
h—-0 h
= 61— 4.
Next,
S//(t) — llm sl ([+l’l)—Sl(t)

h—-0 h
6(t+h) — 4 — (61 = 4)
h

Thus, a =6 m/s2.

@ 3.10  For s(t) =+, find a(r).
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3.2 EXERCISES

For the following exercises, use the definition of a
derivative to find f” (x).

54. f(x)=6

55. f(x)=2-3x
6 f=2E+1
57. f(x) = 4x?

58. f(x) = 5x—x?

59. f(x) =12x
60. f(x)=Vx—6
6l f =3

62 foy=x+1

8 fo =15

For the following exercises, use the graph of y = f(x) to

sketch the graph of its derivative f’ (x).

Yi
64. 4

16+
12+
84

44

-5 —4 -3 -2 -1 0|71 2 3\ 4 s5X
s

-84l
124
-161

204

245

65.

66. Yi

16+

12+

-12+
~161

—-20+
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For the following exercises, the given limit represents the
derivative of a function y = f(x) at x =a. Find f(x)

and a.

68. 23 _
lim (1+h) 1
h—0 h

9. [3e+m?+2]-14
1m
h—0 h

70. lim €°8 (r+h)+1

h—-0 h

7L 2+h*—16

72 RB+W:-@+h]-15
h

73. . oM

For the following functions,
a. sketch the graph and

b. use the definition of a derivative to show that the
function is not differentiable at x = 1.

74. 2vx,0<x<1
f(x)_{3x—l,x>1

75. 3, x<1
f(x)_{3x,x21

76. —y2
f(x)={ 42,x<1

x, x> 1

77. 2x, x <1

f) = %,x>1

For the following graphs,

a. determine for which values of x=a the
xli_l)na f(x) exists but f is not continuous at

x=a, and

b. determine for which values of x = a the function
is continuous but not differentiable at x = a.
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78.

= e
y
79. A
3
L]
14
—é_jé -1 0 1 2 3X
-14
—21

80. Use the graph to evaluate a. f'(—0.5), b. f'(0), c.
f), d f'(2), ande. f'(3), ifitexists.

Yi

-5 —4 -3 -2 -1 0 1 2 3 4 s5X
—14

For the functions, use

fr = tim LEER =L 16 fing o,

following
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81. f(x)=2-3x
82. f(x) =4x>
8. foy=x+1

For the following exercises, use a calculator to graph f(x).

Determine the function f’(x), then use a calculator to

graph f' (x).
B fw = -3

85. [T] f(x) = 3x2+2x + 4.

86. [T] f(x) = VX + 3x

87. _ 1
[T] f(x) = >

¥

88. T] fr)=1+x+1

89. [T] fx) =x3+1

For the following exercises, describe what the two
expressions represent in terms of each of the given
situations. Be sure to include units.

S+ h) - f(x)
h
b. f(x)= hli—{now

90. P(x) denotes the population of a city at time x in

years.

91. C(x) denotes the total amount of money (in thousands

of dollars) spent on concessions by x customers at an
amusement park.

92. R(x) denotes the total cost (in thousands of dollars) of

manufacturing x clock radios.

93. g(x) denotes the grade (in percentage points) received

on a test, given x hours of studying.

94. B(x) denotes the cost (in dollars) of a sociology

textbook at university bookstores in the United States in x
years since 1990.

95. p(x) denotes atmospheric pressure at an altitude of x

feet.

247

96. Sketch the graph of a function y = f(x) with all of the
following properties:
a. f'(x)>0for 2<x<1

b. £/2)=0
e f'(x)>0 for x>2

() =2 and f(0) =1
e.  lim_f()=0and lim f(x) = co

f.  f'(1) does not exist.

97. Suppose temperature 7" in degrees Fahrenheit at a
height x in feet above the ground is given by y = T'(x).

a. Give a physical interpretation, with units, of 7"(x).

b. If we know that 77 (1000) = —0.1,

physical meaning.

explain the

98. Suppose the total profit of a company is y = P(x)

thousand dollars when x units of an item are sold.

a. What does w for 0 < a < b measure,
and what are the units?

b. What does P’(x) measure, and what are the units?

P’ (30) =5,

approximate change in profit if the number of items
sold increases from 30to31?

c. Suppose that what is the



248

99. The graph in the following figure models the number
of people N(#) who have come down with the flu ¢ weeks

after its initial outbreak in a town with a population of
50,000 citizens.

a. Describe what N'(t) represents and how it behaves

as t increases.

b. What does the derivative tell us about how this
town is affected by the flu outbreak?

54,000 +

48,000 +
42,000 +
36,000 +
30,000 +
24,000 +
18,000 +
12,000 +

6,000 +

10X

For the following exercises, use the following table, which
shows the height % of the Saturn V rocket for the Apollo

11 mission ¢ seconds after launch.

Time (seconds) Height (meters)
0 0

1 2

2 4

3 13

4 25

5 32

100. What is the physical meaning of 4’ (¢#)? What are the

units?
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101. [T] Construct a table of values for A’ (f) and graph
both A(r) and %’ (#) on the same graph. (Hint: for interior

points, estimate both the left limit and right limit and
average them.)

102. [T] The best linear fit to the data is given by
H(t) =7.229t — 4.905, where H is the height of the

rocket (in meters) and ¢ is the time elapsed since takeoff.
From this equation, determine H'(f). Graph H(¢) with

the given data and, on a separate coordinate plane, graph
H' (D).

103. [T] The best quadratic fit to the data is given by
G(1) = 1.429¢% + 0.08577 — 0.1429, where G is the

height of the rocket (in meters) and ¢ is the time elapsed
since takeoff. From this equation, determine G’ (¢). Graph

G(f) with the given data and, on a separate coordinate

plane, graph G’ (?).

104. [T] The best cubic fit to the data is given by
F(t) = 0.2037¢> + 2.9561% — 2.705¢ + 0.4683,
F is the height of the rocket (in m) and ¢ is the time

elapsed since take off. From this equation, determine
F’(¢). Graph F(¢) with the given data and, on a separate

where

coordinate plane, graph F’(#). Does the linear, quadratic,
or cubic function fit the data best?

105. Using the best linear, quadratic, and cubic fits to the
data, determine what H”(¢), G”(t) and F"(t) are. What are
the physical meanings of H"(¢), G"(t) and F"(t), and

what are their units?
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3.3 | Differentiation Rules

Learning Objectives

3.3.1 State the constant, constant multiple, and power rules.

3.3.2 Apply the sum and difference rules to combine derivatives.

3.3.3 Use the product rule for finding the derivative of a product of functions.

3.3.4 Use the quotient rule for finding the derivative of a quotient of functions.

3.3.5 Extend the power rule to functions with negative exponents.

3.3.6 Combine the differentiation rules to find the derivative of a polynomial or rational function.

Finding derivatives of functions by using the definition of the derivative can be a lengthy and, for certain functions, a rather

challenging process. For example, previously we found that %(«/f) = 2+R by using a process that involved multiplying an
expression by a conjugate prior to evaluating a limit. The process that we could use to evaluate %(3«’5) using the definition,

while similar, is more complicated. In this section, we develop rules for finding derivatives that allow us to bypass this
process. We begin with the basics.

The Basic Rules

The functions f(x) = ¢ and g(x) = x” where n is a positive integer are the building blocks from which all polynomials

and rational functions are constructed. To find derivatives of polynomials and rational functions efficiently without resorting
to the limit definition of the derivative, we must first develop formulas for differentiating these basic functions.

The Constant Rule
We first apply the limit definition of the derivative to find the derivative of the constant function, f(x) =c. For this

function, both f(x) = ¢ and f(x+ h) = ¢, so we obtain the following result:

f/ (x) — hli_l;nof(x + h})l - f(X)

— i Cc—_°C
_hh_{no h
— 1im O
_hh_I}loh

= lim 0 =0.
h—>0

The rule for differentiating constant functions is called the constant rule. It states that the derivative of a constant function
is zero; that is, since a constant function is a horizontal line, the slope, or the rate of change, of a constant function is 0. We

restate this rule in the following theorem.

Theorem 3.2: The Constant Rule

Let ¢ be a constant.
If f(x)=c, then f'(c)=0.

Alternatively, we may express this rule as

dx
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Applying the Constant Rule

Find the derivative of f(x) = 8.

Solution

This is just a one-step application of the rule:

F'®) =0.

@ 3.11 Find the derivative of g(x) = -3.

The Power Rule

We have shown that

%(xz) = 2xand %(xl/z) = %x_l/z.

At this point, you might see a pattern beginning to develop for derivatives of the form %(x”). We continue our

examination of derivative formulas by differentiating power functions of the form f(x) = x" where n is a positive integer.
We develop formulas for derivatives of this type of function in stages, beginning with positive integer powers. Before stating

and proving the general rule for derivatives of functions of this form, we take a look at a specific case, %()9). As we go

through this derivation, pay special attention to the portion of the expression in boldface, as the technique used in this case
is essentially the same as the technique used to prove the general case.

Example 3.18

Differentiating x*

Find %()9).

Solution
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() = fim S =X hy = x’

= lim 3x2 4 3xh + h?)
h—-0

= 3x? Leth goto 0.

i 12 Fna L)

Notice that the first term in the expansion of

X432 3k R =X (x+ h)3 is x> and the second term is 3x2h. All

= lim

h—0 h other terms contain powers of & that are two or

greater.

— lim 3 X2 h+3xh2 + k3 In this step the x> terms have been cancelled,

h—0 h leaving only terms containing /.

2 2
= hlimoh(3x + 2Xh +h7) Factor out the common factor of 4.
-

After cancelling the common factor of 4, the

only term not containing / is 3x2.

251

As we shall see, the procedure for finding the derivative of the general form f(x) = x" is very similar. Although it is often

unwise to draw general conclusions from specific examples, we note that when we differentiate f(x) = X3, the power on

x becomes the coefficient of x? in the derivative and the power on x in the derivative decreases by 1. The following

theorem states that the power rule holds for all positive integer powers of x. We will eventually extend this result to

negative integer powers. Later, we will see that this rule may also be extended first to rational powers of x and then to

arbitrary powers of x. Be aware, however, that this rule does not apply to functions in which a constant is raised to a

variable power, such as f(x) = 3%.

Theorem 3.3: The Power Rule

Let n be a positive integer. If f(x) = x", then

£ =nx""1
Alternatively, we may express this rule as
%x” =nx" 1

Proof

For f(x) = x" where n is a positive integer, we have

vy o (xR = X"

1160 = fim =
. n_ .n n—1 nm n-2;2 n
Since (x + h)" = x" + nx h+(2)x h +(3

we see that

)x”_3h3+ xR,
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n

n n_ n—1
x+h"—x"=nx h+(2

)x”_2h2+(§)xn_3h3+ PRI RY Ly L)

Next, divide both sides by h:

Gt my = T T () 2R () T R kT
h - 7 .
Thus,
4+ —x" a1 (M n-2, (M) n—3,2 n-2, -1
h =nx +(2)x h+(3)x he+ ... +nxh" ==+ h"" "
Finally,
[ =h1im0(nx”_1+(g)x"_2h+(§)x"_3h2+...+nxh"_1+h")
=nx"" 1
O
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Example 3.19

Applying the Power Rule
Find the derivative of the function f(x) = x10 by applying the power rule.

Solution

Using the power rule with n = 10, we obtain

£ =10x10"1 = 10x°.

@ 3.13  Find the derivative of f(x) =x'.

The Sum, Difference, and Constant Multiple Rules

We find our next differentiation rules by looking at derivatives of sums, differences, and constant multiples of functions.
Just as when we work with functions, there are rules that make it easier to find derivatives of functions that we add, subtract,

or multiply by a constant. These rules are summarized in the following theorem.

Theorem 3.4: Sum, Difference, and Constant Multiple Rules

Let f(x) and g(x) be differentiable functions and k be a constant. Then each of the following equations holds.

Sum Rule. The derivative of the sum of a function f and a function g is the same as the sum of the derivative of f

and the derivative of g.

(1) + g() = “L(f(0) + (g ()

that is,
for j(x) = f(x) + g(x), j' (x) = ' (x) + g'(x).

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2



Chapter 3 | Derivatives 253

Difference Rule. The derivative of the difference of a function f and a function g is the same as the difference of the
derivative of f and the derivative of g:

L(p() - () = A7) - Lig o)
that is,

for j(x) = f(x) — g(x), j' (x) = f" (¥) — g'(x).

Constant Multiple Rule. The derivative of a constant ¢ multiplied by a function fis the same as the constant multiplied
by the derivative:

Likf0) = k£ o)

that is,
for j(x) = kf(x), j' (x) = kf'(x).

Proof
We provide only the proof of the sum rule here. The rest follow in a similar manner.
For differentiable functions f(x) and g(x), we set j(x) = f(x) + g(x). Using the limit definition of the derivative we
have

J = Jim L6 D=
By substituting j(x 4+ h) = f(x+ h) + g(x+ h) and j(x) = f(x) + g(x), we obtain

j'(x) = hli—IPo(f(x +h) + gx +hh)) —(f(x) + g(x)).

Rearranging and regrouping the terms, we have

f(X+h)—f(X)+g(X+h)—g(X))
. .

J®) = hh_rflo( h

We now apply the sum law for limits and the definition of the derivative to obtain

(f(X+h})l—f(x)) g(x+hz—g(x)) ¥

m +hli_1)n0(— =f'(x)+g (x).

J ) = hh—> 0

O

Example 3.20

Applying the Constant Multiple Rule

Find the derivative of g(x) = 3x% and compare it to the derivative of f(x) = x2.

Solution

We use the power rule directly:

g= %(sz) = 3%()9) = 3(2x) = 6.
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Since f(x) = %2 has derivative f'(x) =2x, we see that the derivative of g(x) is 3 times the derivative of

f(x). This relationship is illustrated in Figure 3.18.

Yi Yi
124 12}
10+ 10+

8+ 8+ g'(x) = 6x

6+ 6+

44 44

24 24 f(x) = 2x

-05 05 1.0 1.5 205 -0 0.5 1.0 15 2.0%

241 24

Figure 3.18 The derivative of g(x) is 3 times the derivative of f(x).

Example 3.21

Applying Basic Derivative Rules
Find the derivative of f(x) = 200 + 7.

Solution

We begin by applying the rule for differentiating the sum of two functions, followed by the rules for
differentiating constant multiples of functions and the rule for differentiating powers. To better understand the
sequence in which the differentiation rules are applied, we use Leibniz notation throughout the solution:

) = %(2;? +7)
_d(~.5 .. d.
= a(Zx )+ dx(7) Apply the sum rule.

= %(xs ) + %(7) Apply the constant multiple rule.
= 2(5x4) +0 Apply the power rule and the constant rule.
= 10x*. Simplify.

@ 3.14  Find the derivative of f(x) = 2x°> — 6x2 + 3.

Example 3.22

Finding the Equation of a Tangent Line
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Find the equation of the line tangent to the graph of f(x) = x?—4x+6at x=1.

Solution

To find the equation of the tangent line, we need a point and a slope. To find the point, compute
FH)=1%2-4(1)+6 = 3.

This gives us the point (1, 3). Since the slope of the tangent line at 1is f' (1), we must first find f” (x). Using
the definition of a derivative, we have

ff(x)=2x—-4
so the slope of the tangent line is f’ (1) = —2. Using the point-slope formula, we see that the equation of the

tangent line is

y—3==2(x—1).

Putting the equation of the line in slope-intercept form, we obtain

y=-2x+5.

‘/ 3.15  Find the equation of the line tangent to the graph of f(x) = 3x2— 11 at x =2. Use the point-slope

form.

The Product Rule

Now that we have examined the basic rules, we can begin looking at some of the more advanced rules. The first one
examines the derivative of the product of two functions. Although it might be tempting to assume that the derivative of

the product is the product of the derivatives, similar to the sum and difference rules, the product rule does not follow this

2

pattern. To see why we cannot use this pattern, consider the function f(x) = x“, whose derivative is f’(x) = 2x and not

divy.dy—1.1=
Lo Loy=1-1=1.

Theorem 3.5: Product Rule

Let f(x) and g(x) be differentiable functions. Then

L(f(0g(x) = 2H£(x)- 8(x) +Lg(x)- f.

That is,
if j(x) = f(x)g(x), then j" (x) = f' (x)g(x) + &' (X)f (x).

This means that the derivative of a product of two functions is the derivative of the first function times the second
function plus the derivative of the second function times the first function.

Proof
We begin by assuming that f(x) and g(x) are differentiable functions. At a key point in this proof we need to use the
fact that, since g(x) is differentiable, it is also continuous. In particular, we use the fact that since g(x) is continuous,

Jim g+ h) = g().
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By applying the limit definition of the derivative to j(x) = f(x)g(x), we obtain

i L DG+ ) = f()
h—0 h

J ()=

By adding and subtracting f(x)g(x + &) in the numerator, we have

i) = lim L&D+ = g+ h) + fIZ0x+ 1) = [()R()
h—0 h ’

After breaking apart this quotient and applying the sum law for limits, the derivative becomes

S+ hgx+h) — fOgx+ h)) (f (0gx+h) = f (X)g(x))
h h '

7w = * Jim,

Rearranging, we obtain

0= Jim (LEED=IQ) )y i (D=0 )

By using the continuity of g(x), the definition of the derivatives of f(x) and g(x), and applying the limit laws, we arrive

at the product rule,

J ()= (0gl) + g (1) f(x).

Example 3.23

‘

Applying the Product Rule to Constant Functions
For j(x) = f(x)g(x), use the product rule to find j'(2) if f(2)=3, f'(2)=—-4,g2)=1, and g’ (2) =6.

Solution
Since j(x) = f(x)g(x), ' (x) = f' (x)g(x) + g’ (x)f(x), and hence

J @) =122+ 2f(2) = (=H() + (6)(3) = 14.

Example 3.24

Applying the Product Rule to Binomials

For j(x) = (x2 + 2)(3x3 —5x), find j'(x) by applying the product rule. Check the result by first finding the

product and then differentiating.

Solution
If we set f(x) = x> +2 and g(x) =3x> —5x, then f'(x)=2x and g’ (x) = 9x*— 5. Thus,

J )= (0800 + g () f(x) = 2x)(3x” = 5x) + (9x* = 5)(x* + 2).

Simplifying, we have

7 ) = 15x* + 3x2 = 10.
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To check, we see that j(x) = 3x° + x> — 10x and, consequently, j'(x) = 15x* + 3x2 = 10.

@ 3.16  Use the product rule to obtain the derivative of j(x) = 2x° (4x2 + x).

The Quotient Rule

Having developed and practiced the product rule, we now consider differentiating quotients of functions. As we see in the
following theorem, the derivative of the quotient is not the quotient of the derivatives; rather, it is the derivative of the
function in the numerator times the function in the denominator minus the derivative of the function in the denominator
times the function in the numerator, all divided by the square of the function in the denominator. In order to better grasp
why we cannot simply take the quotient of the derivatives, keep in mind that

d d
o dx (x

i(xz) = 2x, not ‘%()ﬁ) 3%2 = 3x2.

Theorem 3.6: The Quotient Rule
Let f(x) and g(x) be differentiable functions. Then

i(f(X)) _ R0 -5(0) ~ () - )
A8 () ()2 :
That is,

if jo) = L9 then jr (x) = L8 = g; ()fx)
(8(x))

g’

The proof of the quotient rule is very similar to the proof of the product rule, so it is omitted here. Instead, we apply this
new rule for finding derivatives in the next example.

Example 3.25

Applying the Quotient Rule

5x2

Use the quotient rule to find the derivative of k(x) = i3

Solution
Let f(x) = 5x2 and g(x) =4x+ 3. Thus, f'(x) = 10x and g’ (x) = 4. Substituting into the quotient rule, we

have

oy F0g) — g ()F () _ 10x(4x +3) — 4(5x>)
kK (x) = 5 = 5 s
(g(x) (4x+3)
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Simplifying, we obtain

2
k' (X) — 20x° + 3(%)6
4x+3)

317 g ivati —3x+1
@/ Find the derivative of h(x) = =3

It is now possible to use the quotient rule to extend the power rule to find derivatives of functions of the form x* where k
is a negative integer.

Theorem 3.7: Extended Power Rule

If k is a negative integer, then

d( .k _ g k-1

dx(x ) = kx .
Proof
If k is a negative integer, we may set n = —k, so that n is a positive integer with k = —n. Since for each positive integer
nx "= L we may now apply the quotient rule by setting f(x) =1 and g(x) = x". In this case, f'(x) =0 and

x"

g (x) = nx" 1. Thus,

d(x—”) _ 0(x™) — l(nx”_ 1)‘
d (xn)2
Simplifying, we see that
%(x_n) = ——n;c;‘n_ : =D -1
Finally, observe that since k = —n, by substituting we have
%(xk) =kxk 1,

O

Example 3.26

Using the Extended Power Rule
g d (4
Find %(x )

Solution
By applying the extended power rule with k = —4, we obtain
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%(x_“) = —4x4 T = 4y,

Example 3.27

Using the Extended Power Rule and the Constant Multiple Rule

6

Use the extended power rule and the constant multiple rule to find f(x) = -
X

Solution

It may seem tempting to use the quotient rule to find this derivative, and it would certainly not be incorrect to do

so. However, it is far easier to differentiate this function by first rewriting it as f(x) = 6x 2.

ffx) = i(i) = i(6x_2) Rewritei2 as 6x 2.

dx\2)  dx x
= 6%()(2) Apply the constant multiple rule.
= 6(—2x_3) Use the extended power rule to differentiate x72.
=—12x73 Simplify.

@ 3.18  Find the derivative of glx) = % using the extended power rule.
X

Combining Differentiation Rules

As we have seen throughout the examples in this section, it seldom happens that we are called on to apply just one
differentiation rule to find the derivative of a given function. At this point, by combining the differentiation rules, we may
find the derivatives of any polynomial or rational function. Later on we will encounter more complex combinations of
differentiation rules. A good rule of thumb to use when applying several rules is to apply the rules in reverse of the order in
which we would evaluate the function.

Example 3.28

Combining Differentiation Rules
For k(x) = 3h(x) + x> g(x), find k'(x).

Solution

Finding this derivative requires the sum rule, the constant multiple rule, and the product rule.




260 Chapter 3 | Derivatives

k' (x)

%(3!1()0 +x%g() = %{3h(x)) + %(x2 g()  Apply the sum rule.

Apply the constant multiple rule to
3%(h(x)) + (%(xz)g(x) + %{g(x))xz) differentiate 34(x) and the product

rule to differentiate x> g(x).

= 3K (x) + 2xg(x) + g'(x)x>

Example 3.29

Extending the Product Rule
For k(x) = f(x)g(x)h(x), express k' (x) interms of f(x), g(x), h(x), and their derivatives.

Solution
We can think of the function k(x) as the product of the function f(x)g(x) and the function A(x). That is,
k(x) = (f(x)g(x))- h(x). Thus,

Apply th d 1 h d
K0 = 70g00) h) + ) ()] o ot Pt

= (" (0)g(x0) + & () f()h)x) + b’ (x) f(x)g(x) Apply the product rule to f(x)g(x).
= 1" (0gh(x) + f(x)g" (Dh(x) + f(X)g(x)h’ (x).  Simplify.

Example 3.30

Combining the Quotient Rule and the Product Rule

233 k(x)
3x+2°

For h(x) = find 7’ (x).

Solution

This procedure is typical for finding the derivative of a rational function.

L2027 k(x))- Bx +2) = L(3x +2) - (207 k()

W (x) =& Apply the quotient rule.
(Bx+2)?
(627 k(x) + K (x) - 2x7)Bx + 2) — 3(2 k() Apply the product rule to find
= d (.3 d _
Gx +2)? 27 k) Use £(3x +2) = 3.
_ —6x7 k(x) + 18x7 k(x) + 1227 k(x) + 6x* k' (1) + 407 k' () Simplify.

(Bx+2)?
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@/ 3.19 ging %(3 f(x) —2g(x)).

Example 3.31

Determining Where a Function Has a Horizontal Tangent
Determine the values of x for which f(x) = x> —7x%+ 8x+ 1 has a horizontal tangent line.

Solution
To find the values of x for which f(x) has a horizontal tangent line, we must solve f’(x) = 0. Since
Fr ) =3x2— 14x+8 = Bx = 2)(x — 4),

we must solve (3x —2)(x —4) = 0. Thus we see that the function has horizontal tangent lines at x = 2 and

3
x =4 as shown in the following graph.

20+
10+

t t e t f t i -
—2 4 6 X
10+

—204
g f(x) =x>—Tx2+8x+1

=30

—40

Figure 3.19 This function has horizontal tangent lines at x =
2/3 and x = 4.

Example 3.32

Finding a Velocity

t
2+1

The position of an object on a coordinate axis at time ¢ is given by s(¢) = . What is the initial velocity of

the object?

Solution

Since the initial velocity is v(0) = s’ (0), begin by finding s’(#) by applying the quotient rule:
(PF+1)-20) | _p2

s'(1) = .
F+1)  (P+1)
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After evaluating, we see that v(0) = 1.

3.20  Find the values of x for which the line tangent to the graph of f(x) = 4x*—3x+2 hasa tangent line
parallel to the line y = 2x + 3.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2



Chapter 3 | Derivatives 263

" Student PROJECT

Formula One Grandstands

Formula One car races can be very exciting to watch and attract a lot of spectators. Formula One track designers have
to ensure sufficient grandstand space is available around the track to accommodate these viewers. However, car racing
can be dangerous, and safety considerations are paramount. The grandstands must be placed where spectators will not
be in danger should a driver lose control of a car (Figure 3.20).

TIT T Y ST TR

Figure 3.20 The grandstand next to a straightaway of the Circuit de Barcelona-Catalunya race track, located where
the spectators are not in danger.

Safety is especially a concern on turns. If a driver does not slow down enough before entering the turn, the car may
slide off the racetrack. Normally, this just results in a wider turn, which slows the driver down. But if the driver loses
control completely, the car may fly off the track entirely, on a path tangent to the curve of the racetrack.

Suppose you are designing a new Formula One track. One section of the track can be modeled by the function
fx) = X +3x+x (Figure 3.21). The current plan calls for grandstands to be built along the first straightaway

and around a portion of the first curve. The plans call for the front corner of the grandstand to be located at the point
(—1.9, 2.8). We want to determine whether this location puts the spectators in danger if a driver loses control of the

car.
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at (-1.9, 2.8)

|
o4+
|
B4
|
w +
|
ra 4
|
=
[
~
[e8]
I~
o+
xV
=¥

—ol

—4l

(@) (b)
Figure 3.21 (a) One section of the racetrack can be modeled by the function f(x) = X +3x+x. (b) The

front corner of the grandstand is located at (—1.9, 2.8).

1. Physicists have determined that drivers are most likely to lose control of their cars as they are coming into a
turn, at the point where the slope of the tangent line is 1. Find the (x, y) coordinates of this point near the turn.
Find the equation of the tangent line to the curve at this point.

To determine whether the spectators are in danger in this scenario, find the x-coordinate of the point where the
tangent line crosses the line y = 2.8. Is this point safely to the right of the grandstand? Or are the spectators

in danger?

4. What if a driver loses control earlier than the physicists project? Suppose a driver loses control at the point
(—2.5, 0.625). What is the slope of the tangent line at this point?

If a driver loses control as described in part 4, are the spectators safe?

Should you proceed with the current design for the grandstand, or should the grandstands be moved?
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3.3 EXERCISES

For the following exercises, find f’'(x) for each function.
106. f(x)=x7+10

107, f(x) =533 —x+1

108. f(x) = 4x* - 7x

109, f(x) = 8x* +9x% — 1

0. g2 42

ML o 4, 13
fx) = 3x(18x +-L 1)

N2 f(x) = (x +2)(2x% - 3)

113. _ Z(L i)
fo =25+

114. f(x) — x3 + 2x2 -4

3

115. 3_
f(x) - 4x %x +1

X

116. 244
fay =2+
x> —4

x+9

117
o fo =
! x2—Tx +1

For the following exercises, find the equation of the tangent
line T'(x) to the graph of the given function at the indicated

point. Use a graphing calculator to graph the function and
the tangent line.

8. [T] y=3x>+4x+1 at (0, 1)

119. [T] y=2vx+1 at (4, 5)

—at (-1, 1)

Phr) y =2~ at (1, -D)
X
For the following exercises, assume that f(x) and g(x)

are both differentiable functions for all x. Find the

derivative of each of the functions /(x).

265

122 b = 400+ 82

123. px) = 3 f(x)

124. h(x) = f(x)zg(x)

125, 3f()
M= +2

For the following exercises, assume that f(x) and g(x)
are both differentiable functions with values as given in

the following table. Use the following table to calculate the
following derivatives.

x 1 2 3 4
S 3 5 -2 0
g(x) 2 3 —4 6
f® -1 7 8 -3
g' () 4 1 2 9

126. Find /(1) if h(x) = xf(x) + 4g(x).

127. _. Lo s _f)
Find 7' (2) if h(x) = )

128. Find A’ (3) if h(x) = 2x + f(x)g(x).

129 ind ' (4) if h(x) =%+%‘

For the following exercises, use the following figure to find
the indicated derivatives, if they exist.
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130. Let h(x) = f(x) + g(x). Find

a. h'(1),
b. A'(3), and
c. h'@).

131. Let A(x) = f(x)g(x). Find

a. k(1)
b. #'(3), and
¢ K@)

132 1 et hx) =%. Find
a. (D),
b. #'(3), and
¢ I

For the following exercises,

a. evaluate f'(a), and

b. graph the function f(x) and the tangent line at

x=a.
133. 1] f(x)=2x3+3x—x%,a=2
B4 fw=4-xa=1

135. 1] f(x) = x> —x243x+2,a=0
136111 f = § -2 a=-1

137. Find the equation of the tangent line to the graph of
fx)=2x+4x>—5x—3 at x=—1.

138. Find the equation of the tangent line to the graph of
fW=x*+%-10at x=8.
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139. Find the equation of the tangent line to the graph of
f) = Gx—x)B-x—x>) at x=1.

140. Find the point on the graph of f(x) = x> such that

the tangent line at that point has an x intercept of 6.

141. Find the equation of the line passing through the point
P(3, 3) and tangent to the graph of f(x) = %

142. Determine  all
fx) = x> +x% = x =1 for which the slope of the tangent

points on the graph of
line is
a. horizontal

b. -1

143. Find a quadratic polynomial such that
f()=5, f/(1)=3 and f"(1) = —6.

144. A car driving along a freeway with traffic has traveled
s(t) = 13 = 61> + 9¢ meters in ¢ seconds.

a. Determine the time in seconds when the velocity of
the car is 0.

b. Determine the acceleration of the car when the
velocity is 0.

145. [T] A herring swimming along a straight line has

l‘2

3 feet in ¢ seconds.
t“+2

traveled s(7) =

Determine the velocity of the herring when it has traveled 3
seconds.

146. The population in millions of arctic flounder in the

Atlantic Ocean is modeled by the function
P(t) = &2;3, where ¢ is measured in years.
027+ 1

a. Determine the initial flounder population.

b. Determine P’(10) and briefly interpret the result.

147. [T] The concentration of antibiotic in the bloodstream
t hours after being injected is given by the function

2
c@ = % where C is measured in milligrams per
+50
liter of blood.
a. Find the rate of change of C(¥).

b. Determine the rate of change for =8, 12, 24,
and 36.

c. Briefly describe what seems to be occurring as the
number of hours increases.
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148. A book publisher has a cost function given by

3
Clx) = %, where x is the number of copies of a

book in thousands and C is the cost, per book, measured in
dollars. Evaluate C’(2) and explain its meaning.

149. [T] According to Newton’s law of universal
gravitation, the force F between two bodies of constant

Gmym,

mass m and m, is given by the formula F = 7z

where G is the gravitational constant and d is the distance
between the bodies.

a. Suppose that G, my, andm, are constants. Find
the rate of change of force F with respect to
distance d.

b. Find the rate of change of force F with
gravitational constant G=667x10""
Nm2/kg2, on two bodies 10 meters apart, each

with a mass of 1000 kilograms.

267
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3.4 | Derivatives as Rates of Change

Learning Objectives

3.4.1 Determine a new value of a quantity from the old value and the amount of change.

3.4.2 Calculate the average rate of change and explain how it differs from the instantaneous rate
of change.

3.4.3 Apply rates of change to displacement, velocity, and acceleration of an object moving along
a straight line.

3.4.4 Predict the future population from the present value and the population growth rate.
3.4.5 Use derivatives to calculate marginal cost and revenue in a business situation.

In this section we look at some applications of the derivative by focusing on the interpretation of the derivative as the rate of
change of a function. These applications include acceleration and velocity in physics, population growth rates in biology,
and marginal functions in economics.

Amount of Change Formula

One application for derivatives is to estimate an unknown value of a function at a point by using a known value of a
function at some given point together with its rate of change at the given point. If f(x) is a function defined on an interval

la, a + h], then the amount of change of f(x) over the interval is the change in the y values of the function over that
interval and is given by

fla+h) - f(a).

The average rate of change of the function f over that same interval is the ratio of the amount of change over that interval

to the corresponding change in the x values. It is given by

fla+h) - fa)
7 '

As we already know, the instantaneous rate of change of f(x) at a is its derivative

f/ (a) — hli_l;nof(a + h})l - f(a)

For small enough values of &, f'(a) = . We can then solve for f(a + h) to get the amount of change

fla+h - fla)
h

formula:
fla+h) = f(a) + f'(@h. (3.10)

We can use this formula if we know only f(a) and f’(a) and wish to estimate the value of f(a + h). For example, we

may use the current population of a city and the rate at which it is growing to estimate its population in the near future. As
we can see in Figure 3.22, we are approximating f(a + k) by the y coordinate at a + & on the line tangent to f(x) at

x = a. Observe that the accuracy of this estimate depends on the value of 4 as well as the value of f’ (a).
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-~ =

(a, f(2))

error in using f(a) + f'(a)h
to estimate f(a + h)

t h, f(a + h))

é a -;- h \ x
Figure 3.22 The new value of a changed quantity equals the

original value plus the rate of change times the interval of

change: f(a+h) =~ f(a)+ f' (@)h.

. Here is an interesting demonstration (http://lwww.openstaxcollege.org/l/20_chainrule) of rate of change.

Example 3.33

Estimating the Value of a Function
If f(3)=2 and f'(3)=5, estimate f(3.2).

Solution
Begin by finding /. We have h = 3.2 — 3 = 0.2. Thus,

fB2))=f3+02)~ f3)+(0.2)f'(3)=2+02(5 =3.

@ 3.21 Given f(10) = -5 and f’(10) =6, estimate f(10.1).

Motion along a Line

Another use for the derivative is to analyze motion along a line. We have described velocity as the rate of change of position.
If we take the derivative of the velocity, we can find the acceleration, or the rate of change of velocity. It is also important to
introduce the idea of speed, which is the magnitude of velocity. Thus, we can state the following mathematical definitions.

Definition

Let s(#) be a function giving the position of an object at time f.
The velocity of the object at time ¢ is given by v(¢) = s’ (¢).
The speed of the object at time ¢ is given by |v(?).

The acceleration of the object at ¢ is given by a(r) = v’ (¢) = s"(¢).


http://www.openstaxcollege.org/l/20_chainrule
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Example 3.34

Comparing Instantaneous Velocity and Average Velocity

A ball is dropped from a height of 64 feet. Its height above ground (in feet) ¢ seconds later is given by
s(t) = —1612 + 64.

05 10 15 20 !
What is the instantaneous velocity of the ball when it hits the ground?

b. What is the average velocity during its fall?

a.

Solution

The first thing to do is determine how long it takes the ball to reach the ground. To do this, set s(f) = 0. Solving

1612+ 64 =0, we get ¢ =2, so it take 2 seconds for the ball to reach the ground.

a. The instantaneous velocity of the ball as it strikes the ground is v(2). Since v(¢) = s’ (¥) = —32¢, we

obtain v(r) = —64 ft/s.
The average velocity of the ball during its fall is

Vave = S(22) : 8(0) =0 _264 = =32 ft/s.

Example 3.35

Interpreting the Relationship between v(r) and a(?)

A particle moves along a coordinate axis in the positive direction to the right. Its position at time ¢ is given by

s(t) = 3 — 41+ 2. Find v(1) and a(l) and use these values to answer the following questions.

a. Is the particle moving from left to right or from right to left at time r = 1?
b. Is the particle speeding up or slowing down at time t = 17?
Solution

Begin by finding v(¢) and a(?).
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and a(?) =v'(¢) = s"(¢) = 6¢1.
Evaluating these functions at t = 1, we obtain v(1) = —1 and a(1) = 6.
a. Because v(1) < 0, the particle is moving from right to left.

b. Because v(1) <0 and a(l) > 0, velocity and acceleration are acting in opposite directions. In other

words, the particle is being accelerated in the direction opposite the direction in which it is traveling,
causing |v(?)| to decrease. The particle is slowing down.

Example 3.36

Position and Velocity

The position of a particle moving along a coordinate axis is given by s(¢) = P —92 4241+ 4,1 > 0.
a. Find v(?).
b. At what time(s) is the particle at rest?

c. On what time intervals is the particle moving from left to right? From right to left?

d. Use the information obtained to sketch the path of the particle along a coordinate axis.

Solution
a. The velocity is the derivative of the position function:
w(t) = s (1) = 3t> — 181 + 24.
b. The particle is at rest when v(r) =0, so set 3t2— 181+ 24 = 0. Factoring the left-hand side of the
equation produces 3(t — 2)(t — 4) = 0. Solving, we find that the particle is at restat t =2 and ¢ = 4.

c. The particle is moving from left to right when v(¢) > 0 and from right to left when v(¢) < 0. Figure
3.23 gives the analysis of the sign of v(r) for > 0, but it does not represent the axis along which the

particle is moving.

+ 0 - 0 + v(t)
- Py Py -
¢ b ¢ ¢ T
0 2 4
Figure 3.23 The sign of v(t) determines the direction of the
particle.

Since 3t2— 18424 >0 on [0, 2) U (2, 400), the particle is moving from left to right on these
intervals.

Since 32— 18t +24 < 0 on (2, 4), the particle is moving from right to left on this interval.

d. Before we can sketch the graph of the particle, we need to know its position at the time it starts
moving (¢ = 0) and at the times that it changes direction (t = 2, 4). We have s(0) = 4, s(2) = 24, and
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s(4) = 20. This means that the particle begins on the coordinate axis at 4 and changes direction at 0 and
20 on the coordinate axis. The path of the particle is shown on a coordinate axis in Figure 3.24.

t=4
0 t=2

-8 -4 0 4 8§ 12 16 20 24
Figure 3.24 The path of the particle can be determined by
analyzing v(t).

&7 322 A particle moves along a coordinate axis. Its position at time ¢ is given by s(f) = > —5t+ 1. Is the

particle moving from right to left or from left to right at time ¢ = 37?

Population Change

In addition to analyzing velocity, speed, acceleration, and position, we can use derivatives to analyze various types of
populations, including those as diverse as bacteria colonies and cities. We can use a current population, together with a
growth rate, to estimate the size of a population in the future. The population growth rate is the rate of change of a population
and consequently can be represented by the derivative of the size of the population.

Definition
If P(#) is the number of entities present in a population, then the population growth rate of P(f) is defined to be

P ().

Example 3.37

Estimating a Population

The population of a city is tripling every 5 years. If its current population is 10,000, what will be its approximate

population 2 years from now?

Solution
Let P(¢) be the population (in thousands) ¢ years from now. Thus, we know that P(0) = 10 and based on the

information, we anticipate P(5) = 30. Now estimate P’(0), the current growth rate, using

PG)=PO) _30-10 _,
5-0 5 ’

P'(0) »

By applying Equation 3.10 to P(f), we can estimate the population 2 years from now by writing

P(Q2) ~ P0) + ()P (0) ~ 10 + 2(4) = 18;

thus, in 2 years the population will be 18,000.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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@/ 3.23 The current population of a mosquito colony is known to be 3,000; that is, P(0) = 3,000. If

P’ (0) =100, estimate the size of the population in 3 days, where ¢ is measured in days.

Changes in Cost and Revenue

In addition to analyzing motion along a line and population growth, derivatives are useful in analyzing changes in cost,
revenue, and profit. The concept of a marginal function is common in the fields of business and economics and implies the
use of derivatives. The marginal cost is the derivative of the cost function. The marginal revenue is the derivative of the
revenue function. The marginal profit is the derivative of the profit function, which is based on the cost function and the
revenue function.

Definition

If C(x) is the cost of producing x items, then the marginal cost MC(x) is MC(x) = C' (x).
If R(x) is the revenue obtained from selling x items, then the marginal revenue MR(x) is MR(x) = R’ (x).

If P(x) = R(x) — C(x) is the profit obtained from selling x items, then the marginal profit MP(x) is defined to be
MP(x) = P’ (x) = MR(x) — MC(x) = R' (x) — C’" (x).

We can roughly approximate

MCx) =C' (x) = hh—{now

by choosing an appropriate value for A. Since x represents objects, a reasonable and small value for A is 1. Thus, by
substituting 7 =1, we get the approximation MC(x) = C'(x) % C(x + 1) — C(x). Consequently, C’'(x) for a given
value of x can be thought of as the change in cost associated with producing one additional item. In a similar way,
MR(x) = R’ (x) approximates the revenue obtained by selling one additional item, and MP(x) = P’ (x) approximates the

profit obtained by producing and selling one additional item.

Example 3.38

Applying Marginal Revenue

Assume that the number of barbeque dinners that can be sold, x, can be related to the price charged, p, by the
equation p(x) =9 —0.03x, 0 < x < 300.

In this case, the revenue in dollars obtained by selling x barbeque dinners is given by
R(x) = xp(x) = x(9 — 0.03x) = —0.03x2 + 9x for 0 < x <300.

Use the marginal revenue function to estimate the revenue obtained from selling the 101st barbeque dinner.
Compare this to the actual revenue obtained from the sale of this dinner.

Solution
First, find the marginal revenue function: MR(x) = R’ (x) = —0.06x + 9.

Next, use R’ (100) to approximate R(101) — R(100), the revenue obtained from the sale of the 101st dinner.
Since R’ (100) = 3, the revenue obtained from the sale of the 101st dinner is approximately $3.

The actual revenue obtained from the sale of the 101st dinner is
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R(101) — R(100) = 602.97 — 600 = 2.97, or $2.97.

The marginal revenue is a fairly good estimate in this case and has the advantage of being easy to compute.

‘/ 3.24 Suppose that the profit obtained from the sale of x fish-fry dinners is given by
P(x) = —0.03x2 + 8x — 50. Use the marginal profit function to estimate the profit from the sale of the 101st
fish-fry dinner.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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3.4 EXERCISES

For the following exercises, the given functions represent
the position of a particle traveling along a horizontal line.

a. Find the velocity and acceleration functions.

b. Determine the time intervals when the object is
slowing down or speeding up.

150. s(5) =213 =312 — 12t +8
151 g(p) =213 = 15¢2 + 36— 10

152, 4 = 1 z
+1

2

153. A rocket is fired vertically upward from the ground.
The distance s in feet that the rocket travels from the

ground after ¢ seconds is given by s(¢) = —16¢2 + 5601.
a. Find the velocity of the rocket 3 seconds after being
fired.
b. Find the acceleration of the rocket 3 seconds after

being fired.

154. A ball is thrown downward with a speed of 8 ft/s from
the top of a 64-foot-tall building. After t seconds, its height

above the ground is given by s(f) = —161% — 81 + 64.
a. Determine how long it takes for the ball to hit the
ground.

b. Determine the velocity of the ball when it hits the
ground.

155. The position function s(r) = ?—3r—4 represents

the position of the back of a car backing out of a driveway
and then driving in a straight line, where s is in feet and ¢

is in seconds. In this case, s(f) = 0 represents the time at

which the back of the car is at the garage door, so
s(0) = —4 is the starting position of the car, 4 feet inside

the garage.

a. Determine the velocity of the car when s(¢) = 0.

b. Determine the velocity of the car when s(¢) = 14.
156. The position of a hummingbird flying along a straight
line in ¢ seconds is given by s(¢) = 33 = 7t meters.

a. Determine the velocity of the birdat r =1 sec.

b. Determine the acceleration of the bird at t =1 sec.

c. Determine the acceleration of the bird when the
velocity equals 0.
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157. A potato is launched vertically upward with an initial
velocity of 100 ft/s from a potato gun at the top of an
85-foot-tall building. The distance in feet that the potato
travels from the ground after ¢ seconds is given by

s(f) = —16¢ + 100z + 85.
a. Find the velocity of the potato after 0.5s and
5.75s.
b. Find the speed of the potato at 0.5 s and 5.75 s.

c. Determine when the potato reaches its maximum
height.

d. Find the acceleration of the potato at 0.5 s and 1.5
s.

e. Determine how long the potato is in the air.

f. Determine the velocity of the potato upon hitting
the ground.

158. The position function s() = 3 — 8t gives the
position in miles of a freight train where east is the positive
direction and ¢ is measured in hours.

a. Determine the direction the train is traveling when
s(t) = 0.

b. Determine the direction the train is traveling when
a(t) = 0.

c. Determine the time intervals when the train is
slowing down or speeding up.
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159. The following graph shows the position y = s(¢) of
an object moving along a straight line.

Yi
451

44
35+
34
251
21
15+
14

0.5 ¢

0 1 2 3 4 5 6 7 8 9 10X
a. Use the graph of the position function to determine
the time intervals when the velocity is positive,
negative, or zero.

b. Sketch the graph of the velocity function.

c. Use the graph of the velocity function to determine
the time intervals when the acceleration is positive,
negative, or zero.

d. Determine the time intervals when the object is
speeding up or slowing down.
160. The cost function, in dollars, of a company that

manufactures  food  processors is  given by

2
C(x) =200 + % +2X_ where x is the number of food

processors manufactured.
a. Find the marginal cost function.

b. Find the marginal cost of manufacturing 12 food
processors.

c. Find the actual cost of manufacturing the thirteenth
food processor.

161. The price p (in dollars) and the demand x for a

certain digital clock radio is given by the price—-demand
function p = 10— 0.001x.

a. Find the revenue function R(x).

b. Find the marginal revenue function.

c. Find the marginal revenue at x = 2000 and 5000.
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162. [T] A profit is earned when revenue exceeds cost.
Suppose the profit function for a skateboard manufacturer

is given by P(x) = 30x — 0.3x% — 250, where x is the
number of skateboards sold.

a. Find the exact profit from the sale of the thirtieth
skateboard.

b. Find the marginal profit function and use it to
estimate the profit from the sale of the thirtieth
skateboard.

163. [T] In general, the profit function is the difference
between the revenue and cost functions:
P(x) = R(x) — C(x).

Suppose the price-demand and cost functions for the
production of cordless drills is given respectively by
p =143 -0.03x and C(x) = 75,000+ 65x, where x

is the number of cordless drills that are sold at a price of
p dollars per drill and C(x) is the cost of producing x

cordless drills.
a. Find the marginal cost function.
b. Find the revenue and marginal revenue functions.
c. Find R’(1000) and R’(4000). Interpret the
results.
d. Find the profit and marginal profit functions.
e. Find P’(1000) and P’(4000). Interpret the
results.
164. A small town in Ohio commissioned an actuarial firm
to conduct a study that modeled the rate of change of the

town’s population. The study found that the town’s
population (measured in thousands of people) can be

modeled by the function P(¢) = —%l3 + 641 + 3000,
where ¢ is measured in years.
a. Find the rate of change function P’(¢) of the
population function.
b. Find P’'(1), P’ (2), P’(3), and P’'(4). Interpret
what the results mean for the town.
c. Find P"(1), P"(2), P"(3), and P”(4). Interpret

what the results mean for the town’s population.



Chapter 3 | Derivatives

165. [T] A culture of bacteria grows in number according

to the function N(f) = 3000(1 + ZL), where 7 is
t“+ 100

measured in hours.
a. Find the rate of change of the number of bacteria.

b. Find N'(0), N'(10), N'(20), and N’ (30).

c. Interpret the results in (b).

d. Find N"(0), N"(10), N"(20), and N"(30).
Interpret what the answers imply about the bacteria
population growth.

166. The centripetal force of an object of mass m is given

2
by F(r) = %, where v is the speed of rotation and r
is the distance from the center of rotation.

a. Find the rate of change of centripetal force with
respect to the distance from the center of rotation.

b. Find the rate of change of centripetal force of an
object with mass 1000 kilograms, velocity of 13.89
m/s, and a distance from the center of rotation of
200 meters.

The following questions concern the population (in
millions) of London by decade in the 19th century, which is
listed in the following table.
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Years since 1800 Population (millions)
1 0.8795
11 1.040
21 1.264
31 1.516
41 1.661
51 2.000
61 2.634
71 3.272
81 3.911
91 4.422

Table 3.5 Population of London Source:
http:/len.wikipedia.org/wikil
Demographics_of _London.

167. [T]

a. Using a calculator or a computer program, find the
best-fit linear function to measure the population.

b. Find the derivative of the equation in a. and explain
its physical meaning.

c. Find the second derivative of the equation and
explain its physical meaning.

168. [T]

a. Using a calculator or a computer program, find the
best-fit quadratic curve through the data.

b. Find the derivative of the equation and explain its
physical meaning.

c. Find the second derivative of the equation and
explain its physical meaning.

For the following exercises, consider an astronaut on a
large planet in another galaxy. To learn more about the
composition of this planet, the astronaut drops an electronic
sensor into a deep trench. The sensor transmits its vertical
position every second in relation to the astronaut’s position.
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The summary of the falling sensor data is displayed in the
following table.

Time after dropping (s) Position (m)
0 0
1 -1
2 -2
3 -5
4 =7
5 -14
169. [T]

a. Using a calculator or computer program, find the
best-fit quadratic curve to the data.

b. Find the derivative of the position function and
explain its physical meaning.

c. Find the second derivative of the position function
and explain its physical meaning.

170. [T]

a. Using a calculator or computer program, find the
best-fit cubic curve to the data.

b. Find the derivative of the position function and
explain its physical meaning.

c. Find the second derivative of the position function
and explain its physical meaning.

d. Using the result from c. explain why a cubic
function is not a good choice for this problem.

The following problems deal with the Holling type I, II,
and IIT equations. These equations describe the ecological
event of growth of a predator population given the amount
of prey available for consumption.
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171. [T] The Holling type I equation is described by
f(x) =ax, where x is the amount of prey available and
a > 0 is the rate at which the predator meets the prey for

consumption.

a. Graph the Holling type I equation, given a = 0.5.

b. Determine the first derivative of the Holling type I
equation and explain physically what the derivative
implies.

c. Determine the second derivative of the Holling type
I equation and explain physically what the
derivative implies.

d. Using the interpretations from b. and c. explain

why the Holling type I equation may not be
realistic.

172. [T] The Holling type II equation is described by

f) = n‘f +» Where x is the amount of prey available

and a >0 is the maximum consumption rate of the

predator.

a. Graph the Holling type II equation given a = 0.5
and n = 5. What are the differences between the
Holling type I and II equations?

b. Take the first derivative of the Holling type II
equation and interpret the physical meaning of the
derivative.

c. Show that f(n) = %a and interpret the meaning of
the parameter 7.

d. Find and interpret the meaning of the second
derivative. What makes the Holling type II function
more realistic than the Holling type I function?

173. [T] The Holling type III equation is described by

2
f(x) = —¥—, where x is the amount of prey available
n“+x

and a >0 is the maximum consumption rate of the
predator.

a. Graph the Holling type III equation given a = 0.5
and n =5. What are the differences between the
Holling type II and III equations?

b. Take the first derivative of the Holling type III
equation and interpret the physical meaning of the
derivative.

c. Find and interpret the meaning of the second
derivative (it may help to graph the second
derivative).

d. What additional ecological phenomena does the
Holling type III function describe compared with
the Holling type II function?
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174. [T] The populations of the snowshoe hare (in
thousands) and the lynx (in hundreds) collected over 7
years from 1937 to 1943 are shown in the following table.
The snowshoe hare is the primary prey of the lynx.

Population of snowshoe Population of
hare (thousands) lynx (hundreds)
20 10

55 15

65 55

95 60

Table 3.6 Snowshoe Hare and Lynx
Populations Source: http://lwww.biotopics.co.uk/
newgcsel/predatorprey.htmi.

a. Graph the data points and determine which
Holling-type function fits the data best.

b. Using the meanings of the parameters a and n,
determine values for those parameters by
examining a graph of the data. Recall that n
measures what prey value results in the half-
maximum of the predator value.

c. Plot the resulting Holling-type I, II, and III
functions on top of the data. Was the result from
part a. correct?

279
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3.5 | Derivatives of Trigonometric Functions

Learning Objectives

3.5.1 Find the derivatives of the sine and cosine function.
3.5.2 Find the derivatives of the standard trigonometric functions.
3.5.3 Calculate the higher-order derivatives of the sine and cosine.

One of the most important types of motion in physics is simple harmonic motion, which is associated with such systems
as an object with mass oscillating on a spring. Simple harmonic motion can be described by using either sine or cosine
functions. In this section we expand our knowledge of derivative formulas to include derivatives of these and other
trigonometric functions. We begin with the derivatives of the sine and cosine functions and then use them to obtain formulas
for the derivatives of the remaining four trigonometric functions. Being able to calculate the derivatives of the sine and
cosine functions will enable us to find the velocity and acceleration of simple harmonic motion.

Derivatives of the Sine and Cosine Functions

We begin our exploration of the derivative for the sine function by using the formula to make a reasonable guess at its
derivative. Recall that for a function f(x),

f/ (x) — hli_l;nof(x-i_ h]/)l - f(x)

Jx+h) - fx)
h

Consequently, for values of A very close to 0, f' (x) ~ . We see that by using & = 0.01,

sin(x + 0.01) — sinx
0.01

d (giny) &
dx(smx)N

sin(x + 0.01) — sinx
0.01

derivative of sinx (Figure 3.25).

By setting D(x) = and using a graphing utility, we can get a graph of an approximation to the

—2a

sin(x + 0.01) — sinx
0.01
Figure 3.25 The graph of the function D(x) looks a lot like a

D(x) =

cosine curve.

Upon inspection, the graph of D(x) appears to be very close to the graph of the cosine function. Indeed, we will show that
A (giny) =
dx(smx) = COSX.

If we were to follow the same steps to approximate the derivative of the cosine function, we would find that

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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d .
——(COoSx) = —sInXx.
5 (C08X)

Theorem 3.8: The Derivatives of sin x and cos x

The derivative of the sine function is the cosine and the derivative of the cosine function is the negative sine.

d (sinx) = (3.11)
dx(smx) CcoSX
d = —si (3.12)
dx(cosx) sinx
Proof
Because the proofs for %(sinx) = cosx and %(cosx) = —sinx use similar techniques, we provide only the proof for

%(Sinx) = cosx. Before beginning, recall two important trigonometric limits we learned in Introduction to Limits:

lim SN2 — 1 g Jim Coshh=1 _ ¢
h—>0 h h=0 h
The graphs of y = % and y = W are shown in Figure 3.26.

@) (b)
Figure 3.26 These graphs show two important limits needed to establish the derivative formulas for the
sine and cosine functions.

We also recall the following trigonometric identity for the sine of the sum of two angles:

sin(x + &) = sinxcosh + cosxsinh.

Now that we have gathered all the necessary equations and identities, we proceed with the proof.

sin(x 4+ h) — sinx

sy = hh—I>n0 b Apply the definition of the derivative.
= hlimosmx cosh + C(;le sinh — sin.x Use trig identity for the sine of the sum of two angles.
— Tim (Sinxcosh —sinx , cosxsinh
hh_r)no( h + i ) Regroup.
— . fcosxh—1 sinh :
= hh_r)no(smx( A ) + cosx( h )) Factor out sinx and cos x.
= sinx(0) + cosx(1) Apply trig limit formulas.
( pply trig

= Ccosx Simplify.
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O
Figure 3.27 shows the relationship between the graph of f(x) = sinx and its derivative f’(x) = cosx. Notice that at the
points where f(x) = sinx has a horizontal tangent, its derivative f’(x) = cosx takes on the value zero. We also see that
where f(x) = sinx is increasing, f'(x) = cosx > 0 and where f(x) = sinx is decreasing, f’(x) = cosx < 0.
i
1+ o

\ fi(x) = cosx /

f(x) = sinx

Figure 3.27 Where f(x) has a maximum or a minimum,
f'(x) =0 thatis, f'(x) =0 where f(x) has a horizontal

tangent. These points are noted with dots on the graphs.

Example 3.39

Differentiating a Function Containing sin x
Find the derivative of f(x) = 5x3 sinx.

Solution
Using the product rule, we have
/ — d(5,3\. g d g .53
) = dx(Sx) smx+dx(smx) 5x
= 15x2 - sinx + cosx- 5x°.

After simplifying, we obtain

F(x) = 15x2 sinx + 5x> cosx.

@ 3.25 Find the derivative of f(x) = sinxcosx.

Example 3.40

Finding the Derivative of a Function Containing cos x

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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COS X

Find the derivative of g(x) = R
4x

Solution
By applying the quotient rule, we have

o) = (=sinx)4x” — 8x(cosx)
(o)

Simplifying, we obtain

—4x?sinx — 8xcosx
16x*

— —Xxsinx —2cosx

4x3

gx) =

@ 3.26 Find the derivative of f(x) = ﬁ.

Example 3.41

An Application to Velocity

A particle moves along a coordinate axis in such a way that its position at time ¢ is given by s(¢) = 2sint — ¢
for 0 <t < 2z. At what times is the particle at rest?

Solution
To determine when the particle is at rest, set s’ (#) = v(f) = 0. Begin by finding s’ (f). We obtain

s'(t) =2cost—1,

So we must solve

2cost—1=0for0 <t <2x.

5

Z oand t =% 5

The solutions to this equation are ¢ = 3 3

. Thus the particle is at rest at times t = % and t =

@ 3.27 A particle moves along a coordinate axis. Its position at time ¢ is given by s(f) = V3t + 2cost for
0 <t < 2x. At what times is the particle at rest?

Derivatives of Other Trigonometric Functions

Since the remaining four trigonometric functions may be expressed as quotients involving sine, cosine, or both, we can use
the quotient rule to find formulas for their derivatives.
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Example 3.42

The Derivative of the Tangent Function
Find the derivative of f(x) = tanux.

Solution

Start by expressing tanx as the quotient of sinx and cosx :

Now apply the quotient rule to obtain

£ () = COSXCOSX — (—smx)smx‘

(cos x)2

Simplifying, we obtain
1 (x) = cos?x + sinzx_

COSZX

Recognizing that cos?x +sin’x = 1, by the Pythagorean theorem, we now have

£ =—L

COoS™ x

1

cosx 0 obtain

Finally, use the identity secx =

fx)= sec? x.

@ 3.28 Find the derivative of f(x) = cotx.

The derivatives of the remaining trigonometric functions may be obtained by using similar techniques. We provide these
formulas in the following theorem.

Theorem 3.9: Derivatives of tanx, cotx, secx, and cscx

The derivatives of the remaining trigonometric functions are as follows:

d_ ) (3.13)
dx(tanx) sec”x

d = o2 (3.14)
dx(cotx) cscox

d _ (3.15)
dx(secx) secxtanx
d_ - _ (3.16)
dx(cscx) CSCXCOtX.

Example 3.43
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Finding the Equation of a Tangent Line

Find the equation of a line tangent to the graph of f(x) = cotx at x = %

Solution

To find the equation of the tangent line, we need a point and a slope at that point. To find the point, compute

f(%) = cot% =1.

Thus the tangent line passes through the point (%, 1). Next, find the slope by finding the derivative of
f(x) = cotx and evaluating it at %:

f/(x) = —csc?xand f’ (%) = —CSCZ(%) =-2.

Using the point-slope equation of the line, we obtain

or equivalently,

Example 3.44

Finding the Derivative of Trigonometric Functions

Find the derivative of f(x) = cscx + xtanx.

Solution

To find this derivative, we must use both the sum rule and the product rule. Using the sum rule, we find

ven_ d d
fx)= dx(cscx) + dx(xtanx).
In the first term, %(CSC x) = —cscxcotx, and by applying the product rule to the second term we obtain

%(xtanx) = (1)(tanx) + (seczx)(x).

Therefore, we have

f"(x) = —cscxcotx + tanx + xsec?x.

@ 3.29 Find the derivative of f(x) = 2tanx — 3cotx.
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N

@ 3.30 Find the slope of the line tangent to the graph of f(x) = tanx at x =

Higher-Order Derivatives

The higher-order derivatives of sinx and cosx follow a repeating pattern. By following the pattern, we can find any
higher-order derivative of sinx and cosx.

Example 3.45

Finding Higher-Order Derivatives of y =sinx

Find the first four derivatives of y = sinx.

Solution

Each step in the chain is straightforward:

y = sinx
% = cosx
2

% = —sinx
x

3

% = —cosx
x

d* .
— = sinx.
dx*

Analysis
Once we recognize the pattern of derivatives, we can find any higher-order derivative by determining the step in
the pattern to which it corresponds. For example, every fourth derivative of sin x equals sin x, so

a4 a8 412 aMn )
£ —(sinx) = “—(sinx) = (sinx) = ... = (sinx) = sinx
dx* dx® dx'? dx*

d5 . d9 . d13 . d4l’l +1 .

= —(sinx) = =—(sinx) = (sinx) = ... = £———(sinx) = cosx.
de dx9 dx13 dx4n +1

3.31 4
@ For y = cosx, find d—z
dx

Example 3.46

Using the Pattern for Higher-Order Derivatives of y = sinx

d74

Find PRz

(sinx).
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Solution

We can see right away that for the 74th derivative of sinx, 74 = 4(18) + 2, so
d74 d72 +2

2
ﬁ(sinx) = W(sinx) = %(sinx) = —sinx.
X X X

59
@ 3.32 For y =sinx, find jx”(sinx).

Example 3.47

An Application to Acceleration

A particle moves along a coordinate axis in such a way that its position at time ¢ is given by s(¢) = 2 — sint.

Find v(x/4) and a(x/4). Compare these values and decide whether the particle is speeding up or slowing down.

Solution
First find v(¢) = 5’ (¢):

w(t) = s’ (t) = —cost.

Thus,
(8= -%
Next, find a(¢f) = v/'(¢). Thus, a(t) = v’ (¢) = sint and we have
=%
Since v(%) = — \/_15 <0 and a(%) = % > 0, we see that velocity and acceleration are acting in opposite

directions; that is, the object is being accelerated in the direction opposite to the direction in which it is travelling.
Consequently, the particle is slowing down.

@/ 3.33 A block attached to a spring is moving vertically. Its position at time ¢ is given by s(¢) = 2sin¢. Find

V(S—”) and a(s—”). Compare these values and decide whether the block is speeding up or slowing down.

6 6
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3.5 EXERCISES

For the following exercises, find % for the given

functions.
175. y= x> —secx+1

176. 5

y=3cscx+3
177. y= x2 cotx
178. y = x— x3 sinx

179. y = secx

180. y = sinxtanx

181. y = (x + cosx)(1 — sinx)

182. y= _tanx
1 —secx
183. y= 1 —cotx
1+ cotx

184. y = cosx(l + cscx)

For the following exercises, find the equation of the tangent
line to each of the given functions at the indicated values
of x. Then use a calculator to graph both the function and

the tangent line to ensure the equation for the tangent line
is correct.

185. [T] f(x) = —sinx, x =0
186. [T] f(x) =cscx, x = %
187. [T] f(x) =14 cosx, x = 37”
188. [T] f(x) = secx, x = %

189. [T] f(x) = x2—tanxx =0

190. [T] f(x) = Scotxx=Z

&

2
For the following exercises, find % for the given
X

functions.

191. y = xsinx —cosx
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Chapter 3 | Derivatives

192. y = sinxcosx

193. y=x-— %sinx

194y = L4 tanx

195. y =2cscx
196. y = gec?x

197. Find all x values on the graph of

f(x) = —3sinxcosx where the tangent line is horizontal.

198. Find all x values on the graph of f(x) = x —2cosx
for 0 < x < 2z where the tangent line has slope 2.

199. Let f(x) = cotx. Determine the points on the graph
of f for 0 < x <2z where the tangent line(s) is (are)
parallel to the line y = —2x.

200. [T] A mass on a spring bounces up and down in
simple harmonic motion, modeled by the function
s(t) = —6¢cost where s is measured in inches and ¢ is

measured in seconds. Find the rate at which the spring is
oscillating at t =5 s.

201. Let the position of a swinging pendulum in simple
harmonic motion be given by s(f) = acost + bsint. Find

the constants a and b such that when the velocity is 3 cm/
s, s=0and r=0.

202. After a diver jumps off a diving board, the edge of the

board oscillates with position given by s(f) = —5cos? cm

at ¢ seconds after the jump.

a. Sketch one period of the position function for
t>0.

b. Find the velocity function.

c. Sketch one period of the velocity function for
t>0.

d. Determine the times when the velocity is 0 over one
period.

e. Find the acceleration function.

=

Sketch one period of the acceleration function for
t>0.
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203. The number of hamburgers sold at a fast-food
restaurant in Pasadena, California, is given by
y =10+ 5sinx where y is the number of hamburgers

sold and x represents the number of hours after the

restaurant opened at 11 a.m. until 11 p.m., when the store
closes. Find y’ and determine the intervals where the

number of burgers being sold is increasing.

204. [T] The amount of rainfall per month in Phoenix,
Arizona, can be approximated by y(#) = 0.5 + 0.3 cost,
where ¢ is months since January. Find y’ and use a
calculator to determine the intervals where the amount of

rain falling is decreasing.

For the following exercises, use the quotient rule to derive
the given equations.

205. d_ )
dx(cotx)— cscéx
206. d —
dx(secx) = secxtanx
207.

d
< (cscx) = —cscxcotx
o eSeX)

208. Use the definition of derivative and the identity
cos(x+ h) = cosxcosh —sinxsink to prove that

d(cosx) _
dx

—sinx.

For the following exercises, find the requested higher-order
derivative for the given functions.

209. 43

Y
—= of y=3cosx
dx?
210. 42
% of y= 3sinx + x2cosx
by
211, 44
% of y=>5cosx
X
212, 42
% of y = secx + cotx
X
213. 43

LY of y=x10—secx

289
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3.6 | The Chain Rule

Learning Objectives

3.6.1 State the chain rule for the composition of two functions.
3.6.2 Apply the chain rule together with the power rule.

3.6.3 Apply the chain rule and the product/quotient rules correctly in combination when both are
necessary.

3.6.4 Recognize the chain rule for a composition of three or more functions.
3.6.5 Describe the proof of the chain rule.

We have seen the techniques for differentiating basic functions (x”", sinx, cosx, etc.) as well as sums, differences,
products, quotients, and constant multiples of these functions. However, these techniques do not allow us to differentiate

compositions of functions, such as h(x) = sin(x3) or k(x) = V3x2 + 1. In this section, we study the rule for finding the

derivative of the composition of two or more functions.

Deriving the Chain Rule

When we have a function that is a composition of two or more functions, we could use all of the techniques we have already
learned to differentiate it. However, using all of those techniques to break down a function into simpler parts that we are
able to differentiate can get cumbersome. Instead, we use the chain rule, which states that the derivative of a composite
function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.

To put this rule into context, let’s take a look at an example: A(x) = sin (x3). We can think of the derivative of this function
with respect to x as the rate of change of sin(x3) relative to the change in x. Consequently, we want to know how sin(x3)

changes as x changes. We can think of this event as a chain reaction: As x changes, x> changes, which leads to a change
in sin (x3). This chain reaction gives us hints as to what is involved in computing the derivative of sin(x3 ) First of all, a

3 3

change in x forcing a change in x” suggests that somehow the derivative of x> is involved. In addition, the change in x
forcing a change in sin(x3) suggests that the derivative of sin(x) with respect to u, where u = x3, isalso part of the
final derivative.

We can take a more formal look at the derivative of h(x) = sin (x3) by setting up the limit that would give us the derivative

at a specific value a in the domain of A(x) = sin(x3).

sin (x3) - sin(a3)‘

W@ = Jlim =g

This expression does not seem particularly helpful; however, we can modify it by multiplying and dividing by the
expression x> — a> to obtain

sin(x3) - sin(a3) JRCII
343 TxXx—a -

I (a)= Jim_

From the definition of the derivative, we can see that the second factor is the derivative of x> at x = a. That is,

3 3
o X2 —a” _ d(.3)_13,2
Jim =4 = 0ox%) = 3.

However, it might be a little more challenging to recognize that the first term is also a derivative. We can see this by letting

u=x> and observing thatas x — a, u — a’:
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. . sinu-— sin(a3)
h—mﬁ = lim - 3
r—a x’ —a u—ad U—a

_d
= E(smu)u _ 43

= cos(a3).

Thus, A’ (a) = cos(a3)- 3a2.

201

In other words, if h(x) = sin(x3 ), then A’ (x) = cos (x3 ) 3x2. Thus, if we think of h(x) = sin(x3 ) as the composition

(fog)x) = flg(x)) where f(x)= sin x and g(x) = %3, then the derivative of h(x) = sin(x3) is the product of the

derivative of g(x) = x> and the derivative of the function f(x) = sinx evaluated at the function g(x) = x3. Atthis point,

we anticipate that for A(x) = sin(g(x)), it is quite likely that 4’(x) = cos(g(x))g’(x). As we determined above, this is the

case for h(x) = sin(x3).

Now that we have derived a special case of the chain rule, we state the general case and then apply it in a general form to
other composite functions. An informal proof is provided at the end of the section.

Rule: The Chain Rule

Let f and g be functions. For all x in the domain of g for which g is differentiable at x and f is differentiable at

g(x), the derivative of the composite function

h(x) = (feg)x) = flg(x)

is given by

h (x) = f'(g(0)g" (x).

Alternatively, if y is a function of u#, and u is a function of x, then

dy _dy du
dx du dx’

’ Watch an animation (http://www.openstaxcollege.org/l/20_chainrule2) of the chain rule.

Problem-Solving Strategy: Applying the Chain Rule

(3.17)

1.
2.
3.
4.

To differentiate /(x) = f(g(x)), begin by identifying f(x) and g(x).
Find f'(x) and evaluate it at g(x) to obtain f’(g(x)).
Find g’'(x).

Write A’ (x) = f'(g(x))- g’ (x).

Note: When applying the chain rule to the composition of two or more functions, keep in mind that we work our way
from the outside function in. It is also useful to remember that the derivative of the composition of two functions can
be thought of as having two parts; the derivative of the composition of three functions has three parts; and so on. Also,
remember that we never evaluate a derivative at a derivative.


http://www.openstaxcollege.org/l/20_chainrule2
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The Chain and Power Rules Combined

We can now apply the chain rule to composite functions, but note that we often need to use it with other rules. For example,
to find derivatives of functions of the form A(x) = (g(x))", we need to use the chain rule combined with the power rule. To

do so, we can think of A(x) = (g(x))" as f(g(x)) where f(x)=x". Then f'(x) =nx" "L Thus, f'(g(x))= n(g(x))" .

This leads us to the derivative of a power function using the chain rule,

B (x) = nlg(0))" g’ (x)

Rule: Power Rule for Composition of Functions

For all values of x for which the derivative is defined, if
h(x) = (g(x0))".
Then
W) = nlg)" g’ (). (3.18)

Example 3.48

Using the Chain and Power Rules

Find the derivative of h(x) = %
(3x*+1)

Solution

First, rewrite h(x) = % = (3)62 + 1)_

(3x2 + 1)
Applying the power rule with g(x) = 3x2+ 1, we have
5 -3
W () ==203x+1)  (6w).

Rewriting back to the original form gives us

’ —12x
W o(x) = —=12x
Gx% +1)3

.34 4
@ 3.3 Find the derivative of h(x) = (2x3 +2x — 1) .

Example 3.49

Using the Chain and Power Rules with a Trigonometric Function

Find the derivative of h(x) = sin’ x.
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Solution

3 3

First recall that sin” x = (sinx)3, so we can rewrite A(x) = sin” x as h(x) = (sinx)3.
Applying the power rule with g(x) = sinx, we obtain

h(x)= 3(sinx)2cosx = 3sin2xcosx.

Example 3.50

Finding the Equation of a Tangent Line

1

Find the equation of a line tangent to the graph of A(x) = 7 at x = 2.
(Bx-5)
Solution
Because we are finding an equation of a line, we need a point. The x-coordinate of the point is 2. To find the
y-coordinate, substitute 2 into /(x). Since h(2) = m =1, the pointis (2, 1).

For the slope, we need h'(2). To find 4'(x), first we rewrite h(x) = (3x — 5)_2 and apply the power rule to

obtain

W (x)=-23x-5)"3) = -6(3x—5)"".

By substituting, we have A’ (2) = —6(3(2) — 5)_3 = —6. Therefore, the line has equation y — 1 = —6(x — 2).
Rewriting, the equation of the line is y = —6x + 13.

335 . : 2_ o)
Find the equation of the line tangent to the graph of f(x) = (x - 2) at x = -2.

Combining the Chain Rule with Other Rules

Now that we can combine the chain rule and the power rule, we examine how to combine the chain rule with the other rules
we have learned. In particular, we can use it with the formulas for the derivatives of trigonometric functions or with the
product rule.

Example 3.51

Using the Chain Rule on a General Cosine Function
Find the derivative of A(x) = cos(g(x)).

Solution
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Think of A(x) =cos(g(x)) as flg(x)) where f(x)=cosx. Since f’'(x)=—sinx. we have
f'(g(x)) = —sin(g(x)). Then we do the following calculation.

h(x) = f'(gx)g (x) Apply the chain rule.
= —sin(g(x))g’ (x)  Substitute f’(g(x)) = —sin(g(x)).

Thus, the derivative of A(x) = cos(g(x)) is given by A’ (x) = —sin(g(x))g’ (x).

In the following example we apply the rule that we have just derived.

Example 3.52

Using the Chain Rule on a Cosine Function
Find the derivative of h(x) = cos(5x2).

Solution

Let g(x) = 5x2. Then g’ (x) = 10x. Using the result from the previous example,

h'(x) = —sin(5x%)- 10x
= —10xsin(5x2).

Example 3.53

Using the Chain Rule on Another Trigonometric Function
Find the derivative of h(x) = sec (4x5 + Zx).

Solution
Apply the chain rule to A(x) = sec(g(x)) to obtain

' (x) = sec(g(x) tan(g(x))g" (x).
In this problem, g(x) = 4x° + 2x, sowehave g’'(x) = 20x* + 2. Therefore, we obtain
R (x) = sec(4x” + 2x)tan (4x> + 2x)20x* + 2)
= (ZOx4 + 2)sec (4x5 + 2x)tan(4x5 + 2x).

@ 3.36 Find the derivative of h(x) = sin(7x + 2).
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At this point we provide a list of derivative formulas that may be obtained by applying the chain rule in conjunction
with the formulas for derivatives of trigonometric functions. Their derivations are similar to those used in Example 3.51
and Example 3.53. For convenience, formulas are also given in Leibniz’s notation, which some students find easier to
remember. (We discuss the chain rule using Leibniz’s notation at the end of this section.) It is not absolutely necessary to
memorize these as separate formulas as they are all applications of the chain rule to previously learned formulas.

Theorem 3.10: Using the Chain Rule with Trigonometric Functions

For all values of x for which the derivative is defined,

%(sin(g(x)) = cos(g(x))g'(x) dlsmu = cos u%
L(cos(g(x)) = —sin(g(V)g'(x) L cosu = —sinudlt
%(tan(g(x)) = sec?(g(x))g’(x) %tanu — seczugz
%(cot(g(x)) = —csc2(g(0)g'(x) %cotu = csczu‘(lg‘c
d%(sec(g(x)) = sec(g(x)tan(g(x))g’(x) disecu = secutanud;
%(csc(g(x)) = —csc(g(x))cot(g(0)g’ (x) %csou = —cscucotu%

Example 3.54

Combining the Chain Rule with the Product Rule
Find the derivative of i(x) = 2x+ 1)° 3x—2).

Solution
First apply the product rule, then apply the chain rule to each term of the product.

B(x) = %((Zx +1)°)-Gx-2)" + %((3% -2)")-@2x+1)°>  Apply the product rule.

=502x+1D*2-Gx=2)7+73@x—2)%-3-2x+1)°  Apply the chain rule.

=10Q2x+ D*Gx=2)" +218x-2)02x + 1)° Simplify.
= 2x+ D*Gx=2)°103x = 7) +212x + 1)) Factor out 2x + 1)* 3x — 2)°.
= 2x+ D*GBx - 2)%(72x — 49) Simplify.

3.37 Find the derivative of h(x) = —3
2x+3)

Composites of Three or More Functions

We can now combine the chain rule with other rules for differentiating functions, but when we are differentiating the
composition of three or more functions, we need to apply the chain rule more than once. If we look at this situation in
general terms, we can generate a formula, but we do not need to remember it, as we can simply apply the chain rule multiple
times.

In general terms, first we let

k(x) = hf(g(x))-
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Then, applying the chain rule once we obtain
’ — d — . i
K () = “(h(f(g(x)) = W(f(g(0)) - f(g(0).
Applying the chain rule again, we obtain

k' (x) =k (flg))f’ (g(x)g (x)).

Rule: Chain Rule for a Composition of Three Functions

For all values of x for which the function is differentiable, if
k(x) = h(f(g(x))),
then
K (x) = ' (flg))f" (g(0)g" (x).

In other words, we are applying the chain rule twice.
Notice that the derivative of the composition of three functions has three parts. (Similarly, the derivative of the composition

of four functions has four parts, and so on.) Also, remember, we can always work from the outside in, taking one derivative
at a time.

Example 3.55

Differentiating a Composite of Three Functions
Find the derivative of k(x) = cos4(7x2 + 1).

Solution

First, rewrite k(x) as

k(x) = (cos(7x? + 1))4.

Then apply the chain rule several times.

kK'(x) = 4(cos (7x2 + 1))3 (%(cos (7x2 + 1)) Apply the chain rule.
= 4(cos(7x2 + 1))3 (—sin (7x2 + 1))(%(%2 + 1)) Apply the chain rule.
= 4(cos (7x2 + 1))3 (—sin (7)c2 + 1))(14x) Apply the chain rule.
= —56xsin(7x2 + 1)cos>(7x% + 1) Simplify.

@ 3.38  Find the derivative of h(x) = sin6(x3).

Example 3.56
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Using the Chain Rule in a Velocity Problem

velocity of the particle at time ¢ = %?

Solution

To find v(z), the velocity of the particle at time ¢, we must differentiate s(¢). Thus,

v(t) = s’ (t) = 2cos(2t) — 3sin(31).

Substituting ¢ = % into v(¢), we obtain v(%) =-2.

A particle moves along a coordinate axis. Its position at time t is given by s(#) = sin(2¢) + cos(3#). What is the

297

3.39 A particle moves along a coordinate axis. Its position at time ¢ is given by s(¢) = sin(4¢). Find its

acceleration at time ¢.

Proof

At this point, we present a very informal proof of the chain rule. For simplicity’s sake we ignore certain issues: For example,
we assume that g(x) # g(a) for x # a in some open interval containing a. We begin by applying the limit definition of

the derivative to the function A(x) to obtain A’(a):

fle) — flg(@)

W (a)= Jim LEIZFED)

Rewriting, we obtain

ron = i J8) — flg(@) g(x) — g(a)
R C e O R S

Although it is clear that

gx) —gla) _
=

Jim SR 28D~ g(a),

it is not obvious that

. flg) = fle(@) _
AT —s@

I (g(@)).
To see that this is true, first recall that since g is differentiable at a, g is also continuous at a. Thus,
Jim g(x) = g(a).

Next, make the substitution y = g(x) and b = g(a) and use change of variables in the limit to obtain

. fle) = f18g@) _ . SO = fD) _ oy
xlgnam = yh—1>nb—y —b = f(b) = f'(g(a)).

Finally,

Wi = Jim FES= RO SO = g @
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Example 3.57

Using the Chain Rule with Functional Values
Let h(x) = flgx). If g(1)=4, g’ (1)=3, and f'(4)=7, find ' (1).

Solution
Use the chain rule, then substitute.

A (1) =f"(g(1)g' (1) Apply the chain rule.

=f'4)-3 Substitute g(1) =4 and g’ (1) = 3.
=7-3 Substitute f'(4) = 7.
=21 Simplify.

@ 3.40 Given h(x) = flg(x)). If g2)=-3,¢'2)=4, and f'(-3)=7, find i’ (2).

The Chain Rule Using Leibniz’s Notation

As with other derivatives that we have seen, we can express the chain rule using Leibniz’s notation. This notation for the
chain rule is used heavily in physics applications.

For h(x) = f(g(x)), let u = g(x) and y = h(x) = g(u). Thus,

h' (x) = %, f’ (g(x)) = f/ ([,{) = %andg’(x) — %
Consequently,
% =hx)=f (g(x))g/ (x) = %%

Rule: Chain Rule Using Leibniz’s Notation

If y is a function of #, and u is a function of x, then

dy _dy du
dx du dx’

Example 3.58

Taking a Derivative Using Leibniz’s Notation, Example 1

5
. . . —- x
Find the derivative of y = ( £ 2) .
Solution
First, let u = —%—. Thus, y = uS. Next, find 9% and ﬂ Using the quotient rule
’ 3x+2 ’ ’ dx du ’
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expressed entirely in terms of the original variable given in the problem.

Taking a Derivative Using Leibniz’s Notation, Example 2

Find the derivative of y = tan(4x2 —-3x+ 1).

Solution
First, let u = 4x? = 3x+ 1. Then y = tanu. Next, find % and %:
du _g, _ dy _ .2
= 8x —3and dy = seetu
Finally, we put it all together.
Ay _dy du ’
ax = du dx Apply the chain rule.

Useﬂ: 8x —3and

=sec?u-(8x —3) an

=sec(@x? —3x+1)-(8x = 3)

du _ 2
dx  (3x+2)2
and
% = 5u*,
Finally, we put it all together.
dy _dy du i
Ix = du dx Apply the chain rule.
= 5u*. #2 Substituteﬂ = 5u* and 44
(Bx+2) du dx
4
_ X . 2 : __ X
= 5(3x m 2) Grt 2)2 Substitute u TR
10x* s
= Simplify.
(Bx+2)°

dy

299

_ 2
(3x +2)2

It is important to remember that, when using the Leibniz form of the chain rule, the final answer must be

Example 3.59

= SCC2 u.

du

Substitute u = 4x2 — 3x + 1.

@ 3.41 Use Leibniz’s notation to find the derivative of y = cos(x3). Make sure that the final answer is

expressed entirely in terms of the variable x.
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3.6 EXERCISES

For the following exercises, given

y=f(u) and
u=gx), find % by using Leibniz’s notation for the

rale: @Y _ Y du
chain rule: I = dadr

214. y =3y — 6, u = 2x°
215. y:6u3,u=7x—4
216. y =sinu, u =5x—1
217. y=cosu,u=_Tx

218. y =tanu, u =9x+2

219 y = Vdu + 3, u = x> — 6x

For each of the following exercises,
a. decompose each function in the form y = f(u)

and u = g(x), and

b. find ay as a function of x.
dx

220. y = (3x - 2)6

221. y= 1)3

222y =in® (x)

223. i (§+%)

224, y = tan(secx)
225. y=csc(zx+1)
226. y= cot2x

227y = —6sin>x

For the following exercises, find % for each function.

228. y= (3)(2 +3x— 1)4

229. y=(5- 2x)_2
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230. y= cos> (7x)

231 y= (2)c3 —x2+6x+ 1)3

y 2
sin (x)

233. y = (tanx + sin)c)_3

234,y = x2cos*x

235. y = sin(cos7x)

236. y=\V6+ secx’
237 y=cot>(4x + 1)

238. Lot y= [f()c)]3 and suppose that f’(1)=4 and

dy _ _ .
= 10 for x = 1. Find f(1).

239. 0
Let y= ( Sx) +5x ) and suppose that

F(=1) = —4 and %: 3 when x = —1. Find f'(~1)

240. 1,6t y=(f(w) + 3x)2 and u = x> — 2x. If f4) =6

and % = 18 when x =2, find f'(4).

241. [T] Find the equation of the tangent line to

y = —sin (1) at the origin. Use a calculator to graph the

2
function and the tangent line together.

242. [T] Find the equation of the tangent line to
2
y= (3x + %) at the point (1, 16). Use a calculator to

graph the function and the tangent line together.

243. Find the x-coordinates at which the tangent line to

68

y= ( - 7) is horizontal.
244, [T] Find an equation of the line that is normal to
g(0) = sin®(z6) at the point (%, %) Use a calculator to
graph the function and the normal line together.

For the following exercises, use the information in the
following table to find /’(a) at the given value for a.
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x f@) f'x) g(x) g'(x)
0 2 5 0 2

1 1 -2 3 0

2 4 4 1 -1

3 3 -3 2 3

245. h(x) = flg(x));a =0
246. h(x) = g(f(x));a =0

247. h(x) = (x4 + g(x))_z; a=1

248. 2
_(f®)Y. _
h) = (g()c)) ya=3

249. h(x) = flx+ f(x); a =1
250 () = (1+g() s a=2
5L px) = g2+ fx?)fa=1
252. h(x) = flg(sinx)); a = 0

253. [T] The position function of a freight train is given by
s(r) = 100(r + 1)_2, with s in meters and ¢ in seconds.
At time ¢t = 6 s, find the train’s

a. velocity and

b. acceleration.

c. Using a. and b. is the train speeding up or slowing

down?

254. [T] A mass hanging from a vertical spring is in simple
harmonic motion as given by the following position
function, where ¢ is measured in seconds and s is in

inches:

s(t) = =3cos (m + %)

a. Determine the position of the spring at # = 1.5 s.

b. Find the velocity of the spring at t = 1.5 s.

301

255. [T] The total cost to produce x boxes of Thin Mint
Girl  Scout

C =0.0001x> —0.02x> +3x+300. In ¢
production is estimated to be x = 1600 + 1007 boxes.

cookies is C dollars,  where

weeks

a. Find the marginal cost C’ (x).

b. Use Leibniz’s notation for the chain rule,
dC _ dC dx

dt ~ dx dr’
time ¢ that the cost is changing.

to find the rate with respect to

c. Use b. to determine how fast costs are increasing
when ¢ = 2 weeks. Include units with the answer.

256. [T] The formula for the area of a circleis A = 7rr2,

where r is the radius of the circle. Suppose a circle is
expanding, meaning that both the area A and the radius r
(in inches) are expanding.

100
(t+7)>

seconds. Use the chain rule dA _ dA dr to find

dt — dr dt
the rate at which the area is expanding.

a. Suppose r=2-— where ¢ is time in

b. Use a. to find the rate at which the area is
expanding at t =4 s.

257. [T] The formula for the volume of a sphere is

3

S="4z , where r (in feet) is the radius of the sphere.

3
Suppose a spherical snowball is melting in the sun.

1 1 L .
— ——= where ¢ is time in
t+n* 12

a. Suppose r =

dsS _dsS . dr :
dr = dr ar ©find

the rate at which the snowball is melting.

minutes. Use the chain rule

b. Use a. to find the rate at which the volume is
changing at £ = 1 min.

258. [T] The daily temperature in degrees Fahrenheit of
Phoenix in the summer can be modeled by the function

T(x) =94 — 10008[1—”2()6 — 2)], where x is hours after

midnight. Find the rate at which the temperature is
changing at 4 p.m.

259. [T] The depth (in feet) of water at a dock changes
with the rise and fall of tides. The depth is modeled by the

function D(f) = 5sin (%t - 7?”) +8, where ¢ is the

number of hours after midnight. Find the rate at which the
depth is changing at 6 a.m.
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3.7 | Derivatives of Inverse Functions

Learning Objectives

3.7.1 Calculate the derivative of an inverse function.
3.7.2 Recognize the derivatives of the standard inverse trigonometric functions.

In this section we explore the relationship between the derivative of a function and the derivative of its inverse. For functions
whose derivatives we already know, we can use this relationship to find derivatives of inverses without having to use the
limit definition of the derivative. In particular, we will apply the formula for derivatives of inverse functions to trigonometric
functions. This formula may also be used to extend the power rule to rational exponents.

The Derivative of an Inverse Function

We begin by considering a function and its inverse. If f(x) is both invertible and differentiable, it seems reasonable that

the inverse of f(x) is also differentiable. Figure 3.28 shows the relationship between a function f(x) and its inverse
f -1 (x). Look at the point (a, f -1 (a)) on the graph of f _l(x) having a tangent line with a slope of ( f _1)/ (a) = % This
point corresponds to a point ( f -1 (a), a) on the graph of f(x) having a tangent line with a slope of f’ ( f -1 (a)) = %

Thus, if f _l(x) is differentiable at a, then it must be the case that

_1/ — 1 .
U@ 7 @)
q

Y fix) slope = f(f-}(a)) = 4

(@), a)_

(a, f"*a))

0 X
Figure 3.28 The tangent lines of a function and its inverse are
related; so, too, are the derivatives of these functions.

We may also derive the formula for the derivative of the inverse by first recalling that x = f(f _l(x)). Then by

differentiating both sides of this equation (using the chain rule on the right), we obtain
L=f () m)
Solving for (f -1 )’ (x), we obtain

NN | (3.19)
e F )

We summarize this result in the following theorem.
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Theorem 3.11: Inverse Function Theorem

Let f(x) be a function that is both invertible and differentiable. Let y = f =L (x) be the inverse of f(x). For all x
satisfying f” ( f =1 (x)) #0,

d = ~1y,
tem == e
Alternatively, if y = g(x) is the inverse of f(x), then
__ 1
0= Tty

Example 3.60

Applying the Inverse Function Theorem

Use the inverse function theorem to find the derivative of g(x) = % Compare the resulting derivative to that

obtained by differentiating the function directly.

Solution
The inverse of g(x —x+2 is f(x :L. Since g’ (x :4, begin by finding f’(x). Thus,
g(x) * f =+ g () Tty Deenby g f®
, -2 : -2 ) x?
)= and f” (g(x)) = = = -
(@x-1)? b —17 a2 2
X

Finally,

1 o
8= FLm T T

We can verify that this is the correct derivative by applying the quotient rule to g(x) to obtain

, 2
x)=-=.
g e

@ 342 Use the inverse function theorem to find the derivative of glxv) = x-i-#Z Compare the result obtained

by differentiating g(x) directly.

Example 3.61

Applying the Inverse Function Theorem

Use the inverse function theorem to find the derivative of g(x) = .
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Solution
The function g(x) = % is the inverse of the function fx) = x>, Since g (x) = m begin by finding
f' (x). Thus,
F'(x) =3x> and £’ (g(x)) = 3(%)2 =3x23,
Finally,

, 1 1.-2/3
gx= =x 77
3 x2/3 3

@ 3.43  Find the derivative of glx) = W by applying the inverse function theorem.

From the previous example, we see that we can use the inverse function theorem to extend the power rule to exponents of

the form 1

77> Where n is a positive integer. This extension will ultimately allow us to differentiate x4, where ¢ is any

rational number.

Theorem 3.12: Extending the Power Rule to Rational Exponents

The power rule may be extended to rational exponents. That is, if n is a positive integer, then
d(.my_1 (/n)-1 (3.20)
a(x ) = nx °

Also, if n is a positive integer and m is an arbitrary integer, then

d (.m/n\ _ m (min)—1 3.21
E(x )— Wx o ( )

Proof
The function g(x) = x/" is the inverse of the function f(x) =x". Since g’'(x) = m, begin by finding ' (x).
Thus,
£ =ne" L and £ (g(0) = n(x =1 = gy D
Finally,

" (y) = 1 _1.U0d-n/n_ 1 _Un)-1
8§ =—F"F=n = .
nx

/

m
To differentiate x™" we must rewrite it as (xll ") and apply the chain rule. Thus,

)= o) = <t
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Example 3.62

Applying the Power Rule to a Rational Power

2/3

Find the equation of the line tangent to the graph of y = x=~ at x = 8.
Solution
. o dy . .
First find Tc and evaluate it at x = 8. Since
Ay _2.-13 049 _1
dx =35 MG T3
1

the slope of the tangent line to the graph at x = 8 is 3

Substituting x = 8 into the original function, we obtain y = 4. Thus, the tangent line passes through the point

(8, 4). Substituting into the point-slope formula for a line, we obtain the tangent line

y:§x+3.

@ 3.44 Find the derivative of s() = V2t + 1.

Derivatives of Inverse Trigonometric Functions

We now turn our attention to finding derivatives of inverse trigonometric functions. These derivatives will prove invaluable
in the study of integration later in this text. The derivatives of inverse trigonometric functions are quite surprising in that
their derivatives are actually algebraic functions. Previously, derivatives of algebraic functions have proven to be algebraic
functions and derivatives of trigonometric functions have been shown to be trigonometric functions. Here, for the first time,
we see that the derivative of a function need not be of the same type as the original function.

Example 3.63

Derivative of the Inverse Sine Function
Use the inverse function theorem to find the derivative of g(x) = sin ! x.

Solution

1

Since for x in the interval [—%, %], f(x) = sinx is the inverse of g(x) =sin™" x, begin by finding f'(x).

Since
f'(x) = cosxand f’(g(x)) = cos(sin_1 x) =\V1-x2

we see that

7y — A (in—11) — 1 _ 1
¢ 00 =i = T T e
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Analysis

2

To see that cos(sin_lx) =V1-x°, -1

consider the following argument. Set sin~ " x = 6. In this case, sind = x

where —7 <0< 72[ We begin by considering the case where 0 < 6 < 72[ Since @ is an acute angle, we may
construct a right triangle having acute angle 6, a hypotenuse of length 1 and the side opposite angle 6 having
length x. From the Pythagorean theorem, the side adjacent to angle € has length V1 — x%. This triangle is

shown in Figure 3.29. Using the triangle, we see that cos (Sin x) =cosf = V1 - x?

J1 - x2
Figure 3.29 Using a right triangle having acute angle 0, a
hypotenuse of length 1, and the side opposite angle & having

length x, we can see that cos (sin ) =cosf=\1-x2

In the case where —7 < 0 <0, wemake the observation that 0 < —0 < = > Z and hence

cos(sin_1 x) = cosf = cos(—0) = V1 — x2.
Now if 6’=% orf= —Z x=1 or x=—1, andsince in either case cosd = 0 and V1 —x2 =0, wehave

cos(sin x)—cosﬁ V1 —x2.

Consequently, in all cases, cos (s.in_1 x) =V1-x2

Example 3.64

Applying the Chain Rule to the Inverse Sine Function

Apply the chain rule to the formula derived in Example 3.61 to find the derivative of h(x) = sin™! (g(x)) and

use this result to find the derivative of A(x) = sin~! (2x3).

Solution

Applying the chain rule to A(x) = sin”! (g(x)), we have

K (x) = ——L g’ (x).

V1 —(g(x))?

Now let g(x) = 23 , S0 g'(x) = 6x. Substituting into the previous result, we obtain
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Es/l 3.45  Use the inverse function theorem to find the derivative of g(x) = tan~ ! x.

The derivatives of the remaining inverse trigonometric functions may also be found by using the inverse function theorem.
These formulas are provided in the following theorem.

Theorem 3.13: Derivatives of Inverse Trigonometric Functions

disin_lx = % (3.22)
. V1 —(x)
d. -1 _ -1 (3.23)
cos  x =
dx A 1— (x)2
d -1 _ 1 (3.24)
tan~ x =
e 1+ ()
dicot_1x= -1 5 (3.25)
X 1+ (x)
disec_lx _ 1 (3.26)
X x| (x)2 -1
4 csel x = —=L (3.27)
* x| (x)2 -1

Example 3.65

Applying Differentiation Formulas to an Inverse Tangent Function
Find the derivative of f(x) = tan™! (xz).

Solution

Let g(x) = x% so g’ (x) = 2x. Substituting into Equation 3.24, we obtain

fw=—L— .
1+ (x?)

Simplifying, we have

’ — 2x
FO=
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Example 3.66

Applying Differentiation Formulas to an Inverse Sine Function

2 1

Find the derivative of h(x) = x“sin™" x.

Solution
By applying the product rule, we have

h'(x) = 2xsin”lx +

Vl—xz‘

@ 3.46  Find the derivative of i(x) = cos™' 3x — 1).

Example 3.67

Applying the Inverse Tangent Function

The position of a particle at time ¢ is given by s(t) = tan~! (%) for t > % Find the velocity of the particle at
time t = 1.
Solution

Begin by differentiating s(¢) in order to find v(¢). Thus,

v(t) = s’ (f) = —1 2;—21.

1+ (3

Simplifying, we have

v(t) = —

241

Thus, v(1) = — %

@ 3.47  Find the equation of the line tangent to the graph of f(x) =sin"'x at x = 0.
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3.7 EXERCISES

For the following exercises, use the graph of y = f(x) to 263.

a. sketch the graphof y = f ~1(x), and

=R W b

b. use part a. to estimate (f_l)’ (D).

260. 7 1% 410
34 -2
2+ -3
14 44
~ t _: _: ~ t 0 t t t } "
il J l_l__ 7 ¥ 1 For the following exercises, use the functions y = f(x) to
—al find
_? a. ﬂatx:aand
_41 dx
b. x=f710).
261. i
4" d —1
34 c. Then use part b. to find gy at y = f(a).
2_/
/1’-- 264. f(x)=6x—1,x=-2
t t T t 0 t t t }
4-3-2-1° 1 2 3 4 x 265 fx)=2x3-3, x=1
21
Ll 266. f(x)=9-x%0<x<3,x=2
47 267. f(x) = sinx, x=0
262. . . . —1y
For each of the following functions, find ( f ) (a).
268. f(x)=x>+3x+2,x>-1,a=2
269. f(x)=x>+2x+3,a=0
5 270. f(x)=x+Vvx,a=2
37 271. -2 -
Ll fW=x-%x<0,a=1

272. f(x) =x+sinx,a=0
273. f(x) =tanx + 3x2, a=0

For each of the given functions y = f(x),

a. find the slope of the tangent line to its inverse
function f ~! at the indicated point P, and
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b. find the equation of the tangent line to the graph of
f ~1 at the indicated point.

274. __4
=4,

P2, 1)

275. f(x) = Vx—4, P2, 8)

276. f)=(x+ 1)4, P(16, 1)

277 f(x) = x> —x +2, P(=8, 2)
278. f(_x) = xs =+ 3x3 —4x — 8, P(_S’ 1)

For the following exercises, find % for the given

function.

279. y = sin~1 (xz)
280. y= cos ™! (VX)

2Ly = s (1)

282\ Yose~lx

283. y= (1 + tan_lx)3

284. y = cos™! (2x) - sin~! (2x)

285.  _ 1
y=—"l
tan™! (%)

286. y = sec™!(—x)
287. y= cot~ 14 — 2
288. y = x-csc”lx

For the following exercises, use the given values to find

(7Y @.
289. f(n)=0, f'(m)=-1,a=0

20 f©)=2.f©)=F a=2

291. f%) - s, f(%) =2,a=-8
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22 13-4, 19)=3, o=

293. f(1)=-3, f'(1) =10, a = -3

N |—

294. f(1)=0, f'(1)=-2,a=0

295. [T] The position of a moving hockey puck after ¢

seconds is s(¢) = tan~!# where s is in meters.
a. Find the velocity of the hockey puck at any time 7.
b. Find the acceleration of the puck at any time ¢.

c. Evaluate a. and b. for t =2, 4, and 6 seconds.

d. What conclusion can be drawn from the results in
c.?

296. [T] A building that is 225 feet tall casts a shadow of
various lengths x as the day goes by. An angle of elevation

0 is formed by lines from the top and bottom of the
building to the tip of the shadow, as seen in the following

figure. Find the rate of change of the angle of elevation do

dx
when x = 272 feet.

|

225 1t

ooooooooao
oOooOooOoooo
ooooooooo
ooooooooo

]

X

297. [T] A pole stands 75 feet tall. An angle 6 is formed
when wires of various lengths of x feet are attached from

the ground to the top of the pole, as shown in the following

figure. Find the rate of change of the angle 49\ hen a wire

dx

of length 90 feet is attached.

75 ft
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298. [T] A television camera at ground level is 2000 feet
away from the launching pad of a space rocket that is set to
take off vertically, as seen in the following figure. The
angle of elevation of the camera can be found by

_ —1 X . .
0 = tan (—2000), where x is the height of the rocket.

Find the rate of change of the angle of elevation after
launch when the camera and the rocket are 5000 feet apart.

[

2000

299. [T] A local movie theater with a 30-foot-high screen

that is 10 feet above a person’s eye level when seated has a

viewing  angle 0 (in  radians) given by
_ -1 x _ -1 x

0 = cot 0 cot 0’

where x is the distance in feet away from the movie screen

that the person is sitting, as shown in the following figure.

30
10
X
ind 4@
a. Find "

b. Evaluate % for x =5, 10, 15, and 20.

c. Interpret the results in b..

d. Evaluate % for x = 25, 30, 35, and 40

e. Interpret the results in d. At what distance x should

the person stand to maximize his or her viewing
angle?
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3.8 | Implicit Differentiation

Learning Objectives

3.8.1 Find the derivative of a complicated function by using implicit differentiation.
3.8.2 Use implicit differentiation to determine the equation of a tangent line.

We have already studied how to find equations of tangent lines to functions and the rate of change of a function at a specific
point. In all these cases we had the explicit equation for the function and differentiated these functions explicitly. Suppose
instead that we want to determine the equation of a tangent line to an arbitrary curve or the rate of change of an arbitrary
curve at a point. In this section, we solve these problems by finding the derivatives of functions that define y implicitly in

terms of x.

Implicit Differentiation

In most discussions of math, if the dependent variable y is a function of the independent variable x, we express y in terms
of x. If this is the case, we say that y is an explicit function of x. For example, when we write the equation y = X2 +1,
we are defining y explicitly in terms of x. On the other hand, if the relationship between the function y and the variable x

is expressed by an equation where y is not expressed entirely in terms of x, we say that the equation defines y implicitly

in terms of x. For example, the equation y — x% =1 defines the function y= X +1 implicitly.

Implicit differentiation allows us to find slopes of tangents to curves that are clearly not functions (they fail the vertical line
test). We are using the idea that portions of y are functions that satisfy the given equation, but that y is not actually a

function of x.

In general, an equation defines a function implicitly if the function satisfies that equation. An equation may define many
different functions implicitly. For example, the functions

V25 —x2if —=25<x <0
25 - x%if0 < x <25

functions defined implicitly by the equation X%+ y2 =125.

y="125- x* and y= { which are illustrated in Figure 3.30, are just three of the many
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| fy

= 0 X 5 0 5 X
_5__

X2 +y2 =25 y =25 — x?

| /ﬂ

_ 0 % _5 0 X
_5_

y=—/25—x? J25 — x2 jf —5<x <0

y= =
/25 — x? if 0< x <5

Figure 3.30 The equation X2+ y2 = 25 defines many functions implicitly.

If we want to find the slope of the line tangent to the graph of X2+ y2 =25 at the point (3, 4), we could evaluate
the derivative of the function y = V25 — x% at x = 3. On the other hand, if we want the slope of the tangent line at the

point (3, —4), we could use the derivative of y = —Y25 — xZ. However, it is not always easy to solve for a function

defined implicitly by an equation. Fortunately, the technique of implicit differentiation allows us to find the derivative of

dy

an implicitly defined function without ever solving for the function explicitly. The process of finding I

using implicit

differentiation is described in the following problem-solving strategy.
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Problem-Solving Strategy: Implicit Differentiation

To perform implicit differentiation on an equation that defines a function y implicitly in terms of a variable x, use
the following steps:
1. Take the derivative of both sides of the equation. Keep in mind that y is a function of x. Consequently, whereas

%(sinx) = COSX, %(sin y) = cos y% because we must use the chain rule to differentiate siny with respect

to x.

. . ..o d . d
2. Rewrite the equation so that all terms containing d_z are on the left and all terms that do not contain d_ic; are

on the right.

3. Factor out ﬂ on the left.
dx

4. Solve for % by dividing both sides of the equation by an appropriate algebraic expression.

Example 3.68

Using Implicit Differentiation

Assuming that y is defined implicitly by the equation X+ y2 =25, find %

Solution

Follow the steps in the problem-solving strategy.

d(.2,.2y _ d . . . .
dx(x +y) = dx(25) Step 1. Differentiate both sides of the equation.

Step 1.1. Use the sum rule on the left.

d(,2y, d,2
a 4 =0
)+ 407 On the right%(%) =0.
s dy . Step 1.2. Take the derivatives, so dx(x )— 2x
TV T d (2 »dy
and E(y ) = 2ya

.o dy
ST N Step 2. Keep the terms with Zcon the left.

dx Move the remaining terms to the right.

dy _ x Step 4. Divide both sides of the equation by

dx — Y 2y. (Step 3 does not apply in this case.)
Analysis
Note that the resulting expression for % is in terms of both the independent variable x and the dependent
variable y. Although in some cases it may be possible to express % in terms of x only, it is generally not

possible to do so.
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Example 3.69

Solution

%()9 siny + y)

%(f sin y) + %(y)

(%()9) -siny + %(siny) . x3) + %

2 ). 3,4
3x smy+(cosydx) X +dx
3cosy P + D
X Cosydx+dx
dy( 3
a(x cosy+1)
dy
dx

. dzy ) 2
Find — if x~ +y“ =25.
dx?

Solution

4y _ _x
In Example 3.68, we showed that =Y
d2y

Assuming that y is defined implicitly by the equation x> sin y+y=4x+3, find d—i

d
(dx +3)

4

4 -3x% siny

4 —3x%siny

4 — 352 siny

X cosy+1

Using Implicit Differentiation and the Product Rule

d

Step 1: Differentiate both sides of the equation.
Step 1.1: Apply the sum rule on the left.

On the right, %(4)‘ +3)=4.

Step 1.2: Use the product rule to find

(33 A=
dx(x s1ny). Observe that dx(y) =0

. d (,3) _ 2,2
Step 1.3: We know %(x )— 3x~. Use the

dy

chain rule to obtain %{sin y) = cos Yix:

Step 2: Keep all terms containing % on the

left. Move all other terms to the right.

Step 3: Factor out % on the left.

Step 4: Solve for%by dividing both sides of

the equation by x3cos y+ 1.

Example 3.70

Using Implicit Differentiation to Find a Second Derivative

. We can take the derivative of both sides of this equation to find
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2
d—; = i(—l) Differentiate both sides of D _ e
dx*  dy\ dx y
dy

1y-s2)
- _ dx ; nd A X
= y2 Use the quotient rule to find dy( y).

dy

= % Simplify.

y

—y 4+ x|—<
= y—z(y) Substitute D _x
y dx y
2.2

=== Simplify.

y

d2
At this point we have found an expression for d—%’ If we choose, we can simplify the expression further by
x
2
recalling that X+ y2 = 25 and making this substitution in the numerator to obtain % = — 2—2
X y

@ 3.48 Find % for y defined implicitly by the equation 4x° + tan y= y2 + 5x.

Finding Tangent Lines Implicitly

Now that we have seen the technique of implicit differentiation, we can apply it to the problem of finding equations of

tangent lines to curves described by equations.

Example 3.71

Finding a Tangent Line to a Circle
Find the equation of the line tangent to the curve X+ y2 = 25 at the point (3, —4).

Solution
Although we could find this equation without using implicit differentiation, using that method makes it much

dy _ _x

easier. In Example 3.68, we found I J-

The slope of the tangent line is found by substituting (3, —4) into this expression. Consequently, the slope of the

tangent line is @ = 3 =3

dx|. -4 -4 4
Using the point (3, —4) and the slope % in the point-slope equation of the line, we obtain the equation

=3,-25 i
y=53x—%5 (Figure 3.31).
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Figure 3.31 Theline y = 3y-25 tangent to

47

x% + y? =25 at the point (3, -4).

Finding the Equation of the Tangent Line to a Curve

Find the equation of the line tangent to the graph of y3 +x0— 3xy = 0 at the point (

curve is known as the folium (or leaf) of Descartes.

Figure 3.32 Finding the tangent line to the folium of
Descartes at (—, —).

[S1[o%)

317

Example 3.72

) (Figure 3.32). This

rojwo

i

Y24+ x3-3xy=0
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Solution

Begin by finding %

%()ﬁ + x5 - 3xy) = %(O)
2dy 2 dy ) _
3y I +3x (3y + dx3x =0
dy _ 3y-3x?
dx 3y2 —3x
. 3 3).. dy 3y-— 3x2 . .
Next, substitute |=, =] into == = =—=——— to find the slope of the tangent line:
(2 2) dx 3y2—3x P &
d 3 3= L
%3 3)

Finally, substitute into the point-slope equation of the line to obtain

y=—-x+3.

Example 3.73

Applying Implicit Differentiation

In a simple video game, a rocket travels in an elliptical orbit whose path is described by the equation
4x* + 25y2 = 100. The rocket can fire missiles along lines tangent to its path. The object of the game is to
destroy an incoming asteroid traveling along the positive x-axis toward (0, 0). If the rocket fires a missile when

8

it is located at (3, §), where will it intersect the x-axis?

Solution
To solve this problem, we must determine where the line tangent to the graph of
4x2 + 25y2 =100 at (3, %) intersects the x-axis. Begin by finding % implicitly.

Differentiating, we have

8x + SOy% =0.

Solving for %, we have

dy _ _ 4x
dx 25y’
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Es/l 3.49  Find the equation of the line tangent to the hyperbola x? - y2 = 16 at the point (5, 3).

.ody __ 9 . . _ 9 183
The slope of the tangent line is e (37 %) = ~30 The equation of the tangent line is y = 50~ + 200" To
determine where the line intersects the x-axis, solve 0 = — %x + % The solution is x = 63—1 The missile
intersects the x-axis at the point (%, O).

319
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3.8 EXERCISES

For the following exercises, use implicit differentiation to

find %

300. 42 _\2_4

301 6x2 4 3y2 =12
302. 2y =y_7

303. 353 4+ 9ch2 =5x°
304. xy —cos(xy) =1
305. yVx+4=xy+8

306. —xy—-2= %
307. ysin(xy) = y? +2
308. (xy)? +3x =y?

309 3y 4xyd=-8

For the following exercises, find the equation of the tangent
line to the graph of the given equation at the indicated
point. Use a calculator or computer software to graph the
function and the tangent line.

310. 1] x*y —xy3 = =2, (-1, —1)

311 [T] x2y2 +5xy = 14, (2, 1)

312 177 tan(xy) = , (%’ 1)

313. [T] xy? + sin(xy) — 2x% = 10, (2, =3)

314. X 7= _3
[T]y+5x 7= 4y,(1,2)

315. (7] xy +sin(x) = 1, (g o)
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316. [T] The graph of a folium of Descartes with equation
26 + 2y3 — 9xy = 0 is given in the following graph.

3

ww

a. Find the equation of the tangent line at the point
(2, 1). Graph the tangent line along with the

folium.

b. Find the equation of the normal line to the tangent
line in a. at the point (2, 1).

317. For the equation x> + 2xy — 3y =0,

a. Find the equation of the normal to the tangent line
at the point (1, 1).

b. At what other point does the normal line in a.
intersect the graph of the equation?

318. Find all points on the graph of y3 27y = x% =90

at which the tangent line is vertical.

319. For the equation ¥+ Xy + y2 =17,

a. Find the x -intercept(s).

b. Find the slope of the tangent line(s) at the x-
intercept(s).

c. What does the value(s) in b. indicate about the
tangent line(s)?

320. Find the equation of the tangent line to the graph of
the equation sin~!x+sin~!y = % at the point (O, %)
321. Find the equation of the tangent line to the graph of

the equation tan~! (x + y) = x> + % at the point (0, 1).

322. Find y’ and y” for X+ 6xy — 2y2 =3.
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323. [T] The number of cell phones produced when x
dollars is spent on labor and y dollars is spent on capital

invested by a manufacturer can be modeled by the equation
60x34y 14 = 3240.

a. Find % and evaluate at the point (81, 16).

b. Interpret the result of a.

324. [T] The number of cars produced when x dollars is
spent on labor and y dollars is spent on capital invested by

a manufacturer can be modeled by the -equation
30x3 23 = 360.

(Both x and y are measured in thousands of dollars.)

a. Find % and evaluate at the point (27, 8).

b. Interpret the result of a.

325. The volume of a right circular cone of radius x and

height y is given by V=%7rx2 y. Suppose that the

volume of the cone is 85zcm>. Find % when x = 4 and

y=16.

For the following exercises, consider a closed rectangular
box with a square base with side x and height y.

326. Find an equation for the surface area of the
rectangular box, S(x, y).

327. 1If the surface area of the rectangular box is 78 square

feet, find % when x =3 feetand y =5 feet.

For the following exercises, use implicit differentiation to
determine y’. Does the answer agree with the formulas we

have previously determined?

328. x =siny
329. x =cosy

330. x =tany

321
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3.9 | Derivatives of Exponential and Logarithmic
Functions

Learning Objectives

3.9.1 Find the derivative of exponential functions.
3.9.2 Find the derivative of logarithmic functions.
3.9.3 Use logarithmic differentiation to determine the derivative of a function.

So far, we have learned how to differentiate a variety of functions, including trigonometric, inverse, and implicit functions.
In this section, we explore derivatives of exponential and logarithmic functions. As we discussed in Introduction to
Functions and Graphs, exponential functions play an important role in modeling population growth and the decay
of radioactive materials. Logarithmic functions can help rescale large quantities and are particularly helpful for rewriting
complicated expressions.

Derivative of the Exponential Function

Just as when we found the derivatives of other functions, we can find the derivatives of exponential and logarithmic
functions using formulas. As we develop these formulas, we need to make certain basic assumptions. The proofs that these
assumptions hold are beyond the scope of this course.

First of all, we begin with the assumption that the function B(x) = b*, b > 0, is defined for every real number and is

continuous. In previous courses, the values of exponential functions for all rational numbers were defined—beginning
with the definition of b", where n is a positive integer—as the product of » multiplied by itself 7 times. Later,

1

we defined b0 =1, 7" = —, for a positive integer n, and bt = (%)S for positive integers s and 7. These

definitions leave open the question of the value of " where r is an arbitrary real number. By assuming the continuity of
B(x) = b*, b > 0, we may interpret b" as xli_I)nrbx where the values of x as we take the limit are rational. For example,

we may view 4”7 as the number satisfying

43 <4ﬂ'<44’ 431 < 47[<43.2’ 43.14 <4ﬂ'<43.15’

As we see in the following table, 4" ~ 77.88.
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x 4* x 4*

43 64 43141593 77.8802710486
431 73.5166947198 43-1416 77.8810268071
4314 77.7084726013 43-142 77.9242251944
43-141 77.8162741237 4315 78.7932424541
43-1415 77.8702309526 432 84.4485062895
43-14159 77.8799471543 44 256

Table 3.7 Approximating a Value of 4”

We also assume that for B(x) = b*, b > 0, the value B’(0) of the derivative exists. In this section, we show that by

making this one additional assumption, it is possible to prove that the function B(x) is differentiable everywhere.

We make one final assumption: that there is a unique value of » > 0 for which B’(0) = 1. We define e to be this

unique value, as we did in Introduction to Functions and Graphs. Figure 3.33 provides graphs of the functions
y=2%y=3%y=27% and y=2.8% A visual estimate of the slopes of the tangent lines to these functions at 0

provides evidence that the value of e lies somewhere between 2.7 and 2.8. The function E(x) = e is called the natural

exponential function. Its inverse, L(x) = log,x = Inx is called the natural logarithmic function.
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yi 3% 2.8~

—0:6 -0.4 -0.2 0 0.2 0.4 0.
Figure 3.33 The graph of E(x) = ¢* is between y =2* and y = 3%,

m-—
%Y

For a better estimate of e, we may construct a table of estimates of B’ (0) for functions of the form B(x) = b*. Before

doing this, recall that

0
B/ = lim b=t o jim el b
X —

x—0 x50 X x
for values of x very close to zero. For our estimates, we choose x = 0.00001 and x = —0.00001 to obtain the estimate
p—0:00001 _ | ) 5000001 _ 4
—o.00001 < B < 550001

See the following table.
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Bl
2 0.693145 < B’ (0) < 0.69315 2.7183 1.000002 < B’ (0) < 1.000012
2.7 0.993247 < B’ (0) < 0.993257 2.719 1.000259 < B’ (0) < 1.000269
271 0.996944 < B’ (0) < 0.996954 272 1.000627 < B’ (0) < 1.000637
2.718 0.999891 < B’ (0) < 0.999901 2.8 1.029614 < B’ (0) < 1.029625
2.7182 0.999965 < B’ (0) < 0.999975 3 1.098606 < B’ (0) < 1.098618

Table 3.8 Estimating a Value of e

The evidence from the table suggests that 2.7182 < e < 2.7183.

The graph of E(x) = ¢* together with the line y = x + 1 are shown in Figure 3.34. This line is tangent to the graph of
E(x)=¢e* at x=0.

10 -05 0 05 105
Figure 3.34 The tangent line to E(x) = ¢* at x = 0 has
slope 1.

Now that we have laid out our basic assumptions, we begin our investigation by exploring the derivative of
B(x) = b*, b > 0. Recall that we have assumed that B’ (0) exists. By applying the limit definition to the derivative we

conclude that

(3.28)

O+h 0 h
B'(0)= lim 2 "=b" _ iy b"=1
h—-0

Turning to B’ (x), we obtain the following.



326 Chapter 3 | Derivatives

bx+h_bx

A Apply the limit definition of the derivative.

B'(x) = lim

h
- hanM Note that b* " = p*ph.

> h
Xeph _
—1im 2% =D pacior out b,
h—0 h

x o b —1 s

=b hhmo 7 Apply a property of limits.
0+h 0 h

_pXp ) — Tim B -b" _ ;b =1
=b*B’(0) Use B’ (0) = hlgno 7 = hh—I>nO R

We see that on the basis of the assumption that B(x) = b” is differentiable at 0, B(x) is not only differentiable everywhere,

but its derivative is

B’ (x) = b* B’ (0). (3.29)

For E(x) =e*, E'(0) = 1. Thus, we have E’(x) =e”*. (The value of B’(0) for an arbitrary function of the form
B(x) = b", b > 0, will be derived later.)

Theorem 3.14: Derivative of the Natural Exponential Function

Let E(x) = e” be the natural exponential function. Then
E' (x) =e*.
In general,

%(eg(x)) _ eg(X)g/ ).

Example 3.74
Derivative of an Exponential Function

Find the derivative of f(x) = etan(zx).

Solution

Using the derivative formula and the chain rule,
/ _ d
ffx) =e a(tan (2x))

= ¢ o2 (2x) - 2.

tan (2x)

Example 3.75

Combining Differentiation Rules

2

Find the derivative of y = £—.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2



Chapter 3 | Derivatives 327

Solution

Use the derivative of the natural exponential function, the quotient rule, and the chain rule.
2 2
(ex 'Z)X')C— 1-e"
’ -
x2

ex2 (2x2 - 1) o
- = Simplify.
x

Apply the quotient rule.

@/ 3.50  Find the derivative of A(x) = xeZ*.

Example 3.76

Applying the Natural Exponential Function

A colony of mosquitoes has an initial population of 1000. After ¢ days, the population is given by
At = 1000¢%3. Show that the ratio of the rate of change of the population, A’ (#), to the population, A(?) is

constant.

Solution

First find A’ (¢). By using the chain rule, we have A’ (f) = 30002, Thus, the ratio of the rate of change of the

population to the population is given by

0.3t
Al(l‘): 3006‘ =0.3.
100093

The ratio of the rate of change of the population to the population is the constant 0.3.

351 1f A(p) = 1000¢%3 describes the mosquito population after ¢ days, as in the preceding example, what
is the rate of change of A(#) after 4 days?

Derivative of the Logarithmic Function

Now that we have the derivative of the natural exponential function, we can use implicit differentiation to find the derivative
of its inverse, the natural logarithmic function.

Theorem 3.15: The Derivative of the Natural Logarithmic Function

If x>0 and y =Inx, then

dy _1 (3.30)
dx — X
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More generally, let g(x) be a differentiable function. For all values of x for which g’(x) > 0, the derivative of
h(x) = In(g(x)) is given by

, _ 1 3.31
h (x) = @g (x). ( )

Proof

If x>0 and y=Inx, then e’ = x. Differentiating both sides of this equation results in the equation

dy
Y=L =
e’ 1.
. dy .
Solving for e yields
dy _ 1
dx ¢
Finally, we substitute x = ¢” to obtain
dy_1
dx X

We may also derive this result by applying the inverse function theorem, as follows. Since y = g(x) = Inx is the inverse

of f(x) =e*, by applying the inverse function theorem we have

1 1 1

1 _ 1 _1
dx  f'(g(x)  enx X

Using this result and applying the chain rule to A(x) = In(g(x)) yields

/ __1
h (X)—ﬁg ().

O
The graph of y = Inx and its derivative % = % are shown in Figure 3.35.
y
3
2 y = Inx
14
y'=3
0 :

Figure 3.35 The function y = Inx is increasing on

(0, +00). Its derivative y’ = % is greater than zero on

(0, +0).

Example 3.77

Taking a Derivative of a Natural Logarithm
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Find the derivative of f(x) =In (x3 + 3x — 4).

Solution
Use Equation 3.31 directly.

, 1 2 3 S | Y]
x) =———-(3x°+3 Useg(x) =x"+3x—4inh' (x) = ——g’' (x).
/@ x3+3x_4( ) g(x) () =158 ()
2
233x—+3 Rewrite.
x"+3x—-4

Example 3.78

Using Properties of Logarithms in a Derivative

2 .
; ot _ 1nfXxZsinx
Find the derivative of f(x) = ln(2x 1 )

Solution

At first glance, taking this derivative appears rather complicated. However, by using the properties of logarithms
prior to finding the derivative, we can make the problem much simpler.

2 .
fx) = In (%H) =2Inx+In(sinx) —In(2x+ 1)  Apply properties of logarithms.
ffx) = % + cotx — Zx%i- 1 Apply sum rule and /4’ (x) = ﬁg’ (x).

@ 3.52  Differentiate: f(x) = In(3x + 2)°.

Now that we can differentiate the natural logarithmic function, we can use this result to find the derivatives of y = log, x

and y=0b" for b> 0, b # 1.

Theorem 3.16: Derivatives of General Exponential and Logarithmic Functions

Let b> 0, b# 1, andlet g(x) be a differentiable function.
i. If, y=1log,x, then

dy 1 (3.32)

dx ~ xlnb’

More generally, if A4(x) = log, (g(x)), then for all values of x for which g(x) > 0,

i =8 (3.33)

ii. If y=>b% then
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4~ p*1nb, (3.34)
dx

More generally, if A(x) = bg(x), then

() = b g"(x)Inb. (3.35)

Proof

If y=1log,x, then b¥=x. It follows that In(»?) =Inx. Thus ylnb =Inx. Solving for y, we have y= %ﬁ—z

Differentiating and keeping in mind that Ind is a constant, we see that

dy 1

dx ~ xlnb’

The derivative in Equation 3.33 now follows from the chain rule.

If y=>5b" then Iny = xInb. Using implicit differentiation, again keeping in mind that Inb is constant, it follows that

1dy _ ) dy . _ax
VI = Inb. Solving for I and substituting y = b”, we see that
dy _x
= ylnb = b*Inb.

The more general derivative (Equation 3.35) follows from the chain rule.

‘

Example 3.79

Applying Derivative Formulas

3)6
3*+2°

Find the derivative of h(x) =

Solution
Use the quotient rule and Derivatives of General Exponential and Logarithmic Functions.

X X _ 12X X
h(x) = 3 In3G"+2) :; In3(37) Apply the quotient rule.
3*+2)

= ﬁ Simplify.

Example 3.80

Finding the Slope of a Tangent Line

Find the slope of the line tangent to the graph of y =log,(3x+ 1) at x = 1.

Solution
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To find the slope, we must evaluate % at x = 1. Using Equation 3.33, we see that

dy _ 3
dx ~ 20x+ )

By evaluating the derivative at x = 1, we see that the tangent line has slope

ayl __3
dx|y=1 4In2 Inl6’

@ 3.53 Find the slope for the line tangent to y = 3% at x = 2.

Logarithmic Differentiation

At this point, we can take derivatives of functions of the form y = (g(x))" for certain values of 7, as well as functions

bg(x)

of the form y = , where b > 0 and b # 1. Unfortunately, we still do not know the derivatives of functions such as

y =x" or y = x”. These functions require a technique called logarithmic differentiation, which allows us to differentiate

any function of the form h(x) = g(x)f (x). It can also be used to convert a very complex differentiation problem into a

xXV2x+1

3

simpler one, such as finding the derivative of y = -
e*sin’x

. We outline this technique in the following problem-solving

strategy.

Problem-Solving Strategy: Using Logarithmic Differentiation

1. To differentiate y = h(x) using logarithmic differentiation, take the natural logarithm of both sides of the

equation to obtain Iny = In(k(x)).
2. Use properties of logarithms to expand In(2(x)) as much as possible.

3. Differentiate both sides of the equation. On the left we will have %%

dy

4. Multiply both sides of the equation by y to solve for x

5. Replace y by A(x).

Example 3.81

Using Logarithmic Differentiation

tanx

Find the derivative of y = (2x4 + 1)
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Solution
Use logarithmic differentiation to find this derivative.

tanx

Iny = 1n(2x4 + 1) Step 1. Take the natural logarithm of both sides.

Iny = tanxIln (2x4 + 1) Step 2. Expand using properties of logarithms.
1dy _ sec? xIn (2x4 + 1) +_8 P tanx Step 3. Differentiate‘both sides. Use the
Y dx 2w+ 1 product rule on the right.

dy ( 2 4 8x3 ) - -

— = y-|sec“xIn(2x" + 1)+ -tanx Step 4. Multiply by y on both sides.

= ( ) T p ply by y

tanx 3 tanx
% = (2)c4 + 1) (seclen(2x4 + 1) + ngf_'_ ! -tanx) Step 5. Substitute y = (2x4 + 1)

Example 3.82

Using Logarithmic Differentiation

Find the derivative of y = x—~2x-|3-1
e*sin” x
Solution

This problem really makes use of the properties of logarithms and the differentiation rules given in this chapter.

Iny = In xex—+31 Step 1. Take the natural logarithm of both sides.
e’sin” x

Iny = Inx+ %ln(Zx + 1) —xIlne —3Insinx  Step 2. Expand using properties of logarithms.

1dy _ 1 1 1 _.cosx . . .

Yae = *tared 1-3 P Step 3. Differentiate both sides.
dy _ 1y 1 ) , ,
I = y( *+ 1 1 —3cotx Step 4. Multiply by y on both sides.
dy _ xV2x+1(1,_ 1 _4_ ) - _xV2x+1
dx T gtend X + 1 1 —3cotx Step 5. Substitute y = Seind

Example 3.83

Extending the Power Rule

Find the derivative of y = x” where r is an arbitrary real number.

Solution

The process is the same as in Example 3.82, though with fewer complications.
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Iny = Inx" Step 1. Take the natural logarithm of both sides.

Iny = rlnx Step 2. Expand using properties of logarithms.
1 ﬂ _ 1 . . .
Yo = ¥ Step 3. Differentiate both sides.

% = yk Step 4. Multiply by y on both sides.

Do rr Step 5. Substitute y = x”.

dx X

ﬂ _ r—1 ; ;

I = Simplify.

i‘/l 3.54 Use logarithmic differentiation to find the derivative of y = x*.

@ 3.55 Find the derivative of y = (tanx)”.
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3.9 EXERCISES

For the following exercises, find f’(x) for each function.

331. fx) = x2e*

32 fy =

333 g =
334 £ = Ve 4 2x
335. 4y = %
o= i
337 f(x) = 2% + 4x?
338. f) = 3sin3x
339. f(x)=x"-7*
340. f(x) = In(4x> + x)
341. f(x)=InV5x -7
342, f(x) = x*In9x
343. f(x) = log(secx)
344.

f(x) = logs (6x* + 3)5

2
3 (6 = 2% logy 75 74

For the following exercises, use logarithmic differentiation

., dy
to find I

347. )4X

y = (sin2x
348. y= (lnx)lnx

!
349.  _ loeax
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350. Inx
=)
351. y= xootx
352y a1l
x>—4
353.

2/3
y= x~12 (xz + 3) (Bx - 4)4

354. [T] Find an equation of the tangent line to the graph

(=-)

x = —1. Graph both the function and the tangent line.

of f(x) =4xe at the point where

355. [T] Find the equation of the line that is normal to the
graph of f(x) =x-5% at the point where x = 1. Graph

both the function and the normal line.

356. [T] Find the equation of the tangent line to the graph
of x°— xlny + y3 =2x+5 at the point where x = 2.

(Hint: Use implicit differentiation to find %.) Graph both

the curve and the tangent line.

357. Consider the function y= ¥ for x> 0.

a. Determine the points on the graph where the
tangent line is horizontal.
b. Determine the points on the graph where y’ > 0

and those where y’ < 0.
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358. The formula 1(r) =_sir}t
e

is the formula for a

decaying alternating current.

a. Complete the following table with the appropriate

values.
t sint
;

0 ()

z | G

T (iii)

3z (iv)
2

2 W)

2w (vi)

3z (vii)

In (viii)
2

4z (ix)

b. Using only the values in the table, determine where
the tangent line to the graph of /(¢) is horizontal.

359. [T] The population of Toledo, Ohio, in 2000 was
approximately 500,000. Assume the population is
increasing at a rate of 5% per year.

a. Write the exponential function that relates the total
population as a function of ¢.

b. Use a. to determine the rate at which the population
is increasing in ¢ years.

c. Useb. to determine the rate at which the population
is increasing in 10 years.

335

360. [T] An isotope of the element erbium has a half-life of
approximately 12 hours. Initially there are 9 grams of the
isotope present.

a. Write the exponential function that relates the
amount of substance remaining as a function of t,

measured in hours.
b. Use a. to determine the rate at which the substance
is decaying in ¢ hours.

c. Use b. to determine the rate of decay at t =4
hours.

361. [T] The number of cases of influenza in New York
City from the beginning of 1960 to the beginning of 1961 is
modeled by the function

2

where N(7) gives the number of cases (in thousands) and
t is measured in years, with # =0 corresponding to the
beginning of 1960.

a. Show work that evaluates N(0) and N(4). Briefly

describe what these values indicate about the
disease in New York City.

b. Show work that evaluates N’(0) and N’(3).

Briefly describe what these values indicate about
the disease in the United States.

362. [T] The relative rate of change of a differentiable

function y = f(x) is given by %%. One model
for population growth is a Gompertz growth function,
-b .e—CX

given by P(x) =ae where a, b, and c are

constants.

a. Find the relative rate of change formula for the
generic Gompertz function.

b. Use a. to find the relative rate of change of a
population  in x=20 months  when

a=204, b =0.0198, and c =0.15.
c. Briefly interpret what the result of b. means.

For the following exercises, use the population of New
York City from 1790 to 1860, given in the following table.
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Years since 1790 Population
0 33,131

10 60,515

20 96,373

30 123,706

40 202,300

50 312,710

60 515,547

70 813,669

Table 3.9 New York City Population Over
Time Source: http:/len.wikipedia.org/

wikil

Largest_cities_in_the_United_States

_by_population_by_decade.

363. [T] Using a computer program or a calculator, fit a

growth curve to the data of the form p = ab’.

364. [T] Using the exponential best fit for the data, write a
table containing the derivatives evaluated at each year.

365. [T] Using the exponential best fit for the data, write a
table containing the second derivatives evaluated at each

year.

366. [T] Using the tables of first and second derivatives

and the best fit, answer the following questions:

a. Will the model be accurate in predicting the future
population of New York City? Why or why not?

b. Estimate the population in 2010. Was the prediction

correct from a.?
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CHAPTER 3 REVIEW

KEY TERMS

acceleration is the rate of change of the velocity, that is, the derivative of velocity

amount of change the amount of a function f(x) over an interval [x, x + 4] is f(x + k) — f(x)

average rate of change

Jx+h) - fla)

is a function f(x) over an interval [x, x + A] is b —a

chain rule the chain rule defines the derivative of a composite function as the derivative of the outer function evaluated at
the inner function times the derivative of the inner function

constant multiple rule the derivative of a constant ¢ multiplied by a function f is the same as the constant multiplied by
the derivative: j—x(c f)=cf' (x)

constant rule ¢ gerjvative of a constant function is zero: %(c) =0, where c is a constant

derivative the slope of the tangent line to a function at a point, calculated by taking the limit of the difference quotient, is
the derivative

derivative function gives the derivative of a function at each point in the domain of the original function for which the
derivative is defined

difference quotient of a function f(x) at a is given by

fla+h) = fla) ) = fl@)
h X—a

difference rule the derivative of the difference of a function f and a function g is the same as the difference of the
derivative of f and the derivative of g: %(f ) —g))=f"x)—g &

differentiable at a a function for which f’(a) exists is differentiable at a
differentiable function a function for which f’(x) exists is a differentiable function
differentiable on S a function for which f’(x) exists for each x in the open set S is differentiable on S

differentiation the process of taking a derivative

higher-order derivative a derivative of a derivative, from the second derivative to the nth derivative, is called a higher-
order derivative

implicit differentiation is a technique for computing % for a function defined by an equation, accomplished by

differentiating both sides of the equation (remembering to treat the variable y as a function) and solving for %

instantaneous rate of change the rate of change of a function at any point along the function a, also called f’(a),

or the derivative of the function at a

logarithmic differentiation is a technique that allows us to differentiate a function by first taking the natural logarithm
of both sides of an equation, applying properties of logarithms to simplify the equation, and differentiating implicitly

marginal cost is the derivative of the cost function, or the approximate cost of producing one more item

marginal profit is the derivative of the cost function, or the approximate profit obtained by producing and selling one
more item

marginal revenue is the derivative of the revenue function, or the approximate revenue obtained by selling one more
item
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population growth rate ;¢ e gerivative of the population with respect to time

power rule the derivative of a power function is a function in which the power on x becomes the coefficient of the term

and the power on x in the derivative decreases by 1: If n is an integer, then %xn =nx" !
product rule the derivative of a product of two functions is the derivative of the first function times the second function

plus the derivative of the second function times the first function: j—x(f (x)gx) = f (0)gx) + g (x)f(x)

quotient rule the derivative of the quotient of two functions is the derivative of the first function times the second
function minus the derivative of the second function times the first function, all divided by the square of the second

o d (SO _ (08 — g (0 f ()
function: a’x(g (x)) (g(x))2

speed is the absolute value of velocity, that is, |[v(¢)| is the speed of an object at time ¢ whose velocity is given by v(r)

sum rule the derivative of the sum of a function f and a function g is the same as the sum of the derivative of f and the
derivative of g: ( fO+g))=f x+g X

KEY EQUATIONS

¢ Difference quotient

0= LW =f@

¢ Difference quotient with increment /

Q=f(a+h)—f(a) _fla+h - fa
at+h—a h

¢ Slope of tangent line

m = h%fw+2—ﬂm

¢ Derivative of f(x) at a

f/ (a) = lim & =9 f(-x) f(a)

X—a

* Average velocity
_ 8(1) — s(a)
ave =" f_qg
¢ Instantaneous velocity

s(t) s(a)

v(a) =" (a) = tlim

¢ The derivative function

£/ = jim L1 = 1)

¢ Derivative of sine function

A (i) =
dx(smx) = cosx

¢ Derivative of cosine function

d e
dx(cosx) = —sinx
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Chapter 3 | Derivatives 339

¢ Derivative of tangent function

d_ )
dx(tanx) =sec”x

¢ Derivative of cotangent function
2

d
—=—(cotx) = —csc“x
dx( )

¢ Derivative of secant function

d
4 (secx) = secxtanx
ey

¢ Derivative of cosecant function

d
< (cscx) = —cscxcotx
A eSeY)

¢ The chain rule

h(x) = f"(g(x))g’ (x)
¢ The power rule for functions

B (x) = nlg0)" ™ g’ (x)

¢ Inverse function theorem
f -1 "(x) = — L whenever ff -1 (x))# 0 and f(x) is differentiable.

* Power rule with rational exponents
d (.mn\ _ m. (min)—1
(.X ) = Wx .

dx
¢ Derivative of inverse sine function
A gin=ly = 1

dx A 1— (x)Z

¢ Derivative of inverse cosine function

d cos 1 x = =1

dx A 1— (x)2
¢ Derivative of inverse tangent function
d -1 1
“tan” x=————
dx 1+ )32

¢ Derivative of inverse cotangent function

dicot_1 x= _—12

X 1+ %)

¢ Derivative of inverse secant function
IV (x)“ =1

¢ Derivative of inverse cosecant function
IV (x)“ =1

¢ Derivative of the natural exponential function

4 (egoo) — )

¢ Derivative of the natural logarithmic function

SHing(0) = e @)
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¢ Derivative of the general exponential function

d (1;80) _ 8 ,
dx(b )_b ¢ ()Inb

¢ Derivative of the general logarithmic function

(%)
f_x(l"gbg(’c)) = gfx)lnb
KEY CONCEPTS

3.1 Defining the Derivative

¢ The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by
finding the limit of the difference quotient or the difference quotient with increment 7.

¢ The derivative of a function f(x) at a value a is found using either of the definitions for the slope of the tangent
line.
¢ Velocity is the rate of change of position. As such, the velocity v(¢) at time ¢ is the derivative of the position s(¢)

at time 7. Average velocity is given by

_ 8(1) —s(a)
ave =~ f _ 4
Instantaneous velocity is given by
s(t) — s(a)

v(a) = s (a) = tli_r)na —a

* We may estimate a derivative by using a table of values.

3.2 The Derivative as a Function
¢ The derivative of a function f(x) is the function whose value at x is f”(x).

¢ The graph of a derivative of a function f(x) is related to the graph of f(x). Where f(x) has a tangent line with
positive slope, f’(x) > 0. Where f(x) has a tangent line with negative slope, f’(x) < 0. Where f(x) has a
horizontal tangent line, f”(x) = 0.

¢ If a function is differentiable at a point, then it is continuous at that point. A function is not differentiable at a point

if it is not continuous at the point, if it has a vertical tangent line at the point, or if the graph has a sharp corner or
cusp.

¢ Higher-order derivatives are derivatives of derivatives, from the second derivative to the nth derivative.

3.3 Differentiation Rules

¢ The derivative of a constant function is zero.

¢ The derivative of a power function is a function in which the power on x becomes the coefficient of the term and
the power on x in the derivative decreases by 1.

* The derivative of a constant ¢ multiplied by a function f is the same as the constant multiplied by the derivative.

e The derivative of the sum of a function f and a function g is the same as the sum of the derivative of f and the
derivative of g.

¢ The derivative of the difference of a function f and a function g is the same as the difference of the derivative of f
and the derivative of g.

¢ The derivative of a product of two functions is the derivative of the first function times the second function plus the
derivative of the second function times the first function.
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¢ The derivative of the quotient of two functions is the derivative of the first function times the second function minus
the derivative of the second function times the first function, all divided by the square of the second function.

¢ We used the limit definition of the derivative to develop formulas that allow us to find derivatives without resorting
to the definition of the derivative. These formulas can be used singly or in combination with each other.

3.4 Derivatives as Rates of Change
e Using f(a+ h) = f(a) + f' (a)h, itis possible to estimate f(a + h) given f’(a) and f(a).
¢ The rate of change of position is velocity, and the rate of change of velocity is acceleration. Speed is the absolute
value, or magnitude, of velocity.
¢ The population growth rate and the present population can be used to predict the size of a future population.

¢ Marginal cost, marginal revenue, and marginal profit functions can be used to predict, respectively, the cost of
producing one more item, the revenue obtained by selling one more item, and the profit obtained by producing and
selling one more item.

3.5 Derivatives of Trigonometric Functions

e We can find the derivatives of sin x and cos x by using the definition of derivative and the limit formulas found
earlier. The results are

A ginx = cosx L cosx = —sinx.

dx dx
¢ With these two formulas, we can determine the derivatives of all six basic trigonometric functions.

3.6 The Chain Rule

¢ The chain rule allows us to differentiate compositions of two or more functions. It states that for A(x) = f(g(x)),

h(x) = f"(g(x)g" (x).

In Leibniz’s notation this rule takes the form

dy _dy du
dx du dx’

¢ We can use the chain rule with other rules that we have learned, and we can derive formulas for some of them.
¢ The chain rule combines with the power rule to form a new rule:
If i(x) = (g(x))", then i’ (x) = n(g(x))" ™' g’ (x).

¢ When applied to the composition of three functions, the chain rule can be expressed as follows: If
h(x) = flglk(x))), then h'(x) = f(glk(x))g’ (k(x)k’ (x).
3.7 Derivatives of Inverse Functions

¢ The inverse function theorem allows us to compute derivatives of inverse functions without using the limit
definition of the derivative.

¢ We can use the inverse function theorem to develop differentiation formulas for the inverse trigonometric functions.
3.8 Implicit Differentiation

¢ We use implicit differentiation to find derivatives of implicitly defined functions (functions defined by equations).

* By using implicit differentiation, we can find the equation of a tangent line to the graph of a curve.
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3.9 Derivatives of Exponential and Logarithmic Functions

e On the basis of the assumption that the exponential function y = b*, b > 0 is continuous everywhere and

differentiable at 0, this function is differentiable everywhere and there is a formula for its derivative.

Inx

* We can use a formula to find the derivative of y =Inx, and the relationship log;, x = +-=* allows us to extend

Inb

our differentiation formulas to include logarithms with arbitrary bases.

¢ Logarithmic differentiation allows us to differentiate functions of the form y = g(x)f(x) or very complex functions

by taking the natural logarithm of both sides and exploiting the properties of logarithms before differentiating.

CHAPTER 3 REVIEW EXERCISES

True or False? Justify the answer with a proof or a
counterexample.

367. Every function has a derivative.

368. A continuous function has a continuous derivative.
369. A continuous function has a derivative.

370. If a function is differentiable, it is continuous.

Use the limit definition of the derivative to exactly evaluate
the derivative.

371. f(x)=Vx+4
372 f(x)=3

Find the derivatives of the following functions.

373, f() =32 -2
X

374. f(x)=(4- x2)3

375. f(x) = *n*

376. f(x)=In(x+2)

377. f(x) = x’cosx + xtan(x)
378. f(x)=\3x2+2

379. f(x) = %sin_l (x)

380. x2y =(y+2)+xysin(x)

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2

Find the following derivatives of various orders.

381. First derivative of y = xIn(x)cosx
382. Third derivative of y = (3x + 2)2

383. Second derivative of y = 4% + x%sin (%)

Find the equation of the tangent line to the following
equations at the specified point.

384. y= cos_l(x)+x at x=0

385. y=x+ex—% at x=1
Draw the derivative for the following graphs.

386.

387.
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The following questions concern the water level in Ocean
City, New Jersey, in January, which can be approximated

by w(f) = 1.9+2.9cos(%t), where ¢ is measured in

hours after midnight, and the height is measured in feet.

388. Find and graph the derivative. What is the physical
meaning?

389. Find w’(3). What is the physical meaning of this

value?

The following questions consider the wind speeds of
Hurricane Katrina, which affected New Orleans, Louisiana,
in August 2005. The data are displayed in a table.

Hours after Midnight, Wind Speed
August 26 (mph)
1 45

5 75

11 100
29 115
49 145
58 175
73 155
81 125
85 95
107 35

Table 3.10 Wind Speeds of Hurricane

Katrina Source:
http:/Inews.nationalgeographic.com/news/2005/
09/0914 050914 katrina_timeline.html.

390. Using the table, estimate the derivative of the wind
speed at hour 39. What is the physical meaning?

391. Estimate the derivative of the wind speed at hour 83.
What is the physical meaning?

343
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4 | APPLICATIONS OF
DERIVATIVES

vy

3
il

Figure 4.1 As arocket is being launched, at what rate should the angle of a video camera change to continue Vlev;fmg the
rocket? (credit: modification of work by Steve Jurvetson, Wikimedia Commons)

Chapter Outline

4.1 Related Rates

4.2 Linear Approximations and Differentials
4.3 Maxima and Minima

4.4 The Mean Value Theorem

4.5 Derivatives and the Shape of a Graph
4.6 Limits at Infinity and Asymptotes

4.7 Applied Optimization Problems

4.8 L'Hépital’'s Rule

4.9 Newton’s Method

4.10 Antiderivatives
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Introduction

A rocket is being launched from the ground and cameras are recording the event. A video camera is located on the ground
a certain distance from the launch pad. At what rate should the angle of inclination (the angle the camera makes with the
ground) change to allow the camera to record the flight of the rocket as it heads upward? (See Example 4.3.)

A rocket launch involves two related quantities that change over time. Being able to solve this type of problem is just
one application of derivatives introduced in this chapter. We also look at how derivatives are used to find maximum and
minimum values of functions. As a result, we will be able to solve applied optimization problems, such as maximizing
revenue and minimizing surface area. In addition, we examine how derivatives are used to evaluate complicated limits, to
approximate roots of functions, and to provide accurate graphs of functions.

4.1 | Related Rates

Learning Objectives

4.1.1 Express changing quantities in terms of derivatives.
4.1.2 Find relationships among the derivatives in a given problem.

4.1.3 Use the chain rule to find the rate of change of one quantity that depends on the rate of
change of other quantities.

We have seen that for quantities that are changing over time, the rates at which these quantities change are given by
derivatives. If two related quantities are changing over time, the rates at which the quantities change are related. For
example, if a balloon is being filled with air, both the radius of the balloon and the volume of the balloon are increasing.
In this section, we consider several problems in which two or more related quantities are changing and we study how to
determine the relationship between the rates of change of these quantities.

Setting up Related-Rates Problems

In many real-world applications, related quantities are changing with respect to time. For example, if we consider the
balloon example again, we can say that the rate of change in the volume, V, is related to the rate of change in the radius,

r. In this case, we say that dav and dr

dt dt

related quantities that are changing with respect to time and we look at how to calculate one rate of change given another
rate of change.

are related rates because V is related to r. Here we study several examples of
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Example 4.1

Inflating a Balloon

A spherical balloon is being filled with air at the constant rate of 2 cm? /sec (Figure 4.2). How fast is the radius

increasing when the radius is 3 cm?

Time 1 Time 2 Time 3
Figure 4.2 As the balloon is being filled with air, both the radius and the volume are increasing with respect to time.

Solution

The volume of a sphere of radius » centimeters is

V= %7173 em?,

Since the balloon is being filled with air, both the volume and the radius are functions of time. Therefore, ¢
seconds after beginning to fill the balloon with air, the volume of air in the balloon is

V() = %ﬂ[r(t)]3 cm?.

Differentiating both sides of this equation with respect to time and applying the chain rule, we see that the rate of
change in the volume is related to the rate of change in the radius by the equation

V'(t) = dar@O]F ' (0).
The balloon is being filled with air at the constant rate of 2 cm¥/sec, so V'(f) = 2 cm? /sec. Therefore,
2cm? /sec = (47r[r(t)]2 cmz) -(F'(H)cm/s),

which implies

'(t) = —L— cmisec.
r'(t) 2n[r(t)]2c sec

When the radius » = 3 cm,

r'(t) = ﬁcm/sec.

@ 4.1 What is the instantaneous rate of change of the radius when r = 6cm?

Before looking at other examples, let’s outline the problem-solving strategy we will be using to solve related-rates problems.
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Problem-Solving Strategy: Solving a Related-Rates Problem

Assign symbols to all variables involved in the problem. Draw a figure if applicable.
State, in terms of the variables, the information that is given and the rate to be determined.

Find an equation relating the variables introduced in step 1.

= @ N =

Using the chain rule, differentiate both sides of the equation found in step 3 with respect to the independent
variable. This new equation will relate the derivatives.

5. Substitute all known values into the equation from step 4, then solve for the unknown rate of change.

Note that when solving a related-rates problem, it is crucial not to substitute known values too soon. For example, if the
value for a changing quantity is substituted into an equation before both sides of the equation are differentiated, then that
quantity will behave as a constant and its derivative will not appear in the new equation found in step 4. We examine this
potential error in the following example.

Examples of the Process

Let’s now implement the strategy just described to solve several related-rates problems. The first example involves a plane
flying overhead. The relationship we are studying is between the speed of the plane and the rate at which the distance
between the plane and a person on the ground is changing.

Example 4.2

An Airplane Flying at a Constant Elevation

An airplane is flying overhead at a constant elevation of 4000 ft. A man is viewing the plane from a position
3000 ft from the base of a radio tower. The airplane is flying horizontally away from the man. If the plane is
flying at the rate of 600 ft/sec, at what rate is the distance between the man and the plane increasing when the

plane passes over the radio tower?

Solution

Step 1. Draw a picture, introducing variables to represent the different quantities involved.

1)

.

't |
LS *

Figure 4.3 An airplane is flying at a constant height of 4000 ft. The distance between the
person and the airplane and the person and the place on the ground directly below the airplane

are changing. We denote those quantities with the variables s and x, respectively.
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As shown, x denotes the distance between the man and the position on the ground directly below the airplane.
The variable s denotes the distance between the man and the plane. Note that both x and s are functions of

time. We do not introduce a variable for the height of the plane because it remains at a constant elevation of
4000 ft. Since an object’s height above the ground is measured as the shortest distance between the object and

the ground, the line segment of length 4000 ft is perpendicular to the line segment of length x feet, creating a

right triangle.
Step 2. Since x denotes the horizontal distance between the man and the point on the ground below the plane,
dx/dt represents the speed of the plane. We are told the speed of the plane is 600 ft/sec. Therefore, % = 600

ft/sec. Since we are asked to find the rate of change in the distance between the man and the plane when the plane
is directly above the radio tower, we need to find ds/dt when x = 3000 ft.

Step 3. From the figure, we can use the Pythagorean theorem to write an equation relating x and s:
[x(0)]> + 40002 = [s(1)].
Step 4. Differentiating this equation with respect to time and using the fact that the derivative of a constant is
zero, we arrive at the equation
wdx s
Step 5. Find the rate at which the distance between the man and the plane is increasing when the plane is directly

over the radio tower. That is, find ds when x =3000ft. Since the speed of the plane is 600 ft/sec, we know

dt

that 4X = 600 ft/sec. We are not given an explicit value for s; however, since we are trying to find ds hen

dt dt
x = 3000 ft, we can use the Pythagorean theorem to determine the distance s when x = 3000 and the height
is 4000 ft. Solving the equation

30002 + 40002 = 2

for s, we have s = 5000 ft at the time of interest. Using these values, we conclude that ds/dt is a solution of

the equation
(3000)(600) = (5000) %

Therefore,

ds _ 3000-600 _
it =" 5000 = 360 ft/sec.

Note: When solving related-rates problems, it is important not to substitute values for the variables too soon. For
example, in step 3, we related the variable quantities x(#) and s(#) by the equation

[x(6)]% + 40002 = [s(£)].

Since the plane remains at a constant height, it is not necessary to introduce a variable for the height, and we are
allowed to use the constant 4000 to denote that quantity. However, the other two quantities are changing. If we
mistakenly substituted x() = 3000 into the equation before differentiating, our equation would have been

30002 + 40002 = [s(r)]>.

After differentiating, our equation would become
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0= ().

As a result, we would incorrectly conclude that ds _

dt

4.2 What is the speed of the plane if the distance between the person and the plane is increasing at the rate of
300 ft/sec?

We now return to the problem involving the rocket launch from the beginning of the chapter.

Example 4.3

Chapter Opener: A Rocket Launch

Figure 4.4 (credit: modification of work by Steve Jurvetson,
Wikimedia Commons)

A rocket is launched so that it rises vertically. A camera is positioned 5000 ft from the launch pad. When the
rocket is 1000 ft above the launch pad, its velocity is 600 ft/sec. Find the necessary rate of change of the
camera’s angle as a function of time so that it stays focused on the rocket.

Solution

Step 1. Draw a picture introducing the variables.
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0

5000 ft
Figure 4.5 A camera is positioned 5000 ft from the launch pad of the rocket. The height of the
rocket and the angle of the camera are changing with respect to time. We denote those quantities
with the variables /& and 6, respectively.

Let h denote the height of the rocket above the launch pad and 6 be the angle between the camera lens and the
ground.

Step 2. We are trying to find the rate of change in the angle of the camera with respect to time when the rocket is

1000 ft off the ground. That is, we need to find do when & = 1000 ft. At that time, we know the velocity of the

dt

rocket is % = 600 ft/sec.

Step 3. Now we need to find an equation relating the two quantities that are changing with respect to time: 4 and
6. How can we create such an equation? Using the fact that we have drawn a right triangle, it is natural to think
about trigonometric functions. Recall that tan@ is the ratio of the length of the opposite side of the triangle to the
length of the adjacent side. Thus, we have

__h
tand = 000"
This gives us the equation

h = 5000tané.

Step 4. Differentiating this equation with respect to time ¢, we obtain

dh _ 29d0
dt = 5000sec edt'

Step 5. We want to find % when & = 1000 ft. At this time, we know that % = 600 ft/sec. We need to

determine sec?@. Recall that sec@ is the ratio of the length of the hypotenuse to the length of the adjacent
side. We know the length of the adjacent side is 5000 ft. To determine the length of the hypotenuse, we use the
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Pythagorean theorem, where the length of one leg is 5000 ft, the length of the other leg is & = 1000 ft, and
the length of the hypotenuse is ¢ feet as shown in the following figure.

1000

5000
We see that
10002 + 50002 = ¢2
and we conclude that the hypotenuse is
¢ = 100026 ft.
Therefore, when 2 = 1000, we have

5000

do
dt

dh _ 2 ,dO
ar = 5000sec e_dt'
dt

previous equation, we arrive at the equation

600 = 5000(% fg .

Therefore, do _ irad/sec.

dt — 26

2
sec2f = (1000%) - %.

Recall from step 4 that the equation relating <% to our known values is

When /& =1000ft, we know that dh _ 600 ft/sec and secZd = 26

. Substituting these values into the

4.3 What rate of change is necessary for the elevation angle of the camera if the camera is placed on the
ground at a distance of 4000 ft from the launch pad and the velocity of the rocket is 500 ft/sec when the rocket

is 2000 ft off the ground?

In the next example, we consider water draining from a cone-shaped funnel. We compare the rate at which the level of water

in the cone is decreasing with the rate at which the volume of water is decreasing.

Example 4.4

Water Draining from a Funnel

when the height of the water is %ft ?

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2

Water is draining from the bottom of a cone-shaped funnel at the rate of 0.03 ft3 /sec. The height of the funnel
is 2 ft and the radius at the top of the funnel is 1 ft. At what rate is the height of the water in the funnel changing
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Solution

Step 1: Draw a picture introducing the variables.

Figure 4.6 Water is draining from a funnel of height 2 ft and
radius 1 ft. The height of the water and the radius of water are
changing over time. We denote these quantities with the
variables /1 and r, respectively.

Let h denote the height of the water in the funnel, » denote the radius of the water at its surface, and V denote
the volume of the water.

Step 2: We need to determine % when h = %ft. We know that Cfi_‘t/ = —0.03 ft/sec.

Step 3: The volume of water in the cone is

V= %ﬂr2 h.
From the figure, we see that we have similar triangles. Therefore, the ratio of the sides in the two triangles is the
same. Therefore, % = % or r= % Using this fact, the equation for volume can be simplified to

2
Il

Step 4: Applying the chain rule while differentiating both sides of this equation with respect to time ¢, we obtain

dVv _mp2dh

dt 47 dt’
Step 5: We want to find % when h = %ft. Since water is leaving at the rate of 0.03 ft3 /sec, we know that
dav _ —0.03 ft3 /sec. Therefore,

dt

2
o -5 4

which implies
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_ - dh
0.03 = 16 di-

It follows that

dh _ _ 048 _ _
pri T 0.153 ft/sec.

@ 44 Atwhat rate is the height of the water changing when the height of the water is %ft ?

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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4.1 EXERCISES

For the following exercises, find the quantities for the given
equation.

1. o dy _ — 2 e dx _
Find ar at x=1and y=x"+3 if dt—4.

2 Findﬂatxz—Zandy=2x2+lifQ 1.

dt dr —
3. dz _ 2_ .2, .2 .
Find it at (x,y)=(1,3) and z"=x"+y~ if

dx _ dy _
dt_4 and dt_3'

For the following exercises, sketch the situation if
necessary and used related rates to solve for the quantities.

4. [T] If two electrical resistors are connected in parallel,
the total resistance (measured in ohms, denoted by the
Greek capital letter omega, €2) is given by the equation
11,1
R-R, TR,

and R, decreases at a rate of 1.1€2/min,

. If R, isincreasing at arate of 0.5 £2/min

at what rate
does the total resistance change when R; =20Q and
R, = 50€/min?

5. A 10-ft ladder is leaning against a wall. If the top of the
ladder slides down the wall at a rate of 2 ft/sec, how fast is
the bottom moving along the ground when the bottom of
the ladder is 5 ft from the wall?

10 ft

6. A 25-ft ladder is leaning against a wall. If we push the
ladder toward the wall at a rate of 1 ft/sec, and the bottom of
the ladder is initially 20 ft away from the wall, how fast

does the ladder move up the wall 5sec after we start
pushing?

355

7. Two airplanes are flying in the air at the same height:
airplane A is flying east at 250 mi/h and airplane B is flying
north at 300 mi/h. If they are both heading to the same
airport, located 30 miles east of airplane A and 40 miles
north of airplane B, at what rate is the distance between the
airplanes changing?

Al

h 4

&
2
¥

8. You and a friend are riding your bikes to a restaurant that
you think is east; your friend thinks the restaurant is north.
You both leave from the same point, with you riding at 16
mph east and your friend riding 12 mph north. After you
traveled 4 mi, at what rate is the distance between you

changing?

9. Two buses are driving along parallel freeways that are
S5Smi apart, one heading east and the other heading west.

Assuming that each bus drives a constant 55 mph, find the

rate at which the distance between the buses is changing
when they are 13 mi apart, heading toward each other.

10. A 6-ft-tall person walks away from a 10-ft lamppost at
a constant rate of 3 ft/sec. What is the rate that the tip of
the shadow moves away from the pole when the person is
10 ft away from the pole?

10

J—10 - X >

11. Using the previous problem, what is the rate at which
the tip of the shadow moves away from the person when the
person is 10 ft from the pole?
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12. A 5-ft-tall person walks toward a wall at a rate of 2 ft/
sec. A spotlight is located on the ground 40 ft from the wall.
How fast does the height of the person’s shadow on the wall
change when the person is 10 ft from the wall?

13. Using the previous problem, what is the rate at which
the shadow changes when the person is 10 ft from the wall,
if the person is walking away from the wall at a rate of 2 ft/
sec?

14. A helicopter starting on the ground is rising directly
into the air at a rate of 25 ft/sec. You are running on the
ground starting directly under the helicopter at a rate of 10
ft/sec. Find the rate of change of the distance between the
helicopter and yourself after 5 sec.

15. Using the previous problem, what is the rate at which
the distance between you and the helicopter is changing
when the helicopter has risen to a height of 60 ft in the air,
assuming that, initially, it was 30 ft above you?

For the following exercises, draw and label diagrams to
help solve the related-rates problems.

16. The side of a cube increases at a rate of 1 m/sec. Find

2

the rate at which the volume of the cube increases when the
side of the cube is 4 m.

17. The volume of a cube decreases at a rate of 10 m/sec.

Find the rate at which the side of the cube changes when the
side of the cube is 2 m.

18. The radius of a circle increases at a rate of 2 m/sec.

Find the rate at which the area of the circle increases when
the radius is 5 m.

19. The radius of a sphere decreases at a rate of 3 m/sec.

Find the rate at which the surface area decreases when the
radius is 10 m.

20. The radius of a sphere increases at a rate of 1 m/sec.

Find the rate at which the volume increases when the radius
is 20 m.

21. The radius of a sphere is increasing at a rate of 9 cm/
sec. Find the radius of the sphere when the volume and the
radius of the sphere are increasing at the same numerical
rate.

22. The base of a triangle is shrinking at a rate of 1 cm/min
and the height of the triangle is increasing at a rate of 5 cm/
min. Find the rate at which the area of the triangle changes
when the height is 22 cm and the base is 10 cm.

23. A triangle has two constant sides of length 3 ft and 5 ft.
The angle between these two sides is increasing at a rate of
0.1 rad/sec. Find the rate at which the area of the triangle is
changing when the angle between the two sides is /6.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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24. A triangle has a height that is increasing at a rate of 2
cm/sec and its area is increasing at a rate of 4 cm?/sec. Find
the rate at which the base of the triangle is changing when
the height of the triangle is 4 cm and the area is 20 cm?.

For the following exercises, consider a right cone that is
leaking water. The dimensions of the conical tank are a
height of 16 ft and a radius of 5 ft.

25. How fast does the depth of the water change when the
water is 10 ft high if the cone leaks water at a rate of 10
ft3/min?

26. Find the rate at which the surface area of the water
changes when the water is 10 ft high if the cone leaks water
at a rate of 10 ft3/min.

27. If the water level is decreasing at a rate of 3 in./min
when the depth of the water is 8 ft, determine the rate at
which water is leaking out of the cone.

28. A vertical cylinder is leaking water at a rate of 1 ft*/sec.
If the cylinder has a height of 10 ft and a radius of 1 ft, at
what rate is the height of the water changing when the
height is 6 ft?

29. A cylinder is leaking water but you are unable to
determine at what rate. The cylinder has a height of 2 m and
a radius of 2 m. Find the rate at which the water is leaking
out of the cylinder if the rate at which the height is
decreasing is 10 cm/min when the height is 1 m.

30. A trough has ends shaped like isosceles triangles, with
width 3 m and height 4 m, and the trough is 10 m long.
Water is being pumped into the trough at a rate of

5m?>/min. At what rate does the height of the water
change when the water is 1 m deep?

i

10

e
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31. A tank is shaped like an upside-down square pyramid,
with base of 4 m by 4 m and a height of 12 m (see the
following figure). How fast does the height increase when

the water is 2 m deep if water is being pumped in at a rate of

% m/sec?

f—-4‘.{

3 5

For the following problems, consider a pool shaped like the
bottom half of a sphere, that is being filled at a rate of 25
ft>/min. The radius of the pool is 10 ft.

32. Find the rate at which the depth of the water is
changing when the water has a depth of 5 ft.

33. Find the rate at which the depth of the water is
changing when the water has a depth of 1 ft.

34. If the height is increasing at a rate of 1 in./sec when the
depth of the water is 2 ft, find the rate at which water is
being pumped in.

35. Gravel is being unloaded from a truck and falls into a
pile shaped like a cone at a rate of 10 ft3/min. The radius of
the cone base is three times the height of the cone. Find the
rate at which the height of the gravel changes when the pile
has a height of 5 ft.

36. Using a similar setup from the preceding problem, find
the rate at which the gravel is being unloaded if the pile is 5
ft high and the height is increasing at a rate of 4 in./min.

For the following exercises, draw the situations and solve
the related-rate problems.

37. You are stationary on the ground and are watching a
bird fly horizontally at a rate of 10 m/sec. The bird is
located 40 m above your head. How fast does the angle of
elevation change when the horizontal distance between you
and the bird is 9 m?

38. You stand 40 ft from a bottle rocket on the ground and
watch as it takes off vertically into the air at a rate of 20 ft/
sec. Find the rate at which the angle of elevation changes
when the rocket is 30 ft in the air.
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39. A lighthouse, L, is on an island 4 mi away from the
closest point, P, on the beach (see the following image). If
the lighthouse light rotates clockwise at a constant rate of
10 revolutions/min, how fast does the beam of light move
across the beach 2 mi away from the closest point on the
beach?

——2Mi—»
=l s )

40. Using the same setup as the previous problem,
determine at what rate the beam of light moves across the
beach 1 mi away from the closest point on the beach.

41. You are walking to a bus stop at a right-angle corner.
You move north at a rate of 2 m/sec and are 20 m south of
the intersection. The bus travels west at a rate of 10 m/sec
away from the intersection — you have missed the bus!
What is the rate at which the angle between you and the bus
is changing when you are 20 m south of the intersection and
the bus is 10 m west of the intersection?

For the following exercises, refer to the figure of baseball
diamond, which has sides of 90 ft.
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42. [T] A batter hits a ball toward third base at 75 ft/sec
and runs toward first base at a rate of 24 ft/sec. At what rate
does the distance between the ball and the batter change
when 2 sec have passed?

43. [T] A batter hits a ball toward second base at 80 ft/sec
and runs toward first base at a rate of 30 ft/sec. At what rate
does the distance between the ball and the batter change
when the runner has covered one-third of the distance to
first base? (Hint: Recall the law of cosines.)

44. [T] A batter hits the ball and runs toward first base at a
speed of 22 ft/sec. At what rate does the distance between
the runner and second base change when the runner has run
30 ft?

45. [T] Runners start at first and second base. When the
baseball is hit, the runner at first base runs at a speed of 18
ft/sec toward second base and the runner at second base
runs at a speed of 20 ft/sec toward third base. How fast is
the distance between runners changing 1 sec after the ball is
hit?

This OpenStax book is available for free at http://cnx.org/content/col11964/1.2
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4.2 | Linear Approximations and Differentials

Learning Objectives

4.2.1 Describe the linear approximation to a function at a point.

4.2.2 Write the linearization of a given function.

4.2.3 Draw a graph that illustrates the use of differentials to approximate the change in a
guantity.

4.2.4 Calculate the relative error and percentage error in using a differential approximation.

We have just seen how derivatives allow us to compare related quantities that are changing over time. In this section, we
examine another application of derivatives: the ability to approximate functions locally by linear functions. Linear functions
are the easiest functions with which to work, so they provide a useful tool for approximating function values. In addition,
the ideas presented in this section are generalized later in the text when we study how to approximate functions by higher-
degree polynomials Introduction to Power Series and Functions (http://cnx.org/content/m53760/latest/) .

Linear Approximation of a Function at a Point
Consider a function f that is differentiable at a point x = a. Recall that the tangent line to the graph of f at a is given
by the equation
y=fa+ f@x-a).
1

X

1

For example, consider the function f(x) =+ at a = 2. Since f is differentiable at x =2 and f'(x) = — =5
X

we see

that f'(2) = — % Therefore, the tangent line to the graph of f at a =2 is given by the equation

=1 _1_

1

Figure 4.7(a) shows a graph of f(x) = 5 along with the tangent line to f* at x = 2. Note that for x near 2, the graph of

the tangent line is close to the graph of f. As a result, we can use the equation of the tangent line to approximate f(x) for

x near 2. For example, if x = 2.1, the y value of the corresponding point on the tangent line is

y=1-te1-2=04s

=

The actual value of f(2.1) is given by

—_1 5
f@.1) =5~ 047619,

Therefore, the tangent line gives us a fairly good approximation of f(2.1) (Figure 4.7(b)). However, note that for values
of x far from 2, the equation of the tangent line does not give us a good approximation. For example, if x = 10, the y
-value of the corresponding point on the tangent line is

=1l _lago_n=1l_»r__
y=2-2(10-2) 2=-125,

1
2

whereas the value of the function at x = 10 is f(10) = 0.1.


http://cnx.org/content/m53760/latest/

360 Chapter 4 | Applications of Derivatives

Yi
0497 Actual value of
0.485 f(2.1) laph of
function
Vi 0.48

(2.1, 0.47619)

4,1, 0.475)

L Approximate
value of f(2.1)

-1 9 1 2 3 4 B—e_7% 0.4551 Tangent line
-14 1 1 0fX=2
y_E_?(X_Z) 0.45 4
_2_.
0.445
0 Y 200 21 211 213  213%
@ (b)

Figure 4.7 (a) The tangent line to f(x) = 1/x at x = 2 provides a good approximation to f for x near 2.
(b) At x = 2.1, the value of y on the tangent line to f(x) = 1/x is 0.475. The actual value of f(2.1) is
1/2.1, which is approximately 0.47619.

In general, for a differentiable function f, the equation of the tangent line to f at x = a can be used to approximate

f(x) for x near a. Therefore, we can write
f(x) = f(a) + f'(a)(x — a) for x near a.
We call the linear function
L(x) = f(a) + f'(@)(x — a) (4.1)

the linear approximation, or tangent line approximation, of f at x =a. This function L is also known as the

linearization of f at x = a.

To show how useful the linear approximation can be, we look at how to find the linear approximation for f(x) = vx at
x=09.

Example 4.5

Linear Approximation of vx

Find the linear approximation of f(x) = vx at x =9 and use the approximation to estimate V9.1.

Solution
Since we are looking for the linear approximation at x =9, using Equation 4.1 we know the linear
approximation is given by

Lx)=fO)+ (9D -9).
We need to find f(9) and f'(9).
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f)=v¥ = fO9) =19=3

() = =L y=—L =1
Therefore, the linear approximation is given by Figure 4.8.

L(x) =3 +%(x -9)

Using the linear approximation, we can estimate V9.1 by writing

V9.1 = £(9.1) ~ L(9.1) = 3 +%(9.1 —9) ~3.0167.

yi
64

3
L) = 5x+ 5

H 9.3

Figure 4.8 The local linear approximation to f(x) = vx at

x =9 provides an approximation to f for x near 9.

Analysis
Using a calculator, the value of V9.1 to four decimal places is 3.0166. The value given by the linear

approximation, 3.0167, is very close to the value obtained with a calculator, so it appears that using this linear
approximation is a good way to estimate VX, at least for x near 9. At the same time, it may seem odd to use

a linear approximation when we can just push a few buttons on a calculator to evaluate V9.1. However, how
does the calculator evaluate V9.1? The calculator uses an approximation! In fact, calculators and computers use
approximations all the time to evaluate mathematical expressions; they just use higher-degree approximations.

3
@ 4.5 Rind the local linear approximation to f(x) = Ix at x=8. Useit to approximate V8.1 to five decimal

places.

Example 4.6

Linear Approximation of sinx

Find the linear approximation of f(x) = sinx at x = % and use it to approximate sin(62°).

Solution

First we note that since Z rad is equivalent to 60°, using the linear approximation at x = /3 seems

3
reasonable. The linear approximation is given by

o = (5)+ {5k -)
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We see that
f(x) =sinx = f(%) = sin(%) _ ?

f'(x) =cosx = f’(%) = cos(%) = %

Therefore, the linear approximation of f at x = z/3 is given by Figure 4.9.

o =54

To estimate sin(62°) using L, we must first convert 62° to radians. We have 62° = % radians, so the

estimate for sin(62°) is given by

: oy — 627 ~ 7627\ _ V3 , 1(62x _m\_ N3, 1(2z\_V3, &
Sm(62)_f(180)~L(180)_ 2 +2(180 3)‘ 2 +2(180)_ 3 T 1gp ~ 0-88348.
.'IZH
V3 1/
y= E } EI'-X —|
23
1+ \3 2
f(x) = sin(x)
1//1 N L
_1-.

Figure 4.9 The linear approximation to f(x) = sinx at x = /3 provides an approximation

to sinx for x near z/3.

@’ 4.6 Find the linear approximation for f(x) = cosx at x = %

Linear approximations may be used in estimating roots and powers. In the next example, we find the linear approximation
for f(x) =(1+x)" at x=0, which can be used to estimate roots and powers for real numbers near 1. The same idea

can be extended to a function of the form f(x) = (m + x)" to estimate roots and powers near a different number .

Example 4.7

Approximating Roots and Powers

Find the linear approximation of f(x) = (1 + x)" at x = 0. Use this approximation to estimate (1.01)3.

Solution

The linear approximation at x = O is given by
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Because

N

fx) = (1 + x)3

L(x) = f(0) + f'(0)(x = 0).

fO=0+0" > f0)=1
f@=n1+0""1 > f(O)=n,

the linear approximation is given by Figure 4.10(a).

Lx)=14+nx-0)=1+nx

We can approximate (1.01)3 by evaluating L(0.01) when n = 3. We conclude that

(1.01)3 = f(1.01) = L(1.01) = 1 4+ 3(0.01) = 1.03.

(0, 1)

o /o

(@)

yi
1.032 1
1.0315+
1.031+

1.0305 +

1.0295 +
1.029 +

1.0285 +

1.03+

o) = (1 + x)®

(0.01, 1.030301)
(0.01, 1.03)

0.0085 00095 00105 0.0115
(b)

Figure 4.10 (a) The linear approximation of f(x) at x =0 is L(x). (b) The actual value of 1.013 is

1.030301. The linear approximation of f(x) at x = 0 estimates 1.013 to be 1.03.

X
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‘/ 4.7 Find the linear approximation of f(x) = (1 + x)4 at x = 0 without using the result from the preceding

example.

Differentials

We have seen that linear approximations can be used to estimate function values. They can also be used to estimate the
amount a function value changes as a result of a small change in the input. To discuss this more formally, we define a related
concept: differentials. Differentials provide us with a way of estimating the amount a function changes as a result of a small

change in input values.

When we first looked at derivatives, we used the Leibniz notation dy/dx to represent the derivative of y with respect to

x. Although we used the expressions dy and dx in this notation, they did not have meaning on their own. Here we see a
meaning to the expressions dy and dx. Suppose y = f(x) is a differentiable function. Let dx be an independent variable that

can be assigned any nonzero real number, and define the dependent variable dy by

dy = f'(x)dx.

(4.2)
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It is important to notice that dy is a function of both x and dx. The expressions dy and dx are called differentials. We can
divide both sides of Equation 4.2 by dx, which yields

dy (4.3)
i f().

This is the familiar expression we have used to denote a derivative. Equation 4.2 is known as the differential form of
Equation 4.3.

Example 4.8

Computing differentials

For each of the following functions, find dy and evaluate when x =3 and dx = 0.1.
a. y= X2 +2x

b. y=cosx

Solution

The key step is calculating the derivative. When we have that, we can obtain dy directly.
a. Since f(x)= x%+2x, we know f'(x) =2x+2, and therefore

dy = (2x + 2)dx.

When x =3 and dx =0.1,
dy=2-3+2)0.1)=0.8.

b. Since f(x) =cosx, f'(x)= —sin(x). This gives us
dy = —sinxdx.

When x =3 and dx =0.1,
dy = —sin(3)(0.1) = —0.1sin(3).

@/ 48 por y= exz, find dy.

We now connect differentials to linear approximations. Differentials can be used to estimate the change in the value of a
function resulting from a small change in input values. Consider a function f that is differentiable at point a. Suppose

the input x changes by a small amount. We are interested in how much the output y changes. If x changes from a to

a + dx, then the change in x is dx (also denoted Ax), and the change in y is given by

Ay = f(a+ dx) — f(a).

Instead of calculating the exact change in y, however, it is often easier to approximate the change in y by using a linear

approximation. For x near a, f(x) can be approximated by the linear approximation

L(x) = f(a) + f(@)(x — a).

Therefore, if dx is small,
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fla+dx) = L(a + dx) = f(a) + f'(a)(a + dx — a).
That is,
fla+dx) — f(a) = L(a + dx) — f(a) = f'(a)dx.

In other words, the actual change in the function f if x increases from a to a+ dx is approximately the difference
between L(a + dx) and f(a), where L(x) is the linear approximation of f at a. By definition of L(x), this difference

is equal to f’(a)dx. In summary,
Ay = f(a+dx) — f(a) = L(a + dx) — f(a) = f'(a)dx = dy.

Therefore, we can use the differential dy = f’'(a)dx to approximate the change in y if x increases from x =a to

X = a + dx. We can see this in the following graph.

yi
L(x)
(a + dx, fla + dx))
N [)
] " :
by = rayax] &Y = 1@+ a0 - f@
________ R R |
o - -
a a+dx X

Figure 4.11 The differential dy = f'(a)dx is used to approximate the actual

change in y if x increases from a to a + dx.

We now take a look at how to use differentials to approximate the change in the value of the function that results from a
small change in the value of the input. Note the calculation with differentials is much simpler than calculating actual values
of functions and the result is very close to what