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Preface 1

PREFACE

Welcome to Calculus Volume 2, an OpenStax resource. This textbook has been created with several goals in mind:
accessibility, customization, and student engagement—all while encouraging students toward high levels of academic
scholarship. Instructors and students alike will find that this textbook offers a strong foundation in calculus in an accessible
format.

About OpenStax

OpenStax is a non-profit organization committed to improving student access to quality learning materials. Our free
textbooks go through a rigorous editorial publishing process. Our texts are developed and peer-reviewed by educators
to ensure they are readable, accurate, and meet the scope and sequence requirements of today’s college courses. Unlike
traditional textbooks, OpenStax resources live online and are owned by the community of educators using them. Through
our partnerships with companies and foundations committed to reducing costs for students, OpenStax is working to improve
access to higher education for all. OpenStax is an initiative of Rice University and is made possible through the generous
support of several philanthropic foundations. Since our launch in 2012 our texts have been used by millions of learners
online and thousands of institutions worldwide.

About OpenStax's Resources

OpenStax resources provide quality academic instruction. Three key features set our materials apart from others: they can
be customized by instructors for each class, they are a "living" resource that grows online through contributions from
educators, and they are available free or for minimal cost.

Customization

OpenStax learning resources are designed to be customized for each course. Our textbooks provide a solid foundation on
which instructors can build, and our resources are conceived and written with flexibility in mind. Instructors can select the
sections most relevant to their curricula and create a textbook that speaks directly to the needs of their classes and student
body. Teachers are encouraged to expand on existing examples by adding unique context via geographically localized
applications and topical connections.

Calculus Volume 2 can be easily customized using our online platform (http://cnx.org/content/col11963/). Simply select the
content most relevant to your current semester and create a textbook that speaks directly to the needs of your class. Calculus
Volume 2 is organized as a collection of sections that can be rearranged, modified, and enhanced through localized examples
or to incorporate a specific theme of your course. This customization feature will ensure that your textbook truly reflects
the goals of your course.

Curation

To broaden access and encourage community curation, Calculus Volume 2 is “open source” licensed under a Creative
Commons Attribution Non-Commercial ShareAlike (CC BY-NC-SA) license. This license lets others remix, edit, build
upon the work non-commercially, as long as they credit OpenStax and license their new creations under the same
terms. The academic mathematics community is invited to submit examples, emerging research, and other feedback to
enhance and strengthen the material and keep it current and relevant for today’s students. Submit your suggestions to
info@openstaxcollege.org.

Cost

Our textbooks are available for free online, and in low-cost print and e-book editions.

About Calculus Volume 2

Calculus Volume 2 is the second of three volumes designed for the two- or three-semester calculus course. For many
students, this course provides the foundation to a career in mathematics, science, or engineering. As such, this textbook
provides an important opportunity for students to learn the core concepts of calculus and understand how those concepts
apply to their lives and the world around them. The text has been developed to meet the scope and sequence of most general
calculus courses. At the same time, the book includes several innovative features designed to enhance student learning. A
strength of Calculus Volume 2 is that instructors can customize the book, adapting it to the approach that works best in their
classroom.
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Coverage and Scope

Our Calculus Volume 2 textbook adheres to the scope and sequence of most general calculus courses nationwide. We have
worked to make calculus interesting and accessible to students while maintaining the mathematical rigor inherent in the
subject. With this objective in mind, the content of the three volumes of Calculus have been developed and arranged to
provide a logical progression from fundamental to more advanced concepts, building upon what students have already
learned and emphasizing connections between topics and between theory and applications. The goal of each section is to
enable students not just to recognize concepts, but work with them in ways that will be useful in later courses and future
careers. The organization and pedagogical features were developed and vetted with feedback from mathematics educators
dedicated to the project.

Volume 1
Chapter 1: Functions and Graphs

Chapter 2: Limits

Chapter 3: Derivatives

Chapter 4: Applications of Derivatives
Chapter 5: Integration

Chapter 6: Applications of Integration

Volume 2
Chapter 1: Integration

Chapter 2: Applications of Integration

Chapter 3: Techniques of Integration

Chapter 4: Introduction to Differential Equations
Chapter 5: Sequences and Series

Chapter 6: Power Series

Chapter 7: Parametric Equations and Polar Coordinates

Volume 3
Chapter 1: Parametric Equations and Polar Coordinates

Chapter 2: Vectors in Space

Chapter 3: Vector-Valued Functions

Chapter 4: Differentiation of Functions of Several Variables

Chapter 5: Multiple Integration

Chapter 6: Vector Calculus

Chapter 7: Second-Order Differential Equations
Pedagogical Foundation

Throughout Calculus Volume 2 you will find examples and exercises that present classical ideas and techniques as well as
modern applications and methods. Derivations and explanations are based on years of classroom experience on the part
of long-time calculus professors, striving for a balance of clarity and rigor that has proven successful with their students.
Motivational applications cover important topics in probability, biology, ecology, business, and economics, as well as areas
of physics, chemistry, engineering, and computer science. Student Projects in each chapter give students opportunities to
explore interesting sidelights in pure and applied mathematics, from showing that the number e is irrational, to calculating
the center of mass of the Grand Canyon Skywalk or the terminal speed of a skydiver. Chapter Opening Applications
pose problems that are solved later in the chapter, using the ideas covered in that chapter. Problems include the hydraulic
force against the Hoover Dam, and the comparison of the relative intensity of two earthquakes. Definitions, Rules, and
Theorems are highlighted throughout the text, including over 60 Proofs of theorems.

Assessments That Reinforce Key Concepts

In-chapter Examples walk students through problems by posing a question, stepping out a solution, and then asking students
to practice the skill with a “Checkpoint” question. The book also includes assessments at the end of each chapter so
students can apply what they’ve learned through practice problems. Many exercises are marked with a [T] to indicate they

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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are suitable for solution by technology, including calculators or Computer Algebra Systems (CAS). Answers for selected
exercises are available in the Answer Key at the back of the book.

Early or Late Transcendentals

Calculus Volume 2 is designed to accommodate both Early and Late Transcendental approaches to calculus. Exponential
and logarithmic functions are presented in Chapter 2. Integration of these functions is covered in Chapters 1 for instructors
who want to include them with other types of functions. These discussions, however, are in separate sections that can be
skipped for instructors who prefer to wait until the integral definitions are given before teaching the calculus derivations of
exponentials and logarithms.

Comprehensive Art Program

Our art program is designed to enhance students’ understanding of concepts through clear and effective illustrations,
diagrams, and photographs.

Yi g; fixX)=x2—-4x +5
5
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Assessments That Reinforce Key Concepts

In-chapter Examples walk students through problems by posing a question, stepping out a solution, and then asking students
to practice the skill with a “Check Your Learning” component. The book also includes assessments at the end of each
chapter so students can apply what they’ve learned through practice problems.

Ancillaries

OpenStax projects offer an array of ancillaries for students and instructors. The following resources are available.
PowerPoint Slides
Instructor’s Answer and Solution Guide

Student Answer and Solution Guide
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Our resources are continually expanding, so please visit http://openstaxcollege.org to view an up-to-date list of the Learning
Resources for this title and to find information on accessing these resources.

WeBWorK

WeBWorK is a well-tested homework system for delivering individualized calculus problems over the Web. By providing
students with immediate feedback on the correctness of their answers, WeBWorK encourages students to make multiple
attempts until they succeed. With individualized problem sets, students can work together but will have to enter their own
work to receive credit. WeBWorK can present and grade any mathematics calculation problem from basic algebra through
calculus, matrix linear algebra, and differential equations. Its extensible answer evaluators correctly recognize and grade a
wide variety of answers, including numbers, functions, equations, answers with units and much more, allowing instructors
and students to concentrate on correct mathematics and ask the questions they should rather than just the questions they can.
More than 770 institutions currently use WeBWorK. WeBWork and its 30,000 plus library of Creative Commons-licensed
problems are open source and free for institutions to use.

Attempt Results

Entered Answer Preview Resuit Correct Answer

(Isin{a"x+b))/a)- .
(@-a)y sin(ax + b)

1 . ;
L SO - _%5m3(m+b)+c correct E(Bsu(ax+b)—sm3(ax+b))+c
sinfa”x+b)]*

The answer above is correct.

(1 point)
Assuming a # 0, compute / cos’(ax + b)dx in terms of a and b.

] cos’(ax + b)dx =  sin(ax+b)/a -(1/(3a))sin?3(ax+b) +C

About Our Team
Senior Contributing Authors

Gilbert Strang, PhD

Dr. Strang received his PhD from UCLA in 1959 and has been teaching mathematics at MIT ever since. His Calculus online
textbook is one of eleven that he has published and is the basis from which our final product has been derived and updated
for today’s student. Strang is a decorated mathematician and past Rhodes Scholar at Oxford University.

Edwin “Jed” Herman, PhD

Dr. Herman earned a BS in Mathematics from Harvey Mudd College in 1985, an MA in Mathematics from UCLA in
1987, and a PhD in Mathematics from the University of Oregon in 1997. He is currently a Professor at the University of
Wisconsin-Stevens Point. He has more than 20 years of experience teaching college mathematics, is a student research
mentor, is experienced in course development/design, and is also an avid board game designer and player.
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1| INTEGRATION

Figure 1.1 Iceboating is a popular winter sport in parts of the northern United States and Europe. (credit: modification of work
by Carter Brown, Flickr)

Chapter Outline

1.1 Approximating Areas

1.2 The Definite Integral

1.3 The Fundamental Theorem of Calculus

1.4 Integration Formulas and the Net Change Theorem

1.5 Substitution

1.6 Integrals Involving Exponential and Logarithmic Functions
1.7 Integrals Resulting in Inverse Trigonometric Functions

Introduction

Iceboats are a common sight on the lakes of Wisconsin and Minnesota on winter weekends. Iceboats are similar to sailboats,
but they are fitted with runners, or “skates,” and are designed to run over the ice, rather than on water. Iceboats can move
very quickly, and many ice boating enthusiasts are drawn to the sport because of the speed. Top iceboat racers can attain
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speeds up to five times the wind speed. If we know how fast an iceboat is moving, we can use integration to determine how
far it travels. We revisit this question later in the chapter (see Example 1.27).

Determining distance from velocity is just one of many applications of integration. In fact, integrals are used in a wide
variety of mechanical and physical applications. In this chapter, we first introduce the theory behind integration and use
integrals to calculate areas. From there, we develop the Fundamental Theorem of Calculus, which relates differentiation and
integration. We then study some basic integration techniques and briefly examine some applications.

1.1 | Approximating Areas

Learning Objectives

1.1.1 Use sigma (summation) notation to calculate sums and powers of integers.
1.1.2 Use the sum of rectangular areas to approximate the area under a curve.
1.1.3 Use Riemann sums to approximate area.

Archimedes was fascinated with calculating the areas of various shapes—in other words, the amount of space enclosed by
the shape. He used a process that has come to be known as the method of exhaustion, which used smaller and smaller shapes,
the areas of which could be calculated exactly, to fill an irregular region and thereby obtain closer and closer approximations
to the total area. In this process, an area bounded by curves is filled with rectangles, triangles, and shapes with exact area
formulas. These areas are then summed to approximate the area of the curved region.

In this section, we develop techniques to approximate the area between a curve, defined by a function f(x), and the x-axis
on a closed interval [a, b]. Like Archimedes, we first approximate the area under the curve using shapes of known area

(namely, rectangles). By using smaller and smaller rectangles, we get closer and closer approximations to the area. Taking
a limit allows us to calculate the exact area under the curve.

Let’s start by introducing some notation to make the calculations easier. We then consider the case when f(x) is continuous
and nonnegative. Later in the chapter, we relax some of these restrictions and develop techniques that apply in more general

cases.

Sigma (Summation) Notation

As mentioned, we will use shapes of known area to approximate the area of an irregular region bounded by curves. This
process often requires adding up long strings of numbers. To make it easier to write down these lengthy sums, we look at
some new notation here, called sigma notation (also known as summation notation). The Greek capital letter X, sigma,

is used to express long sums of values in a compact form. For example, if we want to add all the integers from 1 to 20
without sigma notation, we have to write

1+24+34+44+5+64+7+8+94+10+114+124+13+144+154+16+ 17+ 18 + 19 + 20.

We could probably skip writing a couple of terms and write

14+24+34+4+-+19+20,

which is better, but still cuambersome. With sigma notation, we write this sum as
20
2
i=1
which is much more compact.

Typically, sigma notation is presented in the form
n
Z 4
i=1

where a; describes the terms to be added, and the i is called the index. Each term is evaluated, then we sum all the values,

7

beginning with the value when i = 1 and ending with the value when i = n. For example, an expression like Z S;

; is
i=2

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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interpreted as s, + 53 + 54+ S5+ 5 + 57. Note that the index is used only to keep track of the terms to be added; it does

not factor into the calculation of the sum itself. The index is therefore called a dummy variable. We can use any letter we
like for the index. Typically, mathematicians use i, j, k, m, and n for indices.

Let’s try a couple of examples of using sigma notation.

Example 1.1

Using Sigma Notation

a. Write in sigma notation and evaluate the sum of terms 3 for i= 1, 2, 3, 4, 5.

b. Write the sum in sigma notation:

1,1,1,1
I+g+5+16+ 35

Solution
a. Write

30 =3+32433 434430

Mu\

i=1

= 363.
b. The denominator of each term is a perfect square. Using sigma notation, this sum can be written as

: 1

@ 1.1 Write in sigma notation and evaluate the sum of terms 2ifor i=3,4,5, 6.

The properties associated with the summation process are given in the following rule.

Rule: Properties of Sigma Notation

Let ay, ay,...,a, and by, b,,...,b, represent two sequences of terms and let ¢ be a constant. The following

properties hold for all positive integers n and for integers m, with 1 < m < n.

1.
1 (1.1)
Z Cc = nc
i=1
2.
z @ 1.2
Z Cai =cC z ai ( )
i=1 i=1
3.
n n n (1.3)
Z (@j+b)= Z a;+ Z b;
i=1 i=1 i=1
4.

'21 (a;=b;) = i a;— i b, (1.4)
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n m n (1.5)
Zai= Zai+ Z al-
i=1 i=1 i=m+1

Proof

We prove properties 2. and 3. here, and leave proof of the other properties to the Exercises.
2. We have

n
Z ca; =caj+cay+caz+ - +cay
i=1

=c(al +az+a3+“' +an)

n
=CZ a;.
i=1

3. We have
n
Z (ai+b) =(ay+by)+(ay+by)+(az+bz)+ - +lan+by)
i=1
=(a;+as+az+-+ap)+ b +by+by+--+by)
n n
= Z ai+ Z bi’
i=1 i=1
O

A few more formulas for frequently found functions simplify the summation process further. These are shown in the next
rule, for sums and powers of integers, and we use them in the next set of examples.

Rule:

1.

Sums and Powers of Integers

The sum of n integers is given by

n
Yi=t+2+ - +n=20+0D

=1 2
2. The sum of consecutive integers squared is given by

M=

”2=12+22+"'+"2=W-

i

1
The sum of consecutive integers cubed is given by

i 2 2
Z i3=13+23+...+n3=%.
i=1

Example 1.2

Evaluation Using Sigma Notation

Write using sigma notation and evaluate:

a. The sum of the terms (i — 3)2 for i=1, 2,...,200

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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b. The sum of the terms (i3 - i2) fori=1,23,4,5,6.

Solution

a. Multiplying out (i — 3)2, we can break the expression into three terms.

200 200
i;(i—3)2 =i=1(i2—6i+9)
200 200 200
=) =) 6i+ )09
=1 =1 =1
1200 l 200 1200

:‘Z i2—6z i+z 9

i=1 i=1 i=1
_ 200200 +61)(400 +1 6[200(2(2)0 + 1)]+ 9(200)
= 2,686,700 — 120,600 + 1800
= 2,567,900

b. Use sigma notation property iv. and the rules for the sum of squared terms and the sum of cubed terms.

i= i=1 i=1

_ 626+ D2 66+ D26) + 1)
=T 3 6

_ 1764 _ 546
4 6

=350

@ 1.2 Find the sum of the values of 4 + 3i for i =1, 2,..., 100.

Example 1.3

Finding the Sum of the Function Values
Find the sum of the values of f(x) = x> over the integers 1, 2, 3,..., 10.

Solution

Using the formula, we have
10
Y3 _ 10?10+ 1?
i=0 4
_ 100(121)

4
= 3025.
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20

1.3
@/ Evaluate the sum indicated by the notation Z 2k +1).
k=1

Approximating Area

Now that we have the necessary notation, we return to the problem at hand: approximating the area under a curve. Let f(x)
be a continuous, nonnegative function defined on the closed interval [a, b]. We want to approximate the area A bounded by

f(x) above, the x-axis below, the line x = @ on the left, and the line x = b on the right (Figure 1.2).

y

f(x)

>

a b

Figure 1.2 An area (shaded region) bounded by the curve
f(x) at top, the x-axis at bottom, the line x = a to the left, and

the line x = b at right.

How do we approximate the area under this curve? The approach is a geometric one. By dividing a region into many small
shapes that have known area formulas, we can sum these areas and obtain a reasonable estimate of the true area. We begin

by dividing the interval [a, b] into n subintervals of equal width, b 7 4 We do this by selecting equally spaced points

Xg» X5 Xp,..., Xp With xg=a, x, = b, and

Y= X1 =
fori=1,2,3,...,n.
b—a
7}

We denote the width of each subinterval with the notation Ax, so Ax = and

X; =X+ iAx

for i =1, 2, 3,..., n. This notion of dividing an interval [a, b] into subintervals by selecting points from within the interval

is used quite often in approximating the area under a curve, so let’s define some relevant terminology.

Definition

A set of points P = {x;} for i=0, 1, 2,...,n with a =x3 < x| <Xy < --- <X, =b, which divides the interval
[a, b] into subintervals of the form [xg, x], [xy, x5l,..., [x,, _ |, X»] is called a partition of [a, b]. If the

subintervals all have the same width, the set of points forms a regular partition of the interval [a, b].

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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We can use this regular partition as the basis of a method for estimating the area under the curve. We next examine two
methods: the left-endpoint approximation and the right-endpoint approximation.

Rule: Left-Endpoint Approximation

On each subinterval [x;_q, x;] (for i =1, 2, 3,...,n), construct a rectangle with width Ax and height equal to
f(x;_1), which is the function value at the left endpoint of the subinterval. Then the area of this rectangle is
f(x; _1)Ax. Adding the areas of all these rectangles, we get an approximate value for A (Figure 1.3). We use the
notation L, to denote that this is a left-endpoint approximation of A using n subintervals.

A~ L, = f(xp)Ax+ f(xDAx+ -+ f(x, _ )AX (1.6)

= _Zl fG;_ DAx

y
\-.\_____ |
y Left
endpoints
%% p
/
= -
a=x, X1 b=x, !

Figure 1.3 1In the left-endpoint approximation of area under a
curve, the height of each rectangle is determined by the function
value at the left of each subinterval.

The second method for approximating area under a curve is the right-endpoint approximation. It is almost the same as the
left-endpoint approximation, but now the heights of the rectangles are determined by the function values at the right of each
subinterval.

Rule: Right-Endpoint Approximation

Construct a rectangle on each subinterval [x; _, x;], only this time the height of the rectangle is determined by the
function value f(x;) at the right endpoint of the subinterval. Then, the area of each rectangle is f(x;)Ax and the

approximation for A is given by

ARR, = fxpDAx+ f(x)Ax+ -« + f(xp)Ax (1.7)

= ‘Zl fGepAx.

The notation R,, indicates this is a right-endpoint approximation for A (Figure 1.4).
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Right

/ endpoints

v

— - X
a=x X1 b=x,

Figure 1.4 1In the right-endpoint approximation of area under
a curve, the height of each rectangle is determined by the
function value at the right of each subinterval. Note that the
right-endpoint approximation differs from the left-endpoint
approximation in Figure 1.3.

2
The graphs in Figure 1.5 represent the curve f(x) = x? In graph (a) we divide the region represented by the interval

[0, 3] into six subintervals, each of width 0.5. Thus, Ax = (0.5. We then form six rectangles by drawing vertical lines
perpendicular to x; _, the left endpoint of each subinterval. We determine the height of each rectangle by calculating
f(x;_p for i=1,2,3,4,5, 6. The intervals are [0, 0.5}, [0.5, 1], [1, 1.5], [1.5, 2], [2, 2.5], [2.5, 3]. We find the area
of each rectangle by multiplying the height by the width. Then, the sum of the rectangular areas approximates the area
between f(x) and the x-axis. When the left endpoints are used to calculate height, we have a left-endpoint approximation.
Thus,

6
ArLg = z FO_DAx = f(xg)Ax + f(xDAx + f(x)Ax + f(x3)Ax + f(x)Ax + f(x5)Ax
i=1
= f(0)0.5 + £(0.5)0.5 + f(1)0.5 + f(1.5)0.5 + f(2)0.5 + f(2.5)0.5
= (0)0.5 + (0.125)0.5 + (0.5)0.5 + (1.125)0.5 + (2)0.5 + (3.125)0.5

=04 0.0625 +0.25 4+ 0.5625 + 1 + 1.5625

= 3.4375.
i y = f(x) i y = f(x)
4 4+
2 24+
Ax i | ax
} - | - | -
1 2 3 X 1 2 3 X
Xog X1 X2 X3 X3 Xs5 Xp Xg X1 X2 X3 X3 X5 Xg
@) (b)

Figure 1.5 Methods of approximating the area under a curve by using (a) the left endpoints
and (b) the right endpoints.

In Figure 1.5(b), we draw vertical lines perpendicular to x; such that x; is the right endpoint of each subinterval, and
calculate f(x;) for i=1, 2, 3, 4, 5, 6. We multiply each f(x;) by Ax to find the rectangular areas, and then add them.

This is a right-endpoint approximation of the area under f(x). Thus,

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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6
AR Ry = Z FO)Ax = f(xDAx + f(xx)Ax + f(x3)Ax + f(x)Ax + f(x5)Ax + f(xg)Ax
i=1
= £(0.5)0.5 + f(1)0.5 + f(1.5)0.5 + £(2)0.5 + f(2.5)0.5 + f(3)0.5
= (0.125)0.5 + (0.5)0.5 + (1.125)0.5 + (2)0.5 + (3.125)0.5 + (4.5)0.5
=0.0625+0.25 + 0.5625 + 1 + 1.5625 + 2.25
= 5.6875.

Example 1.4

Approximating the Area Under a Curve
Use both left-endpoint and right-endpoint approximations to approximate the area under the curve of f(x) = x?

on the interval [0, 2]; use n = 4.

Solution

First, divide the interval [0, 2] into n equal subintervals. Using n = 4, Ax = @ = 0.5. This is the width of

each rectangle. The intervals [0, 0.5], [0.5, 1], [1, 1.5], [1.5, 2] are shown in Figure 1.6. Using a left-endpoint
approximation, the heights are f(0) = 0, f(0.5) = 0.25, f(1) =1, f(1.5) = 2.25. Then,

Ly = f(xp)Ax+ f(xDAx + f(x)Ax + f(x3)Ax
= 0(0.5) + 0.25(0.5) + 1(0.5) + 2.25(0.5)
=1.75.

yi
f(x) = x2

_é\@; AX AX
, L | _

05 1 15 2 .
Figure 1.6 The graph shows the left-endpoint approximation

of the area under f(x) = x2 from 0 to 2.

The right-endpoint approximation is shown in Figure 1.7. The intervals are the same, Ax = 0.5, but now use
the right endpoint to calculate the height of the rectangles. We have
Ry = f(x)DAx + f(xp)Ax + f(x3)Ax + f(xg)Ax
= 0.25(0.5) + 1(0.5) + 2.25(0.5) + 4(0.5)
=3.75.




16 Chapter 1 | Integration

yi
a4
f(x)| = x2
24
AX AX AX
N | S N
0.5 1 15 2 N

Figure 1.7 The graph shows the right-endpoint approximation
of the area under f(x) = x2 from 0 to 2.

The left-endpoint approximation is 1.75; the right-endpoint approximation is 3.75.

@ 1.4 sketch left-endpoint and right-endpoint approximations for f(x) =% on [1,2]; use n=4.

Approximate the area using both methods.

Looking at Figure 1.5 and the graphs in Example 1.4, we can see that when we use a small number of intervals, neither
the left-endpoint approximation nor the right-endpoint approximation is a particularly accurate estimate of the area under
the curve. However, it seems logical that if we increase the number of points in our partition, our estimate of A will improve.
We will have more rectangles, but each rectangle will be thinner, so we will be able to fit the rectangles to the curve more
precisely.

We can demonstrate the improved approximation obtained through smaller intervals with an example. Let’s explore the idea
of increasing n, first in a left-endpoint approximation with four rectangles, then eight rectangles, and finally 32 rectangles.
Then, let’s do the same thing in a right-endpoint approximation, using the same sets of intervals, of the same curved region.

Figure 1.8 shows the area of the region under the curve f(x) = (x — 1)3 + 4 on the interval [0, 2] using a left-endpoint

approximation where n = 4. The width of each rectangle is

Aro2-0_1

4 2°
The area is approximated by the summed areas of the rectangles, or
L, = £(0)(0.5) + £(0.5)(0.5) + f(1)(0.5) + £(1.5)0.5
=17.35.
Yi

y = f(x)

AX | AX | AX | AX

a=/x0 Xy Xp X3 b=x%

Figure 1.8 With a left-endpoint approximation and dividing
the region from a to b into four equal intervals, the area under
the curve is approximately equal to the sum of the areas of the
rectangles.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Figure 1.9 shows the same curve divided into eight subintervals. Comparing the graph with four rectangles in Figure 1.8
with this graph with eight rectangles, we can see there appears to be less white space under the curve when n = 8. This

white space is area under the curve we are unable to include using our approximation. The area of the rectangles is
Lg = f(0)(0.25) + £(0.25)(0.25) + £(0.5)(0.25) + £(0.75)(0.25)
+£(1)(0.25) + £(1.25)(0.25) + f(1.5)(0.25) + f(1.75)(0.25)

=17.75.
yi

e
/ |

e%=x0 X1 Xp Xz X4 Xs Xg X7 b=xgX

y = f(x)

"]

Figure 1.9 The region under the curve is divided into n = 8

rectangular areas of equal width for a left-endpoint
approximation.

The graph in Figure 1.10 shows the same function with 32 rectangles inscribed under the curve. There appears to be little
white space left. The area occupied by the rectangles is
L3y = f(0)(0.0625) + £(0.0625)(0.0625) + f(0.125)(0.0625) + --- + f(1.9375)(0.0625)
= 7.9375.
yi
y =1/

7= Xo \ ;
Xz1 b =Xz

Figure 1.10 Here, 32 rectangles are inscribed under the curve
for a left-endpoint approximation.

We can carry out a similar process for the right-endpoint approximation method. A right-endpoint approximation of the
same curve, using four rectangles (Figure 1.11), yields an area
R4 = f(0.5)(0.5) + f(1)(0.5) + f(1.5)(0.5) + f(2)(0.5)
= 8.5.
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Yi
y = f(x)
[lagagag
a%XO X1 Xo Xz Xa X

Figure 1.11 Now we divide the area under the curve into four
equal subintervals for a right-endpoint approximation.

2—-0

Dividing the region over the interval [0, 2] into eight rectangles results in Ax = 3 = 0.25. The graph is shown in

Figure 1.12. The area is

Rg = f(0.25)(0.25) + f(0.5)(0.25) + f(0.75)(0.25) + f(1)(0.25)

+ f(1.25)(0.25) + f(1.5)(0.25) + f(1.75)(0.25) + f(2)(0.25)
= 8.25.

4 y = f(x)

o

-
i

a/é)(o X1 Xp Xz X4 Xs Xg X7 b=xgX

Figure 1.12 Here we use right-endpoint approximation for a
region divided into eight equal subintervals.

Last, the right-endpoint approximation with n = 32 is close to the actual area (Figure 1.13). The area is approximately

R, = f(0.0625)(0.0625) + £(0.125)(0.0625) + £(0.1875)(0.0625) + --- + f(2)(0.0625)

= 8.0625.
yi

y = fx

)

/

/7

7/= Xo N X

Xz1 b =Xz

Figure 1.13 The region is divided into 32 equal subintervals
for a right-endpoint approximation.

Based on these figures and calculations, it appears we are on the right track; the rectangles appear to approximate the area
under the curve better as n gets larger. Furthermore, as n increases, both the left-endpoint and right-endpoint approximations
appear to approach an area of 8 square units. Table 1.1 shows a numerical comparison of the left- and right-endpoint

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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methods. The idea that the approximations of the area under the curve get better and better as n gets larger and larger is very
important, and we now explore this idea in more detail.

Values of n Approximate Area L, Approximate Area Ry,
n=4 7.5 8.5

n=3_§ 7.75 8.25

n=32 7.94 8.06

Table 1.1 Converging Values of Left- and Right-Endpoint Approximations
as n Increases

Forming Riemann Sums

So far we have been using rectangles to approximate the area under a curve. The heights of these rectangles have been
determined by evaluating the function at either the right or left endpoints of the subinterval [x;_, x;]. In reality, there is

no reason to restrict evaluation of the function to one of these two points only. We could evaluate the function at any point
c; in the subinterval [x;_, x;I, and use f(x;-" ) as the height of our rectangle. This gives us an estimate for the area of

the form
n
Ax D flxF )Ax.
i=1

A sum of this form is called a Riemann sum, named for the 19th-century mathematician Bernhard Riemann, who developed
the idea.

Definition

Let f(x) be defined on a closed interval [a, b] and let P be a regular partition of [a, b]. Let Ax be the width of each

subinterval [x; _, x;] and for each i, let x¥ be any pointin [x;_{, x;]. A Riemann sum is defined for f(x) as

Recall that with the left- and right-endpoint approximations, the estimates seem to get better and better as n get larger and
larger. The same thing happens with Riemann sums. Riemann sums give better approximations for larger values of n. We
are now ready to define the area under a curve in terms of Riemann sums.

Definition

n
Let f(x) be a continuous, nonnegative function on an interval [a, b], and let z f(x’l?‘ )Ax be a Riemann sum for
i=1

f(x). Then, the area under the curve y = f(x) on [a, b] is given by
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. See a graphical demonstration (http://lwww.openstaxcollege.org/l/20_riemannsums) of the
construction of a Riemann sum.

Some subtleties here are worth discussing. First, note that taking the limit of a sum is a little different from taking the limit
of a function f(x) as x goes to infinity. Limits of sums are discussed in detail in the chapter on Sequences and Series;

however, for now we can assume that the computational techniques we used to compute limits of functions can also be used
to calculate limits of sums.

Second, we must consider what to do if the expression converges to different limits for different choices of {x;“ }

Fortunately, this does not happen. Although the proof is beyond the scope of this text, it can be shown that if f(x) is
n
continuous on the closed interval [a, b], then nli)moo Z f (x;*‘ )Ax exists and is unique (in other words, it does not depend
i=
on the choice of {x;“ }).

We look at some examples shortly. But, before we do, let’s take a moment and talk about some specific choices for {x;“ }

Although any choice for {x;“ } gives us an estimate of the area under the curve, we don’t necessarily know whether that

estimate is too high (overestimate) or too low (underestimate). If it is important to know whether our estimate is high or

low, we can select our value for {x’l“ } to guarantee one result or the other.
If we want an overestimate, for example, we can choose {x?< } such that for i =1, 2, 3,...,n, f(x;?< )2 f(x) for all

X € [x;_q, x;]. In other words, we choose {x;" } sothatfor i =1, 2, 3,...,n, f(x?< ) is the maximum function value on

n

the interval [x;_q, x;]. If we select {x;k } in this way, then the Riemann sum z f(x;!‘ )Ax is called an upper sum.
i=1

Similarly, if we want an underestimate, we can choose {x;“ } sothatfor i =1, 2, 3,...,n, f(x;?‘ ) is the minimum function

value on the interval [x; _;, x;]. In this case, the associated Riemann sum is called a lower sum. Note that if f(x) is either
increasing or decreasing throughout the interval [a, b], then the maximum and minimum values of the function occur at the

endpoints of the subintervals, so the upper and lower sums are just the same as the left- and right-endpoint approximations.

Example 1.5

Finding Lower and Upper Sums
Find a lower sum for f(x) =10 — x2 on [1, 2]; let n = 4 subintervals.

Solution

With n=4 over the interval [1, 2], Ax=l. We can list the intervals as

4
[1, 1.25], [1.25, 1.5], [1.5, 1.75], [1.75, 2]. Because the function is decreasing over the interval [1, 2], Figure

1.14 shows that a lower sum is obtained by using the right endpoints.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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(x) =10 — x2

1o f
T T
=
ol \

1 2 x
a:X() X]_ Xz X3 X4

Figure 1.14 The graph of f(x) =10 — x? is set up for a

right-endpoint approximation of the area bounded by the curve
and the x-axis on [1, 2], and it shows a lower sum.

The Riemann sum is

4
Z (10 - x%)0.25) = 0.25[10 — (1252 + 10— (1.5)2+ 10— (1.75)2 + 10 — (2)2]
k=1

= 0.25[8.4375 + 7.75 4+ 6.9375 + 6]
=17.28.

The area of 7.28 is a lower sum and an underestimate.

Ea L5 a. Find an upper sum for f(x) =10 — %2 on [1, 2]; let n = 4.

b. Sketch the approximation.

Example 1.6

Finding Lower and Upper Sums for f(x) = sinx

Find a lower sum for f(x) = sinx over the interval [a, b] = [0, %], let n = 6.

Solution
Let’s first look at the graph in Figure 1.15 to get a better idea of the area of interest.




22 Chapter 1 | Integration

1+ ¥ = sin x

X
; T T T 7 W T 1\
12 6 4 3 12 2
Figure 1.15 The graph of y = sinx is divided into six regions: Ax = % = %

: x|z z| |z z| |z z| |z 5= Sz & - ;
The intervals are [0, 12], [12, 6]’ [6’ 4], [4, 3], [3, 12], and [12, 2]. Note that f(x) =sinx is
increasing on the interval [0, %] so a left-endpoint approximation gives us the lower sum. A left-endpoint

5
approximation is the Riemann sum Z sinx; (1—75) We have
~

A s sl ) o) o B

@ 16 Using the function f(x) = sinx over the interval [O, Z ], find an upper sum; let n = 6.

|
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1.1 EXERCISES

1. State whether the given sums are equal or unequal.
10

10
Ziand Zk

i=1 k=1

L

10

15
b. Y iand ), (i-5)
i=6

i=1

10

9
¢ D ii—1)yand Y. (j+ 1)

i=1 j=0
10

10
d X ii—1 and Y, (k—k)
k=1

i=1

In the following exercises, use the rules for sums of powers
of integers to compute the sums.

2. 10
l
i

=5

w
—_
(=]

Il
9]

100 100
Zai:IS and Zb-: 12. In the

Suppose that ==
i=1 i=1

following exercises, compute the sums.

4. 100
(a;+b))
i=1
5. 100
(a;—b)
i=1
6. 100
(3al- - 4bl)
i=1
7. 100
(Sai + 4bl)

Il
—

i

In the following exercises, use summation properties and
formulas to rewrite and evaluate the sums.

8. 2
D 100(k> - 5k + 1)
k=1
9. 30
2, (7%-2))
=

23

10. 20

1. 25

> [@0? - 1004]

k=1

Let L, denote the left-endpoint sum using n subintervals
and let R, denote the corresponding right-endpoint sum.

In the following exercises, compute the indicated left and
right sums for the given functions on the indicated interval.

12. Ly for f(x) =

1
1 on [2, 3]

13. R4 for g(x) = cos(zx) on [0, 1]

14. =1
Lg for f(x) = FEEE)) on [2, 5]
15. RG for f(x) = )C(.Xf#—l) on [2, 5]
16. R, for 21 on [-2, 2]
x“+1
17. L, for 21 on [-2, 2]
x“+1

18. R, for x> —2x+1 on [0, 2]
19. Lg for x2=2x+1 on [0, 2]

20. Compute the left and right Riemann sums—L,4 and Ry,
respectively—for f(x) = (2 — |xl) on [-2, 2]. Compute

their average value and compare it with the area under the
graph of f.

21. Compute the left and right Riemann sums—Lg and Rg,
respectively—for ~ f(x) =3 —=13—xl) on [0, 6]
Compute their average value and compare it with the area
under the graph of f.

22. Compute the left and right Riemann sums—L,4 and Ry,
respectively—for  f(x) = V4 — 2 on [-2,2] and

compare their values.

23. Compute the left and right Riemann sums—Lg and Rg,

respectively—for  f(x) =19 — (x — 3)2 on [0, 6] and

compare their values.

Express the following endpoint sums in sigma notation but
do not evaluate them.
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24. Ly for f(x) = x2 on [1, 2]

25. Lqg for f(x) = V4 — x% on [-2, 2]
26. Ryofor f(x) =sinx on [0, x]
27. Rygo for Inx on [1, €]

In the following exercises, graph the function then use a
calculator or a computer program to evaluate the following
left and right endpoint sums. Is the area under the curve
between the left and right endpoint sums?

28. [T] Lygp and Ry for y = x> —3x+ 1 on the interval
[_19 1]

29. [T] Lyog and Ryqq for y = x% on the interval [0, 1]

30. [T] Lsg and Rs for y = xz;ll on the interval [2, 4]

3L M L1gp and Ry for y = x> on the interval [—1, 1]

32. [T] Lsg and Rsg for y = tan(x) on the interval [O, %]

33. [T] Lygg and Ryqp for y = ¢>* on the interval [—1, 1]

34. Let t; denote the time that it took Tejay van Garteren to

ride the jth stage of the Tour de France in 2014. If there
21

were a total of 21 stages, interpret Z 1.
=1

35. Let r; denote the total rainfall in Portland on the jth

31
day of the year in 2009. Interpret Z ri.
j=1"

36. Let d i denote the hours of daylight and o j denote the

increase in the hours of daylight from day j— 1 to dayj in

Fargo, North Dakota, on the jth day of the year. Interpret
365

di+ 5,
i=2

37. To help get in shape, Joe gets a new pair of running

shoes. If Joe runs 1 mi each day in week 1 and adds L mi

10

to his daily routine each week, what is the total mileage on
Joe’s shoes after 25 weeks?
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38. The following table gives approximate values of the
average annual atmospheric rate of increase in carbon
dioxide (CO,) each decade since 1960, in parts per million
(ppm). Estimate the total increase in atmospheric CO,
between 1964 and 2013.

Decade Ppm/y

1964-1973 1.07

1974-1983 1.34

1984-1993 1.40

1994-2003 1.87

2004-2013 2.07

Table 1.2 Average Annual
Atmospheric CO,
Increase,

1964-2013 Source:
http:/lwww.esrl.noaa.gov/
gmd/ccggltrendsl.
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39. The following table gives the approximate increase in 40. The following table gives the approximate increase in

sea level in inches over 20 years starting in the given year. dollars in the average price of a gallon of gas per decade
Estimate the net change in mean sea level from 1870 to since 1950. If the average price of a gallon of gas in 2010
2010. was $2.60, what was the average price of a gallon of gas in
19507
Starting Year 20-Year Change
Starting Year 10-Year Change
1870 0.3
1950 0.03
1890 1.5
1960 0.05
1910 0.2
1970 0.86
1930 2.8
1980 -0.03
1950 0.7
1990 0.29
1970 1.1
2000 1.12
1990 1.5 .
Table 1.4 Approximate 10-Year Gas
] Price Increases, 1950-2000 Source:
Table 1.3 ApprOXIma'[e 20-Year Sea http:”epb_Ibl_govlhomepagesl
Level Increases, 1870-1990 Source: Rick Diamond/docs/
http:/llink.springer.com/article/ IbnI55011-trends.pdf.

10.1007%2Fs10712-011-9119-1
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41. The following table gives the percent growth of the
U.S. population beginning in July of the year indicated. If
the U.S. population was 281,421,906 in July 2000, estimate
the U.S. population in July 2010.

Year % Change/Year
2000 1.12
2001 0.99
2002 0.93
2003 0.86
2004 0.93
2005 0.93
2006 0.97
2007 0.96
2008 0.95
2009 0.88

Table 1.5 Annual Percentage
Growth of U.S. Population,
2000-2009 Source:
http:/lwww.census.gov/
popest/data.

(Hint: To obtain the population in July 2001, multiply the
population in July 2000 by 1.0112 to get 284,573,831.)

In the following exercises, estimate the areas under the
curves by computing the left Riemann sums, Lg.

42.

O
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O

44. y
? -

y
45. 24

0 1 5 5 4 5 6 7 o
46. [T] Use a computer algebra system to compute the
Riemann sum, Ly, for N =10, 30,50 for

f)=V1=x% on [-1, 1].

47. [T] Use a computer algebra system to compute the
Riemann sum, Ly, for N =10, 30, 50 for

f(x) = —L— on [~1, 1].
V1 + x2

48. [T] Use a computer algebra system to compute the
Riemann sum, Ly, for N = 10, 30, 50 for f(x) = sin® x

on [0, 27]. Compare these estimates with 7.
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In the following exercises, use a calculator or a computer
program to evaluate the endpoint sums Ry and Ly for
N =1,10,100. How do these estimates compare with the

exact answers, which you can find via geometry?

49. [T] y = cos(zx) on the interval [0, 1]
50. [T] y = 3x + 2 on the interval [3, 5]

In the following exercises, use a calculator or a computer
program to evaluate the endpoint sums Ry and Ly for
N = 1,10,100.

51011 y=x*—5x>+4 on the interval [-2,2],

which has an exact area of %

52. [T] y=Inx on the interval [1, 2], which has an

exact area of 2In(2) — 1

53. Explain why, if f(a) >0 and f is increasing on
la, b}, that the left endpoint estimate is a lower bound for

the area below the graph of fon [a, b].

54. Explain why, if f(b) >0 and f is decreasing on
la, b], that the left endpoint estimate is an upper bound for

the area below the graph of fon [a, b].

55. Show that, in general,
Ry—Ly= (b—a)xM.

N
56. Explain why, if f is increasing on [a, b], the error

between either Ly or Ry and the area A below the graph of f

SO =@

is at most (b —

27

57. For each of the three graphs:
a. Obtain a lower bound L(A) for the area enclosed

by the curve by adding the areas of the squares
enclosed completely by the curve.

b. Obtain an upper bound U(A) for the area by
adding to L(A) the areas B(A) of the squares

enclosed partially by the curve.

3

Graph 3

58. In the previous exercise, explain why L(A) gets no
smaller while U(A) gets no larger as the squares are

subdivided into four boxes of equal area.
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59. A unit circle is made up of n wedges equivalent to the
inner wedge in the figure. The base of the inner triangle is 1

unit and its height is sin(%). The base of the outer triangle
is B =cos(Z)+sinZjan(Z) and the height is
H= Bsin(ZT”). Use this information to argue that the area

of a unit circle is equal to m.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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1.2 | The Definite Integral

Learning Objectives

1.2.1 State the definition of the definite integral.

1.2.2 Explain the terms integrand, limits of integration, and variable of integration.
1.2.3 Explain when a function is integrable.

1.2.4 Describe the relationship between the definite integral and net area.

1.2.5 Use geometry and the properties of definite integrals to evaluate them.
1.2.6 Calculate the average value of a function.

In the preceding section we defined the area under a curve in terms of Riemann sums:

n
A= nlewigl f(x’}< )Ax.

However, this definition came with restrictions. We required f(x) to be continuous and nonnegative. Unfortunately, real-

world problems don’t always meet these restrictions. In this section, we look at how to apply the concept of the area under
the curve to a broader set of functions through the use of the definite integral.

Definition and Notation

The definite integral generalizes the concept of the area under a curve. We lift the requirements that f(x) be continuous

and nonnegative, and define the definite integral as follows.

Definition

If f(x) is a function defined on an interval [a, b], the definite integral of f from a to b is given by

f bf (Ddx = lim D ek )Ax, (1.8)
¢ i=1

provided the limit exists. If this limit exists, the function f(x) is said to be integrable on [a, b], or is an integrable

function.

The integral symbol in the previous definition should look familiar. We have seen similar notation in the chapter on
Applications of Derivatives (http://cnx.org/content/m53602/latest/) , where we used the indefinite integral
symbol (without the a and b above and below) to represent an antiderivative. Although the notation for indefinite integrals
may look similar to the notation for a definite integral, they are not the same. A definite integral is a number. An indefinite
integral is a family of functions. Later in this chapter we examine how these concepts are related. However, close attention
should always be paid to notation so we know whether we’re working with a definite integral or an indefinite integral.

Integral notation goes back to the late seventeenth century and is one of the contributions of Gottfried Wilhelm Leibniz, who
is often considered to be the codiscoverer of calculus, along with Isaac Newton. The integration symbol [ is an elongated S,
suggesting sigma or summation. On a definite integral, above and below the summation symbol are the boundaries of the
interval, [a, b]. The numbers a and b are x-values and are called the limits of integration; specifically, a is the lower limit

and b is the upper limit. To clarify, we are using the word limit in two different ways in the context of the definite integral.
First, we talk about the limit of a sum as n» — 0. Second, the boundaries of the region are called the limits of integration.

We call the function f(x) the integrand, and the dx indicates that f(x) is a function with respect to x, called the variable

of integration. Note that, like the index in a sum, the variable of integration is a dummy variable, and has no impact on the
computation of the integral. We could use any variable we like as the variable of integration:

fa bf(x)dx= fa bf(t)dt= /a bf(u)du


http://cnx.org/content/m53602/latest/
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n
Previously, we discussed the fact that if f(x) is continuous on [a, b], then the limit nli)moo Z f(x;" )Ax exists and is
i=1

unique. This leads to the following theorem, which we state without proof.

Theorem 1.1: Continuous Functions Are Integrable

If f(x) is continuous on [a, b], then fis integrable on [a, b].

Functions that are not continuous on [a, b] may still be integrable, depending on the nature of the discontinuities. For
example, functions with a finite number of jump discontinuities on a closed interval are integrable.

It is also worth noting here that we have retained the use of a regular partition in the Riemann sums. This restriction is not
strictly necessary. Any partition can be used to form a Riemann sum. However, if a nonregular partition is used to define
the definite integral, it is not sufficient to take the limit as the number of subintervals goes to infinity. Instead, we must take
the limit as the width of the largest subinterval goes to zero. This introduces a little more complex notation in our limits and
makes the calculations more difficult without really gaining much additional insight, so we stick with regular partitions for
the Riemann sums.

Example 1.7

Evaluating an Integral Using the Definition

2
Use the definition of the definite integral to evaluate / x%dx. Use a right-endpoint approximation to generate
0

the Riemann sum.

Solution

We first want to set up a Riemann sum. Based on the limits of integration, we have ¢ =0 and b =2. For
i=0,1,2,...,n, let P={x;} bearegular partition of [0, 2]. Then

Ax=b-a-2

Since we are using a right-endpoint approximation to generate Riemann sums, for each i, we need to calculate

the function value at the right endpoint of the interval [x; _q, x;]. The right endpoint of the interval is x;, and

since P is a regular partition,
xi=x0+iAx=0+i[%]=%.
Thus, the function value at the right endpoint of the interval is
oy =t = ) =4
Then the Riemann sum takes the form

n n k) 143 k) n
PIIEED)) (4_P -y 8832

i=

n

Using the summation formula for Z i 2, we have
i=1

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Z fOe)Ax =%zn: i?
ni=1

i=1

_ ﬁ[2n3 +3n% + n]
n? 6
_16n® +24n’ 4+ n
6n>

_8.4 1
—§+ﬁ+

6n”

Now, to calculate the definite integral, we need to take the limit as n — co. We get

2 n
2 R
fO x“dx = "lewigl fxepAx

T 8.4 1

= nll)moo(g + 7 + F)

T 4 1

= nll)moo( )+ nll)moo )+ hm (@)
_8 8
3+0+O 3

1.7 3
@ Use the definition of the definite integral to evaluate f (2x — 1)dx. Use a right-endpoint approximation
0

to generate the Riemann sum.

Evaluating Definite Integrals

Evaluating definite integrals this way can be quite tedious because of the complexity of the calculations. Later in this chapter
we develop techniques for evaluating definite integrals without taking limits of Riemann sums. However, for now, we can
rely on the fact that definite integrals represent the area under the curve, and we can evaluate definite integrals by using
geometric formulas to calculate that area. We do this to confirm that definite integrals do, indeed, represent areas, so we can
then discuss what to do in the case of a curve of a function dropping below the x-axis.

Example 1.8

Using Geometric Formulas to Calculate Definite Integrals

6
Use the formula for the area of a circle to evaluate f 9—(x— 3)2dx.
3

Solution

The function describes a semicircle with radius 3. To find




32 Chapter 1 | Integration

/ —(x—3)2
2

we want to find the area under the curve over the interval [3, 6]. The formula for the area of a circle is A = zr~.

The area of a semicircle is just one-half the area of a circle, or A = (%)ﬂrz. The shaded area in Figure 1.16

covers one-half of the semicircle, or A = (i)ﬂrz. Thus,

f 3/9 —x-3)2 = %;;(3)2

=9
= 47[
=~ 7.069
y
1l fx) =9 — (x — 3)

3 6 x
Figure 1.16 The value of the integral of the function f(x)

over the interval [3, 6] is the area of the shaded region.

1.8 4
@ Use the formula for the area of a trapezoid to evaluate f (2x + 3)dx.
2

Area and the Definite Integral

When we defined the definite integral, we lifted the requirement that f(x) be nonnegative. But how do we interpret “the

area under the curve” when f(x) is negative?

Net Signed Area

Let us return to the Riemann sum. Consider, for example, the function f(x) =2 — 2x2 (shown in Figure 1.17) on
the interval [0, 2]. Use n =8 and choose {x;" } as the left endpoint of each interval. Construct a rectangle on each
subinterval of height f(x’}‘ ) and width Ax. When f(x;!‘ ) is positive, the product f(x’}‘ )Ax represents the area of the

rectangle, as before. When f(x;!‘ ) is negative, however, the product f(x;-k )Ax represents the negative of the area of the

rectangle. The Riemann sum then becomes

Z f Ax = (Area of rectangles above the x-axis) — (Area of rectangles below the x-axis)
i=1

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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yi

5.

41

61

Figure 1.17 For a function that is partly negative, the
Riemann sum is the area of the rectangles above the x-axis less
the area of the rectangles below the x-axis.

Taking the limit as # — oo, the Riemann sum approaches the area between the curve above the x-axis and the x-axis, less

the area between the curve below the x-axis and the x-axis, as shown in Figure 1.18. Then,
2 n
/0 fdx = nli)mooigl fle)Ax
= A 1= A2.
The quantity A; — A, is called the net signed area.

Y

_;:g 0 > X

Figure 1.18 In the limit, the definite integral equals area A;
less area Ay, or the net signed area.

Notice that net signed area can be positive, negative, or zero. If the area above the x-axis is larger, the net signed area is
positive. If the area below the x-axis is larger, the net signed area is negative. If the areas above and below the x-axis are
equal, the net signed area is zero.

Example 1.9

Finding the Net Signed Area
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Find the net signed area between the curve of the function f(x) = 2x and the x-axis over the interval [—3, 3].

Solution

The function produces a straight line that forms two triangles: one from x = —3 to x = 0 and the other from

x=0 to x =3 (Figure 1.19). Using the geometric formula for the area of a triangle, A = %bh, the area of

triangle Ay, above the axis, is
_1 —
A= 23(6) 9,
where 3 is the base and 2(3) = 6 is the height. The area of triangle A,, below the axis, is

Ay =2(3)(6) =9,

where 3 is the base and 6 is the height. Thus, the net area is

3
[ 2xdx=a,-4,=9-9=0.
-3

yi
64
34
A1
5 - 3 6X
Az
s

Figure 1.19 The area above the curve and below the x-axis
equals the area below the curve and above the x-axis.

Analysis
If A; is the area above the x-axis and A, is the area below the x-axis, then the net areais A; — A,. Since the areas

of the two triangles are equal, the net area is zero.

@ 1.9 Find the net signed area of f(x) = x —2 over the interval [0, 6], illustrated in the following image.

yi
fxX)=x—-2
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Total Area
One application of the definite integral is finding displacement when given a velocity function. If v(#) represents the

velocity of an object as a function of time, then the area under the curve tells us how far the object is from its original
position. This is a very important application of the definite integral, and we examine it in more detail later in the chapter.
For now, we’re just going to look at some basics to get a feel for how this works by studying constant velocities.

When velocity is a constant, the area under the curve is just velocity times time. This idea is already very familiar. If a car
travels away from its starting position in a straight line at a speed of 75 mph for 2 hours, then it is 150 mi away from its
original position (Figure 1.20). Using integral notation, we have

2
f 75dt = 150.
0

v (mi/hr) 4
80

70

60+

50+

404

30+

20+

10+

O 02 04 0608 1 12 14 16 1.8 2 22 t(hours)
Figure 1.20 The area under the curve v(¢) = 75 tells us how far the car

is from its starting point at a given time.

In the context of displacement, net signed area allows us to take direction into account. If a car travels straight north at a
speed of 60 mph for 2 hours, it is 120 mi north of its starting position. If the car then turns around and travels south at a
speed of 40 mph for 3 hours, it will be back at it starting position (Figure 1.21). Again, using integral notation, we have

2 5
f 60dr + f —40dt = 120 — 120
0 2

=0.

In this case the displacement is zero.
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v (mi/hr) 4
70T

60

50+

404

30+

20+

10+

I S S LT
—10+
—204

—304+

—404

—504+

Figure 1.21 The area above the axis and the area below the axis
are equal, so the net signed area is zero.

Suppose we want to know how far the car travels overall, regardless of direction. In this case, we want to know the area
between the curve and the x-axis, regardless of whether that area is above or below the axis. This is called the total area.

Graphically, it is easiest to think of calculating total area by adding the areas above the axis and the areas below the axis
(rather than subtracting the areas below the axis, as we did with net signed area). To accomplish this mathematically, we use
the absolute value function. Thus, the total distance traveled by the car is

2 5 2 5
fo 160]dt + f2 |—40ldt = /O 60d1 + /2 40dt

=120+ 120
= 240.

Bringing these ideas together formally, we state the following definitions.

Definition

Let f(x) be an integrable function defined on an interval [a, b]. Let A; represent the area between f(x) and the x-
axis that lies above the axis and let A, represent the area between f(x) and the x-axis that lies below the axis. Then,

the net signed area between f(x) and the x-axis is given by

b
/a Ffdx=A, — A,

The total area between f(x) and the x-axis is given by

b
i 1f(ldx= A, + A,

Example 1.10

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Finding the Total Area

Find the total area between f(x) = x — 2 and the x-axis over the interval [0, 6].

Solution
Calculate the x-intercept as (2, 0) (set y =0, solve for x). To find the total area, take the area below the x-axis

over the subinterval [0, 2] and add it to the area above the x-axis on the subinterval (2, 6] (Figure 1.22).

yi
f(X)=x-2

Figure 1.22 The total area between the line and the x-axis
over [0, 6] is A; plus A;.

We have

6
[l =2ldx=A,+4,.
0

Then, using the formula for the area of a triangle, we obtain

A2=%bh=%-2.2=2

Ay=gbh=7-4-4=8.

1,
2
The total area, then, is

A1+A2:8+2: 10

@/ 1.10 Find the total area between the function f(x) = 2x and the x-axis over the interval [—3, 3].

Properties of the Definite Integral

The properties of indefinite integrals apply to definite integrals as well. Definite integrals also have properties that relate to
the limits of integration. These properties, along with the rules of integration that we examine later in this chapter, help us
manipulate expressions to evaluate definite integrals.

Rule: Properties of the Definite Integral

1.

f * fodx = 0 e
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If the limits of integration are the same, the integral is just a line and contains no area.

2.
a b (1.10)
[ f@ax == [ fedx
b a
If the limits are reversed, then place a negative sign in front of the integral.
3.
b b b (1.12)
[ 1@ +g@lx = [ fdx+ [ g@dx
a a a
The integral of a sum is the sum of the integrals.
4.
b b b (1.12)
[F) = g(o)ldx = J fdx = [ gdx
a a ¢
The integral of a difference is the difference of the integrals.
5.
b b (1.13)
[ ef@dx=c [ fe)
a a
for constant c. The integral of the product of a constant and a function is equal to the constant multiplied by
the integral of the function.
6.

/abf (dx = f:f wdx+ [ ’ Fdx (1.14)

Although this formula normally applies when c is between a and b, the formula holds for all values of a, b, and
¢, provided f(x) is integrable on the largest interval.

Example 1.11

Using the Properties of the Definite Integral

Use the properties of the definite integral to express the definite integral of f(x) = —3x3 +2x+2 over the

interval [—2, 1] as the sum of three definite integrals.

Solution

1
Using integral notation, we have / (—3x3 +2x+ Z)dx. We apply properties 3. and 5. to get
-2
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/_12(—3x3 +2x+2)dx = /_12—3x3 dx + /_122xdx + /_122dx

= —3/_12)63 dx + 2/_12xdx + /_122dx.

111 Use the properties of the definite integral to express the definite integral of f(x) = 6x> —4x% +2x -3

over the interval [1, 3] as the sum of four definite integrals.

Example 1.12

Using the Properties of the Definite Integral

8 5 8
If it is known that / f(x)dx =10 and [ f(x)dx =5, find the value of / f(x)dx.
0 0 5

Solution
By property 6.,
b c b
[a F(0)dx = fa FO0)dx + /L F0)dx.
Thus,
ey gy ey
[ f@ax = [ fwdx+ [ feodx
8
10 =5 d
+ fs f(x)dx
8
5 = dx.
/5 f(x)dx

1.12 5 5 2
@ If it is known that f f(x)dx = -3 and / f(x)dx =4, find the value of f f(x)dx.
1 2 1

Comparison Properties of Integrals

A picture can sometimes tell us more about a function than the results of computations. Comparing functions by their graphs
as well as by their algebraic expressions can often give new insight into the process of integration. Intuitively, we might say
that if a function f(x) is above another function g(x), then the area between f(x) and the x-axis is greater than the area

between g(x) and the x-axis. This is true depending on the interval over which the comparison is made. The properties of
definite integrals are valid whether a < b, a=b, or a > b. The following properties, however, concern only the case

a < b, and are used when we want to compare the sizes of integrals.
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Theorem 1.2: Comparison Theorem

i. If f(x) >0 for a < x <b, then

b
f f(x)dx > 0.

ii. If f(x)>g(x) for a <x<b, then

/ ’ fwdx> [ bg(x)a’x.

iii. If mand M are constants such that m < f(x) < M for a < x < b, then

b
mb-a) < [ fedx
<M - a).

Example 1.13

Comparing Two Functions over a Given Interval

Compare f(x) =1+ x% and g(x) = V1 + x over the interval [0, 1].

Solution

Graphing these functions is necessary to understand how they compare over the interval [0, 1]. Initially, when
graphed on a graphing calculator, f(x) appears to be above g(x) everywhere. However, on the interval [0, 1],
the graphs appear to be on top of each other. We need to zoom in to see that, on the interval [0, 1], g(x) is above

f(x). The two functions intersectat x =0 and x = 1 (Figure 1.23).

yi

> 1 O

(a) (b)
Figure 1.23 (a) The function f(x) appears above the function g(x)

except over the interval [0, 1] (b) Viewing the same graph with a greater

zoom shows this more clearly.

We can see from the graph that over the interval [0, 1], g(x) > f(x). Comparing the integrals over the specified

1 1
interval [0, 1], we also see that f g(x)dx > f f(x)dx (Figure 1.24). The thin, red-shaded area shows just
0 0

how much difference there is between these two integrals over the interval [0, 1].
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(a) (b)
Figure 1.24 (a) The graph shows that over the interval
[0, 1], g(x) > f(x), where equality holds only at the endpoints of the

interval. (b) Viewing the same graph with a greater zoom shows this more
clearly.

Average Value of a Function

We often need to find the average of a set of numbers, such as an average test grade. Suppose you received the following
test scores in your algebra class: 89, 90, 56, 78, 100, and 69. Your semester grade is your average of test scores and you
want to know what grade to expect. We can find the average by adding all the scores and dividing by the number of scores.
In this case, there are six test scores. Thus,

89+90+56+678+100+69=%%80'33,

Therefore, your average test grade is approximately 80.33, which translates to a B— at most schools.

Suppose, however, that we have a function v(¢) that gives us the speed of an object at any time ¢, and we want to find the
object’s average speed. The function v(¢) takes on an infinite number of values, so we can’t use the process just described.
Fortunately, we can use a definite integral to find the average value of a function such as this.

Let f(x) be continuous over the interval [a, b] and let [a, b] be divided into n subintervals of width Ax = (b — a)/n.

Choose a representative x¥ in each subinterval and calculate f(x;i< ) for i =1, 2,...,n. In other words, consider each

f(x;?< ) as a sampling of the function over each subinterval. The average value of the function may then be approximated as

SO )+ fg )+ -+ flxg )
2 :

which is basically the same expression used to calculate the average of discrete values.

b—a b—a

But we know Ax = , SO n=
n Ax

, and we get

SO )+ 05 ) o+ Sl ) _ Sk )+ S5 )+ o+ Sl )
n b-a ’
Ax

n
Following through with the algebra, the numerator is a sum that is represented as z f (x;" ), and we are dividing by a
i=1
fraction. To divide by a fraction, invert the denominator and multiply. Thus, an approximate value for the average value of
the function is given by
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3 et \
,:@ = (bA_xa)Z f(x;F )

Ax i=1

~ (L a)éjl Sl JAx.

This is a Riemann sum. Then, to get the exact average value, take the limit as n goes to infinity. Thus, the average value of
a function is given by

1L b
L lim_ Y fepar=71— [ fedx.
i=1 a

b—an-—

Definition

Let f(x) be continuous over the interval [a, b]. Then, the average value of the function f(x) (or five) On [a, b] is

given by

b
—_1
fave—m‘/af(x)dx-

Example 1.14

Finding the Average Value of a Linear Function
Find the average value of f(x) = x+ 1 over the interval [0, 5].

Solution
First, graph the function on the stated interval, as shown in Figure 1.25.

Yi

o1 2 5 4 5 6 1%
Figure 1.25 The graph shows the area under the function
f(x)=x+1 over [0, 5].

The region is a trapezoid lying on its side, so we can use the area formula for a trapezoid A = %h(a + b), where

h represents height, and a and b represent the two parallel sides. Then,

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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5
f x+1dx =Lha+b)
0 2

=1l.5.

=5 5-(1+6)
_35
5
Thus the average value of the function is

1.35_171

@ 1.13 Find the average value of f(x) = 6 — 2x over the interval [0, 3].

5
1 =1.3_17
5_O/O)c+ldx—5 > =7

43
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1.2 EXERCISES

In the following exercises, express the limits as integrals.

60. &
nlem .Zl (x;“ )Ax over [1, 3]
=
6. & ) 5
Jim Y (50 )P =3 ))ax over [0, 2]
=
6. &,
nll)moo '21 sin (Zﬂx;." )Ax over [0, 1]
=
6. &,
Jim Z cos” (2zx¥ )Ax over [0, 1]

1

i

In the following exercises, given L, or R, as indicated,
express their limits as n — co as definite integrals,

identifying the correct intervals.

64. &
Lo=5 2, 5
i=1
65. a, .
Ri=% 2 &

66.

67.

B L =22 Y anl=Leos(2ei=1)

69.

In the following exercises, evaluate the integrals of the
functions graphed using the formulas for areas of triangles

and circles, and subtracting the areas below the x-axis.
70. Y
5l

44

31 _
=12 + 8x — X2
5l 8x — x

VX — X°

V=72 + 18x — X2
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71. Y1
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x4

72. Y
5.1

-

4 6 8 10 12x

73.




Chapter 1 | Integration

74. Yi
5l
i 2
3l V=72 + 18x — x
G 7
1__-\2x—x
0 'U'é'l'o'fzx
14
-2+ .
V=12 + 8x —
sl 8x — x
44
75. yi
44
34
24
1-|x-1
1__
0 'U'é'io'l’zx
14
241 _ :
——12 + 8x —
3l 8x — x
—44

In the following exercises, evaluate the integral using area
formulas.

76. .3
f (3 — x)dx
0

77. 3
f (3 = )dx
2
78. 3
/ (3 — Ixl)dx
-3
79

6

[ Gt 3)dx
0

80. 2
/ V4 — x%dx
)

81 / 5\/4 — (x = 3)%dx
1

82. 12
f 36 — (x — 6)2dx
0

83. 3
/ (3 — Ixl)dx
-

45

In the following exercises, use averages of values at the left
(L) and right (R) endpoints to compute the integrals of the
piecewise linear functions with graphs that pass through the
given list of points over the indicated intervals.

84. {(0,0), (2, 1), (4, 3), (5, 0), (6, 0), (8,3)}  over
[0, 8]

85. {(0,2),(1,0),3,5),(5,5), (6, 2), (8,0} over
[0, 8]

86. {(—4, —4), (-2, 0), (0, =2), (3, 3), (4, 3)} over
[_4, 4]

87. {(—4, 0), (-2, 2), (0, 0), (1, 2), (3, 2), (4, 0)}
over [—4, 4]

4 2
Suppose that / f(x)dx =5 and f f(x)dx = -3, and
0 0

4 2
f g(x)dx =—1 and / g(x)dx =2. In the following
0 0

exercises, compute the integrals.

88. 4
fO (f(x) + g(0)dx

89. 4
/2 (f(x) + g(x0))dx

90. 2
fO (f(x) — g(0)dx

91. 4
f2 (f(x) — g(x0))dx

92. 2
[O (Bf(x) — 4g())dx

93. 4
/2 (4 (x) — 3g(0)dx

In the following exercises, wuse the identity

A 0 A
f fx)dx = / fx)dx + / f(x)dx to compute the
—-A —-A 0

integrals.

9. * .
J _Slntzdt (Hint: sin(—1) = —sin(t))
1+¢

-

95. n t
I + cos
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96. /3
f (2 — x)dx (Hint: Look at the graph of f.)
1

97. 4 3
/ (x — 3)”dx (Hint: Look at the graph of f.)
2
In the following exercises, given that
1 1 1
-1 2, =1 30=1
foxdx—z, Ox dx 3 and fox dx T

compute the integrals.

%8 /01(1 +x+x2+x3)dx

% ]1—x+x2—x3 X
/,

100

1
' f (1 —x)%dx
0

101. 1 3
f (1 - 2x)3 dx
0

1

102. J0(6x_ %xz)dx

103.

/;)1(7 - 5x3)dx

In the following exercises,
theorem.

use the comparison

104. 3 )
Show that /;) (x —6x+ 9)dx > 0.

105. 3
Show that f (x — 3)(x + 2)dx < 0.
-2

106. 1 1
Show that f V1 + x3dx < f V1 + x%dx.
0 0

107. 2 2
Show that f V1 + xdx < / V1 + x2dx.
1 1

108. nl2
Show that / sintdt > Z. (Hint: sint > % over
0

o.4)

109. nl4
Show that f costdt > m\2/4.
—nl4
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In the following exercises, find the average value f,ye of f
between a and b, and find a point ¢, where f(c) = fave-

10. f=x%a=-1,b=1
L fy=x’,a=-1,b=1

U2 oy =V4—x2 a=0,b=2
113. fx)=@B—-Ixl),a=-3,b=3
114. f(x) =sinx,a=0,b=2x
115. f(x) =cosx,a=0,b=2x

In the following exercises, approximate the average value
using Riemann sums Ly and Rygg. How does your answer
compare with the exact given answer?

116. [T] y =In(x) over the interval [1, 4]; the exact
In(256)
3

solution is

1.

117. [T] y=eX/2 over the interval [0, 1]; the exact
solution is 2(ve — 1).

118. [T] y =tanx over the interval [O, %], the exact

solution is %

4—x

exact solution is Z.

6

over the interval [—1, 1]; the

In the following exercises, compute the average value using
the left Riemann sums Ly for N = 1, 10, 100. How does

the accuracy compare with the given exact value?

120. [T] y= x2—4 over the interval [0, 2]; the exact

solution is _8

3
2
121. [T] y=xe® over the interval [0, 2]; the exact

solution is %(64 - 1).

122. X
[T] y= (%) over the interval [0, 4]; the exact
. . 15

solution is 7] @
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123. 1] y=xsin(x2) over the interval [—, O]; the

COS(II’Z) -1

exact solution is
2w

124,

27
Suppose that A= f sin’ rdt and
0

2n
B= f cos2tdr. Show that A+ B =27 and A = B.
0

125. w4
Suppose  that A= / sec“tdt =n and
—nl4
/4
B= [ tan’wr Showthat A—B =L
4 2

126. Show that the average value of sin¢ over [0, 2] is
equal to 1/2 Without further calculation, determine whether
the average value of sin®t over [0, z] is also equal to 1/
2.

127. Show that the average value of cos?t over [0, 27]
is equal to 1/2. Without further calculation, determine
whether the average value of cos2(t) over [0, x] is also

equal to 1/2.

128. Explain why the graphs of a quadratic function
(parabola) p(x) and a linear function #(x) can intersect in

at most two points. Suppose that p(a)=£(a) and

b b
p(b) = £(b), and that f p(Hdt > f £(dt. Explain
a a

d d
why fc p) > /C £(t)dt whenever a <c<d <b.

129. suppose that parabola p(x) = ax® +bx+c opens

downward (a < 0) and has a vertex of y = 5—5 > 0. For

B
which interval [A, B] is / (ax2 + bx + c)dx as large as
A

possible?

a7

130. Suppose [a, b] can be subdivided into subintervals
a=ap<ay;<a,<--<ay=>b such that either
f>0 over [a;_q,a;] or f<0 over [a;_, a;]. Set

a;

A,:/a.l

f@®dt.
i—-1
b
a. Explain why / fdt=A;+Ay+ - +Ay.
a

b b
b. Then, explain why ‘ f fdi < / |f(®)|dt.
a a

131. Suppose f and g are continuous functions such that
d d

f fdt < / g(®)dt for every subinterval [c, d] of
c c

[a, b]. Explain why f(x) < g(x) for all values of x.

132. Suppose the average value of fover [a, b] is 1 and the
average value of fover [b, c] is 1 where a < ¢ < b. Show

that the average value of fover [a, c] is also 1.

133. Suppose that [a, b]

a=ag<ay<--<ap=>b such that the average value

can be partitioned. taking

of f over each subinterval [a;_4, a;] =1 is equal to 1 for
each i = 1,..., N. Explain why the average value of f over

la, b] is also equal to 1.

134. Suppose that for each i such that 1 <i < N one has

i N
[ fwdi=i. showthat [ fd = w
i—1 0

135. Suppose that for each i such that 1 <i < N one has
i

f f(Hdt = i2.
i — 1

i—

Show that

N _ NN+ DQRN+1)
/0 f(Hdt = ! :

136. [T] Compute the left and right Riemann sums L;( and

L R
Ryp and their average % for f(r) = 2 over

1 _
[0, 1]. Given that / tzdt:0.33, to how many
0

Lin+R
% accurate?

decimal places is
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137. [T] Compute the left and right Riemann sums, L1y and

L R

Ry, and their average w for f(z) = (4 - t2) over
2 _

[1,2]. Given that [ (4= 1*)dr=1.66, to how many
1

Lin+R
% accurate?

decimal places is

what is

138. 5
It / V1 4 t4dr = 41.7133...,
1
5
/ \/1+u4du?
1

139. 1
Estimate / tdt using the left and right endpoint
0

sums, each with a single rectangle. How does the average
of these left and right endpoint sums compare with the

1
actual value f tdt?
0

140. 1
Estimate f tdt by comparison with the area of a
0

single rectangle with height equal to the value of ¢ at the

1

midpoint ¢ = >

. How does this midpoint estimate compare

1
with the actual value f tdt?
0

141. From the graph of sin(2zx) shown:

1
a. Explain why / sin(2zt)dt = 0.
0

a+1
b. Explain why, in general, f sin(2zt)dt = 0 for
a

any value of a.

Y
1L

05+

L0 B ' X
—0.5“
_1..

[=]
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142. 1f f is 1-periodic (f(z+1)= f(r)), odd, and

integrable over [0, 1], is it always true that

1
f f(Hdt = 0?
0

143. 1
If f is 1-periodic and f fdt=A4A, is it
0

1+a
necessarily true that / f(®dt = A forall A?
a
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1.3 | The Fundamental Theorem of Calculus

Learning Objectives

1.3.1 Describe the meaning of the Mean Value Theorem for Integrals.

1.3.2 State the meaning of the Fundamental Theorem of Calculus, Part 1.

1.3.3 Use the Fundamental Theorem of Calculus, Part 1, to evaluate derivatives of integrals.
1.3.4 State the meaning of the Fundamental Theorem of Calculus, Part 2.

1.3.5 Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.

1.3.6 Explain the relationship between differentiation and integration.

In the previous two sections, we looked at the definite integral and its relationship to the area under the curve of a function.
Unfortunately, so far, the only tools we have available to calculate the value of a definite integral are geometric area
formulas and limits of Riemann sums, and both approaches are extremely cumbersome. In this section we look at some
more powerful and useful techniques for evaluating definite integrals.

These new techniques rely on the relationship between differentiation and integration. This relationship was discovered and
explored by both Sir Isaac Newton and Gottfried Wilhelm Leibniz (among others) during the late 1600s and early 1700s,
and it is codified in what we now call the Fundamental Theorem of Calculus, which has two parts that we examine in this
section. Its very name indicates how central this theorem is to the entire development of calculus.

’ Isaac Newton’s contributions to mathematics and physics changed the way we look at the world. The relationships
he discovered, codified as Newton’s laws and the law of universal gravitation, are still taught as foundational

material in physics today, and his calculus has spawned entire fields of mathematics. To learn more, read a brief

biography (http://lwww.openstaxcollege.org/l/20_newtonbio) of Newton with multimedia clips.

Before we get to this crucial theorem, however, let’s examine another important theorem, the Mean Value Theorem for
Integrals, which is needed to prove the Fundamental Theorem of Calculus.

The Mean Value Theorem for Integrals

The Mean Value Theorem for Integrals states that a continuous function on a closed interval takes on its average value at
the same point in that interval. The theorem guarantees that if f(x) is continuous, a point ¢ exists in an interval [a, b] such

that the value of the function at ¢ is equal to the average value of f(x) over [a, b]. We state this theorem mathematically

with the help of the formula for the average value of a function that we presented at the end of the preceding section.

Theorem 1.3: The Mean Value Theorem for Integrals

If f(x) is continuous over an interval [a, b], then there is at least one point ¢ € [a, b] such that

b 1.15
fo=51 f F(x)dx. e

This formula can also be stated as

b
/a f@)dx = f(c)b - a).

Proof
Since f(x) is continuous on [a, b], by the extreme value theorem (see Maxima and Minima (http://cnx.org/content/
mb53611/latest/) ), it assumes minimum and maximum values—m and M, respectively—on [a, b]. Then, for all x in

la, bl, wehave m < f(x) < M. Therefore, by the comparison theorem (see The Definite Integral), we have


http://www.openstaxcollege.org/l/20_newtonbio
http://www.openstaxcollege.org/l/20_newtonbio
http://cnx.org/content/m53611/latest/
http://cnx.org/content/m53611/latest/
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b
m(b —a) < f F()dx < M(b — a).
a
Dividing by b — a gives us

b
m<—_ afa f(x)dx < M.

1
b—a

over [a, b], by the Intermediate Value Theorem (see Continuity (http://cnx.org/content/m53489/latest/) ), there is

b
Since f f(x)dx is a number between m and M, and since f(x) is continuous and assumes the values m and M
a

a number c over [a, b| such that

b
f© =515 [ fex,

and the proof is complete.

O

Example 1.15

Finding the Average Value of a Function

Find the average value of the function f(x) = 8 — 2x over the interval [0, 4] and find c such that f(c) equals

the average value of the function over [0, 4].

Solution

The formula states the mean value of f(x) is given by

4
_1 _
s fo (8 — 2x)dx.

We can see in Figure 1.26 that the function represents a straight line and forms a right triangle bounded by the
x- and y-axes. The area of the triangle is A = %(base)(height). We have

A=tw® =16
The average value is found by multiplying the area by 1/(4 — 0). Thus, the average value of the function is
116 =
4(16) =4.

Set the average value equal to f(c) and solve for c.

|
N

8§—2¢ =
c = 2

At c=2, f(2) =4.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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®_~O<

-
+

f(x) = 8 — 2x

24

14

1 9 1¢c=23 4 5 X
14

Figure 1.26 By the Mean Value Theorem, the continuous
function f(x) takes on its average value at c at least once over

a closed interval.

@/ 1.14 Find the average value of the function f(x) =% over the interval [0, 6] and find c such that f(c)

equals the average value of the function over [0, 6].

Example 1.16

Finding the Point Where a Function Takes on Its Average Value
3

Given / x*dx =9, find c such that f(c) equals the average value of f(x) = x% over [0, 3].
0

Solution

We are looking for the value of ¢ such that
3
—_1 2. _ 1oy —
fle) = 3—of0x dx=109)=3.
Replacing f(c) with c¢?, we have

2 =3

+V3.

Since —\3 is outside the interval, take only the positive value. Thus, ¢ = V3 (Figure 1.27).
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f(x) = x2

(13, 3)

2 -1 0 1 2 3 a4
_1_.

o+
=¥

Figure 1.27 Over the interval [0, 3], the function

fx) = %2 takes on its average value at ¢ = V3.

1.15 3, 2
Given [ (2x - l)dx =15, find c such that f(c) equals the average value of f(x) =2x“—1 over
0

[0, 3].

Fundamental Theorem of Calculus Part 1: Integrals and
Antiderivatives

As mentioned earlier, the Fundamental Theorem of Calculus is an extremely powerful theorem that establishes the
relationship between differentiation and integration, and gives us a way to evaluate definite integrals without using Riemann
sums or calculating areas. The theorem is comprised of two parts, the first of which, the Fundamental Theorem of
Calculus, Part 1, is stated here. Part 1 establishes the relationship between differentiation and integration.

Theorem 1.4: Fundamental Theorem of Calculus, Part 1

If f(x) is continuous over an interval [a, b], and the function F(x) is defined by

Fo= | "o, (1.16)

then F'(x) = f(x) over [a, b].

Before we delve into the proof, a couple of subtleties are worth mentioning here. First, a comment on the notation. Note that
we have defined a function, F(x), as the definite integral of another function, f(¢), from the point a to the point x. At

first glance, this is confusing, because we have said several times that a definite integral is a number, and here it looks like
it’s a function. The key here is to notice that for any particular value of x, the definite integral is a number. So the function
F(x) returns a number (the value of the definite integral) for each value of x.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Second, it is worth commenting on some of the key implications of this theorem. There is a reason it is called the
Fundamental Theorem of Calculus. Not only does it establish a relationship between integration and differentiation, but
also it guarantees that any integrable function has an antiderivative. Specifically, it guarantees that any continuous function
has an antiderivative.

Proof

Applying the definition of the derivative, we have

F(x+h) — F(x)

F'(@) = lim -

= lim h[ f f(t)dt— f f(t)dt]

= lim [ f f(t)dt+ f f(t)dt]

x+h
Looking carefully at this last expression, we see — / f(®)dt is just the average value of the function f(x) over the

interval [x, x + h]. Therefore, by The Mean Value Theorem for Integrals, there is some number c in [x, x + /] such
that

x+h
5 f@dx= s,

In addition, since c is between x and h, c approaches x as h approaches zero. Also, since f(x) is continuous, we have

hlimo f(o) = Cli_r}n xf (¢) = f(x). Putting all these pieces together, we have

x+h
F' (%) =h1iLnO% /x ’ fo)dx
=hli_1)nof ©
= f(0),

and the proof is complete.

O

Example 1.17

Finding a Derivative with the Fundamental Theorem of Calculus

Use the Fundamental Theorem of Calculus, Part 1 to find the derivative of

X
1
glx) = ] dt.
1

Solution
According to the Fundamental Theorem of Calculus, the derivative is given by
1

Ol

g )=
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,
@ 1.16 Use the Fundamental Theorem of Calculus, Part 1 to find the derivative of g(r) = f Vx2 + 4dx.
0

Example 1.18

Using the Fundamental Theorem and the Chain Rule to Calculate Derivatives

Vx
Let F(x) = f sintdt. Find F’ (x).
1

Solution

u(x)

Letting u(x) = vx, wehave F(x) = / sintdt. Thus, by the Fundamental Theorem of Calculus and the chain
1

rule,

F'(x) = sin(u(x))%

= sin(u(x)) - (%x_ll 2)

_ sinvx

2vx

@ 1.17 P
Let F(x) = / costdt. Find F’ (x).
1

Example 1.19

Using the Fundamental Theorem of Calculus with Two Variable Limits of
Integration

2x
Let F(x) = / 3dr. Find F' (x).
X

Solution

2x
We have F(x) = / 13 dt. Both limits of integration are variable, so we need to split this into two integrals. We
X

get
2x
Fx) = [ ar
w =/
0 2x
3 3
= t2dt + tdt
[rax [

X 2x
=—f t3dt+f .
0 0
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Differentiating the first term, we obtain

dl sl .3
dx[fotdt]_ x°.

Differentiating the second term, we first let #(x) = 2x. Then,

d 2.7c3 d u(x)3
a[-/otdt] =Ef0 t”dt

= (u(x))* du
=02x)°>-2
=16x°.

Thus,

2x
, _d|l_r's d 3
F' (x) _dx[ /Ot dt]+dx[f0 t dt]
=—x3+16x3
= 15x°.

@ 1.18 2
Let F(x) = f costdr. Find F’ (x).

X

Fundamental Theorem of Calculus, Part 2: The Evaluation Theorem

The Fundamental Theorem of Calculus, Part 2, is perhaps the most important theorem in calculus. After tireless efforts
by mathematicians for approximately 500 years, new techniques emerged that provided scientists with the necessary tools
to explain many phenomena. Using calculus, astronomers could finally determine distances in space and map planetary
orbits. Everyday financial problems such as calculating marginal costs or predicting total profit could now be handled with
simplicity and accuracy. Engineers could calculate the bending strength of materials or the three-dimensional motion of
objects. Our view of the world was forever changed with calculus.

After finding approximate areas by adding the areas of n rectangles, the application of this theorem is straightforward by
comparison. It almost seems too simple that the area of an entire curved region can be calculated by just evaluating an
antiderivative at the first and last endpoints of an interval.

Theorem 1.5: The Fundamental Theorem of Calculus, Part 2

If f is continuous over the interval [a, b] and F(x) is any antiderivative of f(x), then

b (1.17)
[a f(x)dx = F(b) — F(a).

We often see the notation F (x)IZ to denote the expression F(b) — F(a). We use this vertical bar and associated limits a
and b to indicate that we should evaluate the function F(x) at the upper limit (in this case, b), and subtract the value of the

function F(x) evaluated at the lower limit (in this case, a).
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The Fundamental Theorem of Calculus, Part 2 (also known as the evaluation theorem) states that if we can find an
antiderivative for the integrand, then we can evaluate the definite integral by evaluating the antiderivative at the endpoints
of the interval and subtracting.

Proof

Let P={x;},i=0, 1,...,n be aregular partition of [a, b]. Then, we can write

F) - F(a) =F(x,) - F(xg)
=[F(xp) — F(x, _ D]+ [F(x, — ) — F(x, _ )|+ ... +[F(x)) = F(xg)]

n
i=1
Now, we know F is an antiderivative of f over [a, b], so by the Mean Value Theorem (see The Mean Value Theorem
(http:/lcnx.orglcontent/m53612/latest/) ) for i =0, 1,...,n we canfind c¢; in [x;_, x;] such that
F(.xl) - F(.Xl'_ 1) =F' (Ci)(.xi - )Cl'_ 1) = f(Cl)Ax

Then, substituting into the previous equation, we have

F(b)—F(a)= ), flcpAx.

i=1

Taking the limit of both sides as n — oo, we obtain

F(b)-Fa@) = lim_ Y f(c)Ax
i=1

= fa ’ Fx)dx.

O

Example 1.20

Evaluating an Integral with the Fundamental Theorem of Calculus

Use The Fundamental Theorem of Calculus, Part 2 to evaluate
2
2
t° —4\dr.
[ (-4

Solution
Recall the power rule for Antiderivatives (http:/lcnx.org/content/m53621/latest/) :
n+1

Ify=x",fx"dx=i;+l +C.

Use this rule to find the antiderivative of the function and then apply the theorem. We have

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Analysis

Notice that we did not include the “+ C” term when we wrote the antiderivative. The reason is that, according
to the Fundamental Theorem of Calculus, Part 2, any antiderivative works. So, for convenience, we chose the
antiderivative with C = 0. If we had chosen another antiderivative, the constant term would have canceled out.

This always happens when evaluating a definite integral.

The region of the area we just calculated is depicted in Figure 1.28. Note that the region between the curve
and the x-axis is all below the x-axis. Area is always positive, but a definite integral can still produce a negative
number (a net signed area). For example, if this were a profit function, a negative number indicates the company
is operating at a loss over the given interval.

o

fity=12 -4

Figure 1.28 The evaluation of a definite integral can produce
a negative value, even though area is always positive.

Example 1.21

Evaluating a Definite Integral Using the Fundamental Theorem of Calculus, Part 2

Evaluate the following integral using the Fundamental Theorem of Calculus, Part 2:

9x -1
. de

Solution
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First, eliminate the radical by rewriting the integral using rational exponents. Then, separate the numerator terms
by writing each one over the denominator:

9 9
x_ldx—J (_x S )dx.
Jl 1/2 . x1/2 xl/2

Use the properties of exponents to simplify:
9

J‘l(ﬁ_ﬁ)d =/( 172 _ I/Z)dx

Now, integrate using the power rule:

/(1/2 x™Pax :(1 - i]

2 2
[(9)3/2 (9)1/2] [(1)3/2 (1)1/2]
I3
=[2en-203)]- [3) -2
= 18— 6—§+2
- 40
3
See Figure 1.29.
yi
5l fx) = =
0 L -
/ s

Figure 1.29 The area under the curve from x =1 to x =9
can be calculated by evaluating a definite integral.

1.19 2
@ Use The Fundamental Theorem of Calculus, Part 2 to evaluate f x~4dx.
1

A Roller-Skating Race

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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James and Kathy are racing on roller skates. They race along a long, straight track, and whoever has gone the
farthest after 5 sec wins a prize. If James can skate at a velocity of f(#) =5 + 2t ft/sec and Kathy can skate at a

velocity of g(¥) = 10+ cos(%t) ft/sec, who is going to win the race?
Solution
We need to integrate both functions over the interval [0, 5] and see which value is bigger. For James, we want to

calculate
5
f (5 + 20)dr.
0
Using the power rule, we have

/ 54 2ndi = (5t + )
0
= (25 +25) = 50.

Thus, James has skated 50 ft after 5 sec. Turning now to Kathy, we want to calculate
5
f 10 + cos(ﬂt)dt.
0 2

We know sin? is an antiderivative of cos?, so it is reasonable to expect that an antiderivative of cos(%t) would

involve sin(%t). However, when we differentiate sin(%t), we get %cos(%t

have to account for this additional coefficient when we integrate. We obtain
5 5

z = 2Zgin(Z
/;) 10 + cos(zt)dt = (IOt + ”51n(2t))|0

= (50+2) - (0 - 2sin0)

3 T

= 50.6.

) as a result of the chain rule, so we

Kathy has skated approximately 50.6 ft after 5 sec. Kathy wins, but not by much!

1.20 Suppose James and Kathy have a rematch, but this time the official stops the contest after only 3 sec.
Does this change the outcome?
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T

¥ Student PROJECT

A Parachutist in Free Fall

Figure 1.30 Skydivers can adjust the velocity of their dive by changing the position of their body duriﬁg the
free fall. (credit: Jeremy T. Lock)

Julie is an avid skydiver. She has more than 300 jumps under her belt and has mastered the art of making adjustments
to her body position in the air to control how fast she falls. If she arches her back and points her belly toward the
ground, she reaches a terminal velocity of approximately 120 mph (176 ft/sec). If, instead, she orients her body with
her head straight down, she falls faster, reaching a terminal velocity of 150 mph (220 ft/sec).

Since Julie will be moving (falling) in a downward direction, we assume the downward direction is positive to simplify
our calculations. Julie executes her jumps from an altitude of 12,500 ft. After she exits the aircraft, she immediately
starts falling at a velocity given by v(#) = 32¢. She continues to accelerate according to this velocity function until she

reaches terminal velocity. After she reaches terminal velocity, her speed remains constant until she pulls her ripcord
and slows down to land.

On her first jump of the day, Julie orients herself in the slower “belly down” position (terminal velocity is 176 ft/sec).
Using this information, answer the following questions.

1. How long after she exits the aircraft does Julie reach terminal velocity?

2. Based on your answer to question 1, set up an expression involving one or more integrals that represents the
distance Julie falls after 30 sec.

If Julie pulls her ripcord at an altitude of 3000 ft, how long does she spend in a free fall?

Julie pulls her ripcord at 3000 ft. It takes 5 sec for her parachute to open completely and for her to slow down,
during which time she falls another 400 ft. After her canopy is fully open, her speed is reduced to 16 ft/sec.
Find the total time Julie spends in the air, from the time she leaves the airplane until the time her feet touch the
ground.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Figure 1.31 The fabric panels on the arms and legs of a wingsuit work to reduce the vertical velocity of a

On Julie’s second jump of the day, she decides she wants to fall a little faster and orients herself in the “head
down” position. Her terminal velocity in this position is 220 ft/sec. Answer these questions based on this
velocity:

How long does it take Julie to reach terminal velocity in this case?

Before pulling her ripcord, Julie reorients her body in the “belly down” position so she is not moving quite as
fast when her parachute opens. If she begins this maneuver at an altitude of 4000 ft, how long does she spend
in a free fall before beginning the reorientation?

Some jumpers wear “ wingsuits” (see Figure 1.31). These suits have fabric panels between the arms and legs
and allow the wearer to glide around in a free fall, much like a flying squirrel. (Indeed, the suits are sometimes
called “flying squirrel suits.”) When wearing these suits, terminal velocity can be reduced to about 30 mph (44
ft/sec), allowing the wearers a much longer time in the air. Wingsuit flyers still use parachutes to land; although
the vertical velocities are within the margin of safety, horizontal velocities can exceed 70 mph, much too fast
to land safely.

skydiver’s fall. (credit: Richard Schneider)

Answer the following question based on the velocity in a wingsuit.

7.

If Julie dons a wingsuit before her third jump of the day, and she pulls her ripcord at an altitude of 3000 ft, how
long does she get to spend gliding around in the air?

61



62

1.3 EXERCISES

144. Consider two athletes running at variable speeds
vy (#) and v, (#). The runners start and finish a race at

exactly the same time. Explain why the two runners must
be going the same speed at some point.

145. Two mountain climbers start their climb at base camp,
taking two different routes, one steeper than the other, and
arrive at the peak at exactly the same time. Is it necessarily
true that, at some point, both climbers increased in altitude
at the same rate?

146. To get on a certain toll road a driver has to take a card
that lists the mile entrance point. The card also has a
timestamp. When going to pay the toll at the exit, the driver
is surprised to receive a speeding ticket along with the toll.
Explain how this can happen.

X
47 set Pl = [ =ndi Find F'2) and the
1

average value of F " over [1, 2].

In the following exercises, use the Fundamental Theorem
of Calculus, Part 1, to find each derivative.

149. g xec‘mdt

150. X
% X V9 — yzdy

151. X
iJ ds
dx 4\/16—s2

152. 2x
d
dx/x tait

153. 4 vx

154. sinx
d_ Wy 2
dx/o 1 —t7dt

155. 1
d A — 42
i / 1 —t°dt

156.
ij 2

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2

Chapter 1 | Integration

157. 2
ij idl
dx); 1+1
158. Inx
d e'dt
a'x 0
159. A
%/1 Inu“du

X
160. The graph of y = f f(t)dt, where fis a piecewise
0

constant function, is shown here.

y
4l

3+

0 1 2 3 4 5 6X
a. Over which intervals is f positive? Over which
intervals is it negative? Over which intervals, if
any, is it equal to zero?

b. What are the maximum and minimum values of f?

c. What is the average value of f?

161. *
The graph of y = f f(®)dt, where fis a piecewise
0

constant function, is shown here.

y
21

—2l

a. Over which intervals is f positive? Over which
intervals is it negative? Over which intervals, if
any, is it equal to zero?

b. What are the maximum and minimum values of f?

c. What is the average value of f?
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X
162. The graph of y = f Z(t)dt, where € is a piecewise
0

linear function, is shown here.

y
al

34

0 I L | L | -
\1/2 3 4 5 6X
—1+

a. Over which intervals is £ positive? Over which
intervals is it negative? Over which, if any, is it
zero?

b. Over which intervals is € increasing? Over which is
it decreasing? Over which, if any, is it constant?

c. What is the average value of £?

X
163. The graph of y = / Z(t)dt, where £ is a piecewise
0

linear function, is shown here.

y
21

—2l

a. Over which intervals is £ positive? Over which
intervals is it negative? Over which, if any, is it
zero?

b. Over which intervals is € increasing? Over which
is it decreasing? Over which intervals, if any, is it
constant?

c. What is the average value of £?

In the following exercises, use a calculator to estimate the
area under the curve by computing Tig, the average of
the left- and right-endpoint Riemann sums using N = 10

rectangles. Then, using the Fundamental Theorem of
Calculus, Part 2, determine the exact area.

164. 1] y = x2 over [0, 4]
165. [T] y = x>+ 6x% + x — 5 over [-4, 2]
166. [T] y= ’\/_x73 over [O, 6]

167. [T] y=vx+ x% over [1, 9]

63

168. [T] f (cosx — sinx)dx over [0, 7]

169.
[T] Jizdx over [1, 4]
x

In the following exercises, evaluate each definite integral
using the Fundamental Theorem of Calculus, Part 2.

170. .2

/_1(x2 - 3x)dx

171. 3

f_z(x2 +3x— S)dx

172. 3
/ (t+2)( — 3)dt
-2

173. 3

f2 (% = 9)(4 — )
174. LZXQ I

175. 1
f x% dx
0

176. 8

f4 (4t5/2 _ 3t3/2)dt

177. ¢4
[ (-2
1/4 X

178. 22
J —3dx
1x
179. (4
[Err

180. 4
J 2=t Wdt
2
|t
16

181.
J dr_

1/4
1t

182. 2r
f cos0do
0

183, 2
f sin0d6
0
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184. n/4
/ sec?0do
0

185. ,#/4
/ sec@tand
0

186. 7l4
f cscHcotddl
/3
187. /2 )
/ csc0do
/4

188. (2
273
AVEE
189.
273
L\t

In the following exercises, use the evaluation theorem to
express the integral as a function F(x).

190. X
/ 2 dt
a

X

191. /1 o

192. X
f costdt
0

193. p* .
f sintdt
—X

In the following exercises, identify the roots of the
integrand to remove absolute values, then evaluate using
the Fundamental Theorem of Calculus, Part 2.

194. 3
|xldx
-2

195 f4 |t2—2t—3dt
)

T
196. f |costldt
0

197. 72
/ [sinz|dt
—n/2
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198. Suppose that the number of hours of daylight on a
given day in Seattle is modeled by the function

—3.75005(%)+ 12.25, with t given in months and

t = 0 corresponding to the winter solstice.
a. What is the average number of daylight hours in a
year?

b. At which times t; and t,, where
0<t;<t;<12, do the number of daylight

hours equal the average number?

c. Write an integral that expresses the total number of
daylight hours in Seattle between #; and 7.

d. Compute the mean hours of daylight in Seattle
between f; and #,, where 0 <1, <?, <12,
and then between f, and #;, and show that the

average of the two is equal to the average day
length.

199. Suppose the rate of gasoline consumption in the

United States can be modeled by a sinusoidal function of

the form (1 1.21 - cos(%t)) x 10° gal/mo.

a. What is the average monthly consumption, and for
which values of t is the rate at time ¢ equal to the
average rate?

b. What is the number of gallons of gasoline
consumed in the United States in a year?

c. Write an integral that expresses the average
monthly U.S. gas consumption during the part of
the year between the beginning of April (r = 3)

and the end of September (f = 9).

200. Explain why, if fis continuous over [a, b], there is at

least one point ¢ €la, b] such that

b
flo=51 / f(@ydr.

201. Explain why, if f is continuous over [a, b] and is not

equal to a constant, there is at least one point M € [a, b]

b
such that f(M) = ﬁ / f(®)dt and at least one point
- a

b
m € la, b] such that f(m) < blTa f f(dt.
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202. Kepler’s first law states that the planets move in
elliptical orbits with the Sun at one focus. The closest point
of a planetary orbit to the Sun is called the perihelion (for
Earth, it currently occurs around January 3) and the farthest
point is called the aphelion (for Earth, it currently occurs
around July 4). Kepler’s second law states that planets
sweep out equal areas of their elliptical orbits in equal
times. Thus, the two arcs indicated in the following figure
are swept out in equal times. At what time of year is Earth
moving fastest in its orbit? When is it moving slowest?

203. A point on an ellipse with major axis length 2a and
minor axis length 2b has the coordinates
(acos@, bsinf), 0 < 0 < 2r.

a. Show that the distance from this point to the focus
at (—c,0) is d(@)=a+ ccosb, where

¢ =Va% - b2

b. Use these coordinates to show that the average
distance d from a point on the ellipse to the focus
at (—c, 0), with respect to angle 6, is a.

204. As implied earlier, according to Kepler’s laws,
Earth’s orbit is an ellipse with the Sun at one focus. The
perihelion for Earth’s orbit around the Sun is 147,098,290
km and the aphelion is 152,098,232 km.

a. By placing the major axis along the x-axis, find the
average distance from Earth to the Sun.

b. The classic definition of an astronomical unit (AU)
is the distance from Earth to the Sun, and its value
was computed as the average of the perihelion and
aphelion distances. Is this definition justified?

205. The force of gravitational attraction between the Sun

and a planet is F(0) = sz—M where m is the mass of the
r=(0)
planet, M is the mass of the Sun, G is a universal constant,

and r(0) is the distance between the Sun and the planet

when the planet is at an angle 6 with the major axis of its
orbit. Assuming that M, m, and the ellipse parameters a and
b (half-lengths of the major and minor axes) are given, set
up—but do not evaluate—an integral that expresses in
terms of G, m, M, a, b the average gravitational force

between the Sun and the planet.

65

206. The displacement from rest of a mass attached to a
spring satisfies the simple harmonic motion equation
x(t) = Acos(wt — ¢), where ¢ is a phase constant, w is

the angular frequency, and A is the amplitude. Find the
average velocity, the average speed (magnitude of
velocity), the average displacement, and the average
distance from rest (magnitude of displacement) of the mass.
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1.4 | Integration Formulas and the Net Change Theorem

Learning Objectives

1.4.1 Apply the basic integration formulas.

1.4.2 Explain the significance of the net change theorem.
1.4.3 Use the net change theorem to solve applied problems.
1.4.4 Apply the integrals of odd and even functions.

In this section, we use some basic integration formulas studied previously to solve some key applied problems. It is
important to note that these formulas are presented in terms of indefinite integrals. Although definite and indefinite integrals
are closely related, there are some key differences to keep in mind. A definite integral is either a number (when the limits
of integration are constants) or a single function (when one or both of the limits of integration are variables). An indefinite
integral represents a family of functions, all of which differ by a constant. As you become more familiar with integration,
you will get a feel for when to use definite integrals and when to use indefinite integrals. You will naturally select the correct
approach for a given problem without thinking too much about it. However, until these concepts are cemented in your mind,
think carefully about whether you need a definite integral or an indefinite integral and make sure you are using the proper
notation based on your choice.

Basic Integration Formulas

Recall the integration formulas given in m53621 (http://cnx.org/content/m53621/latest/#fs-id1165043092431)
and the rule on properties of definite integrals. Let’s look at a few examples of how to apply these rules.

Example 1.23

Integrating a Function Using the Power Rule
4

Use the power rule to integrate the function f Vi(1 + t)dt.
1

Solution

The first step is to rewrite the function and simplify it so we can apply the power rule:

4 4
/ Vil + f)dt =/ 21 + pydr
1 1

4
_ / (t1/2 " t3/2)dt.
1
Now apply the power rule:
4 4
/1 (t1/2 + t3/2)dt _ (;t3/2 + %t5/2)|1

- [;(4)3/2 + %(4)5/2] _ [%(1)3/2 4 %(1)5/2]

@ 1.21  Find the definite integral of f(x) = x> — 3x over the interval [1, 3].

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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The Net Change Theorem

The net change theorem considers the integral of a rate of change. It says that when a quantity changes, the new value
equals the initial value plus the integral of the rate of change of that quantity. The formula can be expressed in two ways.
The second is more familiar; it is simply the definite integral.

Theorem 1.6: Net Change Theorem

The new value of a changing quantity equals the initial value plus the integral of the rate of change:

b (1.18)
F(b) = F(a) + f F'(x)dx

or

b
/ F'(x)dx = F(b) — F(a).

Subtracting F(a) from both sides of the first equation yields the second equation. Since they are equivalent formulas, which

one we use depends on the application.

The significance of the net change theorem lies in the results. Net change can be applied to area, distance, and volume, to
name only a few applications. Net change accounts for negative quantities automatically without having to write more than
one integral. To illustrate, let’s apply the net change theorem to a velocity function in which the result is displacement.

We looked at a simple example of this in The Definite Integral. Suppose a car is moving due north (the positive direction)
at 40 mph between 2 p.m. and 4 p.m., then the car moves south at 30 mph between 4 p.m. and 5 p.m. We can graph this
motion as shown in Figure 1.32.

vy
401

30+

20+

10+

0 ‘ ‘ |

—-10+

—20+4

—30+

Figure 1.32 The graph shows speed versus time for the given
motion of a car.

Just as we did before, we can use definite integrals to calculate the net displacement as well as the total distance traveled.
The net displacement is given by

5 4 5
f vdt = f 40d1 + J —30dt
2 2 4
=80 —30
= 50.

Thus, at 5 p.m. the car is 50 mi north of its starting position. The total distance traveled is given by
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5 4 3
f V()ldt = f 40dt+J 30dt
2 2
4
=80 +30
= 110.

Therefore, between 2 p.m. and 5 p.m., the car traveled a total of 110 mi.

To summarize, net displacement may include both positive and negative values. In other words, the velocity function
accounts for both forward distance and backward distance. To find net displacement, integrate the velocity function over
the interval. Total distance traveled, on the other hand, is always positive. To find the total distance traveled by an object,
regardless of direction, we need to integrate the absolute value of the velocity function.

Example 1.24

Finding Net Displacement

Given a velocity function v(f) = 3¢ — 5 (in meters per second) for a particle in motion from time # = 0 to time

t =3, find the net displacement of the particle.

Solution
Applying the net change theorem, we have

3 2 3
f(3r—5)dt =%—5t’
0 0
_[33?% _ _
_[ 5 5(3)] 0
27 _
=5 15
—-27_30
2 2
- _3
>

The net displacement is —% m (Figure 1.33).

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Figure 1.33 The graph shows velocity versus time for a
particle moving with a linear velocity function.

Example 1.25

Finding the Total Distance Traveled

Use Example 1.24 to find the total distance traveled by a particle according to the velocity function
v(t) = 3t — 5 m/sec over a time interval [0, 3].

Solution

The total distance traveled includes both the positive and the negative values. Therefore, we must integrate the
absolute value of the velocity function to find the total distance traveled.

To continue with the example, use two integrals to find the total distance. First, find the t-intercept of the function,
since that is where the division of the interval occurs. Set the equation equal to zero and solve for t. Thus,

3t=5 =0
3t =5
= 3

t =3

The two subintervals are [O, %] and [%, 3]. To find the total distance traveled, integrate the absolute value of

the function. Since the function is negative over the interval [O, %], we have [v(7)] = —v(?) over that interval.

Over [%, 3], the function is positive, so |v(¢)| = v(¢). Thus, we have




70

3 5/3 3
/ V(0)|dr =J —v()dt + f v()dt
0 0 5/3

5/3 3
=f 5—3tdt+f 3¢ — 5dr
0 5/3
5/3 3

_ 32 312
= (5“7)\0 * (T‘Sf)\w

=25_25_.27 _15_25.25
=36 TP % T3
_41
6
So, the total distance traveled is 14 m.

= [36)- 25 o - s[5
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25
3

@/ 1.22 Find the net displacement and total distance traveled in meters given the velocity function

f(t) = %e’ — 2 over the interval [0, 2].

Applying the Net Change Theorem

The net change theorem can be applied to the flow and consumption of fluids, as shown in Example 1.26.

Example 1.26

How Many Gallons of Gasoline Are Consumed?

much gasoline is used in the first 2 hours?

Solution

The limits of integration are the endpoints of the interval [0, 2]. We have

/02(5 - )t = (5t - %)E

4
[5(2) - %] -0

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2

If the motor on a motorboat is started at # = 0 and the boat consumes gasoline at the rate of 5 — 3 gal/hr, how

Express the problem as a definite integral, integrate, and evaluate using the Fundamental Theorem of Calculus.
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Thus, the motorboat uses 6 gal of gas in 2 hours.

Example 1.27

Chapter Opener: Iceboats

Figure 1.34 (credit: modification of work by Carter Brown,
Flickr)

As we saw at the beginning of the chapter, top iceboat racers (Figure 1.1) can attain speeds of up to five times the
wind speed. Andrew is an intermediate iceboater, though, so he attains speeds equal to only twice the wind speed.
Suppose Andrew takes his iceboat out one morning when a light 5-mph breeze has been blowing all morning. As
Andrew gets his iceboat set up, though, the wind begins to pick up. During his first half hour of iceboating, the
wind speed increases according to the function v(#) = 207 + 5. For the second half hour of Andrew’s outing, the

wind remains steady at 15 mph. In other words, the wind speed is given by

20t + 5 for 05;5%
v(t) =

1
15 for2§t§1.

Recalling that Andrew’s iceboat travels at twice the wind speed, and assuming he moves in a straight line away
from his starting point, how far is Andrew from his starting point after 1 hour?

Solution

To figure out how far Andrew has traveled, we need to integrate his velocity, which is twice the wind speed. Then
1
Distance = / 2v(t)dt.
0

Substituting the expressions we were given for v(7), we get
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172

1 1
f 2v(t)dt 2(t)dt + f 2v(t)dt

0 Jo 172
~1/2 1
= | 2001 +5)dt+ / 2(15)dr

J 1/3

0
2172

1

= | @or+10)dr + f 30d1
Jo 172

[20¢% + 10¢] S+ o,

=(%+5)—0+(30—15)
= 25.

Andrew is 25 mi from his starting point after 1 hour.

@ 1.23 Suppose that, instead of remaining steady during the second half hour of Andrew’s outing, the wind
starts to die down according to the function v(#) = —10¢ + 15. In other words, the wind speed is given by

20t+5  for 0§t§%
1.

—10t+ 15 for%sts

w(t) =

Under these conditions, how far from his starting point is Andrew after 1 hour?

Integrating Even and Odd Functions

We saw in Functions and Graphs (http:/lcnx.org/content/m53472/latest/) that an even function is a function in
which f(—x) = f(x) for all x in the domain—that is, the graph of the curve is unchanged when x is replaced with —x. The

graphs of even functions are symmetric about the y-axis. An odd function is one in which f(—x) = —f(x) for all x in the
domain, and the graph of the function is symmetric about the origin.

Integrals of even functions, when the limits of integration are from —a to a, involve two equal areas, because they are
symmetric about the y-axis. Integrals of odd functions, when the limits of integration are similarly [—a, a], evaluate to

zero because the areas above and below the x-axis are equal.

Rule: Integrals of Even and Odd Functions

For continuous even functions such that f(—x) = f(x),

J Fx)dx =2 /O o,

—a

For continuous odd functions such that f(—x) = —f(x),

f_a f(x)dx = 0.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Example 1.28

Integrating an Even Function

Integrate the even function f (3x8 - Z)dx and verify that the integration formula for even functions holds.
-2

Solution

The symmetry appears in the graphs in Figure 1.35. Graph (a) shows the region below the curve and above the
x-axis. We have to zoom in to this graph by a huge amount to see the region. Graph (b) shows the region above
the curve and below the x-axis. The signed area of this region is negative. Both views illustrate the symmetry
about the y-axis of an even function. We have

To verify the integration formula for even functions, we can calculate the integral from 0 to 2 and double it, then
check to make sure we get the same answer.

2 9 2
8 =[x
/0(3x —2)dx —(3 2x)
0
—512 _
=23 4
_ 500
3
Since 2 5:5& = l%ﬂ we have verified the formula for even functions in this particular example.
y fix) = 3x% — 2 yi f(x) =3x8 -2
T ; =l ;
500} i a4 i
| |
| 24 |
2004 1]
_é -1 0 é X
v L :
-2 -1 0 1 2% : :

(@) (b)
Figure 1.35 Graph (a) shows the positive area between the curve and the x-axis, whereas graph (b) shows the negative area
between the curve and the x-axis. Both views show the symmetry about the y-axis.
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Example 1.29

Integrating an Odd Function

Evaluate the definite integral of the odd function —5sinx over the interval [—z, 7].

Solution

The graph is shown in Figure 1.36. We can see the symmetry about the origin by the positive area above the
x-axis over [—z, 0], and the negative area below the x-axis over [0, z]. We have

T

f —5sinxdx = —5(—cosx)|”
-

= Scosx|”
= [Scosx] —[5cos(—x)]
= =5 (-5)
=0.
Yi f i
1 (x) = 5sin x
N 0 X
54

Figure 1.36 The graph shows areas between a curve and the
x-axis for an odd function.

2

1.24 . 4
Integrate the function / x"dx.
=2

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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1.4 EXERCISES

Use basic integration formulas to compute the following
antiderivatives.

207, f(v - Lax

208. [(e2x_%ex/2)dx

209. JQ
2x
210. Jx_l
A—"dx
x2
211 d

’ f (sinx — cosx)dx
0

212. /2
f (x — sinx)dx
0

213. Write an integral that expresses the increase in the
perimeter P(s) of a square when its side length s increases

from 2 units to 4 units and evaluate the integral.

214. Write an integral that quantifies the change in the area
A(s) = 5% ofa square when the side length doubles from S

units to 2S units and evaluate the integral.

215. A regular N-gon (an N-sided polygon with sides that
have equal length s, such as a pentagon or hexagon) has
perimeter Ns. Write an integral that expresses the increase
in perimeter of a regular N-gon when the length of each side
increases from 1 unit to 2 units and evaluate the integral.

216. The area of a regular pentagon with side length
a> 0 is pa® with p :% 54 V5 4 2V5. The Pentagon in

Washington, DC, has inner sides of length 360 ft and outer
sides of length 920 ft. Write an integral to express the area
of the roof of the Pentagon according to these dimensions
and evaluate this area.

217. A dodecahedron is a Platonic solid with a surface that
consists of 12 pentagons, each of equal area. By how much
does the surface area of a dodecahedron increase as the side
length of each pentagon doubles from 1 unit to 2 units?

218. An icosahedron is a Platonic solid with a surface that
consists of 20 equilateral triangles. By how much does the
surface area of an icosahedron increase as the side length of
each triangle doubles from a unit to 2a units?

219. Write an integral that quantifies the change in the area
of the surface of a cube when its side length doubles from s
unit to 2s units and evaluate the integral.
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220. Write an integral that quantifies the increase in the
volume of a cube when the side length doubles from s unit
to 2s units and evaluate the integral.

221. Write an integral that quantifies the increase in the
surface area of a sphere as its radius doubles from R unit to
2R units and evaluate the integral.

222. Write an integral that quantifies the increase in the
volume of a sphere as its radius doubles from R unit to 2R
units and evaluate the integral.

223. Suppose that a particle moves along a straight line
with velocity v(f) =4 —2t, where 0 <7 <2 (in meters

per second). Find the displacement at time t and the total
distance traveled up to ¢ = 2.

224. Suppose that a particle moves along a straight line
with velocity defined by v(r) = 1> =3t—18, where
0 <t < 6 (in meters per second). Find the displacement at

time t and the total distance traveled up to ¢ = 6.

225. Suppose that a particle moves along a straight line
with velocity defined by v(f) =1|2t—6|, where

0 <t < 6 (in meters per second). Find the displacement at

time ¢t and the total distance traveled up to # = 6.

226. Suppose that a particle moves along a straight line
with acceleration defined by a(t) =t¢t—3, where

0 <t <6 (in meters per second). Find the velocity and

displacement at time ¢ and the total distance traveled up to
t =06 if v(0) =3 and d(0) = 0.

227. A ball is thrown upward from a height of 1.5 m at an
initial speed of 40 m/sec. Acceleration resulting from
gravity is —9.8 m/sec®. Neglecting air resistance, solve for
the velocity v(¢) and the height A(7) of the ball t seconds

after it is thrown and before it returns to the ground.

228. A ball is thrown upward from a height of 3 m at an
initial speed of 60 m/sec. Acceleration resulting from
gravity is —9.8 m/sec?. Neglecting air resistance, solve for
the velocity v(f) and the height h(r) of the ball t seconds

after it is thrown and before it returns to the ground.

229. The area A(f) of a circular shape is growing at a

constant rate. If the area increases from 4 units to 97 units
between times ¢ = 2 and ¢ = 3, find the net change in the

radius during that time.
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230. A spherical balloon is being inflated at a constant rate.
If the volume of the balloon changes from 367 in.3 to 2887
in.3 between time ¢ = 30 and ¢ = 60 seconds, find the net

change in the radius of the balloon during that time.

231. Water flows into a conical tank with cross-sectional
3

area mx’ at height x and volume % up to height x. If

water flows into the tank at a rate of 1 m3/min, find the
height of water in the tank after 5 min. Find the change in
height between 5 min and 10 min.

232. A horizontal cylindrical tank has cross-sectional area
Alx) = 4(6x — xz)m2 at height x meters above the bottom

when x < 3.
a. The volume V between heights a and b is

b
f A(x)dx. Find the volume at heights between 2
a

m and 3 m.

b. Suppose that oil is being pumped into the tank
at a rate of 50 L/min. Using the chain rule,
dx _ dx dV
dt dV dt’
the height of oil in the tank changing, expressed in
terms of x, when the height is at x meters?

at how many meters per minute is

c. How long does it take to fill the tank to 3 m starting
from a fill level of 2 m?

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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233. The following table lists the electrical power in
gigawatts—the rate at which energy is consumed—used in
a certain city for different hours of the day, in a typical
24-hour period, with hour 1 corresponding to midnight to 1
a.m.

Hour Power Hour Power
1 28 13 48
2 25 14 49
3 24 15 49
4 23 16 50
5 24 17 50
6 27 18 50
7 29 19 46
8 32 20 43
9 34 21 42
10 39 22 40
11 42 23 37
12 46 24 34

Find the total amount of power in gigawatt-hours (gW-h)
consumed by the city in a typical 24-hour period.
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234. The average residential electrical power use (in
hundreds of watts) per hour is given in the following table.

Hour Power Hour Power
1 8 13 12
2 6 14 13
3 5 15 14
4 4 16 15
5 5 17 17
6 6 18 19
7 7 19 18
8 8 20 17
9 9 21 16
10 10 22 16
11 10 23 13
12 11 24 11

a. Compute the average total energy used in a day in
kilowatt-hours (kWh).

b. If a ton of coal generates 1842 kWh, how long does
it take for an average residence to burn a ton of
coal?

c. Explain why the data might fit a plot of the form

p()=115-175 sin(i[—é).

7

235. The data in the following table are used to estimate
the average power output produced by Peter Sagan for each

of the last 18 sec of Stage 1 of the 2012 Tour de France.

Second Watts Second Watts
1 600 10 1200
2 500 11 1170

3 575 12 1125
4 1050 13 1100

5 925 14 1075
6 950 15 1000
7 1050 16 950

8 950 17 900

9 1100 18 780

Table 1.6 Average Power Output Source:
sportsexercisengineering.com

Estimate the net energy used in kilojoules (kJ), noting that
1W =1 J/s, and the average power output by Sagan during

this time interval.
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236. The data in the following table are used to estimate
the average power output produced by Peter Sagan for each
15-min interval of Stage 1 of the 2012 Tour de France.

Minutes Watts Minutes Watts
15 200 165 170
30 180 180 220
45 190 195 140
60 230 210 225
75 240 225 170
90 210 240 210
105 210 255 200
120 220 270 220
135 210 285 250
150 150 300 400

Table 1.7 Average Power Output Source:
sportsexercisengineering.com

Estimate the net energy used in kilojoules, noting that 1W

=11J/s.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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237. The distribution of incomes as of 2012 in the United
States in $5000 increments is given in the following table.
The kth row denotes the percentage of households with
incomes between $5000xk and 5000xk + 4999. The row
k =40 contains all households with income between
$200,000 and $250,000 and k =41 accounts for all
households with income exceeding $250,000.
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0 3.5 21 1.5
1 41 22 1.4
2 5.9 23 1.3
3 5.7 24 1.3
4 5.9 25 1.1
5 5.4 26 1.0
6 5.5 27 0.75
7 5.1 28 0.8
8 4.8 29 1.0
9 4.1 30 0.6
10 4.3 31 0.6
1 3.5 32 0.5
12 3.7 33 0.5
13 3.2 34 0.4
14 3.0 35 0.3
15 2.8 36 0.3
16 2.5 37 0.3
17 2.2 38 0.2
18 2.2 39 1.8

Table 1.8 Income

Distributions Source:

http:/lwww.census.gov/

prod/2013pubs/p60-245.pdf
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19 1.8 40 2.3

20 2.1 41

Table 1.8 Income
Distributions Source:
http:/lwww.census.gov/
prod/2013pubs/p60-245.pdf

a. Estimate the percentage of U.S. households in 2012
with incomes less than $55,000.

b. What percentage of households had incomes
exceeding $85,000?

c. Plot the data and try to fit its shape to that of a
graph of the form a(x + e P for suitable

a, b, c.

238. Newton’s law of gravity states that the gravitational
force exerted by an object of mass M and one of mass m
with centers that are separated by a distance r is

F= G%, with G an empirical constant
r

G =6.67x107"1 m3/(kg-sz). The work done by a

variable force over an interval [a, b] is defined as

b 24
W= / F(x)dx. If Earth has mass 5.97219 X 10" and
a

radius 6371 km, compute the amount of work to elevate a
polar weather satellite of mass 1400 kg to its orbiting
altitude of 850 km above Earth.

239. For a given motor vehicle, the maximum achievable
deceleration from braking is approximately 7 m/sec? on dry
concrete. On wet asphalt, it is approximately 2.5 m/sec?.
Given that 1 mph corresponds to 0.447 m/sec, find the total
distance that a car travels in meters on dry concrete after the
brakes are applied until it comes to a complete stop if the
initial velocity is 67 mph (30 m/sec) or if the initial braking
velocity is 56 mph (25 m/sec). Find the corresponding
distances if the surface is slippery wet asphalt.

240. John is a 25-year old man who weighs 160 1b. He
burns 500 — 50¢ calories/hr while riding his bike for ¢

hours. If an oatmeal cookie has 55 cal and John eats 4t
cookies during the tth hour, how many net calories has he
lost after 3 hours riding his bike?

241. Sandra is a 25-year old woman who weighs 120 1b.
She burns 300 —50¢ cal/hr while walking on her

treadmill. Her caloric intake from drinking Gatorade is 100t
calories during the tth hour. What is her net decrease in
calories after walking for 3 hours?



80

242. A motor vehicle has a maximum efficiency of 33 mpg
at a cruising speed of 40 mph. The efficiency drops at a rate
of 0.1 mpg/mph between 40 mph and 50 mph, and at a rate
of 0.4 mpg/mph between 50 mph and 80 mph. What is the
efficiency in miles per gallon if the car is cruising at 50
mph? What is the efficiency in miles per gallon if the car is
cruising at 80 mph? If gasoline costs $3.50/gal, what is the
cost of fuel to drive 50 mi at 40 mph, at 50 mph, and at 80
mph?

243. Although some engines are more efficient at given a
horsepower than others, on average, fuel efficiency
decreases with horsepower at a rate of 1/25 mpg/
horsepower. If a typical 50-horsepower engine has an
average fuel efficiency of 32 mpg, what is the average fuel
efficiency of an engine with the following horsepower: 150,
300, 450?

244. [T] The following table lists the 2013 schedule of
federal income tax versus taxable income.

Taxable Income The Tax Is - Of the
Range Amount
Over

$0-$8925 10% $0
$892.50 +

$8925-$36,250 15% $8925
$4,991.25 +

$36,250-$87,850 25% $36,250
$17,891.25

$87,850-$183,250 +28% $87,850
$44,603.25

$183,250-$398,350 +133% $183,250
$115,586.25

$398,350-$400,000 +35% $398,350
$116,163.75

> $400,000 +139.6% $400,000

Table 1.9 Federal Income Tax Versus Taxable
Income Source: http:llwww.irs.govipublirs-prior/
i1040tt--2013.pdf.

Suppose that Steve just received a $10,000 raise. How
much of this raise is left after federal taxes if Steve’s salary
before receiving the raise was $40,0007? If it was $90,000?
If it was $385,000?

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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245. [T] The following table provides hypothetical data
regarding the level of service for a certain highway.

Highway Vehicles per Density
Range
Speed Range Hour per .
(mph) Lane (vehicles/
P mi)
> 60 <600 <10
60-57 600-1000 10-20
57-54 1000-1500 20-30
54-46 1500-1900 30-45
46-30 1900-2100 45-70
<30 Unstable 70-200
Table 1.10

a. Plot vehicles per hour per lane on the x-axis and
highway speed on the y-axis.

b. Compute the average decrease in speed (in miles
per hour) per unit increase in congestion (vehicles
per hour per lane) as the latter increases from 600 to
1000, from 1000 to 1500, and from 1500 to 2100.
Does the decrease in miles per hour depend linearly
on the increase in vehicles per hour per lane?

c. Plot minutes per mile (60 times the reciprocal of
miles per hour) as a function of vehicles per hour
per lane. Is this function linear?

For the next two exercises use the data in the following
table, which displays bald eagle populations from 1963 to
2000 in the continental United States.
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Population of Breeding Pairs of
Year
Bald Eagles
1963 487
1974 791
1981 1188
1986 1875
1992 3749
1996 5094
2000 6471

Table 1.11 Population of Breeding Bald Eagle
Pairs Source: http:/lwww.fws.goviMidwest/eagle/
population/chtofprs.html.

246. [T] The graph below plots the quadratic
p(t)=6.48t2—80.3 1+ 585.69 against the data in

preceding table, normalized so that # = 0 corresponds to

1963. Estimate the average number of bald eagles per year
present for the 37 years by computing the average value of
p over [0, 37].

y
7000 ¢ (37, 6471)
6000 1
(33, 5094)
5000 +
4000 + (29, 3749)
3000+
0, 487

2000+ [ ) % (23, 1875)
10001/ (11791 415 11g8)

L

0 5 10 15 20 25 30 35 40X
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247. [T] The graph below plots the cubic
p(t) = 0.0782 + 2.421% — 25.63t + 521.23

data in the preceding table, normalized so that =10

against the

corresponds to 1963. Estimate the average number of bald
eagles per year present for the 37 years by computing the
average value of p over [0, 37].

y
7000 +
(37, 6471)
6000 +
(33, 5094)

5000+
4000 + (29, 3749)
3000+
20001 (0, 487) % (23, 1875)
10001/ (.73 A(15 11g8)

L

00 5 10 15 20 25 30 35 40X

248. [T] Suppose you go on a road trip and record your
speed at every half hour, as compiled in the following table.
The best quadratic fit to the data s

q(t) = 5x*> = 11x+49, shown in the accompanying

graph. Integrate g to estimate the total distance driven over
the 3 hours.

Time (hr) Speed (mph)
0 (start) 50
1 40
2 50
3 60
yi

65+

60+

55+

50 ¢

a5

40+ e (1, 40)

>

0 05 1 15 2 25 3X

As a car accelerates, it does not accelerate at a constant
rate; rather, the acceleration is variable. For the following
exercises, use the following table, which contains the
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acceleration measured at every second as a driver merges
onto a freeway.

Time (sec) Acceleration (mph/sec)
1 11.2

2 10.6

3 8.1

4 5.4

5 0

249. [T] The accompanying graph plots the best quadratic
fit, a(t) = —0.701% + 1.441 + 10.44, to the data from the
preceding table. Compute the average value of a(f) to
estimate the average acceleration between ¢ =0 and
t=5.

Yi
12+

0 @12 , o

84

64

) . ) (5'.0)

O 05 1 15 2 25 3 35 4 45 5%

250. [T] Using your acceleration equation from the
previous exercise, find the corresponding velocity
equation. Assuming the final velocity is 0 mph, find the
velocity at time ¢ = 0.

251. [T] Using your velocity equation from the previous
exercise, find the corresponding distance equation,
assuming your initial distance is 0 mi. How far did you
travel while you accelerated your car? (Hint: You will need
to convert time units.)

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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252. [T] The number of hamburgers sold at a restaurant
throughout the day is given in the following table, with the
accompanying graph plotting the best cubic fit to the data,

b(f) = 0.1265 =213 + 12.13t +3.91, with =0

corresponding to 9 a.m. and ¢ = 12 corresponding to 9
p.m. Compute the average value of b(f) to estimate the

average number of hamburgers sold per hour.

Hours Past Midnight No. of Burgers Sold
9 3

12 28

15 20

18 30

21 45
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253. [T] An athlete runs by a motion detector, which
records her speed, as displayed in the following table. The
best linear fit to this data, Z(¢f) = —0.0687 + 5.14, is

shown in the accompanying graph. Use the average value
of £(f) between t=0 and ¢r=40 to estimate the

runner’s average speed.

Minutes Speed (m/sec)
0 5
10 4.8
20 3.6
30 3.0
40 2.5

Yi

55+
0, 5)
5¢

,10.48)

(20, 3.6)®

0 5 10 15 20 25 30 35 40X
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1.5 | Substitution

Learning Objectives

1.5.1 Use substitution to evaluate indefinite integrals.
1.5.2 Use substitution to evaluate definite integrals.

The Fundamental Theorem of Calculus gave us a method to evaluate integrals without using Riemann sums. The drawback
of this method, though, is that we must be able to find an antiderivative, and this is not always easy. In this section we
examine a technique, called integration by substitution, to help us find antiderivatives. Specifically, this method helps us
find antiderivatives when the integrand is the result of a chain-rule derivative.

At first, the approach to the substitution procedure may not appear very obvious. However, it is primarily a visual task—that
is, the integrand shows you what to do; it is a matter of recognizing the form of the function. So, what are we supposed to

3
see? We are looking for an integrand of the form f[g(x)]g’ (x)dx. For example, in the integral J (x2 - 3) 2xdx, we have
flx) = x3, gx) = X% - 3, and g'(x) = 2x. Then,

3
fle)le’ (x) = (x* = 3) @2x),

and we see that our integrand is in the correct form.

The method is called substitution because we substitute part of the integrand with the variable u and part of the integrand
with du. It is also referred to as change of variables because we are changing variables to obtain an expression that is easier
to work with for applying the integration rules.

Theorem 1.7: Substitution with Indefinite Integrals

Let u = g(x),, where g’(x) is continuous over an interval, let f(x) be continuous over the corresponding range of

g, and let F(x) be an antiderivative of f(x). Then,

f fleW®lg’ (xydx = f FQu)du (1.19)
=F(u)+ C
= F(g(x))+ C.

Proof

Let f, g, u, and F be as specified in the theorem. Then
Lpg) =F (gl @
= fle@lg’ ().
Integrating both sides with respect to x, we see that
[ Hewle’ (dx = Flg()+ C.
If we now substitute # = g(x), and du = g'(x)dx, we get
[ el @dx = [ fadu

=Fu)+C
= Flg(0)+ C.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Returning to the problem we looked at originally, we let u = x*—3 and then du = 2xdx. Rewrite the integral in terms of

u:
3

(x* =3) @xdx) = [u’du.
——

M du

Using the power rule for integrals, we have

4
Ju3du:”T+C.

Substitute the original expression for x back into the solution:

4
e (23)

L —+C.

We can generalize the procedure in the following Problem-Solving Strategy.

Problem-Solving Strategy: Integration by Substitution

1. Look carefully at the integrand and select an expression g(x) within the integrand to set equal to u. Let’s select

g(x). such that g’ (x) is also part of the integrand.

2. Substitute u = g(x) and du = g’ (x)dx. into the integral.

3. We should now be able to evaluate the integral with respect to u. If the integral can’t be evaluated we need to

go back and select a different expression to use as u.
Evaluate the integral in terms of u.

Write the result in terms of x and the expression g(x).

Example 1.30

Using Substitution to Find an Antiderivative

4
Use substitution to find the antiderivative of J6x(3x2 + 4) dx.

Solution

already have du in the integrand. Write the integral in terms of u:

J6x(3x2 + 4)4dx = fu4 du.

we can evaluate the integral with respect to u:

The first step is to choose an expression for u. We choose u = 3x2 + 4. because then du = 6xdx., and we

Remember that du is the derivative of the expression chosen for u, regardless of what is inside the integrand. Now
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5
4 _u
/u du ——5+C

( )
= 7
Anal YSiS

We can check our answer by taking the derivative of the result of integration. We should obtain the integrand.
5
Picking a value for C of 1, we let y = %(3)62 + 4) + 1. We have
= 1322 +4 ’
y=53x + ) +1,
o

o= (L2 + 4) 6
= 6x(3x% + 4)4.

This is exactly the expression we started with inside the integrand.

1.25 2
@ Use substitution to find the antiderivative of J?wc2 (x3 - 3) dx.

Sometimes we need to adjust the constants in our integral if they don’t match up exactly with the expressions we are
substituting.

Example 1.31

Using Substitution with Alteration
Use substitution to find the antiderivative of / V7% - 5dz.

Solution
5 172 5
Rewrite the integral as Jz(z - 5) dz. Let u=z"—5 and du =2zdz. Now we have a problem because

du = 2zdz and the original expression has only zdz. We have to alter our expression for du or the integral in

u will be twice as large as it should be. If we multiply both sides of the du equation by L e can solve this

2
problem. Thus,

u =z>-5
du =2zdz
1, =1 -
2du = 2(2Z)dz zdz.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Write the integral in terms of u, but pull the L outside the integration symbol:

2

Jz(zz - 5)

12
_1/[.12
dz = 2/u du.

Integrate the expression in u:

Lo -

(e

_ 131
—3u +C

1.26 9
@ Use substitution to find the antiderivative of Jx2 (x3 + 5) dx.

Example 1.32

Using Substitution with Integrals of Trigonometric Functions

Use substitution to evaluate the integral JLnStdt.

cos™ ¢

Solution
We know the derivative of cost is —sin#, so we set u = cost. Then du = —sintdt. Substituting into the

integral, we have

J sint_y, _ _J@_
C0S3l M3

Evaluating the integral, we get
—Jd—’g = —_/u_3 du
u
— _(_1),-2
= ( 2)14 +C.

Putting the answer back in terms of t, we get

sint g =Ly
Jcos3t 2u?

=—L_+c
2cos“t
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1.27 - ;
@/ Use substitution to evaluate the integral JC.O—SJdt.
sin“ ¢

Sometimes we need to manipulate an integral in ways that are more complicated than just multiplying or dividing by a
constant. We need to eliminate all the expressions within the integrand that are in terms of the original variable. When we
are done, u should be the only variable in the integrand. In some cases, this means solving for the original variable in terms
of u. This technique should become clear in the next example.

Example 1.33

Finding an Antiderivative Using u-Substitution

Use substitution to find the antiderivative of

X
dx.
\/x—lx

Solution
If welet u=x—1, then du = dx. But this does not account for the x in the numerator of the integrand. We

need to express x in terms of u. If u = x — 1, then x = u + 1. Now we can rewrite the integral in terms of u:

X _ fu+1
-/x—ldx = [ du

= fﬁ+%du
_ f(u1/2+u_”2)du.

Then we integrate in the usual way, replace u with the original expression, and factor and simplify the result.
Thus,

/(u1/2+u_1/2)du =%u3/2+2u1/2+c

=2x-DP+2x-D"+C
= (x— 1)”2[%@— 1)+2]+c

=(xr— 1)1/2(%x—;+§)

37%3
== D'"(2x+4)

=%(x— D2 x+2)+C.

Es/l 1.28  yse substitution to evaluate the indefinite integral / cos> tsinz dr.

Substitution for Definite Integrals

Substitution can be used with definite integrals, too. However, using substitution to evaluate a definite integral requires a
change to the limits of integration. If we change variables in the integrand, the limits of integration change as well.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Theorem 1.8: Substitution with Definite Integrals

Let u = g(x) and let g/ be continuous over an interval [a, b], and let f be continuous over the range of u = g(x).
Then,

b
g(b)
J fle)g’ (x)dx = f(uwdu.

8@

Although we will not formally prove this theorem, we justify it with some calculations here. From the substitution rule for
indefinite integrals, if F(x) is an antiderivative of f(x), we have

[ fleog’ (x)dx = Flg(x)+ C.

Then
(1.20)

= Fig(b)) — Flg(a))

=g
= Fl, o

)
= [ fwdu,

g(a)

and we have the desired result.

Example 1.34

Using Substitution to Evaluate a Definite Integral

1 5
Use substitution to evaluate J x2 (1 + 2x3) dx.
0

Solution

Let u=1+2x, so du=6x>dx. Since the original function includes one factor of x* and du = 6x2 dx,
multiply both sides of the du equation by 1/6. Then,

du = 6x’dx
1, _ 2
6du x“dx.

To adjust the limits of integration, note that when x=0,u=1+4+2(0)=1, and when
x=1,u=1+42(1) =3. Then

1 5 3
J x2(1+2x3) dx=%f u du.
0 1

Evaluating this expression, we get
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1.29 0 5
@ Use substitution to evaluate the definite integral J y(2y2 — 3) dy.
-1

Example 1.35

Using Substitution with an Exponential Function

1 2
Use substitution to evaluate / xe¥ 34y

0

Solution

Let u = 4x> + 3. Then, du = 8xdx. To adjust the limits of integration, we note that when x =0, u = 3, and

when x =1, u = 7. So our substitution gives

1 2 7
4x“+3 _1 u
_/Oxe dx —8[36 du

1.30 3
Use substitution to evaluate l X cos( )d

Substitution may be only one of the techniques needed to evaluate a definite integral. All of the properties and rules of
integration apply independently, and trigonometric functions may need to be rewritten using a trigonometric identity before
we can apply substitution. Also, we have the option of replacing the original expression for u after we find the antiderivative,
which means that we do not have to change the limits of integration. These two approaches are shown in Example 1.36.

Example 1.36

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Using Substitution to Evaluate a Trigonometric Integral

/2
Use substitution to evaluate f cos26do.
0

Solution

allows us

Let us first use a trigonometric identity to rewrite the integral. The trig identity cos? 0 = HCZM

to rewrite the integral as

/O ™ 052 0d0 = J:/21+°—20529d9.
Then,
(M2 = [+ Joosaoio
/2 /2

=% /0 do + fo cos20d6.

We can evaluate the first integral as it is, but we need to make a substitution to evaluate the second integral. Let
u = 26. Then, du = 2d6, or %du = df. Also, when 8 =0, u =0, and when 6 = n/2, u = x. Expressing

the second integral in terms of u, we have

2 /2 /2 T
1 1 1 1(1
2J do+4 ) c0s20d0 _2J0 de+2(2)[0cosudu
0=rnrl2 u=20
0 1.
== + ==sinu
2|9 0 4 u=0
— (T _ _ A
_(4 0)+(0 0=2Z
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1.5 EXERCISES

254. Why is u-substitution referred to as change of
variable?

255. 2. If f=goh,
Lgom)(x) = g/ (hCW' (),

or u=h(x)?

when reversing the chain rule,

should you take u = g(x)

In the following exercises, verify each identity using
differentiation. Then, using the indicated u-substitution,

identify f such that the integral takes the form f fwdu.

256.
/xw/ ldx = 2(x+1)3/2(3x N+Ciu=x+1

257.
2
vx_dx(x> 1) =2V - 1(3x2 +4x+8)+ Ciu=x~ 1
x—1 15

258. [ 312

WVdx? +9dx = (437 +9) T+ Cu=42+9
259. [

dx—lv4x +9+Cu=4x>+9

J 4x2+9
260. [

—* —dr= ——L —u=4x719

J(@4x"+9) 8(4x” +9)

In the following exercises, find the antiderivative using the
indicated substitution.

261. /(x+1)4dx;u:x+1
262 fe-1’dvu=x-1
263. f(2x—3)_7dx;u=2x—3

264. /(3x— 2)_11dx; u=3x-2

265. 2
X gdyiu=x"+1
JVx?+1
266.
\/—dx u=1-x2
JV1 =42
267. [ 3
(x— 1)(x2 - 2x) dx; u= x2—2x

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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268. 2
[(xz - 2x)(x3 - 3x2) dx; u = x3 = 3x2
269. /cos39d6’; u =sinf (Hint: cos?0 =1 — sin? )

270. fsin3 0dO; u = cosf (Hint: sin2@=1— Cos2¢9)
In the following exercises, use a suitable change of
variables to determine the indefinite integral.

271 (31 = 0% dx

272. Jt(l—tz)lodl
273. f(“x_7)‘3dx
274 [3x—11)*dx
275. fcos36?sin6d9
276. /sin70cos¢9d9
277. fcosz(m)sin(ﬂf)df

278. fsin2xcos3xdx (Hint: sin®x 4 cos?x = 1)

279. / t sin(tz)cos(tz)dt

280. ft cos? sm 3)dt
281. [ )
X
(x3 3 3)2dx
282. [ 3
JV1 —xzdx
283. [ s
y dy
3/2
J=»)
284. 99

f cos(1 = cosO)  sinfdo
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265 /(1 — cos39)1000529sin9d¢9

286. 5 3.
(cosf — 1)(cos 6 —2cos 6’) sin@do

287. J(sinzf) — 2sin6)(sin’0 - 35in29)3 cos 0o

In the following exercises, use a calculator to estimate the
area under the curve using left Riemann sums with 50
terms, then use substitution to solve for the exact answer.

288. [T] y=3(1 — x)2 over [0, 2]

3
289. [T] y =x(1-x%) over [-1,2]

290. 1] y =sinx(1 — cosx)2 over [0, 7]

291 [T] y=—2—

( 5 )2 over [—1, 1]
x“+1

In the following exercises, use a change of variables to
evaluate the definite integral.

292. 1
f W1 = x%dx
0

293. !
vx_dx
Jo 1+x2
294. 2
L
JoV5 +12
295. ol
[
JoV1+4°
296. /4

f sec2@tanHdo
0

297. nl4
J sin49 d9
o COs 0

In the following exercises, evaluate the indefinite integral
/ f(x)dx with constant C =0 using u-substitution.
Then, graph the function and the antiderivative over the

indicated interval. If possible, estimate a value of C that
would need to be added to the antiderivative to make it

93

X
equal to the definite integral F(x) = / f(®)dt, withathe
a

left endpoint of the given interval.

2
298. [T] /(2x+ De™ ¥~ 04x over [-3, 2]

299. 11y /de on [0, 2]

300. 2
[T] dex over [—1, 2]
PP x+d

301. :
[T] J sm3x dx over [—E, ﬂ]
cos’ x 373

2
302. [T] /(x+ 2)e ¥ ¥ H3 4y over [-5, 1]

303 1 f 3x212x3 + 1dx over [0, 1]

04. b
If h(a) = h(b) in / g'(h(x))h(x)dx, what can you
a
say about the value of the integral?

305. Is the substitution u = 1 — x in the definite integral
2

J 4—dx okay? If not, why not?
ol —x

In the following exercises, use a change of variables to
show that each definite integral is equal to zero.

/1
306. | cos? @o)sin(26)d0
0

307. vz

f tcos(tz)sin(tz)dt

0

308, 1
f (1 = 20)dt
0

309. !
1—2¢
I
(1+6-4)
<0
310. (*

311, 2
f (1 — H)cos(zt)dt
0
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37/4

312. 9
f sin“tcostdt
/4

313. Show that the average value of f(x) over an interval

la, b] is the same as the average value of f(cx) over the

interval [%, %] for ¢ > 0.

314. Find the area under the graph of f(f) = %
(1+7)

between r =0 and t=x where a>0 and a#1 is

fixed, and evaluate the limit as x — co.

t
a

(=7

between r =0 and t=x, where 0<x<1 and a >0

315. Find the area under the graph of g(f) =

is fixed. Evaluate the limitas x — 1.

316. The area of a semicircle of radius 1 can be expressed

1
as f V1 — x2dx. Use the substitution x = cost to
-1

express the area of a semicircle as the integral of a
trigonometric function. You do not need to compute the
integral.

317. The area of the top half of an ellipse with a major axis
that is the x-axis from x = —1 to a and with a minor axis

that is the y-axis from y = —b to b can be written as

a
2

J b l—x—zdx. Use the substitution x = acost to
a

—a

express this area in terms of an integral of a trigonometric
function. You do not need to compute the integral.

318. [T] The following graph is of a function of the form
f(t) = asin(nt) + bsin(mt). Estimate the coefficients a

and b, and the frequency parameters n and m. Use these

T
estimates to approximate f f(odt.
0

Yi
3__

24
14
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319. [T] The following graph is of a function of the form
f(x) = acos(nt) + bcos(mt). Estimate the coefficients a

and b and the frequency parameters n and m. Use these

V2
estimates to approximate f f(ndt.
0
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1.6 | Integrals Involving Exponential and Logarithmic
Functions

Learning Objectives

1.6.1 Integrate functions involving exponential functions.
1.6.2 Integrate functions involving logarithmic functions.

Exponential and logarithmic functions are used to model population growth, cell growth, and financial growth, as well as
depreciation, radioactive decay, and resource consumption, to name only a few applications. In this section, we explore
integration involving exponential and logarithmic functions.

Integrals of Exponential Functions

The exponential function is perhaps the most efficient function in terms of the operations of calculus. The exponential
function, y = e, is its own derivative and its own integral.

Rule: Integrals of Exponential Functions

Exponential functions can be integrated using the following formulas.
/exdx = '+ C (1.21)

/axdx a’ L c
Ina

Example 1.37

Finding an Antiderivative of an Exponential Function

Find the antiderivative of the exponential function e™*.

Solution

Use substitution, setting u# = —x, and then du = —1dx. Multiply the du equation by —1, so you now have

—du = dx. Then,
fe_xdx = —fe”du

=-e"+C
=—e"+C.

1.31 . g . . o 2 —2x3
Find the antiderivative of the function using substitution: x“e .

A common mistake when dealing with exponential expressions is treating the exponent on e the same way we treat
exponents in polynomial expressions. We cannot use the power rule for the exponent on e. This can be especially confusing
when we have both exponentials and polynomials in the same expression, as in the previous checkpoint. In these cases, we
should always double-check to make sure we’re using the right rules for the functions we’re integrating.
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Example 1.38

Square Root of an Exponential Function

Find the antiderivative of the exponential function e*V1 + e*.

Solution

First rewrite the problem using a rational exponent:
/ex V1 + edx = /ex(l + 912 dx.
Using substitution, choose u = 1+ e¢*.u =1+ e*. Then, du = ¢*dx. We have (Figure 1.37)

/ex(l +eM2dx = /umdu.

Then

W2 du =ﬁ+czzu3/z+czg(l +eH2 4
32 3 3 .

Yi

3__

2__/
fi(x) = e¥V1 + e* 1
T o = 5 x
_l__

Figure 1.37 The graph shows an exponential function times
the square root of an exponential function.

@ 1.32  Find the antiderivative of e*(3e* —2)2.

Example 1.39

Using Substitution with an Exponential Function
s . R 2 2:3
Use substitution to evaluate the indefinite integral f 3x“e™ dx.

Solution

Here we choose to let u equal the expression in the exponent on e. Let u = 2x3 and du = 6x%dx.. Again, du

is off by a constant multiplier; the original function contains a factor of 3x2, not 6x2. Multiply both sides of the
1

equation by 7 S0 that the integrand in u equals the integrand in x. Thus,

/3x262x3dx = %/e”du.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Integrate the expression in u and then substitute the original expression in x back into the u integral:

1/ uy, 1 u _l2x3
2/edu—ze +C—2€ + C.

4
@/ 1.33 Evaluate the indefinite integral / 2x3 e dx.

As mentioned at the beginning of this section, exponential functions are used in many real-life applications. The number e is
often associated with compounded or accelerating growth, as we have seen in earlier sections about the derivative. Although
the derivative represents a rate of change or a growth rate, the integral represents the total change or the total growth. Let’s
look at an example in which integration of an exponential function solves a common business application.

A price—demand function tells us the relationship between the quantity of a product demanded and the price of the product.
In general, price decreases as quantity demanded increases. The marginal price—demand function is the derivative of the
price—demand function and it tells us how fast the price changes at a given level of production. These functions are used in
business to determine the price—elasticity of demand, and to help companies determine whether changing production levels
would be profitable.

Example 1.40

Finding a Price-Demand Equation

Find the price—-demand equation for a particular brand of toothpaste at a supermarket chain when the demand is
50 tubes per week at $2.35 per tube, given that the marginal price—demand function, p’(x), for x number of

tubes per week, is given as
p'(x) = —0.015¢7001x,

If the supermarket chain sells 100 tubes per week, what price should it set?

Solution

To find the price—demand equation, integrate the marginal price—demand function. First find the antiderivative,
then look at the particulars. Thus,

p(x) = f —0.015¢70:01x gy

= -0.015 f ¢00Lxgy

Using substitution, let # = —0.01x and du = —0.01dx. Then, divide both sides of the du equation by —0.01.

This gives
=0.015 [, u - u
—0.01J¢ du = I.Sfe du
=1.5e"+C
=1.5¢700x 4

The next step is to solve for C. We know that when the price is $2.35 per tube, the demand is 50 tubes per week.
This means
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p(50) = 1.5¢700160

= 2.35.

C

Now, just solve for C:

C =235-15¢79
=235-091
= 1.44.

Thus,
p(x) = 1.5¢7001x 4 1 44,

If the supermarket sells 100 tubes of toothpaste per week, the price would be

—0.01(100)

p(100) = 1.5¢ +1.44 =15¢"" +1.44 ~ 1.99.

The supermarket should charge $1.99 per tube if it is selling 100 tubes per week.

Example 1.41

Evaluating a Definite Integral Involving an Exponential Function
2

Evaluate the definite integral f e! ~¥dx.
1

Solution

Again, substitution is the method to use. Let u=1-x, so du=-1ldx or —du=dx. Then

/ e TFdx=-— f e"“du. Next, change the limits of integration. Using the equation u = 1 —x, we have

u=1-(1)=0
u=1-@)=-1.

The integral then becomes

/lzel_xdx =—/0_le”du
=/_Oleudu

= eu|(jl
- (e
=—141

See Figure 1.38.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Figure 1.38 The indicated area can be calculated by
evaluating a definite integral using substitution.

1.34 2
@ Evaluate / e dx.
0

Example 1.42

Growth of Bacteria in a Culture

Suppose the rate of growth of bacteria in a Petri dish is given by ¢(f) = 3’, where t is given in hours and ¢(t)
is given in thousands of bacteria per hour. If a culture starts with 10,000 bacteria, find a function Q(¢) that gives

the number of bacteria in the Petri dish at any time t. How many bacteria are in the dish after 2 hours?

Solution
We have

= [3rgr =31
Q(t)—J3 dt_ln3+C.

Then, at t =0 we have Q(0) =10 = ﬁ + C, so C=9.090 and we get

_ 3!
0@ = 3 +9.090.
Attime t =2, we have

2)= 32 4909
Q( )—m+ .
= 17.282.

After 2 hours, there are 17,282 bacteria in the dish.

1.35 From Example 1.42, suppose the bacteria grow at a rate of g(f) = 2’. Assume the culture still starts

with 10,000 bacteria. Find Q(¢). How many bacteria are in the dish after 3 hours?
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Example 1.43

Fruit Fly Population Growth

0.02¢

Suppose a population of fruit flies increases at a rate of g(r) = 2e , in flies per day. If the initial population

of fruit flies is 100 flies, how many flies are in the population after 10 days?

Solution
Let G(¢) represent the number of flies in the population at time t. Applying the net change theorem, we have

10
G(10) = G(0) + / 20021 gy
0

10

=100+ |25

= 100 + [100e*9%] (1)0

= 100 + 100¢%2 - 100
~ 122.

There are 122 flies in the population after 10 days.

0.01¢

s/ 1.36  Suppose the rate of growth of the fly population is given by g(r) = e , and the initial fly population

is 100 flies. How many flies are in the population after 15 days?

Example 1.44

Evaluating a Definite Integral Using Substitution

Evaluate the definite integral using substitution: j € _dx.

Solution

This problem requires some rewriting to simplify applying the properties. First, rewrite the exponent on e as a
power of x, then bring the x? in the denominator up to the numerator using a negative exponent. We have

2
1/x 2
Je dx=f e xZdx.
1

1x2

Let u = x_l, the exponent on e. Then

du =—-x"2dx
—du =x"2dx.

Bringing the negative sign outside the integral sign, the problem now reads

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Next, change the limits of integration:

Notice that now the limits begin with the larger number, meaning we must multiply by —1 and interchange the
limits. Thus,

172
—f e'du = / e'du
1 1/2

nn
SN
|

N

2

1.37 -
@ Evaluate the definite integral using substitution: J %e“x dx.
X

Integrals Involving Logarithmic Functions

Integrating functions of the form f(x) = x7!

result in the absolute value of the natural log function, as shown in the
following rule. Integral formulas for other logarithmic functions, suchas f(x) = Inx and f(x) =log,x, are also included

in the rule.

Rule: Integration Formulas Involving Logarithmic Functions

The following formulas can be used to evaluate integrals involving logarithmic functions.
/x_l dx = Inlx|+C (1.22)
flnxdx = xlnx—x+C=x(Inx—-1)+C

= X —
/logaxdx = lna(lnx H+C

Example 1.45

Finding an Antiderivative Involving Inx

3

Find the antiderivative of the function = 10"
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Solution

First factor the 3 outside the integral symbol. Then use the u™" rule. Thus,

[P0t =3 ot

_ d

_3f7”

= 3lnlul+ C

=3Inlx — 101 + C, x # 10.

See Figure 1.39.

y

8_.

64

41 3

f(x) -

51 x—10
-1 0 20 30

NI

Figure 1.39 The domain of this function is x # 10.

@ 1.38  Find the antiderivative of 1 .
x+2

Example 1.46

Finding an Antiderivative of a Rational Function

3
Find the antiderivative of %
x4 3x

Solution

-1
This can be rewritten as J(Z)CS + 3x)(x4 + 3x2) dx. Use substitution. Let u=x*+ 3x2, then
du = 4x> + 6x. Alter du by factoring out the 2. Thus,

du = (4x3 + 6x)dx
2(2x3 + 3x)dx
(2x3 + Sx)dx.

=
QU
<

Il

Rewrite the integrand in u:

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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J(2x3 + 3x)(x4 + ?))62)_1 dx = %/u_ldu.

Then we have

1/ -1 =1
2/“ du —21n|u|+C

= %ln|x4 + 3x2| +C.

Example 1.47

Finding an Antiderivative of a Logarithmic Function

Find the antiderivative of the log function log, x.

Solution

Follow the format in the formula listed in the rule on integration formulas involving logarithmic functions. Based
on this format, we have

=X -
/logzxdx = lnz(lnx D+ C.

@ 1.39 Find the antiderivative of log x.

Example 1.48 is a definite integral of a trigonometric function. With trigonometric functions, we often have to apply a
trigonometric property or an identity before we can move forward. Finding the right form of the integrand is usually the key
to a smooth integration.

Example 1.48

Evaluating a Definite Integral

/2

Find the definite integral of I —Sinx g,
o 1+cosx

Solution
We need substitution to evaluate this problem. Let u = 1 + cosx, , so du = —sinx dx. Rewrite the integral in
terms of u, changing the limits of integration as well. Thus,

u=1+cos(0)=2

u=1 +cos(%)= 1.
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Then
2
Jn/ sinx _ _ —/lu_ldu
o l+cosx 2
2
=/ uldu
1
= lnlull%
=[In2 —In1]
=In2.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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1.6 EXERCISES

In the following exercises, compute each indefinite
integral.

320 [e2dx
2L fe=3dx
322 [2%x
323 [37%x
324 [ Lax
325 [Zax
327 [Lax

In the following exercises, find each indefinite integral by
using appropriate substitutions.

328. 1
[Bas

329. J dx
x(lnx)2

330. [ dx
Jxlnx @>1

331. [ dx
xInxIn(Inx)

332. ftan& do

333. COSX — xSinx
Xcosx  ax

334. (In(sinx)
J tanx %

335. / In(cos x)tan xdx

2
336. /xe_x dx

105

7. _3
33 x2e ™ dx

338. fesmxcosxdx

339. /etanxseczxdx
340. felnx@
X

341. Jeln(l -1
£ dr
1—1¢

In the following exercises, verify by differentiation that

f Inxdx = x(Inx - 1) + C, then use appropriate

changes of variables to compute the integral.

342. f Inxdx (Hint: Jlnxdx =% xln(xz)dx)

343. /x2ln2xdx

344.
Jln—zxdx (Hint: Setu = %.)
x

345. (Inx - _
/ de (Hint: Setu = vx.)

346. Write an integral to express the area under the graph

of y= % from t =1 to e* and evaluate the integral.

347. Write an integral to express the area under the graph
of y= ¢! between t =0 and 7= 1Inx, and evaluate the

integral.

In the following exercises, use appropriate substitutions
to express the trigonometric integrals in terms of
compositions with logarithms.

348. f tan(2x)dx

349, Jsin(3x) — cos(3x)
sin(3x) + cos(3x)

X

350. stin(XZ)

351 xcsc(xz)dx
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352. / In(cosx)tanx dx

353. / In(cscx)cot xdx

354. Jex —e*
—C dx
e*+e™

In the following exercises, evaluate the definite integral.

2 2
1+2x+x dx

355.
L 3x+ 3x2 4+ x°

356. nl4
/ tanx dx
0
357. (a3 .
J sinx — cosx
0 sinx + cosx
358. 7/2
/ cscxdx
/6
359. 7/3
f cotxdx
/4

In the following exercises, integrate using the indicated
substitution.

360. X e
[ u=x—100

361 (y—-1,
dey, u=y+1
362. 2
[1 _x3dx; u=3x—x>
3x—x
363. dex- u = sinx — cosx
sinx —cosx
364. fgmqizﬂﬁvu=eh
dx; u =Inx

X

365.
Jln = (Inx)>

In the following exercises, does the right-endpoint
approximation overestimate or underestimate the exact
area? Calculate the right endpoint estimate Rgy and solve
for the exact area.

366. [T] y = e* over [0, 1]

367. [T] y=¢e~" over [0, 1]
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368. [T] y = In(x) over [1, 2]

x+1

369.
[T] y=
Y 2 +2x+6

over [0, 1]

370. [T] y = 2* over [—1, 0]
371. [T] y = =27 over [0, 1]

In the following exercises, f(x) >0 for a < x < b. Find
the area under the graph of f(x) between the given values

a and b by integrating.
72 py = 2021009 _ 10, = 100

373. Flx) = lOg)%(x);a — 3. b =64

374. f)=2"%a=1,b=2
375. f(x)=2"%a=3,b=4

376. Find the area under the graph of the function

2
f(x) =xe ™ between x =0 and x = 5.

377 2

" Compute the integral of f(x) = xe™" and find the

smallest value of N such that the area under the graph

fx) = xe_x2

most, 0.01.

between x=N and x=N+10 is, at

378. Find the limit, as N tends to infinity, of the area under
2

the graph of f(x) = xe™ between x =0 and x = 5.

379

. b 1/a
Showthatfﬁ=/ ﬁwhen 0<a<hb.
al !

380. Suppose that f(x) > O for all x and that f and g are

gnf

differentiable. Use the identity f$ =e and the chain

rule to find the derivative of f&.

381. Use the previous exercise to find the antiderivative of

3
h(x) = x*(1 +Inx) and evaluate / x*(1 + Inx)dx.
2

382. Show thatif ¢ > 0, then the integral of 1/x from ac
tobc (0 < a < b) is the same as the integral of 1/x from a
to b.

The following exercises are intended to derive the
fundamental properties of the natural log starting from the
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‘dt

definition In(x) = %> using properties of the definite
1

integral and making no further assumptions.

X

383. Use the identity In(x) = / % to derive the identity
1

1n(%) = —Inx.

384

. xy
Use a change of variable in the integral / %dt to
1

show that Inxy = Inx + Iny for x, y > 0.

385. I X ,
Use the identity Inx = / 5 to show that In(x) is
1
an increasing function of x on [0, o), and use the
previous exercises to show that the range of In(x) is
(—o0, 00). Without any further assumptions, conclude that

In(x) has an inverse function defined on (—o0, o).

386. Pretend, for the moment, that we do not know that e*
is the inverse function of In(x), but keep in mind that
In(x) has an inverse function defined on (—oo, o). Call
it E. Use the identity Inxy =Inx+1Iny to deduce that
E(a + b) = E(a)E(b) for any real numbers a, b.

387. Pretend, for the moment, that we do not know that e*
is the inverse function of Inx, but keep in mind that Inx
has an inverse function defined on (—oco, c0). Call it E.
Show that E'(t) = E(¢).

388. X i
The sine integral, defined as S(x) = f %ntdt is an
0

important quantity in engineering. Although it does not
have a simple closed formula, it is possible to estimate its
behavior for large X. Show that for

1
k2 1, 1Qak) = Seatk+ D) < zor

(Hint: sin(t + n) = —sint)

389. [T] The normal distribution in probability is given by
2., 2
1 —(x— w120
X) = ——e ,
p(x) gy
deviation and p is the average. The standard normal
distribution in probability, pj, corresponds  to

where o is the standard

pu=0ando = 1. Compute the left endpoint estimates

1
R, and R, of J 1 o 2”2 dx.
10 100 » m

390. [T] Compute

RSO andeOO of J

5

the

1

2V

right endpoint

2
~r— D218
e(x ) .

107
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1.7 | Integrals Resulting in Inverse Trigonometric
Functions

Learning Objectives

1.7.1 Integrate functions resulting in inverse trigonometric functions

In this section we focus on integrals that result in inverse trigonometric functions. We have worked with these functions
before. Recall from Functions and Graphs (http://cnx.org/content/m53472/latest/) that trigonometric functions
are not one-to-one unless the domains are restricted. When working with inverses of trigonometric functions, we always
need to be careful to take these restrictions into account. Also in Derivatives (http://cnx.org/content/m53494/latest/)
, we developed formulas for derivatives of inverse trigonometric functions. The formulas developed there give rise directly
to integration formulas involving inverse trigonometric functions.

Integrals that Result in Inverse Sine Functions

Let us begin this last section of the chapter with the three formulas. Along with these formulas, we use substitution to
evaluate the integrals. We prove the formula for the inverse sine integral.

Rule: Integration Formulas Resulting in Inverse Trigonometric Functions

The following integration formulas yield inverse trigonometric functions:

1.
1.23
J du _ _ sm_l% +C ( )
a’—u?
2.
du 1., —1u (1.24)
=—tan o+ C
3.
(1.25)
J—du = %sec iy c
ulu? — a?
Proof

Let y = sin”! %. Then asiny = x. Now let’s use implicit differentiation. We obtain

d (4giny) = 4
i (asiny) = e (x)
acosy% =1

dy _

dx ~ acosy’

For —% <y<=Z,cosy>0. Thus, applying the Pythagorean identity sinzy + coszy =1, we have

cosy =141= sin?y. This gives

< NN

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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1 _ 1
_ 1
a’ - a? sinzy
_ 1
a’—x?

Then for —a < x < a, we have

v[édu = sin_l(l) +C.

Va? — u? “

d

Example 1.49

Evaluating a Definite Integral Using Inverse Trigonometric Functions

1
Evaluate the definite integral J —dx

OVI—x2

Solution

We can go directly to the formula for the antiderivative in the rule on integration formulas resulting in inverse
trigonometric functions, and then evaluate the definite integral. We have

1
1
dx =sin"!x
0

0V1—x2

1.40 d
Find the antiderivative of |—%&X .
V1 - 16x2

Example 1.50

Finding an Antiderivative Involving an Inverse Trigonometric Function

Evaluate the integral JL

V4 — 9x2'

Solution
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Substitute u = 3x. Then du = 3dx and we have

J dx ZLJ' du
v4—9x2 3 \/4—142

Applying the formula with a = 2, we obtain

J dx =LJ du
Va—ox2  3JWa_,2
%sin_l(%)+C
=%sin_l(?’2—x)+c.

1.41
@/ Find the indefinite integral using an inverse trigonometric function and substitution for J —dx
9—x

Example 1.51

Evaluating a Definite Integral

[\

V312
Evaluate the definite integral J LZ
1—u

0

Solution

The format of the problem matches the inverse sine formula. Thus,

Integrals Resulting in Other Inverse Trigonometric Functions

There are six inverse trigonometric functions. However, only three integration formulas are noted in the rule on integration
formulas resulting in inverse trigonometric functions because the remaining three are negative versions of the ones we use.
The only difference is whether the integrand is positive or negative. Rather than memorizing three more formulas, if the
integrand is negative, simply factor out —1 and evaluate the integral using one of the formulas already provided. To close
this section, we examine one more formula: the integral resulting in the inverse tangent function.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Example 1.52

Finding an Antiderivative Involving the Inverse Tangent Function

Find an antiderivative of J 1 2d)c.
1+4x

Solution

Comparing this problem with the formulas stated in the rule on integration formulas resulting in inverse
trigonometric functions, the integrand looks similar to the formula for tan~!u+ C. So we use substitution,
letting u = 2x, then du = 2dx and 1/2du = dx. Then, we have

DI I A P _ Lin-!
2J1+u2du 2tan u+C 2tan 2x) + C.

@ 1.42 Use substitution to find the antiderivative of JLZ
25+ 4x

Example 1.53

Applying the Integration Formulas

Find the antiderivative of j 1 2dx.
9+x

Solution
Apply the formula with a = 3. Then,

Jﬁ %tan_1 (1) +C.

@ 1.43 Find the antiderivative of JLZ
16 + x

Example 1.54

Evaluating a Definite Integral

V3
dx

Evaluate the definite integral j 5-
NeYe) 1+x
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Solution
Use the formula for the inverse tangent. We have
V3
V3
J Lz = tan~! x|
Gl X V313
= [tan_1 (@] - [tan_] (?)]
-z
6
@ 1.44 2
Evaluate the definite integral J dx 7
oA +x

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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1.7 EXERCISES

In the following exercises, evaluate each integral in terms
of an inverse trigonometric function.

391. 372
dx
0 V1 — 2

392. 12
dx

393. I

394. W3
dx
J 1/@1 + X
395. 2
dx
2
Jy [xVx“ —1
396. 2/3

dx
x| Vx2 -1

<1

In the following exercises, find each indefinite integral,
using appropriate substitutions.

397. dx
9— x2

398. i

JV1 = 16x2
399. [ gy

9+ x2
400. | dx

25 + 16x2
401. dx

J x| x2-9
402. d

JixVax? - 16

113

403. Explain the
—coslt+C= J dt

V1 -2

general, that cos™!t=—sin"!¢?

relationship

=sin"'t+C. Is it true, in

404. Explain the
-1 dt
sec” t+C= J—

iVr> — 1

T = —cse™ 142

relationship

= —csc ¢+ C. Is it true, in

general, that sec™

405. Explain what is wrong with the following integral:

2
J di
N1—72

406. Explain what is wrong with the following integral:
1

d
J_ﬂn%2—1

In the following exercises, solve for the antiderivative / f

of f with C =0, then use a calculator to graph f and

the antiderivative over the given interval [a, b]. Identify a

value of C such that adding C to the antiderivative recovers

X
the definite integral F(x) = / f(0)dt.
a

407. [ 1
[T] dx over [-3, 3]
JVo — x2
408. ([
[T] 9 2dx over [—6, 6]
JO+x
409. [
[T] Lsxzdx over [—6, 6]
J4 +sin“x
410. [ X
[T] 4 5-dx over [~6, 6]
J1 4+ e~

In the following exercises, compute the antiderivative using
appropriate substitutions.

411. J'sin_l tdt

V1 —¢2

412. J dt
sin~1 V1 — 2
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413. (tan~—!
tan (22t)a,t
1+ 4t

414. nttan_1 (tz)
—4dt
141

415 fgec™! (1)

11Vt — 4

t
416, [fsec! (tz)

t
2 =1

J

In the following exercises, use a calculator to graph the

antiderivative / f with C =0 over the given interval

la, bl. Approximate a value of C, if possible, such that

adding C to the antiderivative gives the same value as the

X
definite integral F(x) = f fdt.
a

417. [
[T] —L__dx over 2, 6]
JxVx2 -4
418. [
[T] ~mdx over [O, 6]
- [T] ~wdx over [—6, 6]
1+ x%sin?x
420. [ -2
[T] vze——xdx over [0, 2]
JVL e
421. [
[T] 1 over [0, 2]
Jx+ xIn“x
422. [ . 1
[T] L); over [—1, 1]
1—x

In the following exercises, compute each integral using
appropriate substitutions.

423. [ x
e—d[
1 _ 62[
424. t
4 i
J1+e
425. dt
JV1 =2t

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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426.
dt

J t(l + lnzt)

427. (cos=! (20)

=t
J V1 —4s?
428. ne’cos_1 e’
—()d[
J 1 _ eZt

In the following exercises, compute each definite integral.

429. 12

=

tan(si -1 t)dt

V1 —1¢2

<0

430. mztan(eos_l t)
dt

A 2
1/4 1-t

431, pl2 | _
sm(tan 1t)
—zdt
1+¢
432, pl2
cos(tan_1 t)
—2dt
1+1¢
433. A
For A >0, compute I(A)= J % and
_al+t
evaluate ali)mool(A), the area under the graph of i 2

on [—oo, o0].

B
For 1 < B < o0, compute I(B) = J _dr and

(V21

the area under the graph of

434.

evaluate lim I(B),
B — o

1

N2 —1

435. Use the substitution u =V2cotx and the identity

over [1, o).

1+ cot?x =csc’x to evaluate JLZ (Hint:

1+cos“x

Multiply the top and bottom of the integrand by csc? x.)



Chapter 1 | Integration

436. [T] Approximate the points at which the graphs of

2 2 2
f(x)=2x*—1 and g(x) = (1 +4x ) intersect, and
approximate the area between their graphs accurate to three

decimal places.

437. 47.[T] Approximate the points at which the graphs of
fx) = ¥2—1 and flx) = x2-1 intersect, and

approximate the area between their graphs accurate to three
decimal places.

438. Use the following graph to prove that

X
J V1 —tzdtzlx 1—x2+lsin_1x.
0 2 2

115
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CHAPTER 1 REVIEW

KEY TERMS

average value of a function (or f,y.) the average value of a function on an interval can be found by calculating the
definite integral of the function and dividing that value by the length of the interval

change of variables the substitution of a variable, such as u, for an expression in the integrand

definite integral a primary operation of calculus; the area between the curve and the x-axis over a given interval is a
definite integral

fundamental theorem of calculus the theorem, central to the entire development of calculus, that establishes the
relationship between differentiation and integration

fundamental theorem of calculus, part 1 uses a definite integral to define an antiderivative of a function

fundamental theorem of calculus, part 2 (also, evaluation theorem) we can evaluate a definite integral by
evaluating the antiderivative of the integrand at the endpoints of the interval and subtracting

integrable function a function is integrable if the limit defining the integral exists; in other words, if the limit of the
Riemann sums as n goes to infinity exists

integrand the function to the right of the integration symbol; the integrand includes the function being integrated

integration by substitution a technique for integration that allows integration of functions that are the result of a chain-
rule derivative

left-endpoint approximation an approximation of the area under a curve computed by using the left endpoint of each
subinterval to calculate the height of the vertical sides of each rectangle

limits of integration these values appear near the top and bottom of the integral sign and define the interval over which
the function should be integrated

lower sum a sum obtained by using the minimum value of f(x) on each subinterval

mean value theorem for integrals guarantees that a point c exists such that f(c) is equal to the average value of the

function

net change theorem if we know the rate of change of a quantity, the net change theorem says the future quantity is equal
to the initial quantity plus the integral of the rate of change of the quantity

net signhed area the area between a function and the x-axis such that the area below the x-axis is subtracted from the area
above the x-axis; the result is the same as the definite integral of the function

partition a set of points that divides an interval into subintervals
regular partition a partition in which the subintervals all have the same width
riemann sum ) L
an estimate of the area under the curve of the form A ~ Z S )Ax
i=1
right-endpoint approximation the right-endpoint approximation is an approximation of the area of the rectangles

under a curve using the right endpoint of each subinterval to construct the vertical sides of each rectangle

sigma nhotation (also, summation notation) the Greek letter sigma (X) indicates addition of the values; the values of the
index above and below the sigma indicate where to begin the summation and where to end it

total area total area between a function and the x-axis is calculated by adding the area above the x-axis and the area below
the x-axis; the result is the same as the definite integral of the absolute value of the function

upper sum a sum obtained by using the maximum value of f(x) on each subinterval

variable of integration indicates which variable you are integrating with respect to; if it is x, then the function in the
integrand is followed by dx

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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KEY EQUATIONS

¢ Properties of Sigma Notation

n
ZC=I’£C

i=1

N
8

I
. 9}
D=
NQ

Il
—
Il
—

n n

(al-+bl~)= Z (ll'+ z bi
i i=1 i=1
n n

(aj—b;)= Z a;— Z b;

Il
—
Il
—_

| NZ ) ol

Il
—_
Il

Vi

n
a; = ai+ Z a;
1 i=m+1

¢ Sums and Powers of Integers

n
= 2
i=1
,-2=12+22+m+n2=n(n+1)6(2n+1)
i=1
" 3 (3,3 3 nlm+1)2

i=0

¢ Left-Endpoint Approximation

ArLy= f(xg)Ax+ f(xDAx+ - + f(x,_DAx = Z SO DAx
i=1

* Right-Endpoint Approximation

A% Ry = fxDAX + f(xo)Ax + - + f(xy)Ax = Z fx)Ax

i=1

¢ Definite Integral
b n
fa fdx = nlemiZI flet )Ax

¢ Properties of the Definite Integral

f fdx =0
fb ‘ F)dx = — /a ’ F)dx

b b b
fa [£(x) + g(0)ldx = fa Fo)dx + fa g(x)dx

b

b b
[f(x) — g(0)ldx = J F(x)dx — / g(x)dx

b b
/ cf(x)dx =c f f(x) for constant ¢

/u ’ f0)dx = [a “odx + /L b f)dx

117
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¢ Mean Value Theorem for Integrals
If f(x) is continuous over an interval [a, b], then there is at least one point ¢ € [a, b] such that

b
f@ =512/ fax

¢ Fundamental Theorem of Calculus Part 1

X
If f(x) is continuous over an interval [a, b], and the function F(x) is defined by F(x) = / f(®)dt, then
a
F'(x) = f(x).
¢ Fundamental Theorem of Calculus Part 2

b
If fis continuous over the interval [a, ] and F(x) is any antiderivative of f(x), then f f(x)dx = F(b) — F(a).
a

¢ Net Change Theorem
b b
F(b) =F(a) + f F'(x)dx or / F'(x)dx = F(b) — F(a)

¢ Substitution with Indefinite Integrals

[Hewle’ dx = [ fdu = Fu) + C = Flg(x) + C

¢ Substitution with Definite Integrals

b
g()
J Sle@lg W= [ fdu
a sla

¢ Integrals of Exponential Functions
/ e‘dx=e"+C

Jaxdx = a—x+ C
Ina

* Integration Formulas Involving Logarithmic Functions
fx_l dx =Inlx|+ C
flnxdx:xlnx—x+C=x(lnx— H+C

= X —
/loga xdx=pi(nx - 1)+C

e Integrals That Produce Inverse Trigonometric Functions

%= Sil’l_1 (%)'l‘c
a —u

ﬁ = %tan_l (%) + C

du = Lgec! @+ c

J uvuz—az a a
KEY CONCEPTS

1.1 Approximating Areas

n
¢ The use of sigma (summation) notation of the form Z a; is useful for expressing long sums of values in compact
i=1

form.
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» For a continuous function defined over an interval [a, b], the process of dividing the interval into n equal parts,

extending a rectangle to the graph of the function, calculating the areas of the series of rectangles, and then summing
the areas yields an approximation of the area of that region.

¢ The width of each rectangle is Ax = b%a_

n
¢ Riemann sums are expressions of the form z f(x;!‘ )Ax, and can be used to estimate the area under the curve
i=1
y = f(x). Left- and right-endpoint approximations are special kinds of Riemann sums where the values of {x;“ }
are chosen to be the left or right endpoints of the subintervals, respectively.
¢ Riemann sums allow for much flexibility in choosing the set of points {x;k } at which the function is evaluated,

often with an eye to obtaining a lower sum or an upper sum.

1.2 The Definite Integral
¢ The definite integral can be used to calculate net signed area, which is the area above the x-axis less the area below
the x-axis. Net signed area can be positive, negative, or zero.

e The component parts of the definite integral are the integrand, the variable of integration, and the limits of
integration.

¢ Continuous functions on a closed interval are integrable. Functions that are not continuous may still be integrable,
depending on the nature of the discontinuities.

¢ The properties of definite integrals can be used to evaluate integrals.
¢ The area under the curve of many functions can be calculated using geometric formulas.

¢ The average value of a function can be calculated using definite integrals.

1.3 The Fundamental Theorem of Calculus

¢ The Mean Value Theorem for Integrals states that for a continuous function over a closed interval, there is a value ¢
such that f(c) equals the average value of the function. See The Mean Value Theorem for Integrals.

¢ The Fundamental Theorem of Calculus, Part 1 shows the relationship between the derivative and the integral. See
Fundamental Theorem of Calculus, Part 1.

¢ The Fundamental Theorem of Calculus, Part 2 is a formula for evaluating a definite integral in terms of an
antiderivative of its integrand. The total area under a curve can be found using this formula. See The
Fundamental Theorem of Calculus, Part 2.

1.4 Integration Formulas and the Net Change Theorem
¢ The net change theorem states that when a quantity changes, the final value equals the initial value plus the integral
of the rate of change. Net change can be a positive number, a negative number, or zero.

e The area under an even function over a symmetric interval can be calculated by doubling the area over the positive
x-axis. For an odd function, the integral over a symmetric interval equals zero, because half the area is negative.

1.5 Substitution

¢ Substitution is a technique that simplifies the integration of functions that are the result of a chain-rule derivative.
The term ‘substitution’ refers to changing variables or substituting the variable u and du for appropriate expressions
in the integrand.

¢ When using substitution for a definite integral, we also have to change the limits of integration.
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1.6 Integrals Involving Exponential and Logarithmic Functions

Chapter 1 | Integration

¢ Exponential and logarithmic functions arise in many real-world applications, especially those involving growth and

decay.

* Substitution is often used to evaluate integrals involving exponential functions or logarithms.

1.7 Integrals Resulting in Inverse Trigonometric Functions

e Formulas for derivatives of inverse trigonometric functions developed in Derivatives of Exponential and
Logarithmic Functions (http:/lcnx.org/content/m53584/latest/) lead directly to integration formulas

involving inverse trigonometric functions.

¢ Use the formulas listed in the rule on integration formulas resulting in inverse trigonometric functions to match up
the correct format and make alterations as necessary to solve the problem.

¢ Substitution is often required to put the integrand in the correct form.

CHAPTER 1 REVIEW EXERCISES

True or False. Justify your answer with a proof or a
counterexample. Assume all functions f and g are

continuous over their domains.

439. If f(x)>0, f'(x) >0 for all x, then the right-

b
hand rule underestimates the integral / f(x). Use a graph
a

to justify your answer.
b 2 b b
440. dx = d d
[ r@?dx= [ fdx[ foodx

441. If f(x)<gkx) for all x€&la,b], then
b b
[ 1@< [ g,

442. All continuous functions have an antiderivative.

Evaluate the Riemann sums L, and R, for the following

functions over the specified interval. Compare your answer
with the exact answer, when possible, or use a calculator to
determine the answer.

443. y=3x2—2x+1 over [—1, 1]
444. y = ln()c2 —+ 1) over [0, e]
445. y = xZsinx over [0, x]

446. y=ﬁ+% over [1, 4]

Evaluate the following integrals.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2

447. fl (x3 — 22+ 4x)dx
-1

4
448. J S| —
0

V1 + 612

/2
449. 2 sec(260)tan(26)d6o

/3

/4 2
450. / e“°% *sinxcosdx
0

Find the antiderivative.

451. J—dx .
(x+4)

452. f xln(xz)dx

2
453. Jde
1—x

2x
454. 4 dx
1+e™

Find the derivative.
t

455. a,iJ _Sinx gy
! 0 1+ x?
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3
d [ _p2
456. dxfl V4 — 12dr

In(x)

d_ t
457. < fl (41 + e\t
CosX 9
458, 4L e!“dt
dx 0

The following problems consider the historic average cost
per gigabyte of RAM on a computer.

Year 5-Year Change ($)
1980 0

1985 -5,468,750

1990 —755,495

1995 —-73,005

2000 —29,768

2005 -918

2010 =177

459. If the average cost per gigabyte of RAM in 2010 is
$12, find the average cost per gigabyte of RAM in 1980.

460. The average cost per gigabyte of RAM can be
approximated by the function

C(7) = 8, 500, 000(0.65)’, where ¢ is measured in years
since 1980, and C is cost in US$. Find the average cost per
gigabyte of RAM for 1980 to 2010.

461. Find the average cost of 1GB RAM for 2005 to
2010.

462. The velocity of a bullet from a rifle can be
approximated by v(r) = 640012 — 6505t + 2686, where
t is seconds after the shot and v is the velocity measured

in feet per second. This equation only models the velocity
for the first half-second after the shot: 0 <t < 0.5. What

is the total distance the bullet travels in 0.5 sec?

121

463. What is the average velocity of the bullet for the first
half-second?
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2 | APPLICATIONS OF
INTEGRATION

th

_ : Vet :
Figure 2.1 Hoover Dam is one of the United States’ iconic landmarks, and provides irrigation and hydroelectric power for
millions of people in the southwest United States. (credit: modification of work by Lynn Betts, Wikimedia)

Chapter Outline

2.1 Areas between Curves

2.2 Determining Volumes by Slicing

2.3 Volumes of Revolution: Cylindrical Shells

2.4 Arc Length of a Curve and Surface Area

2.5 Physical Applications

2.6 Moments and Centers of Mass

2.7 Integrals, Exponential Functions, and Logarithms
2.8 Exponential Growth and Decay

2.9 Calculus of the Hyperbolic Functions
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Introduction

The Hoover Dam is an engineering marvel. When Lake Mead, the reservoir behind the dam, is full, the dam withstands a
great deal of force. However, water levels in the lake vary considerably as a result of droughts and varying water demands.
Later in this chapter, we use definite integrals to calculate the force exerted on the dam when the reservoir is full and we
examine how changing water levels affect that force (see Example 2.28).

Hydrostatic force is only one of the many applications of definite integrals we explore in this chapter. From geometric
applications such as surface area and volume, to physical applications such as mass and work, to growth and decay models,
definite integrals are a powerful tool to help us understand and model the world around us.

2.1 | Areas between Curves

Learning Objectives

2.1.1 Determine the area of a region between two curves by integrating with respect to the
independent variable.

2.1.2 Find the area of a compound region.

2.1.3 Determine the area of a region between two curves by integrating with respect to the
dependent variable.

In Introduction to Integration, we developed the concept of the definite integral to calculate the area below a curve on
a given interval. In this section, we expand that idea to calculate the area of more complex regions. We start by finding the
area between two curves that are functions of x, beginning with the simple case in which one function value is always

greater than the other. We then look at cases when the graphs of the functions cross. Last, we consider how to calculate the
area between two curves that are functions of y.

Area of a Region between Two Curves

Let f(x) and g(x) be continuous functions over an interval [a, b] such that f(x) > g(x) on [a, b]. We want to find the
area between the graphs of the functions, as shown in the following figure.

yi
f(x)

g(x)

a b X
Figure 2.2 The area between the graphs of two functions,
f(x) and g(x), on the interval [a, b].

As we did before, we are going to partition the interval on the x-axis and approximate the area between the graphs
of the functions with rectangles. So, for i =0, 1, 2,..., n, let P = {x;} be a regular partition of [a, b] Then, for

i=1,2,..,n, choose apoint xf € [x;_, x;], and on each interval [x;_, x;] construct a rectangle that extends

vertically from g(x¥ ) to f(x¥ ). Figure 2.3(a) shows the rectangles when x¥ is selected to be the left endpoint of the

interval and n = 10. Figure 2.3(b) shows a representative rectangle in detail.

. Use this calculator (http://lwww.openstaxcollege.org/l/20_CurveCalc) to learn more about the areas
between two curves.
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yi
TR
AX —»]
Ig(x) R g{_x}*}7
a b x
(@ (b)

Figure 2.3 (a)We can approximate the area between the
graphs of two functions, f(x) and g(x), with rectangles. (b)

The area of a typical rectangle goes from one curve to the other.

The height of each individual rectangle is f(x* ) — g(x¥ ) and the width of each rectangle is Ax. Adding the areas of all

the rectangles, we see that the area between the curves is approximated by

n

Ax Z [f(x;-" ) — g(x¥ )]Ax.

i=1

This is a Riemann sum, so we take the limit as # — oo and we get

n
i=1

b
A= lim D [fe) - g )]Ax = [ [£) - gokdx.

These findings are summarized in the following theorem.

Theorem 2.1: Finding the Area between Two Curves

Let f(x) and g(x) be continuous functions such that f(x) > g(x) over an interval [a, b]. Let R denote the region
bounded above by the graph of f(x), below by the graph of g(x), and on the left and right by the lines x = a and
x = b, respectively. Then, the area of R is given by

b (2.1)
A= [ 700 - gy

We apply this theorem in the following example.

Example 2.1

Finding the Area of a Region between Two Curves 1

If R is the region bounded above by the graph of the function f(x) = x+4 and below by the graph of the

function g(x) =3 —% over the interval [1, 4], find the area of region R.

Solution

The region is depicted in the following figure.
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B
—14

Figure 2.4 A region between two curves is shown where one
curve is always greater than the other.

We have
-/ 110 - sk
= [ === [ B 1
[ o-D-

The area of the region is % units?.

@ 2.1 If R is the region bounded by the graphs of the functions f(x) = % +5 and g(x) =x +% over the

interval [1, 5], find the area of region R.

In Example 2.1, we defined the interval of interest as part of the problem statement. Quite often, though, we want to define
our interval of interest based on where the graphs of the two functions intersect. This is illustrated in the following example.

Example 2.2

Finding the Area of a Region between Two Curves 2

If R is the region bounded above by the graph of the function f(x) =9 — ()5/2)2 and below by the graph of the

function g(x) = 6 — x, find the area of region R.
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Solution

The region is depicted in the following figure.

|': Y
\2/

10¥

—-104

Figure 2.5 This graph shows the region below the graph of
f(x) and above the graph of g(x).

We first need to compute where the graphs of the functions intersect. Setting f(x) = g(x), we get

f(xg = gx)
_ (X — _
9 (2) = 6-x
9_x 6
~L = 6-x
36 —x% = 24 —4x
¥2—4x—-12 = 0

x=-6)(x+2) = 0.

The graphs of the functions intersect when x =6 or x = —2, so we want to integrate from —2 to 6. Since
f(x) > g(x) for —2 < x £ 6, we obtain

b
A = [ [10) - gtoux

S Jp- -6-ope= -5l

3 2
_ X X _ 64
= [3x —12+—2]‘_2——3 .

The area of the region is 64/3 units?.

2.2 If R is the region bounded above by the graph of the function f(x) = x and below by the graph of the

function g(x) = x*, find the area of region R.
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Areas of Compound Regions

So far, we have required f(x) > g(x) over the entire interval of interest, but what if we want to look at regions bounded by

the graphs of functions that cross one another? In that case, we modify the process we just developed by using the absolute
value function.

Theorem 2.2: Finding the Area of a Region between Curves That Cross

Let f(x) and g(x) be continuous functions over an interval [a, b]. Let R denote the region between the graphs of
f(x) and g(x), and be bounded on the left and right by the lines x = @ and x = b, respectively. Then, the area of
R is given by

b
A= [ 170 - g@lax.

In practice, applying this theorem requires us to break up the interval [a, b] and evaluate several integrals, depending on

which of the function values is greater over a given part of the interval. We study this process in the following example.

Example 2.3
Finding the Area of a Region Bounded by Functions That Cross

If R is the region between the graphs of the functions f(x) = sinx and g(x) = cos x over the interval [0, x],

find the area of region R.

Solution

The region is depicted in the following figure.

Y4
24

1 f(x) = sinx

Rl ™ R2

—2I7T - ‘T’x
14
g(x) = cos x

—24

Figure 2.6 The region between two curves can be broken into
two sub-regions.

The graphs of the functions intersect at x = z/4. For x € [0, /4], cosx >sinx, so
|f(x) — g(x)| = |sin x — cos x| = cos x — sin x.

On the other hand, for x € [z/4, x], sinx > cosx, so
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|f(x) — g(x)| = [sin x — cos x| = sin x — cos x.

Then

b
A = [ 1o - gl

4 /4 V.4
= f |sin x — cos x|dx = / (cos x — sin x)dx + f (sinx — cos x)dx
0 0 /4

= [sin x + cos x] |6/4 + [~cos x —sinx] |7 4

=(2-D+(1+12)=22.

The area of the region is 22 units?.

@ 2.3 If R is the region between the graphs of the functions f(x) =sinx and g(x) = cosx over the interval
[#/2, 2x], find the area of region R.

Example 2.4

Finding the Area of a Complex Region

Consider the region depicted in Figure 2.7. Find the area of R.

Yi
a4l

N
l\l__

gx)=2—x
Figure 2.7 Two integrals are required to calculate the area of
this region.

Solution

As with Example 2.3, we need to divide the interval into two pieces. The graphs of the functions intersect at
x =1 (set f(x) = g(x) and solve for x), so we evaluate two separate integrals: one over the interval [0, 1] and

one over the interval [1, 2].

Over the interval [0, 1], the region is bounded above by f(x) = x2 and below by the x-axis, so we have

1 3
Alzfoxzdxz%

1
3

Over the interval [1, 2], the region is bounded above by g(x) = 2 — x and below by the x-axis, so we have
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2 2112 1
A2=f1(2—x)dx=[2x—x7i”1=§.

Adding these areas together, we obtain

A=A1+A2= +

[=)[9))

w|.—
N|—

The area of the region is 5/6 units?.

@ 2.4 Consider the region depicted in the following figure. Find the area of R.
0y
a1

Regions Defined with Respect to y

In Example 2.4, we had to evaluate two separate integrals to calculate the area of the region. However, there is another
approach that requires only one integral. What if we treat the curves as functions of y, instead of as functions of x?
Review Figure 2.7. Note that the left graph, shown in red, is represented by the function y = f(x) = x%. We could just

as easily solve this for x and represent the curve by the function x = v(y) =+/y. (Note that x = —/y is also a valid

2 as a function of y. However, based on the graph, it is clear we are interested

representation of the function y = f(x) = x
in the positive square root.) Similarly, the right graph is represented by the function y = g(x) =2 — x, but could just as
easily be represented by the function x = u(y) = 2 — y. When the graphs are represented as functions of y, we see the
region is bounded on the left by the graph of one function and on the right by the graph of the other function. Therefore, if
we integrate with respect to y, we need to evaluate one integral only. Let’s develop a formula for this type of integration.

Let u(y) and v(y) be continuous functions over an interval [c, d] such that u(y) > v(y) for all y € [c, d]. We want to

find the area between the graphs of the functions, as shown in the following figure.

Yi

Figure 2.8 We can find the area between the graphs of two
functions, u(y) and v(y).
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This time, we are going to partition the interval on the y-axis and use horizontal rectangles to approximate the area between
the functions. So, for i =0, 1, 2,..., n, let Q = {y;} be aregular partition of [c, d]. Then, for i =1, 2,..., n, choose
apoint y¥ € [y;_q, y;l, thenover each interval [y;_;, y;] construct a rectangle that extends horizontally from v(y;k )
to u(y?< ) Figure 2.9(a) shows the rectangles when y* is selected to be the lower endpoint of the interval and »n = 10.

Figure 2.9(b) shows a representative rectangle in detail.

yi
Ay
d. u(y)
I v(y)
- Vi) uly;)
/ X
(@ (b)

Figure 2.9 (a) Approximating the area between the graphs of
two functions, u(y) and v(y), with rectangles. (b) The area of

a typical rectangle.

The height of each individual rectangle is Ay and the width of each rectangle is u(y* )— v(y¥ ). Therefore, the area

between the curves is approximately
n
Ar 2 ulyy )=t Ay
i=1

This is a Riemann sum, so we take the limit as n» — oo, obtaining
n d

A= Jim Y [y )=yt Ay = [ [0) — vy

These findings are summarized in the following theorem.

Theorem 2.3: Finding the Area between Two Curves, Integrating along the y-axis

Let u(y) and v(y) be continuous functions such that u(y) > v(y) forall y € [c, d]. Let R denote the region bounded
on the right by the graph of u(y), on the left by the graph of v(y), and above and below by the lines y = d and

y = ¢, respectively. Then, the area of R is given by

d (2.2)
A= [ ) = vy

Integrating with Respect to y
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Let’s revisit Example 2.4, only this time let’s integrate with respect to y. Let R be the region depicted in
Figure 2.10. Find the area of R by integrating with respect to y.

Yi
a4l

gx)=2—x
Figure 2.10 The area of region R can be calculated using
one integral only when the curves are treated as functions of y.

Solution

We must first express the graphs as functions of y. As we saw at the beginning of this section, the curve on
the left can be represented by the function x = v(y) = +/y, and the curve on the right can be represented by the
function x = u(y) =2 —y.

Now we have to determine the limits of integration. The region is bounded below by the x-axis, so the lower limit
of integration is y = 0. The upper limit of integration is determined by the point where the two graphs intersect,

which is the point (1, 1), so the upper limit of integration is y = 1. Thus, we have [c, d] = [0, 1].

Calculating the area of the region, we get
d

A = [ TuG) = vy
c

1

! 2
= fo[(Z—Y)—W]dy = [Zy_%_%yz/z] .

=5

6

The area of the region is 5/6 units?.

2.5 Let’s revisit the checkpoint associated with Example 2.4, only this time, let’s integrate with respect to
y. Let be the region depicted in the following figure. Find the area of R by integrating with respect to y.

X
2
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2.1 EXERCISES

For the following exercises, determine the area of the
region between the two curves in the given figure by
integrating over the x-axis.

L. y=x2—3andy=1

2. y=x>andy=3x+4

Yi
20+

151
104

54

o) 72/ 0
—-54

For the following exercises, split the region between the
two curves into two smaller regions, then determine the
area by integrating over the x-axis. Note that you will

have two integrals to solve.

3. y=x3 and y=x2+x

ug

g(x) = x2 + x

4, y=cosf and y=0.5, for 0<O<=x

J4 10)

cos 0

g(x) =05

133

For the following exercises, determine the area of the
region between the two curves by integrating over the

y-axis.

5. x=y2andx=9

Yi
4+ i
x=y2
24
X
0 - - - - .
2 4 6 8|10
—24
_4__
6 y:xandx:y2
Yi
24
Y X
1.5+
1+ X = )2
0.5+
0 . | . |
05 1 15 2%
_0.5“
—14

9

For the following exercises, graph the equations and shade
the area of the region between the curves. Determine its
area by integrating over the x-axis.

7. y=x2 andy:—x2+18x

8. y=%,y=l2, and x
X

S. y=cosx and y = cos

X

11. y=e*, y=e"

3

_1, andx =0

,x=—-landx=1

x on x = [—nx, 7]
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X

12. y=e¢,y=¢", andy=e¢"
13. y=|x|andy=x2

For the following exercises, graph the equations and shade
the area of the region between the curves. If necessary,
break the region into sub-regions to determine its entire
area.

14. y =sin(zx), y =2x, andx > 0

15. y=12—-x,y=vx, andy =1

16. y=sinx and y = cosx over x = [—x, 7]
17. y=x3 andy=x2—2x over x = [—1, 1]
18. y=x2+9andy=10+2x over x = [—1, 3]
19. y=x3+3x and y = 4x

For the following exercises, graph the equations and shade
the area of the region between the curves. Determine its
area by integrating over the y-axis.

20. x=y3andx=3y-2

21. x=2yandx=y>—y

22. x:_3+y2andx=y—y2

23. y2=xandx=y+2

24, x=|y|and2x=—y2+2

25. x=siny, x =cos(2y), y=n/2, andy = —n/2

For the following exercises, graph the equations and shade
the area of the region between the curves. Determine its
area by integrating over the x-axis or y-axis, whichever
seems more convenient.

26. x=y4andx=y5

27. y=xe*, y=¢*, x=0, andx =1
28. y=)c(’andy=)c4

29 x=y>+2y?+landx=—y*>+1

30. y=|x|andy=x2—l
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31 y=4—3xandy=%

32. y=sinx, x = —2/6, x = 7/6, and y = cos>x

33 y=x?-3x+2andy=x>—2x2—x+2

34 y=2c03G3y, y= -1, x=%, andx= -
35 y+yl=xand2y=x

36. y=V1-x%andy=x%—1

37. y=cos lx,y=sin"lx, x=—1, andx = 1

For the following exercises, find the exact area of the
region bounded by the given equations if possible. If you
are unable to determine the intersection points analytically,
use a calculator to approximate the intersection points with
three decimal places and determine the approximate area of
the region.

38. [Tl x=¢’andy =x—2

39. [T]y=x2andy=m

40. [T] y =3x%+8x+9and3y = x+24
AL ) x =4 — y2and y2 = 1 + x2

42. [T] x2 = y3 and x = 3y

43. [T]
y= sin3x+2, y=tanx, x=—15, andx=1.5

44. [T]y:\/l—xzandyzzx2
45. [T] y = Vl—xzandy=x2+2x+1
46. [T] x=4—y2 andx =1+ 3y +y2

47. [Tl y=cosx,y=¢e", x=—rx, andx =0
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48. The largest triangle with a base on the x-axis that fits
inside the upper half of the unit circle y2 +x2=1is given
by y=1+x and y=1—x. See the following figure.

What is the area inside the semicircle but outside the
triangle?

—-15+

49. A factory selling cell phones has a marginal cost
function C(x) = 0.01x% — 3x 4+ 229, where x represents

the number of cell phones, and a marginal revenue function
given by R(x) =429 —2x. Find the area between the

graphs of these curves and x = (0. What does this area
represent?

50. An amusement park has a marginal cost function
C(x) = 1000e™ + 5, where x represents the number of

tickets sold, and a marginal revenue function given by
R(x) = 60 — 0.1x. Find the total profit generated when

selling 550
intersection points, if necessary, to two decimal places.

tickets. Use a calculator to determine

51. The tortoise versus the hare: The speed of the hare is
given by the sinusoidal function H(#) = 1 — cos((x?)/2)

whereas the speed of the tortoise is

T(t) = (1/2)tan_1 (t/4), where t is time measured in
hours and the speed is measured in miles per hour. Find the
area between the curves from time ¢ = 0 to the first time
after one hour when the tortoise and hare are traveling at the
same speed. What does it represent? Use a calculator to
determine the intersection points, if necessary, accurate to
three decimal places.

52. The tortoise versus the hare: The speed of the hare is
given by the sinusoidal function
H(t) = (1/2) — (1/2)cos(2at) whereas the speed of the

tortoise is 7(¢) = V#, where ¢ is time measured in hours

and speed is measured in kilometers per hour. If the race is
overin 1 hour, who won the race and by how much? Use a
calculator to determine the intersection points, if necessary,
accurate to three decimal places.

For the following exercises, find the area between the
curves by integrating with respect to x and then with

135

respect to y. Is one method easier than the other? Do you

obtain the same answer?
53. y=x2+2x+ landy = —x?=3x+4

54. y=x4andx=y5

55. x=y2—2andx=2y

For the following exercises, solve using calculus, then
check your answer with geometry.

56. Determine the equations for the sides of the square that
touches the unit circle on all four sides, as seen in the
following figure. Find the area between the perimeter of
this square and the unit circle. Is there another way to solve
this without using calculus?

Y

w
>

-15-14-05 0 o5 | 1
—05+

57. Find the area between the perimeter of the unit circle
and the triangle created from y =2x+ 1, y =1 —2x and

y= — %, as seen in the following figure. Is there a way
to solve this without using calculus?
Y
15+

Y




136 Chapter 2 | Applications of Integration

2.2 | Determining Volumes by Slicing

Learning Objectives

2.2.1 Determine the volume of a solid by integrating a cross-section (the slicing method).
2.2.2 Find the volume of a solid of revolution using the disk method.
2.2.3 Find the volume of a solid of revolution with a cavity using the washer method.

In the preceding section, we used definite integrals to find the area between two curves. In this section, we use definite
integrals to find volumes of three-dimensional solids. We consider three approaches—slicing, disks, and washers—for
finding these volumes, depending on the characteristics of the solid.

Volume and the Slicing Method

Just as area is the numerical measure of a two-dimensional region, volume is the numerical measure of a three-dimensional
solid. Most of us have computed volumes of solids by using basic geometric formulas. The volume of a rectangular solid,
for example, can be computed by multiplying length, width, and height: V = Iwh. The formulas for the volume of a sphere

(V = %ﬂr3), a cone (V = %ﬂr2 h), and a pyramid (V = %Ah) have also been introduced. Although some of these

formulas were derived using geometry alone, all these formulas can be obtained by using integration.

We can also calculate the volume of a cylinder. Although most of us think of a cylinder as having a circular base, such as
a soup can or a metal rod, in mathematics the word cylinder has a more general meaning. To discuss cylinders in this more
general context, we first need to define some vocabulary.

We define the cross-section of a solid to be the intersection of a plane with the solid. A cylinder is defined as any solid
that can be generated by translating a plane region along a line perpendicular to the region, called the axis of the cylinder.
Thus, all cross-sections perpendicular to the axis of a cylinder are identical. The solid shown in Figure 2.11 is an example
of a cylinder with a noncircular base. To calculate the volume of a cylinder, then, we simply multiply the area of the cross-

section by the height of the cylinder: V = A - h. In the case of a right circular cylinder (soup can), this becomes V = xr*h.

Three-dimensional cylinder Two-dimensional cross section
Figure 2.11 Each cross-section of a particular cylinder is identical to the others.

If a solid does not have a constant cross-section (and it is not one of the other basic solids), we may not have a formula for
its volume. In this case, we can use a definite integral to calculate the volume of the solid. We do this by slicing the solid
into pieces, estimating the volume of each slice, and then adding those estimated volumes together. The slices should all be
parallel to one another, and when we put all the slices together, we should get the whole solid. Consider, for example, the
solid S shown in Figure 2.12, extending along the x-axis.
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Figure 2.12 A solid with a varying cross-section.

We want to divide § into slices perpendicular to the x-axis. As we see later in the chapter, there may be times when we

want to slice the solid in some other direction—say, with slices perpendicular to the y-axis. The decision of which way to
slice the solid is very important. If we make the wrong choice, the computations can get quite messy. Later in the chapter,
we examine some of these situations in detail and look at how to decide which way to slice the solid. For the purposes of
this section, however, we use slices perpendicular to the x-axis.

Because the cross-sectional area is not constant, we let A(x) represent the area of the cross-section at point x. Now let
P= {xo, X1 ey Xn} be aregular partition of [a, b], andfor i =1, 2,...n, let §; represent the slice of § stretching from

X; _ 1tox;. The following figure shows the sliced solid with n = 3.

y

Figure 2.13 The solid S has been divided into three slices
perpendicular to the x-axis.

Finally, for i = 1, 2,...n, let xf be an arbitrary point in [x; _ , x;]. Then the volume of slice S; can be estimated by
V(S;) ~ A(x’f )Ax. Adding these approximations together, we see the volume of the entire solid S can be approximated by
n
V)~ ) AlxF )Ax.
i=1
By now, we can recognize this as a Riemann sum, and our next step is to take the limit as n — co. Then we have

n b
V(S) = lim_ Y At JAx= [A®dx.
i=1 a
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The technique we have just described is called the slicing method. To apply it, we use the following strategy.

Problem-Solving Strategy: Finding Volumes by the Slicing Method

1. Examine the solid and determine the shape of a cross-section of the solid. It is often helpful to draw a picture
if one is not provided.

2. Determine a formula for the area of the cross-section.

3. Integrate the area formula over the appropriate interval to get the volume.

Recall that in this section, we assume the slices are perpendicular to the x-axis. Therefore, the area formula is in terms of
x and the limits of integration lie on the x-axis. However, the problem-solving strategy shown here is valid regardless of
how we choose to slice the solid.

Example 2.6

Deriving the Formula for the Volume of a Pyramid

1

We know from geometry that the formula for the volume of a pyramid is V = §Ah. If the pyramid has a square
base, this becomes V = %azh, where a denotes the length of one side of the base. We are going to use the

slicing method to derive this formula.

Solution

We want to apply the slicing method to a pyramid with a square base. To set up the integral, consider the pyramid
shown in Figure 2.14, oriented along the x-axis.

Yi Yi

x

\

(@) (b)
Figure 2.14 (a) A pyramid with a square base is oriented along the x-axis. (b) A two-dimensional view of the
pyramid is seen from the side.

We first want to determine the shape of a cross-section of the pyramid. We are know the base is a square, so the
cross-sections are squares as well (step 1). Now we want to determine a formula for the area of one of these cross-
sectional squares. Looking at Figure 2.14(b), and using a proportion, since these are similar triangles, we have

S _Xgrg= aX

a h h’

Therefore, the area of one of the cross-sectional squares is
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2

Ax) = s> = (%) (step 2).

Then we find the volume of the pyramid by integrating from Oto A (step 3):

\% =7-A(x)dx
— ax —a_
—{(h)dx 2{xa’x

This is the formula we were looking for.

@ 2.6 Use the slicing method to derive the formula V = %ﬂ"‘zh for the volume of a circular cone.

Solids of Revolution

139

If a region in a plane is revolved around a line in that plane, the resulting solid is called a solid of revolution, as shown in

the following figure.
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Aregion in the
Xy-plane

x¥

@)

, The region is

! revolved around
; the x-axis, ...
I
I
|

(b)

... producing a
solid of revolution

(©)
Figure 2.15 (a) This is the region that is revolved around the x-axis.
(b) As the region begins to revolve around the axis, it sweeps out a
solid of revolution. (c) This is the solid that results when the
revolution is complete.

Solids of revolution are common in mechanical applications, such as machine parts produced by a lathe. We spend the rest
of this section looking at solids of this type. The next example uses the slicing method to calculate the volume of a solid of
revolution.

’ Use an online integral calculator (http://www.openstaxcollege.org/l/20_IntCalc2) to learn more.
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Example 2.7

Using the Slicing Method to find the Volume of a Solid of Revolution

Use the slicing method to find the volume of the solid of revolution bounded by the graphs of
flx) = X2 —dx + 5, x=1, andx =4, and rotated about the x-axis.

Solution

Using the problem-solving strategy, we first sketch the graph of the quadratic function over the interval [1, 4] as

shown in the following figure.

yi fix) =x>—4x + 5

A /

-1 9 1 2 3 4 5 6%

Figure 2.16 A region used to produce a solid of revolution.

Next, revolve the region around the x-axis, as shown in the following figure.

Yi fix) =x*—-4x + 5 X2 —4x + 5
1
|
|
! - t —— - —+-—- — =
5 6% -1 0 sl 4 5 6%
_l__ |
|
-2+ | -2+ |
|
_3 L || _3__ |I
44 '! —44+
51 -5+
_64+ 64
@ (b)

Figure 2.17 Two views, (a) and (b), of the solid of revolution produced by revolving the region
in Figure 2.16 about the x-axis.




142 Chapter 2 | Applications of Integration

Since the solid was formed by revolving the region around the x-axis, the cross-sections are circles (step 1).
The area of the cross-section, then, is the area of a circle, and the radius of the circle is given by f(x). Use the

formula for the area of the circle:
2
A(x) = zr? = alf(0)] = n(x> — 4x+5) (step 2).

The volume, then, is (step 3)

vV = 7A(x)dx

4 2 2 4 4 3 2
= -4 5) dx = -8 26 - 40, 25
/; 71'()6 X + ) X 71"/-1 (X X"+ X X + )dx
.X'S 4 26x3 0 2 5 ! /8
ﬂ(— —2xT 4= _20xc+ 2 X) 1 AR

The volume is 787/5.

2.7 Use the method of slicing to find the volume of the solid of revolution formed by revolving the region
between the graph of the function f(x) = 1/x and the x-axis over the interval [1, 2] around the x-axis. See

the following figure.

@ (b)

The Disk Method

When we use the slicing method with solids of revolution, it is often called the disk method because, for solids of
revolution, the slices used to over approximate the volume of the solid are disks. To see this, consider the solid of revolution

generated by revolving the region between the graph of the function f(x) = (x — 1)2+ 1 and the x-axis over the interval
[—1, 3] around the x-axis. The graph of the function and a representative disk are shown in Figure 2.18(a) and (b). The

region of revolution and the resulting solid are shown in Figure 2.18(c) and (d).

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Athin rectangle
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...produces a disk
when revolved
about the x-axis.

-3 -2
—_—
-3 -2

(d)
Figure 2.18 (a) A thin rectangle for approximating the area under a curve. (b) A representative disk formed by
revolving the rectangle about the x-axis. (c) The region under the curve is revolved about the x-axis, resulting in

(d) the solid of revolution.

I
w4
x¥

...produces a solid
of revolution when
revolved about the
X-axis.

We already used the formal Riemann sum development of the volume formula when we developed the slicing method. We

know that

V= fa bA(x)dx.

The only difference with the disk method is that we know the formula for the cross-sectional area ahead of time; it is the
area of a circle. This gives the following rule.
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Rule: The Disk Method

Let f(x) be continuous and nonnegative. Define R as the region bounded above by the graph of f(x), below by the

x-axis, on the left by the line x = @, and on the right by the line x = b. Then, the volume of the solid of revolution

formed by revolving R around the x-axis is given by

b 2.3
V= f ﬂ[f(x)]zdx. (2:3)

The volume of the solid we have been studying (Figure 2.18) is given by
b
vV = 2d
[ AfeoPax

- f:ﬂ[(x— )2+ 1]2dx —xf

=aie- D7+ 26— 1) +x]’: = (32448 +3)— (-32 - 10 - 1) | = 2L unies?

3
1[(x - D* 200 - D2+ 1]2dx

Let’s look at some examples.

Example 2.8

Using the Disk Method to Find the Volume of a Solid of Revolution 1

Use the disk method to find the volume of the solid of revolution generated by rotating the region between the
graph of f(x) = vx and the x-axis over the interval [1, 4] around the x-axis.

Solution
The graphs of the function and the solid of revolution are shown in the following figure.
yi Yi
at at
31 fx) = \x
2.4
14

_1__
-21 -2
-3 -3
~44 -4
@) (b)

Figure 2.19 (a) The function f(x) = vx over the interval [1, 4]. (b) The solid of revolution

obtained by revolving the region under the graph of f(x) about the x-axis.

We have

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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b

v = [ dfoPdx

= /1477[«5] 2dx = ﬂf14x dx

The volume is (157)/2 units>.

@/ 2.8 Use the disk method to find the volume of the solid of revolution generated by rotating the region
between the graph of f(x) = V4 — x and the x-axis over the interval [0, 4] around the x-axis.

So far, our examples have all concerned regions revolved around the x-axis, but we can generate a solid of revolution by

revolving a plane region around any horizontal or vertical line. In the next example, we look at a solid of revolution that has
been generated by revolving a region around the y-axis. The mechanics of the disk method are nearly the same as when

the x-axis is the axis of revolution, but we express the function in terms of y and we integrate with respect to y as well.

This is summarized in the following rule.

Rule: The Disk Method for Solids of Revolution around the y-axis

Let g(y) be continuous and nonnegative. Define O as the region bounded on the right by the graph of g(y), on the
left by the y-axis, below by the line y = ¢, and above by the line y = d. Then, the volume of the solid of revolution

formed by revolving O around the y-axis is given by

d (2.4)
V= fc g dy.

The next example shows how this rule works in practice.

Example 2.9

Using the Disk Method to Find the Volume of a Solid of Revolution 2

Let R be the region bounded by the graph of g(y) =44 — y and the y-axis over the y-axis interval [0, 4].

Use the disk method to find the volume of the solid of revolution generated by rotating R around the y-axis.

Solution

Figure 2.20 shows the function and a representative disk that can be used to estimate the volume. Notice that
since we are revolving the function around the y-axis, the disks are horizontal, rather than vertical.
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4 )4

3 4
-2+ -2+
_3l —-34
—44 44
@) (b)

Figure 2.20 (a) Shown is a thin rectangle between the curve of the function g(y) =4y4 —y

and the y-axis. (b) The rectangle forms a representative disk after revolution around the y-axis.

The region to be revolved and the full solid of revolution are depicted in the following figure.

@) (b)
Figure 2.21 (a) The region to the left of the function g(y) = Y4 — y over the y-axis interval

[0, 4]. (b) The solid of revolution formed by revolving the region about the y-axis.

To find the volume, we integrate with respect to y. We obtain

d
v = [ gy

4 4
=f07r[v4—y2dy=ﬂf0(4—y)dy

) 4
=ﬂ[4y—y7] o= 8.
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The volume is 87 units®.

@/ 2.9 Use the disk method to find the volume of the solid of revolution generated by rotating the region
between the graph of g(y) =y and the y-axis over the interval [1, 4] around the y-axis.

The Washer Method

Some solids of revolution have cavities in the middle; they are not solid all the way to the axis of revolution. Sometimes,
this is just a result of the way the region of revolution is shaped with respect to the axis of revolution. In other cases, cavities
arise when the region of revolution is defined as the region between the graphs of two functions. A third way this can happen
is when an axis of revolution other than the x-axis or y-axis is selected.

When the solid of revolution has a cavity in the middle, the slices used to approximate the volume are not disks, but washers
(disks with holes in the center). For example, consider the region bounded above by the graph of the function f(x) = vx
and below by the graph of the function g(x) = 1 over the interval [1, 4]. When this region is revolved around the x-axis,
the result is a solid with a cavity in the middle, and the slices are washers. The graph of the function and a representative

washer are shown in Figure 2.22(a) and (b). The region of revolution and the resulting solid are shown in Figure 2.22(c)
and (d).
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A thin rectangle in the Vi ...produces a washer when
4+ region between two curves... 4+ revolved around the x-axis.
i fix) = /x & |
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gix) =1 /

v e

1 O 2 3 4 5 6X -1 0 1 2 4 5 6%
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_2 1 _2__ Y
—ia -3+
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@ (b)
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-341 -3
-4+ —4 4
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Figure 2.22 (a) A thin rectangle in the region between two curves. (b) A
representative disk formed by revolving the rectangle about the x-axis. (c) The region

between the curves over the given interval. (d) The resulting solid of revolution.

The cross-sectional area, then, is the area of the outer circle less the area of the inner circle. In this case,
AX) = 7(v0)? = m(1)? = 7(x — 1).

Then the volume of the solid is

vV = /a bA(x)dx

=f14n(x—l)dx:ﬂ[x72—x]4 3

1= %ﬂ' units”.

Generalizing this process gives the washer method.

Rule: The Washer Method

Suppose f(x) and g(x) are continuous, nonnegative functions such that f(x) > g(x) over [a, b]. Let R denote the

region bounded above by the graph of f(x), below by the graph of g(x), on the left by the line x =a, and on
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the right by the line x = b. Then, the volume of the solid of revolution formed by revolving R around the x-axis is
given by
b (2.5)
V= 2 (g(x)*|dx.
fa 7 (f()? — (g(x))*Jdx

Example 2.10

Using the Washer Method
Find the volume of a solid of revolution formed by revolving the region bounded above by the graph of f(x) = x
and below by the graph of g(x) = 1/x over the interval [1, 4] around the x-axis.
Solution
The graphs of the functions and the solid of revolution are shown in the following figure.
i" [
flx) = x
34
24
1 1
gix) =
-1 0 -1 2 3 a4 5 X
— 1 <4
-2 -2
-3 -3
-4 -4
(@) (b)
Figure 2.23 (a) The region between the graphs of the functions f(x) = x and
g(x) = 1/x over the interval [1, 4]. (b) Revolving the region about the x-axis generates
a solid of revolution with a cavity in the middle.
We have
b 2 2
V = -
S AR - g
4 2 3 4
_ 2 (1 _Ax2 1 81w i3
_n/;[x (x):ldx —ﬂ[ +x]l__4 units-~.

2.10 Find the volume of a solid of revolution formed by revolving the region bounded by the graphs of
f(x) =vx and g(x) = 1/x over the interval [1, 3] around the x-axis.

As with the disk method, we can also apply the washer method to solids of revolution that result from revolving a region
around the y-axis. In this case, the following rule applies.
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Rule: The Washer Method for Solids of Revolution around the y-axis

Suppose u(y) and v(y) are continuous, nonnegative functions such that v(y) < u(y) for y € [c, d]. Let Q denote
the region bounded on the right by the graph of u(y), on the left by the graph of v(y), below by the line y =c,
and above by the line y = d. Then, the volume of the solid of revolution formed by revolving Q around the y-axis

is given by

d
V= [ au)? - o).

Rather than looking at an example of the washer method with the y-axis as the axis of revolution, we now consider an

example in which the axis of revolution is a line other than one of the two coordinate axes. The same general method
applies, but you may have to visualize just how to describe the cross-sectional area of the volume.

Example 2.11

The Washer Method with a Different Axis of Revolution

Find the volume of a solid of revolution formed by revolving the region bounded above by f(x) =4 —x and

below by the x-axis over the interval [0, 4] around the line y = —2.

Solution

The graph of the region and the solid of revolution are shown in the following figure.

@) (b)
Figure 2.24 (a) The region between the graph of the function f(x) =4 — x and the x-axis

over the interval [0, 4]. (b) Revolving the region about the line y = —2 generates a solid of

revolution with a cylindrical hole through its middle.
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We can’t apply the volume formula to this problem directly because the axis of revolution is not one of the
coordinate axes. However, we still know that the area of the cross-section is the area of the outer circle less the
area of the inner circle. Looking at the graph of the function, we see the radius of the outer circle is given by
f(x) +2, which simplifies to

fO)+2=@4—-x)+2=6—=x

The radius of the inner circle is g(x) = 2. Therefore, we have

fo 47z[(6 — 02— @

4
7r/0 (x2 —12x+ 32)dx = ﬂl:x??’ —6x2+ 32x]

14

4
0= 163Munits3.

2.11 Find the volume of a solid of revolution formed by revolving the region bounded above by the graph of
f(x) = x+ 2 and below by the x-axis over the interval [0, 3] around the line y = —1.
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2.2 EXERCISES

58. Derive the formula for the volume of a sphere using the
slicing method.

59. Use the slicing method to derive the formula for the
volume of a cone.

60. Use the slicing method to derive the formula for the
volume of a tetrahedron with side length a.

61. Use the disk method to derive the formula for the
volume of a trapezoidal cylinder.

62. Explain when you would use the disk method versus
the washer method. When are they interchangeable?

For the following exercises, draw a typical slice and find
the volume using the slicing method for the given volume.

63. A pyramid with height 6 units and square base of side 2
units, as pictured here.

Gﬁ
2)\
\(

64. A pyramid with height 4 units and a rectangular base
with length 2 units and width 3 units, as pictured here.

ﬂ
_12)\

—3—¥

65. A tetrahedron with a base side of 4 units, as seen here.

4

\
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66. A pyramid with height 5 units, and an isosceles
triangular base with lengths of 6 units and 8 units, as seen

here.
/ /\ 8
6

67. A cone of radius r and height 4 has a smaller cone of
radius 7/2 and height A/2 removed from the top, as seen
here. The resulting solid is called a frustum.

E’-‘-‘-‘ﬁ!ﬁ!&!v

For the following exercises, draw an outline of the solid and
find the volume using the slicing method.

68. The base is a circle of radius a. The slices

perpendicular to the base are squares.

69. The base is a triangle with vertices (0, 0), (1, 0), and
O, 1).

semicircles.

Slices perpendicular to the xy-plane are

70. The base is the region under the parabola y =1 — x2

in the first quadrant. Slices perpendicular to the xy-plane
are squares.

71. The base is the region under the parabola y = 1 — x2

and above the x-axis. Slices perpendicular to the y-axis

are squares.
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72. The base is the region enclosed by y = x* and y=0.

Slices perpendicular to the x-axis are right isosceles
triangles.

73. The base is the area between y =x and y= x2.
Slices perpendicular to the x-axis are semicircles.

For the following exercises, draw the region bounded by
the curves. Then, use the disk method to find the volume
when the region is rotated around the x-axis.

74. x+y=8,x=0, andy=0
75. y=2x2,x=0,x=4, andy=0
76. y=e*+1,x=0,x=1, andy=0

77. y=x4,x=0, andy=1

78. y=vx, x=0,x=4, andy=0
79. y=sinx, y=cosx, andx =0

80. y=%,x=2, andy =3

81. x2—y2=9andx+y=9,y=0andx=0

For the following exercises, draw the region bounded by
the curves. Then, find the volume when the region is
rotated around the y-axis.

1

y:4—§x,x=0, andy=0

82.

83. y=2x3,x=0,x=1, andy=0
84. y=3x2,x=0, andy =3

85. y= V4—x2,y=0, andx =0

86. y= 1
Vx + 1

,x=0, andx =3

87. x= sec(y)andy:%, y=0andx =0

88. _ 1
YEXH

,x=0, andx =2

89. y=4—-—x,y=x, andx=0

For the following exercises, draw the region bounded by
the curves. Then, find the volume when the region is
rotated around the x-axis.

153

9. y=x+2,y=x+6,x=0, andx =35

9L y=x2andy=x+2

92. x2=y3 andx3=y2

93. y=4—x2andy=2—x

94. [T] y=cosx,y=¢ ", x=0, andx = 1.2927
95. y=«ﬁandy=x2

96. y=sinx,y=5sinx, x=0andx =7

97. y= \/1+x2andy= V4 — x2

For the following exercises, draw the region bounded by
the curves. Then, use the washer method to find the volume
when the region is revolved around the y-axis.

98. y=vx,x=4, andy=0

99. y=x+2,y=2x—-1, andx=0

100. y= %ﬁandy =y

101.

x:ezy,xzyz,y:O, and y = In(2)

102, _ 9—y2 x=¢ ”,y=0, andy=3
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103. Yogurt containers can be shaped like frustums. Rotate

the line y = %x around the y-axis to find the volume

between y =aandy = b.

z -05

-1.0

-2.0

0.5

104. Rotate the ellipse (x2/a2) + (yzlbz) =1 around the

x-axis to approximate the volume of a football, as seen
here.

105. Rotate the ellipse (leaz) + (y2/b2) =1 around the

y-axis to approximate the volume of a football.
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106. A better approximation of the volume of a football is
given by the solid that comes from rotating y = sinx

around the x-axis from x=0 to x=x. What is the
volume of this football approximation, as seen here?

107. What is the volume of the Bundt cake that comes
from rotating y = sinx around the y-axis from x =0 to

x=nr?

0.0

For the following exercises, find the volume of the solid
described.
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108. The base is the region between y = x and y = X2 113. Find the volume of a sphere of radius R with a cap of

Slices perpendicular to the x-axis are semicircles. height /2 removed from the top, as seen here.

109. The base is the region enclosed by the generic ellipse
(x2 /az) + (y2/b2) = 1. Slices perpendicular to the x-axis

are semicircles.

110. Bore a hole of radius a down the axis of a right cone
and through the base of radius b, as seen here.

111. Find the volume common to two spheres of radius r
with centers that are 2/ apart, as shown here.

4>

112. Find the volume of a spherical cap of height 4 and
radius » where h < r, as seen here.
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2.3 | Volumes of Revolution: Cylindrical Shells

Learning Objectives

2.3.1 Calculate the volume of a solid of revolution by using the method of cylindrical shells.
2.3.2 Compare the different methods for calculating a volume of revolution.

In this section, we examine the method of cylindrical shells, the final method for finding the volume of a solid of revolution.
We can use this method on the same kinds of solids as the disk method or the washer method; however, with the disk and
washer methods, we integrate along the coordinate axis parallel to the axis of revolution. With the method of cylindrical
shells, we integrate along the coordinate axis perpendicular to the axis of revolution. The ability to choose which variable
of integration we want to use can be a significant advantage with more complicated functions. Also, the specific geometry
of the solid sometimes makes the method of using cylindrical shells more appealing than using the washer method. In the
last part of this section, we review all the methods for finding volume that we have studied and lay out some guidelines to
help you determine which method to use in a given situation.

The Method of Cylindrical Shells

Again, we are working with a solid of revolution. As before, we define a region R, bounded above by the graph of a
function y = f(x), below by the x-axis, and on the left and right by the lines x = a and x = b, respectively, as shown

in Figure 2.25(a). We then revolve this region around the y-axis, as shown in Figure 2.25(b). Note that this is different
from what we have done before. Previously, regions defined in terms of functions of x were revolved around the x-axis

or a line parallel to it.
y

@ (b)
Figure 2.25 (a) A region bounded by the graph of a function of x. (b) The solid of revolution formed when the

region is revolved around the y-axis.

As we have done many times before, partition the interval [a, b] using a regular partition, P = {x(, x;,..., X,} and,

for i=1, 2,..., n, choose apoint x¥ € [x;_, x;]. Then, construct a rectangle over the interval [x; _, x;] of height

f(x¥ ) and width Ax. A representative rectangle is shown in Figure 2.26(a). When that rectangle is revolved around the

y-axis, instead of a disk or a washer, we get a cylindrical shell, as shown in the following figure.
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(@) (b) ©

Figure 2.26 (a) A representative rectangle. (b) When this rectangle is revolved around the y-axis, the result is a cylindrical

shell. (c) When we put all the shells together, we get an approximation of the original solid.

To calculate the volume of this shell, consider Figure 2.27.
yi

y = f(x)

fx*)

A X

Figure 2.27 Calculating the volume of the shell.

The shell is a cylinder, so its volume is the cross-sectional area multiplied by the height of the cylinder. The cross-sections
are annuli (ring-shaped regions—essentially, circles with a hole in the center), with outer radius x; and inner radius x; _ ;.

Thus, the cross-sectional area is ﬂxl-Z - ﬂxiz_ 1- The height of the cylinder is f(x¥ ). Then the volume of the shell is

Viherr = f(8 )ax} — mx}_ )
= 7O xf = xi- )
=xf (e ) +x; - —x; )

xl-+x,-_1

=2nf(x¥ )(T)(xi —Xi_ 1)

Note that x; —x; _| = Ax, so we have



158 Chapter 2 | Applications of Integration

X;+Xx;_
Vet = 27f (¥ )(’T’])Ax.

X;i+Xx;_q . . . .
Furthermore, ’T’l is both the midpoint of the interval [x;_, x;] and the average radius of the shell, and we can

approximate this by x¥ . We then have
Vinell ® 27f(x¥ )x¥ Ax.

Another way to think of this is to think of making a vertical cut in the shell and then opening it up to form a flat plate
(Figure 2.28).

Y

f(x)

¥ ’J—\ |« 27X} -
- L
Cutline
/ f(X;-') / A
/|

(@) (b)

Figure 2.28 (a) Make a vertical cut in a representative shell. (b) Open the shell up to form a flat plate.

In reality, the outer radius of the shell is greater than the inner radius, and hence the back edge of the plate would be slightly
longer than the front edge of the plate. However, we can approximate the flattened shell by a flat plate of height f(x¥ ),

width 2zx¥ ,

plate. Multiplying the height, width, and depth of the plate, we get
Vet & f(xF )(27x} )Ax,

and thickness Ax (Figure 2.28). The volume of the shell, then, is approximately the volume of the flat

which is the same formula we had before.

To calculate the volume of the entire solid, we then add the volumes of all the shells and obtain
n
V) 2axk fxF )Ax),
i=1

Here we have another Riemann sum, this time for the function 2zxf(x). Taking the limitas n — oo gives us
7 b
V= lim > (2mxf [ )Ax)= fa Qrxf ().

1=

This leads to the following rule for the method of cylindrical shells.
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Rule: The Method of Cylindrical Shells
Let f(x) be continuous and nonnegative. Define R as the region bounded above by the graph of f(x), below by the
x-axis, on the left by the line x = @, and on the right by the line x = b. Then the volume of the solid of revolution

formed by revolving R around the y-axis is given by
b (2.6)
V= / (27zxf(x))dx.
a

Now let’s consider an example.

Example 2.12

The Method of Cylindrical Shells 1

Define R as the region bounded above by the graph of f(x) = 1/x and below by the x-axis over the interval

[1, 3]. Find the volume of the solid of revolution formed by revolving R around the y-axis.

Solution
First we must graph the region R and the associated solid of revolution, as shown in the following figure.

15+ 15
1+ 1
05+ 05+
-1 0 0
—-0.5+ -05
-1 -1
() (b)

Figure 2.29 (a) The region R under the graph of f(x) = 1/x over the
interval [1, 3]. (b) The solid of revolution generated by revolving R about

the y-axis.

Then the volume of the solid is given by

b
v = [ eaxfeoux

AZCE

3
= f 2rdx = 2ﬂx|? = 47 units” .
1

2.12 Define R as the region bounded above by the graph of f(x) = x? and below by the x-axis over the

interval [1, 2]. Find the volume of the solid of revolution formed by revolving R around the y-axis.
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Example 2.13

The Method of Cylindrical Shells 2

Define R as the region bounded above by the graph of f(x) = 2x — x2 and below by the x-axis over the interval

[0, 2]. Find the volume of the solid of revolution formed by revolving R around the y-axis.

Solution

First graph the region R and the associated solid of revolution, as shown in the following figure.

P41 4
154 1.5
f(x) = 2x — x*

1+ 1

|

054/ R 051

:

+ + + + - + :———I——b-'-———l———

-3 -2 -1 1 3X -3 -2—— 8
—0 —0,7/
(a) (b)

Figure 2.30 (a) The region R under the graph of f(x) = 2x — x% over
the interval [0, 2]. (b) The volume of revolution obtained by revolving

R about the y-axis.

Then the volume of the solid is given by
b

vV = fa QaxfOo)x
2 2 2 2 3
= /;) (27rx(2x—x ))dx = 27:/0 (2x -X )dx

=2 20 ot 2=8—”units3
3 4 {107 3 ’

2.13  Define R as the region bounded above by the graph of f(x) = 3x — x2 and below by the x-axis over

the interval [0, 2]. Find the volume of the solid of revolution formed by revolving R around the y-axis.

As with the disk method and the washer method, we can use the method of cylindrical shells with solids of revolution,
revolved around the x-axis, when we want to integrate with respect to y. The analogous rule for this type of solid is given

here.
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Rule: The Method of Cylindrical Shells for Solids of Revolution around the x-axis

Let g(y) be continuous and nonnegative. Define Q as the region bounded on the right by the graph of g(y), on
the left by the y-axis, below by the line y = ¢, and above by the line y = d. Then, the volume of the solid of

revolution formed by revolving O around the x-axis is given by

d
V= fc 2ryg(y)dy.

Example 2.14

The Method of Cylindrical Shells for a Solid Revolved around the x-axis

Define Q as the region bounded on the right by the graph of g(y) = 2yy and on the left by the y-axis for

y € [0, 4]. Find the volume of the solid of revolution formed by revolving Q around the x-axis.

Solution

First, we need to graph the region QO and the associated solid of revolution, as shown in the following figure.

Yi y
g1 ) 5 .
a) = 2y gly) =2y
a1 4.
| /|
| !
3 3-:— y
Q ] ff’
2 2+ 4
| Fa
I F
1 5= ,/
, >
' — —t — e — - R
-1 9% 1 2 3 4 5 66X -1 0 1.2 3
-14 -1+
]
-2 —24
I
-3 3+
]
|
—4 —d
_5 -5

(@) (b)

Figure 2.31 (a) The region Q to the left of the function g(y) over the interval

[0, 4]. (b) The solid of revolution generated by revolving Q around the x-axis.

Label the shaded region Q. Then the volume of the solid is given by

d
Vv = fc (2ryg(y)dy

4 4 3/2
= /0 Ray2yy)dy = 4n /0 vy

4
572
=4,;[2y5 ] _ 256z

-3
0 5 units- .
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2.14 Define Q as the region bounded on the right by the graph of g(y) = 3/y and on the left by the y-axis
A

for y € [1, 3]. Find the volume of the solid of revolution formed by revolving QO around the x-axis.

For the next example, we look at a solid of revolution for which the graph of a function is revolved around a line other than
one of the two coordinate axes. To set this up, we need to revisit the development of the method of cylindrical shells. Recall
that we found the volume of one of the shells to be given by

Vehen = fOcf )ax} — mx}_)
= mf(s af —xi_)
=xf (e ) +x; g —x; )

= 2mf(x* )(%)(xi =X 1)

This was based on a shell with an outer radius of x; and an inner radius of x; _ ;. If, however, we rotate the region around
a line other than the y-axis, we have a different outer and inner radius. Suppose, for example, that we rotate the region
around the line x = —k, where k is some positive constant. Then, the outer radius of the shell is x; 4+ k and the inner
radius of the shell is x; _ | 4+ k. Substituting these terms into the expression for volume, we see that when a plane region is

rotated around the line x = —k, the volume of a shell is given by

Vnen = 22f(xf )((xi +H +£xi o k))((xi +k)=(x; 1 +k)

= 2mf(xt )((%) + k)Ax.

. Xi+X;i_q . . . . .
As before, we notice that lTll is the midpoint of the interval [x; _{, x;] and can be approximated by x¥ . Then,

the approximate volume of the shell is

Vehell ® 27r(x?‘ + k) f(xF )Ax.
The remainder of the development proceeds as before, and we see that
b
V= [ @atc+ b f(kx.
a

We could also rotate the region around other horizontal or vertical lines, such as a vertical line in the right half plane. In
each case, the volume formula must be adjusted accordingly. Specifically, the x-term in the integral must be replaced with

an expression representing the radius of a shell. To see how this works, consider the following example.

Example 2.15

A Region of Revolution Revolved around a Line

Define R as the region bounded above by the graph of f(x) = x and below by the x-axis over the interval

[1, 2]. Find the volume of the solid of revolution formed by revolving R around the line x = —1.

Solution

First, graph the region R and the associated solid of revolution, as shown in the following figure.
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=<
U

51
x=-1| 4 fix) =x x=-1| 4 fix) = x
3 3
2 L V4 ——
.
1+ [
R H !
| | | | | | | | | : e B e S . T e
-5 —4 -3 -2 -] 1 2 3 4 B5X -5 -4 -3—2—3 AT 2 3 4 s5X
-1 /i]_
-2 -2
-3¢ -3
—44 -4
-51 -5
(@) (b)

Figure 2.32 (a) The region R between the graph of f(x) and the x-axis over the interval [1, 2]. (b) The

solid of revolution generated by revolving R around the line x = —1.

Note that the radius of a shell is given by x + 1. Then the volume of the solid is given by

2

vV = /1 Qa(x + 1) f(0))x

2 2
= /1 Qrx+ Dx)dx = 277/1 (x2 + x)dx
2

3 2
= 2n[%+x7]’1 = 2g—”units3.

&7 215 Define R as the region bounded above by the graph of f(x) = x* and below by the x-axis over the

interval [0, 1]. Find the volume of the solid of revolution formed by revolving R around the line x = —2.

For our final example in this section, let’s look at the volume of a solid of revolution for which the region of revolution is
bounded by the graphs of two functions.

Example 2.16

A Region of Revolution Bounded by the Graphs of Two Functions

Define R as the region bounded above by the graph of the function f(x) = vx and below by the graph of the
function g(x) = 1/x over the interval [1, 4]. Find the volume of the solid of revolution generated by revolving

R around the y-axis.
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Solution

First, graph the region R and the associated solid of revolution, as shown in the following figure.

Y y
5.1

(a) (b)
Figure 2.33 (a) The region R between the graph of f(x) and the graph of g(x) over the interval [1, 4]. (b)

The solid of revolution generated by revolving R around the y-axis.

Note that the axis of revolution is the y-axis, so the radius of a shell is given simply by x. We don’t need to
make any adjustments to the x-term of our integrand. The height of a shell, though, is given by f(x) — g(x), so

in this case we need to adjust the f(x) term of the integrand. Then the volume of the solid is given by

4

vV = f rx(f(x) — g(x))dx
_f (2ﬂx( —%))dx—zﬂf 312 1)dx

572
_ Zﬂ[z " x] 94;;

1="= unlts

S 7 2.16 Define R asthe region bounded above by the graph of f(x) = x and below by the graph of g(x) = x?

over the interval [0, 1]. Find the volume of the solid of revolution formed by revolving R around the y-axis.

Which Method Should We Use?

We have studied several methods for finding the volume of a solid of revolution, but how do we know which method to use?
It often comes down to a choice of which integral is easiest to evaluate. Figure 2.34 describes the different approaches
for solids of revolution around the x-axis. It’s up to you to develop the analogous table for solids of revolution around the

y-axis.
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Comparing the Methods for Finding the Volume of a Solid Revolution around the x-axis

Compare Disk Method Washer Method Shell Method
Volume formula b b _ d
V= [, alfo0]? dx v= [, #llop - (gPlax | v= [ 2aygw) dy
Solid No cavity in the center Cavity in the center With or without a cavity
in the center
Interval to partition [a, b] on x-axis [a, b] on x-axis [c, d] on y-axis
Rectangle Vertical Vertical Horizontal
y Yi yi
f(x)
Typical region d
g(x)

\g(y)
(5

2]
o
>
o
ok---
»¥
VY

\
4 Yy i
f(x)
f(x)
Typical element
190 é\g(y)
ab x a b x \ x

Figure 2.34

Let’s take a look at a couple of additional problems and decide on the best approach to take for solving them.

Example 2.17

Selecting the Best Method

For each of the following problems, select the best method to find the volume of a solid of revolution generated
by revolving the given region around the x-axis, and set up the integral to find the volume (do not evaluate the

integral).
a. The region bounded by the graphs of y =x, y =2 —x, andthe x-axis.

b. The region bounded by the graphs of y = 4x — x% and the x-axis.

Solution

a. First, sketch the region and the solid of revolution as shown.
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£ 4
Yy = X y=x
14 1
R
+ t | - 4
-1 1 -1 1 2 3X
=2—-X
1l y el y
—24 —24
@ (b)

Figure 2.35 (a) The region R bounded by two lines and the x-axis. (b) The solid of
revolution generated by revolving R about the x-axis.

Looking at the region, if we want to integrate with respect to x, we would have to break the integral
into two pieces, because we have different functions bounding the region over [0, 1] and [1, 2]. In this

case, using the disk method, we would have
1 2
V= fo () + /1 (72 = ).

If we used the shell method instead, we would use functions of y to represent the curves, producing

1

Vo= /0 a2 — y) - y)dy

1
= fo (27y[2 = 2y)dy.

Neither of these integrals is particularly onerous, but since the shell method requires only one integral,
and the integrand requires less simplification, we should probably go with the shell method in this case.

b. First, sketch the region and the solid of revolution as shown.
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Yi Yi
61 61
5+ 5+
41 y = 4x — X2 41 Yy =4x — X2
3+ 3+
21 21
R
1+ 1+
——t e —— b
1 2 3 5 6% 23 5 6%
@) (b)

Figure 2.36 (a) The region R between the curve and the x-axis. (b) The solid of
revolution generated by revolving R about the x-axis.

Looking at the region, it would be problematic to define a horizontal rectangle; the region is bounded on
the left and right by the same function. Therefore, we can dismiss the method of shells. The solid has no
cavity in the middle, so we can use the method of disks. Then

V= /047r(4x — x2)2 dx.

2.17 Select the best method to find the volume of a solid of revolution generated by revolving the given
region around the x-axis, and set up the integral to find the volume (do not evaluate the integral): the region

bounded by the graphs of y =2 — x% and y= x2.
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2.3 EXERCISES

For the following exercise, find the volume generated when
the region between the two curves is rotated around the
given axis. Use both the shell method and the washer
method. Use technology to graph the functions and draw a
typical slice by hand.

114. [T] Over the curve of y =3x, x =0,

rotated around the y-axis.

and y=3

115. [T] Under the curve of y=3x, x=0, andx =3

rotated around the y-axis.

116. [T] Over the curve of y=3x,x=0, andy=3

rotated around the x-axis.

117. [T] Under the curve of y =3x,x=0, andx =3

rotated around the x-axis.

118. [T] Under the curve of y = 2x3, x=0, andx=2

rotated around the y-axis.

119. [T] Under the curve of y = 2x3, x=0, andx=2

rotated around the x-axis.

For the following exercises, use shells to find the volumes
of the given solids. Note that the rotated regions lie between
the curve and the x-axis and are rotated around the

y-axis.

120. y=1-x% x=0, andx=1

121. y=5x3,x=0, andx = 1

122. y:%,le, and x = 100

123. y=V1-x%x=0, andx =1

124. y=;z’x=0’ andx =3
1+x

125. y= sinxz, x=0, andx =v&

126. y:%, x=0, andx =

1
1—x 2
127. y=vx, x=0, andx =1

128. y=(1 +x2)3, x=0, andx=1
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128. y= 5x3 — 2x4, x=0, andx=2
For the following exercises, use shells to find the volume
generated by rotating the regions between the given curve

and y = 0 around the x-axis.

130. 2

y=Vl-x%,x=0, andx=1
131y =x2 x=0, andx =2
132, y=¢€*, x=0, andx=1

133. y=In(x),x=1, andx=e

134 =1 2,y=1, andy=4
I+y
135. 2
x=1-;y,y=0, andy =2

136. x=cosy,y=0, andy=r
137. x=y3—4y2,x=—1, andx =2
138. x=ye¥,x=-1, andx =2
139. x=cosye’, x=0, andx=7x

For the following exercises, find the volume generated
when the region between the curves is rotated around the
given axis.

140. y=3—-x,y=0,x=0, andx =2 rotated around

the y-axis.

141,y = X3, y=0, andy=8 rotated around the

y-axis.
142. y= xz, y = x, rotated around the y-axis.

143. y=vx, x=0, andx =1 rotated around the line
x=2.

144. 1

y= T rotated around the

x=1, andx=2

k]

line x = 4.
145. y = vxand y = x? rotated around the y-axis.

146. y = yxandy = x? rotated around the line x = 2.



Chapter 2 | Applications of Integration

147, v =3 y=1

the x-axis.

,x=1, andy =2 rotated around

148. = y2 and y = x rotated around the line y = 2.

149. [T] Left of x = sin(xy),

y-axis.

right of y = x, around the

For the following exercises, use technology to graph the
region. Determine which method you think would be
easiest to use to calculate the volume generated when the
function is rotated around the specified axis. Then, use your
chosen method to find the volume.

150. 11 y = x* and y = 4x rotated around the y-axis.

151. [T] y=cos(nx), y =sin(zx), x = %, and x =

EN([9)]

rotated around the y-axis.

152. [T] y=x%-2x,x=2, andx = 4

the y-axis.

rotated around

153. [T] y= x2 - 2x, x =2, and x = 4 rotated around

the x-axis.

154. [T] y= 3x° — 2, y=x, andx =2 rotated around

the x-axis.

155. [T] y= 3x3 — 2, y=2x, andx =2 rotated around

the y-axis.

156. [T] x= sin(;ryz) and x = \/Ey rotated around the

Xx-axis.

157. [T] x= yz, X = y2 —2y+1, andx =2 rotated

around the y-axis.

For the following exercises, use the method of shells to
approximate the volumes of some common objects, which
are pictured in accompanying figures.

169

158. Use the method of shells to find the volume of a
sphere of radius r.

159. Use the method of shells to find the volume of a cone
with radius r and height 4.

160. Use the method of shells to find the volume of an
ellipse (xz/a ) 2/b

=1 rotated around the x-axis.

)

161. Use the method of shells to find the volume of a
cylinder with radius » and height .

r

PR ot
e

h .
\-...____________/

162. Use the method of shells to find the volume of the
donut created when the circle x2+y2 =4 is rotated

around the line x = 4.
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163. Consider the region enclosed by the graphs of
y=fx),y=1+f(x),x=0,y=0, and x=a> 0.

What is the volume of the solid generated when this region
is rotated around the y-axis? Assume that the function is

defined over the interval [0, a].

164. Consider the function y = f(x), which decreases
from f(0)=5 to f(1)=0. Set up the integrals for

determining the volume, using both the shell method and
the disk method, of the solid generated when this region,
with x=0 and y =0, is rotated around the y-axis.

Prove that both methods approximate the same volume.
Which method is easier to apply? (Hint: Since f(x) is one-

to-one, there exists an inverse f _l(y).)
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2.4 | Arc Length of a Curve and Surface Area

Learning Objectives

2.4.1 Determine the length of a curve, y = f(x), between two points.

2.4.2 Determine the length of a curve, x = g(y), between two points.

2.4.3 Find the surface area of a solid of revolution.

In this section, we use definite integrals to find the arc length of a curve. We can think of arc length as the distance you
would travel if you were walking along the path of the curve. Many real-world applications involve arc length. If a rocket
is launched along a parabolic path, we might want to know how far the rocket travels. Or, if a curve on a map represents a
road, we might want to know how far we have to drive to reach our destination.

We begin by calculating the arc length of curves defined as functions of x, then we examine the same process for curves
defined as functions of y. (The process is identical, with the roles of x and y reversed.) The techniques we use to find arc

length can be extended to find the surface area of a surface of revolution, and we close the section with an examination of
this concept.

Arc Length of the Curve y = f(x)

In previous applications of integration, we required the function f(x) to be integrable, or at most continuous. However,
for calculating arc length we have a more stringent requirement for f(x). Here, we require f(x) to be differentiable, and
furthermore we require its derivative, f’(x), to be continuous. Functions like this, which have continuous derivatives, are
called smooth. (This property comes up again in later chapters.)

Let f(x) be a smooth function defined over [a, b]. We want to calculate the length of the curve from the point (a, f(a))
to the point (b, f(b)). We start by using line segments to approximate the length of the curve. For i =0, 1, 2,..., n,
let P={x;} be a regular partition of [a, bl Then, for i=1, 2,..., n, construct a line segment from the point
(x; _ 1 f(x;_ 1)) tothe point (x; f(x;)). Although it might seem logical to use either horizontal or vertical line segments,

we want our line segments to approximate the curve as closely as possible. Figure 2.37 depicts this construct for n = 5.

Yi
f(xs)

I
I
I
1
1
1
4
t

Xg X1 Xo X3 Xq X5 = b X

Figure 2.37 We can approximate the length of a curve by
adding line segments.

To help us find the length of each line segment, we look at the change in vertical distance as well as the change in horizontal
distance over each interval. Because we have used a regular partition, the change in horizontal distance over each interval is
given by Ax. The change in vertical distance varies from interval to interval, though, so we use Ay; = f(x;) — f(x;_1)

to represent the change in vertical distance over the interval [x;_, x;], asshown in Figure 2.38. Note that some (or all)

Ay;

; may be negative.
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yi
f{X‘-)
Ay,
Y. 4
( 1)%_ e Ny
i i
X4 0 XJ X

Figure 2.38 A representative line segment approximates the
curve over the interval [x; _{, x;].

By the Pythagorean theorem, the length of the line segment is (Ax)2+(Ayl~)2. We can also write this as
Ax|1+((Ay)(Ax))>. Now, by the Mean Value Theorem, there is a point x* € [x;_;, x;] such that

f'(x¥ ) = (Ay,;)/(Ax). Then the length of the line segment is given by Ax|1 + [ Sfr(xf )]2. Adding up the lengths of all

the line segments, we get

n
Arc Length ~ Z |1 +[f’(x§< )]2 Ax.

i=1

This is a Riemann sum. Taking the limit as » — co, we have

n b
Arc Length = lim_ '21 L+ [f )P Ax = /a 1+ [f/(0)] dx.
i=

We summarize these findings in the following theorem.

Theorem 2.4: Arc Length for y = f(x)

Let f(x) be a smooth function over the interval [a, b]. Then the arc length of the portion of the graph of f(x) from
the point (a, f(a)) to the point (b, f(b)) is given by

b 2.7
Arc Length = f 1+ [f' () dx. e

Note that we are integrating an expression involving f’(x), so we need to be sure f’(x) is integrable. This is why we

require f(x) to be smooth. The following example shows how to apply the theorem.

Example 2.18

Calculating the Arc Length of a Function of x

Let f(x) = 2x%2. Calculate the arc length of the graph of f(x) over the interval [0, 1]. Round the answer to

three decimal places.
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Solution
We have f'(x) = 3x!2, so [f’(x)]2 = 9x. Then, the arc length is

b

Arc Length = / V1 + [/ (0] dx
a
1

= _/0 V1 + 9x dx.
Substitute # = 1+ 9x. Then, du = 9dx. When x =0, then u =1, and when x =1, then u = 10. Thus,
1
Arc Length = /0 V1 4+ 9xdx
1 1 1 10
= §/Ow/l + 9x0dx = 5/1 Vit du

1.2 32 10 2 .
32557 = Z{10V10 - 1]~ 2.268 units.

@ 218 et f(x) = (4/3)x3/ 2. Calculate the arc length of the graph of f(x) over the interval [0, 1]. Round the

answer to three decimal places.

Although it is nice to have a formula for calculating arc length, this particular theorem can generate expressions that are
difficult to integrate. We study some techniques for integration in Introduction to Techniques of Integration. In some
cases, we may have to use a computer or calculator to approximate the value of the integral.

Example 2.19

Using a Computer or Calculator to Determine the Arc Length of a Function of x
Let f(x) = x2. Calculate the arc length of the graph of f(x) over the interval [1, 3].

Solution

We have f'(x) = 2x, so [f/(x)]* = 4x>. Then the arc length is given by

b 3
Arc Length = f 1+ [/ dx = f V1 + 4x2 dx.
a 1
Using a computer to approximate the value of this integral, we get

3
f1 V1 + 4x2 dx ~ 8.26815.

‘/ 219 Let f(x)=sinx. Calculate the arc length of the graph of f(x) over the interval [0, z]. Use a

computer or calculator to approximate the value of the integral.
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Arc Length of the Curve x = g(y)

We have just seen how to approximate the length of a curve with line segments. If we want to find the arc length of the
graph of a function of y, we can repeat the same process, except we partition the y-axis instead of the x-axis. Figure

2.39 shows a representative line segment.

Yi

YiA

xY

Yioait

Figure 2.39 A representative line segment over the interval
lyi—1 yil-

Then the length of the line segment is |/(Ay)” + (Ax;)?, which can also be written as Ay |1+ (AxY(Ay)?. If we now

follow the same development we did earlier, we get a formula for arc length of a function x = g(y).

Theorem 2.5: Arc Length for x = g(y)

Let g(y) be a smooth function over an interval [c, d]. Then, the arc length of the graph of g(y) from the point
(c, g(c)) to the point (d, g(d)) is given by

d 2.8
Arc Length = [ {1+ (g’ dy. e

Example 2.20

Calculating the Arc Length of a Function of y

Let g(y) = 3y3. Calculate the arc length of the graph of g(y) over the interval [1, 2].

Solution

We have g’(y) = 9y2, so [¢'(y)]> = 81y*. Then the arc length is

d 2
Arc Length = fc V1 +[g' P dy = fl V1 + 81y*dy.

Using a computer to approximate the value of this integral, we obtain

2
/1 1+ 81y* dy ~ 21.0277.
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@/ 2.20 Let g(y) = 1/y. Calculate the arc length of the graph of g(y) over the interval [1, 4]. Use a computer

or calculator to approximate the value of the integral.

Area of a Surface of Revolution

The concepts we used to find the arc length of a curve can be extended to find the surface area of a surface of revolution.
Surface area is the total area of the outer layer of an object. For objects such as cubes or bricks, the surface area of the
object is the sum of the areas of all of its faces. For curved surfaces, the situation is a little more complex. Let f(x) be a

nonnegative smooth function over the interval [a, b]. We wish to find the surface area of the surface of revolution created
by revolving the graph of y = f(x) around the x-axis as shown in the following figure.

yi y
y = fix) y=1x)

x¥
>

(@) (b)

Figure 2.40 (a) A curve representing the function f(x). (b) The surface of revolution

formed by revolving the graph of f(x) around the x-axis.

As we have done many times before, we are going to partition the interval [a, b] and approximate the surface area by

calculating the surface area of simpler shapes. We start by using line segments to approximate the curve, as we did earlier
in this section. For i =0, 1, 2,..., n, let P = {x;} be aregular partition of [a, b]. Then, for i =1, 2,..., n, constructa

line segment from the point (x; _ ;, f(x;_)) to the point (x; f(x;)). Now, revolve these line segments around the x-axis

to generate an approximation of the surface of revolution as shown in the following figure.

yi y
y =1fx) K y = f(x)
x ] T

(@) (b)

Figure 2.41 (a) Approximating f(x) with line segments. (b) The surface of revolution

formed by revolving the line segments around the x-axis.
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Notice that when each line segment is revolved around the axis, it produces a band. These bands are actually pieces of cones
(think of an ice cream cone with the pointy end cut off). A piece of a cone like this is called a frustum of a cone.

To find the surface area of the band, we need to find the lateral surface area, S, of the frustum (the area of just the slanted
outside surface of the frustum, not including the areas of the top or bottom faces). Let r; and r, be the radii of the wide

end and the narrow end of the frustum, respectively, and let / be the slant height of the frustum as shown in the following
figure.

I
I
I
x

Figure 2.42 A frustum of a cone can approximate a small part
of surface area.

We know the lateral surface area of a cone is given by

Lateral Surface Area = zrs,

where r is the radius of the base of the cone and s is the slant height (see the following figure).

Figure 2.43 The lateral surface area of the cone is given by
zrs.

Since a frustum can be thought of as a piece of a cone, the lateral surface area of the frustum is given by the lateral surface
area of the whole cone less the lateral surface area of the smaller cone (the pointy tip) that was cut off (see the following
figure).
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\

I

-—."1—-

Figure 2.44 Calculating the lateral surface area of a frustum
of a cone.

The cross-sections of the small cone and the large cone are similar triangles, so we see that

 _s—1
rl_ S
Solving for s, we get
o _ os=1
rl - S
rps = ri(s=1
rys = rys—rql
ril = ris—rys
rll = (rl—rz)s
rl
# = .
1 2

Then the lateral surface area (SA) of the frustum is

S (Lateral SA of large cone) — (Lateral SA of small cone)

=qxrys—ary(s—1)
ryl ryl
mi=r) "\

=2 2Bty

|
N
—

ﬂr%l wryryl  wryl(ry —rp)
rl—rz_rl—rz ry—ry

nr%l wryryl  mryryl ﬂrzzl
Fi—Ty Ti—TIy " ri—ry T1—1;

2 2
alri =3l z(ry = ro)(ry + o)l
= (rl—”z) = 1 r12_r12 2 =7'[(Vl+7‘2)l.

Let’s now use this formula to calculate the surface area of each of the bands formed by revolving the line segments around
the x-axis. A representative band is shown in the following figure.
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yi
y =1fx)
fx, 1) \
f) | -- ===
x
Ax

Figure 2.45 A representative band used for determining
surface area.

Note that the slant height of this frustum is just the length of the line segment used to generate it. So, applying the surface
area formula, we have

S =71'(f"1+72)l

= ”(f(x,'_ D+ f(xl)) AxZ + (Ayl_)z
2
= a(f(x; )+ fxp))Ax|1 + (%) _

Now, as we did in the development of the arc length formula, we apply the Mean Value Theorem to select x¥* € [x; _{, x;]

such that f’(x¥* ) = (Ay,/Ax. This gives us

S = 2(f(x;_ 1) + FE)ART + (F/(e5 )

Furthermore, since f(x) is continuous, by the Intermediate Value Theorem, there is a point xi* = [x; _ 1, x;] such that

o) =R f;_ )+ f(x)], sowe get

S =21 f(x; AL+ (£ ()

Then the approximate surface area of the whole surface of revolution is given by
n
* % 2
Surface Area v Y. 27f(x; “)AX|T + (f'(x¥ ).
i=1
This almost looks like a Riemann sum, except we have functions evaluated at two different points, x¥ and xl.* ", over

the interval [x;_, x;]. Although we do not examine the details here, it turns out that because f(x) is smooth, if we let
n — oo, the limit works the same as a Riemann sum even with the two different evaluation points. This makes sense
intuitively. Both x’f and xl-* * are in the interval [x; _ 1, x;], so it makes sense that as n — oo, both x;-“ and xl-* *
approach x. Those of you who are interested in the details should consult an advanced calculus text.

Taking the limit as n — o0, we get

n Y b
Surface Area = lim 21 2af(x; DHAx|T + (f'(x¥ ) = /a (271' FEVT + (£/(x))* Jdx.
i=

As with arc length, we can conduct a similar development for functions of y to get a formula for the surface area of surfaces

of revolution about the y-axis. These findings are summarized in the following theorem.
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Theorem 2.6: Surface Area of a Surface of Revolution

Let f(x) be a nonnegative smooth function over the interval [a, b]. Then, the surface area of the surface of revolution

formed by revolving the graph of f(x) around the x-axis is given by

b
Surface Area = / (27r FENT + (f ’(x))2 idx.

Similarly, let g(y) be a nonnegative smooth function over the interval [c, d]. Then, the surface area of the surface of

(2.9)

revolution formed by revolving the graph of g(y) around the y-axis is given by

d

Surface Area = /C (2ﬂg(y)\/m)dy-

Example 2.21

Calculating the Surface Area of a Surface of Revolution 1

Let f(x) = vx over the interval [1, 4]. Find the surface area of the surface generated by revolving the graph of

f(x) around the x-axis. Round the answer to three decimal places.

Solution

The graph of f(x) and the surface of rotation are shown in the following figure.

Yi Yi
al al
3 f(x) X
21
14+
—————————— -
-2 -1 0 1 2 3 4 5 66X
—14
-2 -2
_3 _3.
—4 ~4
(@) (b)

Figure 2.46 (a) The graph of f(x). (b) The surface of revolution.

We have f(x) = vx. Then, f'(x) = 1/(2vx) and (f'(x)/> = 1/(4x). Then,
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b
Surface Area = f (27r FOVL+(f ’(x))2 )dx

(277:«7 1 +

- f1 (zﬂmx.

Let u = x+ 1/4. Then, du = dx. When x =1, u =15/4, and when x =4, u = 17/4. This gives us

17/4

(2nx/x+ hix = f 27t du

17/4
=22 23?5,y = Z{17V17 - 575] ~ 30.846.

221 Let f(x)=%1-x over the interval [0, 1/2]. Find the surface area of the surface generated by

revolving the graph of f(x) around the x-axis. Round the answer to three decimal places.

Example 2.22

Calculating the Surface Area of a Surface of Revolution 2

3
Let f(x) =y = V3x. Consider the portion of the curve where 0 <y < 2. Find the surface area of the surface
generated by revolving the graph of f(x) around the y-axis.

Solution

Notice that we are revolving the curve around the y-axis, and the interval is in terms of y, so we want to

rewrite the function as a function of y. We get x = g(y) = (1/3)y3 . The graph of g(y) and the surface of rotation

are shown in the following figure.
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B
-

2l

3t 9) = 353 3t av) = 3°

2 _— 2

1+ i
—2—/1'91123456" —é—/iX9123456"

2 2

-3 -3

-4 -4

(@) (b)

Figure 2.47 (a) The graph of g(y). (b) The surface of revolution.

We have g(y) = (1/3)y°, so g'(y) =y and (g'(y))> = y*. Then

d
Surface Area = /C (Zﬂg(y)\/l +(g' ) \dy
2
_ 1.3 4
- Sl Wi
2
=2z 3y 4)d
=3 /0 (y 1+ y™|dy.
Let u = y4+ 1. Then du = 4y3dy. When y=0, u=1, andwhen y=2, u=17. Then
17
2z 3y )d 2z [ 1
3 ( 1+y"dy _3f1 4Wdu

_ [2 3/2]| _[(17)3/2 ] 24.118.

181

@ 222 1 g =19 - y2 over the interval y € [0, 2]. Find the surface area of the surface generated by

revolving the graph of g(y) around the y-axis.
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2.4 EXERCISES

For the following exercises, find the length of the functions
over the given interval.

165. y=5xfromx=0tox =2
166. y= —%x+25fromx=1tox=4

167. x=4yfromy=—-1toy=1

168. Pick an arbitrary linear function x = g(y) over any
interval of your choice (y;, y,). Determine the length of
the function and then prove the length is correct by using
geometry.

169. Find the surface area of the volume generated when
the curve y = vx revolves around the x-axis from (1, 1)
to (4, 2),

as seen here.

170. Find the surface area of the volume generated when

2

the curve y = x“ revolves around the y-axis from (1, 1)

to (3, 9).

Chapter 2 | Applications of Integration

For the following exercises, find the lengths of the
functions of x over the given interval. If you cannot

evaluate the exactly, use technology to

approximate it.

integral

171y =x>? from (0, 0)to (1, 1)

172. y=x2/3 from (1, 1)to (8, 4)

3/2

173.
y=%(x2+2) from x=0tox =1

3/2

174.
y=l(x2—2) from x=2 to x=4

Y}

175. [Tl y=e* on x=0 to x =

176. 3

y=%+4lx from x=1tox =3
177. 1
y=24-+—> from x=1tox =2
4 gx2
178. 32 e
y:_2x3 —foromx=1t0x=4
179.

1 9 3/2
Yy =37 9x +6) from x =0tox =2

180. [T] y=sinx on x=0tox =7

For the following exercises, find the lengths of the
functions of y over the given interval. If you cannot

evaluate the exactly, use technology to

approximate it.

integral

181. y=¥ﬁom y=0toy=4

182. x=%(ey+e_y) from y=—-ltoy=1

183. x=5y3/2 from y=0to y=1
184. [T]x:y2 from y=0to y=1

185. x =4y from y=0toy =1

186. 312
x=%(y2+1) from y=1to y=3

3

187. [T] x=tany from y =0 to Y=g
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188. 1] x=cos2y from y= —=toy=

zZ .
2 2

189. [T] x=4" from y=0toy =2

190. 117 x = In(y) on y:%to y=e

For the following exercises, find the surface area of the

volume generated when the following curves revolve
around the x-axis. If you cannot evaluate the integral

exactly, use your calculator to approximate it.
191. y=vx from x=2to x=6
192. y:)c3 from x=0to x=1
193. y=7x from x=—-1tox=1

194. [T] y=l2frorn x=1tox=3
X

195. y= V4 — x? from x =0tox =2

196. y= V4 — x2 from x=—-1tox=1

197. y=5x from x=1tox =35

198. [T] y=tanx from x= —Ztox =

4

&N

For the following exercises, find the surface area of the
volume generated when the following curves revolve
around the y-axis. If you cannot evaluate the integral

exactly, use your calculator to approximate it.
199. =x? from x=0tox =2

200. y:%x2+% from x =0tox =1

201. y=x+1 from x=0tox =3

1

202. [T] y:%from x=§to x=1

203. y=%&from x=1tox=27

204. 1T] y =3x* from x=0to x=1

205. _ 1 _ _
[T] y—ﬁfrom x=1tox=3

206. [T] y = cos x from x =0 to x=%

183

207. The base of a lamp is constructed by revolving a
quarter circle y = V2x — x> around the y-axis from
x=1 to x=2, as seen here. Create an integral for the

surface area of this curve and compute it.

-2 y_\'zx_x?

2
1.0
Yy 05
0.0 :
B 0
1 2
4

208. A light bulb is a sphere with radius 1/2 in. with the

bottom sliced off to fit exactly onto a cylinder of radius
1/4 in. and length 1/3 in., as seen here. The sphere is cut

off at the bottom to fit exactly onto the cylinder, so the
radius of the cut is 1/4 in. Find the surface area (not

including the top or bottom of the cylinder).

an

5

T —
209. [T] A lampshade is constructed by rotating y = 1/x
around the x-axis from y=1 to y =2, as seen here.

Determine how much material you would need to construct
this lampshade—that is, the surface area—accurate to four
decimal places.

210. [T] An anchor drags behind a boat according to the
function y = 24e % —24,
depth beneath the boat and x is the horizontal distance of
the anchor from the back of the boat. If the anchor is 23 ft

below the boat, how much rope do you have to pull to reach
the anchor? Round your answer to three decimal places.

where y represents the
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211. [T] You are building a bridge that will span 10 ft.

You intend to add decorative rope in the shape of
y = 5|sin((x7)/5), where x is the distance in feet from

one end of the bridge. Find out how much rope you need to
buy, rounded to the nearest foot.

For the following exercises, find the exact arc length for the
following problems over the given interval.

212. y =In(sinx) from x = z/4 to x = (3x)/4. (Hint:

Recall trigonometric identities.)

213. Draw graphs of y = x> y =x6, and y =x'°

For y = x", as n increases, formulate a prediction on the
arc length from (0, 0) to (I, 1). Now, compute the

lengths of these three functions and determine whether your
prediction is correct.

214. Compare the lengths of the parabola x = y2 and the
line x = by from (0, 0) to (bz, b) as b increases. What

do you notice?

215. Solve for the length of x = y? from (0, 0) to (1, 1).
Show that x = (1/2)y2 from (0, 0) to (2, 2) is twice as
long. Graph both functions and explain why this is so.

216. [T] Which is longer between (1, 1) and (2, 1/2):
the hyperbola y = 1/x or the graph of x + 2y =3?

217. Explain why the surface area is infinite when
y = 1/x is rotated around the x-axis for 1 <x < oo,

but the volume is finite.
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2.5 | Physical Applications

Learning Objectives

2.5.1 Determine the mass of a one-dimensional object from its linear density function.

2.5.2 Determine the mass of a two-dimensional circular object from its radial density function.
2.5.3 Calculate the work done by a variable force acting along a line.

2.5.4 Calculate the work done in pumping a liquid from one height to another.

2.5.5 Find the hydrostatic force against a submerged vertical plate.

In this section, we examine some physical applications of integration. Let’s begin with a look at calculating mass from a
density function. We then turn our attention to work, and close the section with a study of hydrostatic force.

Mass and Density

We can use integration to develop a formula for calculating mass based on a density function. First we consider a thin rod
or wire. Orient the rod so it aligns with the x-axis, with the left end of the rod at x = a and the right end of the rod at
x = b (Figure 2.48). Note that although we depict the rod with some thickness in the figures, for mathematical purposes
we assume the rod is thin enough to be treated as a one-dimensional object.

Yi

Figure 2.48 We can calculate the mass of a thin rod oriented
along the x-axis by integrating its density function.

If the rod has constant density p, given in terms of mass per unit length, then the mass of the rod is just the product of the
density and the length of the rod: (b — a)p. If the density of the rod is not constant, however, the problem becomes a little
more challenging. When the density of the rod varies from point to point, we use a linear density function, p(x), to denote
the density of the rod at any point, x. Let p(x) be an integrable linear density function. Now, for i =0, 1, 2,..., n let

P = {x;} be aregular partition of the interval |a, b|, andfor i =1, 2,..., n choose an arbitrary point x} € [x;_1, x;].

Figure 2.49 shows a representative segment of the rod.
Yi

Figure 2.49 A representative segment of the rod.

The mass m; of the segment of the rod from x; _; to x; is approximated by
m; = p(xf )x; —x;_1) = p(x¥ )Ax.

Adding the masses of all the segments gives us an approximation for the mass of the entire rod:
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ﬂ(x* JAX.

n
Zml

This is a Riemann sum. Taking the limit as n — co, we get an expression for the exact mass of the rod:

I M:

1] b
3 1 * —
m lim ;1 px¥ )Ax /; p(x)dx.

n— 0o.

We state this result in the following theorem.

Theorem 2.7: Mass-Density Formula of a One-Dimensional Object

Given a thin rod oriented along the x-axis over the interval [a, b], let p(x) denote a linear density function giving
the density of the rod at a point x in the interval. Then the mass of the rod is given by

b 2.10
m= f p(x)dx. ( )

We apply this theorem in the next example.

Example 2.23

Calculating Mass from Linear Density

Consider a thin rod oriented on the x-axis over the interval [#/2, z]. If the density of the rod is given by

p(x) = sinx, what is the mass of the rod?

Solution
Applying Equation 2.10 directly, we have

T

b
m= fa p(xX)dx = /ﬂ/zsinxdx =—cosxl7,=1.

@ 2.23 Consider a thin rod oriented on the x-axis over the interval [1, 3]. If the density of the rod is given by

px) = 202+ 3, what is the mass of the rod?

We now extend this concept to find the mass of a two-dimensional disk of radius r. As with the rod we looked at in

the one-dimensional case, here we assume the disk is thin enough that, for mathematical purposes, we can treat it as a
two-dimensional object. We assume the density is given in terms of mass per unit area (called area density), and further
assume the density varies only along the disk’s radius (called radial density). We orient the disk in the xy-plane, with

the center at the origin. Then, the density of the disk can be treated as a function of x, denoted p(x). We assume
p(x) is integrable. Because density is a function of x, we partition the interval from [0, r] along the x-axis. For
i=0,1,2,..,n, let P={x;} bearegular partition of the interval [0, 7], andfor i =1, 2,..., n, choose an arbitrary

point x¥ € [x;_ 1, x;]. Now, use the partition to break up the disk into thin (two-dimensional) washers. A disk and a

representative washer are depicted in the following figure.
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Ax

(@) (b)
Figure 2.50 (a) A thin disk in the xy-plane. (b) A representative washer.

We now approximate the density and area of the washer to calculate an approximate mass, m;. Note that the area of the

washer is given by
Ai = ﬂ(.xi)z - ﬂ(.xi_ 1)2

— 2 2
= ”[xi —Xi- 1]
= ﬁ(xi +.Xl'_ 1)(xt —X;_ 1)

=nm(x; +x;_)Ax.

You may recall that we had an expression similar to this when we were computing volumes by shells. As we did there, we
use x¥ = (x;+ x;_1)/2 to approximate the average radius of the washer. We obtain

A;=r(x;+x;_ DAx = 27xF Ax.
Using p(x¥ ) to approximate the density of the washer, we approximate the mass of the washer by
m; = 2zx¥ p(x¥ )Ax.

Adding up the masses of the washers, we see the mass m of the entire disk is approximated by
n n
m= z m; & Z 2xt p(x¥ )Ax.
i=1 i=1

We again recognize this as a Riemann sum, and take the limit as n — oo. This gives us

i=1

T2 r
m= nli_)mco Z 2rx¥ p(xf )Ax = '/O 2rxp(x)dx.

We summarize these findings in the following theorem.

Theorem 2.8: Mass—-Density Formula of a Circular Object

Let p(x) be an integrable function representing the radial density of a disk of radius r. Then the mass of the disk is
given by

m= /;)an:xp(x)dx_ (2.11)
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Example 2.24

Calculating Mass from Radial Density
Let p(x) = vx represent the radial density of a disk. Calculate the mass of a disk of radius 4.

Solution
Applying the formula, we find

,
m = ‘/0 2rxp(x)dx

4 4
= f 2rnxvxdx = 2r / x32dx
0 0

4
_~. 252 _4n _ 128z
= 222577 = 42(32) = 1282,

@/ 2.24 Let p(x) = 3x + 2 represent the radial density of a disk. Calculate the mass of a disk of radius 2.

Work Done by a Force

We now consider work. In physics, work is related to force, which is often intuitively defined as a push or pull on an object.
When a force moves an object, we say the force does work on the object. In other words, work can be thought of as the
amount of energy it takes to move an object. According to physics, when we have a constant force, work can be expressed
as the product of force and distance.

In the English system, the unit of force is the pound and the unit of distance is the foot, so work is given in foot-pounds. In
the metric system, kilograms and meters are used. One newton is the force needed to accelerate 1 kilogram of mass at the

rate of 1 m/sec®. Thus, the most common unit of work is the newton-meter. This same unit is also called the joule. Both

are defined as kilograms times meters squared over seconds squared (kg . m2/s2).

When we have a constant force, things are pretty easy. It is rare, however, for a force to be constant. The work done to
compress (or elongate) a spring, for example, varies depending on how far the spring has already been compressed (or
stretched). We look at springs in more detail later in this section.

Suppose we have a variable force F(x) that moves an object in a positive direction along the x-axis from point a to point
b. To calculate the work done, we partition the interval [a, ] and estimate the work done over each subinterval. So, for
i=0,1,2,..,n, let P={x;} bearegular partition of the interval [a, b], andfor i =1, 2,..., n, choose an arbitrary

point x¥ € [x;_, x;]. To calculate the work done to move an object from point x; _; to point x;, we assume the

force is roughly constant over the interval, and use F(x} ) to approximate the force. The work done over the interval

[x; _ 1, x;], then,is given by
Wir F(xf )(x;—x;_ 1) = F(x} )Ax.

Therefore, the work done over the interval [a, b] is approximately

W = Zn: W, = Zn: F(x} )Ax.
i=1 i=1

Taking the limit of this expression as n — co gives us the exact value for work:
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n b
W= lim_ -21 F(x¥ )Ax = fa F(x)dx.
1=
Thus, we can define work as follows.

Definition

If a variable force F(x) moves an object in a positive direction along the x-axis from point a to point b, then the work
done on the object is

b 2.12
w= [ Fdx. (212)

Note that if F is constant, the integral evaluates to F- (b —a) = F -d, which is the formula we stated at the beginning of
this section.

Now let’s look at the specific example of the work done to compress or elongate a spring. Consider a block attached to a
horizontal spring. The block moves back and forth as the spring stretches and compresses. Although in the real world we
would have to account for the force of friction between the block and the surface on which it is resting, we ignore friction
here and assume the block is resting on a frictionless surface. When the spring is at its natural length (at rest), the system is
said to be at equilibrium. In this state, the spring is neither elongated nor compressed, and in this equilibrium position the
block does not move until some force is introduced. We orient the system such that x = 0 corresponds to the equilibrium

position (see the following figure).

x=0
Equilibrium _
X
’—— x=<0
W Compressed
L x
x=0
Elongated
/\/\/\- (Stretched)
| x

Figure 2.51 A block attached to a horizontal spring at
equilibrium, compressed, and elongated.

According to Hooke’s law, the force required to compress or stretch a spring from an equilibrium position is given by
F(x) = kx, for some constant k. The value of k& depends on the physical characteristics of the spring. The constant k

is called the spring constant and is always positive. We can use this information to calculate the work done to compress or
elongate a spring, as shown in the following example.
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The Work Required to Stretch or Compress a Spring

Suppose it takes a force of 10 N (in the negative direction) to compress a spring 0.2 m from the equilibrium
position. How much work is done to stretch the spring 0.5 m from the equilibrium position?

Solution
First find the spring constant, k. When x = —0.2, we know F(x) = —10, so

F(x) = kx
—10 = k(-0.2)
k = 50

and F(x) = 50x. Then, to calculate work, we integrate the force function, obtaining

b 0.5 0.5
W= /a F(x)dx = [0 S0x dx = 25x%,” = 6.25.

The work done to stretch the spring is 6.25 J.

2.25 Suppose it takes a force of 8 1b to stretch a spring 6 in. from the equilibrium position. How much work
is done to stretch the spring 1 ft from the equilibrium position?

Work Done in Pumping

Consider the work done to pump water (or some other liquid) out of a tank. Pumping problems are a little more complicated
than spring problems because many of the calculations depend on the shape and size of the tank. In addition, instead of
being concerned about the work done to move a single mass, we are looking at the work done to move a volume of water,
and it takes more work to move the water from the bottom of the tank than it does to move the water from the top of the
tank.

We examine the process in the context of a cylindrical tank, then look at a couple of examples using tanks of different
shapes. Assume a cylindrical tank of radius 4 m and height 10 m is filled to a depth of 8 m. How much work does it take

to pump all the water over the top edge of the tank?

The first thing we need to do is define a frame of reference. We let x represent the vertical distance below the top of the
tank. That is, we orient the x-axis vertically, with the origin at the top of the tank and the downward direction being positive
(see the following figure).
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X

Figure 2.52 How much work is needed to empty a tank
partially filled with water?

Using this coordinate system, the water extends from x =2 to x = 10. Therefore, we partition the interval [2, 10] and
look at the work required to lift each individual “layer” of water. So, for i =0, 1, 2,..., n, let P = {x;} be a regular

partition of the interval [2, 10], and for i =1, 2,..., n, choose an arbitrary point x¥ € [x;_, x;]. Figure 2.53

shows a representative layer.

Figure 2.53 A representative layer of water.

In pumping problems, the force required to lift the water to the top of the tank is the force required to overcome gravity, so
it is equal to the weight of the water. Given that the weight-density of water is 9800 N/m?, or 62.4 1b/ft3, calculating the

volume of each layer gives us the weight. In this case, we have
V = z(4)? Ax = 167Ax.
Then, the force needed to lift each layer is

F =9800-167Ax = 156,800z Ax.

Note that this step becomes a little more difficult if we have a noncylindrical tank. We look at a noncylindrical tank in the
next example.

We also need to know the distance the water must be lifted. Based on our choice of coordinate systems, we can use x¥ as

an approximation of the distance the layer must be lifted. Then the work to lift the ith layer of water W, is approximately
W; ~ 156,800zxF Ax.

Adding the work for each layer, we see the approximate work to empty the tank is given by
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n n
W= Wi~ Y 156,800zxcF Ax.
i=1 i=1

This is a Riemann sum, so taking the limit as n — oo, we get

n
lim .Zl 156,800x} Ax
=

w

10
156,800 f2 xdx

10
2
= 156,8007r[x7i| ’2 = 7,526,400z = 23,644,883.

The work required to empty the tank is approximately 23,650,000 J.

For pumping problems, the calculations vary depending on the shape of the tank or container. The following problem-
solving strategy lays out a step-by-step process for solving pumping problems.

Problem-Solving Strategy: Solving Pumping Problems

Sketch a picture of the tank and select an appropriate frame of reference.
Calculate the volume of a representative layer of water.

Multiply the volume by the weight-density of water to get the force.
Calculate the distance the layer of water must be lifted.

Multiply the force and distance to get an estimate of the work needed to lift the layer of water.

SO

Sum the work required to lift all the layers. This expression is an estimate of the work required to pump out
the desired amount of water, and it is in the form of a Riemann sum.

7. Take the limit as #» — oo and evaluate the resulting integral to get the exact work required to pump out the
desired amount of water.

We now apply this problem-solving strategy in an example with a noncylindrical tank.

Example 2.26

A Pumping Problem with a Noncylindrical Tank

Assume a tank in the shape of an inverted cone, with height 12 ft and base radius 4 ft. The tank is full to start
with, and water is pumped over the upper edge of the tank until the height of the water remaining in the tank is 4
ft. How much work is required to pump out that amount of water?

Solution

The tank is depicted in Figure 2.54. As we did in the example with the cylindrical tank, we orient the x-axis
vertically, with the origin at the top of the tank and the downward direction being positive (step 1).
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Figure 2.54 A water tank in the shape of an inverted cone.

The tank starts out full and ends with 4 ft of water left, so, based on our chosen frame of reference, we need
to partition the interval [0, 8]. Then, for i =0, 1, 2,..., n, let P = {x;} be aregular partition of the interval

[0, 8], andfor i=1, 2,..., n, choose an arbitrary point x§ € [x;_, x;]. We can approximate the volume

of a layer by using a disk, then use similar triangles to find the radius of the disk (see the following figure).

4 x=0

X [

12 — x*

(@) (b)

Figure 2.55 Using similar triangles to express the radius of a disk of water.
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From properties of similar triangles, we have

o _ 4 _1
12 — x¥ 12 3
3r; = 12—-x%
12 — x¥
rp = —x—
Xt
= 4=
Then the volume of the disk is
x* 2
Vi= 71'(4 — #) Ax (step 2).

The weight-density of water is 62.4 1b/ft3, so the force needed to lift each layer is approximately
2
*

F;~ 62.4;1(4 - %) Ax (step 3).

Based on the diagram, the distance the water must be lifted is approximately x¥ feet (step 4), so the approximate

work needed to lift the layer is

2
%
i

W; = 62.4nx} (4 3 ) Ax (step 5).

Summing the work required to lift all the layers, we get an approximate value of the total work:
2

n n *
W= Wix ) 624nxk (4—%) Ax (step 6).
i=1 i=1

Taking the limit as # — oo, we obtain

n % 2
W = 1me;1 6247t (4 XIT) Ax
8 2
_ _X
- fo 62 4ﬂx(4 3) dx
8 8 2 8 3
= _0X 4 X — _oX X
—624ﬂf0x(16 3+9)d = 624z (16x : +9)a'x
8
2 8)(3 x4
= 62.47|8x2 — 85 4 L || = 10,649.67 ~ 33,456.7.

It takes approximately 33,450 ft-1b of work to empty the tank to the desired level.

2.26 A tank is in the shape of an inverted cone, with height 10 ft and base radius 6 ft. The tank is filled to a

depth of 8 ft to start with, and water is pumped over the upper edge of the tank until 3 ft of water remain in the
tank. How much work is required to pump out that amount of water?
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Hydrostatic Force and Pressure

In this last section, we look at the force and pressure exerted on an object submerged in a liquid. In the English system, force
is measured in pounds. In the metric system, it is measured in newtons. Pressure is force per unit area, so in the English
system we have pounds per square foot (or, perhaps more commonly, pounds per square inch, denoted psi). In the metric
system we have newtons per square meter, also called pascals.

Let’s begin with the simple case of a plate of area A submerged horizontally in water at a depth s (Figure 2.56). Then, the
force exerted on the plate is simply the weight of the water above it, which is given by F' = pAs, where p is the weight

density of water (weight per unit volume). To find the hydrostatic pressure—that is, the pressure exerted by water on a
submerged object—we divide the force by the area. So the pressure is p = F/A = ps.

%

Figure 2.56 A plate submerged horizontally in water.

By Pascal’s principle, the pressure at a given depth is the same in all directions, so it does not matter if the plate is submerged
horizontally or vertically. So, as long as we know the depth, we know the pressure. We can apply Pascal’s principle to find
the force exerted on surfaces, such as dams, that are oriented vertically. We cannot apply the formula F' = pAs directly,

because the depth varies from point to point on a vertically oriented surface. So, as we have done many times before, we
form a partition, a Riemann sum, and, ultimately, a definite integral to calculate the force.

Suppose a thin plate is submerged in water. We choose our frame of reference such that the x-axis is oriented vertically, with
the downward direction being positive, and point x = O corresponding to a logical reference point. Let s(x) denote the

depth at point x. Note we often let x = 0 correspond to the surface of the water. In this case, depth at any point is simply
given by s(x) = x. However, in some cases we may want to select a different reference point for x = 0, so we proceed

with the development in the more general case. Last, let w(x) denote the width of the plate at the point x.
Assume the top edge of the plate is at point x =a and the bottom edge of the plate is at point x = b. Then, for
i=0,1,2,..,n, let P={x;} bearegular partition of the interval [a, b], andfor i =1, 2,..., n, choose an arbitrary

point x¥ € [x; _, x;]. The partition divides the plate into several thin, rectangular strips (see the following figure).
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P emm—— s(x*)

sl
Iy
T
|‘__

I x
Figure 2.57 A thin plate submerged vertically in water.

Let’s now estimate the force on a representative strip. If the strip is thin enough, we can treat it as if it is at a constant depth,
s(x¥ ). We then have
F;=pAs = p[w(x?‘ )Ax]s(x;.k ).

Adding the forces, we get an estimate for the force on the plate:

n

Fr ) Fi= D plwoe )Axfs(er ).
i=1 i=1

This is a Riemann sum, so taking the limit gives us the exact force. We obtain

z b 2.13
F= lim > plw(ei At ) = [ pw)stod. .
i=1 ¢

Evaluating this integral gives us the force on the plate. We summarize this in the following problem-solving strategy.

Problem-Solving Strategy: Finding Hydrostatic Force

1. Sketch a picture and select an appropriate frame of reference. (Note that if we select a frame of reference other
than the one used earlier, we may have to adjust Equation 2.13 accordingly.)

2. Determine the depth and width functions, s(x) and w(x).

3. Determine the weight-density of whatever liquid with which you are working. The weight-density of water is
62.4 1b/ft, or 9800 N/m®.

4. Use the equation to calculate the total force.

Example 2.27

Finding Hydrostatic Force

A water trough 15 ft long has ends shaped like inverted isosceles triangles, with base 8 ft and height 3 ft. Find the
force on one end of the trough if the trough is full of water.

Solution
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Figure 2.58 shows the trough and a more detailed view of one end.

X

(b)
Figure 2.58 (a) A water trough with a triangular cross-section. (b)
Dimensions of one end of the water trough.

Select a frame of reference with the x-axis oriented vertically and the downward direction being positive. Select
the top of the trough as the point corresponding to x = 0 (step 1). The depth function, then, is s(x) = x. Using
similar triangles, we see that w(x) = 8 — (8/3)x (step 2). Now, the weight density of water is 62.4 1b/ft> (step
3), so applying Equation 2.13, we obtain

F = fa bpw(x)s(x)dx
= '/0362.4(8 - %x)x dx = 62.4/;)3(8x - %xz)dx
3
- 62.4[4x2 - %ﬁ] ’0 = 748.8.

The water exerts a force of 748.8 1b on the end of the trough (step 4).

2.27 A water trough 12 m long has ends shaped like inverted isosceles triangles, with base 6 m and height 4
m. Find the force on one end of the trough if the trough is full of water.
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Example 2.28

Chapter Opener: Finding Hydrostatic Force

We now return our attention to the Hoover Dam, mentioned at the beginning of this chapter. The actual dam is
arched, rather than flat, but we are going to make some simplifying assumptions to help us with the calculations.
Assume the face of the Hoover Dam is shaped like an isosceles trapezoid with lower base 750 ft, upper base

1250 ft, and height 750 ft (see the following figure).

1250 ft

\/m

750 ft R

When the reservoir is full, Lake Mead’s maximum depth is about 530 ft, and the surface of the lake is about 10 ft
below the top of the dam (see the following figure).

T

530 ft

Figure 2.59 A simplified model of the Hoover Dam with
assumed dimensions.

101t

Find the force on the face of the dam when the reservoir is full.

b. The southwest United States has been experiencing a drought, and the surface of Lake Mead is about 125
ft below where it would be if the reservoir were full. What is the force on the face of the dam under these
circumstances?

Solution

a. We begin by establishing a frame of reference. As usual, we choose to orient the x-axis vertically, with
the downward direction being positive. This time, however, we are going to let x = O represent the top
of the dam, rather than the surface of the water. When the reservoir is full, the surface of the water is 10
ft below the top of the dam, so s(x) = x — 10 (see the following figure).
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101‘1l x=0

s(x) =x—10

'
\ / >

Figure 2.60 We first choose a frame of reference.

To find the width function, we again turn to similar triangles as shown in the figure below.

I‘250ft__ —_— _‘250ﬂ_1|
I
- w(X) -
- 750 ft - 750 ft
r
x
750 ft
(@)
250 ft |
T Y
X
r 750 ft
750 — x
l ¥
(b)

Figure 2.61 We use similar triangles to determine a function
for the width of the dam. (a) Assumed dimensions of the dam;
(b) highlighting the similar triangles.

From the figure, we see that w(x) =750+ 2r. Using properties of similar triangles, we get
r =250 — (1/3)x. Thus,

w(x) = 1250 — %x (step 2).

Using a weight-density of 62.4 Ib/ft3 (step 3) and applying Equation 2.13, we get
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b
F = f pw(x)s(x)dx

540 540
- fl ) 62.4(1250 - %x)(x —10)dx = 62.4 f1 . —%[xz — 1885x + 18750 dx

540

3 2
= —62.4(2)[)‘— _ 1885x% 18750x] 10~ 8,832,245,0001b = 4,416,122.5 1.

313 2
Note the change from pounds to tons (2000 1b = 1 ton) (step 4). This changes our depth function, s(x), and our

limits of integration. We have s(x) = x — 135. The lower limit of integration is 135. The upper limit remains

540. Evaluating the integral, we get

b
F = / pw(x)s(x)dx

- /1 5;062.4(1250 - %x)(x —135)dx

540 540
= —62.4(%) /1 (= 1875)(x — 135)dx = —62.4(%) /1 B (x? = 2010x +253125)dx
540

135 ~ 5.015,230,000 1b = 2,507,615.

_ 2\ 23 2
= 62.4(3)[3 1005x +253125x]

2.28 When the reservoir is at its average level, the surface of the water is about 50 ft below where it would be
if the reservoir were full. What is the force on the face of the dam under these circumstances?

. To learn more about Hoover Dam, see this article (http://www.openstaxcollege.org/l/20_HooverDam)
published by the History Channel.
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2.5 EXERCISES

For the following exercises, find the work done.

218. Find the work done when a constant force F = 12 lb
moves a chair from x =0.9 to x=1.1 ft.

219. How much work is done when a person lifts a 50 1b
box of comics onto a truck that is 3 ft off the ground?

220. What is the work done lifting a 20 kg child from the
floor to a height of 2 m? (Note that 1 kg equates to 9.8
N)

221. Find the work done when you push a box along the
floor 2 m, when you apply a constant force of

F =100 N.

222. Compute the work done for a force F = 12/x*> N
from x=1to x=2 m.

223. What is the work done moving a particle from x = 0

to x = 1 m if the force acting on itis F' = 3x2 N?

For the following exercises, find the mass of the one-
dimensional object.

224. A wire that is 2 ft long (starting at x = 0) and has a

density function of p(x) = x% + 2x Ib/ft

225. A car antenna that is 3 ft long (starting at x = 0)
and has a density function of p(x) = 3x+ 2 Ib/ft

226. A metal rod that is 8 in. long (starting at x = 0) and

has a density function of p(x) = e!">* 1b/in.

227. A pencil thatis 4 in. long (starting at x = 2) and has

a density function of p(x) = 5/x oz/in.

228. Arulerthatis 12 in. long (starting at x = 5) and has

a density function of p(x) = In(x) + (l/2)x2 oz/in.

For the following exercises, find the mass of the two-
dimensional object that is centered at the origin.

229. An oversized hockey puck of radius 2 in. with

density function p(x) = x> —2x+5

230. A frisbee of radius 6 in. with density function

px)=e"

201

231. A plate of radius
p(x) = 1 + cos(nx)

10 in. with density function

232. A jar lid of radius 3 in. with density function
px)=In(x+ 1)

233. A disk of radius
p(x) =V3x

5 cm with density function

234, A 12 -in. spring is stretched to 15 in. by a force of
75 1b. What is the spring constant?

235. A spring has a natural length of 10 cm. It takes 2 J
to stretch the spring to 15 c¢m. How much work would it
take to stretch the spring from 15 cmto 20 cm?

236. A 1-m spring requires 10 J to stretch the spring to
1.1 m. How much work would it take to stretch the spring
from 1 mto 1.2 m?

237. A spring requires 5 J to stretch the spring from 8 cm
to 12 cm, and an additional 4 J to stretch the spring from
12 cmto 14 cm. What is the natural length of the spring?

238. A shock absorber is compressed 1 in. by a weight of 1
t. What is the spring constant?

239. A force of F =20x—x> N stretches a nonlinear
spring by x meters. What work is required to stretch the
spring from x =0 to x =2 m?

240. Find the work done by winding up a hanging cable of
length 100 ft and weight-density 5 Ib/ft.

241. For the cable in the preceding exercise, how much
work is done to lift the cable 50 ft?

242. For the cable in the preceding exercise, how much
additional work is done by hanging a 200 1b weight at the

end of the cable?

243. [T] A pyramid of height 500 ft has a square base
800 ftby 800 ft. Find the area A at height A. If the rock
used to build the pyramid weighs approximately
w =100 lb/ft3, how much work did it take to lift all the

rock?

244. [T] For the pyramid in the preceding exercise, assume
there were 1000 workers each working 10 hours a day, 5

days a week, 50 weeks a year. If the workers, on average,
lifted 10 100 Ib rocks 2 ft/hr, how long did it take to build
the pyramid?
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245. [T] The force of gravity on a mass m is

F= —((GMm)/xz) newtons. For a rocket of mass

m = 1000kg, compute the work to lift the rocket from
x = 6400 to x = 6500 km. (Note:
G=6x10""7 Nm?/kg? and M = 6 x 10** kg.)

246. [T] For the rocket in the preceding exercise, find the
work to lift the rocket from x = 6400 to x = 0.

247. [T] A rectangular dam is 40 ft high and 60 ft wide.
Compute the total force ' on the dam when

a. the surface of the water is at the top of the dam and

b. the surface of the water is halfway down the dam.

248. [T] Find the work required to pump all the water out
of a cylinder that has a circular base of radius 5 ft and

height 200 ft. Use the fact that the density of water is 62
b/,

249. [T] Find the work required to pump all the water out
of the cylinder in the preceding exercise if the cylinder is
only half full.

250. [T] How much work is required to pump out a
swimming pool if the area of the base is 800 ft?, the water

is 4 ft deep, and the top is 1 ft above the water level?
Assume that the density of water is 62 Ib/ft>,

251. A cylinder of depth H and cross-sectional area A
stands full of water at density p. Compute the work to

pump all the water to the top.
252. For the cylinder in the preceding exercise, compute

the work to pump all the water to the top if the cylinder is
only half full.

253. A cone-shaped tank has a cross-sectional area that
increases with its depth: A = (77,'7'2 hz)/H 3. Show that the

work to empty it is half the work for a cylinder with the
same height and base.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2

Chapter 2 | Applications of Integration



Chapter 2 | Applications of Integration 203

2.6 | Moments and Centers of Mass

Learning Objectives

2.6.1 Find the center of mass of objects distributed along a line.
2.6.2 Locate the center of mass of a thin plate.

2.6.3 Use symmetry to help locate the centroid of a thin plate.
2.6.4 Apply the theorem of Pappus for volume.

In this section, we consider centers of mass (also called centroids, under certain conditions) and moments. The basic idea
of the center of mass is the notion of a balancing point. Many of us have seen performers who spin plates on the ends of
sticks. The performers try to keep several of them spinning without allowing any of them to drop. If we look at a single plate
(without spinning it), there is a sweet spot on the plate where it balances perfectly on the stick. If we put the stick anywhere
other than that sweet spot, the plate does not balance and it falls to the ground. (That is why performers spin the plates; the
spin helps keep the plates from falling even if the stick is not exactly in the right place.) Mathematically, that sweet spot is
called the center of mass of the plate.

In this section, we first examine these concepts in a one-dimensional context, then expand our development to consider
centers of mass of two-dimensional regions and symmetry. Last, we use centroids to find the volume of certain solids by
applying the theorem of Pappus.

Center of Mass and Moments

Let’s begin by looking at the center of mass in a one-dimensional context. Consider a long, thin wire or rod of negligible
mass resting on a fulcrum, as shown in Figure 2.62(a). Now suppose we place objects having masses m; and m, at

distances d and d, from the fulcrum, respectively, as shown in Figure 2.62(b).

A

@)

-~ ——— d,

my m;

(b)
Figure 2.62 (a) A thin rod rests on a fulcrum. (b) Masses are
placed on the rod.

The most common real-life example of a system like this is a playground seesaw, or teeter-totter, with children of different
weights sitting at different distances from the center. On a seesaw, if one child sits at each end, the heavier child sinks
down and the lighter child is lifted into the air. If the heavier child slides in toward the center, though, the seesaw balances.
Applying this concept to the masses on the rod, we note that the masses balance each other if and only if m;d; = m,d,.

In the seesaw example, we balanced the system by moving the masses (children) with respect to the fulcrum. However,
we are really interested in systems in which the masses are not allowed to move, and instead we balance the system by
moving the fulcrum. Suppose we have two point masses, m; and m,, located on a number line at points x; and x,,

respectively (Figure 2.63). The center of mass, x, is the point where the fulcrum should be placed to make the system

balance.
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my ms;
- . | * - X
Figure 2.63 The center of mass x is the balance point of

the system.

Thus, we have

mylx;— x| mylx, — X |

mi(X = x;) = my(x,— ¥)

m; X —myx; MyXy — Ny X

E(m1+m2) m1x1+m2x2

myxXy+myXxy

X = ny +m,

The expression in the numerator, m; x| + m, Xx,, is called the first moment of the system with respect to the origin. If the

context is clear, we often drop the word first and just refer to this expression as the moment of the system. The expression
in the denominator, m | + m,, is the total mass of the system. Thus, the center of mass of the system is the point at which

the total mass of the system could be concentrated without changing the moment.
This idea is not limited just to two point masses. In general, if n masses, m, m,,..., my, are placed on a number line at

points x{, X,,..., X, respectively, then the center of mass of the system is given by

Theorem 2.9: Center of Mass of Objects on a Line

Let my, m,,..., m, be point masses placed on a number line at points xi, X5,..., X,, respectively, and let

n
m= Z m; denote the total mass of the system. Then, the moment of the system with respect to the origin is given
i=1

by
L (2.14)

and the center of mass of the system is given by

- _M 2.15
X =m ( )

We apply this theorem in the following example.

Example 2.29

Finding the Center of Mass of Objects along a Line

Suppose four point masses are placed on a number line as follows:

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



Chapter 2 | Applications of Integration 205

my =30kg,placedatx; = -2m  m, = 5kg, placed atx, =3 m
ms = 10kg, placed at x3 = 6 m my = 15kg, placed at x, = =3 m.

Find the moment of the system with respect to the origin and find the center of mass of the system.

Solution

First, we need to calculate the moment of the system:

4
M = Zml-xi

i=1

=—-60+15+60—45 = -30.
Now, to find the center of mass, we need the total mass of the system:

4
m =Zml~

i=1
=30+5+10+ 15 =60kg.
Then we have
M _ =30 _

x =44 = = —

1
m- 60 2

The center of mass is located 1/2 m to the left of the origin.

@/ 2.29 Suppose four point masses are placed on a number line as follows:
my = 12kg,placedatx; =—-4m  m, = 12kg, placed atx, =4 m
mg = 30kg, placed at x3 =2m my = 6kg, placed at x, = —6m.

Find the moment of the system with respect to the origin and find the center of mass of the system.

We can generalize this concept to find the center of mass of a system of point masses in a plane. Let m be a point
mass located at point (xy, y;) in the plane. Then the moment M, of the mass with respect to the x-axis is given by
My =my,. Similarly, the moment M, with respect to the y-axis is given by My =mx;. Notice that the x-coordinate

of the point is used to calculate the moment with respect to the y-axis, and vice versa. The reason is that the x-coordinate
gives the distance from the point mass to the y-axis, and the y-coordinate gives the distance to the x-axis (see the following
figure).

Yi

Yifrmmmmmmes *m

X X

Figure 2.64 Point mass m is located at point (x, y{) in

the plane.
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If we have several point masses in the xy-plane, we can use the moments with respect to the x- and y-axes to calculate the
x- and y-coordinates of the center of mass of the system.

Theorem 2.10: Center of Mass of Objects in a Plane

Let my, ms,..., m, be point masses located in the xy-plane at points (x, y), (X3, ¥2),..., (Xn, yn), Tespectively,

n
and let m = Z m; denote the total mass of the system. Then the moments M, and M, of the system with respect
i=1

to the x- and y-axes, respectively, are given by

" 1 (2.16)
Mx= Z mlyl and My= Z mixi.
Also, the coordinates of the center of mass (x, y ) of the system are
_ M _ 2.17
x = Wy and y = % (2.17)

The next example demonstrates how to apply this theorem.

Example 2.30

Finding the Center of Mass of Objects in a Plane

Suppose three point masses are placed in the xy-plane as follows (assume coordinates are given in meters):
my = 2Kg, placed at (-1, 3),
my = 6kg, placed at (1, 1),
my = 4 kg, placed at (2, —2).

Find the center of mass of the system.

Solution

First we calculate the total mass of the system:

3
m= Y, m=2+6+4=12kg.
i=1

Next we find the moments with respect to the x- and y-axes:

3
MFZ my,=6+6—8=4.

I
—_

Then we have

W=

The center of mass of the system is (1, 1/3), in meters.
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i‘/Jl 2.30 Suppose three point masses are placed on a number line as follows (assume coordinates are given in
meters):

my = 5Kkg, placed at (-2, —3),
my = 3 kg, placed at (2, 3),
mg = 2kg, placed at (=3, —2).

Find the center of mass of the system.

Center of Mass of Thin Plates

So far we have looked at systems of point masses on a line and in a plane. Now, instead of having the mass of a system
concentrated at discrete points, we want to look at systems in which the mass of the system is distributed continuously
across a thin sheet of material. For our purposes, we assume the sheet is thin enough that it can be treated as if it is two-
dimensional. Such a sheet is called a lamina. Next we develop techniques to find the center of mass of a lamina. In this
section, we also assume the density of the lamina is constant.

Laminas are often represented by a two-dimensional region in a plane. The geometric center of such a region is called its
centroid. Since we have assumed the density of the lamina is constant, the center of mass of the lamina depends only on
the shape of the corresponding region in the plane; it does not depend on the density. In this case, the center of mass of the
lamina corresponds to the centroid of the delineated region in the plane. As with systems of point masses, we need to find
the total mass of the lamina, as well as the moments of the lamina with respect to the x- and y-axes.

We first consider a lamina in the shape of a rectangle. Recall that the center of mass of a lamina is the point where the lamina
balances. For a rectangle, that point is both the horizontal and vertical center of the rectangle. Based on this understanding,
it is clear that the center of mass of a rectangular lamina is the point where the diagonals intersect, which is a result of the
symmetry principle, and it is stated here without proof.

Theorem 2.11: The Symmetry Principle

If a region R is symmetric about a line I, then the centroid of R lies on I.

Let’s turn to more general laminas. Suppose we have a lamina bounded above by the graph of a continuous function f(x),

below by the x-axis, and on the left and right by the lines x = a and x = b, respectively, as shown in the following figure.

y

y =1fXx)

a b X

Figure 2.65 A region in the plane representing a lamina.

As with systems of point masses, to find the center of mass of the lamina, we need to find the total mass of the lamina, as
well as the moments of the lamina with respect to the x- and y-axes. As we have done many times before, we approximate
these quantities by partitioning the interval [a, b] and constructing rectangles.

For i=0,1,2,...,n, let P={x;} be a regular partition of [a, b] Recall that we can choose any point within the

interval [x; _, x;] asour x¥ . In this case, we want x¥ to be the x-coordinate of the centroid of our rectangles. Thus, for

i=1,2,...,n, weselect x¥ € [x;_, x;] suchthat x§ isthe midpoint of the interval. That is, x¥ = (x;_ |+ x;)/2.
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Now, for i =1, 2,..., n, construct a rectangle of height f()c;*< ) on [x;_q, x;]. The center of mass of this rectangle is

(x?‘ , ( St ))/2), as shown in the following figure.

y

/ # X
o2

Figure 2.66 A representative rectangle of the lamina.

Next, we need to find the total mass of the rectangle. Let p represent the density of the lamina (note that p is a constant).
In this case, p is expressed in terms of mass per unit area. Thus, to find the total mass of the rectangle, we multiply the area

of the rectangle by p. Then, the mass of the rectangle is given by pf(x¥ )Ax.

To get the approximate mass of the lamina, we add the masses of all the rectangles to get
n
m -21 pf(x% )Ax.
1=
This is a Riemann sum. Taking the limit as n — co gives the exact mass of the lamina:
n b
m= nlemiZI pfee)ax=p [ .

Next, we calculate the moment of the lamina with respect to the x-axis. Returning to the representative rectangle, recall its

center of mass is (x;" , ( St ))/2). Recall also that treating the rectangle as if it is a point mass located at the center of

mass does not change the moment. Thus, the moment of the rectangle with respect to the x-axis is given by the mass of
the rectangle, pf(x¥* )Ax, multiplied by the distance from the center of mass to the x-axis: ( Sfxf ))/2. Therefore, the

moment with respect to the x-axis of the rectangle is p([ St )]2/2)Ax. Adding the moments of the rectangles and taking

the limit of the resulting Riemann sum, we see that the moment of the lamina with respect to the x-axis is
o} [fef "LrP
M, = nll>moo '21 p#Ax =p /u de.
1=

We derive the moment with respect to the y-axis similarly, noting that the distance from the center of mass of the rectangle
to the y-axis is x§ . Then the moment of the lamina with respect to the y-axis is given by

N b
My = lim, D pxt S 0w = f xrcodx
=

We find the coordinates of the center of mass by dividing the moments by the total mass to give
X =My/mand y = M,/m. If we look closely at the expressions for My, My, andm, we notice that the constant p

cancels out when x and Yy are calculated.

We summarize these findings in the following theorem.
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Theorem 2.12: Center of Mass of a Thin Plate in the xy-Plane

Let R denote a region bounded above by the graph of a continuous function f(x), below by the x-axis, and on the left
and right by the lines x =a and x = b, respectively. Let p denote the density of the associated lamina. Then we
can make the following statements:

i. The mass of the lamina is

/b g (2.18)
m=pf f(x)dx.
ii. The moments M, and M, of the lamina with respect to the x- and y-axes, respectively, are
b 2 b (2.19)
Mo=p [ VO and m, = o[ xfdx.
a 2 a
ili. The coordinates of the center of mass (x, y) are
- M _ 2.20
x = Wyand y = % ( )

In the next example, we use this theorem to find the center of mass of a lamina.

Example 2.31

Finding the Center of Mass of a Lamina

Let R be the region bounded above by the graph of the function f(x) = vx and below by the x-axis over the
interval [0, 4]. Find the centroid of the region.

Solution
The region is depicted in the following figure.

Yi
5__

Figure 2.67 Finding the center of mass of a lamina.

Since we are only asked for the centroid of the region, rather than the mass or moments of the associated
lamina, we know the density constant p cancels out of the calculations eventually. Therefore, for the sake of

convenience, let’s assume p = 1.

First, we need to calculate the total mass:
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b 4
m :pfaf(x)dx:foﬁdx
4
_2.37" 25 _o1= 16
=2 |0—3[8 0p=15.
Next, we compute the moments:
b 2
e = o P,
4x 1 24
=f05dx=zx |0=4
and
b
M, =p fa xf(x)dx

= /:xﬁdx = f04x3/2dx

4
_ 2,57 _ 23 g1 =64
=207 =22-0 =%

Thus, we have

My_ 4 _y4

_ 12
=5 and 16/3

s My _ 645 _ 64
m =163 5

Bl

3=
16

~<|
|
N

.3
16
The centroid of the region is (12/5, 3/4).

2.31 et R be the region bounded above by the graph of the function f(x) = x? and below by the x-axis over

the interval [0, 2]. Find the centroid of the region.

We can adapt this approach to find centroids of more complex regions as well. Suppose our region is bounded above by the
graph of a continuous function f(x), as before, but now, instead of having the lower bound for the region be the x-axis,

suppose the region is bounded below by the graph of a second continuous function, g(x), asshown in the following figure.

yi
f(x)
R
a b X

Figure 2.68 A region between two functions.

Again, we partition the interval [a, b] and construct rectangles. A representative rectangle is shown in the following figure.
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Figure 2.69 A representative rectangle of the region between
two functions.

Note that the centroid of this rectangle is (x;" R ( SOF )+ glxk ))/2). We won’t go through all the details of the Riemann

sum development, but let’s look at some of the key steps. In the development of the formulas for the mass of the lamina
and the moment with respect to the y-axis, the height of each rectangle is given by f(x¥ ) — g(x¥ ), which leads to the

expression f(x) — g(x) in the integrands.

In the development of the formula for the moment with respect to the x-axis, the moment of each rectangle is found
by multiplying the area of the rectangle, p[ fxF ) —glx¥ )]Ax, by the distance of the centroid from the x-axis,

(f()c;?< )+ g(x* ))/2, which gives ,c)(l/Z){[f()c;-k )]2—[g(x’}‘ )]Z}Ax. Summarizing these findings, we arrive at the

following theorem.

Theorem 2.13: Center of Mass of a Lamina Bounded by Two Functions

Let R denote a region bounded above by the graph of a continuous function f(x), below by the graph of the
continuous function g(x), and on the left and right by the lines x = a and x = b, respectively. Let p denote the
density of the associated lamina. Then we can make the following statements:

i. The mass of the lamina is

b (2.21)
m=p [ [f(x) - go)kdx.
a
ii. The moments M, and M, of the lamina with respect to the x- and y-axes, respectively, are
b b (2.22)
— 1 2 _ 2 — -
Mo=p [ P -leoR)xand My = p [ sfe) - gk
iii. The coordinates of the center of mass (x, y) are
- M _ 2.23
x = Wyand y = % ( )

We illustrate this theorem in the following example.

Example 2.32

Finding the Centroid of a Region Bounded by Two Functions

Let R be the region bounded above by the graph of the function f(x) =1— x% and below by the graph of the

function g(x) = x — 1. Find the centroid of the region.
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Solution
The region is depicted in the following figure.

Figure 2.70 Finding the centroid of a region between two

curves.

Chapter 2 | Applications of Integration

The graphs of the functions intersect at (-2, —3) and (1, 0), so we integrate from —2 to 1. Once again, for the

sake of convenience, assume p = 1.

First, we need to calculate the total mass:

b
m =p [ 110 = gkix

1 1
=/ -2 -a-nhr= [ @-x-xdx

“frde - = -4

Next, we compute the moments:

b
Mo =pf HroP - lgeoP)x

= %f_lz((l —) - (- 1)2)dx -

1
| SR B | R
‘2[5 x”]‘—r 10

and

b
My =p fa Af(x) — g(x)dx

1
%f_2(x4 —3x%+ Zx)dx

S R Py B R Ty !
= _2X X X X = _2x X Xax = _ZX X X X
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The centroid of the region is (—(1/2), —(3/5)).

2.32  Let R be the region bounded above by the graph of the function f(x) =6 — x2 and below by the graph

of the function g(x) = 3 — 2x. Find the centroid of the region.

The Symmetry Principle

We stated the symmetry principle earlier, when we were looking at the centroid of a rectangle. The symmetry principle can
be a great help when finding centroids of regions that are symmetric. Consider the following example.

Example 2.33

Finding the Centroid of a Symmetric Region

Let R be the region bounded above by the graph of the function f(x) =4 — x? and below by the x-axis. Find the

centroid of the region.

Solution

The region is depicted in the following figure.

-3 —/b -1 0 1 é\ 3 X
- 1 4
Figure 2.71 We can use the symmetry principle to help find
the centroid of a symmetric region.

The region is symmetric with respect to the y-axis. Therefore, the x-coordinate of the centroid is zero. We need
only calculate y . Once again, for the sake of convenience, assume p = 1.

First, we calculate the total mass:
b
m =p / J f(x)dx

2
= /_2(4 - xz)dx
3 2
“[sxla-%
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Next, we calculate the moments. We only need M, :

b 2
M, =pfa@dx

= %f:[4 - xz]zdx = %f:(m —8x2+ x4)dx

Then we have

The centroid of the region is (0, 8/5).

2.33  Let R be the region bounded above by the graph of the function f(x)=1— x? and below by x-axis.

Find the centroid of the region.
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Student

The Grand Canyon Skywalk

The Grand Canyon Skywalk opened to the public on March 28, 2007. This engineering marvel is a horseshoe-shaped
observation platform suspended 4000 ft above the Colorado River on the West Rim of the Grand Canyon. Its crystal-
clear glass floor allows stunning views of the canyon below (see the following figure).

Figure 2.72 The Grand Canyon Skywalk offers magnificent views of the canyon. (redit: 10da_ralta, Wikimedia
Commons)

The Skywalk is a cantilever design, meaning that the observation platform extends over the rim of the canyon, with no
visible means of support below it. Despite the lack of visible support posts or struts, cantilever structures are engineered
to be very stable and the Skywalk is no exception. The observation platform is attached firmly to support posts that
extend 46 ft down into bedrock. The structure was built to withstand 100-mph winds and an 8.0-magnitude earthquake
within 50 mi, and is capable of supporting more than 70,000,000 Ib.

One factor affecting the stability of the Skywalk is the center of gravity of the structure. We are going to calculate
the center of gravity of the Skywalk, and examine how the center of gravity changes when tourists walk out onto the
observation platform.

The observation platform is U-shaped. The legs of the U are 10 ft wide and begin on land, under the visitors’ center,
48 ft from the edge of the canyon. The platform extends 70 ft over the edge of the canyon.

To calculate the center of mass of the structure, we treat it as a lamina and use a two-dimensional region in the xy-plane
to represent the platform. We begin by dividing the region into three subregions so we can consider each subregion
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separately. The first region, denoted R, consists of the curved part of the U. We model R; as a semicircular annulus,

with inner radius 25 ft and outer radius 35 ft, centered at the origin (see the following figure).

Yi
Rl
"
R2
=
35 ft
10 ft
N N Pl
_______________ -1---------- canyon wall
Visitor 48 ft
Center
> V4
v
R

3
Figure 2.73 We model the Skywalk with three sub-regions.

The legs of the platform, extending 35 ft between R; and the canyon wall, comprise the second sub-region, R,. Last,
the ends of the legs, which extend 48 ft under the visitor center, comprise the third sub-region, R3. Assume the density

of the lamina is constant and assume the total weight of the platform is 1,200,000 Ib (not including the weight of the
visitor center; we will consider that later). Use g = 32 ft/sec?.

1. Compute the area of each of the three sub-regions. Note that the areas of regions R, and R; should include
the areas of the legs only, not the open space between them. Round answers to the nearest square foot.
Determine the mass associated with each of the three sub-regions.

Calculate the center of mass of each of the three sub-regions.

Now, treat each of the three sub-regions as a point mass located at the center of mass of the corresponding
sub-region. Using this representation, calculate the center of mass of the entire platform.

5. Assume the visitor center weighs 2,200,000 Ib, with a center of mass corresponding to the center of mass of
R;. Treating the visitor center as a point mass, recalculate the center of mass of the system. How does the

center of mass change?

6. Although the Skywalk was built to limit the number of people on the observation platform to 120, the platform
is capable of supporting up to 800 people weighing 200 Ib each. If all 800 people were allowed on the platform,
and all of them went to the farthest end of the platform, how would the center of gravity of the system be
affected? (Include the visitor center in the calculations and represent the people by a point mass located at the
farthest edge of the platform, 70 ft from the canyon wall.)
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Theorem of Pappus

This section ends with a discussion of the theorem of Pappus for volume, which allows us to find the volume of particular
kinds of solids by using the centroid. (There is also a theorem of Pappus for surface area, but it is much less useful than the
theorem for volume.)

Theorem 2.14: Theorem of Pappus for Volume

Let R be a region in the plane and let [ be a line in the plane that does not intersect R. Then the volume of the solid of
revolution formed by revolving R around [ is equal to the area of R multiplied by the distance d traveled by the centroid
of R.

Proof
We can prove the case when the region is bounded above by the graph of a function f(x) and below by the graph of a
function g(x) over aninterval [a, b], and for which the axis of revolution is the y-axis. In this case, the area of the region is

b
A= / [f(x) — g(x)ldx. Since the axis of rotation is the y-axis, the distance traveled by the centroid of the region depends
a

only on the x-coordinate of the centroid, x, which is

_ M
X = o
where
b b
m=p[ [f@) - glxand M, = p | Af(0) - g(okdx.
Then,
b
o[ AfG) - gk
d=2n—% A
o) 1760 - gtox
and thus

b
d-A= 277/ A f(x) — g(x)ldx.

However, using the method of cylindrical shells, we have

b
V=2n /a Af(x) — g(x)ldx.
So,
V=dA

and the proof is complete.

O

Example 2.34

Using the Theorem of Pappus for Volume
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Let R be a circle of radius 2 centered at (4, 0). Use the theorem of Pappus for volume to find the volume of the

torus generated by revolving R around the y-axis.

Solution
The region and torus are depicted in the following figure.

Y
8l

64+

|
o -
|
o 4
|
A
|

M 4
o
:b>
oo+
xY

@ (b)
Figure 2.74 Determining the volume of a torus by using the theorem of Pappus. (a) A
circular region R in the plane; (b) the torus generated by revolving R about the y-axis.

The region R is a circle of radius 2, so the area of Ris A = 47 units®. By the symmetry principle, the centroid of
R is the center of the circle. The centroid travels around the y-axis in a circular path of radius 4, so the centroid
travels d = 8z units. Then, the volume of the torusis A-d = 3272 unitsS.

2.34 Let R be a circle of radius 1 centered at (3, 0). Use the theorem of Pappus for volume to find the

volume of the torus generated by revolving R around the y-axis.
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2.6 EXERCISES

For the following exercises, calculate the center of mass for
the collection of masses given.

254. my=2atx;=1and my=4 at x,=2
255. my=1atx;=-1and my=3 at x,=2
256. m=3 atx=0,1,2,6

257. Unit masses at (x, ¥) = (1, 0), (0, 1), (1, 1)
258. my =1 at (1,0) and m, =4 at (0, 1)
259. m; =1 at (1,0) and m, =3 at (2, 2)

For the following exercises, compute the center of mass
X .

260. p=1 for x € (-1, 3)

261. p= x% for x € O, L)

262. p=1for x€(0,1) and p=2 for x € (1, 2)
263. p =sinx for x € (0, x)

264. p =cosx for x € (0’ %)

265. p=e¢* for x € (0, 2)

266. ) = x3 + xe™ for x € (0, 1)
267. p =xsinx for x € (0, )
268. p=vx for x € (1, 4)

269. p=1Inx for x € (1, e)

For the following exercises, compute the center of mass
(X, y). Use symmetry to help locate the center of mass

whenever possible.

270. p=7 inthesquare 0 <x <1, 0<y<1

271. p =3 in the triangle with vertices (0, 0),
and (0, b)

(a, 0),

272. p =2 for the region bounded by y = cos(x),

— - _z I
y = —cos(x), x > and x >

219

For the following exercises, use a calculator to draw the
region, then compute the center of mass (x, y). Use

symmetry to help locate the center of mass whenever
possible.

273. [T] The region bounded by y = cos(2x),
- _I )
X = 4 and x 4

274. [T] The region between y = 2x2, y=0, x=0,

and x =1
275. [T] The region between y = %xz and y=35
276. [T] Region between y=+vx, y=In(x), x=1,
and x =4
77. 2 y2
[T] The region bounded by y = 0, xT +5 = 1

278. [T] The region bounded by y =0,

x2
4

x=0, and

2
DA
+9 1

279. [T] The region bounded by y = x% and y= x* in
the first quadrant

For the following exercises, use the theorem of Pappus to
determine the volume of the shape.

280. Rotating y = mx around the x -axis between x =0

and x =1

281. Rotating y = mx around the y -axis between x =0

and x=1

282. A general cone created by rotating a triangle with
vertices (0, 0), (a, 0), and (0, b) around the y -axis.

Does your answer agree with the volume of a cone?

283. A general cylinder created by rotating a rectangle
with vertices (0, 0), (a, 0), (0, b), and (a, b) around
the y-axis. Does your answer agree with the volume of a
cylinder?

284. A sphere created by rotating a semicircle with radius
a around the y-axis. Does your answer agree with the
volume of a sphere?

For the following exercises, use a calculator to draw the
region enclosed by the curve. Find the area M and the
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centroid (x, y) for the given shapes. Use symmetry to

help locate the center of mass whenever possible.

285. 2

[T] Quarter-circle: y=%V1-x°, y=0, and
x=0

286. [T] Triangle: y=x, y=2—-x, and y=0
287. [T] Lens: y= x% and y=x
288. [T] Ring: y2 +x*>=1 and y2 +x2=4

289. [T] Half-ring: y2 +x2=1, y2 +x2>=4, and
y=0

290. Find the generalized center of mass in the sliver

between y = x? and y =x? with a > b. Then, use the

Pappus theorem to find the volume of the solid generated
when revolving around the y-axis.

291. Find the generalized center of mass between

y= a’>=x% x=0, and y = 0. Then, use the Pappus

theorem to find the volume of the solid generated when
revolving around the y-axis.

292. Find the generalized center of mass between

y=bsin(ax), x=0, and x= %. Then, use the

Pappus theorem to find the volume of the solid generated
when revolving around the y-axis.

293. Use the theorem of Pappus to find the volume of a
torus (pictured here). Assume that a disk of radius a is

positioned with the left end of the circle at x = b,

b > 0, and is rotated around the y-axis.

294. Find the center of mass ( x, y ) for a thin wire along

the semicircle y = V1 — x% with unit mass. (Hint: Use the
theorem of Pappus.)
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2.7 | Integrals, Exponential Functions, and Logarithms

Learning Objectives

2.7.1 Write the definition of the natural logarithm as an integral.

2.7.2 Recognize the derivative of the natural logarithm.

2.7.3 Integrate functions involving the natural logarithmic function.

2.7.4 Define the number e through an integral.

2.7.5 Recognize the derivative and integral of the exponential function.

2.7.6 Prove properties of logarithms and exponential functions using integrals.

2.7.7 Express general logarithmic and exponential functions in terms of natural logarithms and
exponentials.

We already examined exponential functions and logarithms in earlier chapters. However, we glossed over some key details
in the previous discussions. For example, we did not study how to treat exponential functions with exponents that are
irrational. The definition of the number e is another area where the previous development was somewhat incomplete. We
now have the tools to deal with these concepts in a more mathematically rigorous way, and we do so in this section.

For purposes of this section, assume we have not yet defined the natural logarithm, the number e, or any of the integration
and differentiation formulas associated with these functions. By the end of the section, we will have studied these concepts
in a mathematically rigorous way (and we will see they are consistent with the concepts we learned earlier).

We begin the section by defining the natural logarithm in terms of an integral. This definition forms the foundation for
the section. From this definition, we derive differentiation formulas, define the number e, and expand these concepts to

logarithms and exponential functions of any base.

The Natural Logarithm as an Integral

Recall the power rule for integrals:

+1
fx”dx=i;n+1 +C n#—1l.

Clearly, this does not work when n = —1, as it would force us to divide by zero. So, what do we do with f %a'x? Recall

X
from the Fundamental Theorem of Calculus that f %dt is an antiderivative of 1/x. Therefore, we can make the following
1

definition.

Definition

For x > 0, define the natural logarithm function by

% 2.24
1nx=fl%dt. ( )

X 1
For x > 1, this is just the area under the curve y = 1/t from 1 to x. For x < 1, we have / %dt = —_/ %a’t, so in
1 x

this case it is the negative of the area under the curve from xto 1 (see the following figure).
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@) (b)

Figure 2.75 (a) When x > 1, the natural logarithm is the area under the
curve y = 1/t from 1tox. (b) When x < 1, the natural logarithm is the

negative of the area under the curve from x to 1.

Notice that In 1 = 0. Furthermore, the function y = 1/t > 0 for x > 0. Therefore, by the properties of integrals, it is clear

that In x is increasing for x > 0.

Properties of the Natural Logarithm

Because of the way we defined the natural logarithm, the following differentiation formula falls out immediately as a result
of to the Fundamental Theorem of Calculus.

Theorem 2.15: Derivative of the Natural Logarithm

For x > 0, the derivative of the natural logarithm is given by

din,=1
dxlnx— 7

Theorem 2.16: Corollary to the Derivative of the Natural Logarithm

The function In x is differentiable; therefore, it is continuous.

A graph of Inx is shown in Figure 2.76. Notice that it is continuous throughout its domain of (0, o).
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Figure 2.76 The graph of f(x) = Inx shows that it is a

continuous function.
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Example 2.35

Calculate the following derivatives:

d 3

d. aln(Sx - 2)
d 2

b. dx(ln(3x))

Solution

We need to apply the chain rule in both cases.

d 35 15x2
a. dxln(Sx 2)_5163_2

d 2 2(In(3x)-3 _ 2(n(3x))
b LinG3y)? = 2= = 25

@ 2.35 Calculate the following derivatives:

a. %ln(2x2 + x)

b fin(e?))

Note that if we use the absolute value function and create a new function In |x|,

Theorem 2.17: Integral of (1/u) du

Calculating Derivatives of Natural Logarithms

The natural logarithm is the antiderivative of the function f(u) = 1/u:

we can extend the domain of the natural
logarithm to include x < 0. Then (d/(dx))ln |x| = 1/x. This gives rise to the familiar integration formula.
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[Ldu=1nm+c.

Example 2.36

Calculating Integrals Involving Natural Logarithms

Calculate the integral / XZ);_ 4dx.

Solution
Using u -substitution, let u = x%+4. Then du = 2xdx and we have

/ﬁdx =1 [iaukinu + c = I + 4]+ ¢ = In(x? + 4)+ C.

2
@ 2.36 Calculate the integral _/ 3x dx.
x”+6

Although we have called our function a “logarithm,” we have not actually proved that any of the properties of logarithms
hold for this function. We do so here.

Theorem 2.18: Properties of the Natural Logarithm

If a, b > 0 and r is a rational number, then
i. In1=0

ii. In(ab)=Ina+Inb
a) — _
ln(b)—lna Inb

iv. In(a")=rlna

1
i. By definition, In1 = f %dt =0.
1

ii. We have

ab a ab
S | 1
In(ab) = /1 Lar= /1 Lar+ fa Lar.

Use u-substitution on the last integral in this expression. Let u = t/a. Then du = (1/a)dt. Furthermore, when

t=a,u=1, andwhen ¢t =ab, u =b. So we get

a ab a ab a b
_ 1 1, _ 1 a 1, _ 1 1, _
ln(ab)_/17dt+/a Tdt_fleH'/] T'Edt—IITdt+/;ﬁdu—lna+lnb.

iii. Note that
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O

r—1

d (T — X _r
dxln(x )= PG b

Furthermore,

d, _r
dx(r Inx) =+

Since the derivatives of these two functions are the same, by the Fundamental Theorem of Calculus, they must differ
by a constant. So we have
Inx")=rlnx+C

for some constant C. Taking x =1, we get

In(1") = rin(l)+C
0 = r0)+C
c = 0.

Thus In(x") = rIn x and the proof is complete. Note that we can extend this property to irrational values of r later

in this section.
Part iii. follows from parts ii. and iv. and the proof is left to you.

Example 2.37

Using Properties of Logarithms

Use properties of logarithms to simplify the following expression into a single logarithm:

In9—-2In3 + ln(%).

Solution
We have

1n9—21n3+ln(%)=ln(32)—21n3+1n(3_1)=21n3—21n3—1n3 = —In3.

@ 2.37 Use properties of logarithms to simplify the following expression into a single logarithm:

In8—In2— ln(%).

Defining the Number e

Now that we have the natural logarithm defined, we can use that function to define the number e.

Definition

The number e is defined to be the real number such that

Ine=1.
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To put it another way, the area under the curve y = 1/t between ¢t =1 and t = e is 1 (Figure 2.77). The proof that such

a number exists and is unique is left to you. (Hint: Use the Intermediate Value Theorem to prove existence and the fact that
In x is increasing to prove uniqueness.)

Figure 2.77 The area under the curve from 1 to e is equal
to one.

The number e can be shown to be irrational, although we won’t do so here (see the Student Project in Taylor and
Maclaurin Series). Its approximate value is given by

e ~ 2.71828182846.
The Exponential Function

We now turn our attention to the function e”*. Note that the natural logarithm is one-to-one and therefore has an inverse
function. For now, we denote this inverse function by exp x. Then,

exp(In x) = x for x > 0 and In(exp x) = x for all x.

The following figure shows the graphs of exp x and In x.

exp x

_54

Figure 2.78 The graphs of In x and exp x.

We hypothesize that expx = e*. For rational values of x, this is easy to show. If x is rational, then we have
In(e*) = xIne = x. Thus, when x is rational, ¢* = expx. For irrational values of x, we simply define e as the

inverse function of In x.
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Definition

For any real number x, define y = ¢* to be the number for which

Iny = In(e®) = x. (2.25)

Then we have ¢ = exp(x) forall x, and thus

e = xforx > 0and In(e*) = x (2.26)

for all x.

Properties of the Exponential Function

Since the exponential function was defined in terms of an inverse function, and not in terms of a power of e, we must

verify that the usual laws of exponents hold for the function e”*.

Theorem 2.19: Properties of the Exponential Function

If p and g are any real numbers and r is a rational number, then

. 4
i. ePel=¢el ™1
P —
e P—q
i. &=e
o4
r
ii. (e =e”

Proof
Note that if p and ¢ are rational, the properties hold. However, if p or g are irrational, we must apply the inverse

function definition of e¢* and verify the properties. Only the first property is verified here; the other two are left to you. We
have

In(e? e?) = In(eP) + In(eV) = p+q = ln(ep * q).

Since In x is one-to-one, then

+
elel=¢P ™1,

O

As with part iv. of the logarithm properties, we can extend property iii. to irrational values of r, and we do so by the end

of the section.

We also want to verify the differentiation formula for the function y =e*. To do this, we need to use implicit

differentiation. Let y = e*. Then

Iny = x
d. - d
dxlny =
1y _

Ydx

dy _

@ -

Thus, we see
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d

A px — X

dx

as desired, which leads immediately to the integration formula
_/ etdx=e*+C.

We apply these formulas in the following examples.

Example 2.38

Using Properties of Exponential Functions

Evaluate the following derivatives:

d 3t 2
a. dte e
d 3x2
b. dxe
Solution

We apply the chain rule as necessary.

2 2 2

a. %éﬁtgt =%€3t+t =3 +20)
2 2

b. %63)“ =¥ 6x

@ 2.38 Evaluate the following derivatives:

2
dlet
dx €5x

3
b. %(e”)

Example 2.39

Using Properties of Exponential Functions

2
Evaluate the following integral: f 2xe™* dx.

Solution

Using u -substitution, let u = —x2. Then du = —2x dx, and we have

2 2
_/2xe_x dx:—/e”du:—e”+C:—e_x +C.
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@/ 239 pyaluate the following integral: / %dx.
e

General Logarithmic and Exponential Functions

We close this section by looking at exponential functions and logarithms with bases other than e. Exponential functions
are functions of the form f(x) = a*. Note that unless a = e, we still do not have a mathematically rigorous definition
of these functions for irrational exponents. Let’s rectify that here by defining the function f(x) = a”* in terms of the

exponential function e*. We then examine logarithms with bases other than e as inverse functions of exponential
functions.

Definition

Forany a > 0, and for any real number x, define y =a" as follows:

y= a* = exlna‘

Now a” is defined rigorously for all values of x. This definition also allows us to generalize property iv. of logarithms and
property iii. of exponential functions to apply to both rational and irrational values of r. It is straightforward to show that
properties of exponents hold for general exponential functions defined in this way.

Let’s now apply this definition to calculate a differentiation formula for a”. We have

d . x_d
dx® T dx

xlna _

e eMng =a*na.

The corresponding integration formula follows immediately.

Theorem 2.20: Derivatives and Integrals Involving General Exponential Functions

Let a > 0. Then,
d

L a*=a*lna

dx
and
/axa'x = ﬁa’“+ C.
If a# 1, then the function a” is one-to-one and has a well-defined inverse. Its inverse is denoted by log, x. Then,
y = log,xif and only if x = a”.

Note that general logarithm functions can be written in terms of the natural logarithm. Let y = log,x. Then, x = a’.

Taking the natural logarithm of both sides of this second equation, we get

Inx = In(a”)
Inx = ylna
— Inx

Y = Tna
— Inx
log x = na

Thus, we see that all logarithmic functions are constant multiples of one another. Next, we use this formula to find a
differentiation formula for a logarithm with base a. Again, let y = log,x. Then,
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_(_1\d
- (lna a’x(ln x)

Theorem 2.21: Derivatives of General Logarithm Functions

Let a > 0. Then,
1

xIlna’

a4 -
dxlogax =

Example 2.40

Calculating Derivatives of General Exponential and Logarithm Functions

Evaluate the following derivatives:

df,t. 2
a. dt(4 2 )

b. %logg (7x2 + 4)

Solution
We need to apply the chain rule as necessary.

2 2 2 2
a. i(4l2l )=%(22l2t ):i(221+t ):22t+t 1n(2)(2+2t)

dt dt
d_ 2 _ 1
b. Logg (7x* +4) (7x2 + 4)n 8)(14x)

@ 2.40 Evaluate the following derivatives:

4
a. 14’

dt

b. %10;;3(\/x2 +1 ’
Example 2.41

Integrating General Exponential Functions
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Evaluate the following integral: f %dx.

Solution

Use u-substitution and let ¥ = —3x. Then du = —3dx and we have

3 g A3xg. . foug, 1 ou — __1 »-3x
/23xdx—/32 dx = — [ 2" du Louic= - Lo-dc

3
@/ 2.41 Evaluate the following integral: / x22% dx.
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2.7 EXERCISES

For the following exercises, find the derivative %

295. y =1n(2x)

296. y=In(2x+1)

For the following exercises, find the indefinite integral.

298. [dt
3t
299. dx
fl +x

For the following exercises, find the derivative dy/dx.
(You can use a calculator to plot the function and the

derivative to confirm that it is correct.)
300. [T] y= @

301. [T] y = xIn(x)
302. [T] y =loggx
303. [T] y = In(sin x)
304. [T] y = In(Inx)
305. [T] y = 7In(4x)
306 1] y = In((4x)’)
307. [T] y = In(tan x)
308. [T] y = In(tan(3x))
309. [T] y= ln(coszx)

For the following exercises, find the definite or indefinite
integral.

1
310. /- dx
03+x
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2

312. f v dx
0x2+1
2

313. /- Sdx
0x2+1

314. ¢ dx
2x1nx

315. ¢ dx
f 2 (x In(x))?

316.  [cos xdx
f sin x

317. nl4
f tan x dx
0

318 [eo(3x)dx
319.  r(Inx)%dx
Jine

For the following exercises, compute dy/dx by

differentiating In y.

320, _\y24 1
2L, 2 -1

322. = sinx
323. y = x~lx
324, y= ACY
325. y=x°

326. | _ (v

327. - i ¥wlE

328. | — ,~l/nx

y

329. y = p~lnx

For the following exercises, evaluate by any method.
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10 10x

330. / g / dt
s oI5 8

331. T -1
e

1
332. d [ dt
dx x[
333. 2
d [T di
dX X t
334. d

aln(sec X + tan x)
For the following exercises, use the function Inx. If you

are unable to find intersection points analytically, use a
calculator.

335. Find the area of the region enclosed by x =1 and
y =5 above y =Inux.

336. [T] Find the arc length of Inx from x=1 to
x=2.

337. Find the area between Inx and the x-axis from
x=1tox=2.

338. Find the volume of the shape created when rotating
this curve from x=1tox =2 around the x-axis, as

pictured here.

05+
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339. [T] Find the surface area of the shape created when
rotating the curve in the previous exercise from x =1 to

x = 2 around the x-axis.

If you are unable to find intersection points analytically in
the following exercises, use a calculator.

340. Find the area of the hyperbolic quarter-circle enclosed
by x=2andy =2 above y = 1/x.

341. [T] Find the arc

x=1tox=4.

length of y=1/x from

342. Find the area under y = 1/x and above the x-axis

from x = 1tox = 4.

For the following exercises, verify the derivatives and
antiderivatives.

343. %ln(x + V)T—I—l) =1

142

e iln(i =4)= (xzz_aaz)

dx
345. iln[lJrq/l_xz]z ]
X

346. %ln(x + m = ﬁ

347. d B
f m = In(In(In x))+ C
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2.8 | Exponential Growth and Decay

Learning Objectives

2.8.1 Use the exponential growth model in applications, including population growth and
compound interest.

2.8.2 Explain the concept of doubling time.

2.8.3 Use the exponential decay model in applications, including radioactive decay and Newton's
law of cooling.

2.8.4 Explain the concept of half-life.

One of the most prevalent applications of exponential functions involves growth and decay models. Exponential growth
and decay show up in a host of natural applications. From population growth and continuously compounded interest to
radioactive decay and Newton’s law of cooling, exponential functions are ubiquitous in nature. In this section, we examine
exponential growth and decay in the context of some of these applications.

Exponential Growth Model

Many systems exhibit exponential growth. These systems follow a model of the form y =y ek’, where y(, represents

the initial state of the system and & is a positive constant, called the growth constant. Notice that in an exponential growth
model, we have

y = kyget = ky. (2.27)

That is, the rate of growth is proportional to the current function value. This is a key feature of exponential growth.
Equation 2.27 involves derivatives and is called a differential equation. We learn more about differential equations in
Introduction to Differential Equations.

Rule: Exponential Growth Model

Systems that exhibit exponential growth increase according to the mathematical model
kt
y=>XYoe

where y represents the initial state of the system and k > O is a constant, called the growth constant.

Population growth is a common example of exponential growth. Consider a population of bacteria, for instance. It seems
plausible that the rate of population growth would be proportional to the size of the population. After all, the more bacteria
there are to reproduce, the faster the population grows. Figure 2.79 and Table 2.1 represent the growth of a population
of bacteria with an initial population of 200 bacteria and a growth constant of 0.02. Notice that after only 2 hours (120

minutes), the population is 10 times its original size!
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Yi

2000 +

1500 +

1000 +

500 +

y = 20090.02r

0

20 40 60 80 100 120t

Figure 2.79 An example of exponential growth for bacteria.

Time (min) Population Size (no. of bacteria)
10 244
20 298
30 364
40 445
50 544
60 664
70 811
80 991
90 1210
100 1478
110 1805
120 2205

Table 2.1 Exponential Growth of a Bacterial Population

235

Note that we are using a continuous function to model what is inherently discrete behavior. At any given time, the real-world
population contains a whole number of bacteria, although the model takes on noninteger values. When using exponential
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growth models, we must always be careful to interpret the function values in the context of the phenomenon we are
modeling.

Example 2.42

Population Growth

Consider the population of bacteria described earlier. This population grows according to the function
f@® = 200¢%9% where ¢ is measured in minutes. How many bacteria are present in the population after 5

hours (300 minutes)? When does the population reach 100,000 bacteria?

Solution
We have f(t) = 200¢%%%. Then

£300) = 200e"2C%) + 80,686.

There are 80,686 bacteria in the population after 5 hours.

To find when the population reaches 100,000 bacteria, we solve the equation

100,000 = 200e°02
500 — 60.021
In500 = 0.02t
{ = %zmo.n.

The population reaches 100,000 bacteria after 310.73 minutes.

s/ 2.42  Consider a population of bacteria that grows according to the function f(r) = 500¢%%%,  where 7 is

measured in minutes. How many bacteria are present in the population after 4 hours? When does the population
reach 100 million bacteria?

Let’s now turn our attention to a financial application: compound interest. Interest that is not compounded is called simple
interest. Simple interest is paid once, at the end of the specified time period (usually 1 year). So, if we put $1000 in a

savings account earning 2% simple interest per year, then at the end of the year we have
1000(1 + 0.02) = $1020.

Compound interest is paid multiple times per year, depending on the compounding period. Therefore, if the bank
compounds the interest every 6 months, it credits half of the year’s interest to the account after 6 months. During the

second half of the year, the account earns interest not only on the initial $1000, but also on the interest earned during the

first half of the year. Mathematically speaking, at the end of the year, we have
2
1000(1 +202)" = 51020.10.
2
Similarly, if the interest is compounded every 4 months, we have
3
1000(1+ 202 = $1020.13,

and if the interest is compounded daily (365 times per year), we have $1020.20. If we extend this concept, so that the

interest is compounded continuously, after ¢ years we have
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1000, Tim (1 + %)m.

Now let’s manipulate this expression so that we have an exponential growth function. Recall that the number e can be
expressed as a limit:

— 1"
e= mh_I)noo(l + m) .
Based on this, we want the expression inside the parentheses to have the form (1 + 1/m). Let n = 0.02m. Note that as

n— o0, m— oo as well. Then we get

0.02mt 0.02¢

1000, lim (1 + %)m = 1000, lim (1+502) " — 1ooo[m1gnm(1 + %)m]

We recognize the limit inside the brackets as the number e. So, the balance in our bank account after ¢ years is given by

1000292, Generalizing this concept, we see that if a bank account with an initial balance of $P earns interest at a rate

of r%, compounded continuously, then the balance of the account after ¢ years is

Balance = Pe™.

Example 2.43

Compound Interest

A 25-year-old student is offered an opportunity to invest some money in a retirement account that pays 5%
annual interest compounded continuously. How much does the student need to invest today to have $1 million

when she retires at age 65? What if she could earn 6% annual interest compounded continuously instead?

Solution
We have

Pe 0.05(40)

135,335.28.

1,000,000
P

She must invest $135,335.28 at 5% interest.

If, instead, she is able to earn 6%, then the equation becomes

1,000,000 = pe00¢0

P 90,717.95.

In this case, she needs to invest only $90,717.95. This is roughly two-thirds the amount she needs to invest at

5%. The fact that the interest is compounded continuously greatly magnifies the effect of the 1% increase in
interest rate.

@/ 243 Suppose instead of investing at age 25 Vb2 = 4ac, the student waits until age 35. How much would
she have to invest at 5%? At 6%?

If a quantity grows exponentially, the time it takes for the quantity to double remains constant. In other words, it takes the
same amount of time for a population of bacteria to grow from 100 to 200 bacteria as it does to grow from 10,000 to



238 Chapter 2 | Applications of Integration

20,000 bacteria. This time is called the doubling time. To calculate the doubling time, we want to know when the quantity

reaches twice its original size. So we have

2y0 - y()ekt
2 = M
In2 = kt
— In2
r = s

Definition

If a quantity grows exponentially, the doubling time is the amount of time it takes the quantity to double. It is given
by

Doubling time = %

Example 2.44

Using the Doubling Time

Assume a population of fish grows exponentially. A pond is stocked initially with 500 fish. After 6 months,
there are 1000 fish in the pond. The owner will allow his friends and neighbors to fish on his pond after the fish
population reaches 10,000. When will the owner’s friends be allowed to fish?

Solution
We know it takes the population of fish 6 months to double in size. So, if t represents time in months,
by the doubling-time formula, we have 6 = (In2)/k. Then, k = (In2)/6. Thus, the population is given by

y= 500¢ 270" 1, figure out when the population reaches 10,000 fish, we must solve the following
equation:
10,000 = 500e"" %"
20 = e(ln2/6)t
— (In2
20 = (12}
_ 6(n20) _
t= 5 R 25.93.

The owner’s friends have to wait 25.93 months (a little more than 2 years) to fish in the pond.

@/ 2.44 Suppose it takes 9 months for the fish population in Example 2.44 to reach 1000 fish. Under these

circumstances, how long do the owner’s friends have to wait?

Exponential Decay Model

Exponential functions can also be used to model populations that shrink (from disease, for example), or chemical
compounds that break down over time. We say that such systems exhibit exponential decay, rather than exponential growth.
The model is nearly the same, except there is a negative sign in the exponent. Thus, for some positive constant k, we have

y=yge .
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As with exponential growth, there is a differential equation associated with exponential decay. We have

t

y = —kyoe_k = —ky.

Rule: Exponential Decay Model

Systems that exhibit exponential decay behave according to the model
y=y 0 e_kt9

where y( represents the initial state of the system and k > 0 is a constant, called the decay constant.

The following figure shows a graph of a representative exponential decay function.

Yi
2000 -

O 20 40 60 80 100 120t
Figure 2.80 An example of exponential decay.

Let’s look at a physical application of exponential decay. Newton’s law of cooling says that an object cools at a rate
proportional to the difference between the temperature of the object and the temperature of the surroundings. In other words,
if T represents the temperature of the object and T, represents the ambient temperature in a room, then

T = —k(T — T,).

Note that this is not quite the right model for exponential decay. We want the derivative to be proportional to the function,
and this expression has the additional T, term. Fortunately, we can make a change of variables that resolves this issue. Let

y(@) =T()—Tg. Then y'(t) =T'(t) —0=T'(t), and our equation becomes

From our previous work, we know this relationship between y and its derivative leads to exponential decay. Thus,

y=ype X,

and we see that
T—T, = (Tyg—Tae™
T = (Ty-TJe M +T,

where T, represents the initial temperature. Let’s apply this formula in the following example.

Example 2.45
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Newton’s Law of Cooling

According to experienced baristas, the optimal temperature to serve coffee is between 155°F and 175°F.
Suppose coffee is poured at a temperature of 200°F, and after 2 minutes in a 70°F room it has cooled to

180°F. When is the coffee first cool enough to serve? When is the coffee too cold to serve? Round answers to

the nearest half minute.

Solution
We have
T = (To—Tae™+T,
180 = (200 —70)e " +70
110 = 130e %
11 _ -2
.
lnﬁ = —2k
Inll —-In13 = -2k
_ Inl13—-1In1ll
k = R
Then, the model is
T = 1301 =132 o0
The coffee reaches 175°F when
175 = 130e 11 -1n132)1 4
105 = 130011 —In13/2y
21 _ e(lnll—lnl3/2)t
26
21 _ Inll—-1In13
In%% = 2 !
In21 —=1In26 = 1n1151n13t
t = wzz.sﬁ

In11 —1In13

The coffee can be served about 2.5 minutes after it is poured. The coffee reaches 155°F at

155 = 13Oe(lnll—ln13/2)t+70
85 — 13Oe(lnll—ln13)t
17 _ Onll-Inidy
26 =
_ _ (Inll—1In13
In17 —In26 = (—2 )t

2(In 17 — In 26)

mil—mi3 ~>0%

The coffee is too cold to be served about 5 minutes after it is poured.
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@/ 2.45 Suppose the room is warmer (75°F) and, after 2 minutes, the coffee has cooled only to 185°F. When

is the coffee first cool enough to serve? When is the coffee be too cold to serve? Round answers to the nearest
half minute.

Just as systems exhibiting exponential growth have a constant doubling time, systems exhibiting exponential decay have a
constant half-life. To calculate the half-life, we want to know when the quantity reaches half its original size. Therefore, we
have

Yo —k
5 = v
1 _ -kt
5 =€
—In2 = —kt
— In2
r = 5

Note: This is the same expression we came up with for doubling time.

Definition

If a quantity decays exponentially, the half-life is the amount of time it takes the quantity to be reduced by half. It is
given by

Half-life = %

Example 2.46

Radiocarbon Dating

One of the most common applications of an exponential decay model is carbon dating. Carbon-14 decays (emits

a radioactive particle) at a regular and consistent exponential rate. Therefore, if we know how much carbon was
originally present in an object and how much carbon remains, we can determine the age of the object. The half-
life of carbon-14 is approximately 5730 years—meaning, after that many years, half the material has converted

from the original carbon-14 to the new nonradioactive nitrogen-14. If we have 100 g carbon-14 today, how
much is left in 50 years? If an artifact that originally contained 100 g of carbon now contains 10 g of carbon,
how old is it? Round the answer to the nearest hundred years.

Solution
We have

- In2

5730 = A
_ In?2
ko= 5730°
So, the model says
y= 1006—(1n 2/5730)¢t
In 50 years, we have
y = 1006—(1{1 2/5730)(50)

99.40.
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Therefore, in 50 years, 99.40 g of carbon-14 remains.

To determine the age of the artifact, we must solve

10 = 100e~(n2/5730x
1 _ ,~(n25730)
10

t = 19035.

The artifact is about 19,000 years old.

2.46 If we have 100 g of carbon-14, how much is left after. years? If an artifact that originally contained

100 g of carbon now contains 20g of carbon, how old is it? Round the answer to the nearest hundred years.
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2.8 EXERCISES

True or False? If true, prove it. If false, find the true answer.

348. The doubling time for y = e is (In @)/(n (¢)).

349. If you invest $500, an annual rate of interest of 3%
yields more money in the first year thana 2.5% continuous
rate of interest.

350. If you leave a 100°C pot of tea at room temperature
(25°C) and an identical pot in the refrigerator (5°C),

with k= 0.02,
drinkable temperature (70°C) more than 5 minutes

the tea in the refrigerator reaches a

before the tea at room temperature.

351. If given a half-life of t years, the constant k for
y = X! is calculated by k = In (1/2)/t.

For the following exercises, use y =y ex.

352. If a culture of bacteria doubles in 3 hours, how many
hours does it take to multiply by 107?

353. If bacteria increase by a factor of 10 in 10 hours,
how many hours does it take to increase by 100?

354. How old is a skull that contains one-fifth as much
radiocarbon as a modern skull? Note that the half-life of
radiocarbon is 5730 years.

355. If a relic contains 90% as much radiocarbon as new

material, can it have come from the time of Christ
(approximately 2000 years ago)? Note that the half-life of

radiocarbon is 5730 years.

356. The population of Cairo grew from 5 million to 10
million in 20 years. Use an exponential model to find
when the population was 8 million.

357. The populations of New York and Los Angeles are
growing at 1% and 1.4% a year, respectively. Starting

from 8 million (New York) and 6 million (Los Angeles),
when are the populations equal?

358. Suppose the value of $1 in Japanese yen decreases at
2% per year. Starting from $1 = ¥250, when will

$1=¥1?

359. The effect of advertising decays exponentially. If
40% of the population remembers a new product after 3

days, how long will 20% remember it?
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360. If y=1000 at t=3 and y=3000 at r=4,
what was yy at t=07?

361. If y=100 at t=4 and y=10 at t =28, when
does y=17?

362. If a bank offers annual interest of 7.5% or continuous
interest of 7.25%, which has a better annual yield?

363. What continuous interest rate has the same yield as an
annual rate of 9%?

364. If you deposit $5000 at 8% annual interest, how
many years can you withdraw $500 (starting after the first

year) without running out of money?

365. You are trying to save $50,000 in 20 years for

college tuition for your child. If interest is a continuous
10%, how much do you need to invest initially?

366. You are cooling a turkey that was taken out of the
oven with an internal temperature of 165°F. After 10

minutes of resting the turkey in a 70°F apartment, the
temperature has reached 155°F. What is the temperature
of the turkey 20 minutes after taking it out of the oven?

367. You are trying to thaw some vegetables that are at a
temperature of 1°F. To thaw vegetables safely, you must

put them in the refrigerator, which has an ambient
temperature of 44°F. You check on your vegetables 2

hours after putting them in the refrigerator to find that they
are now 12°F. Plot the resulting temperature curve and use

it to determine when the vegetables reach 33°F.

368. You are an archaeologist and are given a bone that is
claimed to be from a Tyrannosaurus Rex. You know these
dinosaurs lived during the Cretaceous Era (146 million

years to 65 million years ago), and you find by
radiocarbon dating that there is 0.000001% the amount of
radiocarbon. Is this bone from the Cretaceous?

369. The spent fuel of a nuclear reactor contains
plutonium-239, which has a half-life of 24,000 years. If 1
barrel containing 10 kg of plutonium-239 is sealed, how
many years must pass until only 10g of plutonium-239 is
left?

For the next set of exercises, use the following table, which
features the world population by decade.
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Years since 1950 Population (millions)
0 2,556
10 3,039
20 3,706
30 4,453
40 5,279
50 6,083
60 6,849

Source: http://www.factmonster.com/ipka/
A0762181.html.

370. [T] The best-fit exponential curve to the data of the
form P(r) = ae® is given by P(r) = 2686¢"019%% Use a

graphing calculator to graph the data and the exponential
curve together.

371. [T] Find and graph the derivative y’ of your

equation. Where is it increasing and what is the meaning of
this increase?

372. [T] Find and graph the second derivative of your
equation. Where is it increasing and what is the meaning of
this increase?

373. [T] Find the predicted date when the population
reaches 10 billion. Using your previous answers about the
first and second derivatives, explain why exponential
growth is unsuccessful in predicting the future.

For the next set of exercises, use the following table, which
shows the population of San Francisco during the 19th
century.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2

Years since Population
1850 (thousands)
0 21.00

10 56.80

20 149.5

30 234.0

Source: http:/lwww.sfgenealogy.com/sf/history/
hgpop.htm.

374. [T] The best-fit exponential curve to the data of the
form P(t) = ae’ is given by P(¢) = 35.26¢900407  yge

a graphing calculator to graph the data and the exponential
curve together.

375. [T] Find and graph the derivative )’ of your

equation. Where is it increasing? What is the meaning of
this increase? Is there a value where the increase is
maximal?

376. [T] Find and graph the second derivative of your
equation. Where is it increasing? What is the meaning of
this increase?
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2.9 | Calculus of the Hyperbolic Functions

Learning Objectives

2.9.1 Apply the formulas for derivatives and integrals of the hyperbolic functions.

2.9.2 Apply the formulas for the derivatives of the inverse hyperbolic functions and their
associated integrals.

2.9.3 Describe the common applied conditions of a catenary curve.

We were introduced to hyperbolic functions in Introduction to Functions and Graphs (http://cnx.org/content/
mb53472/latest/) , along with some of their basic properties. In this section, we look at differentiation and integration
formulas for the hyperbolic functions and their inverses.

Derivatives and Integrals of the Hyperbolic Functions

Recall that the hyperbolic sine and hyperbolic cosine are defined as
—X X —X
eX_—e and cosh x = i

sinh x = 5 o)

The other hyperbolic functions are then defined in terms of sinh x and cosh x. The graphs of the hyperbolic functions are
shown in the following figure.

Yi yi Yi
44 44 44
3 34 3+
21 21 24
1 1+
—A-é—é—il 1 2 3 4% -A—é-é-ilo 1 2 3 4%  -4-3-2-] 12 3 4%
-2 -2+ -2
-3 -371 -3
—4 —44 —4
¥ = sinh x y = cosh x y = tanh x
@ (b) (©
yi
44
34
21

AR

I e L R R R
=1
_3__
—44
y = coth x y = sech x y = csch x
(d) (e) ®

Figure 2.81 Graphs of the hyperbolic functions.

It is easy to develop differentiation formulas for the hyperbolic functions. For example, looking at sinh x we have


http://cnx.org/content/m53472/latest/
http://cnx.org/content/m53472/latest/
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d _iex_e—x
2xSinh x) _dx( 2 )

A d x_d,—x
= Z[dx(e )= axe )]
= %[ex + e = cosh x.

Similarly, (d/dx)cosh x = sinh x. We summarize the differentiation formulas for the hyperbolic functions in the following
table.

fo | e

sinh x cosh x

cosh x sinh x

tanh x sech? x

coth x —csch? x
sech x —sech x tanh x
cschx —csch x coth x

Table 2.2 Derivatives of the
Hyperbolic Functions

Let’s take a moment to compare the derivatives of the hyperbolic functions with the derivatives of the standard
trigonometric functions. There are a lot of similarities, but differences as well. For example, the derivatives of the sine
functions match: (d/dx)sin x = cos x and (d/dx)sinh x = cosh x. The derivatives of the cosine functions, however, differ

in sign: (d/dx)cos x = —sin x, but (d/dx)cosh x = sinh x. As we continue our examination of the hyperbolic functions,

we must be mindful of their similarities and differences to the standard trigonometric functions.

These differentiation formulas for the hyperbolic functions lead directly to the following integral formulas.

/sinh udu = coshu+C fcsch2 udu = —cothu+C
/cosh udu = sinhu+C /sech utanhudu = —-sechu+C
/sech2 udu = tanhu+C /csch ucothudu = —cschu+C

Example 2.47

Differentiating Hyperbolic Functions

Evaluate the following derivatives:

a. %(sinh(xz))
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d_ 2
b. dx(COSh X)

Solution

Using the formulas in Table 2.2 and the chain rule, we get
d (q 2)) — 2
a. a(smh(x )) = cosh(x ) 2x

d. 2 _ '
b. dx(COSh x)“ = 2 cosh x sinh x

@ 2.47 Evaluate the following derivatives:

a. %(tanh(x2 + Sx))

b 4] #]
dx((sinh x)2

Example 2.48

Integrals Involving Hyperbolic Functions

Evaluate the following integrals:
a. f X cosh(xz)dx

b. /tanh xdx

Solution

We can use u-substitution in both cases.

a. Let u=x2 Then, du = 2x dx and
2. [1 _ 1 _ 1. 2
fx cosh(x )dx = /ECOSh udu = 2smhu +C= 2smh(x )+ C.
b. Let u = cosh x. Then, du = sinh x dx and

/tanhxdx = f%dx = %du = Injul + C = In|cosh x| + C.

Note that coshx > 0 forall x, so we can eliminate the absolute value signs and obtain

/tanh xdx = In(cosh x) + C.
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@/ 2.48 Evaluate the following integrals:

a. fsinh3 x cosh x dx

b fsech?(3x)dx

Calculus of Inverse Hyperbolic Functions

Looking at the graphs of the hyperbolic functions, we see that with appropriate range restrictions, they all have inverses.
Most of the necessary range restrictions can be discerned by close examination of the graphs. The domains and ranges of
the inverse hyperbolic functions are summarized in the following table.

Function Domain Range

sinh ™! x (=00, o) (=00, )

cosh™ x (1, o) [0, c0)

tanh ™! x (-1, D (=00, )
coth~!x (=00, —1) U (1, ) (=00, 0) U (0, o)
sech™!x ©, 1) 0, o0)

csch™!x (=00, 0) U (0, o0) (=00, 0) U (0, o0)

Table 2.3 Domains and Ranges of the Inverse Hyperbolic
Functions

The graphs of the inverse hyperbolic functions are shown in the following figure.
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Yi yi yi
4+ 4+ 44
3+ 3+ 3+
2+ 2+ 2+
14 AT / 14
-4 -3 -2 -1 1 2 3 4X -4-3-2-19 1 2 3 4X _4-3-2-1 12 3 ax
-2+ -2+ 2+
-3t =37 —3
-4+ -4+ —4 +
y = sinh™1 x y =cosh™1x y=tanh 1x
@ (b) (©
yi yi
4 4 4 A
34 3
2+ 2+
1 1+
123 4 43-2-10 123 4% 12 3 aX
—24
_3__
—4 4
y =coth 1x y =sech™1x y =csch™1x
(d) (e) ®

Figure 2.82 Graphs of the inverse hyperbolic functions.

To find the derivatives of the inverse functions, we use implicit differentiation. We have

y = sinh™! x
sinhy = x
d = d
dxsmh yo= g

cosh y% = 1.

Recall that coshzy - sinhzy =1, so coshy=141+ sinhzy. Then,

dy _ 1 _ 1 S
dx  coshy \/1+sinh2y \/l+x2

We can derive differentiation formulas for the other inverse hyperbolic functions in a similar fashion. These differentiation
formulas are summarized in the following table.
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f@) Tl

sinh 1 x V1 +x2
1

cosh™!x x2 -1
1

tanh ™! x 1—x2
1

coth™!x 1—x2
—1

sech™!x W1 — 2

-1
csch™lx V1 + x2

Table 2.4 Derivatives of the
Inverse Hyperbolic Functions

Note that the derivatives of tanh~! x and coth™! x are the same. Thus, when we integrate 1/(1 - x2), we need to select

the proper antiderivative based on the domain of the functions and the values of x. Integration formulas involving the
inverse hyperbolic functions are summarized as follows.

/mdu sinh'u+C f#\/_—bﬂdu
/ Tzl— ldu cosh™lu+C /u—ﬁdu

/ L4, = {tanh_1u+Cif|u|<1
1—u? coth ™ u+ Cif lul > 1

Example 2.49

Differentiating Inverse Hyperbolic Functions

—sech™! lul+ C

—csch™! lul+ C

Evaluate the following derivatives:
d (sinh~! (£
a dx(smh %)

b. %(tanh_1 x)2
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Solution
Using the formulas in Table 2.4 and the chain rule, we obtain the following results:

& %(Sinh_l(%)) - 3\/11_‘_% - \/9ix2

-1
b. i(tanh_1 x)2 = M

dx 1—x

@ 2.49 Evaluate the following derivatives:
d -1
a. %(Cosh (3x))

b. %(coth_1 x)3

Example 2.50

Integrals Involving Inverse Hyperbolic Functions

Evaluate the following integrals:
a. / —L g
V4x? -1
1
b. ———dx
f2x 1—9x2

Solution

We can use u-substitution in both cases.

a. Let u =2x. Then, du = 2dx and we have

b. Let u = 3x. Then, du = 3dx and we obtain

1

1 1 1 1 -1 -1
—  dx==[———du= —=sech™ " lul+ C = —=sech™ " [3x] + C.
/2x 1 —9x2 2/14\/1 —u? 2 2

@ 2.50 Evaluate the following integrals:

a. /édx, x>2
x2—4

b. fﬁx
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Applications

One physical application of hyperbolic functions involves hanging cables. If a cable of uniform density is suspended
between two supports without any load other than its own weight, the cable forms a curve called a catenary. High-voltage
power lines, chains hanging between two posts, and strands of a spider’s web all form catenaries. The following figure
shows chains hanging from a row of posts.

Ngoam = — I

Lo o

i o
i W i i

Figure 2.83 Chains between these posts take the shape of a catenary. (credit: modification of work by OKFoundryCompany,
Flickr)

Hyperbolic functions can be used to model catenaries. Specifically, functions of the form y = a cosh(x/a) are catenaries.

Figure 2.84 shows the graph of y = 2 cosh(x/2).
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| fix) = 2c:osh[%\_]

Figure 2.84 A hyperbolic cosine function forms the shape of
a catenary.

Example 2.51

Using a Catenary to Find the Length of a Cable

Assume a hanging cable has the shape 10 cosh(x/10) for —15 <x <15, where x is measured in feet.

Determine the length of the cable (in feet).

Solution

Recall from Section 6.4 that the formula for arc length is
b
Arc Length = / 1+ [f'(x)) dx.
a

We have f(x) = 10cosh(x/10), so f’(x) = sinh(x/10). Then

b
Arc Length = / 1+ [f' () dx
a
15
_ k2 (X
= f_ls\ll + sinh (lo)dx.
Now recall that 1 + sinh2x = coshzx, so we have
15 5
_ : X
Arc Length = f—ls\ 1 + sinh (lo)dx
15
— X
= /_lscosh(lo)dx
15

= 10 sinh(-&) ;5 = 10sinh(3) - sinh(~3 ] = 20 sinh(3)

~ 42.586 ft.

2,51 Assume a hanging cable has the shape 15 cosh(x/15) for —20 < x < 20. Determine the length of the

cable (in feet).



254

2.9 EXERCISES

377. [T] Find expressions for coshx+sinhx and

cosh x — sinh x. Use a calculator to graph these functions
and ensure your expression is correct.

378. From the definitions of cosh(x) and sinh(x), find

their antiderivatives.

379. Show that cosh(x) and sinh(x) satisfy y” = y.

380. Use the quotient rule to
tanh(x)’ = sech? (x).

verify  that

381. Derive coshz(x) + sinh? (x) = cosh(2x) from the

definition.

382. Take the derivative of the previous expression to find
an expression for sinh(2x).

383. Prove
sinh(x + y) = sinh(x)cosh(y) + cosh(x)sinh(y) by

changing the expression to exponentials.

384. Take the derivative of the previous expression to find
an expression for cosh(x + y).

For the following exercises, find the derivatives of the
given functions and graph along with the function to ensure
your answer is correct.

385. [T] cosh(3x + 1)
386. [T] sinh(x2)

387. 1
[T] cosh(x)

388. [T] sinh(In(x))
389. [T] cosh? x) + sinh2(x)

390. [T] cosh?(x) — sinh?2 (x)

391. [T] tanh(\/x2 +1 '

392. 1 + tanh(x)
[T T anh(x)

393. 1] sinh® (%)

394. [T] In(sech(x) + tanh(x))
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For the following exercises, find the antiderivatives for the
given functions.

395. cosh(2x + 1)

396. tanh(3x + 2)

397. xcosh(xz)
398. 3x3tanh(x4)

399. cosh? (x)sinh(x)
400. anh? (x)sech? (x)

401. sinh(x)
1 + cosh(x)

402. coth(x)
403. cosh(x) + sinh(x)
404. (cosh(x) + sinh(x))"

For the following exercises, find the derivatives for the
functions.

405. tanh ™! (4x)
406. sinh~! (x?)
407. ginh~! (cosh(x))
408. cosh™ (x°)
409. tanh~! (cos(x))
410 sinh=! (v
411. ln(tanh_l(x))

For the following exercises, find the antiderivatives for the
functions.

412. dx
4—x?

413. dx
Cl2 - x2
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414. dx
Vx? + 1
415. / xdx

Va2 + 1
416. f_ dx
A1 —x2
417. e
-/ er _

418. /_ 42x
-1

For the following exercises, use the fact that a falling body
with friction equal to velocity squared obeys the equation

avldt =g — V2

419. Show that v(r) = +/g tanh(y/gf) satisfies this equation.

420. Derive the previous expression for w(f) by
integrating —4Y 5 = d.
g—v

421. [T] Estimate how far a body has fallen in 12 seconds
by finding the area underneath the curve of v(¢).

For the following exercises, use this scenario: A cable
hanging under its own weight has a slope S = dy/dx that

satisfies dS/dx = c\'1 + S2. The constant ¢ is the ratio of
cable density to tension.

422. Show that § = sinh(cx) satisfies this equation.

423. Integrate dy/dx = sinh(cx) to find the cable height
y(x) if y(0) = 1/c.

424. Sketch the cable and determine how far down it sags
at x =0.

For the following exercises, solve each problem.

425. [T] A chain hangs from two posts 2 m apart to form
a catenary described by the equation y = 2 cosh(x/2) — 1.

Find the slope of the catenary at the left fence post.
426. [T] A chain hangs from two posts four meters apart to

form a catenary described by the equation
y = 4 cosh(x/4) — 3. Find the total length of the catenary

(arc length).
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427. [T] A high-voltage power line is a catenary described
by y = 10 cosh(x/10). Find the ratio of the area under the

catenary to its arc length. What do you notice?

428. A telephone line is a catenary described by
y = acosh(x/a). Find the ratio of the area under the
catenary to its arc length. Does this confirm your answer for

the previous question?

429. Prove the
y= sinh_l(x) by differentiating x = sinh(y). (Hint: Use

formula for the derivative of

hyperbolic trigonometric identities.)

430. Prove the
y= cosh_l(x) by differentiating x = cosh(y).

formula for the derivative of

(Hint: Use hyperbolic trigonometric identities.)

431. Prove the
y= sech ™! (x) by differentiating x = sech(y). (Hint: Use

formula for the derivative of

hyperbolic trigonometric identities.)

432. Prove that
(cosh(x) + sinh(x))" = cosh(nx) + sinh(nx).

433. prove the expression for sinh™! (x). Multiply
x = sinh(y) = (1/2)(ey - e_y) by 2¢” and solve for y.

Does your expression match the textbook?

434. prove the expression for cosh™! (x). Multiply
x = cosh(y) = (1/2)(6y - e_y) by 2¢” and solve for y.

Does your expression match the textbook?
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CHAPTER 2 REVIEW

KEY TERMS

arc length the arc length of a curve can be thought of as the distance a person would travel along the path of the curve

catenary a curve in the shape of the function y = acosh(x/a) is a catenary; a cable of uniform density suspended

between two supports assumes the shape of a catenary
center of mass the point at which the total mass of the system could be concentrated without changing the moment

centroid the centroid of a region is the geometric center of the region; laminas are often represented by regions in the
plane; if the lamina has a constant density, the center of mass of the lamina depends only on the shape of the
corresponding planar region; in this case, the center of mass of the lamina corresponds to the centroid of the
representative region

cross-section the intersection of a plane and a solid object

density function a density function describes how mass is distributed throughout an object; it can be a linear density,
expressed in terms of mass per unit length; an area density, expressed in terms of mass per unit area; or a volume
density, expressed in terms of mass per unit volume; weight-density is also used to describe weight (rather than mass)
per unit volume

disk method a special case of the slicing method used with solids of revolution when the slices are disks

doubling time if a quantity grows exponentially, the doubling time is the amount of time it takes the quantity to double,
and is given by (In 2)/k

exponential decay gysiems that exhibit exponential decay follow a model of the form y = Y0 ek

exponential growth gytems that exhibit exponential growth follow a model of the form y = Yo ek

frustum a portion of a cone; a frustum is constructed by cutting the cone with a plane parallel to the base
half-life if a quantity decays exponentially, the half-life is the amount of time it takes the quantity to be reduced by half. It
is given by (In2)/k

Hooke’s law this law states that the force required to compress (or elongate) a spring is proportional to the distance the
spring has been compressed (or stretched) from equilibrium; in other words, F' = kx, where k is a constant

hydrostatic pressure the pressure exerted by water on a submerged object

lamina a thin sheet of material; laminas are thin enough that, for mathematical purposes, they can be treated as if they are
two-dimensional

method of cylindrical shells a method of calculating the volume of a solid of revolution by dividing the solid into
nested cylindrical shells; this method is different from the methods of disks or washers in that we integrate with
respect to the opposite variable

moment if n masses are arranged on a number line, the moment of the system with respect to the origin is given by

n
M= Z m;x;; if, instead, we consider a region in the plane, bounded above by a function f(x) over an interval
i=1

b 2
la, b], then the moments of the region with respect to the x- and y-axes are given by M, = p / @dx and
a

b
My=p /a xf(x)dx, respectively

slicing method a method of calculating the volume of a solid that involves cutting the solid into pieces, estimating the
volume of each piece, then adding these estimates to arrive at an estimate of the total volume; as the number of slices
goes to infinity, this estimate becomes an integral that gives the exact value of the volume

solid of revolution a solid generated by revolving a region in a plane around a line in that plane
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surface area . g face area of a solid is the total area of the outer layer of the object; for objects such as cubes or bricks,

the surface area of the object is the sum of the areas of all of its faces

symmetry principle the symmetry principle states that if a region R is symmetric about a line I, then the centroid of R lies
on

theorem of Pappus for volume this theorem states that the volume of a solid of revolution formed by revolving a
region around an external axis is equal to the area of the region multiplied by the distance traveled by the centroid of
the region

washer method a special case of the slicing method used with solids of revolution when the slices are washers

work the amount of energy it takes to move an object; in physics, when a force is constant, work is expressed as the product
of force and distance

KEY EQUATIONS

¢ Area between two curves, integrating on the x-axis
b
A= [ [ - g
a
* Area between two curves, integrating on the y-axis
d
A= -
J Ju) = vy
¢ Disk Method along the x-axis
b 2
V= d
[ dsras
* Disk Method along the y-axis
d 2
V= d
fc g1~ dy
¢ Washer Method
b 2 2
V= -
S AR - g
¢ Method of Cylindrical Shells
b
V= 2
J eaxfeonx
¢ Arc Length of a Function of x
b
Arc Length = / 1+[f' ) dx
a
¢ Arc Length of a Function of y

d
Arc Length = /C 1+[g' 0P dy

¢ Surface Area of a Function of x

b
Surface Area = / (271’ SN+ (f ’(x))2 'dx

* Mass of a one-dimensional object
b
= d
m fa p(x)dx

¢ Mass of a circular object

-
m= /O 2xxp(x)dx
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* Work done on an object

b
W= fa F(x)dx
¢ Hydrostatic force on a plate
b
F = fa pw(x)s(x)dx
¢ Mass of a lamina
b
m=p f J f(x)dx
¢ Moments of a lamina

b 2 b
szpA@dxandMyzp‘/CIxf(x)dx

¢ Center of mass of a lamina

X

My,
X =z and y =7

¢ Natural logarithm function

X
. 1nx=/%dtZ
1

 Exponential function y = ¢*

e Iny=In(e")=x7Z
KEY CONCEPTS

2.1 Areas between Curves
e Just as definite integrals can be used to find the area under a curve, they can also be used to find the area between
two curves.
¢ To find the area between two curves defined by functions, integrate the difference of the functions.

e If the graphs of the functions cross, or if the region is complex, use the absolute value of the difference of the
functions. In this case, it may be necessary to evaluate two or more integrals and add the results to find the area of
the region.

e Sometimes it can be easier to integrate with respect to y to find the area. The principles are the same regardless of
which variable is used as the variable of integration.

2.2 Determining Volumes by Slicing
¢ Definite integrals can be used to find the volumes of solids. Using the slicing method, we can find a volume by
integrating the cross-sectional area.

¢ For solids of revolution, the volume slices are often disks and the cross-sections are circles. The method of disks
involves applying the method of slicing in the particular case in which the cross-sections are circles, and using the
formula for the area of a circle.

e If a solid of revolution has a cavity in the center, the volume slices are washers. With the method of washers, the
area of the inner circle is subtracted from the area of the outer circle before integrating.

2.3 Volumes of Revolution: Cylindrical Shells

¢ The method of cylindrical shells is another method for using a definite integral to calculate the volume of a solid of
revolution. This method is sometimes preferable to either the method of disks or the method of washers because we
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integrate with respect to the other variable. In some cases, one integral is substantially more complicated than the
other.

¢ The geometry of the functions and the difficulty of the integration are the main factors in deciding which integration
method to use.

2.4 Arc Length of a Curve and Surface Area

¢ The arc length of a curve can be calculated using a definite integral.

e The arc length is first approximated using line segments, which generates a Riemann sum. Taking a limit then gives
us the definite integral formula. The same process can be applied to functions of y.

¢ The concepts used to calculate the arc length can be generalized to find the surface area of a surface of revolution.

e The integrals generated by both the arc length and surface area formulas are often difficult to evaluate. It may be
necessary to use a computer or calculator to approximate the values of the integrals.

2.5 Physical Applications

¢ Several physical applications of the definite integral are common in engineering and physics.
¢ Definite integrals can be used to determine the mass of an object if its density function is known.

e Work can also be calculated from integrating a force function, or when counteracting the force of gravity, as in a
pumping problem.

* Definite integrals can also be used to calculate the force exerted on an object submerged in a liquid.

2.6 Moments and Centers of Mass

¢ Mathematically, the center of mass of a system is the point at which the total mass of the system could be
concentrated without changing the moment. Loosely speaking, the center of mass can be thought of as the balancing
point of the system.

e For point masses distributed along a number line, the moment of the system with respect to the origin is

n
M = Z m;x;. For point masses distributed in a plane, the moments of the system with respect to the x- and y-
i=1

n
; and My = Z m;x;, respectively.
i=1 i=1

n
axes, respectively, are M, = Z m;y;

e For a lamina bounded above by a function f(x), the moments of the system with respect to the x- and y-axes,
b 2 b
respectively, are My = p / @dx and My =p / xf(x)dx.
a a

¢ The x- and y-coordinates of the center of mass can be found by dividing the moments around the y-axis and around
the x-axis, respectively, by the total mass. The symmetry principle says that if a region is symmetric with respect to
a line, then the centroid of the region lies on the line.

¢ The theorem of Pappus for volume says that if a region is revolved around an external axis, the volume of the
resulting solid is equal to the area of the region multiplied by the distance traveled by the centroid of the region.

2.7 Integrals, Exponential Functions, and Logarithms

¢ The earlier treatment of logarithms and exponential functions did not define the functions precisely and formally.
This section develops the concepts in a mathematically rigorous way.
¢ The cornerstone of the development is the definition of the natural logarithm in terms of an integral.

» The function e” is then defined as the inverse of the natural logarithm.
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* General exponential functions are defined in terms of e*, and the corresponding inverse functions are general

logarithms.

¢ Familiar properties of logarithms and exponents still hold in this more rigorous context.

2.8 Exponential Growth and Decay

* Exponential growth and exponential decay are two of the most common applications of exponential functions.

» Systems that exhibit exponential growth follow a model of the form y = ye

kt

¢ In exponential growth, the rate of growth is proportional to the quantity present. In other words, y’ = ky.

¢ Systems that exhibit exponential growth have a constant doubling time, which is given by (In 2)/k.

» Systems that exhibit exponential decay follow a model of the form y = yje™"".

kt

¢ Systems that exhibit exponential decay have a constant half-life, which is given by (In 2)/k.

2.9 Calculus of the Hyperbolic Functions

* Hyperbolic functions are defined in terms of exponential functions.

e Term-by-term differentiation yields differentiation formulas for the hyperbolic functions. These differentiation

formulas give rise, in turn, to integration formulas.

¢ With appropriate range restrictions, the hyperbolic functions all have inverses.

e Implicit differentiation yields differentiation formulas for the inverse hyperbolic functions, which in turn give rise

to integration formulas.

¢ The most common physical applications of hyperbolic functions are calculations involving catenaries.

CHAPTER 2 REVIEW EXERCISES

True or False? Justify your answer with a proof or a
counterexample.

435. The amount of work to pump the water out of a half-
full cylinder is half the amount of work to pump the water
out of the full cylinder.

436. If the force is constant, the amount of work to move
an object from x =a to x=b is F(b — a).

437. The disk method can be used in any situation in
which the washer method is successful at finding the
volume of a solid of revolution.

438. 1If the half-life of seaborgium-266 is 360 ms, then
k = (In(2))/360.

For the following exercises, use the requested method to
determine the volume of the solid.

439. The volume that has a base of the ellipse
x2/4+y2/9 =1 and cross-sections of an equilateral
triangle perpendicular to the y-axis. Use the method of

slicing.
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440. y= x2 - x, from x=1tox =4, rotated around

they-axis using the washer method

441. x = y2 and x = 3y rotated around the y-axis using

the washer method

442, x = 2y2 — y3, x =0, and y = 0 rotated around the

x-axis using cylindrical shells

For the following exercises, find
a. the area of the region,

b. the volume of the solid when rotated around the x-
axis, and

c. the volume of the solid when rotated around the
y-axis. Use whichever method seems most
appropriate to you.

443. y=x3,x=0,y=0, andx =2

444. y=x*>—xandx=0
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445. [T] y=In(x)+2andy=x
446. y:)c2 and y =vx

447. y=5+x, y=x2, x=0, and x=1

448. Below x°+ y2 =1 andabove y=1—-x

449. Find the mass of p = ¢~ on a disk centered at the

origin with radius 4.

450. Find the center of mass for p=tan2x on
_n
re(-5.4)

451. Find the mass and the center of mass of p =1 on

the region bounded by y = x> and y = VX.

For the following exercises, find the requested arc lengths.
452.  The

x=0tox=2.

length of x for y=cosh(x) from

453. The length of y for x=3 -4y from y=0 to
y=4

For the following exercises, find the surface area and
volume when the given curves are revolved around the
specified axis.

454. The shape created by revolving the region between
y=4+4x, y=3-x, x=0, and x=2 rotated

around the y-axis.

455. The loudspeaker created by revolving y = 1/x from

x =1 to x =4 around the x-axis.

For the following exercises, consider the Karun-3 dam in
Iran. Its shape can be approximated as an isosceles triangle
with height 205 m and width 388 m. Assume the current

depth of the water is 180 m. The density of water is 1000
kg/m 3,

456. Find the total force on the wall of the dam.

457. You are a crime scene investigator attempting to
determine the time of death of a victim. It is noon and
45°F outside and the temperature of the body is 78°F.

You know the cooling constant is k = 0.00824°F/min.

261

When did the victim die, assuming that a human’s
temperature is 98°F ?

For the following exercise, consider the stock market crash
in 1929 in the United States. The table lists the Dow Jones

industrial average per year leading up to the crash.

Years after 1920 Value ($)
1 63.90

3 100

5 110

7 160

9 381.17

Source: http://stockcharts.com/
freecharts/historical/
djial9201940.html

458. [T] The best-fit exponential curve to these data is
given by y = 40.71 + 1.224*, Why do you think the gains

of the market were unsustainable? Use first and second
derivatives to help justify your answer. What would this
model predict the Dow Jones industrial average to be in
2014 »

For the following exercises, consider the catenoid, the only
solid of revolution that has a minimal surface, or zero
mean curvature. A catenoid in nature can be found when
stretching soap between two rings.

459. Find the volume of the catenoid y = cosh(x) from

x=—1tox=1 that is created by rotating this curve

around the x-axis, as shown here.
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460. Find surface area of the catenoid y = cosh(x) from

x=—1 to x=1 that is created by rotating this curve
around the x -axis.
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3 | TECHNIQUES OF
INTEGRATION

263

-
-
-
-
-
-
-
-
L}
-
L}
|}
L
m

Figure 3.1 Careful planning of traffic signals can prevent or reduce the number of accidents at busy intersections. (credit:
modification of work by David McKelvey, Flickr)

3.1 Integration by Parts

3.2 Trigonometric Integrals

3.3 Trigonometric Substitution

3.4 Partial Fractions

3.5 Other Strategies for Integration
3.6 Numerical Integration

3.7 Improper Integrals

Introduction

In a large city, accidents occurred at an average rate of one every three months at a particularly busy intersection. After
residents complained, changes were made to the traffic lights at the intersection. It has now been eight months since the
changes were made and there have been no accidents. Were the changes effective or is the eight-month interval without

an accident a result of chance? We explore this question later in this chapter and see that integration is an essential part of
determining the answer (see Example 3.49).

We saw in the previous chapter how important integration can be for all kinds of different topics—from calculations of
volumes to flow rates, and from using a velocity function to determine a position to locating centers of mass. It is no
surprise, then, that techniques for finding antiderivatives (or indefinite integrals) are important to know for everyone who
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uses them. We have already discussed some basic integration formulas and the method of integration by substitution. In
this chapter, we study some additional techniques, including some ways of approximating definite integrals when normal
techniques do not work.

3.1 | Integration by Parts

Learning Objectives

3.1.1 Recognize when to use integration by parts.
3.1.2 Use the integration-by-parts formula to solve integration problems.
3.1.3 Use the integration-by-parts formula for definite integrals.

By now we have a fairly thorough procedure for how to evaluate many basic integrals. However, although we can integrate

/ X sin(xz)dx by using the substitution, u = x2, something as simple looking as f xsinx dx defies us. Many students

want to know whether there is a product rule for integration. There isn’t, but there is a technique based on the product rule
for differentiation that allows us to exchange one integral for another. We call this technique integration by parts.

The Integration-by-Parts Formula
If, h(x) = f(x)g(x), then by using the product rule, we obtain A'(x) = f'(x)g(x) + g'(x)f(x). Although at first it may

seem counterproductive, let’s now integrate both sides of this equation: / h(x)dx = f () f'(x) + f(x)g' (x))dx.

This gives us

W) = fg) = [ @dx+ [fg (xdx.
Now we solve for / f(x)g' (x)dx :
[ 1 (dx = fge) - [g00f (.

By making the substitutions u = f(x) and v = g(x), which in turn make du = f’(x)dx and dv = g'(x)dx, we have the

/udv=uv—/vdu.

more compact form

Theorem 3.1: Integration by Parts

Let u = f(x) and v = g(x) be functions with continuous derivatives. Then, the integration-by-parts formula for the

integral involving these two functions is:

/u dv=uv— [vdu. (3.1)

The advantage of using the integration-by-parts formula is that we can use it to exchange one integral for another, possibly
easier, integral. The following example illustrates its use.

Example 3.1

Using Integration by Parts

Use integration by parts with # = x and dv = sinx dx to evaluate / xsinx dx.
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Solution

By choosing u = x, we have du = ldx. Since dv = sinxdx, weget v = /sinx dx = —cosx. Itis handy to
keep track of these values as follows:
u = x dv sinx dx

du = ldx v = /sinxdx:—cosx.

Applying the integration-by-parts formula results in
/xsinx dx = (x)(—cosx) — /(—cosx)(ldx) Substitute.
= —xcosx + / cosx dx Simplify.

= —xcosx + sinx + C. Use /cosx dx =sinx + C.

Analysis
At this point, there are probably a few items that need clarification. First of all, you may be curious about
what would have happened if we had chosen u =sinx and dv = x. If we had done so, then we would

have du =cosx and v:%xQ. Thus, after applying integration by parts, we have

f xsinx dx = %xz sinx — f %xz cosx dx. Unfortunately, with the new integral, we are in no better position

than before. It is important to keep in mind that when we apply integration by parts, we may need to try several
choices for u and dv before finding a choice that works.

Second, you may wonder why, when we find v = / sinx dx = —cosx, we donotuse v =—cosx + K. To see

that it makes no difference, we can rework the problem using v = —cosx + K:

[ xsinxdx = (x)(~cosx+K) — [ (~cosx+ K)(1dx)

= —xcosx+Kx+fcosxdx—dex

= —xcosx + Kx+sinx— Kx+ C
= —xcosx + sinx + C.

As you can see, it makes no difference in the final solution.

Last, we can check to make sure that our antiderivative is correct by differentiating —xcosx + sinx + C:
L (—xcosx+sinx+C) = (~1)cosx + (~x)(=sinx) + cos.x
= xsinx.

Therefore, the antiderivative checks out.

. Watch this video (http:/lwww.openstaxcollege.org/l/i20_intbypartsl) and visit this website
(http:/lwww.openstaxcollege.org/l/20_intbyparts2) for examples of integration by parts.

@/ 31 Evaluate f xe**dx using the integration-by-parts formula with u = x and dv = e** dx.

The natural question to ask at this point is: How do we know how to choose u and dv? Sometimes it is a matter of trial
and error; however, the acronym LIATE can often help to take some of the guesswork out of our choices. This acronym
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stands for Logarithmic Functions, Inverse Trigonometric Functions, Algebraic Functions, Trigonometric Functions, and
Exponential Functions. This mnemonic serves as an aid in determining an appropriate choice for u.

The type of function in the integral that appears first in the list should be our first choice of u. For example, if an integral
contains a logarithmic function and an algebraic function, we should choose u to be the logarithmic function, because L
comes before A in LIATE. The integral in Example 3.1 has a trigonometric function (sinx) and an algebraic function

(x). Because A comes before T in LIATE, we chose u to be the algebraic function. When we have chosen u, dv is
selected to be the remaining part of the function to be integrated, together with dx.

Why does this mnemonic work? Remember that whatever we pick to be dv must be something we can integrate. Since we

do not have integration formulas that allow us to integrate simple logarithmic functions and inverse trigonometric functions,
it makes sense that they should not be chosen as values for dv. Consequently, they should be at the head of the list as

choices for u. Thus, we put LI at the beginning of the mnemonic. (We could just as easily have started with IL, since

these two types of functions won’t appear together in an integration-by-parts problem.) The exponential and trigonometric
functions are at the end of our list because they are fairly easy to integrate and make good choices for dv. Thus, we have

TE at the end of our mnemonic. (We could just as easily have used ET at the end, since when these types of functions appear
together it usually doesn’t really matter which one is u and which one is dv.) Algebraic functions are generally easy both

to integrate and to differentiate, and they come in the middle of the mnemonic.

Example 3.2

Using Integration by Parts

Evaluate f ln—,fdx.
X

Solution
Begin by rewriting the integral:

fln—3xdx = fx_3 Inx dx.
X

3

Since this integral contains the algebraic function x™~ and the logarithmic function Inx, choose u = Inx,

since L. comes before A in LIATE. After we have chosen u = Inx, we must choose dv = x3dx.

Next, since # = Inx, we have du = %dx. Also, v = f xdx = — %x_z. Summarizing,

Inx dv = x 1 dx

du = %dx v = fx_3dx= —%x_z.

u

Substituting into the integration-by-parts formula (Equation 3.1) gives

I It = S nxde = (- 4x2) = f(= Lo?)dan)
- 1,2 1,-3 impli
= - lnx+/2x dx Simplify.
_ _1 .- 1. -2
= - Inx 7 +C Integrate.
= ——2 Inx———+20C. Rewrite with positive integers.
2x2 4x? P s
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@/ 3.2 Evaluate / xInx dx.

In some cases, as in the next two examples, it may be necessary to apply integration by parts more than once.

Example 3.3

Applying Integration by Parts More Than Once
Evaluate f xZe3* dx.

Solution

Using LIATE, choose u = x2 and dv = e>*dx. Thus, du = 2xdx and v = /e3x dx = (%)e3x. Therefore,

u = x dv = edx

_ 3x 7. 1 3x
du = 2xdx v /e dx—ge .

Substituting into Equation 3.1 produces
2 3xy._ 1.2 3x _ [2 3x
/x e dx—3x e /Sxe dx.

We still cannot integrate %xe 3 dx directly, but the integral now has a lower power on x. We can evaluate this

new integral by using integration by parts again. To do this, choose # = x and dv = %e3x dx. Thus, du = dx

and v = /(%)e3xdx = (%)e3x. Now we have

u =x dv = %e3x dx
_ _ 2 3x 3. _ 2 .3x
du = dx v = /36 dx—ge .
Substituting back into the previous equation yields
2 3x 3. 1.2 3x (2. 3 _ [2 3x )
_/xe dx—3xe (9xe /96 dx).
After evaluating the last integral and simplifying, we obtain

2 3x . 1.2 3 2 3x, 2 3x
/xe dx—3xe gxe +27e +C.

Example 3.4

Applying Integration by Parts When LIATE Doesn’t Quite Work

3 2
Evaluate [ t”e' dt.
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Solution

If we use a strict interpretation of the mnemonic LTATE to make our choice of u, we end up with u = 3 and

2 2
dv=e" dr Unfortunately, this choice won’t work because we are unable to evaluate f e’ dr. However, since

2 2
we can evaluate / te'” dx, we can try choosing u = 1> and dv = te'” dt. With these choices we have

2
u = 2 dv = te' dt

_ _ 2, 142
du = 2tdt v = /te dt—Ee .

Thus, we obtain

3t _12t2_ ltz
fte dt 2te 5¢ 2tdt
_lz:z_ltz
—2te ¢ +C

Example 3.5

Applying Integration by Parts More Than Once
Evaluate / sin(Inx)dx.

Solution
This integral appears to have only one function—namely, sin(Inx) —however, we can always use the constant
function 1 as the other function. In this example, let’s choose u# = sin(Inx) and dv = 1dx. (The decision to

use u = sin(Inx) is easy. We can’t choose dv = sin(Inx)dx because if we could integrate it, we wouldn’t be

using integration by parts in the first place!) Consequently, du = (1/x)cos(Inx)dx and v = f ldx = x. After

applying integration by parts to the integral and simplifying, we have
[sin(nxdx = xsin(inx) - [ cosindx.

Unfortunately, this process leaves us with a new integral that is very similar to the original. However, let’s see
what happens when we apply integration by parts again. This time let’s choose u# = cos(Inx) and dv = 1dx,

making du = —(1/x)sin(Inx)dx and v = / 1dx = x. Substituting, we have

[ sininx)dx = xsin(inx) - (xcos(lnx) — /- sin(lnx)dx).

After simplifying, we obtain

/ sin(Inx)dx = xsin(Inx) — xcos(Inx) — f sin(Inx)dx.
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The last integral is now the same as the original. It may seem that we have simply gone in a circle, but now we

can actually evaluate the integral. To see how to do this more clearly, substitute I = / sin(Inx)dx. Thus, the
equation becomes
I = xsin(Inx) — xcos(Inx) — 1.
First, add I to both sides of the equation to obtain
21 = xsin(Inx) — xcos(Inx).
Next, divide by 2:

=1, g _1
I = 2xsm(lnx) 2xcos(lnx).

Substituting I = / sin(Inx)dx again, we have

/ sin(Inx)dx = %xsin(lnx) - %xcos(lnx).

From this we see that (1/2)xsin(Inx) — (1/2)xcos(Inx) is an antiderivative of sin(Inx)dx. For the most general

antiderivative, add +C:

/ sin(Inx)dx = lxsin(lnx) — %xcos(lnx) +C.

2
Analysis
If this method feels a little strange at first, we can check the answer by differentiation:
d (1, _1
dx(zxsm(lnx) 2)ccos(lnx))

=L A1, (1 i A1
_2(sm(1nx))+cos(lnx) X 5% (Ecos(lnx) sin(Inx) - 2x)

= sin(Inx).

@ 3.3 Evaluate /xzsinxdx.

Integration by Parts for Definite Integrals

Now that we have used integration by parts successfully to evaluate indefinite integrals, we turn our attention to definite
integrals. The integration technique is really the same, only we add a step to evaluate the integral at the upper and lower
limits of integration.

Theorem 3.2: Integration by Parts for Definite Integrals

Let u = f(x) and v = g(x) be functions with continuous derivatives on [a, b]. Then

b b (3.2)
/ udv:uvlg—f vdu.
a a
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Example 3.6

Finding the Area of a Region

Find the area of the region bounded above by the graph of y = tan~!

[0, 1].

x and below by the x -axis over the interval

Solution
1
This region is shown in Figure 3.2. To find the area, we must evaluate / tan~! x dx.

0
Yi
2..

T y = tan"1(x)
14

-2 -1 12X

—-14
21

Figure 3.2 To find the area of the shaded region, we have to
use integration by parts.

1

2+1

For this integral, let’s choose u = tan"!x and dv = dx, thereby making du = dx and v = x. After

applying the integration-by-parts formula (Equation 3.2) we obtain
1

Area:xtan_lxl(l)—/ 2x dx.
0X +1

Use u-substitution to obtain

| 17,2 !
/ X dx=§ln|x +1|0.

0x2+1

Thus,

! — Lo,

1
Area = xtan~ =Z
0 4 2

x| - %ln|)c2 + 1”

0

At this point it might not be a bad idea to do a “reality check” on the reasonableness of our solution. Since

Z_lipg 0.4388, and from Figure 3.2 we expect our area to be slightly less than 0.5, this solution appears

4 2
to be reasonable.
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Example 3.7

Finding a Volume of Revolution

Find the volume of the solid obtained by revolving the region bounded by the graph of f(x) = e, the x-axis,

the y-axis, and the line x = 1 about the y-axis.

Solution

The best option to solving this problem is to use the shell method. Begin by sketching the region to be revolved,
along with a typical rectangle (see the following graph).

yi

Figure 3.3 We can use the shell method to find a volume of revolution.

1
To find the volume using shells, we must evaluate 2z f xe ¥dx. To do this, let ¥ = x and dv = e~ *. These
0

choices lead to du = dx and v = f e * = —e™*. Substituting into Equation 3.2, we obtain

1
1 1
Volume =2z f xe Fdx = 2m(—xe™| + / e *dx) Use integration by parts.

0 0 0
1 L !
= 2zxe ¥} = 2ze™* Evaluate f e Fdx=—e"*
0 0 b
0
=2r— 47”. Evaluate and simplify.

Analysis
Again, it is a good idea to check the reasonableness of our solution. We observe that the solid has a volume
slightly less than that of a cylinder of radius 1 and height of 1/e added to the volume of a cone of base radius

1 and height of 1 — % Consequently, the solid should have a volume a bit less than

a1+ (B2 (1-Y) =& -2~ 18177,

Since 27w — 47” ~ 1.6603, we see that our calculated volume is reasonable.

3.4 /2
@/ Evaluate /;) xcosxdx.
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3.1 EXERCISES

In using the technique of integration by parts, you must
carefully choose which expression is u. For each of the
following problems, use the guidelines in this section to
choose u. Do not evaluate the integrals.

L fx3 e dx

2 [ ¥ In(x)dx

3. fy3cosydx

4 [x2arctanx dx
5 [ sin2x)dx

Find the integral by using the simplest method. Not all
problems require integration by parts.

6. / vsinvdv

7. /lnxdx (Hint: _/lnxdx is equivalent to

[1-Indx)

8. xcosxdx
9. ftan_lxdx
10. fxze"dx
11. / xsin(2x)dx
12. fxe4xdx
13. /xe_xdx

14. /xcos3xdx
15. fxzcosxdx

16. /xlnx dx

17 [in2x+ dx
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18

19.

20.

21.

22.

23

24,

25

26

27

28.

29.

30.

31.

32.

33.

34

35.

36.

37

: /xze4xdx

fex sinx dx

fe" cosx dx

fxe_x2 dx
x2e ¥ dx

+ [sin(in@x)dx

/cos(lnx)dx

) /(lnx)zdx

© [InG:dx

: _/x2 Inx dx

fsin_1 xdx

[cos™@x)dx

/xarctanx dx
x2sinx dx

/x3 cosx dx
x7 sinx dx

: /x3 e“dx

[xsec_1 xdx

fx sec? x dx

) fxcoshx dx
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Compute the definite integrals. Use a graphing utility to
confirm your answers.

38. 1
Inx dx
1/e
39. 1

f xe X dx (Express the answer in exact form.)
0

40. 1
fo e dx(letu = VX)

41. ¢
fl ln(xz)dx

42. a
/ xcosx dx
0

43. T
/ xsinx dx (Express the answer in exact form.)
-

44. 3
/ ln(x2 + 1)dx (Express the answer in exact form.)
0

45. a2
/ xZ sinx dx (Express the answer in exact form.)
0

46. 1
f x5%dx (Express the answer using five significant
0

digits.)
47. Evaluate f cosxIn(sinx)dx

Derive the following formulas using the technique of
integration by parts. Assume that n is a positive integer.
These formulas are called reduction formulas because the
exponent in the x term has been reduced by one in each
case. The second integral is simpler than the original
integral.

48. x"exdxzx"ex—n/x”_lexdx

49. 1

x"cosxdx = x"sinx — nfx” ~ 'sinxdx

50. [ nginxdx =

2 Integrate / 2xV2x — 3dx using two methods:

a. Using parts, letting dv = V2x — 3dx

b. Substitution, letting u = 2x -3
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State whether you would use integration by parts to
evaluate the integral. If so, identify u and dv. If not,
describe the technique used to perform the integration
without actually doing the problem.

52. xInxdx

el / xe*dx

2
55 fxex ~3dx

56. xZsinx dx

57 x2 sin(3x3 + 2)dx

Sketch the region bounded above by the curve, the x-axis,
and x =1, and find the area of the region. Provide the

exact form or round answers to the number of places
indicated.

58. y =2xe ™ (Approximate answer to four decimal

places.)

59. y = e *sin(zx) (Approximate answer to five decimal

places.)

Find the volume generated by rotating the region bounded
by the given curves about the specified line. Express the
answers in exact form or approximate to the number of
decimal places indicated.

60. y=sinx, y=0, x =2z, x =3z about the y-axis
(Express the answer in exact form.)

X

6l. y=e¢" y=0,x=—-1x=0; about x=1

(Express the answer in exact form.)

62. A particle moving along a straight line has a velocity of
w(t) = t?e™" after t sec. How far does it travel in the first 2
sec? (Assume the units are in feet and express the answer in
exact form.)

3

63. Find the area under the graph of y=sec’x from

x=0tox=1. (Round the answer to two significant
digits.)

64. Find the area between y = (x —2)e* and the x-axis

from x =2 to x = 5. (Express the answer in exact form.)
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65. Find the area of the region enclosed by the curve
y = xcosx and the x-axis for

Uz <x< 137” (Express the answer in exact form.)

2

66. Find the volume of the solid generated by revolving the
region bounded by the curve y = Inx, the x-axis, and the

vertical line x = ¢ about the x-axis. (Express the answer
in exact form.)

67. Find the volume of the solid generated by revolving the
region bounded by the curve y =4cosx and the x-axis,

% <x<3Z  about the x-axis. (Express the answer in

exact form.)

68. Find the volume of the solid generated by revolving the
region in the first quadrant bounded by y = e¢* and the x-

axis, from x = 0 to x =1In(7), about the y-axis. (Express

the answer in exact form.)
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3.2 | Trigonometric Integrals

Learning Objectives

3.2.1 Solve integration problems involving products and powers of sinx and cosx.

3.2.2 Solve integration problems involving products and powers of tanx and secx.
3.2.3 Use reduction formulas to solve trigopnometric integrals.

In this section we look at how to integrate a variety of products of trigonometric functions. These integrals are called
trigonometric integrals. They are an important part of the integration technique called trigonometric substitution, which is
featured in Trigonometric Substitution. This technique allows us to convert algebraic expressions that we may not be
able to integrate into expressions involving trigonometric functions, which we may be able to integrate using the techniques
described in this section. In addition, these types of integrals appear frequently when we study polar, cylindrical, and
spherical coordinate systems later. Let’s begin our study with products of sinx and cosx.

Integrating Products and Powers of sinx and cosx
A key idea behind the strategy used to integrate combinations of products and powers of sinx and cosx involves rewriting
these expressions as sums and differences of integrals of the form / sin’ xcosx dx or / cos’ xsinx dx. After rewriting

these integrals, we evaluate them using u-substitution. Before describing the general process in detail, let’s take a look at
the following examples.

Example 3.8

Integrating / cos’ xsinx dx

3

Evaluate / cos” xsinx dx.

Solution

Use u -substitution and let # = cosx. In this case, du = —sinx dx. Thus,

/0053 xsinxdx = —/u3 du
= —%u4+C

= —%cos4x+C.

@ 3.5 Evaluate f sin® xcosx dx.

Example 3.9

A Preliminary Example: Integrating fcoijsinkxdx Where k is Odd
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Evaluate / cosZ xsin’ x dx.

Solution

To convert this integral to integrals of the form [ cos/xsinxdx, rewrite sin’ x = sin?xsinx and make the

2

substitution sin®x = 1 — cos? x. Thus,

/coszxsin3xdx

fcoszx(l — coszx)sinx dx Letu = cosx; thendu = —sinx dx.
—/u2(1 - uz)du
- [l =

—lus—%u3+C

-5
1.5, 1.3
—gcosx §cos x+ C.

@/ 3.6 Evaluate /cos3xsin2xdx.

In the next example, we see the strategy that must be applied when there are only even powers of sinx and cosx. For
integrals of this type, the identities

.2 1 1 _ 1 —cos(2x)
sin“x = 5 §cos(2x) =
and
2._1,1 _ 14+ cos(2x)
cos"x =7 + 2cos(2x) =—s

are invaluable. These identities are sometimes known as power-reducing identities and they may be derived from the

double-angle identity cos(2x) = cos”x — sin”x and the Pythagorean identity cos’x + sin’x = 1.

Example 3.10

Integrating an Even Power of sinx

Evaluate / sin?x dx.

Solution

To evaluate this integral, let’s use the trigonometric identity sin®x = c0s(2x). Thus,

1
2

[sin?xax = [ (% - %cos(Zx))dx

=1,_1g
=X 4s1n(2x)+C.

D=
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@/ 3.7 Evaluate / cosZ x dx.

The general process for integrating products of powers of sinx and cosx is summarized in the following set of guidelines.

Problem-Solving Strategy: Integrating Products and Powers of sin x and cos x

To integrate / cos’ xsin® x dx use the following strategies:

1.

If k is odd, rewrite sinfx = sinf ~ ! xsinx and use the identity sin?x = 1 —cos2x to rewrite sin ~1x in
terms of cosx. Integrate using the substitution # = cosx. This substitution makes du = —sinx dx.

2 g . i j— 1 . . . . j—1
If j is odd, rewrite cos’/x = cos’ " xcosx and use the identity cos?x =1—sin’x to rewrite cos’  x

in terms of sinx. Integrate using the substitution u# = sinx. This substitution makes du = cosx dx. (Note:
If both j and k are odd, either strategy 1 or strategy 2 may be used.)

If both j and k are even, use sin®x = (1/2) — (1/2)cos(2x) and cos’x = (1/2) + (1/2)cos(2x). After
applying these formulas, simplify and reapply strategies 1 through 3 as appropriate.

Example 3.11

Integrating fcoijsinkxdx where k is Odd

Evaluate / cos® xsin’ x dx.

Solution

Since the power on sinx is odd, use strategy 1. Thus,

/cossxsinsx dx = /cosstin4xsinx dx Break off sinx.
= f cos® x(sin2 )c)2 sinx dx Rewrite sin* x = (sinzx)z.
= fcosgx(l - cosz)c)2 sinx dx Substitute sin?x = 1 — cos>x.
= fu8(1 - uz)z(—du) Letu = cosx and du = —sinx dx.
= f(—u8 +2u'0— ulz)du Expand.
= - %u9 + %u _ 11—31413 +C Evaluate the integral.
= —Leos?x +-2cos' x —-Lcos'>x+ C.  Substitute u = cosx.

9 11 13

Example 3.12
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Integrating f cos’ xsin*xdx where k and j are Even

Evaluate / sin® x dx.

Solution

Since the power on sinx is even (k =4) and the power on cosx is even (j =0), we must use strategy 3.

Thus,
. 4 .2 2 .4 .2 2
/ sin“xdx = f (sm x) dx Rewrite sin™ x = (sm x) .
2
— [(1_1 : -2 _1_1
= f (2 Ecos(Zx)) dx Substitute sin“x = 5 2cos(2x).
2
= [(L_1 1.2 1_1
= ( 7 5c03(2x)+zcos (2x))dx Exp:«md(2 2cos(2x)) .
= [(1_1 11,1
- ( L - Leosn +dcd + 2005(4x))dx.

Since cos 2(2x) has an even power, substitute cos 2(2x) = % + %cos(4x):

_ / (%—%cos(Zx)+%cos(4x) x Simplify.
3._1

_3 . L . .
=X 4sm(2x) + 35 sin(4x) + C Evaluate the integral.

@ 3.8 Evaluate / cos> x dx.

@ 3.9 Evaluate f cosz(3x)dx.

In some areas of physics, such as quantum mechanics, signal processing, and the computation of Fourier series, it is often
necessary to integrate products that include sin(ax), sin(bx), cos(ax), and cos(bx). These integrals are evaluated by

applying trigonometric identities, as outlined in the following rule.

Rule: Integrating Products of Sines and Cosines of Different Angles

To integrate products involving sin(ax), sin(bx), cos(ax), and cos(bx), use the substitutions

sin(ax)sin(bx) = %cos((a —b)x) — %cos((a +b)x) (33)
sin(ax)cos(bx) = %sin((a —b)x)+ %sin((a + b)x) (3.4)
cos(ax)cos(bx) = %cos((a —b)x) + %cos((a + b)x) (3.5)

These formulas may be derived from the sum-of-angle formulas for sine and cosine.
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Example 3.13

Evaluating fsin(@x)cos(bx)dx

Evaluate / sin(5x)cos(3x)dx.

Solution
Apply the identity sin(5x)cos(3x) = %sin(2x) - %cos(Sx). Thus,
/ sin(5x)cos(3x)dx = %sin(Zx) - %cos(8x)dx
- _1 _1lg
= 4cos(2x) 16 sin(8x) + C.

@ 3.10 Evaluate f cos(6x)cos(Sx)dx.

Integrating Products and Powers of tanx and secx

Before discussing the integration of products and powers of tanx and secx, it is useful to recall the integrals involving

tanx and secx we have already learned:

1. fseczxdx =tanx+ C
2. fsecxtanx dx =secx+ C
3. ftanxdx = Inlsecx| + C

4, fsecx dx = In|secx + tanx| + C.

For most integrals of products and powers of tanx and secx, we rewrite the expression we wish to integrate as the sum
or difference of integrals of the form f tan’ xsec?x dx or / sec’ xtanx dx. As we see in the following example, we can

evaluate these new integrals by using u-substitution.

Example 3.14

Evaluating _/ sec/ xtanx dx

Evaluate f sec” xtanx dx.

Solution

4

Start by rewriting sec’ xtanx as sec” xsecxtanx.
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fsecsxtanx dx = fsec4xsecxtanx dx Letu = secx; then, du = secxtanx dx.

= f ut du Evaluate the integral.
= %MS +C Substitute secx = u.
_1apnd

= 5sec x+C

’ You can read some interesting information at this website (http://lwww.openstaxcollege.orgl/l/
20_intseccube) to learn about a common integral involving the secant.

@ 3.1 Evaluate / tan> xsec? x dx.

We now take a look at the various strategies for integrating products and powers of secx and tanx.

Problem-Solving Strategy: Integrating /tar{‘xsecfxdx

To integrate _/ tan® xsec’/ x dx, use the following strategies:

.. . . i j—2 . j—2
1. If j isevenand j > 2, rewrite sec’/x = sec’ ~“xsec’x and use sec’x = tan’x+ 1 to rewrite s¢’ ~ “x
in terms of tanx. Let u = tanx and du = sec? x.
. . . i — i—1
2. If kisoddand j> 1, rewrite tan® xsec’/x = tan* ~ ! xsec’ ~ ' xsecxtanx and use tan®x = sec?x — 1 to
k—1

rewrite tan x in terms of secx. Let u = secx and du = secxtanx dx. (Note: If j is even and k is odd,

then either strategy 1 or strategy 2 may be used.)

3. If k is odd where k>3 and j=0, rewrite

k k-2 2 k=2

tan xsec” x — tan x. It may be necessary to

x = tan* ~Zxtan%x = tank_zx(seczx — 1) =tan

repeat this process on the tan® = 2x term.

2

4. 1If k iseven and j is odd, then use tan’x = sec>x — 1 to express tan® x in terms of secx. Use integration

by parts to integrate odd powers of secx.

Example 3.15

Integrating ftan(‘xsecfxdx when j is Even

Evaluate / tan® xsec? x dx.
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Solution
Since the power on secx is even, rewrite sec?x = sec?xsec?x and use sec2x = tanZx + 1 to rewrite the first
secZx in terms of tanx. Thus,
ftan6xsec4xdx = /tanéx(tanzx + 1)seczxdx Let u = tanx and du = sec? x.
= fu6(u2 + l)du Expand.
= f (u8 + u6)du Evaluate the integral.
= %ug + %I/ﬂ +C Substitute tanx = u.
1...9 1., .7
==tan” x + =tan”’ x .
9 + 7 +C

Example 3.16

Integrating ftan(‘xsecfxdx when & is Odd

Evaluate / tan® xsec> x dx.

Solution
Since the power on tanx is odd, begin by rewriting tan> xsec’ x = tan* xsec? xsecxtan.x. Thus,
tand xsec’x = tan*xsec?xsecxtanx. Write tan* x = (tan2 x)z.
/taln5 xsecoxdx = /(tanzx)2 secZ xsecxtanx dx Use tan? x = sec?x — 1.

= /(seczx - l)zseczxsecxtanx dx  Letu = secxand du = secxtanx dx.

= [w-D*udu Expand.

= /(u6—2u4+u2)du Integrate.
_17_25,173 . _
= u 5“ +3u +C Substitute secx = u.
_ 1.7, 2.5 ,1..23

= 7sec X 5sec x+3SCC x+C.

Example 3.17

Integrating ftan(‘xdx where k is Odd and k>3

Evaluate f tan> x dx.
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Solution

Begin by rewriting tan’ x = tanxtan”x = tanx(seczx - 1) = tanxsec’ x — tanx. Thus,

/tansxdx = /(tanxseczx—tanx)dx

= /tanxsec2xdx - ftanxdx

= %tan2x — In|secx| + C.

For the first integral, use the substitution # = tanx. For the second integral, use the formula.

Example 3.18

Integrating / sec’ xdx

Integrate f sec’ x dx.

Solution

This integral requires integration by parts. To begin, let u =secx and dv = sec?x. These choices make
du = secxtanx and v = tanx. Thus,

/sec3xdx = secxtanx — ftanxsecxtanx dx

= secxtanx — f tan” xsecx dx Simplify.

_ 2 . 2.2

= secxtanx — /(sec x— l)secx dx Substitute tan“x = sec“x — 1.
= secxtanx + f secx dx — / sec? x dx Rewrite.

= secxtanx + In[secx + tanx| — f sec>xdx. Evaluate f secx dx.

‘We now have

fsec3xdx = secxtanx + In|secx + tanx| — fsec3xdx.

Since the integral f sec’ x dx has reappeared on the right-hand side, we can solve for / sec’ x dx by adding it

to both sides. In doing so, we obtain

2/sec3xdx = secxtanx + In[secx + tanx|.

Dividing by 2, we arrive at

/sec3xdx = lsecxtanx + llnlsecx + tanx| + C.

2 2

@ 3.12 Evaluate /tan3xsec7xdx.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



Chapter 3 | Techniques of Integration 283

Reduction Formulas
Evaluating / sec” xdx for values of n where n is odd requires integration by parts. In addition, we must also know
the value of / sec” "2 xdx to evaluate f sec” x dx. The evaluation of / tan” x dx also requires being able to integrate

f tan” ~ 2 x dx. To make the process easier, we can derive and apply the following power reduction formulas. These

rules allow us to replace the integral of a power of secx or tanx with the integral of a lower power of secx or tanx.

Rule: Reduction Formulas for [sec”xdx and /tan”xdx

/sec"xdx: 1 _gec” =2 xtanx 4+ L= fsec”_zxdx (3.6)
n—1 n—1
ftan"xdx= 1tan"_lx—ftann_zxdx 3.7)
n—1

The first power reduction rule may be verified by applying integration by parts. The second may be verified by
following the strategy outlined for integrating odd powers of tan.x.

Example 3.19

Revisiting fsec3xdx

Apply a reduction formula to evaluate / sec x dx.

Solution

By applying the first reduction formula, we obtain

3 -1 1
fsec xdx = 2secxtanx+ 2fsecx dx

= Lsecxtanx + %lnlsecx + tanx| + C.

2

Example 3.20

Using a Reduction Formula
Evaluate f tan” x dx.

Solution

Applying the reduction formula for f tan* x dx we have
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3
3
3

-1
3

@ 3.13 Apply the reduction formula to / sec x dx.
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/tan4xdx = ltan3x - ftanzxdx

= ltan3x —tanx + fl dx

=Lan3x —tanx+x+C.

Simplify.

Evaluate f ldx.
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=Ltan3x - (tanx — / tan” x dx) Apply the reduction formula to / tan” x dx.
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3.2 EXERCISES

Fill in the blank to make a true statement.
69. sin%x+ =1

70. sec?x—1=

Use an identity to reduce the power of the trigonometric
function to a trigonometric function raised to the first
power.

7L sin?x =

72 cos?x =

Evaluate each of the following integrals by u-substitution.

73. /sin3xcosx dx

74. f vcosxsinx dx

75 [tan’@x)sec’2x)dx

76. fsin7(2x)cos(2x)dx
™ funfiec g
78. /tan2xse02xdx

Compute the following integrals using the guidelines for
integrating powers of trigonometric functions. Use a CAS
to check the solutions. (Note: Some of the problems may be
done using techniques of integration learned previously.)

79. /sin3xdx
80. fcos3xdx

8L /sinxcosx dx

82. /cossx dx

83. fsinsxcoszx dx

84. /sin3xcos3x dx

285

85. /\/Sinxcosx dx

86. /\/sinxcos3xdx

87. fsecxtanx dx
88 [tan(5x)dx

89. /tanzxsecx dx
90. ftanxsec3xdx

oL /sec4xdx

92. /cotx dx
93. /cscx dx
94.

3
tan~ x
f Vsecx *

For the following exercises, find a general formula for the
integrals.

95. fsinzaxcosax dx

96. fsinaxcosax dx.

Use the double-angle formulas to evaluate the following
integrals.

97. T
/ sinZ x dx
0

98. T
sin” x dx
/s
9. /00523x dx
100. fsinzxcoszxdx

101. /sinzxdx+fcoszxdx

102. f sinzxcosz(2x)dx
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For the following exercises, evaluate the definite integrals.
Express answers in exact form whenever possible.

103. 2z
/ cosxsin2x dx
0

104, o*
[ sin3xsinSxdx
0

105. /7
/O cos(99x)sin(101x)dx

106. m
/ cos2(3x)dx
-t

107. 2n
fo sinxsin(2x)sin(3x)dx

108. Ar
[ cos(x/sin(x/2)dx
0
109 /ﬂ/3COSS x
==2—2dx (Round this answer to three decimal
7/6 Vsinx (
places.)
110. 73
VsecZx — 1dx
—7/3
111. 7/2
V1 — cos(2x)dx
0

112. Find the area of the region bounded by the graphs of

the equations y = sinx, y = sin3x, x=0, andx = %

113. Find the area of the region bounded by the graphs of

the equations
y= coszx, y= sinzx, x= —< andx =

114. A particle moves in a straight line with the velocity
function v(¢) = sin(a)t)cos2 (wt). Find its position
function x = f(¢) if f(0) =0.

115. Find the average value of the function

3

flx) = sinZxcos> x over the interval [—rm, ].

For the following exercises, solve the differential
equations.

116. % = sin’x. The curve passes through point (0, 0).
17. dy _ . 4
7o = Sin (70)

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2

Chapter 3 | Techniques of Integration

118. Find the length of the curve

y = In(cscx), L SYS5

119. Find the length of the curve
= i T I

y = In(sinx), 3 <x< ok

120. Find the volume generated by revolving the curve

y = cos(3x) about the x-axis, 0 < x < %

For the following exercises, use this information: The inner
product of two functions f and g over [a, b] is defined

b
by f(x)-glx)= (f,g) =/ f-gdx. Two distinct

functions f and g are said to be orthogonal if

(f.g) =0.

121. Show that {sin(2x), cos(3x)} are orthogonal over

the interval [—x, x].

122. 7
Evaluate / sin(mx)cos(nx)dx.
-

123. Integrate y' = Vtanxsec” x.

For each pair of integrals, determine which one is more
difficult to evaluate. Explain your reasoning.

124. /sin456xcosx dx or /sinzxcoszxdx

125. ftan350xseczxdx or ftan350xsecxdx
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3.3 | Trigonometric Substitution

Learning Objectives

3.3.1 Solve integration problems involving the square root of a sum or difference of two squares.

In this section, we explore integrals containing expressions of the form \/az —x2 \/a2 +x2, and Vx%—a?% where the

values of a are positive. We have already encountered and evaluated integrals containing some expressions of this type, but

many still remain inaccessible. The technique of trigonometric substitution comes in very handy when evaluating these
integrals. This technique uses substitution to rewrite these integrals as trigonometric integrals.

Integrals Involving 1 - x?

Before developing a general strategy for integrals containing Va? = x%, consider the integral f V9 — x2dx. This integral

cannot be evaluated using any of the techniques we have discussed so far. However, if we make the substitution
x = 3sinf, we have dx = 3cosfdf. After substituting into the integral, we have

o —x2dx= [0 - (3sing)*3cosbde.

After simplifying, we have

[0 —x2ax= [oV1 - sin?gcosbap.
Letting 1 — sin%@ = 00520, we now have

[o—2dx= [9Vcos0cosbae.

Assuming that cos@ > 0, we have
[o—x2dx= [9cos>6ae.

At this point, we can evaluate the integral using the techniques developed for integrating powers and products of
trigonometric functions. Before completing this example, let’s take a look at the general theory behind this idea.

To evaluate integrals involving Va® — x%, we make the substitution x = asind and dx = acos6. To see that this

actually makes sense, consider the following argument: The domain of Va? — x2 s [—a, a]. Thus, —a <x<a.

Consequently, —1 < % < 1. Since the range of sinx over [—(x/2), z/2] is [—1, 1], there is a unique angle 8 satisfying

—(n/2) < 0 < 7/2 so that sinf = x/a, or equivalently, so that x = asinf. If we substitute x = asiné into Va2 — x2,

we get

Vo —x2 = W/az —(asinf)>  Letx = asind where — % <0< % Simplify.

=Ya? - a%sin%0  Factor out a>.

= \/az(l — sin? #)  Substitute 1 — sinx = cos’x.
=Va?cos?0 Take the square root.

= lacosd)
= acosé.

Since cosx > 0 on —% <0< % and a > 0, lacosdl = acosf. We can see, from this discussion, that by making the

substitution x = asinf, we are able to convert an integral involving a radical into an integral involving trigonometric

functions. After we evaluate the integral, we can convert the solution back to an expression involving x. To see how to
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do this, let’s begin by assuming that 0 < x < a. In this case, 0 < & < Z. Since sinf =2, we can draw the reference

2 a
triangle in Figure 3.4 to assist in expressing the values of cos@, tand, and the remaining trigonometric functions in
terms of x. It can be shown that this triangle actually produces the correct values of the trigonometric functions evaluated

at @ forall 9 satisfying —% < 6 <Z. Itis useful to observe that the expression Va? — x2 actually appears as the length

2
of one side of the triangle. Last, should € appear by itself, we use 0 = sin™! (%)
a
sing = X X
a
0
Ja? — x2

Figure 3.4 A reference triangle can help express the
trigonometric functions evaluated at @ in terms of x.

The essential part of this discussion is summarized in the following problem-solving strategy.

Problem-Solving Strategy: Integrating Expressions Involving Va? — x2

1. Itis a good idea to make sure the integral cannot be evaluated easily in another way. For example, although

édx, — X gx, and [xVa? - x%dx,
Va2 — x2 Va2 — x2 '/

they can each be integrated directly either by formula or by a simple u-substitution.

this method can be applied to integrals of the form

2. Make the substitution x = asin@ and dx = acosfdf. Note: This substitution yields Va? = x% = acosé.

3. Simplify the expression.

4. Evaluate the integral using techniques from the section on trigonometric integrals.

5. Use the reference triangle from Figure 3.4 to rewrite the result in terms of x. You may also need to use some
trigonometric identities and the relationship 6 = sin™! %)

The following example demonstrates the application of this problem-solving strategy.

Example 3.21

Integrating an Expression Involving Ya? — x?

Evaluate / V9 — x2dx.

Solution

Begin by making the substitutions x = 3sin@ and dx = 3cosfd6. Since sinf = %, we can construct the

reference triangle shown in the following figure.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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sinf =

w|x

V9 — X2

Figure 3.5 A reference triangle can be constructed for

Example 3.21.

Thus,
[o—x2ax = [0 - 3sin6)*3cosodo
= [o(1 - sin>6)3cos 60
=fv9cos293cos9d9

= /3Icos€|3 cos@do

= [9cos>6do

-/ 9(% +Leos(20)Ja

=999
= 29+451n(26’)+C

=991 90i
= 2¢9+4(251n00059)+c

Example 3.22

Integrating an Expression Involving Ya? — x?
Va_ 2
Evaluate / %dx.

Solution

First make the substitutions x = 2sinf and dx = 2cosf@d0. Since sinf =

triangle shown in the following figure.

Substitute x = 3sind and dx = 3cos8d6.
Simplify.
Substitute cos2@ = 1 — sin2 0.

Take the square root.

Simplify. Since — % <6< %, cosf > 0 and

Icos 6l = cos@.
Use the strategy for integrating an even power
of cos®.

Evaluate the integral.
Substitute sin(260) = 2sinfcoséb.

. P | i — . — l
Substitute sin ( 3) 6 and sin@ 3 Use
the reference triangle to see that

V9 — x2

3 and make this substitution.

cosf =

Simplify.

X
2,

we can construct the reference

289
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2
ing = =X
sinf = 5 X
]
/4 — X2
Figure 3.6 A reference triangle can be constructed for
Example 3.22.

Thus,

/ —x’ dx / — (2 SmH 2 cos6do Substitute x = 2sinf and = 2cos@dé.

_ /22?59 9d9 Substitute cos? 6 = 1 — sin”6 and simplify.
f 2(1 — sin*0) 40 Substitute sin?6 = 1 — cos> 6.
sind

Separate the numerator, simplify, and use
= [(2csc6 - 2sin6)a0

—_1
cscl = o’
= 2lInlcsc@ — cotf| + 2cosf + C Evaluate the integral.
—9onl2 4= x2 4 m L Use the.refe.rence triangle to r.ewri.te the
X X expression in terms of x and simplify.

In the next example, we see that we sometimes have a choice of methods.

Example 3.23

Integrating an Expression Involving Ya* — x> Two Ways

Evaluate / V1 = x%dx two ways: first by using the substitution u =1 —x? and then by using a

trigonometric substitution.

Solution
Method 1

Let u=1—-x% andhence x2=1—u. Thus, du = —2xdx. In this case, the integral becomes

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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/ BV = x2dx = - % / 21 - xz(—2xdx) Make the substitution.
= — % / (1 — wWudu Expand the expression.
_ 1 ({12 _ 3 :
= -5 / (u u )du Evaluate the integral.
_ _1(2.32 2 51 o
= 2( U Su ) +C Rewrite in terms of x.

3/2 52

| 2 1 2
——g(l—x) +§(1—x) +C.

Method 2

Let x = sin@. In this case, dx = cosfd6. Using this substitution, we have

[ =x%dx = [sin®0cos>0do

= /(1 - cosze)coszﬁsinedﬁ Let u = cos@. Thus, du = —sin0d0.
= (u4 - uz)du
= %us - %u3 +C Substitute cosd = u.

Use a reference triangle to see that

5 3 cosf =1 —x2.
(1-)" 41—y " +c.

3
@ 3.14 Rewrite the integral f —X_dx using the appropriate trigonometric substitution (do not evaluate
125 — x?

the integral).

Integrating Expressions Involving Ya? + x

For integrals containing \/a2 +x2, let’s first consider the domain of this expression. Since Va? + x? is defined for all
real values of x, we restrict our choice to those trigonometric functions that have a range of all real numbers. Thus, our
choice is restricted to selecting either x = atan@ or x = acotf. Either of these substitutions would actually work, but
the standard substitution is x = atan@ or, equivalently, tan€ = x/a. With this substitution, we make the assumption that

—(7/2) < 0 < ©/2, so that we also have 0 = tan~! (x/a). The procedure for using this substitution is outlined in the

following problem-solving strategy.

Problem-Solving Strategy: Integrating Expressions Involving Va2 + x?

1. Check to see whether the integral can be evaluated easily by using another method. In some cases, it is more
convenient to use an alternative method.

2. Substitute x = atan® and dx = asec’6d6. This substitution yields

Va2 + x2 = \/a2 + (atanf)? = W/aZ(l +tan?0) = Va2sec?0 = lasecd = asec. (Since —% <0< % and

secd > 0 over this interval, lasec| = asecd.)
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Simplify the expression.

Evaluate the integral using techniques from the section on trigonometric integrals.

Use the reference triangle from Figure 3.7 to rewrite the result in terms of x. You may also need to use
some trigonometric identities and the relationship 6 = tan~! (%) (Note: The reference triangle is based on the
assumption that x > 0; however, the trigonometric ratios produced from the reference triangle are the same as

the ratios for which x < 0.)

ta.n{9=i
a

Figure 3.7 A reference triangle can be constructed to express
the trigonometric functions evaluated at € in terms of x.

Example 3.24

Integrating an Expression Involving 'a? + x>

Evaluate and check the solution by differentiating.

f\/l +x?

Solution

Begin with the substitution x = tanf and dx = sec20d0. Since tan® = x, draw the reference triangle in the

following figure.

tanf = x =

==

Figure 3.8 The reference triangle for Example 3.24.

Thus,

sec2o 40 Substitute x = tan®d and dx = secZ 0d@. This

dx
/ V1 + 2 f secd substitution makes V1 + x> = secd. Simplify.

= / secOdb Evaluate the integral.

Use the reference triangle to express the result
= In|sec@ + tand| + C & P

=ln|vl+x2+x’+C.

in terms of x.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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To check the solution, differentiate:

d%(ln| 1+x2+x|) B 1+12+x.(\/1f-7x2+1]

— 1 X+ 1+ x2
1+x2+x V1442

— 1

\/1+x2'

Since V1 +x2+ x> 0 for all values of x, we could rewrite ln| 1+x2+ x| +C= ln( 1+x2+ x) +C, if

desired.

Example 3.25

Evaluating f Using a Different Substitution
Vi

Use the substitution x = sinh@ to evaluate f L.
1+x2

Solution

Because sinh@ has a range of all real numbers, and 1 + sinh?0 = cosh?6, we may also use the substitution

x = sinh@ to evaluate this integral. In this case, dx = coshfd6. Consequently,

coshd 9 Substitute x = sinh# and dx = cosh8d6.

dx _
/ V1 4 2 f V1 + sinh20 Substitute 1 + sinh? @ = cosh? 6.
= fmdﬁ Vcosh2 6 = |coshd)|

Vcosh2@

f |gg:lﬁz|d9 |cosh | = cosh@ since coshd > 0 for all 6.
=/ coshl g Simplify.
= / 1d6 Evaluate the integral.
=0+C Since x = sinh8, we know 8 = sinh~!
=sinh'x+C

Analysis
This answer looks quite different from the answer obtained using the substitution x = tanf. To see that the

solutions are the same, set y = sinh ™' x. Thus, sinh y = x. From this equation we obtain:

el —e”

2

= X.

After multiplying both sides by 2¢” and rewriting, this equation becomes:
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e2y—2xey— 1=0.

Use the quadratic equation to solve for e”:

o) = 2x + Vdx? + 4

5 .
Simplifying, we have:

eV =x+Vx2+1.

Since x — sz +1 <0, itmustbe the case that e’ = x + Vx2 + 1. Thus,

y=ln(x+ Vx2+1'.
sinh™!x = ln(x +Vx%+1 '

After we make the final observation that, since x + Vx2+ 1> 0,

Last, we obtain

1n(x +x2 1) - 1n|\/1 e x|,

we see that the two different methods produced equivalent solutions.

Example 3.26

Finding an Arc Length

Find the length of the curve y = x2 over the interval [0, l].

Solution

Because % = 2x, the arc length is given by

1/2 1/2
fo 1+(2x)2arx=fO V1 + 4x2dx.

To evaluate this integral, use the substitution x = %tan& and dx = %sec2 0d0. We also need to change the limits
of integration. If x =0, then # =0 andif x = %, then 0 = % Thus,

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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12 /4 After substitution,
Tt
/0 N+ adar = /0 m%secz 0do V1 + 4x% = tand. Substitute

1 + tan? 6 = sec? 6 and simplify.

/4 We derived this integral in the

:%f sec> 0d6 v 1 [ieg
0

previous section.

/4

= l(lsecQtantQ + In[secd + tan 0|) Evaluate and simplify.

2\2

0
= %(«E +1n(V2 + 1)).

@ 315 Rewrite f Vx4 4dx by using a substitution involving tané.

Integrating Expressions Involving Vx? - a2

The domain of the expression Vx2 —a? is (=00, —a] U [a, +0). Thus, either x < —a or x > a. Hence, % < -1

or % > 1. Since these intervals correspond to the range of secé on the set [0, %) U (%, ], it makes sense to use the
substitution secf = % or, equivalently, x = asec, where 0 <0< % or % < 0 < 7. The corresponding substitution

for dx is dx = asecOtandf. The procedure for using this substitution is outlined in the following problem-solving
strategy.

Problem-Solving Strategy: Integrals Involving Vx2 —a?

1. Check to see whether the integral cannot be evaluated using another method. If so, we may wish to consider
applying an alternative technique.

2. Substitute x = asecf and dx = asecftanfOdf. This substitution yields

sz —a*= W/(asec&)2 —a*= \/a2(seczt9 +1)= Vaztanze = latand|.

For x > a, latand| = atan@ and for x < —a, latand| = —atand.

Simplify the expression.

Evaluate the integral using techniques from the section on trigonometric integrals.

Use the reference triangles from Figure 3.9 to rewrite the result in terms of x. You may also need to use some
trigonometric identities and the relationship 6 = sec™! (%) (Note: We need both reference triangles, since the

values of some of the trigonometric ratios are different depending on whether x > a or x < —a.)
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Y (—a, (x2— a2 Yi
X X
SECOZE,X>6 seCG=E,x<—a
X I P —X
\XZ_aZ \XZ_aZ \
]
0 a X —a 0 X
2 _ a2 _ w2 _ 2
, X2 —a ) X2 —a
ing = “—— ing = & — &
sing . sing X
a a
costl = — cosf = —
X X
tang = 2= & tang = —X2 =@
a

Figure 3.9 Use the appropriate reference triangle to express the trigonometric functions evaluated at € in terms of x.

Example 3.27

Finding the Area of a Region

Find the area of the region between the graph of f(x) = Vx% — 9 and the x-axis over the interval [3, 5].

Solution
First, sketch a rough graph of the region described in the problem, as shown in the following figure.

Yi

0 : : X

Figure 3.10 Calculating the area of the shaded region requires
evaluating an integral with a trigonometric substitution.

5
We can see that the area is A = / Vx% — 9dx. To evaluate this definite integral, substitute x = 3sec6 and
3

dx = 3secftanfdf. We must also change the limits of integration. If x =3, then 3 = 3secf and hence

0=0.If x=5, then O =sec”! (%) After making these substitutions and simplifying, we have

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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5
Area =f3 Vx? — 9dx

sec™1(53)
= 9tan2 @secHdo
0
sec™1(53)
= 9(sec?d — 1)secOdo
0
sec™1(5/3)
=/, 9(sec> O — secH)do
= (%lnlsec@ + tand| + %sec 6tan6) — 9ln|secd + tand)|
secL(53)
= %secﬁtan@ — %lnlsecé’ + tand)| 0
=954 9544 _(2.1.0-2
=33 533 +3- (3 1-0-Fmi +o]
—10-2
=10 21n3

@/ 3.16  pooluate f N/EIL . Assume that x > 2.

x“=4

sec™1(5/3)

0

297

Use tan26 = 1 — sec20.
Expand.

Evaluate the integral.

Simplify.

-15)_5

Evaluate. Use sec(sec 3) =3
-15\_4

and tan(sec 3) =3
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3.3 EXERCISES

Simplify the following expressions by writing each one
using a single trigonometric function.

126. 4 — 45in%6
127. 9sec?6 -9
128. 42 + 4’tan’6
129. 42 4+ 4?sinh?6
130. 16cosh?6 - 16

Use the technique of completing the square to express each
trinomial as the square of a binomial.

1L 4x? —4x +1
132, 2x2 —8x+3

133 _x2_2x+4

Integrate using the method of trigonometric substitution.
Express the final answer in terms of the variable.

134. / dx
V4 — x2

135. dx
/ x2 - a2

136. /‘4/4 —2dx

137. / dx
V1 + 9x2

138. / 2dx

1-x2

139.

Jaitss

140. dx
(1 + x2)?

141. /Vx2 + 9dx
142 fﬁ xz; 25d_x

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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3
143. f 03 do d0

Y9 — 92
144. dx
f 6 2
145. /'4/x6 — S

146 f dx 3/2

17 f dx 3/2

148. fVl + x2dx
X

149. f 2 dx
x2-1
150. x2dx
x>+ 4
151. f dx
V241
152. 2 dx

V1 +x2

153. /_11(1 _

In the following
x = sinh#, coshé,

in terms of the variable x.

x2)32 g

exercises, use the substitutions
or tanhd. Express the final answers

154. /
e

155. dx

A1 = x2
156. fq/x2_ Ldx

157. ;12—
St

X
X
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158. dx
1—x?
159. /q/1+x2dx
x2

Use the technique of completing the square to evaluate the
following integrals.

160. /2 6x

161.
/ 2+2x+1

162. / 1 dx

V—x2 +2x+8

163. / 1 dx

V—x2+ 10x

164. 1 dx

/Vx2+4x—12

165. Evaluate the integral without wusing calculus:
3
f V9 — x2dx.
-3
166. 2 y2
Find the area enclosed by the ellipse XT + 9= 1.

167.

Evaluate the integral using two different

1 —x
substitutions. First, let x =cosf and evaluate using
trigonometric substitution. Second, let x = sinf and use

trigonometric substitution. Are the answers the same?

168.

Evaluate the using the

integral f
x\x? -

substitution x = sec. Next, evaluate the same integral
using the substitution x = csc6. Show that the results are
equivalent.

169.

Evaluate the integral A ldx using the form

f %du. Next, evaluate the same integral using x = tané.
Are the results the same?

170. State the method of integration you would use to
evaluate the integral / x\x? + 1dx. Why did you choose

this method?

299

171. State the method of integration you would use to
evaluate the integral / x2Vx? = 1dx. Why did you

choose this method?

172. 1
Evaluate / )2c_dx
-1x“+1

173. Find the length of the arc of the curve over the
specified interval: y =Inx, [1, 5]. Round the answer to

three decimal places.

174. Find the surface area of the solid generated by
revolving the region bounded by the graphs of

y= x2, y=0,x=0,andx = V2 about the x-axis.

(Round the answer to three decimal places).

175. The region bounded by the graph of f(x) = 3
+x

and the x-axis between x = 0 and x = 1 is revolved about
the x-axis. Find the volume of the solid that is generated.

Solve the initial-value problem for y as a function of x.

76 (24362 = 1.6 =

177. ndy _
(64 - *) - =1.y(0) =3

178. Find the area bounded by

y=—2 ,x=0,y=0,andx =2

Vo4 — 4x2

179. An oil storage tank can be described as the volume
generated by revolving the area bounded by

16 x =0, y=0, x =2 about the x-axis. Find

Vo4 + x2

the volume of the tank (in cubic meters).

180. During each cycle, the velocity v (in feet per second)

14
4412
where ¢ is time in seconds. Find the expression for the
displacement s (in feet) as a function of t if s =0 when
t=0.

of a robotic welding device is given by v = 2¢ —

V16 — x% between

18L. ging the length of the curve y =
x=0and x =2.
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3.4 | Partial Fractions

Learning Objectives

3.4.1 Integrate a rational function using the method of partial fractions.
3.4.2 Recognize simple linear factors in a rational function.

3.4.3 Recognize repeated linear factors in a rational function.

3.4.4 Recognize quadratic factors in a rational function.

We have seen some techniques that allow us to integrate specific rational functions. For example, we know that

du _ 4 Cand [—94_ = Lian=1(%) 4 C.
J Ry AP

However, we do not yet have a technique that allows us to tackle arbitrary quotients of this type. Thus, it is not immediately

obvious how to go about evaluating Zs—xzdx. However, we know from material previously developed that
x“—x-

1 2 _ B
/(x+1+x_2 x = Injx + 1| + 21Inlx — 2| + C.

In fact, by getting a common denominator, we see that

1 . 2 _ 3x
x+1 x=2 2_,_9

Consequently,

szzd“f(xiﬁsz)dx'

xX“—x—
In this section, we examine the method of partial fraction decomposition, which allows us to decompose rational functions
into sums of simpler, more easily integrated rational functions. Using this method, we can rewrite an expression such as:

23—x as an expression such as l_,_2_
X2—x=2 x+1 x-2

The key to the method of partial fraction decomposition is being able to anticipate the form that the decomposition of a
rational function will take. As we shall see, this form is both predictable and highly dependent on the factorization of the
denominator of the rational function. It is also extremely important to keep in mind that partial fraction decomposition

PO ooy if deg(P(x)) < deg(Q(x)). Tn the case when deg(P(x)) > deg(Q(x)), we

0()
P(x) R

must first perform long division to rewrite the quotient ,
0) 0)

The following example, although not requiring partial fraction

P(x)
o0

can be applied to a rational function

in the form A(x) + where deg(R(x)) < deg(Q(x)).

R(x)
O(x)

We then do a partial fraction decomposition on

where

decomposition, illustrates our approach to integrals of rational functions of the form

deg(P(x)) > deg(Q(x)).

Example 3.28

Integrating /%dx, where deg(P(x)) > degQ(x))

2
Evaluate f %dx.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Solution

Since deg(x2 +3x+ 5) > deg(x + 1), we perform long division to obtain

2
X“+3x+5_ 1043

x+1 x+ 1
Thus,

fle-ixﬁsdx = [+ 243

:%x2+2x+3lnlx+ 11+ C.

. Visit this website (http://lwww.openstaxcollege.org/l/20_polylongdiv) for a review of long division of
polynomials.

3.17 x—3
@/ Evaluate _/ P 2dx.

To integrate / g(é))dx, where deg(P(x)) < deg(Q(x)), we must begin by factoring Q(x).

Nonrepeated Linear Factors
If O(x) can be factored as (a;x + b )a,x+ by)...[anx +Dby), where each linear factor is distinct, then it is possible to

find constants A, A,,... A, satisfying

Px) _ Ay Ay Ap
Q(x)_a1x+b1+a2x+b2+ T anx+ by

The proof that such constants exist is beyond the scope of this course.

In this next example, we see how to use partial fractions to integrate a rational function of this type.

Example 3.29

Partial Fractions with Nonrepeated Linear Factors

3x+2
Evaluate /mdx

Solution

3x+2

. We can see
X3 —x%—2x

Since deg(3x+2) < deg(x3 —x2- 2x), we begin by factoring the denominator of

that x° — x2 = 2x = x(x — 2)(x + 1). Thus, there are constants A, B, and C satisfying

3x+2 _A
x(x—=2)x+1) X

B C

+x—2+x+l'
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We must now find these constants. To do so, we begin by getting a common denominator on the right. Thus,

3x42 _Ax—=2)x+ D+ Bx(x+ 1)+ Cx(x — 2)
x(x=2)(x+1) x(x=2)(x+1) :

Now, we set the numerators equal to each other, obtaining
3x+2=Ax—=2)(x+ 1)+ Bx(x + 1) + Cx(x — 2). (3.8)

There are two different strategies for finding the coefficients A, B, and C. We refer to these as the method of

equating coefficients and the method of strategic substitution.

Rule: Method of Equating Coefficients

Rewrite Equation 3.8 in the form
3x+2=(A+B+ x>+ (—A + B—2C)x + (=24).

Equating coefficients produces the system of equations

A+B+C =0
—-A+B-2C = 3
—2A = 2.

To solve this system, we first observe that —2A =2 = A = —1. Substituting this value into the first two
equations gives us the system

B+C =1
B-2C = 2.

Multiplying the second equation by —1 and adding the resulting equation to the first produces
-3C =1,

which in turn implies that C = — L Substituting this value into the equation B+ C =1 yields B = 4

3 3

Thus, solving these equations yields A = -1, B = %, and C = — %

It is important to note that the system produced by this method is consistent if and only if we have set up the
decomposition correctly. If the system is inconsistent, there is an error in our decomposition.

Rule: Method of Strategic Substitution

The method of strategic substitution is based on the assumption that we have set up the decomposition
correctly. If the decomposition is set up correctly, then there must be values of A, B, and C that satisfy

Equation 3.8 for all values of x. That is, this equation must be true for any value of x we care to substitute
into it. Therefore, by choosing values of x carefully and substituting them into the equation, we may find
A, B, and C easily. For example, if we substitute x =0, the equation reduces to 2 = A(—2)(1).

Solving for A yields A = —1. Next, by substituting x =2, the equation reduces to 8 = B(2)(3),
or equivalently B = 4/3. Last, we substitute x = —1 into the equation and obtain —1 = C(—1)(-3).

Solving, we have C = —

bJ|>—A

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



Chapter 3 | Techniques of Integration 303

It is important to keep in mind that if we attempt to use this method with a decomposition that has not been
set up correctly, we are still able to find values for the constants, but these constants are meaningless. If we
do opt to use the method of strategic substitution, then it is a good idea to check the result by recombining
the terms algebraically.

Now that we have the values of A, B, and C, we rewrite the original integral:

3x+2 (1,4 1 1 1
f3 P f( Y3 G- 73 (x+1>)dx‘

Evaluating the integral gives us

f . 3x -; 2 gx=—Inlxl+ §1n|x 2l — —1n|x + 1]+ C.

x> —x“—=2x

In the next example, we integrate a rational function in which the degree of the numerator is not less than the degree of the
denominator.

Example 3.30

Dividing before Applying Partial Fractions

2
Evaluate / %dx.
X2 —

Solution
Since degree(x2 +3x+1)> degree(x2 —4), we must perform long division of polynomials. This results in

43+l gy 345
x> -4 x2—4

3x+5 _ 3x+5
24 BT EE) We have

Next, we perform partial fraction decomposition on

3x+35 -_A | B
x=2)(x+2) x-2 x+2

Thus,
3x+5=Ax+2)+B(x-2).
Solving for A and B using either method, we obtain A = 11/4 and B = 1/4.

Rewriting the original integral, we have

2
X“4+3x+1, _ 11,1 1.1
J 24 ar=[(1+ 4+

Evaluating the integral produces
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2
f—x "‘23x+1dx=x+£1n|x—2l+lln|x+2l+C.
x“—4 4 4

As we see in the next example, it may be possible to apply the technique of partial fraction decomposition to a nonrational
function. The trick is to convert the nonrational function to a rational function through a substitution.

Example 3.31

Applying Partial Fractions after a Substitution

Evaluate / —E8 L —dx.
sin“ x — sinx
Solution
Let’s begin by letting u = sinx. Consequently, du = cosxdx. After making these substitutions, we have

COSX g — du  _ du
/ 2 * 22— fu(u—l)

sin“x — sinx

1

+_u— T

Applying partial fraction decomposition to 1/u(u — 1) gives —1 - _1

uu—1)
Thus,

/%dx = —Inlul + Inlu — 1|+ C
sin“x — sinx
= —In|sinx| + In|sinx — 1| + C.

3.18 x+1
@ Evaluate —(x TG 2)dx.

Repeated Linear Factors

For some applications, we need to integrate rational expressions that have denominators with repeated linear factors—that
is, rational functions with at least one factor of the form (ax + b)", where n is a positive integer greater than or equal to

2. If the denominator contains the repeated linear factor (ax + b)", then the decomposition must contain

A Ar An
ax+b+(ax+b)2+ +(ax+b)"'

As we see in our next example, the basic technique used for solving for the coefficients is the same, but it requires more
algebra to determine the numerators of the partial fractions.

Partial Fractions with Repeated Linear Factors
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Evaluate [—X=2 gy
/(2x— D3(x=1)
Solution

We have degree(x —2) < degree((2x— 1)2(x— 1)), so we can proceed with the decomposition. Since

A B
+
2x=1" 2x-1)?

2x — 1)2 is a repeated linear factor, include in the decomposition. Thus,

x—=2 =4 4 B +-—C
Qx-D2x-1) 2x—-1 @x-—1? x-1

After getting a common denominator and equating the numerators, we have
x—2=AQx—Dx—1)+Bx—-1)+C2x— 12 (3.9)
We then use the method of equating coefficients to find the values of A, B, and C.
x—2=QA+40)x>+(-3A+B—4C)x + (A — B+ C).

Equating coefficients yields 2A +4C =0, -3A+B—-4C =1, and A — B+ C = —2. Solving this system
yields A=2, B=3, and C = -1.
Alternatively, we can use the method of strategic substitution. In this case, substituting x = 1 and x = 1/2 into

Equation 3.9 easily produces the values B =3 and C = —1. At this point, it may seem that we have run out
of good choices for x, however, since we already have values for B and C, we can substitute in these values

and choose any value for x not previously used. The value x = 0 is a good option. In this case, we obtain the
equation —2 = A(=1)(—=1) +3(-1) + (—1)(—1)2 or, equivalently, A = 2.

Now that we have the values for A, B, and C, we rewrite the original integral and evaluate it:

_x=2 g = 2 3 _ 1
/<2x—1>2(x—1>x /[2x—1+<2x—1)2 x—l)dx

_ -3 _
= In2x — 1| 2 =1 Inlx — 11+ C.

@/ 319 g up the partial fraction decomposition for / %dx. (Do not solve for the coefficients
x+3)x-4)

or complete the integration.)

The General Method

Now that we are beginning to get the idea of how the technique of partial fraction decomposition works, let’s outline the
basic method in the following problem-solving strategy.

Problem-Solving Strategy: Partial Fraction Decomposition

To decompose the rational function P(x)/Q(x), use the following steps:

1. Make sure that degree(P(x)) < degree(Q(x)). If not, perform long division of polynomials.



306 Chapter 3 | Techniques of Integration

2. Factor Q(x) into the product of linear and irreducible quadratic factors. An irreducible quadratic is a quadratic

that has no real zeros.
3. Assuming that deg(P(x)) < deg(Q(x)), the factors of Q(x) determine the form of the decomposition of
P(x)/Q(x).

a. If O(x) can be factored as (a|x+ b )ayx+ by)...[anx +by), where each linear factor is distinct,
then it is possible to find constants A, A,, ...A, satisfying

Px) A Ay Ay
Q(x)_a1x+b1+a2x+b2+ Y anx+ by

b. If O(x) contains the repeated linear factor (ax + b)", then the decomposition must contain

A A, Ay
x+b  arn? kb

c. For each irreducible quadratic factor ax’+bx+c that Q(x) contains, the decomposition must
include
Ax+ B
ax’>+bx+c

n
d. For each repeated irreducible quadratic factor (ax2 + bx + c) , the decomposition must include

A1X+Bl A2x+Bz A,x+ B,
2 2 SR N SR
ax“+bx+c (ax“+bx+c) (ax“+ bx+c)

e. After the appropriate decomposition is determined, solve for the constants.

Last, rewrite the integral in its decomposed form and evaluate it using previously developed techniques
or integration formulas.

Simple Quadratic Factors

Now let’s look at integrating a rational expression in which the denominator contains an irreducible quadratic factor. Recall
that the quadratic ax* + bx + ¢ is irreducible if ax?+ bx + ¢ =0 has no real zeros—that is, if b* — 4dac < 0.

Example 3.33

Rational Expressions with an Irreducible Quadratic Factor

2x—3
Evaluate f s xdx.

Solution

Since deg(2x —3) < deg(x3 + x), factor the denominator and proceed with partial fraction decomposition.

Since x> +x = )c(x2 + 1) contains the irreducible quadratic factor x>+ 1, include AJZC +lB as part of the
X+
decomposition, along with % for the linear term x. Thus, the decomposition has the form

2x—13 :Ax+B+Q'
x(x2+1) 2+1
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After getting a common denominator and equating the numerators, we obtain the equation
2x =3 = (Ax+Bx+ C(x* + 1),
Solving for A, B, and C, weget A=3, B=2, and C = -3.

Thus,

Substituting back into the integral, we obtain
20-3,. _ (3x+2 3)4
fx +x ‘/ 2+1
=3/ Fidr+2 L _gx—3[Llax  Splitup the integral.
f 2 / 241 / x phtup g

= §1n|x + 1| +2tan"!x = 3Inix| + C. Evaluate each integral.

Note: We may rewrite ln|)c2 + 1| = ln()c2 + 1), if we wish to do so, since Z2+1>0.

Example 3.34

Partial Fractions with an Irreducible Quadratic Factor

dx
Evaluate f 3 g

Solution

We can start by factoring v -8= (x— 2)(x2 + 2x +4). We see that the quadratic factor X2 4+2x+4 is

irreducible since 22 — 4(1)(4) = —12 < 0. Using the decomposition described in the problem-solving strategy,
we get

1 __A + Bx+C
_ 2 T x=2 2 ’
x=2)x“+2x+4) x“+2x+4

After obtaining a common denominator and equating the numerators, this becomes

1= A(x> +2x +4)+ Bx + O)(x - 2).

Applying either method, we get A = 11—2, B = 7 2, andC = —

w|>—

Rewriting 3dx ., we have
x° =38

/ 3df8=%f

X

dx—— x+4
/ N

We can see that
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/7

square on x%+2x+4 to obtain

dx =Inlx - 2|+ C, but / %dx requires a bit more effort. Let’s begin by completing the
+2x+

22 +4=(x+DI+3.

By letting # = x + 1 and consequently du = dx, we see that

/ x+4 _ / x+4 Complete the square on the
Z4ox+ 4 x4+ D%+ 3 denominator.
f”+3du Substituteu = x+ 1, x=u—1,
u“+3 and du = dx.
= / 7, du + f 23 du Split the numerator apart.
1ln u? + 3|+ tan -l ¢ Evaluate each integral.
3 g
= dinfx? + 21 + 4| +V3tan~! (—x + 1) 4, Rewrteinterms of xand
2 V3 simplify.
Substituting back into the original integral and simplifying gives
_dx -1{x+1
=Linx-2/- lnx +2x+4——tan ( )+C
B_g 12 [x? | V3

Here again, we can drop the absolute value if we wish to do so, since x24+2x+4>0 forall x.

Example 3.35

Finding a Volume

Find the volume of the solid of revolution obtained by revolving the region enclosed by the graph of

2
flx) = X—Z and the x-axis over the interval [0, 1] about the y-axis.
2
(x + 1)

Solution

Let’s begin by sketching the region to be revolved (see Figure 3.11). From the sketch, we see that the shell
method is a good choice for solving this problem.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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2.0+
1.5+
1.0+
0.5+

-10-05 9 05 10 15 20%
_0.5"

Figure 3.11 We can use the shell method to find the volume
of revolution obtained by revolving the region shown about the
y-axis.

The volume is given by

1 3
X
V= 277/ x N 1) dx = 271/0 —(x2 n 1)201)6.

2
Since deg((x2 + 1) )= 4>3= deg(x3), we can proceed with partial fraction decomposition. Note that

()c2 + l)2 is a repeated irreducible quadratic. Using the decomposition described in the problem-solving strategy,
we get

x> _Ax+B, Cx+D
2+ D> P+1 P+ 1)?

Finding a common denominator and equating the numerators gives

= (Ax+B)(x>+ 1)+ Cx +D.

Solving, we obtain A =1, B=0, C=-1, and D = 0. Substituting back into the integral, we have

1
=2 X X ]dx
{(x2+ 1 %+ 1)?

_ 17,2 1.1
—2ﬂ(2ln(x +1)+2 x2+1)

1

0

= a(ln2 - 1),
(1n2-7)

@/ 3.20 Set up the partial fraction decomposition for f 2%+ 3x + 1 5dx.
(x+2)(x =32 (x> +4)

309
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3.4 EXERCISES

Express the rational function as a sum or difference of two
simpler rational expressions.

182. 1
(x=3)(x-2)

183. )C2 + 1
x(x+ Dx+2)

184. 1

185. 3x+1

186. 2
86. 3x% (Hint: Use long division first.)

187. 2,4
188. 1
x=DEZ+1)

189. 1
x2(x -1

190. X
x> —4

191.

1
x(x—Dx—-2)(x—-3)

192 _ 1 _ 1
-1 e+ D= D +1)

193. 342 352
¥l @=DeE+x+1)

194. 2x
(x +2)2

195. 3x% 4 3 +20x2 4+ 3x + 31
2 2
(x+ D(x* +4)

Use the method of partial fractions to evaluate each of the
following integrals.

196.
/ (x— 3)(x -2

v f 2+2)c
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200. d
fx(x - Dx f 2)(x—3)

201. f2x +4x+22 )
x“4+2x+ 10

202. /'2

—5x+6
203. 2 —x
/x + xdx

204. / 2_x 6

205. dx
fx3 —2x2 —4x+

206.
/ 4—10x +9

8

Evaluate the following integrals, which have irreducible

quadratic factors.

dx

207.
/ (x—4)(x*

208. /‘
3

x+4x 4

X +2x+6)

dx

209. fx +6x +3x+6dx

% +2x

dx

210. f X

2

(x— D(x* +2x +2)

Use the method of partial fractions to evaluate the

following integrals.

211. 3x+4
‘/x +4(3—x)

212
—d
f(x+ 222 — %) g
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213. / 33x+4 dx (Hint: Use the rational root
2x —

theorem.)

Use substitution to convert the integrals to integrals of
rational functions. Then use partial fractions to evaluate the
integrals.

214. 1 x
/ —¢ _dx (Give the exact answer and the
0 3 6 _ 2x

decimal equivalent. Round to five decimal places.)

215. eXdx
/er_ exdx

216. f sinxdx

1 —cos?x

217. f sinx dx
cosZx + cosx — 6

218. [1—vx
T

219. dt
./( t —z)z

e —e

220 1+€ dx
1-e*

221. / dx
I+Vx+1

222. / dx
4
VX + Vx

223. CcoSX
/sinx(l - sinx)dx

225.

226. 1
S

227.
/1 -:exdx

Use the given substitution to convert the integral to an
integral of a rational function, then evaluate.

dtt—x

228. /
209. 1
/W+3ﬁ

230. Graph the curve y =

dx;x=u6

X

1+x

Then, find the area of the region bounded by the curve, the
x-axis, and the line x = 4.

over the interval [0, 5].

y
1+

0.8+
0.6+
04}

0.2+

xV¥

1 2 3 4 5
231. Find the volume of the solid generated when the

region bounded by y=1//x3-x), y=0,
and x = 2 is revolved about the x-axis.

x=1,

232. The velocity of a particle moving along a line is a

2
function of time given by v(¢) = gg—tl Find the distance
t

that the particle has traveled after # =5 sec.

Solve the initial-value problem for x as a function of t.

233 (271 + 12)% =1,(0t>4,x5)=0)

234 (14 5)% =x24+1,1> -5, x(1) = tan1

RN YR IP R | V5

235. _
(2 X =3,22) =

236. Find the x-coordinate of the centroid of the area
bounded by

2 -9)=1,

answer to two decimal places.)

y=0,x=4, andx=15. (Round the

237. Find the volume generated by revolving the area

3 1 x=1,x=7, andy =0

bounded by y = ——"—F—
x>+ 7x% + 6x

about the y-axis.

x—12
x? —8x — 20
(Round the answer to the

238. Find the area bounded by y=

y=0,x=2, andx = 4.
nearest hundredth.)
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239. Evaluate the integral

x+1

For the following problems, use the substitutions
x) _ __2 )
tan(z) =1, dx = dt, sinx = . and

14172 14142

2

cosx = 1= t2'
141
240.
/3 5 sinx
241. Find the area under the curve y= —1_ between
1 + sinx

x =0 and x = 7. (Assume the dimensions are in inches.)

242. Given tan(%) =1, derive  the  formulas

2
dx = 2 2a?t, sinx = 2t 7 and cosx = 1_12.
141t 141t 141t

243. /7
Evaluate f dx
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3.5 | Other Strategies for Integration

Learning Objectives

3.5.1 Use atable of integrals to solve integration problems.
3.5.2 Use a computer algebra system (CAS) to solve integration problems.

In addition to the techniques of integration we have already seen, several other tools are widely available to assist with the
process of integration. Among these tools are integration tables, which are readily available in many books, including the
appendices to this one. Also widely available are computer algebra systems (CAS), which are found on calculators and in
many campus computer labs, and are free online.

Tables of Integrals

Integration tables, if used in the right manner, can be a handy way either to evaluate or check an integral quickly. Keep in
mind that when using a table to check an answer, it is possible for two completely correct solutions to look very different.
For example, in Trigonometric Substitution, we found that, by using the substitution x = tan, we can arrive at

/ _dx 2:ln(x+\/xz—-l-1)+C.

1+x

However, using x = sinh#, we obtained a different solution—namely,

dx
1+ x2

=sinh~'x+C.

We later showed algebraically that the two solutions are equivalent. That is, we showed that sinh™!x = ln(x +Vx%7+1 ’
In this case, the two antiderivatives that we found were actually equal. This need not be the case. However, as long as the

difference in the two antiderivatives is a constant, they are equivalent.

Example 3.36

Using a Formula from a Table to Evaluate an Integral

Use the table formula

/Vaz—uzdu=_ a’—u? luy ¢

u a
u2

A/ 2x
to evaluate / li;xedx.

Solution

If we look at integration tables, we see that several formulas contain expressions of the form Va® — u?. This

expression is actually similar to V16 — e?, where a =4 and u = €. Keep in mind that we must also have

du = e*. Multiplying the numerator and the denominator of the given integral by e* should help to put this
integral in a useful form. Thus, we now have

/VI6e_xezxdx=_/V16e;xezxexdx-
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A2 2
Substituting u = e* and du = e* produces f +4—=-—qu. From the integration table (#88 in Appendix A),
u

V2 — o2 V2 — 2
ooy, = damut _gp-lug
u

Thus,
1/ 2. 2.
/m;xexdx = f16+exe"dx Substitute u = e* and du = e* dx.
e e X
/ V42 — 42 :
= )——du Apply the formula using a = 4.
u
2 2
= _14 T — sin_1%+ C Substitute u = e”.
2.
= _Vi6—e x—sin_l(%x +C

Computer Algebra Systems

If available, a CAS is a faster alternative to a table for solving an integration problem. Many such systems are widely
available and are, in general, quite easy to use.

Example 3.37

Using a Computer Algebra System to Evaluate an Integral

1/ 2
)CT_4+l + C, aresult

Compare this result with In 5

dx
Use a computer algebra system to evaluate [ —=£—.
TR s

we might have obtained if we had used trigonometric substitution.

Solution
Using Wolfram Alpha, we obtain

f\/;i—L4=1n|\/x27—4+x|+C.
X% =

Notice that
2 2
Inpa=4 4+ L4 € = =4 4L +C:1n|Vx2—4+x|—ln2+C.

Since these two antiderivatives differ by only a constant, the solutions are equivalent. We could have also
demonstrated that each of these antiderivatives is correct by differentiating them.

You can access an integral calculator (http://lwww.openstaxcollege.org/l/20_intcalc) for more examples.
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http://www.openstaxcollege.org/l/20_intcalc

Chapter 3 | Techniques of Integration 315

Example 3.38

Using a CAS to Evaluate an Integral

Evaluate / sin> xdx using a CAS. Compare the result to %c0s3x —cosx + C, the result we might have

obtained using the technique for integrating odd powers of sinx discussed earlier in this chapter.

Solution
Using Wolfram Alpha, we obtain

[sin® xdx = ~Lcos(3x) — 9cosx) +C.

This looks quite different from %cosz'x —cosx + C. To see that these antiderivatives are equivalent, we can

make use of a few trigonometric identities:

%(cos(.%x) —9cosx) = %(cos(x + 2x) — 9cosx)
= %(cos(x)cos@x) — sin(x)sin(2x) — 9cos x)

= %(cosx@coszx - 1) — sinx(2sinxcosx) — 9cosx)
_1 2

= E(ZCOS X —COSX — ZCosx(l — Ccos x) —9cosx)

= %(4005 x — 12cosx)

—_—

Wl

OS X — COSX.

Thus, the two antiderivatives are identical.

We may also use a CAS to compare the graphs of the two functions, as shown in the following figure.

Yi 1
12

y=8%_cosx 08} y (cos(3x) — 9cosx)

Figure 3.12 The graphs of y = %cos3x — cosx and

y= %(COS(3X) — 9cosx) are identical.

@ 321 yse a CAS to evaluate / dx

Va2 +4
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3.5 EXERCISES

Use a table of integrals to evaluate the following integrals.

244, 4
X Jx
{\/1+2x

245. x+3 dx
‘/x2 +2x+2

246. /x3 V1 + 2x2dx

1
/Vx2+6x *

248. X
fx + ldx

247.

2
249, fx-2x dx
250. Ly
/ 4x% +25

251. / 4d_yy2

252 [in@x)cos(2x)dx

253. / csc(2w)cot(2w)dw

254. fzy dy

1
255. / Ixdx
0

Vx2 +8

256. 1/4
/ secz(zzx)tan(ﬂx)a’x
1/4

257. /Oﬂ/2tan2 (%)dx
258. fcos3xdx

259 [tan’ 3x)dx

260, fsinZycos3ydy

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Use a CAS to evaluate the following integrals. Tables can
also be used to verify the answers.

261. [T] / dw

1+ sec(%)

262. dw
[T / 1 — cos(7w)

263. 4 dt
[r] | —%———
o4cost + 3sint

264. NI
m /[ e =9x

265. dx
[T] | —"—=
/ BZITE

266. dx
T PR 7 —
[ ]fx x—1

267. [T] X3 sinxdx

268. [T] /x\/x4 —9dx

269. [T] /%dx
I1+e™™

270. 1y /«/732_)65]( i

271. dx
T PR P —
[ ]/x x—1

272. [T] fexcos_l(ex)dx

Use a calculator or CAS to evaluate the following integrals.

273. (1] /;)

274. 1 2
[T] x-e ¥ dx
J,

/4
cos(2x)dx

275. (1] /-8 2x 4
—==—dx
0Vx2 +36

276 V3

. 2/
1




Chapter 3 | Techniques of Integration

277.
[T] —dx
/ ¥ +4x+13

- /1 + sinx

Use tables to evaluate the integrals. You may need to
complete the square or change variables to put the integral
into a form given in the table.

279. /2

+ 2x + 10
280. / dx
Vx2 — 6x

281. e*
—&—dx
/ e
282. / 2cosx. dx
sin“x + 2sinx

283. arctan(x3)
/ —a >

284. In|xlarcsin(Inl|x])
f — 5  dx

Use tables to perform the integration.

285. /'x+l

=t

287. dx
fl — cos(4x)

288. /m

289. Find the area bounded by
y(4 + 25x2) =5,x=0,y=0, and x = 4. Use a table of

integrals or a CAS.

290. The region bounded between the curve
1 . .
=—— 03<x<1.1, and the x-axis is

Y V1 + cosx

revolved about the x-axis to generate a solid. Use a table of
integrals to find the volume of the solid generated. (Round
the answer to two decimal places.)
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291. Use substitution and a table of integrals to find the
area of the surface generated by revolving the curve
y=e¢% 0<x<3, about the x-axis. (Round the answer

to two decimal places.)

292. [T] Use an integral table and a calculator to find the
area of the surface generated by revolving the curve

20< <1,
= Usd

to two decimal places.)

about the x-axis. (Round the answer

293. [T] Use a CAS or tables to find the area of the surface

generated by revolving the curve y =cosx, 0 < x < 727 ,

about the x-axis. (Round the answer to two decimal places.)

294, 2
9 Find the length of the curve y = XT over [0, 8].

295. Find the length of the curve y = ¢* over [0, In(2)].

296. Find the area of the surface formed by revolving the
graph of y = 2vx over the interval [0, 9] about the x-axis.

297. Find the value of the function

f) =

average

over the interval [-3, 3].

298. Approximate the arc length of the curve y = tan(zx)

over the interval [O, l]. (Round the answer to three

4
decimal places.)
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3.6 | Numerical Integration

Learning Objectives

3.6.1 Approximate the value of a definite integral by using the midpoint and trapezoidal rules.
3.6.2 Determine the absolute and relative error in using a numerical integration technique.
3.6.3 Estimate the absolute and relative error using an error-bound formula.

3.6.4 Recognize when the midpoint and trapezoidal rules over- or underestimate the true value
of an integral.

3.6.5 Use Simpson'’s rule to approximate the value of a definite integral to a given accuracy.

The antiderivatives of many functions either cannot be expressed or cannot be expressed easily in closed form (that is,
in terms of known functions). Consequently, rather than evaluate definite integrals of these functions directly, we resort
to various techniques of numerical integration to approximate their values. In this section we explore several of these
techniques. In addition, we examine the process of estimating the error in using these techniques.

The Midpoint Rule

Earlier in this text we defined the definite integral of a function over an interval as the limit of Riemann sums. In general,
any Riemann sum of a function f(x) over an interval [a, b] may be viewed as an estimate of /a ’ f(x)dx. Recall that a
Riemann sum of a function f(x) over an interval [a, b] is obtained by selecting a partition
P ={xg X1, Xp,..., Xp}, wherea =xp <x; <xy< -+ <x,=0b
and a set
S=1{xf,x% ..., xk |, wherex; _| <x¥ <x; foralli.

n
The Riemann sum corresponding to the partition P and the set S is given by Z f(xF )Ax;, where Ax;=x;—x;_1,
i=1

the length of the ith subinterval.

The midpoint rule for estimating a definite integral uses a Riemann sum with subintervals of equal width and the midpoints,

m;, of each subinterval in place of x¥ . Formally, we state a theorem regarding the convergence of the midpoint rule as

follows.

Theorem 3.3: The Midpoint Rule

Assume that f(x) is continuous on [a, b]. Let n be a positive integer and Ax = b;_a' If [a, b] is divided into n

subintervals, each of length Ax, and m; is the midpoint of the ith subinterval, set

n 3.10
M,= Y. fm)Ax. (3:10)

i=1

b
Then nli)mooM,, = /a f(x)dx.

n
As we can see in Figure 3.13, if f(x) >0 over [a, b], then Z f(m;)Ax corresponds to the sum of the areas of
i=1
rectangles approximating the area between the graph of f(x) and the x-axis over [a, b]. The graph shows the rectangles

corresponding to M, for a nonnegative function over a closed interval [a, b].
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f(x)

TN

%

| |
i P i
|

| |

: i -
a=xg m X, M, X, My X3 my, b=x,

Figure 3.13 The midpoint rule approximates the area between
the graph of f(x) and the x-axis by summing the areas of

rectangles with midpoints that are points on f(x).

Example 3.39

Using the Midpoint Rule with M,

Use the midpoint rule to estimate f x%dx using four subintervals. Compare the result with the actual value of
0

this integral.

Solution
Each subinterval has length Ax = 14;0 = % Therefore, the subintervals consist of
1]]1 1
[0’ 4]’ [4 2] [2 4] and [4’ ]
The midpoints of these subintervals are {% % % %} Thus,

=) Q) Y b A B B R

Since
1
2.1 1_21)_ 1 .
/Ox dx—3and|3 64| =~ 0.0052,

we see that the midpoint rule produces an estimate that is somewhat close to the actual value of the definite
integral.

Example 3.40

Using the Midpoint Rule with M

Use M to estimate the length of the curve y = %xz on [1, 4].




320 Chapter 3 | Techniques of Integration

Solution

The length of y = %x2 on [1, 4] is

/ﬂ/ 1 (&)

4
Since ﬂ = x, this integral becomes / V1 + x%dx.
1

dx
If [1, 4] is divided into six subintervals, then each subinterval has length Ax = % = % and the midpoints
- 57911 13 15 el
of the subintervals are {4, U R } If we set f(x) 14+ x%,

e =)+ 410+ )+ )+ ) 1)
(1.6008 + 2.0156 + 2.4622 + 2.9262 + 3.4004 + 3.8810) = 8.1431.

~
~

3.22 21
Use the midpoint rule with n = 2 to estimate f *dx.
1

The Trapezoidal Rule

We can also approximate the value of a definite integral by using trapezoids rather than rectangles. In Figure 3.14, the area
beneath the curve is approximated by trapezoids rather than by rectangles.

Yi

' X
a=x X, X5 X3 b=x,

Figure 3.14 Trapezoids may be used to approximate the area
under a curve, hence approximating the definite integral.

The trapezoidal rule for estimating definite integrals uses trapezoids rather than rectangles to approximate the area under
a curve. To gain insight into the final form of the rule, consider the trapezoids shown in Figure 3.14. We assume that the
length of each subinterval is given by Ax. First, recall that the area of a trapezoid with a height of h and bases of length

b, and b, is given by Area = %h(bl + b,). We see that the first trapezoid has a height Ax and parallel bases of length

f(xg) and f(x;). Thus, the area of the first trapezoid in Figure 3.14 is

TAX(f(xg) + f(x ).

The areas of the remaining three trapezoids are
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TAX(fCr)) + f(x), SAX(f(x) + f(x3)), and TAX(f(x3) + f(xg).
Consequently,
b
S $edx m LAx(70x0) + ) +FAF ) + F0x0) + TAX () + fa3) + FAx(F(x3) + Fx)).

1

After taking out a common factor of >

Ax and combining like terms, we have

b
fa FOodx & LA () +2£00)) +2£ () +2£(xp) + fixy).

Generalizing, we formally state the following rule.

Theorem 3.4: The Trapezoidal Rule

Assume that f(x) is continuous over [a, b]. Let n be a positive integer and Ax = b = 4 Let [a, b] be divided into

n subintervals, each of length Ax, with endpoints at P = {xo, X5 Xgeens xn}. Set

Ty = LAx(f(xg) + 20e)) +2f () + =+ + 2, _ ) + FOrn)) (3.11)

b
Then, nE“J}ooT" = _/;l f(x)dx.

Before continuing, let’s make a few observations about the trapezoidal rule. First of all, it is useful to note that

n n
T,= %(Ln +R,)where L, = z f(x;_AxandR, = Z fxp)Ax.
i=1 i=1

Thatis, L,, and R, approximate the integral using the left-hand and right-hand endpoints of each subinterval, respectively.

In addition, a careful examination of Figure 3.15 leads us to make the following observations about using the trapezoidal
rules and midpoint rules to estimate the definite integral of a nonnegative function. The trapezoidal rule tends to
overestimate the value of a definite integral systematically over intervals where the function is concave up and to
underestimate the value of a definite integral systematically over intervals where the function is concave down. On the other
hand, the midpoint rule tends to average out these errors somewhat by partially overestimating and partially underestimating
the value of the definite integral over these same types of intervals. This leads us to hypothesize that, in general, the
midpoint rule tends to be more accurate than the trapezoidal rule.

Yi y

/

f(x)

X ) X
a=xp Xy X Xq b=x, a=x; my X m, X, My Xy my, b=x,

Figure 3.15 The trapezoidal rule tends to be less accurate than the midpoint rule.
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Example 3.41

Using the Trapezoidal Rule

1
Use the trapezoidal rule to estimate / x2dx using four subintervals.
0

Solution

The endpoints of the subintervals consist of elements of the set P = {0,

Thus,
1

s =g o) o)
1
8

<7 3.23 2
@ Use the trapezoidal rule with n = 2 to estimate f *dx
1

Absolute and Relative Error

An important aspect of using these numerical approximation rules consists of calculating the error in using them for
estimating the value of a definite integral. We first need to define absolute error and relative error.

Definition

If B is our estimate of some quantity having an actual value of A, then the absolute error is given by |A — Bl. The

relative error is the error as a percentage of the absolute value and is given by |AA+B| = |AA+B| -100%.

Example 3.42

Calculating Error in the Midpoint Rule

Calculate the absolute and relative error in the estimate of /;) 1x2 dx using the midpoint rule, found in Example
3.39.

Solution

The calculated value is / x2dx = % and our estimate from the example is M, = % Thus, the absolute error
is given by |(§) (21 )‘ i 92 =~ 0.0052. The relative error is
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1/192 _ 1 ~
3 =i~ 0.015625 ~ 1.6%.

Example 3.43

Calculating Error in the Trapezoidal Rule

1
Calculate the absolute and relative error in the estimate of / x%dx using the trapezoidal rule, found in
0

Example 3.41.
Solution
1
The calculated value is / x2dx = % and our estimate from the example is T, = %—é Thus, the absolute error
0
is given by % - é—% = % ~ 0.0104. The relative error is given by
1/96 _ ~
13 = 0.03125 ~ 3.1%.
3.24 2 1 24
In an earlier checkpoint, we estimated / ¥dx to be 35 using 7,. The actual value of this integral is
1

In2. Using % ~ 0.6857 and In2 = 0.6931, calculate the absolute error and the relative error.

In the two previous examples, we were able to compare our estimate of an integral with the actual value of the integral;
however, we do not typically have this luxury. In general, if we are approximating an integral, we are doing so because we
cannot compute the exact value of the integral itself easily. Therefore, it is often helpful to be able to determine an upper
bound for the error in an approximation of an integral. The following theorem provides error bounds for the midpoint and
trapezoidal rules. The theorem is stated without proof.

Theorem 3.5: Error Bounds for the Midpoint and Trapezoidal Rules

Let f(x) be a continuous function over [a, b], having a second derivative f”(x) over this interval. If M is the

maximum value of |f”(x)| over [a, b], then the upper bounds for the error in using M, and T, to estimate

b
/ f(x)dx are

—a)3 3.12
Error in M, < M ( )
24n
and
M(b - a)® (3.13)

Errorin7,, <
" 122
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We can use these bounds to determine the value of n necessary to guarantee that the error in an estimate is less than a
specified value.

Example 3.44

Determining the Number of Intervals to Use

1
2
What value of n should be used to guarantee that an estimate of f e’ dx is accurate to within 0.01 if we use
0

the midpoint rule?

Solution
2
We begin by determining the value of M, the maximum value of |f”(x)| over [0, 1] for f(x) =e* . Since
2
f'(x) =2xe*, wehave
” 2 2

£ =2e" +4x2er.

Thus,
2
()l = 2¢* (1 +2x%) < 2-€-3 = 6e.

From the error-bound Equation 3.12, we have

3 3
Errorin M, < M@ —2a) < be(l _20) = 652.
24n 24n 24n

Now we solve the following inequality for 7:

662 <00l1.
24n

Thus, n > % ~ 8.24. Since n must be an integer satisfying this inequality, a choice of n =9 would

L)
guarantee that f e’ dx— M, <0.01.
0

Analysis
We might have been tempted to round 8.24 down and choose n = 8, but this would be incorrect because we
must have an integer greater than or equal to 8.24. We need to keep in mind that the error estimates provide an

upper bound only for the error. The actual estimate may, in fact, be a much better approximation than is indicated
by the error bound.

3.25 1
@ Use Equation 3.13 to find an upper bound for the error in using M, to estimate x2dx.
0

Simpson’s Rule

With the midpoint rule, we estimated areas of regions under curves by using rectangles. In a sense, we approximated the
curve with piecewise constant functions. With the trapezoidal rule, we approximated the curve by using piecewise linear
functions. What if we were, instead, to approximate a curve using piecewise quadratic functions? With Simpson’s rule,
we do just this. We partition the interval into an even number of subintervals, each of equal width. Over the first pair
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X2 X2
of subintervals we approximate / f(x)dx with / p(x)dx, where p(x) = Ax? + Bx + C is the quadratic function
X0 0

passing through (xq, f(xg)), (x, f(x7)), and (x5, f(x,)) (Figure 3.16). Over the next pair of subintervals we

X4
approxnnate X)dx with t e1ntegra of another qua ratic runction passmgt roug Xn, X N X2, X , all
i  fOodx with the i 1 of another quadratic functi ing through (x,, f(x,)), (x3. f(x3)), and

2

(x4, f(x4)). This process is continued with each successive pair of subintervals.

Yi y

P2[x)

X

Xo X1 X2
Figure 3.16 With Simpson’s rule, we approximate a definite integral by integrating a piecewise quadratic function.

To understand the formula that we obtain for Simpson’s rule, we begin by deriving a formula for this approximation over
the first two subintervals. As we go through the derivation, we need to keep in mind the following relationships:

f(x()) = p(XO) = A)CO 2 + B)CO +C
fG&p = plxy) = Ax,y 24 Bx; +C
f(X2) = p(XZ) = A.XZ 2 + BXZ +C

Xy —Xxg=2Ax, where Ax is the length of a subinterval.

(Xz + Xo).

X2+XO=2)C1, Sincex1= 5

Thus,
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/; );2 f)dx = /x ):)zp(x)dx

X2
= [ (Ax*+Bx+ Cpdx
X0

A3 B2 2
=Lx 4+ E2x“+ Cx Find the antiderivative.
3 2 *0
= %(xZ 3_x, 3) + %(xz 2 x 2) + C(xy — x0) Evaluate the antiderivative.

= %(XZ - XO)()CZ 2 + X2 X0 + X0 2)
+g(x2 = x0)(xy + xg) + C(xy — xq)

_ X9 g xO(ZA(xZ 2 + Xy X0 + X 2) + 33()62 + xo) + 6C) Factor out

X2 — X

= 8%((Axy? + Bxy + C)+ (Axg > + Bxg+ C)
+A(X2 2 + ZXZXO + .XO 2) + 2B(X2 + Xo) + 4C)
_ %(f(xz) + frg) + A, +x0)2 +2B(x5 + xq) + 4C) Rearrange the terms.

Factor and substitute.
f(xy) = Axg 24 Bxy+ Cand
f(xg) = Axg 2 + Bxy+ C.
= %(f(xz) + f(xo) + ARx )% + 2B(2x)) + 4C) Substitute x, + xg = 2x;.
Expand and substitute

= AX(f(xy) + 410 + fxo). FGry) = Ax, 2+ Bx, +

X4
If we approximate / f(x)dx using the same method, we see that we have
X2

X4
[, @ B + 47 + S
Combining these two approximations, we get
X4
J Feodx = S eg) + 47 () + 27 ep) + 47 ep) + Fx)

The pattern continues as we add pairs of subintervals to our approximation. The general rule may be stated as follows.

Theorem 3.6: Simpson’s Rule

Assume that f(x) is continuous over [a, b]. Let n be a positive even integer and Ax = b = 4 Let [a, b] be divided

into n subintervals, each of length Ax, with endpoints at P = {xo, X1 X,eees xn}. Set
Sn=BX(f(xg) + 4f(x)) + 2f(xp) + 4f(x3) + 2f (k) + = +2f(Xp_p) +4f(xy_ )+ flxn).  (3-14)
n—-3 0 1 2 3 4 n—2 n—1 n/)
Then,

b
lim S,= [ f(odx.

n— +o0o
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Just as the trapezoidal rule is the average of the left-hand and right-hand rules for estimating definite integrals, Simpson’s
rule may be obtained from the midpoint and trapezoidal rules by using a weighted average. It can be shown that

5= B

It is also possible to put a bound on the error when using Simpson’s rule to approximate a definite integral. The bound in
the error is given by the following rule:

Rule: Error Bound for Simpson’s Rule

Let f(x) be a continuous function over [a, b] having a fourth derivative, f (4)(x), over this interval. If M is the

b
maximum value of ’ f (4)(x)’ over [a, b], then the upper bound for the error in using §,, to estimate / f(x)dx is
a
given by

M@b —a)® (3.15)
180n*

Example 3.45

Applying Simpson’s Rule 1

Error in §;, <

1
Use §, to approximate x> dx. Estimate a bound for the error in § 9
0

Solution

Since [0, 1] is divided into two intervals, each subinterval has length Ax = 1—50 = % The endpoints of these

subintervals are {0, %, 1}. If we set f(x) = x3, then

Sy = %-%(f(O) + 4f(%) + f(l)) = %(0 +4 % + 1) = % Since f(4) (x) =0 and consequently M =0, we

see that

o)’ _

Errorin S, < =
27180 - 2*

This bound indicates that the value obtained through Simpson’s rule is exact. A quick check will verify that, in

1
fact, f Xdx = %
0

Example 3.46

Applying Simpson’s Rule 2

Use S¢ to estimate the length of the curve y = %xz over [1, 4].
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Solution
4

The length of y= %xz over [1, 4] is f V1 + x2dx. If we divide [1, 4] into six subintervals, then each
1

subinterval has length Ax = 4-1_ % and the endpoints of the subintervals are {1, % 2, % 3, % 4}.

6
Setting f(x) = V1 + x2,

S = %-%(f(l) + 4f(%) +2£(2) + 4f(%) +21(3) + 4f(%) + f(4)).
After substituting, we have

S¢ = %(1.4142 +4-1.80278 +2-2.23607 + 4 -2.69258 4+ 2-3.16228 + 4 - 3.64005 4+ 4.12311)
~ 8.14594.

3.26 21
Use S, to estimate f ¥dx.
1
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3.6 EXERCISES

Approximate the following integrals using either the
midpoint rule, trapezoidal rule, or Simpson’s rule as
indicated. (Round answers to three decimal places.)

299. 2
/1 d—)f; trapezoidal rule; n =5

300. 3 3
f V4 + x° dx; trapezoidal rule; n = 6
0

301. 3 3
/ V4 + x”dx; Simpson’srule; n =3
0

302. 12 )
f x“dx; midpoint rule; n = 6
0

303. 1 )
/ sin“ (zx)dx; midpoint rule; n =3
0

304. Use the midpoint rule with eight subdivisions to
4

estimate x2dx.
2

305. Use the trapezoidal rule with four subdivisions to

4
estimate / x2dx.
2

306. 4 )
Find the exact value of / x“dx. Find the error of
2

approximation between the exact value and the value
calculated using the trapezoidal rule with four subdivisions.
Draw a graph to illustrate.

Approximate the integral to three decimal places using the
indicated rule.

307. 1 )
/ sin“ (nx)dx; trapezoidal rule; n = 6
0

308. 3
/0 1

1+x°

dx; trapezoidal rule; n = 6

309. 3 1
/ 3dx; Simpson’s rule; n =3
01+x

310. 08 »
_/ e ™ dx; trapezoidal rule; n = 4
0

311. 0.8 2
/ e ™ dx; Simpson’s rule; n = 4
0

329
312. 04 )
f sin(x“)dx; trapezoidal rule; n =4
0
313. 04 )
/ sin(x“)dx; Simpson’s rule; n = 4
0
314. 05
f LO5Xx; trapezoidal rule; n = 4
0.1
315. 05
/ %dx; Simpson’s rule; n = 4
0.1
316. 1 d
Evaluate / _xz exactly and show that the result
01+x

is m/4. Then, find the approximate value of the integral
using the trapezoidal rule with n = 4 subdivisions. Use the
result to approximate the value of z.

317. 4

Approximate / ﬁdx using the midpoint rule with
2

four subdivisions to four decimal places.

318. 4

Approximate f ﬁdx using the trapezoidal rule
2

with eight subdivisions to four decimal places.

319. Use the trapezoidal rule with four subdivisions to
0.8

estimate / x> dx to four decimal places.
0

320. Use the trapezoidal rule with four subdivisions to
0.8

estimate f x> dx. Compare this value with the exact
0

value and find the error estimate.

321. Using Simpson’s rule with four subdivisions, find
/2

f cos(x)dx.
0

322. 1 5
Show that the exact value of f xe Ydx=1- <
0

Find the absolute error if you approximate the integral
using the midpoint rule with 16 subdivisions.

323 1 2
Given /0 xe Ydx=1- <, use the trapezoidal rule

with 16 subdivisions to approximate the integral and find
the absolute error.
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324. Find an upper bound for the error in estimating

3
f (5x + 4)dx using the trapezoidal rule with six steps.
0

325. Find an upper bound for the error in estimating
5

f %dx using the trapezoidal rule with seven
4(x=1)

subdivisions.

326. Find an upper bound for the error in estimating
3

/ (6x2 — 1)dx using Simpson’s rule with n = 10 steps.
0

327. Find an upper bound for the error in estimating

5

/ " 1 1dx using Simpson’s rule with n = 10 steps.
) X—

328. Find an upper bound for the error in estimating

/2
/ 2xcos(x)dx using Simpson’s rule with four steps.
0

329. Estimate the minimum number of subintervals needed
4
to approximate the integral _/ (5x2 + S)dx with an error
1
magnitude of less than 0.0001 using the trapezoidal rule.
330. Determine a value of n such that the trapezoidal rule
1
will approximate f V1 + x%dx with an error of no more
0
than 0.01.
331. Estimate the minimum number of subintervals needed
3
to approximate the integral / (2x3 + 4x)dx with an error
2
of magnitude less than 0.0001 using the trapezoidal rule.
332. Estimate the minimum number of subintervals needed

4
to approximate the integral / ﬁdx with an error
3(x—

magnitude of less than 0.0001 using the trapezoidal rule.

333. Use Simpson’s rule with four subdivisions to
approximate the area under the probability density function

2
=L =72 from x=0 to x = 04.

V2r

334. Use Simpson’s rule with n = 14 to approximate (to

three decimal places) the area of the region bounded by the
graphsof y=0, x=0, and x=z/2.
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335. The length of one arch of the curve y = 3sin(2x) is
/2

givenby L = f V1 + 36c0s2(2x)dx. Estimate L using
0

the trapezoidal rule with n = 6.

336. The length of the ellipse
x=acos(t), y=bsin(t), 0 <t <2z is given by

/2
L= 4af 1- ezcosz(t)dt, where e is the
0

eccentricity of the ellipse. Use Simpson’s rule with n = 6

subdivisions to estimate the length of the ellipse when
a=2 and e =1/3.

337. Estimate the area of the surface generated by
revolving the curve y = cos(2x), 0 < x < % about the x-

axis. Use the trapezoidal rule with six subdivisions.

338. Estimate the area of the surface generated by
revolving the curve y= 2x%, 0<x<3 about the

x-axis. Use Simpson’s rule with n = 6.

339. The growth rate of a certain tree (in feet) is given by

__2 —2n
y_t+1+e

growth of the tree through the end of the second year by
using Simpson’s rule, using two subintervals. (Round the
answer to the nearest hundredth.)

, where t is time in years. Estimate the

340. 1
[T] Use a calculator to approximate f sin(zx)dx
0

using the midpoint rule with 25 subdivisions. Compute the
relative error of approximation.

341. 5
[T] Given 3x2 = 2x)dx = 100, approximate
.A( Ja pp

the value of this integral using the midpoint rule with 16
subdivisions and determine the absolute error.

342. Given that we know the Fundamental Theorem of
Calculus, why would we want to develop numerical
methods for definite integrals?
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343. The table represents the coordinates (x, y) that give

the boundary of a lot. The units of measurement are meters.
Use the trapezoidal rule to estimate the number of square
meters of land that is in this lot.

X y X y

0 125 600 95

100 125 700 88

200 120 800 75

300 112 900 35

400 90 1000 0

500 90

344. Choose the correct answer. When Simpson’s rule is
used to approximate the definite integral, it is necessary that
the number of partitions be

a. an even number
b. odd number
c. either an even or an odd number

d. amultiple of 4

345. The “Simpson” sum is based on the area under a

346. The error formula for Simpson’s rule depends on___.
a  f
b. f(x)
4
¢ P

d. the number of steps

331
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3.7 | Improper Integrals

Learning Objectives

3.7.1 Evaluate an integral over an infinite interval.
3.7.2 Evaluate an integral over a closed interval with an infinite discontinuity within the interval.
3.7.3 Use the comparison theorem to determine whether a definite integral is convergent.

1

Is the area between the graph of f(x) =+ and the x-axis over the interval [1, +oo) finite or infinite? If this same region

is revolved about the x-axis, is the volume finite or infinite? Surprisingly, the area of the region described is infinite, but the
volume of the solid obtained by revolving this region about the x-axis is finite.

In this section, we define integrals over an infinite interval as well as integrals of functions containing a discontinuity on
the interval. Integrals of these types are called improper integrals. We examine several techniques for evaluating improper
integrals, all of which involve taking limits.

Integrating over an Infinite Interval

+00 t
How should we go about defining an integral of the type f f(x)dx? We can integrate f f(x)dx for any value of
a a

t, so it is reasonable to look at the behavior of this integral as we substitute larger values of 7. Figure 3.17 shows that

t
f f(x)dx may be interpreted as area for various values of z. In other words, we may define an improper integral as a
a

limit, taken as one of the limits of integration increases or decreases without bound.

yi Yi Yi

f(x) f(x) f(x)

a t X a t X a t X
Figure 3.17 To integrate a function over an infinite interval, we consider the limit of the integral as the upper limit increases
without bound.

Definition

1. Let f(x) be continuous over an interval of the form [a, +c0). Then

/+°° i fl (3.16)
, fWdx= lim [ fOdx,
provided this limit exists.
2. Let f(x) be continuous over an interval of the form (—oo0, b]. Then
(3.17)

b b
/ __JWdx = Tim_ ft Fdx,

provided this limit exists.
In each case, if the limit exists, then the improper integral is said to converge. If the limit does not exist, then
the improper integral is said to diverge.

3. Let f(x) be continuous over (—oo, +c0). Then

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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e 0 s (3.18)
S fwdx= [ e [ fex

0 +00
provided that / f(x)dx and / f(x)dx both converge. If either of these two integrals diverge, then
—c3 0

+00 +0o0 a +oo
/ f(x)dx diverges. (It can be shown that, in fact, / fx)dx = / f(x)dx + / f(x)dx for any
—0o0 —00 —00 a

value of a.)

In our first example, we return to the question we posed at the start of this section: Is the area between the graph of

fx) = % and the x -axis over the interval [1, +oc0) finite or infinite?

Example 3.47

Finding an Area

Determine whether the area between the graph of f(x) = % and the x-axis over the interval [1, +00) is finite or

infinite.

Solution
We first do a quick sketch of the region in question, as shown in the following graph.

Yi
2__

-2

> |

Figure 3.18 We can find the area between the curve
f(x) = 1/x and the x-axis on an infinite interval.

o0
We can see that the area of this region is givenby A = f %dx. Then we have
1
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A =/loo%dx

t
= lim %dx Rewrite the improper integral as a limit.
t— +o0J |

t
Find the antiderivative.

= lim Inlx|
t— 400 1

= lim (Injfl —Inl1)  Evaluate the antiderivative.
t— +oco

= +o00. Evaluate the limit.

Since the improper integral diverges to +oo, the area of the region is infinite.

Example 3.48

Finding a Volume

Find the volume of the solid obtained by revolving the region bounded by the graph of f(x) = % and the x-axis

over the interval [1, +oc0) about the x -axis.

Solution
The solid is shown in Figure 3.19. Using the disk method, we see that the volume V is

Figure 3.19 The solid of revolution can be generated by rotating an infinite area about the x-
axis.

Then we have

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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+o0
V ==x f %dx
I x
t
=7x lim ldx Rewrite as a limit.
t— +ooJ | x2
t
=z lim - % Find the antiderivative.
t — +oo 1

=7 lim (— -+ 1) Evaluate the antiderivative.
t—> +oo\ 1
=7

The improper integral converges to z. Therefore, the volume of the solid of revolution is z.

In conclusion, although the area of the region between the x-axis and the graph of f(x) = 1/x over the interval [1, +o0)

is infinite, the volume of the solid generated by revolving this region about the x-axis is finite. The solid generated is known
as Gabriel’s Horn.

’ Visit this website (http://lwww.openstaxcollege.org/l/20_GabrielsHorn) to read more about Gabriel’s
Horn.

Example 3.49

Chapter Opener: Traffic Accidents in a City

; -~ /"‘ !
Figure 3.20 (credit: modification of work by David
McKelvey, Flickr)

In the chapter opener, we stated the following problem: Suppose that at a busy intersection, traffic accidents occur
at an average rate of one every three months. After residents complained, changes were made to the traffic lights
at the intersection. It has now been eight months since the changes were made and there have been no accidents.
Were the changes effective or is the 8-month interval without an accident a result of chance?

Probability theory tells us that if the average time between events is k, the probability that X, the time between

events, is between a and b is given by

0ifx <0

b
Pa<x<b)= fa f()dx where f(x) = {ke‘kxifx >0

Thus, if accidents are occurring at a rate of one every 3 months, then the probability that X, the time between

accidents, is between a and b is given by
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Oifx<0

b
Pla<x<b)= fa f(x)dx where f(x) = {3e_3xifx >0

+o0
To answer the question, we must compute P(X > 8) = / 3e 3 dx and decide whether it is likely that 8
8

months could have passed without an accident if there had been no improvement in the traffic situation.

Solution

We need to calculate the probability as an improper integral:
+o0

f 3e 3 dx
8

t
lim 3e 3 dx
- +o0 8

P(X 2 8)

lim —e
t — 400

= lim (—e_3t+e_24)

t— 400

~38x 10711,

—3x|t

The value 3.8 x 107! represents the probability of no accidents in 8 months under the initial conditions. Since
this value is very, very small, it is reasonable to conclude the changes were effective.

Example 3.50

Evaluating an Improper Integral over an Infinite Interval

0

Evaluate / 5 1 4dx. State whether the improper integral converges or diverges.
00X +

Solution

0
Begin by rewriting f Ly asalimit using Equation 3.17 from the definition. Thus,

—oox? 44
0 0
/ 21 dx = lim 21 dx Rewrite as a limit.
—cox 4+ 4 t— —o0J ¢ x“+4
0
= lim tan~'X Find the antiderivative.
t— —o0 21t

lim (tan_1 0— tan~! 1) Evaluate the antiderivative.
t = —o0 2

SIS

Evaluate the limit and simplify.

z

The improper integral converges to >
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Example 3.51

Evaluating an Improper Integral on (—co, +0)

+o0

Evaluate / xe*dx. State whether the improper integral converges or diverges.
—0o0

Solution

Start by splitting up the integral:

+o0 0

+oo
/ xe*dx = / xe*dx + / xe*dx.
-0 —00 0

0 +o00 +0o0
If either / xe*dx or / xe*dx diverges, then / xe*dx diverges. Compute each integral separately.
—00 0 —00

For the first integral,
0 0
/ xe*dx = lim xe*dx Rewrite as a limit.
—c0 t—> —o0d ¢

. 0 Use integration by parts to find the
= t_l)lmoo(xe —eY)
- t

antiderivative. (Here u = x and dv = e¥.)

= lim (-1—te'+e') Evaluate the antiderivative.
= —00

Evaluate the limit. Note: lim te’ is
t— —0
indeterminate of the form 0 - co. Thus,

lim re'= lim L = lim =L= lim —¢'=0by
t—> —© It —> —0p t—> —0op t—> —o0

L’Hopital’s Rule.

The first improper integral converges. For the second integral,

+o0 t

/ xe*dx lim xe*dx Rewrite as a limit.
0 t— +oo0s

t

= lim (xe*-e% Find the antiderivative.

t — +o00

= lim (tet —e'+ 1) Evaluate the antiderivative.
t— 400

lim ((r— De’+1) Rewrite. (fe' — ¢’ is indeterminate.)
t — +o00
= +00. Evaluate the limit.

+0c0 +oo
Thus, / xe*dx diverges. Since this integral diverges, f xe*dx diverges as well.
0 —00

<7 3.27 too . . .
g Evaluate / e " dx. State whether the improper integral converges or diverges.
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Integrating a Discontinuous Integrand

Now let’s examine integrals of functions containing an infinite discontinuity in the interval over which the integration

b
occurs. Consider an integral of the form / f(x)dx, where f(x) is continuous over [a, b) and discontinuous at b. Since
a
t
the function f(x) is continuous over [a, f] for all values of ¢ satisfying a < t < b, the integral / f(x)dx is defined
a
t
for all such values of ¢. Thus, it makes sense to consider the values of / f(x)dx as t approaches b for a < t < b. That
a

b t t
is, we define / f(x)dx = lim_ / f(x)dx, provided this limit exists. Figure 3.21 illustrates / f(x)dx as areas of
a t—b a a

regions for values of ¢ approaching b.

y

Yi

f(x)
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Yi

3

f(x)

x¥

Figure 3.21 As t approaches b from the left, the value of the area from a to t approaches the area from a to b.

We use a similar approach to define f f(x)dx, where f(x) is continuous over (a, b] and discontinuous at a. We now
a

b

proceed with a formal definition.

Definition

xY

1. Let f(x) be continuous over [a, b). Then,

2. Let f(x) be continuous over (a, b]. Then,

The following examples demonstrate the application of this definition.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2

b t
fa fx)dx = . gnbl_ fa F(x)dx.

b ) b
_/;l f(x)dx = tEI(rzlJf fz f(x)dx.

In each case, if the limit exists, then the improper integral is said to converge. If the limit does not exist, then

the improper integral is said to diverge.

If f(x) is continuous over [a, b] except at a point ¢ in (a, b), then

fabf(X)dx = /:f(x)dx+ fcbf(x)dx,

c b b
provided both / f(x)dx and / f(x)dx converge. If either of these integrals diverges, then / f(x)dx
a c a

diverges.

(3.19)

(3.20)

(3.21)
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Example 3.52

Integrating a Discontinuous Integrand

4
Evaluate / Ml_dx, if possible. State whether the integral converges or diverges.
0 - X

Solution
The function f(x) = \/ﬁ is continuous over [0, 4) and discontinuous at 4. Using Equation 3.19 from the
definition, rewrite / ! L__jx asalimit:
’ 0 V4 —x
4 t

fO «/41fxdx IEIE_ fO \/éllfxdx Rewrite as a limit.

t

lir}‘?_ (—2\/4 —Xx 0

Find the antiderivative.
-

= lir}‘?_ (—2\/4 -+ 4) Evaluate the antiderivative.
>

4. Evaluate the limit.

The improper integral converges.

Example 3.53

Integrating a Discontinuous Integrand

2
Evaluate / xInxdx. State whether the integral converges or diverges.
0

Solution
Since f(x) = xInx is continuous over (0, 2] and is discontinuous at zero, we can rewrite the integral in limit

form using Equation 3.20:

2 2
f xlnxdx = lim / xInxdx Rewrite as a limit.
0 t>0t7t
— lim (lxz Inx — lxz) 2 Evaluate / xInxdx using integration by parts
N O+ 2 4 t . _ _
¢ withu = Inxanddv = x.

lim (2 In2-1- ltzlnt + ltz). Evaluate the antiderivative.
(>0t 2 4

Evaluate the limit. lim %In¢is indeterminate.
t—>0

=2In2 -1 To evaluate it, rewrite as a quotient and apply

L’Hbpital’s rule.

The improper integral converges.
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Example 3.54

Integrating a Discontinuous Integrand

1
Evaluate / %a’x. State whether the improper integral converges or diverges.

—1x
Solution
Since f(x) = 1/x3 is discontinuous at zero, using Equation 3.21, we can write

1

0 1
Lax= Lax+ [ Lax
[ = [ L [
0
If either of the two integrals diverges, then the original integral diverges. Begin with / %dx :
—1x

0 t

_/ %dx lilg_ de Rewrite as a limit.
t—

—1x —1x3

lim ——1L
i (-5)

lim (—L + l) Evaluate the antiderivative.

t

Find the antiderivative.
-1

10"\ 212 2
= +o0. Evaluate the limit.
0 0 1
Therefore, f _I#dx diverges. Since / _I#dx diverges, f _lédx diverges.

3.28 21
Evaluate / +dx. State whether the integral converges or diverges.
0

A Comparison Theorem

It is not always easy or even possible to evaluate an improper integral directly; however, by comparing it with another
carefully chosen integral, it may be possible to determine its convergence or divergence. To see this, consider two
continuous functions f(x) and g(x) satisfying 0 < f(x) < g(x) for x > a (Figure 3.22). In this case, we may view

integrals of these functions over intervals of the form [a, ¢] as areas, so we have the relationship

t t
0< [ fedx < [ gdxfors > a.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Figure 3.22 If 0 < f(x) < g(x) for x > a, then for

t>a, /tf(x)dx < ftg(x)dx.

Thus, if
+0co t
fa fodx = Tim fa F(x)dx = +o0,
then
+00

t
g)dx = , lirJrg00 / g(x)dx = 400 as well. That is, if the area of the region between the graph of f(x) and the x-axis
- a

/,

over [a, +o0) is infinite, then the area of the region between the graph of g(x) and the x-axis over [a, +o0) is infinite
too.

On the other hand, if

+0o0

/,

+00 t t
/ fx)dx = . _13111 f f(x)dx must converge to some value less than or equal to L, since / f(x)dx increases as ¢
a Y g a

t
g)dx = , _lgnJgoo /a g(x)dx = L for some real number L, then

t
increases and f f(x)dx < L forall ¢t > a.
a

If the area of the region between the graph of g(x) and the x-axis over [a, +o0) is finite, then the area of the region

between the graph of f(x) and the x-axis over [a, +o0) is also finite.

These conclusions are summarized in the following theorem.

Theorem 3.7: A Comparison Theorem

Let f(x) and g(x) be continuous over [a, +00). Assume that 0 < f(x) < g(x) for x > a.

+o0

+ o0 t t
i If fa fGodx = lim fa f(®¥)dx = +oo, then fa gWdx = lim fa g(0)dx = +co.

+o00

i, If fa

+0co t
[ fwdx= tim_[ fx)dx= M for some real number M < L.
a t— +ood g

t
gx)dx = z—l}IEoo fa gx)dx =L, where L is a real number, then
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Example 3.55

Applying the Comparison Theorem
+o0

Use a comparison to show that / Lxdx converges.
1 xe

Solution

We can see that

1 1 _ ,—x
OS?S?—e

bl

+o0

+00 +oo
so if / e “dx converges, then so does f
1 1

1

+o00 t
/ e Xdx lim e Ydx
1 t— +oo0/ |

t
1

i [+ el)

: —X
t l>11’-I|-100(_e )

=€1.

+00 +oo
Since f e *dx converges, so does f %dx.
1 1 xe

Lxdx. To evaluate / e “dx, first rewrite it as a limit:
xe

Example 3.56

Applying the Comparison Theorem
+00

Use the comparison theorem to show that / Lpdx diverges forall p < 1.
1 x

Solution

+0o0
/ Lpdx diverges forall p < 1.
1 X

@ 3.29 _ oy, g
Use a comparison to show that fe “dx diverges.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Student PROJECT

Laplace Transforms

In the last few chapters, we have looked at several ways to use integration for solving real-world problems. For this
next project, we are going to explore a more advanced application of integration: integral transforms. Specifically, we
describe the Laplace transform and some of its properties. The Laplace transform is used in engineering and physics to
simplify the computations needed to solve some problems. It takes functions expressed in terms of time and transforms
them to functions expressed in terms of frequency. It turns out that, in many cases, the computations needed to solve
problems in the frequency domain are much simpler than those required in the time domain.

The Laplace transform is defined in terms of an integral as
(0]
Lif @) = F(s) = /O ™ fr)dr.

Note that the input to a Laplace transform is a function of time, f(#), and the output is a function of frequency, F(s).

Although many real-world examples require the use of complex numbers (involving the imaginary number i = V—1),

in this project we limit ourselves to functions of real numbers.

Let’s start with a simple example. Here we calculate the Laplace transform of f(¢) = ¢. We have

(S0]
L{t} = f te™5' dt.
0
This is an improper integral, so we express it in terms of a limit, which gives
[e] v4
Liy= [ e dr= tim_[ e~
0 =

Now we use integration by parts to evaluate the integral. Note that we are integrating with respect to t, so we treat the
variable s as a constant. We have
u =t dv = e *'dt
du = dt v = —%e_s’.

Then we obtain

% B z z
lim [ te™dr = lim [[~Le™]o+4 e""dt]
Z—> X 0 Z—> X 0

s, 0
) _ —st7|%
:zll}noo [ g SZ+0] %[ g ]O]

— v oz |- 1 g L
_zll>moo_ SeSZjI le>moo|: 2 SZ]+zll>moo 2

s e S
=0-0+-1
S2
_1
52

1. Calculate the Laplace transform of f(¢) = 1.
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2. Calculate the Laplace transform of f(¢) = e
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-3t

3. Calculate the Laplace transform of f(z) = 1. (Note, you will have to integrate by parts twice.)

Laplace transforms are often used to solve differential equations. Differential equations are not covered in
detail until later in this book; but, for now, let’s look at the relationship between the Laplace transform of a
function and the Laplace transform of its derivative.

Let’s start with the definition of the Laplace transform. We have

LIf @) = f ¢~ f(di = _lim f = f(r)dt.

Use integration by parts to evaluate hm / “SUF()dt. (Let u= f(f) and dv = e dt.)

After integrating by parts and evaluating the limit, you should see that

o) =L9D 4 Lgpon

Then,
Lif @} = sLif (D} = f(0).

Thus, differentiation in the time domain simplifies to multiplication by s in the frequency domain.
The final thing we look at in this project is how the Laplace transforms of f(#) and its antiderivative are

t
related. Let g(¢) = _/0 f(uw)du. Then,

Lig(n)} = /Oooe_s’g(t)dt = Zl_i)mm/oze_”g(t)dt.

Z
Use integration by parts to evaluate _lim_ f e g(dt. (Let u=g(t) and dv = e " dt. Note, by the way,
- 0

that we have defined g(¢), du = f(¢)dt.)
As you might expect, you should see that

Ligo) = 1 Lif).

Integration in the time domain simplifies to division by s in the frequency domain.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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3.7 EXERCISES

Evaluate the following integrals. If the integral is not
convergent, answer “divergent.”

347. f4 dx
2 (x - 3)?

348. /°° lzdx
0 44+x

349. /2 Ly
x
04— x2

[e]

350. 1
f1 xlnxdx

351. ©
f xe Ydx
1

352. e
/ 5 —dx
—oox” + 1

353. Without integrating, determine whether the integral

[So]
/ vl—dx converges or diverges by comparing the
L3 +1

1 with g(x) =

—_1
B+ \/)?

354. Without integrating, determine whether the integral

[e0]

J

function f(x) =

dx converges or diverges.

Determine whether the improper integrals converge or
diverge. If possible, determine the value of the integrals that
converge.

355. ® .
e cosxdx
/s
356. ©lnx
A dx
/
357
’ Inx
“2dx
/s

358.
/ Inxdx
0

359. /_oo 1 dx

345

360
f dx
1Vx—1

2
361. / e
~2(1 + x)2

362. ®©
f e Vdx
0

363. ©
/ sinxdx
0

364. ®
f e’ dx
—c0] 4 ¢
1
365. dx
0 V¥
2
366. dx
0 x3
2
367. dx
“153
368. f
0 Vl —x2
3609. 3
1
fO T ldx
370. © 5
/1 ;dx

371. 5 5
f —zdx
3(x—4)

Determine the convergence of each of the following
integrals by comparison with the given integral. If the
integral converges, find the number to which it converges.

o

372, s

1 x“+4x

“d
; compare with / _)26
I x

373. i dx . °°dx
fl ESE compare with /1 Wi

Evaluate the integrals. If the integral diverges, answer
“diverges.”
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374. ooﬂ
1 x¢
1

375. dx
0x"
1

376. / dx
oVl —x
1

377. / dx
ol—x
0

378. /- dx
—oox? 4+ 1

379.
/ dx
_1’\ 1 _ x2
380. 1
/ Inx,,
0

381

382.
f xe Ydx
0

383. s

384. ©
f e *dx
0

Evaluate the improper integrals. Each of these integrals
has an infinite discontinuity either at an endpoint or at an
interior point of the interval.

385. 9
/ dx
0V9 —x

387 3
/ dx
09 — x2
388. /-24 dt
6 > -36
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389. 4
fO xIn(4x)dx

390. f03 X

V9 — x2

391. !
Evaluate f dx

SV —x2

answer using three decimal places.)

(Be careful!) (Express your

392.

4
Evaluate f dx (Express the answer in exact

1Yx2 -1

form.)

(e o]

393.
Evaluate f ﬁ
2 x*=D

394. Find the area of the region in the first quadrant

—6x

between the curve y = e and the x-axis.

395. Find the area of the region bounded by the curve
y= lz’ the x-axis, and on the left by x = 1.
X

396. Find the area under the curve yzﬁ,
x+1)

bounded on the left by x = 3.

5
1+x

397 Find the area under y= in the first quadrant.

2
398. Find the volume of the solid generated by revolving

about the x-axis the region under the curve y =% from

x=1to x=o0.

399. Find the volume of the solid generated by revolving

about the y-axis the region under the curve y = 6e~>* in

the first quadrant.

400. Find the volume of the solid generated by revolving
about the x-axis the area under the curve y = 3¢~ in the

first quadrant.

The Laplace transform of a continuous function over the
o0

interval [0, co) is defined by F(s) = / e f(x)dx
0

(see the Student Project). This definition is used to solve
some important initial-value problems in differential
equations, as discussed later. The domain of F is the set
of all real numbers s such that the improper integral
converges. Find the Laplace transform F of each of the
following functions and give the domain of F.
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401, f(x) =1
402. f(x)==x
403. f(x) = cos(2x)
404. f(x) = ™

405. Use the formula for arc length to show that the
circumference of the circle x* + y2 =1 is 2x.

A function is a probability density function if it satisfies

oo
the following definition: / f(®)dt = 1. The probability
—0o0

that a random variable x lies between a and b is given by

b
Pa<x<b)= [ fod.

Oifx <0

06.
Show that f(x) =
f& {76_7xifx >0

is a probability
density function.

407. Find the probability that x is between 0 and 0.3. (Use
the function defined in the preceding problem.) Use four-
place decimal accuracy.

347
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CHAPTER 3 REVIEW

KEY TERMS

absolute error if B is an estimate of some quantity having an actual value of A, then the absolute error is given by
A — B|
computer algebra system (CAS) technology used to perform many mathematical tasks, including integration

improper integral an integral over an infinite interval or an integral of a function containing an infinite discontinuity on
the interval; an improper integral is defined in terms of a limit. The improper integral converges if this limit is a finite
real number; otherwise, the improper integral diverges

integration by parts a technique of integration that allows the exchange of one integral for another using the formula
/udv=uv—fvdu

integration table a table that lists integration formulas
midpoint rule

n
a rule that uses a Riemann sum of the form M, = Z f(m)Ax, where m; is the midpoint of the ith
i=1

b
subinterval to approximate / f(x)dx
a

numerical integration the variety of numerical methods used to estimate the value of a definite integral, including the
midpoint rule, trapezoidal rule, and Simpson’s rule

partial fraction decomposition a technique used to break down a rational function into the sum of simple rational
functions

power reduction formula a rule that allows an integral of a power of a trigonometric function to be exchanged for an
integral involving a lower power

relative error ... ¢ percentage of the absolute value, given by |‘41{+B| = |AA+B| -100%

Simpson’s rule b
a rule that approximates / f(x)dx using the integrals of a piecewise quadratic function. The
a

b
_— o Axf o) +4f(x)) +2f(x0) + 41 (x3) + 2 (x4) + 4f(x5)
approximation S, to fa f(x)dx is given by S, = Tx( o 20, )+ AL D+ fO)

b
trapezoidal rule a rule that approximates / f(x)dx using trapezoids
a

trigonometric integral an integral involving powers and products of trigonometric functions

trigonometric substitution an integration technique that converts an algebraic integral containing expressions of the

form \/az - x2, \/az + xz, or \x2—a? intoa trigonometric integral

KEY EQUATIONS

¢ Integration by parts formula
fudv=uv—fva’u

¢ Integration by parts for definite integrals
b

Lbudv:MVIZ—/ledu

To integrate products involving sin(ax), sin(bx), cos(ax), and cos(bx), use the substitutions.
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¢ Sine Products
sin(ax)sin(bx) = %cos((a —b)x) — %cos((a + b)x)

¢ Sine and Cosine Products

sin(ax)cos(bx) = %sin((a —b)x)+ %sin((a + b)x)

* Cosine Products
cos(ax)cos(bx) = %cos((a —b)x)+ %COS(((J + b)x)

¢ Power Reduction Formula
/sec"xdx =_1 1sec"_ 1x+%/sec”_2xdx

¢ Power Reduction Formula
/tan"xdx = n+1tan" - /tan" ~2xdx

e Midpoint rule

M, = Z flmAx

i=1

¢ Trapezoidal rule
T, = %AX(f(xo) + 20 +2f(xp) + -+ +2f(x, 1) + fxn)

* Simpson’s rule

Sp= %(f(xo) +4f () +2f(x0) +4f(x3) + 2f(xg) + 4f(x5) + - +2f(x,_2) +4f(x,_ )+ f(xp)

¢ Error bound for midpoint rule
M —a)®

ErrorinM,, <
" 24n?

¢ Error bound for trapezoidal rule
M®b - a)?

Errorin7,, <
" 12n2

¢ Error bound for Simpson’s rule
M@ - a)®

Errorin §,, <
"7 180t

¢ Improper integrals

/, " e = Jim [ oo
/ _boof(x)dx = lim_ ft ’ F(0)dx
_/_Jr:f(X)dx = /_Ooof(x)dx + _/()+oof(x)dx

KEY CONCEPTS

3.1 Integration by Parts

¢ The integration-by-parts formula allows the exchange of one integral for another, possibly easier, integral.

¢ Integration by parts applies to both definite and indefinite integrals.
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3.2 Trigonometric Integrals

¢ Integrals of trigonometric functions can be evaluated by the use of various strategies. These strategies include
1. Applying trigonometric identities to rewrite the integral so that it may be evaluated by u-substitution
2. Using integration by parts

3. Applying trigonometric identities to rewrite products of sines and cosines with different arguments as the
sum of individual sine and cosine functions

4. Applying reduction formulas
3.3 Trigonometric Substitution
¢ For integrals involving Va® — x2, use the substitution x = asind and dx = acos6do.
¢ For integrals involving Va® + x2, use the substitution x = atand and dx = asec’ 6d6.

¢ For integrals involving Vx% — a2, substitute x = asecd and dx = asecOtanddo.

3.4 Partial Fractions
¢ Partial fraction decomposition is a technique used to break down a rational function into a sum of simple rational
functions that can be integrated using previously learned techniques.

e When applying partial fraction decomposition, we must make sure that the degree of the numerator is less
than the degree of the denominator. If not, we need to perform long division before attempting partial fraction
decomposition.

¢ The form the decomposition takes depends on the type of factors in the denominator. The types of factors
include nonrepeated linear factors, repeated linear factors, nonrepeated irreducible quadratic factors, and repeated
irreducible quadratic factors.

3.5 Other Strategies for Integration

¢ An integration table may be used to evaluate indefinite integrals.
¢ A CAS (or computer algebra system) may be used to evaluate indefinite integrals.

¢ It may require some effort to reconcile equivalent solutions obtained using different methods.

3.6 Numerical Integration
¢ We can use numerical integration to estimate the values of definite integrals when a closed form of the integral is
difficult to find or when an approximate value only of the definite integral is needed.

e The most commonly used techniques for numerical integration are the midpoint rule, trapezoidal rule, and
Simpson’s rule.

e The midpoint rule approximates the definite integral using rectangular regions whereas the trapezoidal rule
approximates the definite integral using trapezoidal approximations.

¢ Simpson’s rule approximates the definite integral by first approximating the original function using piecewise
quadratic functions.

3.7 Improper Integrals

¢ Integrals of functions over infinite intervals are defined in terms of limits.

* Integrals of functions over an interval for which the function has a discontinuity at an endpoint may be defined in
terms of limits.
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¢ The convergence or divergence of an improper integral may be determined by comparing it with the value of an
improper integral for which the convergence or divergence is known.

CHAPTER 3 REVIEW EXERCISES

For the following exercises, determine whether the
statement is true or false. Justify your answer with a proof
or a counterexample.

408. _/ e sin(x)dx cannot be integrated by parts.

409. f .1

xT+1

dx cannot be integrated using partial

fractions.

410. In numerical integration, increasing the number of
points decreases the error.

411. Integration by parts can always yield the integral.

For the following exercises, evaluate the integral using the
specified method.

412. / x2 sin(4x)dx using integration by parts

413. f 1 dx using trigonometric substitution

2Vx2 + 16

414. f vxIn(x)dx using integration by parts

415. / 3 dx using partial fractions
+ 2x -6
5
416. / x—mdx using trigonometric substitution
(4x* +4)

7. / \'4 — sin (x

—— 5, —¢os(x)dx using a table of integrals or
sin“(x)

a CAS

For the following exercises,
method you choose.

integrate using whatever

418. f sinz(x)cosz(x)dx

419. /x3 Vx2 + 2dx

f 3x2+1 dx
xt—2x3 - x4 2x

1
421. fx4 n 4dx

JREE: 16x*% ;.
4
X

For the following exercises, approximate the integrals
using the midpoint rule, trapezoidal rule, and Simpson’s
rule using four subintervals, rounding to three decimals.

2
423. [T] /1 VxS + 2dx
vr )
424. [T] f e S0 gy
0

4
425, [T] /1 Ind1/0) g

For the following exercises,
possible.

426. /1

converge or diverge?

evaluate the integrals, if

—dx, for what values of n does this integral

For the following exercises, consider the gamma function

00 —
given by I'(a) = / eyt lay.
0

428. Show that I'(a) = (a — DI'(a — 1).

429. Extend to show that I'(a) =

is a positive integer.

(a—1)!, assuming a

The fastest car in the world, the Bugati Veyron, can reach a
top speed of 408 km/h. The graph represents its velocity.
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4201
370+
320+
270+

220+

km/h

170+
120+

704

02:40 03:20 04:00

mm:ss

02:00

430. [T] Use the graph to estimate the velocity every
20 sec and fit to a graph of the form

v(t) = aeprx sin(cx) +d. (Hint: Consider the time

units.)

431. [T] Using your function from the previous problem,
find exactly how far the Bugati Veyron traveled in the 1 min
40 sec included in the graph.
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4 | INTRODUCTION TO
DIFFERENTIAL EQUATIONS

o by —

gy

Figure 4.1 The white-tailed deer (Odocoileus virginianus) of the eastern United States. Differential equations can be used to
study animal populations. (credit: modification of work by Rachel Kramer, Flickr)

Chapter Outline

4.1 Basics of Differential Equations

4.2 Direction Fields and Numerical Methods
4.3 Separable Equations

4.4 The Logistic Equation

4.5 First-order Linear Equations

Introduction

Many real-world phenomena can be modeled mathematically by using differential equations. Population growth,
radioactive decay, predator-prey models, and spring-mass systems are four examples of such phenomena. In this chapter we
study some of these applications.

Suppose we wish to study a population of deer over time and determine the total number of animals in a given area. We
can first observe the population over a period of time, estimate the total number of deer, and then use various assumptions
to derive a mathematical model for different scenarios. Some factors that are often considered are environmental impact,
threshold population values, and predators. In this chapter we see how differential equations can be used to predict
populations over time (see Example 4.14).

Another goal of this chapter is to develop solution techniques for different types of differential equations. As the equations
become more complicated, the solution techniques also become more complicated, and in fact an entire course could
be dedicated to the study of these equations. In this chapter we study several types of differential equations and their
corresponding methods of solution.
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4.1 | Basics of Differential Equations

Learning Objectives

4.1.1 ldentify the order of a differential equation.

4.1.2 Explain what is meant by a solution to a differential equation.

4.1.3 Distinguish between the general solution and a particular solution of a differential equation.
4.1.4 ldentify an initial-value problem.

4.1.5 Identify whether a given function is a solution to a differential equation or an initial-value
problem.

Calculus is the mathematics of change, and rates of change are expressed by derivatives. Thus, one of the most common
ways to use calculus is to set up an equation containing an unknown function y = f(x) and its derivative, known as

a differential equation. Solving such equations often provides information about how quantities change and frequently
provides insight into how and why the changes occur.

Techniques for solving differential equations can take many different forms, including direct solution, use of graphs, or
computer calculations. We introduce the main ideas in this chapter and describe them in a little more detail later in the
course. In this section we study what differential equations are, how to verify their solutions, some methods that are used
for solving them, and some examples of common and useful equations.

General Differential Equations

Consider the equation y’ = 3x2, whichisan example of a differential equation because it includes a derivative. There is a
relationship between the variables x and y:y is an unknown function of x. Furthermore, the left-hand side of the equation
is the derivative of y. Therefore we can interpret this equation as follows: Start with some function y = f(x) and take its
derivative. The answer must be equal to 3x%. What function has a derivative that is equal to 3x%? One such function is

y= x3, so this function is considered a solution to a differential equation.

Definition

A differential equation is an equation involving an unknown function y = f(x) and one or more of its derivatives.
A solution to a differential equation is a function y = f(x) that satisfies the differential equation when f and its

derivatives are substituted into the equation.

. Go to this website (http://www.openstaxcollege.org/l/20_Differential) to explore more on this topic.

Some examples of differential equations and their solutions appear in Table 4.1.
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Equation

Solution

v =2x

y=x

Yy +3y=6x+11

y=e ¥ 42x+3

Y =3y +2y =24

y=3e"— 4™ 427

Table 4.1 Examples of Differential Equations and Their
Solutions

355

Note that a solution to a differential equation is not necessarily unique, primarily because the derivative of a constant is

zero. For example, y = x% + 4 is also a solution to the first differential equation in Table 4.1. We will return to this idea a

little bit later in this section. For now, let’s focus on what it means for a function to be a solution to a differential equation.

Example 4.1

Verifying Solutions of Differential Equations

Verify that the function y = ¢34+ 2x + 3 is a solution to the differential equation y' + 3y =6x+ 11.

Solution

—3x

To verify the solution, we first calculate y’ using the chain rule for derivatives. This gives y' = =3¢~ 7" + 2.

Next we substitute y and y’ into the left-hand side of the differential equation:
(=3¢ ™2 +2) +3(e > + 2x + 3).
The resulting expression can be simplified by first distributing to eliminate the parentheses, giving
—3¢™ 42+ 3¢ X +6x+09.

Combining like terms leads to the expression 6x + 11, which is equal to the right-hand side of the differential

equation. This result verifies that y = ¢34+ 2x + 3 is a solution of the differential equation.

@ 4.1  Verify that y = 2¢3* — 2x — 2 is a solution to the differential equation y' — 3y = 6x + 4.

It is convenient to define characteristics of differential equations that make it easier to talk about them and categorize them.
The most basic characteristic of a differential equation is its order.

Definition

The order of a differential equation is the highest order of any derivative of the unknown function that appears in the

equation.
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Example 4.2

Identifying the Order of a Differential Equation

What is the order of each of the following differential equations?

a. y’—4y=x2—3x+4
b. xzy’” —3xy" +xy’ — 3y = sinx

. %y(4)_%yﬂ+1_%y=x3—3x2+4x— 12
X X

Solution
a. The highest derivative in the equation is y’, so the orderis 1.

b. The highest derivative in the equation is y”, so the order is 3.

c. The highest derivative in the equation is y(4), so the order is 4.

@ 4.2  What is the order of the following differential equation?

(x4 - 3x)y(5) - (?))c2 + l)y’ + 3y = sinxcosx

General and Particular Solutions

We already noted that the differential equation y’ = 2x has at least two solutions: y = x% and y= x%+4. The only
difference between these two solutions is the last term, which is a constant. What if the last term is a different constant?
Will this expression still be a solution to the differential equation? In fact, any function of the form y = x>+ C, where C
represents any constant, is a solution as well. The reason is that the derivative of x>+ C is 2x, regardless of the value of

C. It can be shown that any solution of this differential equation must be of the form y = x% + C. This is an example of a

general solution to a differential equation. A graph of some of these solutions is given in Figure 4.2. (Note: in this graph
we used even integer values for C ranging between —4 and 4. In fact, there is no restriction on the value of C; it can be

an integer or not.)

Figure 4.2 Family of solutions to the differential equation
Y =2x.
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In this example, we are free to choose any solution we wish; for example, y = x% = 3 is amember of the family of solutions

to this differential equation. This is called a particular solution to the differential equation. A particular solution can often
be uniquely identified if we are given additional information about the problem.

Example 4.3

Finding a Particular Solution

Find the particular solution to the differential equation y" = 2x passing through the point (2, 7).

Solution

Any function of the form y = x% + C is a solution to this differential equation. To determine the value of C,

we substitute the values x =2 and y = 7 into this equation and solve for C:

y=x2+C
7=224+C=4+C
C=3.

Therefore the particular solution passing through the point (2, 7) is y = x% +3.

@/ 4.3 Find the particular solution to the differential equation
vy =4x+3

passing through the point (1, 7), given that y = 202 43x+C is a general solution to the differential

equation.

Initial-Value Problems

Usually a given differential equation has an infinite number of solutions, so it is natural to ask which one we want to use.
To choose one solution, more information is needed. Some specific information that can be useful is an initial value, which
is an ordered pair that is used to find a particular solution.

A differential equation together with one or more initial values is called an initial-value problem. The general rule is
that the number of initial values needed for an initial-value problem is equal to the order of the differential equation. For
example, if we have the differential equation y’ = 2x, then y(3) =7 is an initial value, and when taken together, these

equations form an initial-value problem. The differential equation y” — 3y’ + 2y = 4e™ is second order, so we need two

initial values. With initial-value problems of order greater than one, the same value should be used for the independent
variable. An example of initial values for this second-order equation would be y(0) =2 and y’(0) = —1. These two initial

values together with the differential equation form an initial-value problem. These problems are so named because often the
independent variable in the unknown function is ¢, which represents time. Thus, a value of # = 0O represents the beginning

of the problem.

Example 4.4

Verifying a Solution to an Initial-Value Problem
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Verify that the function y = 2e ~2! 4 ¢! is a solution to the initial-value problem
y' 42y =3¢, y(0)=3.

Solution

For a function to satisfy an initial-value problem, it must satisfy both the differential equation and the initial
condition. To show that y satisfies the differential equation, we start by calculating y’. This gives

y = —4e™ 4 ¢,

Next we substitute both y and y’ into the left-hand side of the differential equation and
simplify:
v +2y = (—46_2t + e’) + 2(2e_2t + et)
—de™ 4ol +4e7% 4 2!
=3¢,
This is equal to the right-hand side of the differential equation, so y = 2e ~21 4 ¢! solves the differential equation.

Next we calculate y(0):

y0) =220 40

=2+1
=3.

This result verifies the initial value. Therefore the given function satisfies the initial-value problem.

@ 4.4 Verify that y = 3¢ + 4sint is a solution to the initial-value problem

y' —2y=4cost—8sint, y(0)=3.

In Example 4.4, the initial-value problem consisted of two parts. The first part was the differential equation
y' 42y =3e”, and the second part was the initial value y(0) = 3. These two equations together formed the initial-value

problem.

The same is true in general. An initial-value problem will consists of two parts: the differential equation and the initial
condition. The differential equation has a family of solutions, and the initial condition determines the value of C. The

family of solutions to the differential equation in Example 4.4 is given by y = 2e ~2l 4 Ce'. This family of solutions is

shown in Figure 4.3, with the particular solution y = 2¢ > + ¢’ labeled.
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y = 22 + 0.5¢!

EE \NERERY
Ll y = 2e 2 —0.2¢
_3l
_al

Figure 4.3 A family of solutions to the differential equation
y' + 2y = 3e’. The particular solution y = 2e7% el s
labeled.

Example 4.5

Solving an Initial-value Problem

Solve the following initial-value problem:

y =3e"+x>—4, y0)=5.

Solution
The first step in solving this initial-value problem is to find a general family of solutions. To do this, we find an
antiderivative of both sides of the differential equation

fy’ dx = f(3ex +x2— 4)dx,

namely,

1 4.1)

y+C =3ex+§x3—4x+C2.

We are able to integrate both sides because the y term appears by itself. Notice that there are two integration

constants: C; and C,. Solving Equation 4.1 for y gives

y:3ex+%x3—4x+C2—C1.

Because C; and C, are both constants, C, — C is also a constant. We can therefore define C = C, — C},
which leads to the equation

y:3ex+lx3—4x+C.

3
Next we determine the value of C. To do this, we substitute x =0 and y = 5 into Equation 4.1 and solve for
C:
5 = 3e°+%03—4(0)+c
5 = 3+4C

c = 2
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Now we substitute the value C =2 into Equation 4.1. The solution to the initial-value problem is

y=3ex+%x3—4x+2.

Analysis

The difference between a general solution and a particular solution is that a general solution involves a family of
functions, either explicitly or implicitly defined, of the independent variable. The initial value or values determine
which particular solution in the family of solutions satisfies the desired conditions.

@/ 4.5 Solve the initial-value problem
Y =x?—4x+3-6e*, y(0)=8.

In physics and engineering applications, we often consider the forces acting upon an object, and use this information to
understand the resulting motion that may occur. For example, if we start with an object at Earth’s surface, the primary force
acting upon that object is gravity. Physicists and engineers can use this information, along with Newton’s second law of
motion (in equation form F = ma, where F represents force, m represents mass, and a represents acceleration), to

derive an equation that can be solved.

g = —9.8 m/sec?

Figure 4.4 For a baseball falling in air, the only force acting
on it is gravity (neglecting air resistance).

In Figure 4.4 we assume that the only force acting on a baseball is the force of gravity. This assumption ignores air
resistance. (The force due to air resistance is considered in a later discussion.) The acceleration due to gravity at Earth’s

surface, g, isapproximately 9.8 m/s”. We introduce a frame of reference, where Earth’s surface is at a height of 0 meters.
Let v(7) represent the velocity of the object in meters per second. If v(f) > 0, the ball is rising, and if v(#) < 0, the ball
is falling (Figure 4.5).

V() < 0

Figure 4.5 Possible velocities for the rising/falling baseball.
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Our goal is to solve for the velocity v(¢) at any time ¢. To do this, we set up an initial-value problem. Suppose the mass
of the ball is m, where m is measured in kilograms. We use Newton’s second law, which states that the force acting on
an object is equal to its mass times its acceleration (F = ma). Acceleration is the derivative of velocity, so a(f) = v'(¢).
Therefore the force acting on the baseball is given by F = mv’(¢). However, this force must be equal to the force of gravity

acting on the object, which (again using Newton’s second law) is given by Fg = —mg, since this force acts in a downward
direction. Therefore we obtain the equation F' = Fg, which becomes m v'(f) = —mg. Dividing both sides of the equation

by m gives the equation
V() = —g.
Notice that this differential equation remains the same regardless of the mass of the object.

We now need an initial value. Because we are solving for velocity, it makes sense in the context of the problem to assume
that we know the initial velocity, or the velocity at time # = 0. This is denoted by v(0) = v,.

Example 4.6

Velocity of a Moving Baseball
A baseball is thrown upward from a height of 3 meters above Earth’s surface with an initial velocity of 10 m/s,
and the only force acting on it is gravity. The ball has a mass of 0.15kg at Earth’s surface.

a. Find the velocity v(¢) of the baseball at time ¢.

b. What is its velocity after 2 seconds?

Solution

a. From the preceding discussion, the differential equation that applies in this situation is

V(D) = =g,

where g =9.8 m/s2. The initial condition is v(0) =v,, where vy = 10m/s. Therefore the initial-

value problem is v'(r) = —9.8 m/s%, v(0) = 10 m/s.

The first step in solving this initial-value problem is to take the antiderivative of both sides of the

differential equation. This gives
[vwar = [-98ar

v(it) = =98¢+ C.

The next step is to solve for C. To do this, substitute t = 0 and v(0) = 10:

v(it) = -98t+C
vi0) = -98(0)+C
10 = C.

Therefore C = 10 and the velocity function is given by v(f) = —9.8¢ + 10.

b. To find the velocity after 2 seconds, substitute # = 2 into v(z).
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v(it) = -9.8t+10
v(2) = -9.812)+ 10
v(2) = -9.6.

The units of velocity are meters per second. Since the answer is negative, the object is falling at a speed
of 9.6 m/s.

@/ 4.6 Suppose arock falls from rest from a height of 100 meters and the only force acting on it is gravity. Find
an equation for the velocity v(¢) as a function of time, measured in meters per second.

A natural question to ask after solving this type of problem is how high the object will be above Earth’s surface at a given
point in time. Let s(#) denote the height above Earth’s surface of the object, measured in meters. Because velocity is the

derivative of position (in this case height), this assumption gives the equation s’ (#) = v(f). An initial value is necessary;
in this case the initial height of the object works well. Let the initial height be given by the equation s(0) = 5. Together

these assumptions give the initial-value problem
s =v®), 50)=s,.

If the velocity function is known, then it is possible to solve for the position function as well.

Example 4.7

Height of a Moving Baseball

A baseball is thrown upward from a height of 3 meters above Earth’s surface with an initial velocity of 10 m/s,

and the only force acting on it is gravity. The ball has a mass of 0.15 kilogram at Earth’s surface.
a. Find the position s(f) of the baseball at time z.

b. What is its height after 2 seconds?

Solution
a. We already know the velocity function for this problem is v(#) = —9.8¢ + 10. The initial height of the
baseball is 3 meters, so s, = 3. Therefore the initial-value problem for this example is

To solve the initial-value problem, we first find the antiderivatives:
s (Hdt = f —9.8¢ + 10dt
—4.9t2 + 10t + C.

©

~~
~

p—

Next we substitute = 0 and solve for C:

s(t) = —492+10t+C
s(0) = —4.9(0)2+10(0) + C
3 = C.
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Therefore the position function is s() = —4.91% + 10t + 3.
b. The height of the baseball after 2 s is given by s(2):

5Q2) =—-492)%+10(2) + 3

= —4.9(4) + 23
=34.

Therefore the baseball is 3.4 meters above Earth’s surface after 2 seconds. It is worth noting that the
mass of the ball cancelled out completely in the process of solving the problem.
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4.1 EXERCISES

Determine the order of the following differential equations.
Loy +y=3y
2. (y/)2 — yl + Zy

3‘ y/// + y//y/ — 3x2

4. y/ - y// + 3t2

5 dy
E—t

6. 2
ﬂ+u:3x4
dx = gx2?

7 2
’ ﬂ) 4y L5
(dt +8dt+3y—4t

Verify that the following functions are solutions to the
given differential equation.

8. 3

y=-5 solves y' = x2

9. y=2e*+x—1 solves y =x—y

X
10. y=e¥— % solves y' =3y + e*

1. ,—_1
y_l—

r_ 2
xsolvesy =y

12. 2
y= e~ 12

solves y' = xy
13. y=4+Inx solves xy' =1

14. y =3 —x+ xInx solves y' = Inx

15. y=2¢*—x—1 solves y = y+x

16. =¥y —Silex cozsx solves y' = cosx+y
17. y = 7e ¥ solves y’ = ysinx

Verify the following general solutions and find the
particular solution.
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18. Find the particular solution to the differential equation

y = 4x? that passes through (-3, —30), given that
y=C+ 4)3€ is a general solution.

19. Find the particular solution to the differential equation

y = 3x>  that passes through (1, 4.75), given that
3xt :
y=C+ i isa general solution.

20. Find the particular solution to the differential equation
y = 3x2 y that passes through (0, 12), given that

3
y = Ce* is a general solution.

21. Find the particular solution to the differential equation

y' =2xy that passes through (O, %), given that
2
y = Ce" is a general solution.

22. Find the particular solution to the differential equation

y = (2xy)2 that passes through (1, —%), given that

=—-—3 _isa general solution.

C+4x°

23. Find the particular solution to the differential equation
y' X% = y that passes through (1, %), given that

—1/x

y=Ce is a general solution.

24. Find the particular solution to the differential equation

Sflx —2c0s(2t) — cos(4t) that passes through (7, 7),

given that x=C ——sm(2t)— s1n(4t) is a general
solution.

25. Find the particular solution to the differential equation

du _
dt

u=sin"! (ec + ) is a general solution.

=tanu that passes through (1, %), given that

26. Find the particular solution to the differential equation
dy _ (t+y)
dr = ¢

y = —In(C — &) is a general solution.

that passes through (1, 0), given that

27. Find the particular solution to the differential equation
y'(1 - ) =1 + y that passes through (0, —2),

Vgl
il

given

that y = C-==—=—1 is a general solution.
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For the following problems, find the general solution to the
differential equation.

28. y' =3x+e*
29. y’' =Inx + tanx
30. y' = sinxe®*s*
31,y =4*

32. y =sin"'(2x)

By =2 + 16

34. ' = cotht + Int + 3¢2

35 ¥ =tV4+¢
36. y =y
37. y=2

Solve the following initial-value problems starting from
y(=0)=1 and y(t = 0) = —1. Draw both solutions on

the same graph.

38. dy _
E—Zt
39. dy _ _,
dr
40. dy _
@y
a1 dy _
ar " y
42. dy _
dt_z

Solve the following initial-value problems starting from
vo = 10. At what time does y increase to 100 or drop to

1?

43. dy _
E—4t

4. dy _
dt_4y

45, ﬂ__

dr 2y

365

46. ﬂ _ e4t
dt ~

47. dy _ =4t
ar = ¢

Recall that a family of solutions includes solutions to a
differential equation that differ by a constant. For the
following problems, use your calculator to graph a family
of solutions to the given differential equation. Use initial
conditions from y(r=0)=-10 to y@=0)=10

increasing by 2. Is there some critical point where the
behavior of the solution begins to change?

48. [T] y' = y(x)

49. [Tl xy' =y
0.1 y' =+

51. [T] y' =x+y (Hint: y = Ce™ — x— 1 is the general

solution)

52. [T] y' = xInx + sinx

53. Find the general solution to describe the velocity of a
ball of mass 11b that is thrown upward at a rate a ft/sec.

54. In the preceding problem, if the initial velocity of the
ball thrown into the air is a = 25 ft/s, write the particular

solution to the velocity of the ball. Solve to find the time
when the ball hits the ground.

55. You throw two objects with differing masses m; and

m, upward into the air with the same initial velocity a ft/

s. What is the difference in their velocity after 1 second?

56. [T] You throw a ball of mass 1 kilogram upward with
a velocity of a =25 m/s on Mars, where the force of
gravity is g= —3.711 m/s’>. Use your calculator to

approximate how much longer the ball is in the air on Mars.

57. [T] For the previous problem, use your calculator to
approximate how much higher the ball went on Mars.

58. [T] A car on the freeway accelerates according to
a = 15cos(xt), where ¢ is measured in hours. Set up and

solve the differential equation to determine the velocity of
the car if it has an initial speed of 51 mph. After 40

minutes of driving, what is the driver’s velocity?
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59. [T] For the car in the preceding problem, find the
expression for the distance the car has traveled in time ¢,

assuming an initial distance of 0. How long does it take the
car to travel 100 miles? Round your answer to hours and
minutes.

60. [T] For the previous problem, find the total distance
traveled in the first hour.

61. Substitute y=Be3’ into y—y= 8¢ to find a
particular solution.

62. Substitute y = acos(2t) + bsin(2t) into
y" +y = 4sin(2¢) to find a particular solution.

63. Substitute y = a + bt + ct? into Y+y=1+ > to

find a particular solution.

64. Substitute y = ae’cost + be'sint into y' = 2e’cost

to find a particular solution.

65. Solve y' = e with the initial condition y(0)=0
and solve y' =1 with the same initial condition. As k

approaches 0, what do you notice?
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4.2 | Direction Fields and Numerical Methods

Learning Objectives

4.2.1 Draw the direction field for a given first-order differential equation.
4.2.2 Use a direction field to draw a solution curve of a first-order differential equation.
4.2.3 Use Euler’s Method to approximate the solution to a first-order differential equation.

For the rest of this chapter we will focus on various methods for solving differential equations and analyzing the behavior
of the solutions. In some cases it is possible to predict properties of a solution to a differential equation without knowing
the actual solution. We will also study numerical methods for solving differential equations, which can be programmed by
using various computer languages or even by using a spreadsheet program, such as Microsoft Excel.

Creating Direction Fields

Direction fields (also called slope fields) are useful for investigating first-order differential equations. In particular, we
consider a first-order differential equation of the form

Y =fx ).

An applied example of this type of differential equation appears in Newton’s law of cooling, which we will solve explicitly
later in this chapter. First, though, let us create a direction field for the differential equation

T' (1) = =0.4(T - 72).

Here T(f) represents the temperature (in degrees Fahrenheit) of an object at time #, and the ambient temperature is 72°F.

Figure 4.6 shows the direction field for this equation.
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Figure 4.6 Direction field for the differential equation

T’ (t) = —0.4(T — 72). Two solutions are plotted: one with
initial temperature less than 72°F and the other with initial
temperature greater than 72°F.

The idea behind a direction field is the fact that the derivative of a function evaluated at a given point is the slope of the
tangent line to the graph of that function at the same point. Other examples of differential equations for which we can create
a direction field include



368 Chapter 4 | Introduction to Differential Equations

Y =3x+2y—-4

y/:xz_yz
/_2)C+4
y =S

To create a direction field, we start with the first equation: y’ = 3x 4+ 2y — 4. We let (x, yo) be any ordered pair, and we
substitute these numbers into the right-hand side of the differential equation. For example, if we choose x = 1 andy = 2,
substituting into the right-hand side of the differential equation yields
y =3x+2y—-4
=3(1)+22)—-4=3.

This tells us that if a solution to the differential equation y" = 3x + 2y — 4 passes through the point (1, 2), then the
slope of the solution at that point must equal 3. To start creating the direction field, we put a short line segment at the
point (1, 2) having slope 3. We can do this for any point in the domain of the function f(x, y) = 3x+ 2y —4, which
consists of all ordered pairs (x, y) in R?. Therefore any point in the Cartesian plane has a slope associated with it,

assuming that a solution to the differential equation passes through that point. The direction field for the differential equation
y" =3x+ 2y —4 is shown in Figure 4.7.

y

e e B S S e e o o S B I B B B
A A T T S S e e e e e o o B I B B
A A B S e S e e e S e N Y N H
E b NN NN NN A A
Fb b Y VNN NN A A
B e S e e e e S S (S Ay e B B B B
Eb YN Y NN A
SEEEEE TR TR TR NN DA A B B I S
BEEREEEEREERE R EEEEEE
I e o e e e o I B R M
-4;\\\\¥+¥[\\\//‘ffff
B B e B e o o o S o
‘J'tjl’l\\}ﬁ""r‘\\\/f‘fff'
B 0 B0 B0 A e o o B B S S S R
—¢'¥¥¥}}i¥~r¥%\\\—-/,‘f-
R O M 8 A A A S A B S S S G B
T I R A B I I B BR e A
L S B S S B S S B A B B B B
A S B B A A A A | e B B B B R . e

Figure 4.7 Direction field for the differential equation
Yy =3x+2y—-4

We can generate a direction field of this type for any differential equation of the form y" = f(x, y).

Definition

A direction field (slope field) is a mathematical object used to graphically represent solutions to a first-order
differential equation. At each point in a direction field, a line segment appears whose slope is equal to the slope of a
solution to the differential equation passing through that point.

Using Direction Fields

We can use a direction field to predict the behavior of solutions to a differential equation without knowing the actual
solution. For example, the direction field in Figure 4.7 serves as a guide to the behavior of solutions to the differential
equation y’ = 3x+ 2y —4.
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To use a direction field, we start by choosing any point in the field. The line segment at that point serves as a signpost telling
us what direction to go from there. For example, if a solution to the differential equation passes through the point (0, 1),

then the slope of the solution passing through that point is given by y" =3(0) +2(1) —4 = —2. Now let x increase
slightly, say to x = 0.1. Using the method of linear approximations gives a formula for the approximate value of y for
x = 0.1. In particular,
L(x) =yo+ f" (xp)x = xq)
=1-2(xy—0)
=1-2x.

Substituting x5 = 0.1 into L(x) gives an approximate y value of 0.8.

At this point the slope of the solution changes (again according to the differential equation). We can keep progressing,
recalculating the slope of the solution as we take small steps to the right, and watching the behavior of the solution. Figure
4.8 shows a graph of the solution passing through the point (0, 1).
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Figure 4.8 Direction field for the differential equatio
y" = 3x + 2y — 4 with the solution passing through the point
O, 1).

The curve is the graph of the solution to the initial-value problem

y =3x+2y—-4, y0)=1.
This curve is called a solution curve passing through the point (0, 1). The exact solution to this initial-value problem is

= _3,45_1,2x
y=—sxtg-ges

and the graph of this solution is identical to the curve in Figure 4.8.

4.7 Create a direction field for the differential equation y’ = X% — y2 and sketch a solution curve passing
through the point (-1, 2).

. Go to this Java applet (http:/lwmwww.openstaxcollege.org/l/20_DifferEq) and this website
(http:/lwww.openstaxcollege.org/l/20_SlopeFields) to see more about slope fields.
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Now consider the direction field for the differential equation y’ = (x — 3)(y2 —4), shown in Figure 4.9. This direction
field has several interesting properties. First of all, at y = —2 and y = 2, horizontal dashes appear all the way across the
graph. This means that if y = —2, then y’ = 0. Substituting this expression into the right-hand side of the differential

equation gives

(x=3)0%-4) =@=-3)((*-4

=(x-3)0)
=0
= y' .
Therefore y = —2 is a solution to the differential equation. Similarly, y = 2 is a solution to the differential equation. These

are the only constant-valued solutions to the differential equation, as we can see from the following argument. Suppose
y =k is a constant solution to the differential equation. Then y’ = 0. Substituting this expression into the differential

equation yields 0 = (x — 3)(k2 - 4). This equation must be true for all values of x, so the second factor must equal zero.
This result yields the equation k* — 4 = 0. The solutions to this equation are k = —2 and k =2, which are the constant

solutions already mentioned. These are called the equilibrium solutions to the differential equation.

Y

P R W |

.~

&
il

-

- e A i~ ]
TS S TN S S TR T

x 1

o i i W, A e - ]

]
e Y - ot - o — —
= i - . -]
e e .
e e
e e e o i o e Y - o o - g -
i e e ]
e e e

- -
i i — ah— aA Sl i i i i -

i i i - i Y -]

-
-t
e e e e
- -
B e i T
e ot e o o

T
3
T
'
i

Bt B B S

\J

-y = | .-
o o Sl e Tl e ]

Fo—— i e e
I T T -

Figure 4.9 Direction field for the differential equation
Yy =(x- 3)(y2 — 4) showing two solutions. These solutions

are very close together, but one is barely above the equilibrium
solution x = —2 and the other is barely below the same

equilibrium solution.

Definition

Consider the differential equation y" = f(x, y). An equilibrium solution is any solution to the differential equation

of the form y = ¢, where c is a constant.

To determine the equilibrium solutions to the differential equation y" = f(x, y), set the right-hand side equal to zero. An
equilibrium solution of the differential equation is any function of the form y = k such that f(x, k) = 0 for all values of

x in the domain of f.
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An important characteristic of equilibrium solutions concerns whether or not they approach the line y = k as an asymptote

for large values of x.

Definition

Consider the differential equation y’ = f(x, y), and assume that all solutions to this differential equation are defined

for x > x(. Let y = k be an equilibrium solution to the differential equation.

1. y =k is an asymptotically stable solution to the differential equation if there exists & > O such that for any

value ¢ € (k— €, k+ ¢€) the solution to the initial-value problem

Y =fCy), yxg=c

approaches k as x approaches infinity.
2. y =k is an asymptotically unstable solution to the differential equation if there exists € > 0 such that for

any value ¢ € (k — &, k + €) the solution to the initial-value problem

Y =fxy), yxg=c

never approaches k as x approaches infinity.

3. y =k is an asymptotically semi-stable solution to the differential equation if it is neither asymptotically

stable nor asymptotically unstable.

Now we return to the differential equation y’ = (x — 3)(y2 —4), with the initial condition y(0) = 0.5. The direction field

for this initial-value problem, along with the corresponding solution, is shown in Figure 4.10.
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Figure 4.10 Direction field for the initial-value problem
Y = (x=3)(y?—4), y(0) = 0.5.

The values of the solution to this initial-value problem stay between y = —2 and y =2, which are the equilibrium
solutions to the differential equation. Furthermore, as x approaches infinity, y approaches 2. The behavior of solutions
is similar if the initial value is higher than 2, for example, y(0) = 2.3. In this case, the solutions decrease and approach

y =2 as x approaches infinity. Therefore y = 2 is an asymptotically stable solution to the differential equation.
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What happens when the initial value is below y = —2? This scenario is illustrated in Figure 4.11, with the initial value
y(0) =-3.
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Figure 4.11 Direction field for the initial-value problem
Y =(=3)07 =4, y0)=-3,

The solution decreases rapidly toward negative infinity as x approaches infinity. Furthermore, if the initial value is slightly
higher than —2, then the solution approaches 2, which is the other equilibrium solution. Therefore in neither case does
the solution approach y = -2, so y = —2 is called an asymptotically unstable, or unstable, equilibrium solution.

Example 4.8

Stability of an Equilibrium Solution

Create a direction field for the differential equation y' = (y — 3)2(y2 +y —2) and identify any equilibrium

solutions. Classify each of the equilibrium solutions as stable, unstable, or semi-stable.

Solution
The direction field is shown in Figure 4.12.
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Figure 4.12 Direction field for the differential equation
Y =0=-37+y-2.

The equilibrium solutions are y = -2, y=1, and y = 3. To classify each of the solutions, look at an arrow
directly above or below each of these values. For example, at y = —2 the arrows directly below this solution
point up, and the arrows directly above the solution point down. Therefore all initial conditions close to y = —2
approach y = —2, and the solution is stable. For the solution y = 1, all initial conditions above and below
y =1 are repelled (pushed away) from y = 1, so this solution is unstable. The solution y = 3 is semi-stable,
because for initial conditions slightly greater than 3, the solution approaches infinity, and for initial conditions
slightly less than 3, the solution approaches y = 1.

Analysis
It is possible to find the equilibrium solutions to the differential equation by setting the right-hand side equal to
zero and solving for y. This approach gives the same equilibrium solutions as those we saw in the direction field.

4.8  (Create a direction field for the differential equation y’' = (x + 5)(y + 2)(y2 — 4y +4) and identify any

equilibrium solutions. Classify each of the equilibrium solutions as stable, unstable, or semi-stable.

Euler’s Method
Consider the initial-value problem
y=2x-3, y0)=3.

Integrating both sides of the differential equation gives y = x> =3x+C, and solving for C yields the particular solution

y= x% — 3x + 3. The solution for this initial-value problem appears as the parabola in Figure 4.13.
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Figure 4.13 Euler’s Method for the initial-value problem
Y =2x-3, y0)=3.

The red graph consists of line segments that approximate the solution to the initial-value problem. The graph starts at
the same initial value of (0, 3). Then the slope of the solution at any point is determined by the right-hand side of the

differential equation, and the length of the line segment is determined by increasing the x value by 0.5 each time (the step
size). This approach is the basis of Euler’s Method.

Before we state Euler’s Method as a theorem, let’s consider another initial-value problem:
y=x"=y% y-1)=2.

The idea behind direction fields can also be applied to this problem to study the behavior of its solution. For example, at
the point (—1, 2), the slope of the solution is given by y’ = (-1)?=22=-3, sothe slope of the tangent line to the

solution at that point is also equal to —3. Now we define xy = —1 and yy = 2. Since the slope of the solution at this
point is equal to —3, we can use the method of linear approximation to approximate y near (—1, 2).
L(x) = yg + [ (xp)(x — xg).
Here xy= -1, yo =2, and f’(xy) = —3, so the linear approximation becomes
Lx) =2-3x-(=D)

=2-3x-3
=-3x-1.

Now we choose a step size. The step size is a small value, typically 0.1 or less, that serves as an increment for x; it is

represented by the variable /. In our example, let 4 = 0.1. Incrementing x( by % gives our next x value:

X1 =X0+h=—1+01=—09

We can substitute x; = —0.9 into the linear approximation to calculate y.
yi =Lxy)
=-3(-0.9) -1
=1.7.
Therefore the approximate y value for the solution when x = —0.9 is y = 1.7. We can then repeat the process, using

x1=-09 and y; = 1.7 to calculate x, and y,. The new slope is given by y' = (—0.9)2 - (1.7)2 = —2.08. First,
Xy =x;+h=-0.9+0.1 =-0.8. Using linear approximation gives
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Lx) =y +f (P —xp)
=1.7-2.08(x — (=0.9))
=1.7-2.08x - 1.872

=-2.08x—0.172.
Finally, we substitute x, = —0.8 into the linear approximation to calculate y,.
Yo =L(xp)
= —-2.08x5 —0.172
= —-2.08(-0.8) — 0.172
= 1.492.
Therefore the approximate value of the solution to the differential equation is y = 1.492 when x = —0.8.

375

What we have just shown is the idea behind Euler’s Method. Repeating these steps gives a list of values for the solution.

These values are shown in Table 4.2, rounded off to four decimal places.

n 0 1 2 3 4 5

Xp -1 -0.9 -0.8 -0.7 -0.6 -0.5
Yn 2 1.7 1.492 1.3334 1.2046 1.0955
n 6 7 8 9 10

Xp -0.4 -0.3 -0.2 -0.1 0

Yn 1.0004 1.9164 1.8414 1.7746 1.7156

Table 4.2 Using Euler’'s Method to Approximate Solutions to a Differential
Equation

Theorem 4.1: Euler’s Method

Consider the initial-value problem

Y =fx ),  ¥xg) =yo

To approximate a solution to this problem using Euler’s method, define
Xy = X+ nh
Yn=Yn_1+hf(x,_1, ¥, -1

(4.2)

Here h > 0 represents the step size and » is an integer, starting with 1. The number of steps taken is counted by the

variable n.

Typically % is a small value, say 0.1 or 0.05. The smaller the value of 4, the more calculations are needed. The higher

the value of /4, the fewer calculations are needed. However, the tradeoff results in a lower degree of accuracy for larger

step size, as illustrated in Figure 4.14.
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Figure 4.14 Euler’s method for the initial-value problem y" = 2x — 3, y(0) = 3 with (a) a step size of
h = 0.5; and (b) a step size of h = 0.25.

Example 4.9

Using Euler’s Method

Consider the initial-value problem
y =3x2=y2+1, y0)=2.

Use Euler’s method with a step size of 0.1 to generate a table of values for the solution for values of x between
0 and 1.

Solution
We are given 2 =0.1 and f(x, y) = 3x2 - y2 + 1. Furthermore, the initial condition y(0) =2 gives x5 =0
and y, = 2. Using Equation 4.2 with n =0, we can generate Table 4.3.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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of x between O and 1.

method.

n Xn Yn=Yn1+hfx,_1,y,- 1)
0 0 2
1 01 | yi=yo+hfxg yo) =17
2 0.2 vy =y, +hf(xy, yp) = 1.514
3 0.3 3 =Yy + hf(x,, yo) = 1.3968
4 0.4 V4 =y3+hf(xs y3) = 1.3287
5 0.5 Ys = yu+hf(xg yg) = 1.3001
6 0.6 Y6 =Ys5+hf(xs, y5) = 1.3061
7 0.7 y7 = ye+ hf(xg ye) = 1.3435
8 0.8 yg =Yy7+hf(x7, y7) = 1.4100
9 0.9 Yo =yg+hf(xg, yg) = 1.5032
10 1.0 Y10 = Yo + hf(xg, yo) = 1.6202
Table 4.3

Using Euler’s Method to Approximate Solutions to a

Differential Equation

With ten calculations, we are able to approximate the values of the solution to the initial-value problem for values

377

’ Go to this website (http://www.openstaxcollege.org/l/20_EulersMethod) for more information on Euler’s


http://www.openstaxcollege.org/l/20_EulersMethod
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@ 4.9 Consider the initial-value problem
Y=xl+yh w1 =-2.

Using a step size of 0.1, generate a table with approximate values for the solution to the initial-value problem

for values of x between 1 and 2.

’ Visit this website (http://www.openstaxcollege.org/l/20_EulerMethod?2) for a practical application of the
material in this section.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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4.2 EXERCISES

For the following problems, use the direction field below
from the differential equation y’" = —2y. Sketch the graph

of the solution for the given initial conditions.

Y ¥

R it
Nt
RRRNERARn
5 1 0 1 2
66. y(0)=1
67. y(0)=0
68. y(0)=-1

69. Are there any equilibria? What are their stabilities?

For the following problems, use the direction field below
from the differential equation y’ = y2 — 2y. Sketch the

graph of the solution for the given initial conditions.

yYi
ITTEETTINEY
Y
21 - - -
5955109, 5.9.9. 9
Y _;'/‘ffff x
o |
i i
_—4 2 o 2 4 6
70. y(0) =3
71. y(0) = 1
72. y(0) = -1

73. Are there any equilibria? What are their stabilities?
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Draw the direction field for the following differential
equations, then solve the differential equation. Draw your
solution on top of the direction field. Does your solution
follow along the arrows on your direction field?

74. y’ = t3

75. y = el

76. ﬂ = x2cosx
dx

77. dy .t
ar =€

78. dx _
dr cosh(?)

Draw the directional field for the following differential
equations. What can you say about the behavior of the
solution? Are there equilibria? What stability do these
equilibria have?

79. y=y2_1
80. y=y—x

81. y/=1_y2_x2
82. y = 12 siny
83. ¥y =3y+uxy

Match the direction field with the given differential
equations. Explain your selections.

Yi
| NARRER
RN ZEEEE]
SV VAN Lt
RN TR R RN
oA
_ Latddt”
SRR Y|
IRERRR O RRE]
AV VAV T _

(a)
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(€)

-3t

88. y’
Match the direction field with the given differential
equations. Explain your selections.

84. y'
85. y'
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89. y' =tsiny

90. y' = —tcosy
91. y’ =ttany

[0, 1]. If you are able

to solve the initial-value problem exactly, compare your

5 steps over the interval ¢

Estimate the following solutions using Euler’s method with
n

e unable to solve

=

on with the exact solution. If you a
nitial-value problem, the exact

o

solut

Yi

olution will be
’s method. How

(I

ded for you to compare with Eule

ate is Euler’s method?

o— =

the
provi

©

—

daccu

y0) =1

-3y,

94. y'
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95. y’ — l2

96. y =3t—y, y(0)=1. Exact solution is
y=3t+4e" =3

7 y=y+ i, ¥(0) = 3. Exact solution is

y=5¢'—=2—-1>—2t

98. y' =21, y(0) =0

99. [Tl y = e(x+y), y(0) = —1. Exact solution is
y=-Ine+1-e%
100. y = yzln(x +1), y(0)=1. Exact solution is
y= - 1

(x+ D(nx+1)—1)
101. 2% _ 1

/A X — . . _ —_
vy =2% y(0) =0, Exactsolutionis y = o)

X

102. y’ =y, y(0) = —1. Exact solution is y = —e".

103. y' = =5¢, y(0) = -2. Exact solution is

— _3.2_
y= 2t 2

Differential equations can be used to model disease
epidemics. In the next set of problems, we examine the
change of size of two sub-populations of people living in
a city: individuals who are infected and individuals who
are susceptible to infection. S represents the size of the

susceptible population, and [ represents the size of the

infected population. We assume that if a susceptible person
interacts with an infected person, there is a probability ¢

that the susceptible person will become infected. Each
infected person recovers from the infection at a rate r
and becomes susceptible again. We consider the case of

influenza, where we assume that no one dies from the
disease, so we assume that the total population size of
the two sub-populations is a constant number, N. The

differential equations that model these population sizes are
S"=rl—cSI and
' =cSI—rl.
Here c¢ represents the contact rate and r is the recovery
rate.

104. Show that, by our assumption that the total population
size is constant (S +/ = N), you can reduce the system

to a single differential equationin I: I’ = ¢(N — DI — rl.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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105. Assuming the parameters are ¢ = 0.5, N =5, and

r = 0.5, draw the resulting directional field.

106. [T] Use computational software or a calculator to
compute the solution to the initial-value problem
y' =ty, y(0) =2 using Euler’s Method with the given

step size h. Find the solution at # = 1. For a hint, here is

“pseudo-code” for how to write a computer program to
perform Euler’s Method for y’ = f(z, y), y(0) = 2:

Create function f(¢, y)
Define parameters y(1) = y,

t(0) =0, step size h,

and total number of steps, N

Write a for loop:
for k=1toN

fn = f(t(k), y(k))
y(k+1) = y(k) + h*fn

t(k+1) = t(k) + h

107. Solve the initial-value problem for the exact solution.
108. Draw the directional field

109. h=1

110. [T] A =10
111. [T] A = 100
112. [T] & = 1000

113. [T] Evaluate the exact solution at r = 1. Make a

table of errors for the relative error between the Euler’s
method solution and the exact solution. How much does the
error change? Can you explain?

Consider the initial-value problem y" = -2y,  y(0) = 2.

114. Show that y= 2e™%* solves this initial-value

problem.
115. Draw the directional field of this differential equation.

116. [T] By hand or by calculator or computer,
approximate the solution using Euler’s Method at ¢t = 10

using h = 5.

117. [T] By calculator or computer, approximate the
solution using Euler’s Method at ¢t = 10 using & = 100.

118. [T] Plot exact answer and each Euler approximation
(for h=5 and h = 100) at each A on the directional

field. What do you notice?
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4.3 | Separable Equations

Learning Objectives

4.3.1 Use separation of variables to solve a differential equation.
4.3.2 Solve applications using separation of variables.

We now examine a solution technique for finding exact solutions to a class of differential equations known as separable
differential equations. These equations are common in a wide variety of disciplines, including physics, chemistry, and
engineering. We illustrate a few applications at the end of the section.

Separation of Variables

We start with a definition and some examples.

Definition

A separable differential equation is any equation that can be written in the form
Y = f0gk). (4.3)

The term ‘separable’ refers to the fact that the right-hand side of the equation can be separated into a function of x times a
function of y. Examples of separable differential equations include

Yy = (x2—4)(3y+2)
¥ = 6x% +4x

y' =secy+tany

y =xy+3x-2y—6.

The second equation is separable with f(x) = 6x% + 4x and g(y) =1, the third equation is separable with f(x) =1 and
g(y) = secy+tany, and the right-hand side of the fourth equation can be factored as (x + 3)(y — 2), so it is separable

as well. The third equation is also called an autonomous differential equation because the right-hand side of the equation
is a function of y alone. If a differential equation is separable, then it is possible to solve the equation using the method of

separation of variables.

Problem-Solving Strategy: Separation of Variables

1. Check for any values of y that make g(y) = 0. These correspond to constant solutions.
2. Rewrite the differential equation in the form % = f(x)dx.

Integrate both sides of the equation.

Solve the resulting equation for y if possible.

5. If an initial condition exists, substitute the appropriate values for x and y into the equation and solve for the
constant.
Note that Step 4. states “Solve the resulting equation for y if possible.” It is not always possible to obtain y as an

explicit function of x. Quite often we have to be satisfied with finding y as an implicit function of x.
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Example 4.10

Using Separation of Variables

Find a general solution to the differential equation y’ = (x2 - 4)(3y +2) using the method of separation of

variables.

Solution
Follow the five-step method of separation of variables.

1. In this example, f(x) = x> —4 and g(y) =3y +2. Setting g(y) =0 gives y = — 2 as a constant

3
solution.

2. Rewrite the differential equation in the form

dy 2
3y+2—(x Adx.

3. [Integrate both sides of the equation:

J3yd-7- 5= f(x2 - 4)dx.

Let u =3y +2. Then du = 3%dx, so the equation becomes

%f%du = Ll _axyc

3
%lnlul = %x3—4x+C
1 - 1,3_
31n|3y+2| = 3¥ 4x+ C.

4. To solve this equation for y, first multiply both sides of the equation by 3.

I3y + 2| = x> — 12x + 3C

Now we use some logic in dealing with the constant C. Since C represents an arbitrary constant, 3C
also represents an arbitrary constant. If we call the second arbitrary constant C, the equation becomes

I3y +2| = x> - 12x+ C,.

Now exponentiate both sides of the equation (i.e., make each side of the equation the exponent for the
base e).

3
In|3y +2 x”—=12x+C
SR+ 1

C 3
13y + 2] e Lot 12

c
Again define a new constant C, = e ! (note that C, > 0):

3
By+2|=Che* ~ 12

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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5.

3 3
This corresponds to two separate equations: 3y +2 = C,e* ~ 12¥ and 3y +2 = —Cye* ~ 12x

3
_2 i C2 ex —12x
3 .
Since C, > 0, it does not matter whether we use plus or minus, so the constant can actually have either

The solution to either equation can be written in the form y =

sign. Furthermore, the subscript on the constant C is entirely arbitrary, and can be dropped. Therefore
the solution can be written as

-2+ Cex3 —
YETTT 3

No initial condition is imposed, so we are finished.

@/ 4.10 Use the method of separation of variables to find a general solution to the differential equation
y' =2xy+3y—4x—6.

Example 4.11

1.

Solving an Initial-Value Problem

Using the method of separation of variables, solve the initial-value problem

Yy =Q2x+3)y*—4), y0)=-3.

Solution

Follow the five-step method of separation of variables.

In this example, f(x) =2x+3 and g(y) = y2 —4. Setting g(y) =0 gives y= +2 as constant

solutions.

Divide both sides of the equation by y2 — 4 and multiply by dx. This gives the equation

dy

yi-4

= (2x+ 3)dx.

Next integrate both sides:
4.4)

1
dy= [ 2x+ 3)dx.
Jy2—4 g f

To evaluate the left-hand side, use the method of partial fraction decomposition. This leads to the identity

1 zl(l _ 1)
v—4 4v-2"y+2)

Then Equation 4.4 becomes
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%J(y_#z—y%)dy = [@x+3)dx
%(ln|y—2|—ln|y+2|) = x> +3x+C.

Multiplying both sides of this equation by 4 and replacing 4C with C; gives

4x% 4 12x + C,
4x? + 12x+ C;.

In|y — 2| — In]y + 2|
y—Z‘
y+2

In

4. Tt is possible to solve this equation for y. First exponentiate both sides of the equation and define

C
Cr=e 1.

y=2|_ 4x2 4 12x
_y+2 —C26’ .

Next we can remove the absolute value and let C, be either positive or negative. Then multiply both

sides by y + 2.

2

2 2
y_2 — C2y€4x +12x+2C264x +12x.

Now collect all terms involving y on one side of the equation, and solve for y:

2 2
y— C2y64x + 12x = 2 +2C264x + 12x
2 2
y(l _ Cze4x + 12x) =2 +2C264x + 12x

2
2+2C2€4x + 12x

5 .
1= Cze4x + 12x

5. To determine the value of C,, substitute x =0 and y = —1 into the general solution. Alternatively,

. ) . . -2 2 -
we can put the same values into an earlier equation, namely the equation ;: = C, P 12 Thisis

much easier to solve for C,:

2

y—2 _ 4x“+ 12x
y+2 Cae
2
—-1=-2 _ 4(0)< + 12(0)
g S
C2 = —3.

Therefore the solution to the initial-value problem is

7 6e4x2 + 12x
y=="X—-—
1+ 3e4x2 + 12x

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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A graph of this solution appears in Figure 4.15.

W'

Figure 4.15 Graph of the solution to the initial-value problem
Y =@x+3)(y*—4)  y0)=-3.

@ 4.11 Find the solution to the initial-value problem
6y = Qx+(y*—2y—8). y(0)=-3

using the method of separation of variables.

Applications of Separation of Variables

Many interesting problems can be described by separable equations. We illustrate two types of problems: solution
concentrations and Newton’s law of cooling.

Solution concentrations

Consider a tank being filled with a salt solution. We would like to determine the amount of salt present in the tank as a
function of time. We can apply the process of separation of variables to solve this problem and similar problems involving
solution concentrations.

Example 4.12

Determining Salt Concentration over Time

A tank containing 100 L of a brine solution initially has 4 kg of salt dissolved in the solution. At time ¢ = 0,

another brine solution flows into the tank at a rate of 2 L/min. This brine solution contains a concentration
of 0.5kg/L of salt. At the same time, a stopcock is opened at the bottom of the tank, allowing the combined
solution to flow out at a rate of 2 L/min, so that the level of liquid in the tank remains constant (Figure 4.16).

Find the amount of salt in the tank as a function of time (measured in minutes), and find the limiting amount of
salt in the tank, assuming that the solution in the tank is well mixed at all times.
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0.5 kg salt/liter

2 liters/minute 100 liter tank

initially contains 2 liters/minute
4 kg of salt

Figure 4.16 A brine tank with an initial amount of salt
solution accepts an input flow and delivers an output flow. How
does the amount of salt change with time?

Solution

First we define a function u(¢) that represents the amount of salt in kilograms in the tank as a function of time.

Then % represents the rate at which the amount of salt in the tank changes as a function of time. Also, u(0)

represents the amount of salt in the tank at time ¢ = 0, whichis 4 kilograms.
The general setup for the differential equation we will solve is of the form

% = INFLOW RATE — OUTFLOW RATE. (4.5)

INFLOW RATE represents the rate at which salt enters the tank, and OUTFLOW RATE represents the rate at

which salt leaves the tank. Because solution enters the tank at a rate of 2 L/min, and each liter of solution
contains 0.5 kilogram of salt, every minute 2(0.5) = 1 kilogram of salt enters the tank. Therefore INFLOW

RATE = 1.

To calculate the rate at which salt leaves the tank, we need the concentration of salt in the tank at any point in
time. Since the actual amount of salt varies over time, so does the concentration of salt. However, the volume of
the solution remains fixed at 100 liters. The number of kilograms of salt in the tank at time 7 is equal to u(z).

Thus, the concentration of salt is % kg/L, and the solution leaves the tank at a rate of 2 L/min. Therefore

salt leaves the tank at a rate of % 2= % kg/min, and OUTFLOW RATE is equal to % Therefore the

du _ | _ U apd the initial condition is u(0) = 4. The initial-value problem to

differential equation becomes di 30°

be solved is

du | _u =
= 1 30" u(0) = 4.
The differential equation is a separable equation, so we can apply the five-step strategy for solution.

Step 1. Setting 1 — & = 0 gives u = 50 as a constant solution. Since the initial amount of salt in the tank is 4

50
kilograms, this solution does not apply.

Step 2. Rewrite the equation as

du _50—u
dt =50

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Then multiply both sides by dt¢ and divide both sides by 50 — u:

du _ dt
50-u 50
Step 3. Integrate both sides:
e - I
50—u 50
- —y = L
In[50 —u| = 30 +C.
Step 4. Solve for u(?):
- = L _
In|50 — u| 30 C
eln|50 —ul _ e—(t/SO) -C
150—ul = C e,

Eliminate the absolute value by allowing the constant to be either positive or negative:
50 —u=Cye™".
Finally, solve for u(t):
u(t) = 50 — Cye 0,

Step 5. Solve for C:

u(0) = 50—C,e"00
4 = 50-C,
Cl - 46

The solution to the initial value problem is u(#) = 50 — 46¢ =30 Ty find the limiting amount of salt in the tank,

take the limit as ¢ approaches infinity:
lim u(r) = 50— 46¢~"70
= 0

=50 —46(0)
= 50.

Note that this was the constant solution to the differential equation. If the initial amount of salt in the tank is 50
kilograms, then it remains constant. If it starts at less than 50 kilograms, then it approaches 50 kilograms over
time.

4.12 A tank contains 3 kilograms of salt dissolved in 75 liters of water. A salt solution of 0.4 kg salt/L is

pumped into the tank at a rate of 6 L/min and is drained at the same rate. Solve for the salt concentration at
time ¢. Assume the tank is well mixed at all times.

Newton’s law of cooling

Newton’s law of cooling states that the rate of change of an object’s temperature is proportional to the difference between
its own temperature and the ambient temperature (i.e., the temperature of its surroundings). If we let 7(¢#) represent

the temperature of an object as a function of time, then dar represents the rate at which that temperature changes. The

dt
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temperature of the object’s surroundings can be represented by 7’s. Then Newton’s law of cooling can be written in the

form
dar _ -
L — yr) -1
or simply
dr _ (1 - (4.6)
dar k(T —Ty).

The temperature of the object at the beginning of any experiment is the initial value for the initial-value problem. We call
this temperature T)y. Therefore the initial-value problem that needs to be solved takes the form

dL =K1 -1y, TO)=T,, (47)
where k is a constant that needs to be either given or determined in the context of the problem. We use these equations in
Example 4.13.

Example 4.13

Waiting for a Pizza to Cool

A pizza is removed from the oven after baking thoroughly, and the temperature of the oven is 350°F. The
temperature of the kitchen is 75°F, and after 5 minutes the temperature of the pizza is 340°F. We would like
to wait until the temperature of the pizza reaches 300°F before cutting and serving it (Figure 4.17). How much
longer will we have to wait?

Room temperature
is 75 degrees

Pizza temperature
is 350 degrees
Figure 4.17 From Newton’s law of cooling, if the pizza cools
10°F in 5 minutes, how long before it cools to 300°F?

Solution
The ambient temperature (surrounding temperature) is 75°F, so T = 75. The temperature of the pizza when
it comes out of the oven is 350°F, which is the initial temperature (i.e., initial value), so Ty = 350. Therefore

Equation 4.4 becomes

% = k(T —75), T(0) = 350.

To solve the differential equation, we use the five-step technique for solving separable equations.

1. Setting the right-hand side equal to zero gives T = 75 as a constant solution. Since the pizza starts at
350°F, this is not the solution we are seeking.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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w

Rewrite the differential equation by multiplying both sides by dt and dividing both sides by 7" — 75:

ar__ _

T_75 = kdt.
Integrate both sides:

ar _ _

[7%55 = [
InT —75| = kt+C.
Solve for T by first exponentiating both sides:
elan =75 _ okt C

IT-75] = C,e
T-75 = CyeM
T() = 75+ Cy el
Solve for C; by using the initial condition 7(0) = 350:

T(r) = 75+ C el
7(0) = 75+ C,"”
350 = 75+ C,

Therefore the solution to the initial-value problem is

T(t) = 75 + 275

To determine the value of k, we need to use the fact that after 5 minutes the temperature of the pizza
is 340°F. Therefore T(5) = 340. Substituting this information into the solution to the initial-value

problem, we have

T@) = 75+ 275¢"
T(5) = 340 =75 + 275K
265 = 275¢%
sk _ 53
¢ = 55
5k _ ﬁ
Ine = ln(SS)
- 53
Sk = 1n(55)
— 11.(33) . _
ko= 51n(55)~ 0.007408.

So now we have T(¢f) =75 + 275¢ 700070481 \when is the temperature 300°F? Solving for ¢, we find

391
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T(t) = 75+ 2757000704

300 = 75+ 275¢ 0007048

,—00070481 _ 9
11
Ine—0007048¢ _ | 9
11
—0.007048¢ = ln%
= 1 1.9 4
I = —Goo70a8 1T ¥ 28

Therefore we need to wait an additional 23.5 minutes (after the temperature of the pizza reached
340°F). That should be just enough time to finish this calculation.

@/ 4.13 A cake is removed from the oven after baking thoroughly, and the temperature of the oven is 450°F.
The temperature of the kitchen is 70°F, and after 10 minutes the temperature of the cake is 430°F.

a. Write the appropriate initial-value problem to describe this situation.

b. Solve the initial-value problem for 7(z).

c. How long will it take until the temperature of the cake is within 5°F of room temperature?
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4.3 EXERCISES

Solve the following initial-value problems with the initial
condition y, = 0 and graph the solution.

119. dy

ar =) t!

120. dy
121. dy
122. dy

Find the general solution to the differential equation.
123. xzy’ =(x+ 1)y

124. y" = tan(y)x

125. y = 2xy2

126. dy _
7 ycos(3t +2)

127. 5 dy _ 2
128. v = ¢V 52

129. (14+x)y' =@x+2)y—-1)

130. % _ 3t2(x2+4)

131. t%=4 1_y2
132. y = ere?

Find the solution to the initial-value problem.

133y =" "7 y(0)=0

134y = y2x+ 1), y0) =2

135 dy _ 3,2 =
o=y xe , ¥(0) =1
136. % = yZ e sin(3x), y(0) = 1
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137. y’ = X X y(()) =0
sechzy

138. y' = 2xy(1 4+ 2y), y(0) = -1
139 dx a1 - 2%, 2(0) = 0

140y =302 +4), ¥(0) =0
141. y' = ¢”5%, y(0) = In(In(5))
142. y" = “2xtan(y), y(0) = 5

For the following problems, use a software program or your
calculator to generate the directional fields. Solve explicitly
and draw solution curves for several initial conditions. Are
there some critical initial conditions that change the
behavior of the solution?

143. [T]1 y'=1-2y
144, )y = 525
14511 y' = yPe*
146. [T] y' = ¢”
147. [T] y' = yIn(x)

148. Most drugs in the bloodstream decay according to the
equation y’ =cy, where y is the concentration of the
drug in the bloodstream. If the half-life of a drug is 2
hours, what fraction of the initial dose remains after 6
hours?

149. A drug is administered intravenously to a patient at a
rate r mg/h and is cleared from the body at a rate

proportional to the amount of drug still present in the body,
d Set up and solve the differential equation, assuming

there is no drug initially present in the body.

150. [T] How often should a drug be taken if its dose is 3
mg, it is cleared at a rate ¢ =0.1 mg/h, and 1 mg is
required to be in the bloodstream at all times?

151. A tank contains 1 kilogram of salt dissolved in 100
liters of water. A salt solution of 0.1 kg salt/L is pumped
into the tank at a rate of 2 L/min and is drained at the same
rate. Solve for the salt concentration at time ¢. Assume the
tank is well mixed.
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152. A tank containing 10 kilograms of salt dissolved in
1000 liters of water has two salt solutions pumped in. The
first solution of 0.2 kg salt/L is pumped in at a rate of 20
L/min and the second solution of 0.05 kg salt/L is pumped
in at a rate of 5 L/min. The tank drains at 25 L/min.

Assume the tank is well mixed. Solve for the salt
concentration at time .

153. [T] For the preceding problem, find how much salt is
in the tank 1 hour after the process begins.

154. Torricelli’s law states that for a water tank with a hole
in the bottom that has a cross-section of A and with a
height of water / above the bottom of the tank, the rate of
change of volume of water flowing from the tank is
proportional to the square root of the height of water,

according to ‘2—‘; = —AY\2gh, where g is the acceleration

dV _ 4dh

due to gravity. Note that ar di

initial-value problem for the height of the water, assuming a
tank with a hole of radius 2 ft. The initial height of water is

100 ft.

Solve the resulting

155. For the preceding problem, determine how long it
takes the tank to drain.

For the following problems, use Newton’s law of cooling.

156. The liquid base of an ice cream has an initial

temperature of 200°F before it is placed in a freezer with a
constant temperature of O0°F. After 1 hour, the
temperature of the ice-cream base has decreased to 140°F.

Formulate and solve the initial-value problem to determine
the temperature of the ice cream.

157. [T] The liquid base of an ice cream has an initial
temperature of 210°F before it is placed in a freezer with a

2 hours, the
temperature of the ice-cream base has decreased to 170°F.

constant temperature of 20°F. After

At what time will the ice cream be ready to eat? (Assume
30°F is the optimal eating temperature.)

158. [T] You are organizing an ice cream social. The
outside temperature is 80°F and the ice cream is at 10°F.

After 10 minutes, the ice cream temperature has risen by
10°F. How much longer can you wait before the ice cream
melts at 40°F?

159. You have a cup of coffee at temperature 70°C and
the ambient temperature in the room is 20°C. Assuming a
cooling rate kof 0.125, write and solve the differential

equation to describe the temperature of the coffee with
respect to time.
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160. [T] You have a cup of coffee at temperature 70°C

that you put outside, where the ambient temperature is
0°C. After 5 minutes, how much colder is the coffee?

161. You have a cup of coffee at temperature 70°C and
you immediately pour in 1 part milk to 5 parts coffee.
The milk is initially at temperature 1°C. Write and solve

the differential equation that governs the temperature of
this coffee.

162. You have a cup of coffee at temperature 70°C,
which you let cool 10 minutes before you pour in the same
amount of milk at 1°C as in the preceding problem. How
does the temperature compare to the previous cup after 10
minutes?

163. Solve the generic problem y’ = ay+ b with initial
condition y(0) = c.

164. Prove the basic continual compounded interest
equation. Assuming an initial deposit of P, and an interest

rate of r, set up and solve an equation for continually

compounded interest.

165. Assume an initial nutrient amount of / kilograms in a
tank with L liters. Assume a concentration of ¢ kg/L
being pumped in at a rate of » L/min. The tank is well
mixed and is drained at a rate of » L/min. Find the equation
describing the amount of nutrient in the tank.

166. Leaves accumulate on the forest floor at a rate of 2 g/
cm?/yr and also decompose at a rate of 90% per year.

Write a differential equation governing the number of
grams of leaf litter per square centimeter of forest floor,
assuming at time O there is no leaf litter on the ground.

Does this amount approach a steady value? What is that
value?

167. Leaves accumulate on the forest floor at a rate of 4 g/
cm?/yr. These leaves decompose at a rate of 10% per year.
Write a differential equation governing the number of
grams of leaf litter per square centimeter of forest floor.
Does this amount approach a steady value? What is that
value?
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4.4 | The Logistic Equation

Learning Objectives

4.4.1 Describe the concept of environmental carrying capacity in the logistic model of population
growth.

4.4.2 Draw a direction field for a logistic equation and interpret the solution curves.
4.4.3 Solve a logistic equation and interpret the results.

Differential equations can be used to represent the size of a population as it varies over time. We saw this in an earlier
chapter in the section on exponential growth and decay, which is the simplest model. A more realistic model includes other
factors that affect the growth of the population. In this section, we study the logistic differential equation and see how it
applies to the study of population dynamics in the context of biology.

Population Growth and Carrying Capacity

To model population growth using a differential equation, we first need to introduce some variables and relevant terms. The
variable 7. will represent time. The units of time can be hours, days, weeks, months, or even years. Any given problem
must specify the units used in that particular problem. The variable P will represent population. Since the population varies
over time, it is understood to be a function of time. Therefore we use the notation P(¢) for the population as a function

of time. If P(f) is a differentiable function, then the first derivative dp represents the instantaneous rate of change of the

dt
population as a function of time.

In Exponential Growth and Decay, we studied the exponential growth and decay of populations and radioactive
substances. An example of an exponential growth function is P(f) = P, e'’. In this function, P(¢) represents the

population at time ¢, P, represents the initial population (population at time f=0), and the constant r > 0 is called

the growth rate. Figure 4.18 shows a graph of P(¥) = 10093, Here Py =100 and r = 0.03.

P(t)4

400+

—

Of 10 20 30 40 50t
Figure 4.18 An exponential growth model of population.

We can verify that the function P(r) = P e’ satisfies the initial-value problem

dpP
- =rP, P@0) =P,
dt ©)="Po

This differential equation has an interesting interpretation. The left-hand side represents the rate at which the population
increases (or decreases). The right-hand side is equal to a positive constant multiplied by the current population. Therefore
the differential equation states that the rate at which the population increases is proportional to the population at that point
in time. Furthermore, it states that the constant of proportionality never changes.

One problem with this function is its prediction that as time goes on, the population grows without bound. This is unrealistic
in a real-world setting. Various factors limit the rate of growth of a particular population, including birth rate, death rate,
food supply, predators, and so on. The growth constant r usually takes into consideration the birth and death rates but
none of the other factors, and it can be interpreted as a net (birth minus death) percent growth rate per unit time. A natural
question to ask is whether the population growth rate stays constant, or whether it changes over time. Biologists have found
that in many biological systems, the population grows until a certain steady-state population is reached. This possibility is
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not taken into account with exponential growth. However, the concept of carrying capacity allows for the possibility that in
a given area, only a certain number of a given organism or animal can thrive without running into resource issues.

Definition

The carrying capacity of an organism in a given environment is defined to be the maximum population of that
organism that the environment can sustain indefinitely.

We use the variable K to denote the carrying capacity. The growth rate is represented by the variable r. Using these
variables, we can define the logistic differential equation.

Definition

Let K represent the carrying capacity for a particular organism in a given environment, and let » be a real number
that represents the growth rate. The function P(#) represents the population of this organism as a function of time ¢z,

and the constant P, represents the initial population (population of the organism at time 7 = 0). Then the logistic
differential equation is

‘fl—f = rP(l — %) — =rP. (4.8)

’ See this website (http://lwww.openstaxcollege.org/l/20_logisticEq) for more information on the logistic
equation.

The logistic equation was first published by Pierre Verhulst in 1845. This differential equation can be coupled with the
initial condition P(0) = Py, to form an initial-value problem for P(z).

Suppose that the initial population is small relative to the carrying capacity. Then L s small, possibly close to zero. Thus,

K
the quantity in parentheses on the right-hand side of Equation 4.8 is close to 1, and the right-hand side of this equation

isclose to rP. If » > 0, then the population grows rapidly, resembling exponential growth.

P

However, as the population grows, the ratio yd also grows, because K is constant. If the population remains below the
carrying capacity, then % islessthan 1, so 1 — % > 0. Therefore the right-hand side of Equation 4.8 is still positive,

but the quantity in parentheses gets smaller, and the growth rate decreases as a result. If P = K then the right-hand side is
equal to zero, and the population does not change.

Now suppose that the population starts at a value higher than the carrying capacity. Then % >1, and 1—- % <0.

Then the right-hand side of Equation 4.8 is negative, and the population decreases. As long as P > K, the population

decreases. It never actually reaches K because dpP o get smaller and smaller, but the population approaches the carrying

dt
capacity as ¢ approaches infinity. This analysis can be represented visually by way of a phase line. A phase line describes

the general behavior of a solution to an autonomous differential equation, depending on the initial condition. For the case
of a carrying capacity in the logistic equation, the phase line is as shown in Figure 4.19.
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Y
Figure 4.19 A phase line for the differential equation

- r(-4)

This phase line shows that when P is less than zero or greater than K, the population decreases over time. When P is

between 0 and K, the population increases over time.

Example 4.14

Chapter Opener: Examining the Carrying Capacity of a Deer Population

Figure 4.20 (credit: modification of work by Rachel Kramer,
Flickr)

Let’s consider the population of white-tailed deer (Odocoileus virginianus) in the state of Kentucky. The
Kentucky Department of Fish and Wildlife Resources (KDFWR) sets guidelines for hunting and fishing in
the state. Before the hunting season of 2004, it estimated a population of 900,000 deer. Johnson notes:

“A deer population that has plenty to eat and is not hunted by humans or other predators will double every
three years.” (George Johnson, “The Problem of Exploding Deer Populations Has No Attractive Solutions,”
January 12, 2001, accessed April 9, 2015, http://www.txtwriter.com/onscience/Articles/deerpops.html.) This
observation corresponds to a rate of increase r = @ = (0.2311, so the approximate growth rate is 23.11%
per year. (This assumes that the population grows exponentially, which is reasonable—at least in the short
term—with plentiful food supply and no predators.) The KDFWR also reports deer population densities for 32
counties in Kentucky, the average of which is approximately 27 deer per square mile. Suppose this is the deer
density for the whole state (39,732 square miles). The carrying capacity K is 39,732 square miles times 27

deer per square mile, or 1,072,764 deer.
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a. For this application, we have P = 900,000, K = 1,072,764, and r = 0.2311. Substitute these values
into Equation 4.8 and form the initial-value problem.

b. Solve the initial-value problem from part a.

c. According to this model, what will be the population in 3 years? Recall that the doubling time predicted

by Johnson for the deer population was 3 years. How do these values compare?

d. Suppose the population managed to reach 1,200,000 deer. What does the logistic equation predict will

happen to the population in this scenario?

Solution
a. The initial value problem is
dpP _ N _
dP _ (231 lP(l e 4), P(0) = 900,000.

b. The logistic equation is an autonomous differential equation, so we can use the method of separation of
variables.
Step 1: Setting the right-hand side equal to zero gives P =0 and P = 1,072,764. This means that if the

population starts at zero it will never change, and if it starts at the carrying capacity, it will never change.
Step 2: Rewrite the differential equation and multiply both sides by:

ar _ 1072764 1)
ar = OBUP ( 1,072,764
_ 1,072,764 — P
dP = 0'2311])(—1,072,764 )dt.
Divide both sides by P(1,072,764 — P):
dpP - _0.2311 ,

P(1,072,764 — P) — 1,072,764

Step 3: Integrate both sides of the equation using partial fraction decomposition:

I dP - J 02311 4
P(1.072,764 — P) 1.072.764

] 1 1 _ 02311z
1.072.764 J(P 1072764 = P)dP = 1072765 7€
1 _ _ — 02311t
el — 1072764 — P) = {GBUL L c.

Step 4: Multiply both sides by 1,072,764 and use the quotient rule for logarithms:

In

P 1_
1,072,764 — P| =0.2311t+ C;.

Here C| = 1,072,764C. Next exponentiate both sides and eliminate the absolute value:

P
072,764 = p“ 0.23111+C
e = e
P 0.2311¢
1,072,764 = P| Cae
____pr  _ 0.2311¢
1,072,764 —P ~ Cre :
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C
Here Cy =¢ ! but after eliminating the absolute value, it can be negative as well. Now solve for:

P = C,e"B1(1,072,764 - P).
P = 1,072,764C, "B — ¢, peO B
P+ Cy PO = 1,072,764C, P11

P(1+ €@ = 1,072,764C, P

1,072,764C, 023111
1+ C260.23111

P(1)

Step 5: To determine the value of C,, itis actually easier to go back a couple of steps to where C, was
defined. In particular, use the equation

I 0.2311¢
T072764 —p — C2¢ :

The initial condition is P(0) = 900,000. Replace P with 900,000 and ¢ with zero:

0.2311¢
1,072,564 _P Cae
900,000
1,072,764 — 900,000
900,000
172,764
25,000

Cr = gy~ 5209.

= C, 60.231 1(0)

G,

Therefore

1,072,764(%) 023111

25000 ,0.23117
L+ ( 4799 )e

1,072,764(25000)e 23111
4799 + 2500022311

P(r)

Dividing the numerator and denominator by 25,000 gives

1,072,7649-2311
0.19196 4 023111

P(t) =

Figure 4.21 is a graph of this equation.
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Yi
1,400,000 +
1,200,000+ , 1,072,764
1|000,000-{——
: 1 Puz 900,000

200,000 +

" 20-15-10 -5 O] 5 10 15 20 X
~200,000 }

Figure 4.21 Logistic curve for the deer population with an
initial population of 900,000 deer.

c. Using this model we can predict the population in 3 years.

0.2311(3)
P(3) = L072.764¢ ~ 978,830 deer

0.19196 + 2311

This is far short of twice the initial population of 900,000. Remember that the doubling time is based

on the assumption that the growth rate never changes, but the logistic model takes this possibility into
account.

d. If the population reached 1,200,000 deer, then the new initial-value problem would be

dP _ y2311p

S =
= (1 1,072,764)’ P(0) = 1,200,000.

The general solution to the differential equation would remain the same.

1,072,764C, %2311
1+ C260.2311t

P(r) =

To determine the value of the constant, return to the equation

P _ 0.2311¢
T072764 —p — C2¢ :

Substituting the values t =0 and P = 1,200,000, you get

C,OBNO 1,200,000
2 1,072,764 — 1,200,000
100,000

Therefore
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P(r) = 1,072,764C, 023111
1+ C2e0-23111

1,072,764(~100000) 02311

10,603
100,000\ 0.2311¢
1 (_ 10,603 )e
_ _ 107,276,400,000e%2311!

100,000 _ 10,603

_10,117,55102311
9.43129¢0-2311r _ 1

This equation is graphed in Figure 4.22.

1,400,

1,000,000+

600,000 +

200,000 +

800,000 +

400,000 +

P,= 1,200,000

P =1,072,764

£ O
~200,0001

5 10 15 20 X

Figure 4.22 Logistic curve for the deer population with an
initial population of 1,200,000 deer.

Solving the Logistic Differential Equation

The logistic differential equation is an autonomous differential equation, so we can use separation of variables to find the

general solution, as we just did in Example 4.14.

401

Step 1: Setting the right-hand side equal to zero leads to P =0 and P = K as constant solutions. The first solution

indicates that when there are no organisms present, the population will never grow. The second solution indicates that when
the population starts at the carrying capacity, it will never change.

Step 2: Rewrite the differential equation in the form

dp _
dt

rP(K — P)

K

Then multiply both sides by dt and divide both sides by P(K — P). This leads to

_dP __r
PK —P) ~ K%
Multiply both sides of the equation by K and integrate:
K —
JP(K P = [rar.
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The left-hand side of this equation can be integrated using partial fraction decomposition. We leave it to you to verify that

K 1, 1
PK-P) P TK-P

Then the equation becomes

1 1 _

[E+Ltpdp = [rar

In|P] — InlK — P| rt+ C
In| rt+ C.

K-P

Now exponentiate both sides of the equation to eliminate the natural logarithm:
P

In
e ‘K —Pl _ prtt C
P _ ,Crt
[R5l = e
We define C| = ¢ so that the equation becomes
P o (4.9)
K-P Cl e .

To solve this equation for P(¢), first multiply both sides by K — P and collect the terms containing P on the left-hand

side of the equation:

P = Ce"(K-P)
P = C,Ke"-C,Pe"
P+C P = C Ke".

Next, factor P from the left-hand side and divide both sides by the other factor:

P(1+Ce") = CKe" (4.10)
ClKert
Pty = —L——.
® 1+Ce”

The last step is to determine the value of C;. The easiest way to do this is to substitute # =0 and P, in place of P in

Equation 4.9 and solve for C;:

=p = Gie”
Py r0)
k—p, - C1¢
P
C, = 0.
1 K—-Pg
Finally, substitute the expression for C; into Equation 4.10:
PO rt
P() = C,Ke" _ K—POKe
1+Cpe” 1+ Po e’
K—-P

Now multiply the numerator and denominator of the right-hand side by (K — P) and simplify:
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P(r)

We state this result as a theorem.

Theorem 4.2: Solution of the Logistic Differential Equation

Consider the logistic differential equation subject to an initial population of P(, with carrying capacity K and growth
rate r. The solution to the corresponding initial-value problem is given by

PyKe' (4.12)

PO= P+ Poe™

Now that we have the solution to the initial-value problem, we can choose values for P, r, and K and study the solution
curve. For example, in Example 4.14 we used the values r =0.2311, K = 1,072,764, and an initial population of
900,000 deer. This leads to the solution
B PyKe"

(K —Po)+Pye””
_ 900.000(1,072,764)¢* !

(1,072,764 — 900,000) + 900,000¢%-23111

_ 900,000(1,072,764)60231 1t
172,764 + 900,00060'231 1t

P(r)

Dividing top and bottom by 900,000 gives

1,072,764¢%-23111
0.19196 + 02311

P@) =

This is the same as the original solution. The graph of this solution is shown again in blue in Figure 4.23, superimposed
over the graph of the exponential growth model with initial population 900,000 and growth rate 0.2311 (appearing in

green). The red dashed line represents the carrying capacity, and is a horizontal asymptote for the solution to the logistic
equation.
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Figure 4.23 A comparison of exponential versus logistic
growth for the same initial population of 900,000 organisms

and growth rate of 23.11%.

Working under the assumption that the population grows according to the logistic differential equation, this graph predicts
that approximately 20 years earlier (1984), the growth of the population was very close to exponential. The net growth

rate at that time would have been around 23.1% per year. As time goes on, the two graphs separate. This happens

because the population increases, and the logistic differential equation states that the growth rate decreases as the population

increases. At the time the population was measured (2004)

starting to level off.

>

it was close to carrying capacity, and the population was

The solution to the logistic differential equation has a point of inflection. To find this point, set the second derivative equal

to zero:

P(t)

P =

P'(t) =

Setting the numerator equal to zero,

PyKe'

(K—P0)+P0€rt

rPoK(K — Pgle’””

(K = Po)+ Pge")?
r2PoK(K — Po)?e™ — r? Py 2 K(K — Pl

(K = Po)+ Pge")’
r?PoK(K — Pole™ (K — Pg)— Pye")

(K = Po)+ Pge™)’

r?PoK(K — Pl (K — Pg)— Pge™) = 0.

Aslongas Py # K, the entire quantity before and including e” " is nonzero, so we can divide it out:

Solving for %,

(K=Py)—Pye =0.
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et = K;OPO
Ine”” =1 K }_,OPO
rt = In K ;OPO
t = %ln K ;OPO

Notice that if P> K, then this quantity is undefined, and the graph does not have a point of inflection. In the logistic

graph, the point of inflection can be seen as the point where the graph changes from concave up to concave down. This is
where the “leveling off” starts to occur, because the net growth rate becomes slower as the population starts to approach the
carrying capacity.

4.14 A population of rabbits in a meadow is observed to be 200 rabbits at time ¢ = 0. After a month, the

rabbit population is observed to have increased by 4%. Using an initial population of 200 and a growth rate of
0.04, with a carrying capacity of 750 rabbits,

Write the logistic differential equation and initial condition for this model.

b. Draw a slope field for this logistic differential equation, and sketch the solution corresponding to an
initial population of 200 rabbits.

c. Solve the initial-value problem for P(z).

d. Use the solution to predict the population after 1 year.
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Student PROJECT

Student Project: Logistic Equation with a Threshold Population

An improvement to the logistic model includes a threshold population. The threshold population is defined to be the
minimum population that is necessary for the species to survive. We use the variable 7' to represent the threshold

population. A differential equation that incorporates both the threshold population 7" and carrying capacity K is

= rf1 -1 w22

where r represents the growth rate, as before.

1. The threshold population is useful to biologists and can be utilized to determine whether a given species should
be placed on the endangered list. A group of Australian researchers say they have determined the threshold
population for any species to survive: 5000 adults. (Catherine Clabby, “A Magic Number,” American Scientist

98(1): 24, doi:10.1511/2010.82.24. accessed April 9, 2015, http://www.americanscientist.org/issues/pub/a-
magic-number). Therefore we use 7' = 5000 as the threshold population in this project. Suppose that the

environmental carrying capacity in Montana for elk is 25,000. Set up Equation 4.12 using the carrying
capacity of 25,000 and threshold population of 5000. Assume an annual net growth rate of 18%.

2. Draw the direction field for the differential equation from step 1, along with several solutions for different

initial populations. What are the constant solutions of the differential equation? What do these solutions
correspond to in the original population model (i.e., in a biological context)?

3. What is the limiting population for each initial population you chose in step 2? (Hint: use the slope field to
see what happens for various initial populations, i.e., look for the horizontal asymptotes of your solutions.)

4. This equation can be solved using the method of separation of variables. However, it is very difficult to get the
solution as an explicit function of #. Using an initial population of 18,000 elk, solve the initial-value problem

and express the solution as an implicit function of #, or solve the general initial-value problem, finding a

solution in terms of r, K, T, and P,
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4.4 EXERCISES

For the following problems, consider the logistic equation
in the form P’ = CP — P2. Draw the directional field and
find the stability of the equilibria.

168. C=3
169. C=0
170. C=-3

171. Solve the logistic equation for C = 10 and an initial
condition of P(0) = 2.

172. Solve the logistic equation for C = —10 and an
initial condition of P(0) = 2.

173. A population of deer inside a park has a carrying
capacity of 200 and a growth rate of 2%. If the initial

population is 50 deer, what is the population of deer at any
given time?

174. A population of frogs in a pond has a growth rate of
5%. 1If the initial population is 1000 frogs and the

carrying capacity is 6000, what is the population of frogs

at any given time?

175. [T] Bacteria grow at a rate of 20% per hour in a petri

dish. If there is initially one bacterium and a carrying
capacity of 1 million cells, how long does it take to reach

500,000 cells?

176. [T] Rabbits in a park have an initial population of 10
and grow at a rate of 4% per year. If the carrying capacity
is 500,
rabbits?

at what time does the population reach 100

177. [T] Two monkeys are placed on an island. After 5
years, there are 8 monkeys, and the estimated carrying
capacity is 25 monkeys. When does the population of
monkeys reach 16 monkeys?

178. [T] A butterfly sanctuary is built that can hold 2000
butterflies, and 400 butterflies are initially moved in. If
after 2 months there are now 800 butterflies, when does
the population get to 1500 butterflies?

The following problems consider the logistic equation with
an added term for depletion, either through death or
emigration.
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179. [T] The population of trout in a pond is given by

r— __P \_
P —0.4P(1 IOOOO) 400, where 400 trout are

caught per year. Use your calculator or computer software
to draw a directional field and draw a few sample solutions.
What do you expect for the behavior?

180. In the preceding problem, what are the stabilities of
the equilibria 0 < P| < P,?

181. [T] For the preceding problem, use software to
generate a directional field for the value f = 400. What

are the stabilities of the equilibria?

182. [T] For the preceding problems, use software to
generate a directional field for the value f = 600. What

are the stabilities of the equilibria?

183. [T] For the preceding problems, consider the case
where a certain number of fish are added to the pond, or
f = —200. What are the nonnegative equilibria and their

stabilities?

It is more likely that the amount of fishing is governed by
the current number of fish present, so instead of a constant
number of fish being caught, the rate is proportional to
the current number of fish present, with proportionality
constant k, as

P = 0.4P(1 kP.

= Tobm0) -

184. [T] For the previous fishing problem, draw a
directional field assuming k = 0.1. Draw some solutions

that exhibit this behavior. What are the equilibria and what
are their stabilities?

185. [T] Use software or a calculator to draw directional
fields for £ = 0.4. What are the nonnegative equilibria and

their stabilities?

186. [T] Use software or a calculator to draw directional
fields for k= 0.6. What are the equilibria and their

stabilities?

187. Solve this equation, assuming a value of k& = 0.05
and an initial condition of 2000 fish.

188. Solve this equation, assuming a value of k = 0.05
and an initial condition of 5000 fish.

The following problems add in a minimal threshold value
for the species to survive, T, which changes the

differential equation to P'(¢) = rP(l - %)(1 - %)
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189. Draw the directional field of the threshold logistic
equation, assuming K = 10, r = 0.1, T = 2. When does

the population survive? When does it go extinct?
190. For the preceding problem,

threshold equation, assuming the
P(0) = P,

solve the logistic
initial condition

191. Bengal tigers in a conservation park have a carrying
capacity of 100 and need a minimum of 10 to survive. If

they grow in population at a rate of 1% per year, with an
initial population of 15 tigers, solve for the number of
tigers present.

192. A forest containing ring-tailed lemurs in Madagascar
has the potential to support 5000 individuals, and the

lemur population grows at a rate of 5% per year. A
minimum of 500 individuals is needed for the lemurs to
survive. Given an initial population of 600 lemurs, solve
for the population of lemurs.

193. The population of mountain lions in Northern
Arizona has an estimated carrying capacity of 250 and
grows at arate of 0.25% per year and there must be 25 for
the population to survive. With an initial population of 30
mountain lions, how many years will it take to get the

mountain lions off the endangered species list (at least
100)?

The following questions consider the Gompertz equation,
a modification for logistic growth, which is often used for
modeling cancer growth, specifically the number of tumor
cells.

194. The  Gompertz  equation is given by
P(t) = aln (%)P(t). Draw the directional fields for this

equation assuming all parameters are positive, and given
that K = 1.

K =1000 and
a = 0.05. Draw the directional field associated with this

195. Assume that for a population,

differential equation and draw a few solutions. What is the
behavior of the population?

196. Solve the Gompertz equation for generic @ and K
and P(0) = Py,

197. [T] The Gompertz equation has been used to model
tumor growth in the human body. Starting from one tumor
cell on day 1 and assuming @ =0.1 and a carrying

capacity of 10 million cells, how long does it take to reach
“detection” stage at 5 million cells?
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198. [T] It is estimated that the world human population
reached 3 billion people in 1959 and 6 billion in 1999.

Assuming a carrying capacity of 16 billion humans, write

and solve the differential equation for logistic growth, and
determine what year the population reached 7 billion.

199. [T] It is estimated that the world human population
reached 3 billion people in 1959 and 6 billion in 1999.

Assuming a carrying capacity of 16 billion humans, write

and solve the differential equation for Gompertz growth,
and determine what year the population reached 7 billion.

Was logistic growth or Gompertz growth more accurate,
considering world population reached 7 billion on October

31, 20117

200. Show that the population grows fastest when it
reaches half the carrying capacity for the logistic equation

P =rp(1-L)

201. When does population increase the fastest in the
- . S _P\;_T)
threshold logistic equation P’(¢) = rP(l K)(l P)'

202. When does population increase the fastest for the

. [ K 9
Gompertz equation P(f)' = aln (_P o )P(t) ?

Below is a table of the populations of whooping cranes in
the wild from 1940 to 2000. The population rebounded

from near extinction after conservation efforts began. The
following problems consider applying population models
to fit the data. Assume a carrying capacity of 10,000

cranes. Fit the data assuming years since 1940 (so your

initial population at time O would be 22 cranes).
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Year (years since Whooping

conservation began) Crane
Population

1940(0) "

1950(10) .

1960(20) 36

1970(30) .

1980(40) ol

1990(50) 150

2000(60) )56

Source: https://www.savingcranes.org/images/
stories/site_images/conservation/whooping_crane/
pdfs/historic_wc_numbers.pdf

203. Find the equation and parameter r that best fit the
data for the logistic equation.

204. Find the equation and parameters r and 7 that best
fit the data for the threshold logistic equation.

205. Find the equation and parameter « that best fit the
data for the Gompertz equation.

206. Graph all three solutions and the data on the same
graph. Which model appears to be most accurate?

207. Using the three equations found in the previous
problems, estimate the population in 2010 (year 70 after
conservation). The real population measured at that time
was 437. Which model is most accurate?

409
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4.5 | First-order Linear Equations

Learning Objectives

4.5.1 Write a first-order linear differential equation in standard form.
4.5.2 Find an integrating factor and use it to solve a first-order linear differential equation.
4.5.3 Solve applied problems involving first-order linear differential equations.

Earlier, we studied an application of a first-order differential equation that involved solving for the velocity of an object.
In particular, if a ball is thrown upward with an initial velocity of v, ft/s, then an initial-value problem that describes the

velocity of the ball after ¢ seconds is given by

ﬂ = — =
dr 32, w0) =v,.
This model assumes that the only force acting on the ball is gravity. Now we add to the problem by allowing for the
possibility of air resistance acting on the ball.

Air resistance always acts in the direction opposite to motion. Therefore if an object is rising, air resistance acts in a
downward direction. If the object is falling, air resistance acts in an upward direction (Figure 4.24). There is no exact
relationship between the velocity of an object and the air resistance acting on it. For very small objects, air resistance is
proportional to velocity; that is, the force due to air resistance is numerically equal to some constant k& times v. For larger

(e.g., baseball-sized) objects, depending on the shape, air resistance can be approximately proportional to the square of the

velocity. In fact, air resistance may be proportional to yld , or v0'9, or some other power of v.

Air resistance
—kv

g = -9.8 m/sec?

Figure 4.24 Forces acting on a moving baseball: gravity acts
in a downward direction and air resistance acts in a direction
opposite to the direction of motion.

We will work with the linear approximation for air resistance. If we assume k > 0, then the expression for the force F,
due to air resistance is given by F', = —kv. Therefore the sum of the forces acting on the object is equal to the sum of

the gravitational force and the force due to air resistance. This, in turn, is equal to the mass of the object multiplied by its
acceleration at time ¢ (Newton’s second law). This gives us the differential equation

v _ ey —
o kv — mg.

Finally, we impose an initial condition v(0) = v,, where v, is the initial velocity measured in meters per second. This
makes g = 9.8 m/s”. The initial-value problem becomes

dv _ —kv—mg, v(0)=vy.

= (4.13)
dt
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The differential equation in this initial-value problem is an example of a first-order linear differential equation. (Recall that
a differential equation is first-order if the highest-order derivative that appears in the equation is 1.) In this section, we

study first-order linear equations and examine a method for finding a general solution to these types of equations, as well as
solving initial-value problems involving them.

Definition

A first-order differential equation is linear if it can be written in the form

a(x)y" + b(x)y = c(x), (4.14)

where a(x), b(x), and c(x) are arbitrary functions of x.

Remember that the unknown function y depends on the variable x; that is, x is the independent variable and y is the
dependent variable. Some examples of first-order linear differential equations are
(3x2 — 4)y’ +(x—-3)y = sinx
(sinx)y’ — (cosx)y = cotx

4xy" + Blnx)y = X3 - 4x.

Examples of first-order nonlinear differential equations include

01 =0 = Gx-2y+4)
4y +3y° = 4x-5
(y’)2 = siny + cosx.

These equations are nonlinear because of terms like (y/)4, y3, etc. Due to these terms, it is impossible to put these

equations into the same form as Equation 4.14.
Standard Form
Consider the differential equation
(3x2 - 4)y/ + (x — 3)y = sinx.

Our main goal in this section is to derive a solution method for equations of this form. It is useful to have the coefficient of
y" be equal to 1. To make this happen, we divide both sides by 3x2—4.

/ -3 sinx
y +( - )y =
3x2-4)7 3% -4
This is called the standard form of the differential equation. We will use it later when finding the solution to a general
first-order linear differential equation. Returning to Equation 4.14, we can divide both sides of the equation by a(x). This

leads to the equation

T(E N €5) (4.15)
ax)’ T a)
Now define p(x) = % and g(x) = %. Then Equation 4.14 becomes
Y+ py = g(x). (4.16)

We can write any first-order linear differential equation in this form, and this is referred to as the standard form for a first-
order linear differential equation.
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Example 4.15

Writing First-Order Linear Equations in Standard Form

Put each of the following first-order linear differential equations into standard form. Identify p(x) and ¢g(x) for
each equation.
a. y =3x-4y

3xy’
4y -3

=2 (here x> 0)
2 2
c. y=3y —4x"+5

Solution
a. Add 4y to both sides:

¥ +4y =3x.

In this equation, p(x) =4 and g(x) = 3x.

b. Multiply both sides by 4y — 3, then subtract 8y from each side:

3xy’
4y z) 3 = 2
3xy) = 2@dy-3)
3xy) = 8 -6
3xy' —8y = -6.

Finally, divide both sides by 3x to make the coefficient of y’ equal to 1:

_8,-_2 (4.17)
3x 3x°
This is allowable because in the original statement of this problem we assumed that x > 0. (If x =0
then the original equation becomes 0 = 2, which is clearly a false statement.)

In this equation, p(x) = — 3;8x and g(x) = — 32_x

c. Subtract y from each side and add 4x2 - 5:

3y/—y:4x2—5.

Next divide both sides by 3:

In this equation, p(x) = —% and g(x) = %xz - %

@ 4.15 Put the equation 2(x +3i)y 7= =5 into standard form and identify p(x) and g(x).
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Integrating Factors

We now develop a solution technique for any first-order linear differential equation. We start with the standard form of a
first-order linear differential equation:

Y+ p)y = g(x). (4.18)

The first term on the left-hand side of Equation 4.15 is the derivative of the unknown function, and the second term
is the product of a known function with the unknown function. This is somewhat reminiscent of the power rule from the
Differentiation Rules (http://cnx.org/content/m53575/latest/) section. If we multiply Equation 4.16 by a yet-to-
be-determined function u(x), then the equation becomes

ux)y + pu(x)p(x)y = ux)g(x). (4.19)

The left-hand side Equation 4.18 can be matched perfectly to the product rule:
L f(g()] = [ (g + fg' ().

Matching term by term gives y = f(x), g(x) = u(x), and g’'(x) = u(x)p(x). Taking the derivative of g(x) = u(x) and
setting it equal to the right-hand side of g’ (x) = u(x)p(x) leads to
p (%) = p(x)p(x).

This is a first-order, separable differential equation for u(x). We know p(x) because it appears in the differential equation

we are solving. Separating variables and integrating yields

% = p(x)
J%dx = [p@dx
inju(x)| = [pdx+C
ol _[p@drrC

lu()| = Cle/ P

u(x) = Cze/ P

Here C, can be an arbitrary (positive or negative) constant. This leads to a general method for solving a first-order linear

differential equation. We first multiply both sides of Equation 4.16 by the integrating factor u(x). This gives
px)y" + p(x)p(x)y = pu(x)q(x). (4.20)

The left-hand side of Equation 4.19 can be rewritten as %(,u(x)y).

Liu(xy) = p(x)g(). (4-21)
Next integrate both sides of Equation 4.20 with respect to x.
[Lucomar = [utogeodx (4.22)
uey = [u(geodsx.
Divide both sides of Equation 4.21 by u(x):

y= ﬁ[ [ug@dx+ ] (4.23)
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Since u(x) was previously calculated, we are now finished. An important note about the integrating constant C: It may
seem that we are inconsistent in the usage of the integrating constant. However, the integral involving p(x) is necessary in

order to find an integrating factor for Equation 4.15. Only one integrating factor is needed in order to solve the equation;
therefore, it is safe to assign a value for C for this integral. We chose C = 0. When calculating the integral inside the

brackets in Equation 4.21, it is necessary to keep our options open for the value of the integrating constant, because our
goal is to find a general family of solutions to Equation 4.15. This integrating factor guarantees just that.

Problem-Solving Strategy: Solving a First-order Linear Differential Equation

=

G A

Calculate the integrating factor u(x) =e

Put the equation into standard form and identify p(x) and g(x).

f p(x)dx

Multiply both sides of the differential equation by u(x).
Integrate both sides of the equation obtained in step 3, and divide both sides by u(x).

If there is an initial condition, determine the value of C.

Example 4.16

Solving a First-order Linear Equation
Find a general solution for the differential equation xy’ + 3y = 4x? = 3x. Assume x > 0.

Solution

To put this differential equation into standard form, divide both sides by x:

y’+%y=4x—3.

Therefore p(x) = % and g(x) =4x — 3.

(3/x)dx
f — e31nx — x3_

The integrating factor is u(x) = e
Multiplying both sides of the differential equation by u(x) gives us

x v+ x3 (%)y

X3 (4x = 3)
x3y’ + 3x2y = 4x* - 353

d(.3 4 .3
P y) 4x7 —3x".

Integrate both sides of the equation.

J%(); y)dx = /4x4 —3x7dx

5 4
x3y = _4gc ——32 +C
_ 4x2_3x -3
y = 75 4+Cx .

There is no initial value, so the problem is complete.
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Analysis
You may have noticed the condition that was imposed on the differential equation; namely, x > 0. For any
nonzero value of C, the general solution is not defined at x = 0. Furthermore, when x < 0, the integrating

/ p(x)dx

factor changes. The integrating factor is given by Equation 4.19 as f(x) = e . For this p(x) we get

px)dx = (3/x)dx
ef e/ — e3IDIXI — |x|3

s

since x < 0. The behavior of the general solution changes at x = 0 largely due to the fact that p(x) is not

defined there.

@ 4.16  Find the general solution to the differential equation (x —2)y’ 4+ y = 3x% + 2x. Assume x > 2.

Now we use the same strategy to find the solution to an initial-value problem.

Example 4.17

A First-order Linear Initial-Value Problem

Solve the initial-value problem
Y +3y=2x-1, y0)=3.

Solution
1. This differential equation is already in standard form with p(x) =3 and ¢g(x) = 2x — 1.

) ) . / 3dx 3x
2. The integrating factor is u(x) = e =e.

3. Multiplying both sides of the differential equation by u(x) gives
ey +3e¥y = (2x— e
%[ye3x] = (2x- e~
Integrate both sides of the equation:
d 3x
Ja[ye ]dx

3
ye3x = eTx(Zx -1- J;e3xdx

f(zx— De3* dx

3
3x
3x _ e Q2x—1) 2%
ye = 3 9 +C

- 2x—-1_2 —3x

y = 3 9+Ce

- 2x_35 —3x

y =3 9+Ce .

4. Now substitute x =0 and y = 3 into the general solution and solve for C:
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- 200 -3 -3(0)
3 = 3(0) 9+Ce
3 = —=+C

= 32
C = 5

Therefore the solution to the initial-value problem is

—2,_5_,32,3x
y—3x 9+9e .

@ 4.17 Solve the initial-value problem y’ —2y =4x+3 y(0) = -2.

Applications of First-order Linear Differential Equations

We look at two different applications of first-order linear differential equations. The first involves air resistance as it relates
to objects that are rising or falling; the second involves an electrical circuit. Other applications are numerous, but most are
solved in a similar fashion.

Free fall with air resistance

We discussed air resistance at the beginning of this section. The next example shows how to apply this concept for a ball in
vertical motion. Other factors can affect the force of air resistance, such as the size and shape of the object, but we ignore
them here.

Example 4.18

A Ball with Air Resistance

A racquetball is hit straight upward with an initial velocity of 2 m/s. The mass of a racquetball is approximately
0.0427 kg. Air resistance acts on the ball with a force numerically equal to 0.5v, where v represents the

velocity of the ball at time ¢.

a. Find the velocity of the ball as a function of time.
b. How long does it take for the ball to reach its maximum height?

c. If the ball is hit from an initial height of 1 meter, how high will it reach?

Solution
a. The mass m =0.0427kg, k=0.5, and g=9.8 m/s%. The initial velocity is vy =2 m/s. Therefore

the initial-value problem is

0.0427% = —0.5v —0.0427(9.8), vy=2.

Dividing the differential equation by 0.0427 gives
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dv_ _ - =
w=—117096v - 9.8, vy =2.

The differential equation is linear. Using the problem-solving strategy for linear differential equations:

Step 1. Rewrite the differential equation as % + 11.7096v = —9.8. This gives p(¢) = 11.7096 and
q(t) =-9.8
[11.7096d: _ 11709t

Step 3. Multiply the differential equation by u(?):

Step 2. The integrating factor is u(t) = e

i[vell.7096t] = _Q.gel1:70%
dt

ell.7096td_\t1 + 11.7096\1611'7096[ —9.8611'709&

Step 4. Integrate both sides:

J%[veu.m%z] dt = /—9.8e“'7096t dt

117096t _ _—9.8 117096t
v = T11.7096 +C
V() = —0.8369 + Ce 117091

Step 5. Solve for C using the initial condition vy = v(0) = 2:

v(@) = —0.8369 + Ce™ 1709
W0) = —0.8369 + Ce 170960
2 = —0.8369+C
C = 2.8369.

Therefore the solution to the initial-value problem is v(¢) = 2.8369¢ 11709 _ () 8369

b. The ball reaches its maximum height when the velocity is equal to zero. The reason is that when the
velocity is positive, it is rising, and when it is negative, it is falling. Therefore when it is zero, it is neither
rising nor falling, and is at its maximum height:

2.8369¢~1-70% _ 8369 = 0
2.8369¢ 11709 = 0.8369
o~ 11.7096t 0.8369 ., 0295

2.8369
Ine~ 117091 — 110295 ~ —1.221
-11.7096t = -1.221

r ~ 0.104.

Therefore it takes approximately 0.104 second to reach maximum height.

c. To find the height of the ball as a function of time, use the fact that the derivative of position is velocity,
i.e., if h(?) represents the height at time ¢, then A’ (¢) = v(¢). Because we know v(#) and the initial

height, we can form an initial-value problem:

W (1) = 2.8369¢ 11799 _ 08369, K(0) = 1.
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Integrating both sides of the differential equation with respect to ¢ gives

/ W (t)dt / 2.8369¢ 117097 _ () 8369y

_ __2.8369 ,—-11.7096¢ _
W) = -5 0.8369¢ + C
h(t) = —0.2423¢~ 11709 _ () 8369¢ + C.

Solve for C by using the initial condition:

W) = —0.2423¢~ 1799 _ 83697 + C
hO) = —0.2423¢ 117990 _ 6 83690) + C
1 = —02423+4C
C = 12423

Therefore

h(t) = —0.2423¢ 117091 _ () 83697 + 1.2423.

After 0.104 second, the height is given by
h(0.2) = —0.2423¢ 11709 _ (0 83697 + 1.2423 ~ 1.0836 meter.

4.18 The weight of a penny is 2.5 grams (United States Mint, “Coin Specifications,” accessed April 9, 2015,

http://www.usmint.gov/about_the_mint/?action=coin_specifications), and the upper observation deck of the
Empire State Building is 369 meters above the street. Since the penny is a small and relatively smooth object,

air resistance acting on the penny is actually quite small. We assume the air resistance is numerically equal to
0.0025v. Furthermore, the penny is dropped with no initial velocity imparted to it.

Set up an initial-value problem that represents the falling penny.

b. Solve the problem for v(7).

c. What is the terminal velocity of the penny (i.e., calculate the limit of the velocity as ¢ approaches
infinity)?

Electrical Circuits

A source of electromotive force (e.g., a battery or generator) produces a flow of current in a closed circuit, and this current
produces a voltage drop across each resistor, inductor, and capacitor in the circuit. Kirchhoff’s Loop Rule states that the sum
of the voltage drops across resistors, inductors, and capacitors is equal to the total electromotive force in a closed circuit.
We have the following three results:

1. The voltage drop across a resistor is given by

Eg=Ri,

where R is a constant of proportionality called the resistance, and i is the current.

2. The voltage drop across an inductor is given by
E;=Li,
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where L is a constant of proportionality called the inductance, and i again denotes the current.
3. The voltage drop across a capacitor is given by
Ec= %61,
where C is a constant of proportionality called the capacitance, and g is the instantaneous charge on the capacitor. The
relationship between i and ¢ is i = ¢q'.

We use units of volts (V) to measure voltage £, amperes (A) to measure current i, coulombs (C) to measure charge
g, ohms (Q) to measure resistance R, henrys (H) to measure inductance L, and farads (F) to measure capacitance

C. Consider the circuit in Figure 4.25.

Figure 4.25 A typical electric circuit, containing a voltage
generator (VS), capacitor (C), inductor (L), and resistor

(R).

Applying Kirchhoff’s Loop Rule to this circuit, we let E denote the electromotive force supplied by the voltage generator.
Then

EL+ER+EC=E'

Substituting the expressions for E;, Ep, and E into this equation, we obtain

Li' + Ri+ %q =E. (4.24)

If there is no capacitor in the circuit, then the equation becomes
Li"+Ri=E. (4.25)
This is a first-order differential equation in i. The circuit is referred to as an LR circuit.

Next, suppose there is no inductor in the circuit, but there is a capacitor and a resistor,so L =0, R # 0, and C # 0. Then

Equation 4.23 can be rewritten as

Ry + % 4=E (4.26)

which is a first-order linear differential equation. This is referred to as an RC circuit. In either case, we can set up and solve
an initial-value problem.

Example 4.19

Finding Current in an RL Electric Circuit
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A circuit has in series an electromotive force given by E = 50sin207 V, a resistor of 50, and an inductor of

0.4 H. If the initial current is O, find the current at time ¢ > 0.

Solution

We have a resistor and an inductor in the circuit, so we use Equation 4.24. The voltage drop across the resistor is
given by Ep = Ri = 5i. The voltage drop across the inductor is given by E; = Li’ = 0.4i’. The electromotive

force becomes the right-hand side of Equation 4.24. Therefore Equation 4.24 becomes
0.4i" 4+ 5i = 50sin20¢.
Dividing both sides by 0.4 gives the equation
i’ +12.5i = 1255in20¢.
Since the initial current is 0, this result gives an initial condition of i(0) = 0. We can solve this initial-value
problem using the five-step strategy for solving first-order differential equations.

Step 1. Rewrite the differential equation as i’ 4 12.5i = 125sin20z. This gives p(f) =12.5 and
q(t) = 125sin20¢.

: . . Jrsd s
Step 2. The integrating factor is u(t) = e =e “7

Step 3. Multiply the differential equation by u(?):

' +12.5¢'25 = 125¢'*sin20¢
df. 1257 _ 12.5¢ &
Llie'] = 125¢'*sin20r.

Step 4. Integrate both sides:

i . 12.5t _ 12.57 .
] Lie!2ar = [125¢"25"sin 201 d
o125t — (2508in20t8—940000520t)gl2.5[+C

i(r) = 250sin20r 8—9400005 20t 4 o125t

Step 5. Solve for C using the initial condition v(0) = 2:

it) = 250sin20¢ 8—9400cos20t + Ce—1251
i) = 250sin20(0) — 400c0s20(0) 4 Ce~ 1250
B 89
0 = —% +C
— 400
¢ = 89"
Therefore the solution to the initial-value problem is
i(7) = 250sin 207 — 400¢05 201 + 400e 2" _ 2505in20¢ = 400c0s20¢ , 400e 12
89 39 9

The first term can be rewritten as a single cosine function. First, multiply and divide by 12502 + 4002 = 507/39:
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250sin20r — 400c0s20r _ 50V89(250sin20¢ — 400cos 20:)
89 89 \ 50V89

_ _ 50V89(8cos20r _ SSinzot)_
89 \ 89 V89

Next, define ¢ to be an acute angle such that cos¢ = % Then sing = % and
508%@(803%920t _3 S%Ot ) = - 508%@(cos¢cos 20t — singsin20¢)
= - %os(mt + ).
Therefore the solution can be written as
i(t)y= — 5%@005(2& +¢)+ %;12&.

The second term is called the attenuation term, because it disappears rapidly as t grows larger. The phase shift is

given by ¢, and the amplitude of the steady-state current is given by % The graph of this solution appears

in Figure 4.26:

g 4 4006 2%
89

|||

ity = =289 cos(20t + o) +

iy

1

Figure 4.26

4.19 A circuit has in series an electromotive force given by E = 20sin5¢ V, a capacitor with capacitance
0.02F, and a resistor of 8 Q. If the initial charge is 4 C, find the charge at time 7 > 0.
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4.5 EXERCISES

Are the following differential equations linear? Explain
your reasoning.

208. dy _ o .
=X y 4+ sinx

209. dy _
ar =

210. dy , 2
dt+y =X

211y = 3y e
212. y’ =Yy —+ ey

Write the following first-order differential equations in
standard form.

213. v = x3y + sinx
214, y+3y—-Inx=0

215. —xy' = Bx+2)y + xe*

216. dy _
E—4y+ty+tant
217. dy _
ar = yx(x+1)

What are the integrating factors for the following
differential equations?

218. y'=xy+3
219. y' + ey =sinx

220. y' = xIn(x)y + 3x

221. dy _

yrie tanh(x)y + 1
222. dy i

ar +3ty=e'y

Solve the following differential equations by using
integrating factors.

223. y'=3y+2
224. =2y — x?

225. xy' =3y —6x>
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226. (x+2)y'=3x+y
227. y' =3x+xy

228. xy' =x+y

229. sin(x)y’' =y +2x
230. y=y+e"

231 xy' =3y + %2

232.

y’+lnx=%

Solve the following differential equations. Use your
calculator to draw a family of solutions. Are there certain
initial conditions that change the behavior of the solution?

233. [T] (x+2)y' =2y—1

234. [T] y = 3013 _ 2y

235. [1] xy' + % = sin(37)

236. [T] xy’ =2898X _ 3y

237 [T] (x+ 1)y’ =3y +x>+2x+1
238. [T] sin(x)y’ + cos(x)y = 2x

239 17 my’ =y+2

240. 1] Xy + 222y = x+1

Solve the following initial-value problems by using
integrating factors.

241. v +y=x,y0)=3

242, v =y 4+ 2x2, y(0) =0

243 xy =y =32, 3(1) =0
244. xzy/ =xy—Inx, (1) =1
245. (1 +x2)y’ =y—-1,y0)=0

246. xy' =y+2xlnx, y(1) =5
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247. 2+x)y' =y+2+xy0)=0
248. y' = xy + 2xe”, y(0) = 2

249. vxy' =y +2x,y(0) =1

250. y' =2y +xe”, y(0) = -1

251. A falling object of mass m can reach terminal

velocity when the drag force is proportional to its velocity,
with proportionality constant k. Set up the differential

equation and solve for the velocity given an initial velocity
of 0.

252. Using your expression from the preceding problem,
what is the terminal velocity? (Hint: Examine the limiting
behavior; does the velocity approach a value?)

253. [T] Using your equation for terminal velocity, solve
for the distance fallen. How long does it take to fall 5000

meters if the mass is 100 kilograms, the acceleration due
to gravity is 9.8 m/s” and the proportionality constant is
47

254. A more accurate way to describe terminal velocity is
that the drag force is proportional to the square of velocity,
with a proportionality constant k. Set up the differential

equation and solve for the velocity.

255. Using your expression from the preceding problem,
what is the terminal velocity? (Hint: Examine the limiting
behavior: Does the velocity approach a value?)

256. [T] Using your equation for terminal velocity, solve
for the distance fallen. How long does it take to fall 5000

meters if the mass is 100 kilograms, the acceleration due

to gravity is 9.8 m/s? and the proportionality constant is
4?7 Does it take more or less time than your initial
estimate?

For the following problems, determine how parameter a
affects the solution.

257. Solve the generic equation y’ = ax +y. How does

varying a change the behavior?

258. Solve the generic equation y’ = ax +y. How does

varying a change the behavior?

259. Solve the generic equation y’ = ax + xy. How does

varying a change the behavior?

260. Solve the generic equation y’ = x + axy. How does

varying a change the behavior?

423

261. golve y—y= eM  with the initial condition

¥(0) =0. As k approaches 1,

formula?

what happens to your
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CHAPTER 4 REVIEW

KEY TERMS

asymptotically semi-stable solution y = k if it is neither asymptotically stable nor asymptotically unstable

asymptotically stable solution y = k if there exists € > 0 such that for any value ¢ € (k — ¢, k + ¢) the solution to

the initial-value problem y" = f(x, y), y(xy) = ¢ approaches k as x approaches infinity

asymptotically unstable solution y = k if there exists € > 0 such that for any value ¢ € (k — ¢, k + €) the solution

to the initial-value problem y" = f(x, y), y(x() = ¢ never approaches k as x approaches infinity
autonomous differential equation an equation in which the right-hand side is a function of y alone

carrying capacity the maximum population of an organism that the environment can sustain indefinitely

differential equation an equation involving a function y = y(x) and one or more of its derivatives

direction field (slope field) a mathematical object used to graphically represent solutions to a first-order differential
equation; at each point in a direction field, a line segment appears whose slope is equal to the slope of a solution to the
differential equation passing through that point

equilibrium solution any solution to the differential equation of the form y = ¢, where ¢ is a constant

Euler’s Method a numerical technique used to approximate solutions to an initial-value problem

general solution (or family of solutions) the entire set of solutions to a given differential equation

growth rate the constant 7 > 0 in the exponential growth function P(f) = Pye”

initial population the population at time 7 = 0

initial value(s) a value or set of values that a solution of a differential equation satisfies for a fixed value of the
independent variable

initial velocity the velocity at time t =0

initial-value problem a differential equation together with an initial value or values

integrating factor any function f(x) that is multiplied on both sides of a differential equation to make the side involving

the unknown function equal to the derivative of a product of two functions

linear description of a first-order differential equation that can be written in the form a(x)y’ + b(x)y = c(x)

logistic differential equation a differential equation that incorporates the carrying capacity K and growth rate r into a
population model

order of a differential equation the highest order of any derivative of the unknown function that appears in the
equation

particular solution member of a family of solutions to a differential equation that satisfies a particular initial condition

phase line a visual representation of the behavior of solutions to an autonomous differential equation subject to various
initial conditions

separable differential equation any equation that can be written in the form y’ = f(x)g(y)

separation of variables a method used to solve a separable differential equation

solution curve a curve graphed in a direction field that corresponds to the solution to the initial-value problem passing
through a given point in the direction field

solution to a differential equation a function y = f(x) that satisfies a given differential equation
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standard form o fom of a first-order linear differential equation obtained by writing the differential equation in the

form y" + p(x)y = ¢(x)
step size the increment % that is added to the x value at each step in Euler’s Method

threshold population the minimum population that is necessary for a species to survive

KEY EQUATIONS

¢ Euler’s Method
Xy =X+ nh

Yn=Yn_1+hf(x,_1,y,_1), where his the step size

¢ Separable differential equation

Y = f(x)g)

¢ Solution concentration
du _ INFLOW RATE — OUTFLOW RATE

dr —

¢ Newton’s law of cooling
dTl _ (1 -
= k(T —Ty)

¢ Logistic differential equation and initial-value problem

ffl_f = rP(l —%) P0) =Py

¢ Solution to the logistic differential equation/initial-value problem
PyKe”

PO= K P+ Py

e Threshold population model

G = -xl %)

¢ standard form
Y+ p(x)y = q(x)

 integrating factor

ux) = ef PO

KEY CONCEPTS

4.1 Basics of Differential Equations

¢ A differential equation is an equation involving a function y = f(x) and one or more of its derivatives. A solution
is a function y = f(x) that satisfies the differential equation when f and its derivatives are substituted into the
equation.

¢ The order of a differential equation is the highest order of any derivative of the unknown function that appears in
the equation.

¢ A differential equation coupled with an initial value is called an initial-value problem. To solve an initial-value
problem, first find the general solution to the differential equation, then determine the value of the constant. Initial-
value problems have many applications in science and engineering.
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4.2 Direction Fields and Numerical Methods

e A direction field is a mathematical object used to graphically represent solutions to a first-order differential
equation.

¢ Euler’s Method is a numerical technique that can be used to approximate solutions to a differential equation.

4.3 Separable Equations
¢ A separable differential equation is any equation that can be written in the form y’ = f(x)g(y).

¢ The method of separation of variables is used to find the general solution to a separable differential equation.

4.4 The Logistic Equation
¢ When studying population functions, different assumptions—such as exponential growth, logistic growth, or
threshold population—Ilead to different rates of growth.

e The logistic differential equation incorporates the concept of a carrying capacity. This value is a limiting value on
the population for any given environment.

e The logistic differential equation can be solved for any positive growth rate, initial population, and carrying
capacity.

4.5 First-order Linear Equations
* Any first-order linear differential equation can be written in the form y’ + p(x)y = g(x).

¢ We can use a five-step problem-solving strategy for solving a first-order linear differential equation that may or may
not include an initial value.

¢ Applications of first-order linear differential equations include determining motion of a rising or falling object with
air resistance and finding current in an electrical circuit.

CHAPTER 4 REVIEW EXERCISES

True or False? Justify your answer with a proof or a 268. y = y(x2 + 1)
counterexample.

262. The differential equation y’ = 3x%y — cos " is —y .
i ! 1l equiation y Y " i 269. Yy =e Ysinx
inear.

263. The differential equation y’ = x — y is separable. 270. y'=3x—2y

264. You can explicitly solve all first-order differential 271y’ =ylny
equations by separation or by the method of integrating
factors. For the following problems, find the solution to the initial

value problem.
265. You can determine the behavior of all first-order
differential equations using directional fields or Euler’s
method.

272, y =8x—Inx—3x* y(1)=5

273. y'=3x—cosx+2,y0)=4
For the following problems, find the general solution to the

iff ial ions.
differential equations 274, xy' = y(x—2), y(I) =3

266. y =x>+3e* —2x

275. y' = 3y2(x + cosx), y(0) = -2

267. y =2"+cos lx
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276. (x—1y' =y—-2,y0)=0
277. y=3y—x+ 6x2, y(0) =-1

For the following problems, draw the directional field
associated with the differential equation, then solve the
differential equation. Draw a sample solution on the
directional field.

278. y =2y — y2

279. y’=%+lnx—y, for x>0

For the following problems, use Euler’s Method with
n =15 steps over the interval ¢ = [0, 1]. Then solve the

initial-value problem exactly. How close is your Euler’s
Method estimate?

280. y' = —4yx, y(0)=1
281. y' =3"-2y, y(0)=0

For the following problems, set up and solve the differential
equations.

282. A car drives along a freeway, accelerating according
to a = 5sin(nt), where ¢ represents time in minutes.

Find the velocity at any time #, assuming the car starts

with an initial speed of 60 mph.

283. You throw a ball of mass 2 kilograms into the air
with an upward velocity of 8 m/s. Find exactly the time the
ball will remain in the air, assuming that gravity is given by
¢ =9.8m/s.

284. You drop a ball with a mass of 5 kilograms out an
airplane window at a height of 5000 m. How long does it
take for the ball to reach the ground?

285. You drop the same ball of mass 5 kilograms out

of the same airplane window at the same height, except
this time you assume a drag force proportional to the ball’s
velocity, using a proportionality constant of 3 and the ball

reaches terminal velocity. Solve for the distance fallen as a
function of time. How long does it take the ball to reach the
ground?

286. A drug is administered to a patient every 24 hours

and is cleared at a rate proportional to the amount of drug
left in the body, with proportionality constant 0.2. If the

patient needs a baseline level of 5 mg to be in the
bloodstream at all times, how large should the dose be?

427

287. A 1000 -liter tank contains pure water and a solution
of 0.2 kg salt/L is pumped into the tank at a rate of 1 L/

min and is drained at the same rate. Solve for total amount
of salt in the tank at time ¢.

288. You boil water to make tea. When you pour the
water into your teapot, the temperature is 100°C. After 5

minutes in your 15°C room, the temperature of the tea is
85°C. Solve the equation to determine the temperatures of
the tea at time 7. How long must you wait until the tea is at
a drinkable temperature (72°C)?

289. The human population (in thousands) of Nevada in

1950 was roughly 160. If the carrying capacity is
estimated at 10 million individuals, and assuming a
growth rate of 2% per year, develop a logistic growth

model and solve for the population in Nevada at any time
(use 1950 as time = 0). What population does your model

predict for 2000? How close is your prediction to the true
value of 1,998,2577?

290. Repeat the previous problem but use Gompertz
growth model. Which is more accurate?
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5 | SEQUENCES AND
SERIES

AN NS
</\/ é}/

Figure 5.1 The Koch snowflake is constructed by using an iterative process. Starting with an equilateral triangle, at each step
of the process the middle third of each line segment is removed and replaced with an equilateral triangle pointing outward.

Chapter Outline

5.1 Sequences

5.2 Infinite Series

5.3 The Divergence and Integral Tests
5.4 Comparison Tests

5.5 Alternating Series

5.6 Ratio and Root Tests

Introduction

The Koch snowflake is constructed from an infinite number of nonoverlapping equilateral triangles. Consequently, we can
express its area as a sum of infinitely many terms. How do we add an infinite number of terms? Can a sum of an infinite
number of terms be finite? To answer these questions, we need to introduce the concept of an infinite series, a sum with
infinitely many terms. Having defined the necessary tools, we will be able to calculate the area of the Koch snowflake (see
m10058 (http:/lcnx.org/content/m10058/latest/#fs-id1169738055547) ).

The topic of infinite series may seem unrelated to differential and integral calculus. In fact, an infinite series whose terms
involve powers of a variable is a powerful tool that we can use to express functions as “infinite polynomials.” We can
use infinite series to evaluate complicated functions, approximate definite integrals, and create new functions. In addition,
infinite series are used to solve differential equations that model physical behavior, from tiny electronic circuits to Earth-
orbiting satellites.

5.1 | Sequences

Learning Objectives

5.1.1 Find the formula for the general term of a sequence.
5.1.2 Calculate the limit of a sequence if it exists.
5.1.3 Determine the convergence or divergence of a given sequence.
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In this section, we introduce sequences and define what it means for a sequence to converge or diverge. We show how to
find limits of sequences that converge, often by using the properties of limits for functions discussed earlier. We close this
section with the Monotone Convergence Theorem, a tool we can use to prove that certain types of sequences converge.

Terminology of Sequences

To work with this new topic, we need some new terms and definitions. First, an infinite sequence is an ordered list of
numbers of the form

a1, Ay, A3,y Apyeen s

Each of the numbers in the sequence is called a term. The symbol 7 is called the index variable for the sequence. We use
the notation

{an}_ |, orsimply {a,),
to denote this sequence. A similar notation is used for sets, but a sequence is an ordered list, whereas a set is not ordered.
Because a particular number a,, exists for each positive integer n, we can also define a sequence as a function whose
domain is the set of positive integers.
Let’s consider the infinite, ordered list
2,4, 8,16, 32,....

This is a sequence in which the first, second, and third terms are given by a; =2, a, =4, and a3 =38. You can

probably see that the terms in this sequence have the following pattern:
a;=2' a,=2% a3=23 a,=2% andas =2

Assuming this pattern continues, we can write the nth term in the sequence by the explicit formula a, = 2". Using this
notation, we can write this sequence as
(2"}, or{2"}.

n=1

Alternatively, we can describe this sequence in a different way. Since each term is twice the previous term, this sequence
can be defined recursively by expressing the nth term a, in terms of the previous term a,_. In particular, we can
define this sequence as the sequence {a,} where a; =2 andforall n> 2, eachterm a, is defined by the recurrence

relationa, = 2a, _ ;.

Definition

An infinite sequence {a,} is an ordered list of numbers of the form
A1, A)sevey Apyenn .

The subscript 7 is called the index variable of the sequence. Each number a,, is a term of the sequence. Sometimes
sequences are defined by explicit formulas, in which case a, = f(n) for some function f(n) defined over the

positive integers. In other cases, sequences are defined by using a recurrence relation. In a recurrence relation, one
term (or more) of the sequence is given explicitly, and subsequent terms are defined in terms of earlier terms in the
sequence.

Note that the index does not have to start at n = 1 but could start with other integers. For example, a sequence given by
the explicit formula a, = f(n) could start at » = 0, in which case the sequence would be

ap, iy, dp,... .

Similarly, for a sequence defined by a recurrence relation, the term a(, may be given explicitly, and the terms a,, for n > 1
may be defined in terms of a, _ ;. Since a sequence {a,} has exactly one value for each positive integer n, it can be

described as a function whose domain is the set of positive integers. As a result, it makes sense to discuss the graph of a
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sequence. The graph of a sequence {a,} consists of all points (n, a,) for all positive integers n. Figure 5.2 shows the
graph of {2"}.

a

18}
il ,(4.16)
14 4
124

10 +
3.8

L2
12

of 1 2 3 4 5 6 7 8n
Figure 5.2 The plotted points are a graph of the sequence
{2"}.

Two types of sequences occur often and are given special names: arithmetic sequences and geometric sequences. In an
arithmetic sequence, the difference between every pair of consecutive terms is the same. For example, consider the
sequence

3,7, 11, 15, 19,....

You can see that the difference between every consecutive pair of terms is 4. Assuming that this pattern continues, this
sequence is an arithmetic sequence. It can be described by using the recurrence relation

Cll=3
ap=a,_+4forn>2.

Note that
02=3+4
a3;=3+4+4=3+2-4
a;,=34+44+44+4=34+3-4.

Thus the sequence can also be described using the explicit formula
a, =3+4n-1)
=4n-1.

In general, an arithmetic sequence is any sequence of the form a, = cn + b.

In a geometric sequence, the ratio of every pair of consecutive terms is the same. For example, consider the sequence
2, — 2 i 2 2 2
3

§, 27, ﬁ,... .

We see that the ratio of any term to the preceding term is -1 Assuming this pattern continues, this sequence is a geometric

3
sequence. It can be defined recursively as

-a, _q forn > 2.

U.)l»—t

Alternatively, since
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o= Bfbpo=(4
= (A=)

we see that the sequence can be described by using the explicit formula
n—1
)
anp = 2(——
" 3
The sequence {2"} that we discussed earlier is a geometric sequence, where the ratio of any term to the previous term is

2. In general, a geometric sequence is any sequence of the form a, = cr”.

Example 5.1

Finding Explicit Formulas

For each of the following sequences, find an explicit formula for the nth term of the sequence.

47107 13> 16

Solution

a. First, note that the sequence is alternating from negative to positive. The odd terms in the sequence are
negative, and the even terms are positive. Therefore, the nth term includes a factor of (—1)". Next,

consider the sequence of numerators {1, 2, 3,...} and the sequence of denominators {2, 3, 4,...}.
We can see that both of these sequences are arithmetic sequences. The nth term in the sequence of
numerators is #, and the nth term in the sequence of denominators is #n + 1. Therefore, the sequence

can be described by the explicit formula

_(=D"n
=TT
b. The sequence of numerators 3,9, 27, 81, 243,... is a geometric sequence. The numerator of the

nth term is 3" The sequence of denominators 4, 7, 10, 13, 16,... is an arithmetic sequence. The

denominator of the nth term is 4 + 3(n — 1) = 3n + 1. Therefore, we can describe the sequence by the
n

explicit formula a, = ETERE

@ 51 Find an explicit formula for the nth term of the sequence {%, - %, %, - ﬁ,. . }
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Defined by Recurrence Relations

a. a;=2, a,=-3a,_,forn>2

b. a; =%, anzan_1+(%)n for n>2
Solution
a. Writing out the first few terms, we have
a =2
ay=-3a; =-3(2)
a3 = —3a, = (-3)22
a, = —3a; = (=3)2.

In general,
ap=2(=3)""".
b. Write out the first few terms:
1
ap = E )
3
w=a+(}) =j+i=3
3
- 1y =3,1_7
a=a+(j) =3+§=1
4
- 1y 7,1 _15
a=as+(3) =+ =12
From this pattern, we derive the explicit formula
n —
a=Lmloio

@ 5.2 Find an explicit formula for the sequence defined recursively such that a; = —4 and a, =a,, _| +6.

Limit of a Sequence

For each of the following recursively defined sequences, find an explicit formula for the sequence.

433

A fundamental question that arises regarding infinite sequences is the behavior of the terms as n gets larger. Since a
sequence is a function defined on the positive integers, it makes sense to discuss the limit of the terms as n — o0. For

example, consider the following four sequences and their different behaviors as n — oo (see Figure 5.3):

a. {1+3n}=1{4,7,10, 13,...}. The terms 1+ 3n become arbitrarily large as n — oco. In this case, we say that

14+3n—> 0 as n - oo.

b. {1 - (%)n} = {%, %, %, %,} The terms 1 — (%)n -1 as n— .

c. {(-D)™"={-1,1, =1, 1,...}. The terms alternate but do not approach one single value as n — oo.
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d (G ={—1 1 11 } The terms alternate for this sequence as well, but ﬂ—) 0asn— o0
. I o T , 7 .
i ¥
1 °@. 16) 1
14 1
.{4, 13)
12 +
il .(3,10)
15
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8+ 1+ . . 3, = (‘16,
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Figure 5.3 (a) The terms in the sequence become arbitrarily large as n — oco. (b) The terms
in the sequence approach 1 as n — 0. (c) The terms in the sequence alternate between 1
and —1 as n — 0. (d) The terms in the sequence alternate between positive and negative

values but approach 0 as n — oo.

From these examples, we see several possibilities for the behavior of the terms of a sequence as n — co. In two of the
sequences, the terms approach a finite number as n — oco. In the other two sequences, the terms do not. If the terms of a
sequence approach a finite number L as n — oo, we say that the sequence is a convergent sequence and the real number

L is the limit of the sequence. We can give an informal definition here.

Definition

Given a sequence {a,}, if the terms a, become arbitrarily close to a finite number L as n becomes sufficiently

large, we say {a,} is a convergent sequence and L is the limit of the sequence. In this case, we write
lim a, = L.
n— oo

If a sequence {a,} is not convergent, we say it is a divergent sequence.
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n
From Figure 5.3, we see that the terms in the sequence {1 - (%) } are becoming arbitrarily close to 1 as n becomes
1 n
very large. We conclude that {1 - (7) } is a convergent sequence and its limit is 1. In contrast, from Figure 5.3, we see

that the terms in the sequence 1 + 3n are not approaching a finite number as n becomes larger. We say that {1 + 3n} is
a divergent sequence.

In the informal definition for the limit of a sequence, we used the terms “arbitrarily close” and “sufficiently large.” Although
these phrases help illustrate the meaning of a converging sequence, they are somewhat vague. To be more precise, we now
present the more formal definition of limit for a sequence and show these ideas graphically in Figure 5.4.

Definition

A sequence {a,} converges to a real number L if for all € > 0, there exists an integer N such that |a, — L| < ¢

if n > N. The number L is the limit of the sequence and we write
nll)mooan =Lora,— L.

In this case, we say the sequence {a,} is a convergent sequence. If a sequence does not converge, it is a divergent

sequence, and we say the limit does not exist.

We remark that the convergence or divergence of a sequence {a,} depends only on what happens to the terms a, as

n — oo. Therefore, if a finite number of terms b, b,,..., by are placed before a; to create a new sequence
bl’ bz,..., bN’ ag, aAn,...,

this new sequence will converge if {a,} converges and diverge if {a,} diverges. Further, if the sequence {a,} converges

to L, this new sequence will also converge to L.

a,

Figure 5.4 As n increases, the terms a, become closer to L. For values of n > N, the

distance between each point (7, a,) and the line y = L is less than &.

As defined above, if a sequence does not converge, it is said to be a divergent sequence. For example, the sequences
{1+3n} and {(—1)"} shown in Figure 5.4 diverge. However, different sequences can diverge in different ways. The

sequence {(—1)"} diverges because the terms alternate between 1 and —1, but do not approach one value as n — .

On the other hand, the sequence {1+ 3n} diverges because the terms 1+ 3n — oo as n — co. We say the sequence
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{1+ 3n} diverges to infinity and write nli)moo(l + 3n) = oo0. Itis important to recognize that this notation does not imply

the limit of the sequence {1 + 3n} exists. The sequence is, in fact, divergent. Writing that the limit is infinity is intended

only to provide more information about why the sequence is divergent. A sequence can also diverge to negative infinity. For
example, the sequence {—5n+ 2} diverges to negative infinity because —5n+2 — —oco0 as n — —oo. We write this as

lim (-5n+2)= — —o0.
n— oo
Because a sequence is a function whose domain is the set of positive integers, we can use properties of limits of functions
to determine whether a sequence converges. For example, consider a sequence {a,} and a related function f defined
on all positive real numbers such that f(n) = a, for all integers n > 1. Since the domain of the sequence is a subset

of the domain of f, if xli)moo f(x) exists, then the sequence converges and has the same limit. For example, consider

the sequence {%} and the related function f(x) = % Since the function f defined on all real numbers x > 0 satisfies
fx) = % — 0 as x = oo, the sequence {%} must satisfy % — 0 as n— oo.

Theorem 5.1: Limit of a Sequence Defined by a Function

Consider a sequence {a,} such that a,, = f(n) forall n > 1. If there exists a real number L such that
xImeo fx) =1L,
then {a,} converges and

lim a,=L.
n — oo

We can use this theorem to evaluate lim r" for 0 <r < 1. For example, consider the sequence {(1/2)"} and the related
exponential function f(x) = (1/2)*. Since xli)moo(I/Z)x =0, we conclude that the sequence {(1/2)"} converges and its
limit is 0. Similarly, for any real number r such that 0 < r < 1, lemmrx =0, and therefore the sequence {r"}
converges. On the other hand, if » = 1, then lemwrx =1, and therefore the limit of the sequence {1"} is 1. If r > 1,
xli)moorjC = 0o, and therefore we cannot apply this theorem. However, in this case, just as the function r* grows without
bound as n — oo, theterms r” in the sequence become arbitrarily large as n — oo, and we conclude that the sequence
{r"} diverges to infinity if r > 1.

We summarize these results regarding the geometric sequence {r"}:

Mm—=>0if0<r<l
Mm-1lifr=1
"= cifr> 1.

Later in this section we consider the case when r < 0.

We now consider slightly more complicated sequences. For example, consider the sequence {(2/3)" + (1/4)"}. The terms

in this sequence are more complicated than other sequences we have discussed, but luckily the limit of this sequence is
determined by the limits of the two sequences {(2/3)"} and {(1/4)"]. As we describe in the following algebraic limit laws,

since {(2/3)"} and {1/4)"} both converge to 0, the sequence {(2/3)" + (1/4)"} converges to 0+ 0 = 0. Just as we were
able to evaluate a limit involving an algebraic combination of functions f and g by looking at the limits of f and g (see

Introduction to Limits (http://cnx.org/content/m53483/latest/) ), we are able to evaluate the limit of a sequence
whose terms are algebraic combinations of a, and b,, by evaluating the limits of {a,} and {b,}.
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Theorem 5.2: Algebraic Limit Laws

Given sequences {a,} and {b,} and any real number ¢, if there exist constants A and B such that nli)mooan =A

and lim b, = B, then

n—, oo

i. limc=c
n— oo

i. lim ca,=c lim a,=cA
n— o n— oo

iii. lim (@,xb,)= lim a,+ lim b,=A+B
n—> oo n —> oo n —> oo

iv. lim (@,-by) = lim a,)-( lim b,)=A-B

: an nILmooan A ;
v. lim (b_) =N T provided B # 0 and each b, # 0.

n- 00 1
7 nll)moobn

Proof

We prove part iii.

Let ¢ > 0. Since nli)m@a,, = A, there exists a constant positive integer N; such that for all n > N;. Since
nli)moobn = B, there exists a constant N, such that |b, — B| < &/2 for all n > N,. Let N be the largest of N; and

N,. Therefore, forall n > N,
I(ay + by)—(A + B)l <la, — Al + b, — Bl <§+%= e.

O

The algebraic limit laws allow us to evaluate limits for many sequences. For example, consider the sequence {l} As
n

shown earlier, nli)mool/n = 0. Similarly, for any positive integer k, we can conclude that
lim L= 0.

In the next example, we make use of this fact along with the limit laws to evaluate limits for other sequences.

Example 5.3

Determining Convergence and Finding Limits

For each of the following sequences, determine whether or not the sequence converges. If it converges, find its
limit.

- -3
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d. {(1 + %)n}

Solution
a. We know that 1/n — 0. Using this fact, we conclude that

nli)moo# = Jlim (1), 1im (L)=o0.

Therefore,

lim (5—i)= lim 5-3 lim L =5-30=5.
n— 00 n2 n— oo n—>oon2

The sequence converges and its limit is 5.

b. By factoring n* out of the numerator and denominator and using the limit laws above, we have

3_l+i
4 2 2 4
lim - =Tn"+5 _ iy —n° n”
n -0 6—47’14 n - 00 %_4
n
lim (3—l+i)
— n2 a4
. 6
nll)moo(n_4_4

. . 7 . 5
~ (nll)moo(3)—nll)moo 7+ nhm —)

=
n °°n4

(n LN nlgmoo(“))

n

(n Im (=7, limg 5 +35 'nlemw)

n
(6-n]l)m0°n—4—nll>moo(4))
3-7-0+5-0_ _3
6-0-4 4

The sequence converges and its limit is —3/4.

c. Consider the related function f(x) =2* /x% defined on all real numbers x > 0. Since 2* — co and

x> > 00 as x — oo, apply L’Hopital’s rule and write

X X
lim <= = Ilim 27In2 Take the derivatives of the numerator and denominator.
X = 00 x2 x>0 2x
X 2
= lim 2 (In2)” Take the derivatives again.
X = 00 2
= 00.

We conclude that the sequence diverges.

4

X
d. Consider the function f(x)= (1 +Y) defined on all real numbers x > 0. This function has the

indeterminate form 1% as x = 0. Let

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



Chapter 5 | Sequences and Series 439

X

y=lim (1+%).
Now taking the natural logarithm of both sides of the equation, we obtain

In(y) = ln[lemw(l + %)x].

Since the function f(x) = Inx is continuous on its domain, we can interchange the limit and the natural

logarithm. Therefore,
X
In(y) = xli)moo[ln(l + %) ]
Using properties of logarithms, we write

lemm[ln(l + %)x] = lim xIn(1 +%)

Since the right-hand side of this equation has the indeterminate form oo -0, rewrite it as a fraction to
apply L’Hopital’s rule. Write

4)= lim In(1 +4/x).
X = 0

xll)mooxln(l +5 Tx

Since the right-hand side is now in the indeterminate form 0/0, we are able to apply L’Hopital’s rule.
We conclude that

i I +400) _ 4

S VAR L0 W pray el

X

4) = e4, we can conclude that the

_ _ 4 . .
Therefore, In(y) =4 and y =e™. Therefore, since Xleoo(l +5
4

n
sequence {(1 +ﬁ) } converges to et

5.3 Consider the sequence {(5;12 + 1)/e"}. Determine whether or not the sequence converges. If it converges,

find its limit.

Recall that if f is a continuous function at a value L, then f(x) — f(L) as x — L. This idea applies to sequences

as well. Suppose a sequence a, — L, and a function f is continuous at L. Then f(a,) — f(L). This property often
enables us to find limits for complicated sequences. For example, consider the sequence 15 — % From Example 5.3a.
n

we know the sequence 5 — 3 5. Since vx is a continuous function at x = 5,

)
lim 15 — = = lim( —i):VS.
n- oo n2 n— oo I’l2
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Theorem 5.3: Continuous Functions Defined on Convergent Sequences

Consider a sequence {a,} and suppose there exists a real number L such that the sequence {a,} convergesto L.
Suppose f is a continuous function at L. Then there exists an integer N such that f is defined at all values a, for

n > N, and the sequence {f(a,)} convergesto f(L) (Figure 5.5).

Proof

Let € > 0. Since f is continuous at L, there exists § > 0 such that |f(x) — f(L)| < e if |x—L| <. Since the
sequence {a,} converges to L, there exists N such that |a, — L| < for all n > N. Therefore, for all n> N,
la, — L| < 6, which implies |f(a,)—f(L)| < e. We conclude that the sequence {f(a,)} convergesto f(L).

O
fix)

(as, f(as))
(L, f(L)) (a2, f(az))

(a3, f(as))
(a1, fay)

aa a; L a, a,

L L

X

Figure 5.5 Because f isa continuous function as the inputs

ap, ap, as,... approach L, the outputs

f(ay), f(ay), f(as),... approach f(L).
Example 5.4
Limits Involving Continuous Functions Defined on Convergent Sequences

Determine whether the sequence {cos(3/n2)} converges. If it converges, find its limit.

Solution

Since the sequence {3/112} converges to 0 and cosx is continuous at x = 0, we can conclude that the sequence

{Cos(3ln2)} converges and

nlewcos(%) =cos(0) =1.

@ 5.4 Determine if the sequence { %ZI; converges. If it converges, find its limit.

Another theorem involving limits of sequences is an extension of the Squeeze Theorem for limits discussed in
Introduction to Limits (http://chx.org/content/m53483/latest/) .
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Theorem 5.4: Squeeze Theorem for Sequences

Consider sequences {ay,}, {b,}, and {c,}. Suppose there exists an integer N such that
a, < b, <cy,foralln> N.
If there exists a real number L such that
nleman =/L= nlemcn,

then {b,} converges and nli>moobn = L (Figure 5.6).

Proof

Let £ > 0. Since the sequence {a,} convergesto L, there exists an integer N such that |a, — L| < e forall n > N;.
Similarly, since {c,} convergesto L, there exists an integer N, suchthat |c, — L| < € forall n > N,. By assumption,
there exists an integer N such that a, < b, <c, forall n > N. Let M be the largest of Ny, N5, and N. We must
show that |b,, — L| < € forall n > M. Forall n > M,

—e<—lay,—Lfa,—-LL<b,—L<c,—L<L|c,—L|<e.

Therefore, —¢ < b, — L < &, and we conclude that |b,, — L| < & forall n > M, and we conclude that the sequence {b,}

converges to L.

O

L
LI b, ® . .
)
.............. SRR S
.

.

)

. Cn

Figure 5.6 Eachterm b,, satisfies a, < b, < ¢, and the
sequences {ay,} and {c,} converge to the same limit, so the

sequence {b,} must converge to the same limit as well.

Example 5.5

Using the Squeeze Theorem

Use the Squeeze Theorem to find the limit of each of the following sequences.

cosn
d. —
{ I’l2 }
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Solution

a. Since —1 < cosn <1 for all integers n, we have

cosn

n2

L ceosn o1
n n

Since —1/n2 — 0 and 1/n2 — 0, we conclude that cosn/n?® — 0 as well.

b. Since
F=(4 5

for all positive integers n, —1/2"" — 0 and 1/2" - 0, we can conclude that (—1/2)" — 0.

@ 5.5 Find nli—>m002n —nsinn.

Using the idea from Example 5.5b. we conclude that " — O for any real number r suchthat —1 < r < 0. If r < —1,
the sequence {r"*} diverges because the terms oscillate and become arbitrarily large in magnitude. If r = —1, the

sequence {r"*} ={(—1)"} diverges, as discussed earlier. Here is a summary of the properties for geometric sequences.

M 0if 7] < 1 (5.1)
M lifr=1 (5.2)
"= ocoifr>1 (53)
{r"} diverges if r < —1 (5.4)

Bounded Sequences

We now turn our attention to one of the most important theorems involving sequences: the Monotone Convergence
Theorem. Before stating the theorem, we need to introduce some terminology and motivation. We begin by defining what
it means for a sequence to be bounded.

Definition

A sequence {a,} is bounded above if there exists a real number M such that
a, <M
for all positive integers 7.
A sequence {a,} is bounded below if there exists a real number M such that
M < ay,
for all positive integers n.
A sequence {a,} is a bounded sequence if it is bounded above and bounded below.

If a sequence is not bounded, it is an unbounded sequence.

For example, the sequence {1/n} is bounded above because 1/n <1 for all positive integers n. It is also bounded below

because 1/n > 0 for all positive integers n. Therefore, {1/n} is a bounded sequence. On the other hand, consider the
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sequence {2"}. Because 2" > 2 forall n > 1, the sequence is bounded below. However, the sequence is not bounded

above. Therefore, {2"} is an unbounded sequence.

We now discuss the relationship between boundedness and convergence. Suppose a sequence {a,} is unbounded. Then it is
not bounded above, or not bounded below, or both. In either case, there are terms a,, that are arbitrarily large in magnitude
as n gets larger. As a result, the sequence {a,} cannot converge. Therefore, being bounded is a necessary condition for a

sequence to converge.

Theorem 5.5: Convergent Sequences Are Bounded

If a sequence {a,} converges, then it is bounded.

Note that a sequence being bounded is not a sufficient condition for a sequence to converge. For example, the sequence
{(=1)™} is bounded, but the sequence diverges because the sequence oscillates between 1 and —1 and never approaches a

finite number. We now discuss a sufficient (but not necessary) condition for a bounded sequence to converge.
Consider a bounded sequence {a,}. Suppose the sequence {a,} is increasing. That is, a; < a, < as.... Since the

sequence is increasing, the terms are not oscillating. Therefore, there are two possibilities. The sequence could diverge to
infinity, or it could converge. However, since the sequence is bounded, it is bounded above and the sequence cannot diverge
to infinity. We conclude that {a,} converges. For example, consider the sequence

334

Since this sequence is increasing and bounded above, it converges. Next, consider the sequence

{2,0,3,0,4,0, 1, -4 -1 —l...}.

- 59 3 5 49
Even though the sequence is not increasing for all values of n, we see that —1/2 < —1/3 < —1/4 < ---. Therefore,
starting with the eighth term, ag = —1/2, the sequence is increasing. In this case, we say the sequence is eventually

increasing. Since the sequence is bounded above, it converges. It is also true that if a sequence is decreasing (or eventually
decreasing) and bounded below, it also converges.

Definition

A sequence {a,} isincreasing forall n > n if

ap < a,,q foralln > n,.
A sequence {a,} is decreasing forall n > n if

an 2 a, . foralln > n.

A sequence {a,} is a monotone sequence for all n > n if it is increasing for all n > n( or decreasing for all

n 2z ng.

We now have the necessary definitions to state the Monotone Convergence Theorem, which gives a sufficient condition for
convergence of a sequence.
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Theorem 5.6: Monotone Convergence Theorem

If {a,} is a bounded sequence and there exists a positive integer n( such that {a,} is monotone for all n > n,

then {a,} converges.

The proof of this theorem is beyond the scope of this text. Instead, we provide a graph to show intuitively why this theorem
makes sense (Figure 5.7).

ap

Figure 5.7 Since the sequence {a,} is increasing and

bounded above, it must converge.

In the following example, we show how the Monotone Convergence Theorem can be used to prove convergence of a
sequence.

Example 5.6

Using the Monotone Convergence Theorem

For each of the following sequences, use the Monotone Convergence Theorem to show the sequence converges
and find its limit.

v G

b. {a,} defined recursively such that

ay=2anda, =%+ 2}{" foralln > 2.
Solution
a. Writing out the first few terms, we see that

= B3

At first, the terms increase. However, after the third term, the terms decrease. In fact, the terms decrease
for all n > 3. We can show this as follows.

n+1 n
_amtl 4 a4
DtV = G D k1l 1 S anifn23

Therefore, the sequence is decreasing for all n > 3. Further, the sequence is bounded below by 0

because 4" /n! > 0 for all positive integers n. Therefore, by the Monotone Convergence Theorem, the
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sequence converges.
To find the limit, we use the fact that the sequence converges and let L = nli)mooan. Now note this

important observation. Consider lim a,, , ;. Since
n=o N+

{a, 41} =1{ay asz ay....},
the only difference between the sequences {a,,} and {a,} is that {a,,} omits the first term.
Since a finite number of terms does not affect the convergence of a sequence,

nll)mmanJr 1= nll)mooan =L.
Combining this fact with the equation

Gn+ 1 = g gin
and taking the limit of both sides of the equation
. o 4
nleooa” +1= nleoon + la”’

we can conclude that
L=0-L=0.
b. Writing out the first several terms,

o~

s

3

we can conjecture that the sequence is decreasing and bounded below by 1. To show that the sequence

N[V}
S

L 3281 )

0” 3280

|98

is bounded below by 1, we can show that

n 1 5
g2 L.

To show this, first rewrite

an 1 =a3,+1.
2 2a, 2a,

Since a; >0 and a, is defined as a sum of positive terms, a, > 0. Similarly, all terms a, > 0.

Therefore,
2
ap+1 >
2a, ~ !
if and only if
a,zZ +1 > 2a,.

Rewriting the inequality a% +12>2a, as a% —2a,+1 >0, and using the fact that

a-2a,+1=(a,-1)>>0
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because the square of any real number is nonnegative, we can conclude that

n , 1
> taa 2 b

2

To show that the sequence is decreasing, we must show that a,, , | < a, forall n > 1. Since 1 < ay,

it follows that

a,21+ 1< 2a,2,.

Dividing both sides by 2a,, we obtain

an
2+

1
2a,

< ay.

Using the definition of a, , |, we conclude that

1
2a,

a
Ay =5 +5,~<dn

Since {a,} is bounded below and decreasing, by the Monotone Convergence Theorem, it converges.

To find the limit, let L:nli)mooan. Then using the recurrence relation and the fact that

Lim ap, = lim a, |, wehave

. . (a 1
Lim a, g = nlem(T" + 2Cln)’

and therefore

L L

L= 5L

S]]

Multiplying both sides of this equation by 2L, we arrive at the equation

202 =1%+1.

Solving this equation for L, we conclude that L?> =1, which implies L = +1. Since all the terms are

positive, the limit L = 1.

5.6 Consider the sequence {a,} defined recursively such that a; =1, a,=a,_/2. Use the Monotone

Convergence Theorem to show that this sequence converges and find its limit.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



Chapter 5 | Sequences and Series 447

Student PROJECT

Fibonacci Numbers

The Fibonacci numbers are defined recursively by the sequence {F,} where Fy =0, F;=1 andfor n> 2,
Fo=F,_1+F,_,.
Here we look at properties of the Fibonacci numbers.
1. Write out the first twenty Fibonacci numbers.
2. Find a closed formula for the Fibonacci sequence by using the following steps.
a. Consider the recursively defined sequence {x,} where x,=c and x,,; = ax,. Show that this

sequence can be described by the closed formula x,, = ca” forall n > 0.

b. Using the result from part a. as motivation, look for a solution of the equation

Fn:Fn—l+Fn—2

of the form F, = cA". Determine what two values for A will allow F,, to satisfy this equation.

c. Consider the two solutions from part b.: A and A,. Let F,=c 4;"+cy4,". Use the initial
conditions Fy and F; to determine the values for the constants c¢; and ¢, and write the closed

formula F,,.

3. Use the answer in 2 c. to show that

Fn+l=1+\/§
F, 2

lim
n— oo

The number ¢ = (l + \/5)/2 is known as the golden ratio (Figure 5.8 and Figure 5.9).

R

Figure 5.8 The seeds in a sunflower exhibit spiral patterns
curving to the left and to the right. The number of spirals in each
direction is always a Fibonacci number—always. (credit:
modification of work by Esdras Calderan, Wikimedia
Commons)
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Figure 5.9 The proportion of the golden ratio appears in many
famous examples of art and architecture. The ancient Greek
temple known as the Parthenon was designed with these
proportions, and the ratio appears again in many of the smaller
details. (credit: modification of work by TravelingOtter, Flickr)
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5.1 EXERCISES

Find the first six terms of each of the following sequences,
starting with n = 1.

1. ap=14+1)"forn>1
2. an:n2—1 for n > 1
3. ay=1land a,=a,_|+nforn>2

4. ay=1, ay=1landa, ,=ay+a,,; forn>1

5. Find an explicit formula for a, where a; =1 and

ap=a,_1+n forn>2.

6. Find a formula a, for the nth term of the arithmetic
sequence whose first term is a; =1 such that

a,_1—ap,=17 for n > 1.

7. Find a formula a, for the nth term of the arithmetic
sequence whose first term is such that

—a,=4 for n>1.

a1=—3

ap—1

8. Find a formula a, for the nth term of the geometric

sequence whose first term is a; =1 such that

Zntl_ 10 for n> 1.
n

9. Find a formula a, for the nth term of the geometric

sequence whose first term is a; =3 such that

%: 1/10 for n > 1.
n

10. Find an explicit formula for the nth term of the

terms are
(Hint:  First

sequence whose first several
{0, 3, 8, 15, 24, 35, 48, 63, 80, 99,...}.

add one to each term.)
11. Find an explicit formula for the nth term of the
sequence satisfying a; =0 and a,=2a,_;+1 for

n>?2.
Find a formula for the general term a, of each of the
following sequences.

12. {1,0,-1,0,1,0, -1, 0,...}

sinx takes these values)

(Hint: Find where

13. {1, -1/3, 1/5, =1/7,...}
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Find a function f(n) that identifies the nth term a, of the

following recursively defined sequences, as a,, = f(n).
14. ay=1land a, | =—a, forn>1

15. ay =2 and a, | =2a, forn>1

16. ay=1and a, 1 =@m+ Da, forn>1

17. ay =2 and a, =+ Da,/2 for n > 1

18. ay=1and a,,=a,/2" forn>1

Plot the first N terms of each sequence. State whether the

graphical evidence suggests that the sequence converges or
diverges.

19. [T] a; =1, a, =2, and for n>2,

an=Ya,_1+a,_p; N=30

20. [T] a;=1, a,=2, a3=3 and for n>4,

anz%(an_l+an_2+an_3), N =30

21. [T]
ap=+a,_ja,_,; N=230

a; =1, a, =2, and for n>3,

22. [T] a; =1, and for n >4,

ap,=+a,_1a,_,a,_3 N=30

a2=2, a3=3,

Suppose  that nli)mooan =1, nli_)moobn =—-1, and

0 < —b, < a, for all n. Evaluate each of the following

limits, or state that the limit does not exist, or state that
there is not enough information to determine whether the
limit exists.

23. lim 3a, - 4b,

24, 1

: 1
nll)moozbn —5dn

Find the limit of each of the following sequences, using
L’Hopital’s rule when appropriate.
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27. ;2

2"
28. (n—1)2

(n+1)?
29. _vn

n+1

30. Linn

nlin (Hint: n'm =

)

For each of the following sequences, whose nth terms

are indicated, state whether the sequence is bounded and
whether it is eventually monotone, increasing, or
decreasing.

31. n2", n>2

32. 1n(l+%)

33. sinn

34. cos(nz)

35. nl/ﬂ, n>3
36. n—l/ﬂ’ n>3

37. tann

38. Determine whether the sequence defined as follows
has a limit. If it does, find the limit.

a1=W/§, 02=M, as = VZW etc.

39. Determine whether the sequence defined as follows
has a limit. If it does, find the limit.

ay=3, ay,=\2a,_,, n=2,3,..

Use the Squeeze Theorem to find the limit of each of the
following sequences.

40. nsin(1/n)

41. cos(l/n) —1
1/n

42. n!

ay = —
n

43. a, = sinnsin(1/n)
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For the following sequences, plot the first 25 terms of the

sequence and state whether the graphical evidence suggests
that the sequence converges or diverges.

44. [T] a, = sinn
45. [T] a,, = cosn

Determine the limit of the sequence or show that the
sequence diverges. If it converges, find its limit.

46. a, :tan_l(nz)
47 a, = (2}’1)1/” _ nl/l’l

48. = ln(nz)
" In(2n)

49.

an=(1-2)
50.

a, = ln(u)
51. _2"4 3"

n
52. _ (1000)

n n!

53. B (n!)2
n="2n)!

Newton’s method seeks to approximate a solution
f(x) =0 that starts with an initial approximation x; and

_ S(xn)
I Gen)”

For the given choice of f and x;, write out the formula

successively defines a sequence x,,;=x,

for x, ;. If the sequence appears to converge, give an

exact formula for the solution x, then identify the limit x

accurate to four decimal places and the smallest n such
that x, agrees with x up to four decimal places.

54. [T] f(x) =x2-2, xp=1
S5 [T] f(¥) = (x—1)* =2, xy=2
56. [T] f(x) =e* -2,

.X'O=l

57. [T] f(x) =Inx—-1, xy5=2
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58. [T] Suppose you start with one liter of vinegar and
repeatedly remove 0.1L, replace with water, mix, and

repeat.
a. Find a formula for the concentration after n steps.

b. After how many steps does the mixture contain less
than 10% vinegar?

59. [T] A lake initially contains 2000 fish. Suppose that

in the absence of predators or other causes of removal, the
fish population increases by 6% each month. However,

factoring in all causes, 150 fish are lost each month.

a. Explain why the fish population after n months

is modeled by P, =1.06P,_;—150 with

Py =2000.
b. How many fish will be in the pond after one year?

60. [T] A bank account earns 5% interest compounded
monthly. Suppose that $1000 is initially deposited into the

account, but that $10 is withdrawn each month.

a. Show that the amount in the account after n
A, =(14+.05/12)A 10;

months is

Ag = 1000.

n—17

b. How much money will be in the account after 1
year?
Is the amount increasing or decreasing?

d. Suppose that instead of $10, a fixed amount d

dollars is withdrawn each month. Find a value of
d such that the amount in the account after each
month remains $1000.

e. What happens if d is greater than this amount?

61. [T] A student takes out a college loan of $10,000 at
an annual percentage rate of 6%, compounded monthly.
a. If the student makes payments of $100 per month,
how much does the student owe after 12 months?
b. After how many months will the loan be paid off?
62. [T] Consider a series combining geometric growth and
arithmetic decrease. Let a;=1. Fix a>1 and
0O<b<a. Set a,,;=a.a,—>b. Find a formula for
a, 1 in terms of a", a, and b and a relationship

between a and b such that a, converges.
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63. [T] The binary representation x = 0.b;b,b5... of a

number x between O and 1 can be defined as follows. Let
by=0if x<1/2 and b; =1 if 1/2<x< 1. Let

X1 = 2x—b1. Let b2=0 if X1 < 1/2 and b2= 1 if
1/2<x<1. Let
-b, and b,_;=0 if x,<1/2 and

Xy =2xy—b, and in general,
Xp=2x
b, _1=1if 1/2 < x, < 1. Find the binary expansion of

1/3.

64. [T] To find an approximation for 7, set
ag="V2+1, a; =\2+ay, and, in general,

a,,1=\2+a, Finally, set p,=32"y2-a, Find

the first ten terms of p, and compare the values to 7.

For the following two exercises, assume that you have
access to a computer program or Internet source that can
generate a list of zeros and ones of any desired length.
Pseudorandom number generators (PRNGs) play an
important role in simulating random noise in physical
systems by creating sequences of zeros and ones that
appear like the result of flipping a coin repeatedly. One of
the simplest types of PRNGs recursively defines a random-
looking sequence of N integers ay, a,,..., ay by fixing

two special integers K and M and letting a, , ; be the
remainder after dividing K.a, into M, then creates a bit
sequence of zeros and ones whose nth term b, is equal to
one if a, is odd and equal to zero if a, is even. If the bits
b, are pseudorandom, then the behavior of their average
(by+by+ -+ +by)N should be similar to behavior of

averages of truly randomly generated bits.

65. [T] Starting with
M = 2,147,483,647,

of a;, compute sequences of bits b, up to n = 1000,

K =16,807 and

using ten different starting values

and compare their averages to ten such sequences generated
by a random bit generator.

66. [T] Find the first 1000 digits of z using either a

computer program or Internet resource. Create a bit
sequence b, by letting b, =1 if the nth digit of 7 is

odd and b, = 0 if the nth digit of z is even. Compute the
average value of b,
dy= |bn+ 1~ bn|e

b,, appear random? Do the differences between successive

and the average value of

n=1,..,999. Does the sequence

elements of b, appear random?
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5.2 | Infinite Series

Learning Objectives

5.2.1 Explain the meaning of the sum of an infinite series.
5.2.2 Calculate the sum of a geometric series.
5.2.3 Evaluate a telescoping series.

We have seen that a sequence is an ordered set of terms. If you add these terms together, you get a series. In this section we
define an infinite series and show how series are related to sequences. We also define what it means for a series to converge
or diverge. We introduce one of the most important types of series: the geometric series. We will use geometric series in the
next chapter to write certain functions as polynomials with an infinite number of terms. This process is important because it
allows us to evaluate, differentiate, and integrate complicated functions by using polynomials that are easier to handle. We
also discuss the harmonic series, arguably the most interesting divergent series because it just fails to converge.

Sums and Series

An infinite series is a sum of infinitely many terms and is written in the form

o0
Z an:a1+a2+a3+m.

n=1

But what does this mean? We cannot add an infinite number of terms in the same way we can add a finite number of terms.
Instead, the value of an infinite series is defined in terms of the limit of partial sums. A partial sum of an infinite series is a
finite sum of the form

k
Z an:a1+a2+a3+~~~+ak.
n=1

To see how we use partial sums to evaluate infinite series, consider the following example. Suppose oil is seeping into a lake
such that 1000 gallons enters the lake the first week. During the second week, an additional 500 gallons of oil enters the
lake. The third week, 250 more gallons enters the lake. Assume this pattern continues such that each week half as much oil

enters the lake as did the previous week. If this continues forever, what can we say about the amount of oil in the lake? Will
the amount of oil continue to get arbitrarily large, or is it possible that it approaches some finite amount? To answer this
question, we look at the amount of oil in the lake after k weeks. Letting .S denote the amount of oil in the lake (measured

in thousands of gallons) after k weeks, we see that

Sl=1
52=1+o.5=1+%

= =1+141
S3=1+05+025=1+3+

= =14+1l4141
S4=1+05+025+0125=1+5+ +g

= 1414141 1
S5=1+0.5+025+0.125+0.0625 = 1 + 5+ +5 +7¢-

Looking at this pattern, we see that the amount of oil in the lake (in thousands of gallons) after k weeks is

k
=144 1 1
Sp=ltgtgtgtigt o ngl(z)

n—1

We are interested in what happens as k — oco. Symbolically, the amount of oil in the lake as k — oo is given by the infinite
series
(o] —
s 1.1,1

(—) =l+x+1+2+

2Tty tigt
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At the same time, as k — oo, the amount of oil in the lake can be calculated by evaluating klim Sy. Therefore, the
— o0

behavior of the infinite series can be determined by looking at the behavior of the sequence of partial sums {S;|. If the

sequence of partial sums {S;} converges, we say that the infinite series converges, and its sum is given by klim Si- If
— 0

the sequence {S,} diverges, we say the infinite series diverges. We now turn our attention to determining the limit of this

sequence {S).

First, simplifying some of these partial sums, we see that

Sp=1
S3=1+4+2=1
Sy=1+1+l4l=18
Ss=1+%+%+%+1—16=?—é.

Plotting some of these values in Figure 5.10, it appears that the sequence {S;} could be approaching 2.

S,/
2__ . . .
[ ]
]
14
00 1 2 3 4 5 n

Figure 5.10 The graph shows the sequence of partial sums
{S k}- It appears that the sequence is approaching the value 2.

Let’s look for more convincing evidence. In the following table, we list the values of S, for several values of .

k 5 10 15 20

Sk 1.9375 1.998 1.999939 1.999998

These data supply more evidence suggesting that the sequence {S;} converges to 2. Later we will provide an analytic

argument that can be used to prove that klim St = 2. For now, we rely on the numerical and graphical data to convince
— 00

ourselves that the sequence of partial sums does actually converge to 2. Since this sequence of partial sums converges to
2, we say the infinite series converges to 2 and write

Lo

Returning to the question about the oil in the lake, since this infinite series converges to 2, we conclude that the amount

of oil in the lake will get arbitrarily close to 2000 gallons as the amount of time gets sufficiently large.
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This series is an example of a geometric series. We discuss geometric series in more detail later in this section. First, we
summarize what it means for an infinite series to converge.

Definition

An infinite series is an expression of the form
o0
z an=a1+a2+a3+---.
n=1

For each positive integer k, the sum
k
S = Z ap=aj;+tay+taz+--+a;
n=1

is called the kth partial sum of the infinite series. The partial sums form a sequence {S k}- If the sequence of partial
sums converges to a real number S, the infinite series converges. If we can describe the convergence of a series to

S, we call S the sum of the series, and we write

If the sequence of partial sums diverges, we have the divergence of a series.

. This website (http://www.openstaxcollege.org/l/20_series) shows a more whimsical approach to series.

Note that the index for a series need not begin with » = 1 but can begin with any value. For example, the series

can also be written as
0 n 0 n—>35
2 (3) o 2 (3)
n=0 2 n=>5 2
Often it is convenient for the index to begin at 1, so if for some reason it begins at a different value, we can reindex by

making a change of variables. For example, consider the series

o0

1

7
n=20N
By introducing the variable m =n — 1, sothat n =m + 1, we can rewrite the series as

(o)

1
i1 (m+1)2

Example 5.7

Evaluating Limits of Sequences of Partial Sums

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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For each of the following series, use the sequence of partial sums to determine whether the series converges or
diverges.

b D (=1)"
1

Solution

a. The sequence of partial sums {S,;} satisfies

Slzé

SZZ%‘F%
-1,2.,3

Sy=3+%5+7

si=l+2+344

Notice that each term added is greater than 1/2. As a result, we see that

SI=L
2
_1,2_1_,.1_»1
S=5+3>5+3 4”
_1,2,3.1,1,1_41
S3=5+5+7>73+7%; %ﬁ
mdedeirsbedebeddd

From this pattern we can see that §; > k(%) for every integer k. Therefore, {S;} is unbounded and

(o8]

consequently, diverges. Therefore, the infinite series 2 n/(n+ 1) diverges.
n=1

b. The sequence of partial sums {S,} satisfies
Sl =-1
S,=—14+1=0
Sy=—-l1+1-1=-1
Sy=—l1+1-1+1=0.

From this pattern we can see the sequence of partial sums is

IS =1{-1,0,-1,0,..}.

o0
Since this sequence diverges, the infinite series Z (—=1)" diverges.
n=1
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c. The sequence of partial sums {S,} satisfies

52=712+ﬁ=%+%=%
S4—ﬁ+ﬁ+ﬁ+ﬁ=%
55=ﬁ+ﬁ+ﬁ+ﬁ+ﬁ=%

From this pattern, we can see that the kth partial sum is given by the explicit formula

__k
Se=rrT
Since k/(k+ 1) — 1, we conclude that the sequence of partial sums converges, and therefore the infinite
series converges to 1. We have

(o)

1 —
nzz:l nn+1) I

5.7 =
@/ Determine whether the series z (n + 1)/n converges or diverges.

n=1

The Harmonic Series

A useful series to know about is the harmonic series. The harmonic series is defined as

) 5.5)
1 qadlalily .. (
Zn_1+2+3+4+ :

n=1

This series is interesting because it diverges, but it diverges very slowly. By this we mean that the terms in the sequence of
partial sums {S,;} approach infinity, but do so very slowly. We will show that the series diverges, but first we illustrate the

slow growth of the terms in the sequence {S;} in the following table.

k 10 100 1000 10,000 100,000 1,000,000

Sk 2.92897 5.18738 7.48547 9.78761 12.09015 14.39273

Even after 1,000,000 terms, the partial sum is still relatively small. From this table, it is not clear that this series actually

diverges. However, we can show analytically that the sequence of partial sums diverges, and therefore the series diverges.

To show that the sequence of partial sums diverges, we show that the sequence of partial sums is unbounded. We begin by
writing the first several partial sums:
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S] = 1
52=1+%
S3=1+1+1
Sy=1+d+1+2
Notice that for the last two terms in S,
1,111
3ty” 4ty
Therefore, we conclude that
1 (1 1)\ 1.1_ 1
Sy>1+d+(Fed)=14l4 1140l

Using the same idea for Sg, we see that

1.1, 1,1, 1,1,1,1 1,1 1\, (L,1,1,1
SS_1+2+3+4+5+6+7+8>1+2+Q+4%{8+8+8+9
11l 1,1 _ 1
=1+1+14] 1+#”.

From this pattern, we see that S} =1, S,=1+1/2, §,>1+2(1/2), and Sg> 1+ 3(1/2). More generally, it can
be shown that S, ;> 1+ j(1/2) forall j> 1. Since 1+ j(1/2) — oo, we conclude that the sequence {S&} is unbounded
and therefore diverges. In the previous section, we stated that convergent sequences are bounded. Consequently, since {S}
is unbounded, it diverges. Thus, the harmonic series diverges.

Algebraic Properties of Convergent Series

Since the sum of a convergent infinite series is defined as a limit of a sequence, the algebraic properties for series listed
below follow directly from the algebraic properties for sequences.

Theorem 5.7: Algebraic Properties of Convergent Series

o0 o0
Let Z a, and Z b, be convergent series. Then the following algebraic properties hold.

n=1 n=1

(o] (e8] o0 (e8]
i. The series Z (a, + b,) converges and Z (an+b,)= Z an+ Z by. (Sum Rule)

n=1 n=1 n=1 n=1
o0 o0 o0 o0
ii. The series z (a, — b,) converges and z (ay —by) = 2 a, — Z b,. (Difference Rule)
n=1 n=1 n=1 n=1
(o] o0 o0
iii. For any real number c¢, the series Z ca, converges and Z cap=c z ay. (Constant Multiple Rule)
n=1 n=1 n=1

Example 5.8

Using Algebraic Properties of Convergent Series

Evaluate
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Solution

We showed earlier that

> 1
ngl nn+1)
and
0 n—1
-
n=1

Since both of those series converge, we can apply the properties of Algebraic Properties of Convergent

Series to evaluate
(23] n—2
_3 (1
) [n(n ' (2) ]

n=1

Using the sum rule, write
V|3 NS 3 Sy
n; [n(n+ D +(§) ]:n; n(n + 1)*};; (5)
Then, using the constant multiple rule and the sums above, we can conclude that
3 N (1) 72 v 1 NSy !
Z n(n+1)+n§1 (f) :32 n(n+1)+(§) ngl (5)

n=1 n=1

-1
=3(1) + (%) Q) =3+202)="7.

2n—1'

@/ 58 Evaluate i S
n=1

Geometric Series
A geometric series is any series that we can write in the form

& (5.6)
atar+ar’+ar’+ . = Z ar" 1.
n=1
Because the ratio of each term in this series to the previous term is r, the number r is called the ratio. We refer to a as the
initial term because it is the first term in the series. For example, the series
(3] n—1
IR ST AV I
) (2 totytgt

n=1
is a geometric series with initial term @ = 1 and ratio r = 1/2.

In general, when does a geometric series converge? Consider the geometric series

00
5 !

n=1

when a > 0. Its sequence of partial sums {S}} is given by
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Chapter 5 | Sequences and Series 459

S = Z ar"V=atar+ar*+ - +ar

n=1

k-1

Consider the case when r = 1. In that case,
Sp=a+a)+a)?+ - +a(* ! = ak.

Since a > 0, we know ak — oo as k — oo. Therefore, the sequence of partial sums is unbounded and thus diverges.
Consequently, the infinite series diverges for r = 1. For r # 1, to find the limit of {S;}, multiply Equation 5.6 by

1 — r. Doing so, we see that
A=nS; =al=r(l+r+ri+r+- 47571

=a[(l+r+r2+r+ e+ Y+ 2+ P + o+ 0]
=a(1—rk).

All the other terms cancel out.

Therefore,

_di=r9

Sp= forr # 1.

1-r

From our discussion in the previous section, we know that the geometric sequence r* =0 if Irl < 1 and that ¥ diverges
if [rl > 1 or r = 1. Therefore, for |/ <1, §; — a/(1 —r) and we have

Z ar" =4 _if | < 1.
- 1-r
n=1
If In>1, S diverges, and therefore
o0
Z ar™~ Udiverges if Irl > 1.
n=1
Definition
A geometric series is a series of the form
o0
Z ar" V=a+ar+ar’ +ar’+ -
n=1

If |rl < 1, the series converges, and

(5.7)

o0
Z ar" ' =—9 forir < 1.
1-r

n=1

If |Irl > 1, the series diverges.

Geometric series sometimes appear in slightly different forms. For example, sometimes the index begins at a value other
than n = 1 or the exponent involves a linear expression for n other than n — 1. As long as we can rewrite the series in

the form given by Equation 5.5, it is a geometric series. For example, consider the series

2,6

n=0

n+2

To see that this is a geometric series, we write out the first several terms:
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SO @0
=43 @) @)+

We see that the initial term is a = 4/9 and the ratio is r = 2/3. Therefore, the series can be written as

236

n=1

n—1

Since r = 2/3 < 1, this series converges, and its sum is given by

4 2V a9 4
26'(?) 123773

n=1

Example 5.9

Determining Convergence or Divergence of a Geometric Series

Determine whether each of the following geometric series converges or diverges, and if it converges, find its sum.

Xy vt
. et
n=1 4"n=
(o8]
b eZn
n=1
Solution

a. Writing out the first several terms in the series, we have

80 n+1 2 3 4
O e N o) S ) W ) WP

o oqn-T 40 4 42

= =32+ 32 (F)+ % (——3)2 T

4
=049 )+ () + -

The initial term @ = —3 and the ratio r = —3/4. Since |r| = 3/4 < 1, the series converges to

_ 9 _9
1= (34 74~ 7"

b. Writing this series as

we can see that this is a geometric series where r = e’ > 1. Therefore, the series diverges.

5.9 = n—1
@ Determine whether the series Z (_?2) converges or diverges. If it converges, find its sum.

n=1
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We now turn our attention to a nice application of geometric series. We show how they can be used to write repeating
decimals as fractions of integers.

Example 5.10

Writing Repeating Decimals as Fractions of Integers

Use a geometric series to write 3.26 as a fraction of integers.

Solution
Since 3.26 = 3.262626..., first we write

_2.26 .26 . 26 . ..
3.262626... =3+{ob+ 1605+ 100,000 "

26 , 26 , 26
=342 4204 20 4 .
102 10*  10°
Ignoring the term 3, the rest of this expression is a geometric series with initial term a = 26/ 102 and ratio
r=1/102 Therefore, the sum of this series is

26/10%  _ 26/10% _ 26
1-1/10% 99/10> 99

Thus,

—3426_323
3.262626... =3 + 99 =05

is/l 5.10 write 5.27 as a fraction of integers.

Example 5.11

Chapter Opener: Finding the Area of the Koch Snowflake

Define a sequence of figures {F,} recursively as follows (Figure 5.11). Let F, be an equilateral triangle with
sides of length 1. For n > 1, let F,, be the curve created by removing the middle third of each side of F, _,

and replacing it with an equilateral triangle pointing outward. The limiting figure as n — oo is known as Koch’s
snowflake.
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AN NN
\%/ %5“;}/

Figure 5.11 The first four figures, Fy, F'{, F5, and F'3, in the construction of the Koch snowflake.

a. Find the length L, of the perimeter of F,. Evaluate nli)mooLn to find the length of the perimeter of

Koch’s snowflake.

b. Find the area A, of figure F,. Evaluate nli)mooAn to find the area of Koch’s snowflake.

Solution
a. Let N, denote the number of sides of figure F,. Since F is a triangle, Ny = 3. Let [/,, denote the
length of each side of F,. Since F| is an equilateral triangle with sides of length /; = 1, we now need
to determine N, and /;. Since F; is created by removing the middle third of each side and replacing
that line segment with two line segments, for each side of F;, we get four sides in F';. Therefore, the

number of sides for F is

Nl =43

Since the length of each of these new line segments is 1/3 the length of the line segments in F, the

length of the line segments for F; is given by

11=%~1=%.

Similarly, for F,, since the middle third of each side of F| is removed and replaced with two line
segments, the number of sides in F, is given by
N, =4N, =4(4-3)=42.3,

Since the length of each of these sides is 1/3 the length of the sides of F';, the length of each side of
figure F, is given by

U.)l»—
le»—
Il
A~
w|.—
N —

12=%.11=

More generally, since F,, is created by removing the middle third of each side of F,, _; and replacing

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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that line segment with two line segments of length %l . —1 in the shape of an equilateral triangle, we

know that N, =4N, _; and [, = 1”3_ L Therefore, the number of sides of figure F, is

N,=4".3

and the length of each side is

Therefore, to calculate the perimeter of F,,, we multiply the number of sides N,, and the length of each
side [,,. We conclude that the perimeter of F, is given by
n
Ln=N,,-1n=3~(i) .
3
Therefore, the length of the perimeter of Koch’s snowflake is
L= lim L, = co.
n— oo
b. Let T, denote the area of each new triangle created when forming F,. For n =0, T, is the area of
the original equilateral triangle. Therefore, Ty = A = V3/4. For n > 1, since the lengths of the sides

of the new triangle are 1/3 the length of the sides of F we have

n—1

RS

"3
Therefore, T, = (%) T?, Since a new triangle is formed on each side of F, _,

An :An—1+Nn—l'Tl’l
:An_1+(3.4n-1).(l)n.ﬁ

9) 4
n
s

Writing out the first few terms A, A;, A,, we see that

4 =13

074
n=ag e} () 7= 3 () 2= G034 2
n= e} ) F= GG 6) T 63 6))

More generally,

an= 35+ 6) -+ )
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Factoring 4/9 out of each term inside the inner parentheses, we rewrite our expression as

[ (RS O

2 n—1

The expression 1 + (%) + (i) + et (i) is a geometric sum. As shown earlier, this sum satisfies

2 n—1 _ n
R =

Substituting this expression into the expression above and simplifying, we conclude that

o )]

-9f-34/]

Therefore, the area of Koch’s snowflake is

— T 2V3
A= nllm A, = 3
Analysis

The Koch snowflake is interesting because it has finite area, yet infinite perimeter. Although at first this may
seem impossible, recall that you have seen similar examples earlier in the text. For example, consider the region

bounded by the curve y = 1/x? and the x -axis on the interval [1, o). Since the improper integral
/7
—dx
1 x2

converges, the area of this region is finite, even though the perimeter is infinite.

Telescoping Series

(e8]
Consider the series Z m We discussed this series in Example 5.7, showing that the series converges by writing
n=1
out the first several partial sums S, S,,..., S¢ and noticing that they are all of the form §; = k+Ll Here we use a

different technique to show that this series converges. By using partial fractions, we can write

1 _1__1
nn+1) " n+l

Therefore, the series can be written as

S [k )= (3« B4 -4 -

n=1

Writing out the first several terms in the sequence of partial sums {S i we see that
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Sy =1-4
2= (- Bl -1-4
51 (- Dl -H1-4

In general,

0= (-4l Yr -k -

We notice that the middle terms cancel each other out, leaving only the first and last terms. In a sense, the series collapses
like a spyglass with tubes that disappear into each other to shorten the telescope. For this reason, we call a series that has
this property a telescoping series. For this series, since S, =1 —1/(k+1) and 1/(k+ 1) - 0 as k — oo, the sequence

of partial sums converges to 1, and therefore the series converges to 1.

Definition

A telescoping series is a series in which most of the terms cancel in each of the partial sums, leaving only some of the
first terms and some of the last terms.

For example, any series of the form

(o]

D [bu=byy 1] = by = bo)+(by = b3)+ (b3 = by)+ -~

n=1
is a telescoping series. We can see this by writing out some of the partial sums. In particular, we see that
Sy =by—b,
Sy=(by—by)+(by—b3)=b;—b3
S3=(b1 = by)+(by—b3)+(b3—by)=b) — by

In general, the kth partial sum of this series is

Sk=b1=bry1-
Since the kth partial sum can be simplified to the difference of these two terms, the sequence of partial sums {S;} will
converge if and only if the sequence {b k4 1} converges. Moreover, if the sequence b , | converges to some finite number
B, then the sequence of partial sums converges to b; — B, and therefore

[©]

Z [b”_bn+1]=b1_B'

n=1

In the next example, we show how to use these ideas to analyze a telescoping series of this form.

Example 5.12

Evaluating a Telescoping Series

Determine whether the telescoping series

o0

2, [eosth) - o)

n=1

converges or diverges. If it converges, find its sum.
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Solution

By writing out terms in the sequence of partial sums, we can see that

S, = cos(l)— Cos(%)
S, = (COS(l) - cos(%)) + (cos(%) - cos(%)) = cos(1) — cos(%)
§; = (COS(l) - COS(%)) + (Cos(%) - cos(%)) + (cos(%) - cos(%))

cos(1) — cos(%).

In general,

Sy = cos(1) — cos(ki 1).

Since 1/(k+ 1) - 0 as k — oo and cosx is a continuous function, cos(1/(k + 1)) — cos(0) = 1. Therefore,
we conclude that S; — cos(1) — 1. The telescoping series converges and the sum is given by

o0

Z [cos(%) — cos(n _}_ 1)] =cos(l) — 1.

n=1

5.11 °°
@ Determine whether Z [e“ n_  ln+ D ] converges or diverges. If it converges, find its sum.

n=1
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Student PROJECT

Euler’s Constant

o0
We have shown that the harmonic series Z % diverges. Here we investigate the behavior of the partial sums S
n=1

as k — oo. In particular, we show that they behave like the natural logarithm function by showing that there exists a

constant y such that
k
Z %—lnk — yask > .
n=1

This constant y is known as Euler’s constant.

k

1. Let T} = z %— Ink. Evaluate T, for various values of k.
n=1

2. For T} as defined in part 1. show that the sequence {7} converges by using the following steps.
a. Show that the sequence {T}} is monotone decreasing. (Hint: Show that In(l + 1/k > 1/(k + 1))
b. Show that the sequence {7} is bounded below by zero. (Hint: Express Ink as a definite integral.)

c. Use the Monotone Convergence Theorem to conclude that the sequence {7} converges. The limit y
is Euler’s constant.
3. Now estimate how far T, is from y for a given integer k. Prove thatfor k > 1, 0 < T, —y < 1/k by using
the following steps.
a. Show that In(k + 1) — Ink < 1/k.

b. Use the result from part a. to show that for any integer £,
Te—Titt <%—]{J+1.
c. Forany integers k and j suchthat j >k, express T; —T ; as a telescoping sum by writing
Tk—7}=(Tk—7%+1T*Uk+1—7k+2y+0k+2—7k+3y+“‘+(Tp-1—7ﬂ'
Use the result from part b. combined with this telescoping sum to conclude that

1_1

d. Apply the limit to both sides of the inequality in part c. to conclude that

1
—y <L
Ty—r<y

e. Estimate y to an accuracy of within 0.001.
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5.2 EXERCISES

Using sigma notation, write the following expressions as
infinite series.

67. 1. 1.1, .
1+2+3+4+

68. 1—1+1—1+-

69. 1 _1,

+ ..

N

1.1
23
70. sinl +sin1/2 +sin1/3 +sin1/4 + ---

Compute the first four partial sums Sy,..., §4 for the

series having nth term a, starting with n = 1 as follows.
71. ap=n

72. ap=1/n

73. a, = sin(nn/2)

74. a,=(-1)"

In the following exercises, compute the general term a,, of
the series with the given partial sum §,. If the sequence of

partial sums converges, find its limit S.

77. Sy=va,n>2
78. Sy=2—(m+2)2" n>1

For each of the following series, use the sequence of partial
sums to determine whether the series converges or
diverges.

79. &
ngln:l—2

D YT
n=1

8l & 1

Z G+ Dn+2) (Hint: Use a partial fraction
n=1

(e8]

decomposition like that for Z

n=1

1
n(n + 1)')
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82, 1
Z (Hint: Follow the reasoning for
= 2n+1
o0
IS
n=1
o0 (e8]
Suppose that z a,=1, that Z b,=—1, that
n=1 n=1
a;=2, and by =-3. Find the sum of the indicated
series
83. &
Z (an+by)
n=
84. &
D (@n—2by)
n=1

85. &
Z (an—bp)
n=2

86. &
Z (3an+1 _4bn+l)

n=1

State whether the given series converges and explain why.

87. & 1
Z 71000 (Hint: Rewrite using a change of

n=1 0
index.)
88. &

1 . . .
————= (Hint: Rewrite using a change of

index.)
89. Ly 1y 1 4

1416100 * To00
90.

2 3
l+£+5+5+
T T

~

91. 2 3
1+ 8+ 8+ L Lot e
e e e

92. 5 (3
| - _ Ny ...
R r

For a, as follows, write the sum as a geometric series of

o0
the form Z ar". State whether the series converges and
n=1

if it does, find the value of Z ap.
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93. ay=-1and a,/a,, =5 forn> 1.
94. ay=2 and ay/a, 1 =1/2 for n > 1.
95. a; =10 and a,/a, =10 for n > 1.

96. a;=1/10 and ay/a, . =—10 for n > 1.

[o0]
Use the identity 1_ly = z y" to express the function
n=20

as a geometric series in the indicated term.

97. —X_in x

1+x
98. _vVx
o7 in vx
99. %in sinx
1+ sin“x

100. sec?x in sinx

Evaluate the following telescoping series or state whether
the series diverges.

101. &
Z olin _ 21/(n+ 1)

n=

102. i 1 1

103. &
Z (vi—Vn+1)

104, &
z (sinn — sin(n + 1))

n=1

Express the following series as a telescoping sum and
evaluate its nth partial sum.

105.
Z (” + 1)

=1

(o]
106. n+1
2

n=1 (n2+n)

partial fractions.)

(Hint: Factor denominator and use

107. & ln(l +1)
2 lnnln(n-r:- 1)

n=2

469

108. & (n+2)

1] (Hint: Look at 1/(n2").)
n=1nn

A general telescoping series is one in which all but the
first few terms cancel out after summing a given number of
successive terms.

109. Let a, = f(n)—2f(n+ 1)+ f(n+2), in which

o0
f(n) - 0 as n - oco. Find Z ap.

n=1
110. a,=f(n)— fn+1)— f(n+2)+ f(n+ 3), in

o0
which f(n) - 0 as n — oo. Find Z ay.

n=1

111. Suppose that
ap=cofm)+cifr+D+crfn+2)+c3f(n+3)+cyf(n+4),

where f(n) - 0 as n — oco. Find a condition on the

coefficients c),..., ¢4 that make this a general telescoping
series.
112. <
Evaluat S E— Hint:
vatuate n; nn+ D+ 2) (Hin

1 111 )
nn+1Dn+2) 2n n+1 2n+2)

113. &
2
Evaluate Z 3 .
n=2Nn —n

114

o0
" Find a formula for Z 1 where N is a

=\ n(n+N)
positive integer.
115. k=1
[T] Define a sequence t;, = Z (1/k) — Ink. Use

n=1
the graph of 1/x to verify that #; is increasing. Plot #; for

k=1...100 and state whether it appears that the sequence
converges.
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116. [T] Suppose that N equal uniform rectangular blocks

are stacked one on top of the other, allowing for some
overhang. Archimedes’ law of the lever implies that the
stack of N blocks is stable as long as the center of mass of

the top (N — 1) blocks lies at the edge of the bottom block.

Let x denote the position of the edge of the bottom block,

and think of its position as relative to the center of the next-

to-bottom block. This implies that (N — 1)x = (l — x) or

2
x = 1/(2N). Use this expression to compute the maximum

overhang (the position of the edge of the top block over the
edge of the bottom block.) See the following figure.

Each of the following infinite series converges to the given
multiple of 7 or 1/z.

In each case, find the minimum value of N such that the
Nth partial sum of the series accurately approximates the

left-hand side to the given number of decimal places, and
give the desired approximate value. Up to 15 decimals

place, 7 = 3.141592653589793....

117

o0
. n '2
T) n=-3+ ) 22
[Tl = 2n)

118. & k2
T _ 2%k
[Tl 2 Z (2k+1)" - Z Qk+ DY’

<107*

error < 0.0001

error

119.
9801 _ (4K)!(1103 + 26390K)
Il = 5501, Z

2 k')43964k
error < 10712
120. [T]
1 i (=1)F (6k)!(13591409 + 545140134k)
2z =, GR)I(K)3 6403203k 372 ’

error < 1071

121. [T] A fair coin is one that has probability 1/2 of
coming up heads when flipped.

a. What is the probability that a fair coin will come up
tails n times in a row?

b. Find the probability that a coin comes up heads for
the first time after an even number of coin flips.
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122. [T] Find the probability that a fair coin is flipped a
multiple of three times before coming up heads.

123. [T] Find the probability that a fair coin will come up
heads for the second time after an even number of flips.

124. [T] Find a series that expresses the probability that a
fair coin will come up heads for the second time on a
multiple of three flips.

125. [T] The expected number of times that a fair coin will
come up heads is defined as the sum over n =1, 2,... of

n times the probability that the coin will come up heads

exactly n times in a row, or n/2"* L Compute the

expected number of consecutive times that a fair coin will
come up heads.

126. [T] A person deposits $10 at the beginning of each
quarter into a bank account that earns 4% annual interest
compounded quarterly (four times a year).

a. Show that the interest accumulated after n quarters

L.o1"+t
is $10(—0 o n)

b. Find the first eight terms of the sequence.

c. How much interest has accumulated after 2 years?

127. [T] Suppose that the amount of a drug in a patient’s
system diminishes by a multiplicative factor r < 1 each

hour. Suppose that a new dose is administered every N
hours. Find an expression that gives the amount A(n) in
the patient’s system after n hours for each 7 in terms of
the dosage d and the ratio r. (Hint: Write n = mN + k,

where 0 < k < N, and sum over values from the different

doses administered.)

128. [T] A certain drug is effective for an average patient
only if there is at least 1 mg per kg in the patient’s system,

while it is safe only if there is at most 2 mg per kg in an

average patient’s system. Suppose that the amount in a
patient’s system diminishes by a multiplicative factor of
0.9 each hour after a dose is administered. Find the

maximum interval N of hours between doses, and
corresponding dose range d (in mg/kg) for this N that
will enable use of the drug to be both safe and effective in

the long term.
129. Suppose that a, >0 is a sequence of numbers.
Explain why the sequence of partial sums of a, is

increasing.
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130. [T] Suppose that a, is a sequence of positive

numbers and the sequence S, of partial sums of a, is

o0
bounded above. Explain why z a, converges. Does the
n=1

conclusion remain true if we remove the hypothesis
ap,>0?

131. [T] Suppose that a; =S| =1 and that, for given
§>1 and O<k<1, one
a,1=k(S—Sy) and S, 1 =a,,+S, Does S,

numbers defines

converge? If so, to what? (Hint: First argue that S, < S for

all n and S, is increasing.)

132. [T] A version of von Bertalanffy growth can be used
to estimate the age of an individual in a homogeneous

species from its length if the annual increase in year n + 1
satisfies a, 1 =k(S—S,), with S, as the length at
year n, S asa limiting length, and k as a relative growth
S$=9, and k= 1/2,

estimate the smallest value of n such that §;, > 8. Note

constant. If §; =3, numerically

that §;,, 1 =S, +a, 1. Find the corresponding n when
k=1/4.

o0
[T] Suppose that 2 ap is a convergent series of

n=1
00
positive terms. Explain why  lim Z a,=0.
N=oo, N+1

134. [T] Find the length of the dashed zig-zag path in the
following figure.

Yi
1+

0.75+ A
051+  ALo---2

0.25+ N

0 025 5 0.75 1X
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135. [T] Find the total length of the dashed path in the
following figure.

yi
14

0.87571 o

+ ———d

0.625+

0.375¢

0.125+

Of 0125 0375 0625 0875 1X

136. [T] The Sierpinski triangle is obtained from a triangle
by deleting the middle fourth as indicated in the first step,
by deleting the middle fourths of the remaining three
congruent triangles in the second step, and in general
deleting the middle fourths of the remaining triangles in
each successive step. Assuming that the original triangle is
shown in the figure, find the areas of the remaining parts of
the original triangle after N steps and find the total length

of all of the boundary triangles after N steps.

Y
1

0.5




472 Chapter 5 | Sequences and Series

137. [T] The Sierpinski gasket is obtained by dividing the
unit square into nine equal sub-squares, removing the
middle square, then doing the same at each stage to the
remaining sub-squares. The figure shows the remaining set
after four iterations. Compute the total area removed after
N stages, and compute the length the total perimeter of the

remaining set after N stages.
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5.3 | The Divergence and Integral Tests

Learning Objectives

5.3.1 Use the divergence test to determine whether a series converges or diverges.
5.3.2 Use the integral test to determine the convergence of a series.
5.3.3 Estimate the value of a series by finding bounds on its remainder term.

In the previous section, we determined the convergence or divergence of several series by explicitly calculating the limit of
the sequence of partial sums {S k}- In practice, explicitly calculating this limit can be difficult or impossible. Luckily, several

tests exist that allow us to determine convergence or divergence for many types of series. In this section, we discuss two of
these tests: the divergence test and the integral test. We will examine several other tests in the rest of this chapter and then
summarize how and when to use them.

Divergence Test

0
For a series Z a, to converge, the nth term a, must satisfy a,, - 0 as n — oo.
n=1

Therefore, from the algebraic limit properties of sequences,

lim ap = lim (Sk_Sk—l): lim Sk_ lim Sk_IZS—SZO.
k — o k — k — o k— o

o0
Therefore, if 2 a, converges, the nth term a,, — 0 as n — co. Animportant consequence of this fact is the following
n=1

statement:

& (5.8)
Ifa, » O0asn — oo, Z a,diverges.
n=1

This test is known as the divergence test because it provides a way of proving that a series diverges.

Theorem 5.8: Divergence Test

o0
If lim a,=c#0 or lim a, does not exist, then the series z a, diverges.
n— oo n— o 1
n=

It is important to note that the converse of this theorem is not true. That is, if nli)mooan =0, we cannot make any

o0 o0
conclusion about the convergence of 2 ay. For example, limO(I/n) = (0, but the harmonic series Z 1/n diverges.
n=1 n- n=1

In this section and the remaining sections of this chapter, we show many more examples of such series. Consequently,

although we can use the divergence test to show that a series diverges, we cannot use it to prove that a series converges.
Specifically, if a,, — 0, the divergence test is inconclusive.

Example 5.13

Using the divergence test

For each of the following series, apply the divergence test. If the divergence test proves that the series diverges,
state so. Otherwise, indicate that the divergence test is inconclusive.
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o0
n
d.
i 3p —1
n=1
1
b Xk
n=1n
0
2
c. Z el/n
n=1
Solution

a. Since n/(3n—1) — 1/3 # 0, by the divergence test, we can conclude that

diverges.

b. Since 1/n° — 0, the divergence test is inconclusive.

2
c. Since e 5 1#£0, by the divergence test, the series
00
2
Z elin
n=1
diverges.

5.12 = 5
What does the divergence test tell us about the series Z cos(1/n*)?

n=1

Integral Test

In the previous section, we proved that the harmonic series diverges by looking at the sequence of partial sums {S;} and

showing that S,k > 1 + k/2 for all positive integers k. In this section we use a different technique to prove the divergence

of the harmonic series. This technique is important because it is used to prove the divergence or convergence of many other
series. This test, called the integral test, compares an infinite sum to an improper integral. It is important to note that this
test can only be applied when we are considering a series whose terms are all positive.

To illustrate how the integral test works, use the harmonic series as an example. In Figure 5.12, we depict the harmonic
series by sketching a sequence of rectangles with areas 1, 1/2, 1/3, 1/4,... along with the function f(x) = 1/x. From the

graph, we see that

Zk 1 1 1 1 kel 1
l_n_1+_2+_3+.“+_k>/; —xdx.
Therefore, for each k, the kth partial sum S k satisfies

X k+1
| k+11
S, = Zlﬁ> /1 lax=mx|  =Ink+1)-In(1) = In(k + 1).
n=
1
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Since klim In(k + 1) = co, we see that the sequence of partial sums {S;} is unbounded. Therefore, {S;} diverges, and,
- o

00
consequently, the series Z % also diverges.

yi
1
fix) =7
1
i P
34g
1
of 17 2 3 4 5 6§ X

Figure 5.12 The sum of the areas of the rectangles is greater
than the area between the curve f(x) = 1/x and the x -axis for

x > 1. Since the area bounded by the curve is infinite (as

calculated by an improper integral), the sum of the areas of the
rectangles is also infinite.

o0
Now consider the series Z 1/n%. We show how an integral can be used to prove that this series converges. In Figure
n=1

5.13, we sketch a sequence of rectangles with areas 1, 1/22, 1732 ,... along with the function f(x) = 1/x2. From the

graph we see that

k
Z LZL . Lz<1+f1dx

32

Therefore, for each k, the kth partial sum S satisfies

k
- le<1+/ ldx—l—l|1=1—%+1=2—%<2.
n=1

We conclude that the sequence of partial sums {S,} is bounded. We also see that {S;} is an increasing sequence:
— 1
Sk_ Sk—] +pf0rk Z 2
Since {S;} is increasing and bounded, by the Monotone Convergence Theorem, it converges. Therefore, the series

[©]
Z 1/n? converges.

n=1
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7
f(x) = =
1
1
1
4 7
3 1
5= 1
I ¥ =

© 1 2 3 4 5 X
Figure 5.13 The sum of the areas of the rectangles is less than
the sum of the area of the first rectangle and the area between
the curve f(x) = 1/x? and the x -axis for x > 1. Since the

area bounded by the curve is finite, the sum of the areas of the
rectangles is also finite.

(o]

We can extend this idea to prove convergence or divergence for many different series. Suppose z a, is a series with
n=1

positive terms a, such that there exists a continuous, positive, decreasing function f where f(n) = a, for all positive

integers. Then, as in Figure 5.14(a), for any integer k, the kth partial sum S satisfies
k o0
Sy=a,+ay+az+-+a;<a +/1f(x)dx< 1 +f1 F(dx.

[So]
Therefore, if / f(x)dx converges, then the sequence of partial sums {S;} is bounded. Since {S;} is an increasing
1

sequence, if it is also a bounded sequence, then by the Monotone Convergence Theorem, it converges. We conclude that if
(o]

(o]
/ f(x)dx converges, then the series z a, also converges. On the other hand, from Figure 5.14(b), for any integer
1

n=1

k, the kth partial sum §; satisfies

k+1
Sk=al+a2+a3+...+ak>/; f(x)dx

k+1
If klim / f(x)dx = oo, then {S;} is an unbounded sequence and therefore diverges. As a result, the series z ap
- oY ] n=1

0 k+1
also diverges. Since f is a positive function, if f f(x)dx diverges, then klim f f(x)dx = 0. We conclude that if
1 - o0” |

0

(o]
/1 f(x)dx diverges, then Z a, diverges.

n=1
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y =f(x) y =f(x)

a a4
a 2 | a
3 ay as [ ag 3 ay dg

@ (b)

Figure 5.14 (a) If we can inscribe rectangles inside a region bounded by a curve y = f(x)

and the Xx -axis, and the area bounded by those curves for x > 1 is finite, then the sum of the

areas of the rectangles is also finite. (b) If a set of rectangles circumscribes the region bounded
by y = f(x) and the x axis for x > 1 and the region has infinite area, then the sum of the

areas of the rectangles is also infinite.

Theorem 5.9: Integral Test

(o]
Suppose z ay is a series with positive terms a,. Suppose there exists a function f and a positive integer N such
n=1
that the following three conditions are satisfied:

i. f is continuous,
ii. f isdecreasing, and

iii. f(n)=a, forall integers n > N.
Then

(o]

) a,and /Noo F)dx

n=1

both converge or both diverge (see Figure 5.14).

[oe]

(o]
Although convergence of / f(x)dx implies convergence of the related series Z ay, itdoes not imply that the value
N n=1

of the integral and the series are the same. They may be different, and often are. For example,
X n 2 3

1y _1,(1 1

) (z) —E+(E) +(z) + o

n

=1
is a geometric series with initial term a = 1/e and ratio » = 1/e, which converges to

e __1le _ _1
1—-(/e) (e—1Dle e—-1"

00
However, the related integral / (1/e)*dx satisfies
1

b
‘/loo(%)xdx — -flooe_xdx = bli,mwflbe_xdx = lim —e~*| = bli)moo[_e_b " 6_1] _ %

b — o
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Example 5.14

Using the Integral Test

For each of the following series, use the integral test to determine whether the series converges or diverges.

(o8]
a. 2 1n3

n=1
e8]
b ) 120 -1
n=1
Solution

a. Compare
o0 o0
1 1
and dx.

We have

b

o0
[ Lax=tim [ Lac= 1im [ -1

b
= lim |-—L +1]=1
ll_blimw[ 2b2+2] 2

o0
Thus the integral f 1/x3 dx converges, and therefore so does the series
1

b. Compare

1 ©
and x
,,;1 V2n — 1 fl 2x—1
Since
) 1 b 1 b
dx = li —dx = lim V2x -1
‘/‘1 V2x —1 * bimoo 1V2x—1 * bimoo o 1

= lim [V2b—1—1]= oo,
b

— 00

o0
the integral / 1/V2x — 1dx diverges, and therefore
1

o0
1
,1;1 V2n — 1

diverges.

5.13 <
@ Use the integral test to determine whether the series Z 3 2” " converges or diverges.
n=12n +
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The p-Series

[oo] (o]
The harmonic series z 1/n and the series Z 1/n? are both examples of a type of series called a p-series.
n=1 n=1

Definition

For any real number p, the series

is called a p-series.

We know the p-series converges if p = 2 and diverges if p = 1. What about other values of p? In general, it is difficult,
if not impossible, to compute the exact value of most p -series. However, we can use the tests presented thus far to prove

whether a p -series converges or diverges.

If p<0, then 1/n” - oo, andif p =0, then 1/n” — 1. Therefore, by the divergence test,

(o]
z 1/nP diverges if p < 0.

n=1

If p>0, then f(x) = 1/xP is a positive, continuous, decreasing function. Therefore, for p > 0, we use the integral

test, comparing
[S0]

1 1
nglﬁand | x—pdx

We have already considered the case when p = 1. Here we consider the case when p > 0, p # 1. For this case,
b

b
o0
[ Lax= tim [ Lax= tim L x“”‘ = lim #[bl"’q].
1xP b —> o 1xp b—»ool—p 1 b—»col—p

Because
b TP S 0ifp> landb' TP = wif p < 1,
we conclude that

o L _ifp>1
1 X .
oif p<1

o0
Therefore, Z 1/n? converges if p > 1 and divergesif 0 < p < 1.
n=1
In summary,

i | [converges if p > 1 (5-9)
= n? |divergesif p <1 °

Example 5.15
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Testing for Convergence of p-series

For each of the following series, determine whether it converges or diverges.

o0
a YL
n=1n
1
b. Z 2/3
n=1n
Solution

a. Thisis a p-series with p =4 > 1, so the series converges.

b. Since p =2/3 < 1, the series diverges.

@ 5.14 ) i 1 ) )
Does the series W converge or diverge?

n=1

Estimating the Value of a Series

(o8]

Suppose we know that a series z a, converges and we want to estimate the sum of that series. Certainly we can
n=1
N

approximate that sum using any finite sum Z a, where N is any positive integer. The question we address here is, for
n=1
o) N

a convergent series Z ap, how good is the approximation Z an? More specifically, if we let
n=1 n=

be the remainder when the sum of an infinite series is approximated by the Nth partial sum, how large is R ? For some

types of series, we are able to use the ideas from the integral test to estimate R .

Theorem 5.10: Remainder Estimate from the Integral Test

(o]
Suppose z ap is a convergent series with positive terms. Suppose there exists a function f satisfying the following
n=1

three conditions:

i. f is continuous,
ii. f is decreasing, and

iii. f(n)=a, forall integers n > 1.

00
Let S be the Nth partial sum of Z ay. For all positive integers N,

n=1
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SN+f:+ S < > an<SN+f:f(x)dx.

n=1

(58 (e8]
In other words, the remainder Ry = Z ap—Sy = Z a,, satisfies the following estimate:
n=1 n=N+1

* ® 5.10
fN+ 1f(x)alx <Ry < fN Ff(x)dx. (5.10)

This is known as the remainder estimate.

We illustrate Remainder Estimate from the Integral Test in Figure 5.15. In particular, by representing the remainder
Ry=ay,1+ay,,+ay 3+ asthe sum of areas of rectangles, we see that the area of those rectangles is bounded

o] oo
above by / f(x)dx and bounded below by f f(x)dx. In other words,
N N+1

o0
RN=aN+1+aN+2+aN+3+--~>/N+1f(x)dx
and
o0
Ry=ay 1+ay ,tay 3+ <‘/N fxdx.
We conclude that
/., /.
xX)dx < Ry < x)dx.
N+1f() N Nf()

Since

[os]

2 an=SN+RN,

n=1

where S, is the Nth partial sum, we conclude that

Sy + /N+ S < n; an < Sy + /N F(x)dx.
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yi yi
y = f(x) y = f(x)
ay +1 A+ 1
ap .o / dy 42
ay 43 / Ay i3
Ay g ay 4
] e

Of NNt1nN+2N+3 N4 X O N N1 N+2 N+3 Nia X

(@) ()

Figure 5.15 Given a continuous, positive, decreasing function f and a sequence of positive

terms a, such that a, = f(n) for all positive integers n, (a) the areas

oo
aysitaygrtayizt < fN f(x)dx, or (b) the areas

o0
ayiitayirtay 3+ > /N . 1f()c)a’x. Therefore, the integral is either an

overestimate or an underestimate of the error.

Example 5.16

Estimating the Value of a Series

o0
Consider the series Z 1n3.
n=1
10

a. Calculate Sy = 2 1/n> and estimate the error.
n=1

00
b. Determine the least value of N necessary such that S, will estimate Z 1/n? to within 0.001.
n=1

Solution
a. Using a calculating utility, we have

1

L L
3

4o+~ 1.19753.

|
Sio=1+2x+-1+ -4
10 33 103

By the remainder estimate, we know

We have
b

00 b
Loz tim [ Ldr= lim [_L] _ lim [_L+L]=L.
/10x3x I T A TRl e
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483

Therefore, the error is Ry < 1/2(10)% = 0.005.

Find N such that Ry < 0.001. In part a. we showed that Ry < 1/2N 2. Therefore, the remainder

Ry <0.001 as long as 1/2N% < 0.001. That is, we need 2N2 > 1000. Solving this inequality for

N, we see that we need N > 22.36. To ensure that the remainder is within the desired amount, we need
to round up to the nearest integer. Therefore, the minimum necessary value is N = 23.

@/ 5.15 > | )
For Z —7» Ccalculate S5 and estimate the error Rs.

n=1n
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5.3 EXERCISES

For each of the following sequences, if the divergence test
applies, either state that nli)mooan does not exist or find

nleOOa - If the divergence test does not apply, state why.

138. a, =15
139. g, = n

" sp2 3
140. a, = n

V3n2 +2n+1

141.  _ Qn+ D=1
a, = —————=
(n+1)?

142 _@n+ D

n n
(3n%+1)
143. _ 2"
an = 32
144,  _2"4 3"
145. ;4 = (=2

146. a, = cosn

147. a, = tann

148 1 — cos?(1/n)

sinZ (2/n)
149. 2n
ap = (1 - l)
150. a, = thn

151. ; =(lnn)2

152, &
2 &

153.
3
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154, &
2
155. &
2

156. &
2

157. & o«

Use the integral test to determine whether the following
sums converge.

158. & 1
L7

159. &
2

n=1Vn+5
(o8]

160. Z 1
n=2nlnn
(o8]

161. n
n_11+n2
(o8]

162. ol
n=1l+ezn

163. o
n_11+n4
(o8]

164. Z 1
n=2n1n2n

Express the following sums as p -series and determine

whether each converges.

165. &
D 27 (Hine 27 = 1702 )
n=1

166. &
> 37 (Hing: 371 = 1713 )
n=1

167. i": p—2lnn

n=1
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168. i ;3-2Inn

n=1
(o]
Use the estimate Ry < f f(®)dt to find a bound for the
N

00 N
remainder Ry = Z an — Z a, where a, = f(n).

n=1 n=1

169. 1000

i n?
170. 1000 1

i’
171. 1000 |

=11+ n?
172. 100

z n/2"

n=1

[T] Find the minimum value of N such that the remainder

o0 0 N
estimate f f<Ry< / f guarantees that z an
N+1 N

n=1

o0

estimates Z an, accurate to within the given error.
n=1

173. anz%, error < 10~%
n

174. an=%, error < 1074
nl-

175. __1 -4

ap=—gp> error <10

n

176. a, = 12 ., error <1073
nln“n

177. a, = 1 5> error <1073
1+n

In the following exercises, find a value of N such that
Ry is smaller than the desired error. Compute the

N

corresponding sum Z a, and compare it to the given
n=1

estimate of the infinite series.

485
178. a, = %, error < 1()_4,
n
o0
D L =1.000494...
n=1n
179. a, = el”’ error < 10_5,
11
ngl ? = e—_l = 0581976
180. a, = 12, error < 10_5,
el’l
o0
D nle"™ = 0.40488139857...
n=1
181. a, = 1/n4, error < 1()_4,
o0
> 1n* = %190 = 1.08232..
n=1
182. a, = 1/n6, error < 1()_6,
o0
Z Un* = z°/945 = 1.01734306...,
n=1
183. & - 1 1 R
Find the limit as n — oo of ”+n+1+ +2n'
2n
: 1
Hint: C t =dt.
(Hint: Compare to /n rdr.)
184. - 1,1 .., 1
Find the limit as n — oo of ”+n+ I + +3n

The next few exercises are intended to give a sense of
applications in which partial sums of the harmonic series
arise.

185. In certain applications of probability, such as the so-
called Watterson estimator for predicting mutation rates in
population genetics, it is important to have an accurate

estimate of the number H, = (1 +lilig l).

23 k
Recall that T, =H;,—Ink is decreasing. Compute
T = klim T, to four decimal places. (Hint:
— 00

k+1
_1 1
k+1<fk *dx.)
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186. [T] Complete sampling with replacement, sometimes
called the coupon collector’s problem, is phrased as
follows: Suppose you have N unique items in a bin. At
each step, an item is chosen at random, identified, and put
back in the bin. The problem asks what is the expected
number of steps E(N) that it takes to draw each unique

item at  least once. It  turns out that
_ - 1,1, .. ,1) g
E(N)=N.Hy = N(l +lilis N). Find E(N)

for N = 10, 20, and 50.

187. [T] The simplest way to shuffle cards is to take the
top card and insert it at a random place in the deck, called
top random insertion, and then repeat. We will consider a
deck to be randomly shuffled once enough top random
insertions have been made that the card originally at the
bottom has reached the top and then been randomly
inserted. If the deck has n cards, then the probability that
the insertion will be below the card initially at the bottom
(call this card B) is 1/n. Thus the expected number of top

random insertions before B is no longer at the bottom is n.
Once one card is below B, there are two places below B
and the probability that a randomly inserted card will fall
below B is 2/n. The expected number of top random
insertions before this happens is n/2. The two cards below
B are now in random order. Continuing this way, find a

formula for the expected number of top random insertions
needed to consider the deck to be randomly shuffled.

188. Suppose a scooter can travel 100 km on a full tank of

fuel. Assuming that fuel can be transferred from one
scooter to another but can only be carried in the tank,
present a procedure that will enable one of the scooters to
travel 100H 5 km, where Hy =14 1/2+ --- + 1/N.

189. Show that for the remainder estimate to apply on
[N, o) it is sufficient that f(x) be decreasing on

[N, o), but f need not be decreasing on [1, o).

190. [T] Use the remainder estimate and integration by
0

parts to approximate Z nle™ within an error smaller
n=1

than 0.0001.

oL i

W converge if p is large enough?
= n(Inn

If so, for which p?
192. [T] Suppose a computer can sum one million terms
N
per second of the divergent series Z %
n=1

Use the integral

test to approximate how many seconds it will take to add up
enough terms for the partial sum to exceed 100.
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193. [T] A fast computer can sum one million terms per
N
second of the divergent series Z —L_ Usethe integral
=, nlnn
test to approximate how many seconds it will take to add up
enough terms for the partial sum to exceed 100.
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5.4 | Comparison Tests

Learning Objectives

5.4.1 Use the comparison test to test a series for convergence.
5.4.2 Use the limit comparison test to determine convergence of a series.

We have seen that the integral test allows us to determine the convergence or divergence of a series by comparing it to a
related improper integral. In this section, we show how to use comparison tests to determine the convergence or divergence
of a series by comparing it to a series whose convergence or divergence is known. Typically these tests are used to determine
convergence of series that are similar to geometric series or p-series.

Comparison Test

In the preceding two sections, we discussed two large classes of series: geometric series and p-series. We know exactly
when these series converge and when they diverge. Here we show how to use the convergence or divergence of these series
to prove convergence or divergence for other series, using a method called the comparison test.

For example, consider the series

This series looks similar to the convergent series
(o8]
2 1
3
n=1n

Since the terms in each of the series are positive, the sequence of partial sums for each series is monotone increasing.
Furthermore, since

0< 1 <i
n2+1 n?

(O]
for all positive integers n, the kth partial sum S, of Z 21

n=1n +1

[©8)
Sk:Z 1 < Lz<n;1%.

n=1n2+1 n n n

satisfies

k
=1

(See Figure 5.16(a) and Table 5.1.) Since the series on the right converges, the sequence {S,} is bounded above. We
conclude that {S;} is a monotone increasing sequence that is bounded above. Therefore, by the Monotone Convergence

Theorem, {S;} converges, and thus

converges.

Similarly, consider the series

n—1/2

This series looks similar to the divergent series
o0
2w
7
n=1

The sequence of partial sums for each series is monotone increasing and
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1 J1
—iz > n>0

o0
for every positive integer n. Therefore, the kth partial sum §; of z ﬁ satisfies
n=1

k k
Sk - ngl n _11/2 g ngl %

00 k
(See Figure 5.16(b) and Table 5.2.) Since the series Z 1/n diverges to infinity, the sequence of partial sums Z 1/n

n=1 n=1

is unbounded. Consequently, {S k} is an unbounded sequence, and therefore diverges. We conclude that

1
2

n=1
diverges.
The partial sums for > 1 1
Sk Skt )
1 i o’ ®
o
3571 357 L4
o
3 3+ o
251 251 . z & "
.
2T The partial sums for in% . o *
15+ e © ® © o o 15+ ° 1
° The partial sums for > —
1y o * o o 1t n
.. @ S
051 ® The partial sums for X = 057
o 1 2 3 456 7 8k o 1 2 3 4 5 6 7 8k
@) (b)
Figure 5.16 (a) Each of the partial sums for the given series is less than the corresponding
partial sum for the converging p — series. (b) Each of the partial sums for the given series is
greater than the corresponding partial sum for the diverging harmonic series.
k 1 2 3 4 5 6 7 8
k
Z 21 0.5 0.7 0.8 0.8588 0.8973 0.9243 0.9443 0.9597
n=1n + 1
k
z % 1 1.25 1.3611 1.4236 1.4636 1.4914 1.5118 1.5274
n=1n

Table 5.1 Comparing a series with a p-series (p = 2)
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k 1 2 3 4 5 6 7 8
k
Z P _]1/2 2 2.6667 3.0667 3.3524 3.5746 3.7564 3.9103 4.0436
n=1
k
z % 1 1.5 1.8333 2.0933 2.2833 2.45 2.5929 2.7179
n=1

Table 5.2 Comparing a series with the harmonic series

Theorem 5.11: Comparison Test

o0
i. Suppose there exists an integer N such that 0 <a, <b, for all n > N. If Z b, converges, then

n=1

o0

Z a, converges.
n=1

[e] 0
ii. Suppose there exists an integer N such that a, > b, > 0 forall n > N. If Z b, diverges, then z a
n=1 n=1

diverges.

Proof

We prove part i. The proof of part ii. is the contrapositive of part i. Let {S;} be the sequence of partial sums associated with

o0 (o8]
z a,, andlet L = Z b,. Since the terms a, > 0,

n=1 n=1

Sk=a1+a2+---+ak§a1+a2+~-+ak+ak+1=Sk+1.

k k 00
D an< D bp< Y by=L
n=N n=N n=1

Therefore, the sequence of partial sums is increasing. Further, since a, < b, forall n > N, then

Therefore, forall k > 1,

k
Sp=(aj+ay+-—+ay_D+ D, ap<(aj+ay+-+ay_)+L

n=
Since a; + a,+ - +ay _ is a finite number, we conclude that the sequence {S,} is bounded above. Therefore, {S;} is

an increasing sequence that is bounded above. By the Monotone Convergence Theorem, we conclude that {S;} converges,

0

and therefore the series Z a, converges.
n=1
O
(o]
To use the comparison test to determine the convergence or divergence of a series Z ay, itisnecessary to find a suitable
n=1

series with which to compare it. Since we know the convergence properties of geometric series and p-series, these series are
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often used. If there exists an integer N such that for all n» > N, each term a, is less than each corresponding term of a
o0
known convergent series, then Z a, converges. Similarly, if there exists an integer N such that for all n > N, each
n=1
(o]

term a,, is greater than each corresponding term of a known divergent series, then z a, diverges.
n=1

Example 5.17

Using the Comparison Test

For each of the following series, use the comparison test to determine whether the series converges or diverges.

(&8
S Jj— —
n=1n"+3n+1
i 1
b.
S 2+
i 1
c.
= In(n)
Solution
o0 o0
a. Compare to 21 # Since Zl # is a p-series with p = 3, it converges. Further,
n= n=

1 1
—<_
n4+3n+1 nd

o0
for every positive integer n. Therefore, we can conclude that Z 1

—— — converges.
n=1n"+3n+1

0 n (28] n
b. Compare to Z (%) . Since Z (%) is a geometric series with r=1/2 and [1/2] <1, it
n=1 n=1

converges. Also,

1 _1
241 2"

1
2" +1

o0
for every positive integer n. Therefore, we see that Z
n=1

converges.

(o8]

c. Compare to Z % Since
n=2
1 1
In(n) > n

(o8]

o0
for every integer n > 2 and z 1/n diverges, we have that z ln%n) diverges.
n=72 n=72
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5.16 =
@/ Use the comparison test to determine if the series Z + converges or diverges.
n=1n"+n+1

Limit Comparison Test

The comparison test works nicely if we can find a comparable series satisfying the hypothesis of the test. However,
sometimes finding an appropriate series can be difficult. Consider the series
(e8]

2

n=2n -1

It is natural to compare this series with the convergent series

o0

1

2
n=20N

However, this series does not satisfy the hypothesis necessary to use the comparison test because

nr—1" n?

o0
for all integers n > 2. Although we could look for a different series with which to compare Z 1/(n2 — 1), instead we
n=2

show how we can use the limit comparison test to compare

[e] (e8]
E 21 andz%.

n=2n _1 n=20N

o0
Let us examine the idea behind the limit comparison test. Consider two series Z a, and Z b,,. with positive terms
n=1 n=1

a, and b, and evaluate

If
lim 4o -1 20,

n—>oobn

then, for n sufficiently large, a, = Lb,. Therefore, either both series converge or both series diverge. For the series

o0 o0
D Un>=1)and Y, 1n? we see that
n=2 n=2

2_ 2
lim YO =D iy 0ty
n-= o 1/1’!2 n—>oon2_1
o0
Since Z 1/n? converges, we conclude that
n=72
(e8]
Z 1
n=2 n2 - 1

converges.

The limit comparison test can be used in two other cases. Suppose

. a
lim =2 =0.
n— o

by
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In this case, {a,/b,} is a bounded sequence. As a result, there exists a constant M such that a, < Mb,. Therefore, if

o0 o0
z b, converges, then E a, converges. On the other hand, suppose
n=1 n=1
. a
lim ~ = co.
n— oobn

In this case, {a,/by} is an unbounded sequence. Therefore, for every constant M there exists an integer N such that
(o8]

o0
a, > Mb,, forall n > N. Therefore, if Z b, diverges, then Z a, diverges as well.

n=1 n=1

Theorem 5.12: Limit Comparison Test

Let a,, b, >0 forall n > 1.

(o8] [e9)
i. If nli)mooan /b, =L # 0, then 21 a, and 21 b, both converge or both diverge.
n= n=
o0 o0

ii. If nli)mooan/bn =0 and Z b, converges, then Z a, converges.

n=1 n=1

o0 o0
iii. If nli)mooan/b,, = oo and z b, diverges, then Z a, diverges.

n=1 n=1

o0
Note that if a,/b,, - 0 and z b, diverges, the limit comparison test gives no information. Similarly, if a, /b, — oo
n=1

o0 00
and Z b, converges, the test also provides no information. For example, consider the two series Z 1/vn and

n=1 n=1

o0
Z 1/n%. These series are both p-series with p =1/2 and p =2, respectively. Since p =1/2> 1, the series
n=1

o0 o0
Z 1/vn diverges. On the other hand, since p =2 <1, the series z 1/n? converges. However, suppose we

n=1 n=1

(o]
attempted to apply the limit comparison test, using the convergent p — series Z 1/n? as our comparison series. First,

n=1
we see that
3
I _nZ _ 52, g asn - .
1n3
Similarly, we see that
2
L’% =n— o0asn — oo.
1/n

00
Therefore, if a, /b, - o when Z b, converges, we do not gain any information on the convergence or divergence of
n=1
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Example 5.18

Using the Limit Comparison Test

For each of the following series, use the limit comparison test to determine whether the series converges or
diverges. If the test does not apply, say so.

SIS
a z_: v+ 1
n=1
V' 2741
b DAt
n=1
o0
In(n)
¢ Z 2
n=1 n
Solution
Sl
a. Compare this series to ngl I Calculate
. vn+1) .. vn . 1/via
T eV T M T
il S
By the limit comparison test, since n§1 7 diverges, then ngl r1 diverges.

n

o0
b. Compare this series to z (%) . We see that

n=1

n=o0 2N/ T pSo 3N 2 n>o N

n n n
lim @ +D3" _ lim 2"+1 3" _ lim 2"+ 1 _ lim [1+(l)]=1,
n-= oo 2

Therefore,
i Q"+ 1)/3" 1
n=e Qngn T
v (2) Y 2"+ 1
Since ngl (§) converges, we conclude that n;1 3 converges.
(o8]
c. Since Inn < n, compare with Z % We see that
n=1
2
lim 102/n° — jjy Inn.n _ g Inn
n—>o0 1/n n—>oon2 1 n—o0 N

In order to evaluate nli)moolnn/n, evaluate the limit as x — oo of the real-valued function In(x)/x.

These two limits are equal, and making this change allows us to use L’Hopital’s rule. We obtain

o Inx i 1
xll)mooT - lemoox =0.
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Therefore, nli)mooln n/n =0, and, consequently,

. Inn/n® _

(o]
Since the limit is 0 but Z % diverges, the limit comparison test does not provide any information.
n=1

o0
Compare with Z Lz instead. In this case,
n=1n

2
lim 0o/ _ oy Inn 02— jy ng = oo,
n— 0o 1/n2 n— 00 n— oo

Inn n>
n? 1

o0
Since the limit is co but Z Lz converges, the test still does not provide any information.

n=1n
(e8]
So now we try a series between the two we already tried. Choosing the series Z %, we see that
n=1n
lim lnn/n2 = 1 Inn . 1’13/2 = lim Inn
n—)ool/n3/2 n—)oonZ 1 n—oovn'

As above, in order to evaluate nli)mooln n/vn, evaluate the limit as x = oo of the real-valued function

Inx/vx. Using L’Hopital’s rule,

= lim 2% = Jim

2 -0
X = 00 VX x—>o00 X x=ooVx

3/2

[o0] 00
Since the limit is 0 and Z L converges, we can conclude that Z ln_g converges.
n=1n n=11n

5.17 = n
@ Use the limit comparison test to determine whether the series 2 3 n5+ > converges or diverges.
n=1
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5.4 EXERCISES

Use the comparison test to determine whether the following
series converge.

194, &
z a, where a, =

n=1

2
nn+1)

195. i 1
an where an = m

n=1

196. i |
2+ 1)

197. &
z 2n1—1

198. i 1

199. &
Z n!
P (n+2)!
200. il
n!

201. X sin(1/n)

n
n=1
00
202. sinZn
2
n=1 N

203. i sin(1/n)

n=1 vn
00
204. 5 N

R YRES R
n
o0
206. Z 4

Use the limit comparison test to determine whether each of
the following series converges or diverges.

207. & Tnn
2 (5

208.

2009.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

1 -

222.

1

1

nzlnz—nsin

1

n

i1 e _3n

L o
i -

n=1

n.n

—
—
|
N

)

n=1

e~ 1)

o]

31’!

1
z 21+1/nn1+1/n

) (Hint: (1 -

(1 _ e—l/n)

1
Does Z nn)?

n=2

so, for which p?

1

n

)" = 1/e.)

(Hint: 1/e =~ (1 = 1/n)",

495

SO

converge if p is large enough? If
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223. < p
Does Z ((lr’11_n)) converge if p is large enough?

n=1

If so, for which p?

224. S
For which p does the series Z 277/3™ converge?

n=1

225.
For which p > 0 does the series Z = converge?
n= 1
226. CeI—
For which r>0 does the series Z 27
n=1
converge?
227 <
: . . on
For which r>0 does the series Z —2
converge?
228.
Find all values of p and ¢ such that ,121 )7
converges.
229.
Does Z sin (nr/2) converge or diverge? Explain.
n=1

for each n, at least one of

[sinn + 6]}

230. Explain why,

{Isinn|, |sin(n + 1)|,..., is larger than 1/2.

|sinn|

Use this relation to test convergence of z T

n=1

231. Suppose that a, >0 and b,>0 and that

o0 (e8] o0
Z azn and z bzn converge. Prove that z ayby,

n=1 n=1 n=1

2 6+ 5 1)

n=1

converges and Z anb, <=

232. S Znl Inl
Does Z 27T converge? (Hint: Write 2007

n=1

as a power of Inn.)

233. & »
Does Z (Inn)™™"  converge? (Hint: Use
n=1
In(?) .
t=e to compare to a p — series.)
234. & il
Does Z (Inn) ™™™ converge? (Hint: Compare
n=2
a, to 1/n.)
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235. <
Show that if a, >0 and Z a, converges, then

n=1
(e8]

azn converges. If Z a? n converges, does

1 n=1

M8

n

M

a, necessarily converge?
1

n

236. <
Suppose that a, >0 for all » and that Z ap

n=1

converges. Suppose that b, is an arbitrary sequence of

o0
zeros and ones. Does Z anb,, necessarily converge?
n=1
237. <
Suppose that a, > 0 for all » and that z ap

n=1
diverges. Suppose that b,, is an arbitrary sequence of zeros

and ones with infinitely many terms equal to one. Does
o0
Z anb,, necessarily diverge?

n=1
238. Complete the details of the following argument: If
o0

Z% converges to a finite sum s, then

n=1
1. _1,1.1 SN I S IS I
WEy gttt and s 7S 1+3+5+

Why does this lead to a contradiction?

239. SR
Show that if a, > 0 and Z a“, converges, then

n=1

o0
Z sinz(an) converges.

n=1

240. Suppose that a,/b, —» 0 in the comparison test,

where a, >0 and b, >0. Prove that if an

converges, then Z ay, converges.

241. Let b, be an infinite sequence of zeros and ones.

[o0]
What is the largest possible value of x = Z b, 2™

n=1

242. Let d, be an infinite sequence of digits, meaning d,

takes values in {0, 1,..., 9}. What is the largest possible

o0
value of x = Z d, /10" that converges?

n=1
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243. Explain why, if x > 1/2,

%(b,,zOorl, by =0).

then x cannot be written

X =
n=2

244. [T] Evelyn has a perfect balancing scale, an unlimited
number of 1-kg weights, and one each of

1/2 kg, 1/4-kg, 1/8 -kg,
wishes to weigh a meteorite of unspecified origin to

arbitrary precision. Assuming the scale is big enough, can
she do it? What does this have to do with infinite series?

and so on weights. She

245. [T] Robert wants to know his body mass to arbitrary
precision. He has a big balancing scale that works perfectly,
an unlimited collection of 1-kg weights, and nine each of
0.1-kg, 0.01-kg, 0.001-kg,

Assuming the scale is big enough, can he do this? What
does this have to do with infinite series?

and so on weights.

246. &
The series Z is half the harmonic series and

hence diverges. It is obtained from the harmonic series by
deleting all terms in which n is odd. Let m > 1 be fixed.

Show, more generally, that deleting all terms 1/n where
n = mk for some integer k also results in a divergent
series.

247. In view of the previous exercise, it may be surprising
that a subseries of the harmonic series in which about one in
every five terms is deleted might converge. A depleted
o0
harmonic series is a series obtained from Z % by
n=1
removing any term 1/n if a given digit, say 9, appears in

the decimal expansion of n. Argue that this depleted

harmonic series converges by answering the following
questions.

a. How many whole numbers n have d digits?

b. How many d-digit whole numbers /(d). do not

contain 9 as one or more of their digits?

c. What is the smallest d-digit number m(d)?

d. Explain why the deleted harmonic series is

" Ad)
bounded b
neeany dz m(d)

(o)

e. Show that Z

converges.

(d)
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248. Suppose that a sequence of numbers a, > 0 has the

= —_1
property that a; =1 and a, ;= mSn, where
[So]
Sy, =a;+ - +ay Can you determine whether Z a
n=1

converges? (Hint: S, is monotone.)

249. Suppose that a sequence of numbers a, > 0 has the

1
property that a; =1 and a, | =——=S, where
"+
00
Sy =aj;+ -+ ay Can you determine whether Z a,
n=1
converges? (Hint:

Sz=a2+a1=a2+51=a2+1=1+1/4=(1+1/4)S1,

Sy = #52 +8, = (141/9)Sy = (1 + 1/9)(1 + 1/4)S,

etc. Look at In(S,), anduse In(1+¢) <t, t>0.)
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5.5 | Alternating Series

Learning Objectives

5.5.1 Use the alternating series test to test an alternating series for convergence.
5.5.2 Estimate the sum of an alternating series.
5.5.3 Explain the meaning of absolute convergence and conditional convergence.

So far in this chapter, we have primarily discussed series with positive terms. In this section we introduce alternating
series—those series whose terms alternate in sign. We will show in a later chapter that these series often arise when studying
power series. After defining alternating series, we introduce the alternating series test to determine whether such a series
converges.

The Alternating Series Test

A series whose terms alternate between positive and negative values is an alternating series. For example, the series

& n (5.11)
_1y_-_1,1_1,1_
;( 3) = -3+ g1
and
o a4l 5.12)
SN SR (
ngl —=1-14+1-14

are both alternating series.

Definition

Any series whose terms alternate between positive and negative values is called an alternating series. An alternating
series can be written in the form

°° (5.13)
D (D" by =by—by+by—by+
n=1
or
= (5.14)
> (~1)"by= by +by—by+by— -
n—1
Where b, > 0 for all positive integers n.
Series (1), shown in Equation 5.11, is a geometric series. Since |r| = |—1/2| < 1, the series converges. Series (2), shown

in Equation 5.12, is called the alternating harmonic series. We will show that whereas the harmonic series diverges, the
alternating harmonic series converges.

To prove this, we look at the sequence of partial sums {S;} (Figure 5.17).
Proof
Consider the odd terms S,; , ; for k> 0. Since 1/(2k + 1) < 1/2k,
Sopa1=Sp_ - +=1—-<S
2k +1 2%k=1"2Fk "2k + 1 2k—1-
Therefore, {S,; , 1} is a decreasing sequence. Also,

Suer=(1-3)+ -4+ -+ - )+ w0
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Therefore, {SZk " 1} is bounded below. Since {S 2+ 1} is a decreasing sequence that is bounded below, by the Monotone

Convergence Theorem, {S 2%+ 1} converges. Similarly, the even terms {S,;} form an increasing sequence that is bounded

above because
Sox = 521<—2+ﬁ—ﬁ> Sok—2

and

S2’<=1+(_%+%)+"'+( 2k£2+2k£1)_%k< L.

Therefore, by the Monotone Convergence Theorem, the sequence {S,;} also converges. Since

we know that
. . . 1
klimooSZk +17 kll»mooszk + kll»mooZk—-i-l'
Letting S = klim Sox + 1 and using the fact that 1/(2k + 1) — 0, we conclude that klim S, = S. Since the odd terms
- © -

and the even terms in the sequence of partial sums converge to the same limit S, it can be shown that the sequence of

partial sums converges to S, and therefore the alternating harmonic series converges to S.

It can also be shown that S = In2, and we can write

+ o = In(2).

N

—

I
I
1
1
1
r— 1
I
1
1
1

0 S,5,S S, 5, X
Figure 5.17 For the alternating harmonic series, the odd terms
Sok + 1 in the sequence of partial sums are decreasing and

bounded below. The even terms §,; are increasing and

bounded above.

O

More generally, any alternating series of form (3) (Equation 5.13) or (4) (Equation 5.14) converges as long as
by >by,>b3> - and b, - 0 (Figure 5.18). The proof is similar to the proof for the alternating harmonic series.
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—b, ;
—_—
| b i
—_— I
1 b 1 I
| 4 1 1
| — I
P P
[ 1 I
HI H !

L L Lo

Figure 5.18 For an alternating series b — b, + b3 — - in
which by > by > b3 > ---, theoddterms S,; | | inthe

sequence of partial sums are decreasing and bounded below. The
even terms S, are increasing and bounded above.

Theorem 5.13: Alternating Series Test

An alternating series of the form

i D" * b, or f} (=1)"b,

n=1 n=1
converges if

i. 0<b,,<b,forall n>1 and
i.  lim b, =0.

This is known as the alternating series test.

We remark that this theorem is true more generally as long as there exists some integer N suchthat 0 <b,, | < b, for

all n > N.
Example 5.19
Convergence of Alternating Series

For each of the following alternating series, determine whether the series converges or diverges.

o0
a. ) (=) ?

n=1

b D (D" ain+1)

n=1
Solution
a. Since
1 1 1
———<— and —=-0,
(n+ 1)2 n? n?

the series converges.
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b. Since n/(n+ 1) » 0 as n — o0, we cannot apply the alternating series test. Instead, we use the nth

term test for divergence. Since

n+1
lim (_1)—”#0,

S

the series diverges.

(]

5.18
@ Determine whether the series Z (-nrt Yarn converges or diverges.

n=1

Remainder of an Alternating Series

It is difficult to explicitly calculate the sum of most alternating series, so typically the sum is approximated by using a partial
sum. When doing so, we are interested in the amount of error in our approximation. Consider an alternating series

[oo]
n=1
satisfying the hypotheses of the alternating series test. Let S denote the sum of this series and {S;} be the corresponding
sequence of partial sums. From Figure 5.18, we see that for any integer N > 1, the remainder R satisfies

Ry = IS =Sy < ISy 1= Snl = by i1

Theorem 5.14: Remainders in Alternating Series

Consider an alternating series of the form
o0 (o]
> D" hor Y ()b,
n=1 n=1
that satisfies the hypotheses of the alternating series test. Let S denote the sum of the series and S, denote the Nth
partial sum. For any integer N > 1, the remainder Ry = S — S satisfies

|RN| <byir-

In other words, if the conditions of the alternating series test apply, then the error in approximating the infinite series by the
Nth partial sum S is in magnitude at most the size of the next term by | ;.

Example 5.20

Estimating the Remainder of an Alternating Series

Consider the alternating series

(]

_1yn+1
$ et

n=1 n
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Use the remainder estimate to determine a bound on the error R if we approximate the sum of the series by the

partial sum S,

Solution

From the theorem stated above,

IR ol < by =— ~ 0.008265.
10 11 112

5.19 o ntl
Find a bound for R,; when approximating 2 (=1 /n by Sp.

n=1

Absolute and Conditional Convergence

[e8] o0
Consider a series Z a, and the related series Z la,l. Here we discuss possibilities for the relationship between
n=1 n=1
00
the convergence of these two series. For example, consider the alternating harmonic series Z (-n"+t Un. The series
n=1

o0 [eo]
whose terms are the absolute value of these terms is the harmonic series, since Z I(=D)" il = Z 1/n. Since the
n=1 n=1
alternating harmonic series converges, but the harmonic series diverges, we say the alternating harmonic series exhibits
conditional convergence.

n+1/n2

(e8]
By comparison, consider the series Z (-1 . The series whose terms are the absolute values of the terms of this

n=1

(o] 00
series is the series Z 1/n®. Since both of these series converge, we say the series Z (-n"+t !/n? exhibits absolute

n=1 n=1
convergence.
Definition
o0 o0 o0
A series Z a, exhibits conditional convergence if z la,l converges. A series 2 a, exhibits absolute
n=1 n=1 n=1

o0 o0
convergence if Z a, converges but Z lay,l diverges.
n=1 n=1

o0
As shown by the alternating harmonic series, a series Z a, may converge, but Z la,| may diverge. In the following
n=1 n=1

00
theorem, however, we show that if Z la,l converges, then Z a, converges.
n=1 n=1
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Theorem 5.15: Absolute Convergence Implies Convergence

o0 (o]
If z la,| converges, then Z a, converges.

n=1 n=1
Proof
o0
Suppose that Z la,l converges. We show this by using the fact that a, =la, or a,= —la, and therefore
n=1

layl + a, = 2la,l or lay + a, =0. Therefore, 0 <la,l + a;, < 2la,l. Consequently, by the comparison test, since

o0
2 Z la,l converges, the series
n=1

o0
D (lanl +ay)
n=1
converges. By using the algebraic properties for convergent series, we conclude that
o0 o0 o0
Y an= Y (agd+an- . lal
n=1 n=1 n=1
converges.

O

Example 5.21

Absolute versus Conditional Convergence

For each of the following series, determine whether the series converges absolutely, converges conditionally, or
diverges.

D =D G+

n=1
0
b. Z cos(n)/n2
n=1
Solution

a. We can see that
o0

(1)n+1 B
Z 3n+1 |_n§ 3n1+1

diverges by using the limit comparison test with the harmonic series. In fact,

U@+l |
AT =T

Therefore, the series does not converge absolutely. However, since

| | |
3t D1 Ty 0
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o0
the series converges. We can conclude that Z (=n"+t ! /(3n + 1) converges conditionally.
n=1

b. Noting that |cosn| < 1, to determine whether the series converges absolutely, compare

o0

)

n=1

cosn

n2

(o] o0 (o]
with the series 2 1/n®. Since Z 1/n? converges, by the comparison test, 2 lcosn/n’l
n=1 n=1 n=1
o0
converges, and therefore Z cosn/n’ converges absolutely.
n=1

v 520 'y n+1 3
g Determine whether the series Z -1 n/(2n” + 1) converges absolutely, converges

n=1

conditionally, or diverges.

To see the difference between absolute and conditional convergence, look at what happens when we rearrange the terms of

(e8]
the alternating harmonic series Z (-n"t !/n. We show that we can rearrange the terms so that the new series diverges.
n=1
Certainly if we rearrange the terms of a finite sum, the sum does not change. When we work with an infinite sum, however,
interesting things can happen.

Begin by adding enough of the positive terms to produce a sum that is larger than some real number M > 0. For example,
let M =10, and find an integer k such that

1.1, 1
l+3+5+ 457> 10

(o]
(We can do this because the series Z 1/(2n — 1) diverges to infinity.) Then subtract 1/2. Then add more positive terms
n=1

until the sum reaches 100. That is, find another integer j > k such that
1 1

I 1 1 1 e —1
1+3+ +2k—1 2+2k+1+ +2j+1>100'

Then subtract 1/4. Continuing in this way, we have found a way of rearranging the terms in the alternating harmonic series
so that the sequence of partial sums for the rearranged series is unbounded and therefore diverges.

The terms in the alternating harmonic series can also be rearranged so that the new series converges to a different value. In
Example 5.22, we show how to rearrange the terms to create a new series that converges to 31n(2)/2. We point out that

the alternating harmonic series can be rearranged to create a series that converges to any real number r; however, the proof

of that fact is beyond the scope of this text.
(o]
In general, any series 2 a, that converges conditionally can be rearranged so that the new series diverges or converges
n=1
o0

to a different real number. A series that converges absolutely does not have this property. For any series Z a, that
n=1
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converges absolutely, the value of Z a, is the same for any rearrangement of the terms. This result is known as the
n=1

Riemann Rearrangement Theorem, which is beyond the scope of this book.

Example 5.22

Rearranging Series

Use the fact that

1-

1_.. =
+ +5 In2

w|.—
ENE

1
2

to rearrange the terms in the alternating harmonic series so the sum of the rearranged series is 31n(2)/2.

Solution
Let
Y 1,1 1,1 _1,1_1
; =lT2t3Tgts et TRt
[S]
Since 2 a, = 1In(2), by the algebraic properties of convergent series,
n=1
N 1, 1 1,1 1,._1% n2
2 oym=g-gtegt =§§ n=152

(o8]
Now introduce the series Z by, suchthatforall n>1, b,,_ ;=0 and b,, = a,/2. Then

n=1
Z by=0+t+0-t+o+lio-L4. =l02
6 8 2
n=1
o0
Then using the algebraic limit properties of convergent series, since Z ap and Z b, converge, the series
n=1 n=1

(o8]
Z (a, + b)) converges and

n=1

i (an+by) = i anp+ z b, 1n2+1n2 3122.

n=1 n=1 n=1
Now adding the corresponding terms, a, and b,, we see that

3 vt =v0s b de )+ o o)+ (b

n=1
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We notice that the series on the right side of the equal sign is a rearrangement of the alternating harmonic series.

o0
Since Z (an + b,) =3In(2)/2, we conclude that

n=1

372757774 2

Therefore, we have found a rearrangement of the alternating harmonic series having the desired property.
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5.5 EXERCISES

State whether each of the following series converges
absolutely, conditionally, or not at all.

250. i(—l)n'H n

= n+3

vn+3

n=1

252. i (_1)n+1 1
n=1 n+3

:

o0

253. z iyt 13
n

n=1

254, &

n=1

255, & n

n=1

256. &

X o ety

n=1

257. i(—l)""'l(%)n

n=1

258, &
> (D" Lsin?n

n=1

259.
Z (=" Lcos?n

n=1

260. &
D (D" Lsin?(1/n)

n=1

261. &
D (=1 * Leos?(1/n)

n=1

202 > (D" Hn(/n)

n=1

263. &

2 =" 1 +3)

n=1

264. i(—l)n"'l n2
n=1 1+n*

507

265. i iyt _at
1+n"

n=1

n=1

o0

n=1

267.

268. & U U
Z (—1)"(1 -n ") (Hint: n'"" =~ 1 + In(n)/n for

n=1

large n.)

S i cosd))
n=1

cos(l/n) ~ 1 — 1/n? for large n.)

(Hint:

270. &
Z ="t 1(\/n +1—vn) (Hint: Rationalize the

n=1
numerator.)
271, &
-1 "+1(L— 1 ) Hint:  Cross-
n;( ")

multiply then rationalize numerator.)

272, &

> D" N+ 1) —Inn)
n=1
273, &
Z ="t 1n(tan_1 n+1)— tan_ln) (Hint:
n=1

Use Mean Value Theorem.)

274. i (_1)n+1((n+1)2_n2)

n=1

275, &

£ i)

n=1

276. Z cos(nr)

n

277. cos(nr)

nl/n

278.
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279. &
D" sin(na/2)sin(1/n)

n=1

In each of the following problems, use the estimate
|[Ry| < by 4 to find a value of N that guarantees that

the sum of the first N terms of the alternating series

o0
Z D" +1p n differs from the infinite sum by at most
n=1

the given error. Calculate the partial sum S, for this N.
280. [T] b, = 1/n, error < 107>

281. 1] b,=1/In(n), n>2, error < 107!

282. [1] b, = 1/vit, error < 1073

283. [T] b, = 112", error < 1076

284 1T) by =1In(1+ 1), emror <1073

285. [T] b, = 1/n2, error < 107°

For the following exercises, indicate whether each of the
following statements is true or false. If the statement is
false, provide an example in which it is false.

286. If b, >0 is decreasing and nli)moobn =0, then

0

Z (by,, _ 1 — by,) converges absolutely.

n=1

287. °°
If b, >0 is decreasing, then Z (Do — 1 —bay)

n=1

converges absolutely.

288. If b,>0 and lim b,=0 then
n— oo

o0
Z (%(bh _2+ b3, _1)—b3,) converges.

n=1

289. If b,>0 is decreasing and

(o8]
Z (b3, o+ b3, _1—b3) converges then

n=1

o0
Z b3, _, converges.

n=1

290. 3 .
If b,>0 is decreasing and Z D"~ "b,

n=1
converges conditionally but not absolutely, then b, does

not tend to zero.
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291 Let a} =a, if a,>0 and a, =-a, if

a, <0. (Also, a}'l' =0ifa, <0 and

o0
a, =0ifa,>0.) If Z a, converges conditionally
n=1

(o] (o]
but not absolutely, then neither Z al  nor Z a,

n=1 n=1

converge.

292. Suppose that a, is a sequence of positive real

o0
numbers and that z a, converges.
n=1

Suppose that b, is an arbitrary sequence of ones and minus

o0
ones. Does Z anb, necessarily converge?
n=1

293. ] =
Suppose that a, is a sequence such that Z apb,
n=1
converges for every possible sequence b, of zeros and
o0

ones. Does Z a, converge absolutely?
n=1

The following series do not satisfy the hypotheses of the
alternating series test as stated.

In each case, state which hypothesis is not satisfied. State
whether the series converges absolutely.

0
294. 3 1y T sinln
n
n=1
0
295. $ (_pyr+ 1 cos’n
n
n=1

296. 1 4Ll_1_1,

297. 1 4

298. Show that the alternating series

1. 1_1_.1_1_.1_1_, .
1 2+2 4+3 6+4 8+ does

not converge. What hypothesis of the alternating series test
is not met?
299. Suppose that Z a, converges absolutely. Show that

the series consisting of the positive terms a, also

converges.
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Show that the alternating series 2344 5,4

357 9

does not converge. What hypothesis of the alternating
series test is not met?

300. 5

301. 2 4 6
The formula cosf =1 —g—!+z—!—%+ - owill
be derived in the next chapter. Use the remainder

|Ry| < by 4 to find a bound for the error in estimating

cosf by the fifth partial sum
1— 602121 + 6% /41-6%/6! + 68 /8! for  O=1,
0 =nx/6, and 0 = 7.
302. . 3 5 7

The formula sin@ = 6 — % + % - % + --- will be

derived in the next chapter. Use the remainder

|Ry| < by to find a bound for the error in estimating

sinf by the fifth partial sum

0—60°131+6°/51—-0" /71 + 6° /9! for 0=1,
0 =nr/6, and 6 = 7.
303. How many terms in
_q,_ 02 0% _¢°
cosf =1 —T+E—a+m are needed to
approximate cosl accurate to an error of at most
0.000017?
304. . 3 95 o7
How many terms in sinf = 6 — 0,0 _0- ...

3 st 7
are needed to approximate sinl accurate to an error of at
most 0.00001?

305. N )
Sometimes the alternating series Z D" "b,
n=1

converges to a certain fraction of an absolutely convergent

[So] o0
2
series Z b, at afaster rate. Given that Z % = %,
n=1 n=1n
find S=1 —%+%—%+ --. Which of the series
2 3 4

() o0 ( l)n -1
6 Z Lz and S Z ——5— gives a better estimation
n=1n n=1 n

of 2 using 1000 terms?

The following alternating series converge to given
multiples of z. Find the value of N predicted by the

remainder estimate such that the Nth partial sum of the

series accurately approximates the left-hand side to within
the given error. Find the minimum N for which the error
bound holds, and give the desired approximate value in
each case. Up to 15 decimals  places,

7w =3.141592653589793....

509

I n=02n+1, error < (0.0001

307. [ i (—3)~*

13 1 error < 0.0001
k=0

n(x + zn)

08. > si
[T] The series Z X an plays an important
n=

QO .
role in signal processing. Show that Z %

converges whenever 0 < x < z. (Hint: Use the formula
for the sine of a sum of angles.)

309. N
Y D",

n=1

310. 100
[T] Plot the series Z w for 0 <x< 1.

n=1

100 2
Explain why Z w diverges when x =0, 1.

n=1

How does the series behave for other x?

311. 100 .
[T] Plot the series Z w for 0<x<1

n=1

and comment on its behavior

312.

100 5
[T] Plot the series Z L;mx) for 0<x<1
n=1 n

and describe its graph.

313. [T] The alternating harmonic series converges
because of cancellation among its terms. Its sum is known
because the cancellation can be described explicitly. A

[e]
. L S
random harmonic series is one of the form E =n
n=1

where s, is a randomly generated sequence of +1's in
which the values +1 are equally likely to occur. Use a
random number generator to produce 1000 random =+1s

N

and plot the partial sums Sy = Z Sn—” of your random

n=1
harmonic sequence for N =1 to 1000. Compare to a plot
of the first 1000 partial sums of the harmonic series.
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314. . 1
[T] Estimates of Z —5 can be accelerated by
n=1n
writing its partial sums as
< 1 < 1 < 1
== —+ ———— and recalling
n; n’ n; n(n+ 1) n; n*(n+1)

1 _q__1
that n§1 PEESI 1 N1 converges to one as
N — oo. Compare the estimate of 7216 using the sums
1000 1000
Z Lz with the estimate using 1 + Z %
n=1n n=1n"(n+1)

315. &
[T] The Euler transform rewrites S = Z =D"p,

n=0

as S= i (-nHm"-1 zn: (p)pn—m For the
n=0 m=0

alternating harmonic series, it takes the form
(e8]

D"
In(2) = z —— = z —. Compute partial
n=1 n=1 n2

o0
sums of 2 ln until they approximate In(2) accurate
n=1 n2
to within 0.0001. How many terms are needed? Compare

this answer to the number of terms of the alternating
harmonic series are needed to estimate In(2).

316. [T] In the text it was stated that a conditionally
convergent series can be rearranged to converge to any

number. Here is a slightly simpler, but similar, fact. If
o0

a, >0 is such that a, - 0 as n — oo but Z ap
n=1

diverges, then, given any number A there is a sequence s,
o0
of +1's such that 2 ays, — A. Show this for A >0
n=1
as follows.

a. Recursively define s, by s,=1 if

n—1
S,_1= Z apsy <A and s, = —1 otherwise.
k=1

b. Explain why eventually S, > A, and for any m
larger than this n, A—a, < S, <A+ay.

c. Explain why this implies that §,, - A as n — o0.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2

Chapter 5 | Sequences and Series



Chapter 5 | Sequences and Series 511

5.6 | Ratio and Root Tests

Learning Objectives

5.6.1 Use the ratio test to determine absolute convergence of a series.
5.6.2 Use the root test to determine absolute convergence of a series.
5.6.3 Describe a strategy for testing the convergence of a given series.

In this section, we prove the last two series convergence tests: the ratio test and the root test. These tests are particularly
nice because they do not require us to find a comparable series. The ratio test will be especially useful in the discussion of
power series in the next chapter.

Throughout this chapter, we have seen that no single convergence test works for all series. Therefore, at the end of this
section we discuss a strategy for choosing which convergence test to use for a given series.

Ratio Test

o0
Consider a series Z a,. From our earlier discussion and examples, we know that nleman =0 is not a sufficient
n=1

condition for the series to converge. Not only do we need a, — 0, but we need a, — 0 quickly enough. For example,

o0 0
consider the series Z 1/n and the series Z 1/n%. We know that 1/n — 0 and 1/n% — 0. However, only the series
n=1 n=1

(o8] (o8]
Z 1/n? converges. The series Z 1/n diverges because the terms in the sequence {1/n} do not approach zero fast
n=1 n=1

enough as n — oco. Here we introduce the ratio test, which provides a way of measuring how fast the terms of a series
approach zero.

Theorem 5.16: Ratio Test

o0
Let Z a, be a series with nonzero terms. Let

n=1
— lim |%ntl
p= nleoo rclln |
o0
i. f0<p<1, then Z a, converges absolutely.
n=1

o0
i. If p>1 or p=oco, then Z a, diverges.

n=1

iii. If p=1, the testdoes not provide any information.

Proof

o0
Let Z a, be a series with nonzero terms.
n=1

We begin with the proof of part i. In this case, p = nlem

a
’;—*'nl‘ < 1. Since 0 <p <1, there exists R such that

0<p<R< 1. Let e =R— p> 0. By the definition of limit of a sequence, there exists some integer N such that

a’él—:l|—p| <eforalln > N.
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Therefore,

a’éz—::]|<p+€=Rf0ralln2N

and, thus,
lan + 1| < Rlay]
|aN+2| < R|aN+1| < R2|aN|
|aN+3| < R|aN+2| < R2|aN+1‘ < R3|aN|

Jan | < Rlay 43 < Ray o] < R¥ay 41| < RYay]

Since R < 1, the geometric series
R|aN| + R2|aN| + R3|aN| + -
converges. Given the inequalities above, we can apply the comparison test and conclude that the series
lan 1l +lan 1ol +lay 43| +lay 4 af + -

converges. Therefore, since

[ N [
Dlad= D lad+ D, lay

n=1 n=1 n=N+1
N &) 00
where Z la,l is a finite sum and 2 la,| converges, we conclude that Z la,|l converges.
n=1 n=N+1 n=1
For part ii.
a
— i n+1
p—nll)moo a, |>1.

Since p > 1, there exists R suchthat p > R > 1. Let € = p — R > 0. By the definition of the limit of a sequence, there

exists an integer N such that

An+1
"’l—n|—p| < eforalln > N.

Therefore,

R:p—g<‘a’é:1|f0ralln2N,

and, thus,
lan + 1] > Rlay]|
lan 42| > Rlay 41| > R¥ay|
|aN+3| > R|aN+2| > R2|aN+1| > R3|aN|

lan 4| > Rlay 43| > Ray 4o > Ray 41| > R¥ay].
Since R > 1, the geometric series
R|aN| + R2|aN| + R3|aN| + -

diverges. Applying the comparison test, we conclude that the series

lan 11 +lay 4o +lay 43| + -
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diverges, and therefore the series Z la,| diverges.
n=1

For part iii. we show that the test does not provide any information if p = 1 by considering the p — series Z 1/n?.
n=1

For any real number p,

U+ )P _ nP

p=n—>oo 1/n? n—>moo(n+1)17

00 (O]
However, we know that if p < 1, the p — series Z 1/n? diverges, whereas Z 1/n? converges if p > 1.
n=1 n=1

d

The ratio test is particularly useful for series whose terms contain factorials or exponentials, where the ratio of terms
simplifies the expression. The ratio test is convenient because it does not require us to find a comparative series. The
drawback is that the test sometimes does not provide any information regarding convergence.

Example 5.23

Using the Ratio Test

For each of the following series, use the ratio test to determine whether the series converges or diverges.

d. n:1n—!
n" ( )" (n)?
> HZI I T
i (=" (n)?
=)
Solution

a. From the ratio test, we can see that

oo 2" ey L onkl
pP= nll)moo 2n/np n1—> °°(l’l + 1)! 2n
Since (n+ 1)! =+ 1) -n!,
T 2 _
p= iy =

Since p < 1, the series converges.

b. We can see that




514 Chapter 5 | Sequences and Series

o+ D"+ 1)
po= n" /n!

D"t

BT+ DT n

= lim (2 )n = Jlim (1+ %)n =e.

n— oo

Since p > 1, the series diverges.

c. Since
D" @+ DY2/CE+ 1) _ e+ D+ D! @)
(=D"H2/2n)! | 2n+2)! nln!
_ (n+Dmn+1D
T (2n+2)2n+1)
we see that

o m+Dm+1) _ 1
P= Mo+ 2+ D &

Since p < 1, the series converges.

5.21 > 3
@ Use the ratio test to determine whether the series Z ’31— converges or diverges.
n=1
Root Test
o0
The approach of the root test is similar to that of the ratio test. Consider a series z ap such that nlew” layl = p for
n=1

(o8]
some real number p. Then for N sufficiently large, |a N‘ ~ pN . Therefore, we can approximate z la,| by writing
n=N

N+2

|‘1N|+‘azv+1|+|a1v+2|+'“%PN+PN+1+p +

o0
The expression on the right-hand side is a geometric series. As in the ratio test, the series Z a, converges absolutely if
n=1

0 < p <1 and the series diverges if p > 1. If p =1, the test does not provide any information. For example, for any

o0
p-series, Z 1/n?, we see that
n=1

n

P= nleoo

L|_ li 1

Pl /n’
n n— oon p/n
To evaluate this limit, we use the natural logarithm function. Doing so, we see that

o=l 1 L= fim 1 lp/n_ tim Z.10(L) = 1 pin(1/n)
np =i anooW = 1M n(ﬁ) = on n(ﬁ)_ngnooT'
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Using L’Hopital’s rule, it follows that Inp = 0, and therefore p =1 for all p. However, we know that the p-series only
converges if p > 1 and diverges if p < 1.

Theorem 5.17: Root Test

o0
Consider the series Z ap. Let

n=1
pP= nll{noolvm
00
i. f0<p<1, then Z a, converges absolutely.
n=1

o0
i. If p>1 or p=oco, then 2 a, diverges.

n=1

iii. If p=1, the testdoes not provide any information.

The root test is useful for series whose terms involve exponentials. In particular, for a series whose terms a,, satisfy

la,| = b", then Yla,l = b, and we need only evaluate Llim by

Example 5.24

Using the Root Test

For each of the following series, use the root test to determine whether the series converges or diverges.
n
S (n2 + 3n)

n=1 (4n2 + S)n

o0
n
b. n
,,; (In(n))"
Solution

a. To apply the root test, we compute

n n n 2
T 2 2 _ 5im P-4+ 3n _ 1

Since p < 1, the series converges absolutely.
b. We have

p=1lim {n"/(Inn)" = lim —L = co by L'Hopital’s rule.

—lnn

Since p = oo, the series diverges.
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5.22 <
@/ Use the root test to determine whether the series Z 1/n" converges or diverges.

n=1

Choosing a Convergence Test

At this point, we have a long list of convergence tests. However, not all tests can be used for all series. When given a series,
we must determine which test is the best to use. Here is a strategy for finding the best test to apply.

Problem-Solving Strategy: Choosing a Convergence Test for a Series

o0
Consider a series Z ay. In the steps below, we outline a strategy for determining whether the series converges.
n=1

(o)

1. Is Z a, a familiar series? For example, is it the harmonic series (which diverges) or the alternating
n=1

harmonic series (which converges)? Is it a p — series or geometric series? If so, check the power p or the

ratio r to determine if the series converges.

2. Is it an alternating series? Are we interested in absolute convergence or just convergence? If we are just
interested in whether the series converges, apply the alternating series test. If we are interested in absolute

o0
convergence, proceed to step 3, considering the series of absolute values Z .
n=1

3. Isthe series similar to a p — series or geometric series? If so, try the comparison test or limit comparison test.
4. Do the terms in the series contain a factorial or power? If the terms are powers such that a,, = b}, try the root

test first. Otherwise, try the ratio test first.

5. Use the divergence test. If this test does not provide any information, try the integral test.

. Visit this website (http://lwww.openstaxcollege.org/l/20_series2) for more information on testing series
for convergence, plus general information on sequences and series.

Example 5.25

Using Convergence Tests

For each of the following series, determine which convergence test is the best to use and explain why. Then
determine if the series converges or diverges. If the series is an alternating series, determine whether it converges
absolutely, converges conditionally, or diverges.

a i n’+2n

=i+ 31

b i D""'Gn+ 1)

|
n=1 n.

& n
C. 26—3
n=1n
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o0

3}’!
d. —
n; n+D"
Solution

a. Step 1. The series is nota p — series or geometric series.

Step 2. The series is not alternating.
Step 3. For large values of n, we approximate the series by the expression

2

n’+2n ~ D
n3

1
n?+3n%+1 "
Therefore, it seems reasonable to apply the comparison test or limit comparison test using the series

00
Z 1/n. Using the limit comparison test, we see that
n=1

i 2@ 30+ D) o wdee®
n—co 1/n =03 4302 4 .

o0
Since the series Z 1/n diverges, this series diverges as well.
n=1

b. Step 1.The series is not a familiar series.
Step 2. The series is alternating. Since we are interested in absolute convergence, consider the series
o0
I
n+ D

n=1

Step 3. The series is not similar to a p-series or geometric series.

Step 4. Since each term contains a factorial, apply the ratio test. We see that
!

Gu+ DI+ D!_ 1 3n+3 _pl

. S 3n+3 —
M G Dl G+ DT 34T 0 et F DGn D) - 0

Therefore, this series converges, and we conclude that the original series converges absolutely, and thus
converges.

c. Step 1. The series is not a familiar series.
Step 2. It is not an alternating series.
Step 3. There is no obvious series with which to compare this series.
Step 4. There is no factorial. There is a power, but it is not an ideal situation for the root test.
Step 5. To apply the divergence test, we calculate that

. en
lim £ = o0.
n- oon3

Therefore, by the divergence test, the series diverges.

d. Step 1. This series is not a familiar series.
Step 2. It is not an alternating series.
Step 3. There is no obvious series with which to compare this series.
Step 4. Since each term is a power of n, we can apply the root test. Since

n

n
: 3 = 1 3 _
Jim () =i =0
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by the root test, we conclude that the series converges.

5.23 . n
@ For the series Z # determine which convergence test is the best to use and explain why.
n=1 n

In Table 5.3, we summarize the convergence tests and when each can be applied. Note that while the comparison test, limit
00

(o]
comparison test, and integral test require the series Z a, to have nonnegative terms, if Z a, has negative terms,
n=1 n=1

o0
these tests can be applied to Z la,| to test for absolute convergence.
n=1

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Series or Test

Conclusions

Comments

Divergence Test

o0
For any series Z a,, evaluate
n=1

lim_a,,.
n— oo

If lim a,=0, the test
n— oo

is inconclusive.

If lim a,#0, the

series diverges.

This test cannot prove convergence
of a series.

If p<1, the series
diverges.

Geometric Series If Irl <1, the series Any geometric series can be
i ne1 converges to reindexed to be written in the form
n:1ar al(l =r). a+ar+ar’+ -, where a is the
initial term and r is the ratio.
If Irl > 1, the series
diverges.
p-Series If p>1, the series For p =1, we have the harmonic
o0
1 converges. ] &
ngl n? series Z 1/n.

n=1

Comparison Test

(o]
For Z a, with nonnegative
n=1

terms, compare with a known
o0
series Z by.

n=1

If a, <b, forall n>N

o0
and Z b, converges,
n=1

(o]
then Z a, converges.
n=1

If a,>b, forall n>N

o0
and Z b, diverges,

n=1

o0
then Z a, diverges.

n=1

Typically used for a series similar to
a geometric or p -series. It can

sometimes be difficult to find an
appropriate series.

Limit Comparison Test

o0
For Z a, with positive terms,
n=1

00
compare with a series Z b,
n=1
by evaluating
n

— Tim 9n
L= nll»moobn‘

If L is areal number and

(o8]
L #0, then z ap

n=1

o0
and Y. b, both

n=1

converge or both diverge.

Typically used for a series similar to
a geometric or p -series. Often

easier to apply than the comparison
test.

Table 5.3 Summary of Convergence Tests
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Series or Test Conclusions Comments

[es]
If L=0and ), b,

n=1

[So]
converges, then Z an

n=1
converges.
0
If L=oco and ), b,
n=1

00
diverges, then Z an

n=1
diverges.
Integral Test o0 < Limited to those series for which the
If there exists a positive, f N J(xdx and Zl dn corresponding function f can be
continuous, decreasing function n= o
7 such that a, = f(n) for all bpth converge or both easily integrated.
© diverge.
n > N, evaluate / f(x)dx.
N
Alternating Series If b, . <b, forall Only applies to alternating series.
(e8] o0
Z (_1)n+1bn or Z (—l)nbn n>1 and bn e d 0, then
n=1 n=1 the series converges.
Ratio Test If 0<p<1, theseries Often used for series involving
For any series i o with converges absolutely. factorials or exponentials.
n
n=1
nonzero terms, let If p>lorp=oo, the
= 1 Ap+1
2= a, | series diverges.
If p=1, thetestis
inconclusive.
Root Test If 0<p<1, the series Often used for series where
[e) _1n
For any series Z a.. let converges absolutely. lan| = b}
n»
n=1
p= nlewnlanl. If p>1lorp=oco, the

series diverges.

Table 5.3 Summary of Convergence Tests
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Series or Test

Conclusions

Comments

If p=1, thetestis
inconclusive.

Table 5.3 Summary of Convergence Tests
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Student PROJECT

Series Converging to = and 1/z

Dozens of series exist that converge to z or an algebraic expression containing z. Here we look at several examples

and compare their rates of convergence. By rate of convergence, we mean the number of terms necessary for a partial
sum to be within a certain amount of the actual value. The series representations of 7 in the first two examples can be

explained using Maclaurin series, which are discussed in the next chapter. The third example relies on material beyond
the scope of this text.

1. The series

3

+

O

_ (= _ 4 4
”—4§ BT -

was discovered by Gregory and Leibniz in the late 1600s. This result follows from the Maclaurin series for

flx) = tan~! x. We will discuss this series in the next chapter.

Prove that this series converges.

Evaluate the partial sums S, for n = 10, 20, 50, 100.
c. Use the remainder estimate for alternating series to get a bound on the error R;,.
d. What is the smallest value of N that guarantees |Ry| < 0.01? Evaluate S .

2. The series

\- 2n)!
=6
i n;o 2+ nZ2n+ 1)

=6[%+ 1 (1)3+ 13 (L)5+ 1.3.5 (1)7+_,_]

2.3\2) "2.4.5°\2 2.4-6-72

has been attributed to Newton in the late 1600s. The proof of this result uses the Maclaurin series for
f(x) =sin"'x.

a. Prove that the series converges.

b. Evaluate the partial sums S, for n =5, 10, 20.
c. Compare S, to # for n =35, 10, 20 and discuss the number of correct decimal places.

3. The series

1__18 i": (4n)!(1103 + 26390n)

was discovered by Ramanujan in the early 1900s. William Gosper, Jr., used this series to calculate 7z to an
accuracy of more than 17 million digits in the mid-1980s. At the time, that was a world record. Since that

time, this series and others by Ramanujan have led mathematicians to find many other series representations
for # and 1/z.

a. Prove that this series converges.
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b. Evaluate the first term in this series. Compare this number with the value of z from a calculating
utility. To how many decimal places do these two numbers agree? What if we add the first two terms
in the series?

c. Investigate the life of Srinivasa Ramanujan (1887-1920) and write a brief summary. Ramanujan is

one of the most fascinating stories in the history of mathematics. He was basically self-taught, with no
formal training in mathematics, yet he contributed in highly original ways to many advanced areas of
mathematics.
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5.6 EXERCISES

o0

Use the ratio test to determine whether Z a, converges,
n=1

where a,, is given in the following problems. State if the

ratio test is inconclusive.

317. a, = 1/n!
318. a, = 10"/n!
319. g, =n2n2"
320. g, =n'022"

321.

322.

323. (2n)!

(o)
ngl n2n
o0
)

n=1

324. (2n)!

2n)"

(o]

)

n=1

325. !

(nle)"

326. (2n)!

)21’!

n=1 (nle

i (2" n!)2

i 22"

327.

o0
Use the root test to determine whether Z a, converges,
n=1

where a,, is as follows.

328. k
— (k=1
= (Zk + 3)

329. N

(i)
k“+3
330. _(nn)™
n=-—mn—

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2

331. a,=n/2"
332. a, =nle"
333. k¢
a, =%
k ek
334. k
ak = %
335. n
on=(L+1)
336 1
-
T+ k¥
337. _ (In(1 + Inn))"
" (Inn)"
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In the following exercises, use either the ratio test or the
root test as appropriate to determine whether the series

(o8]

Z a;, with given terms a; converges, or state if the test

k=1
is inconclusive.

338. , — k!
k= 1.3.5..2k=1)
339. , —2:4-6---2k
k (2k)!
340. _ 1-4-7--(3k—-2)
= 3Kk
341. n2
anz(l—%)
342.
(1 41 . ..
ak_(k+1+k+2+
2k
a}(/k to /k %.)
343.
(1 41 . ..
ak_(k+1+k+2+
344. an:(nl/n—l)"

1

*tak

k
) (Hint: Compare

[o0]

Use the ratio test to determine whether z a, converges,

or state if the ratio test is inconclusive.

n=1
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Use the root and limit comparison tests to determine
o0

whether Z a, converges.
n=1

347 a4, =1/x" where x,, :%xn"'x%,’ x; =1

(Hint: Find limit of {x,}.)

In the following exercises, use an appropriate test to
determine whether the series converges.

348. & (n+1)
n=1 n3+n2+n+1

d=nd+ 302 +3n+1

350. i (n+ 1)2
= nd+ (1"

351. 2 (n_ "
= (n+ n+ 1"
352. ; 2
a, = (1 +L2) (Hint: (1 +L2) xe.)
n n
. 2
353, 1pink
354. a,= o sin(1/k)
355. _1/n+2 n _ n!
an= 1"} ?) where () = K — 10!
356. ay = ll(ik)
357. ap= Zk/(zk)
358. k
_ k —
a = (757) (Hint:
—(k/Ink)Ink
= (1 +10k eIk )

525

359. k 2k
U= (k ¥ lnk)
—(k/Ink)Ink?
a,= (1 + %) J)

(Hint:

The following series converge by the ratio test. Use

summation by parts,
1 1
kzlak(bk+l_bk)=[an+lbn+l Z by 1(ap sy —ap,

to find the sum of the given series.

360.
2k

k=1

— (Hint: Take a; =k and by =

o0
z Lk’ where ¢ > 1 (Hint: Take a; =k and

by=c'"kic-1))

The kth term of each of the following series has a factor
x¥. Find the range of x for which the ratio test implies

that the series converges.

4 o0

k=1
368. on
Does there exist a number p such that s
=1
converges?

369. Let O0<r<1.
(o8]
Z nPr" converge?
n=1

For which real numbers p does
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Ap+1
dap

370. Suppose that nlew

‘ = p. For which values of

(o8]
p must Z 2"a, converge?
n=1

. |a .
371 Suppose that lim rclz+ 1‘ = p. For which values of
n— oo n
o0
r>0is Z r"a, guaranteed to converge?
n=1

372. Suppose  that

“’;Z—H <@m+DP  for all

n=1,2,... where p is a fixed real number. For which
[e8]
values of p is Z n! a, guaranteed to converge?

n=1

373. & -
For which values of r > 0, if any, does z '

n=1

k+1)

o0

o0
converge? (Hint: Z a, = Z
k=1

n=1

21
an.)
n=k2

374. Suppose that

a
’3—:2‘ <r<1 for all n. Can you

o0
conclude that Z a, converges?
n=1

375 Let a, = 2712 yhere [x] is the greatest integer

o0
less than or equal to x. Determine whether z ar
n=1

converges and justify your answer.

The following advanced exercises use a generalized ratio
test to determine convergence of some series that arise in
particular applications when tests in this chapter, including
the ratio and root test, are not powerful enough to determine

aj
a: < 1/2,

their convergence. The test states that if lim
n — oo

B : Dn+1
then Z a, converges, while if nll)mooa—n> 1/2,

then Z ay diverges.

376. _135 2n—1_1-3-5---@n-1)
Let an= =T M+ 1)

468 2n+2

Explain why the ratio test cannot determine convergence of
[©]

Z ay. Use the fact that 1 — 1/(4k) is increasing k to

n=1

Aop
ap*

estimate lim
n— oo
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377. Let

a, =1 2 .._n_1_ (n—=1)!
"1+ x2+x n+Hxn T (1+x2+x)-(n+x)

Show that a,,/a, < e™2/2. For which x> 0 does the
(o]

generalized ratio test imply convergence of Z an?
n=1

(Hint: Write 2a,,/a, as a product of n factors each

smaller than 1/(1 + x/(2n)).)

378. Inn a
Let a, = -L—. Show that -2 — 0 as n — co.
(nn) n
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CHAPTER 5 REVIEW

KEY TERMS

absolute convergence <

o0
if the series z la,| converges, the series Z a, is said to converge absolutely
n=1 n=1

alternating series °° +1 °°
a series of the form Z =D"""b, or Z (=1)"b,, where b,, >0, is called an alternating

n=1 n=1

series
alternating series test for an alternating series of either form, if b, , ; < b, forallintegers n > 1 and b, — 0, then
an alternating series converges

arithmetic sequence a sequence in which the difference between every pair of consecutive terms is the same is called an
arithmetic sequence

bounded above a sequence {a,} is bounded above if there exists a constant M such that a, < M for all positive

integers n

bounded below a sequence {a,} is bounded below if there exists a constant M such that M < a, for all positive

integers n

bounded sequence a sequence {a,} is bounded if there exists a constant M such that la,l < M for all positive

integers n

comparison test & <
if 0<a, <b, forall n > N and Z b, converges, then Z a, converges; if a, > b, >0 for

n=1 n=1
o0 [e0]
all n> N and Z b, diverges, then Z a, diverges
n=1 n=1
conditional convergence & & <
if the series Z a, converges, but the series Z la,| diverges, the series Z ay is said
n=1 n=1 n=1

to converge conditionally
convergence of a series a series converges if the sequence of partial sums for that series converges
convergent sequence a convergent sequence is a sequence {a,} for which there exists a real number L such that a,

is arbitrarily close to L as long as n is sufficiently large
divergence of a series a series diverges if the sequence of partial sums for that series diverges
divergence test R S )

if lim a, # 0, then the series Z a, diverges
n— o
n=1

divergent sequence a sequence that is not convergent is divergent

explicit formula a sequence may be defined by an explicit formula such that a, = f(n)

geometric sequence a sequence {a,} in which the ratio a, , |/a, is the same for all positive integers » is called a
geometric sequence

geometric series a geometric series is a series that can be written in the form

o0
Z ar" V=atar+ar*+ar’ + -

n=1

harmonic series the harmonic series takes the form
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" 1 1,1
Zﬁ:1+§ § “ee
n=1

index variable the subscript used to define the terms in a sequence is called the index

infinite series an infinite series is an expression of the form

(o8]
a1+a2+a3+ e = Z Aan
n=1
integral test S
for a series Z a, with positive terms a,, if there exists a continuous, decreasing function f such that
n=1
f(n) = a,, for all positive integers n, then
(53] [
Z anandf Jf(x)dx
n=1 1
either both converge or both diverge
limit comparison test ) = =
suppose a,, b, >0 forall n > 1. If nlewan/bn — L#0, then Z a, and Z b, both

n=1 n=1

00
converge or both diverge; if lim a,/b, - 0 and Z b, converges, then z a, converges. If
"o n=1 n=1

[e8] o0
nli)mooan/bn — o0, and Z b, diverges, then Z a, diverges
n=1 n=1
limit of a sequence the real number L to which a sequence converges is called the limit of the sequence

monotone sequence an increasing or decreasing sequence

p-series ) <
a series of the form z 1/nP

n=1

partial sum &
the kth partial sum of the infinite series Z ay is the finite sum

n=1

M~

Sk= an=a1+a2+a3+---+ak

n=1

ratio test = )
for a series Z a, with nonzero terms, let p = nll)moo|an +l/an|; if 0 <p <1, the series converges
n=1

absolutely; if p > 1, the series diverges; if p =1, the test is inconclusive

recurrence relation arecurrence relation is a relationship in which a term a,, in a sequence is defined in terms of earlier

terms in the sequence

remainder estimate R ) - ) ) )
for a series Z a, with positive terms a, and a continuous, decreasing function f such that
n=1
00 N
f(n) = a, forall positive integers 7, the remainder Ry = Z a, — Z a, satisfies the following estimate:
n=1 n=1

fN+ fQdx < Ry < fN F(x)dx

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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root test o)
for a series Z ap, let p= nli)moon\/lanl; if 0 < p <1, theseries converges absolutely; if p > 1, the series

sequence an ordered list of numbers of the form aq, a,, as,... is a sequence

telescoping series a telescoping series is one in which most of the terms cancel in each of the partial sums

term the number a,, in the sequence {a,} is called the nth term of the sequence

unbounded sequence a sequence that is not bounded is called unbounded

n=1

diverges; if p =1, the test is inconclusive

KEY EQUATIONS

Harmonic series

o0
14 1 1,1,
ngln_1+2+3+4+

Sum of a geometric series
o0

z ar" " 1=—9 fori <1
o= 1-r

Divergence test

o0
Ifa, » 0asn - oo, Z a, diverges.
n=1

p-series
i | [converges if p > 1
4= n? diverges if p < 1

Remainder estimate from the integral test

/N+ fQdx < Ry < fN F)dx

Alternating series

o0
D (1" by =by—by+by—by+ - or

n=1

o0
D (1)'by= by +by—by+by— -

n=1

KEY CONCEPTS

5.1 Sequences

To determine the convergence of a sequence given by an explicit formula a, = f(n),

limits for functions.

529

we use the properties of

If {a,} and {b,} are convergent sequences that converge to A and B, respectively, and ¢ is any real number,

then the sequence {ca,} convergesto c-A, thesequences {a, = b,} convergeto A + B, the sequence {a,-b,}

converges to A - B, and the sequence {a,/b,} convergesto A/B, provided B # 0.

If a sequence is bounded and monotone, then it converges, but not all convergent sequences are monotone.
If a sequence is unbounded, it diverges, but not all divergent sequences are unbounded.

The geometric sequence {r"} converges if and only if |rl < 1 or r = 1.
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5.2 Infinite Series

¢ Given the infinite series

[os]

Z ap=aj+ar,+az+--

n=1

and the corresponding sequence of partial sums {S;} where

k
Sy = z ap=da;+astaz+--+a,

n=1

the series converges if and only if the sequence {S;} converges.

(o]

¢ The geometric series Z ar" =1 converges if |r| < 1 and diverges if |r| > 1. For |r| < 1,
n=1

¢ The harmonic series

Y 1 1,1
Zﬁ=1+§+§+---
n=1

diverges.

(o8]
« Aseries of the form ) [by — b, 4 11 = [by = byl + [by — b3l + [b3 = byl + - + [by— by, 4 11+ -

n=1
is a telescoping series. The kth partial sum of this series is given by S; = b| — b; . ;. The series will converge if

and only if lim b, , ; exists. In that case,
k— oo

5.3 The Divergence and Integral Tests

(o]

o If nll)mooan # 0, then the series 21 ay diverges.
n=
o0
o If nli)mooa n =0, the series Zl a, may converge or diverge.
n=

[e8]
o If z a, is a series with positive terms a, and f is a continuous, decreasing function such that f(n) = a, for
n=1

all positive integers n, then

[os]

Y ayand [ ” Foodx

n=1 1
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o0
either both converge or both diverge. Furthermore, if Z a, converges, then the Nth partial sum approximation
n=1

(o] o0
S is accurate up to an error R where f f)dx <Ry < f f(x)dx.
N+1 N

o0
¢ The p-series Z 1/n? converges if p > 1 and diverges if p < 1.

n=1

5.4 Comparison Tests

¢ The comparison tests are used to determine convergence or divergence of series with positive terms.
00

¢ When using the comparison tests, a series Z a, is often compared to a geometric or p-series.
n=1

5.5 Alternating Series

o0
e For an alternating series Z (-n"+t ! by, if by, <b; forall k and b, — 0 as k — co, the alternating
n=1

series converges.

o0 (o]
o If Z la,l converges, then Z a, converges.

n=1 n=1

5.6 Ratio and Root Tests

¢ For the ratio test, we consider

— 41
P =M=
00
If p <1, the series Z a, converges absolutely. If p > 1, the series diverges. If p =1, the test does not
n=1

provide any information. This test is useful for series whose terms involve factorials.

¢ For the root test, we consider

p = lim Via
n=oo' M

(o8]

If p< 1, the series Z a, converges absolutely. If p > 1, the series diverges. If p =1, the test does not
n=1

provide any information. The root test is useful for series whose terms involve powers.

¢ For a series that is similar to a geometric series or p — series, consider one of the comparison tests.

CHAPTER 5 REVIEW EXERCISES

True or False? Justify your answer with a proof or a ) = )
counterexample. 380. If nleooa” # 0, then 21 a, diverges.
[ n=
379. If nleman =0, then Z] a, converges.
n=

(o] (o]
381. If Z la,l converges, then Z a, converges.

n=1 n=1
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0 0
382, If Z 2"a, converges, then Z -2"a,
n=1 n=1
converges.

Is the sequence bounded, monotone, and convergent or
divergent? If it is convergent, find the limit.

2
383. a,= %

384. a, = ln(%)

385. q,=1001+D
n+1
n+1
386. a,= 25n
387. a, = 1nCosn)

Is the series convergent or divergent?

(e8]
1
388. R E——
n;1 n?+5n+4

389. i (1)
n=1
& n
390. ) 2
n=1n
o0 en
391. ngl &

00
392, Z n—(n + 1/n)

n=1

Is the series convergent or divergent? If convergent, is it
absolutely convergent?

394. i EDnt

n
n=1 3
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o)
(=D"n!
395. —t
X
396. Y. sin(1Z)

o0
397. Z cos(zn)e ™"

n=1
Evaluate
= 4
398. n;l 2';:
oo
399, ngl m

400. A legend from India tells that a mathematician
invented chess for a king. The king enjoyed the game so
much he allowed the mathematician to demand any
payment. The mathematician asked for one grain of rice
for the first square on the chessboard, two grains of rice
for the second square on the chessboard, and so on. Find
an exact expression for the total payment (in grains of
rice) requested by the mathematician. Assuming there are
30,000 grains of rice in 1 pound, and 2000 pounds in 1

ton, how many tons of rice did the mathematician attempt
to receive?

The following problems consider a simple population
model of the housefly, which can be exhibited by the
recursive formula x, ., =bx, where x, is the

and b is the

average number of offspring per housefly who survive to
the next generation. Assume a starting population x,.

population of houseflies at generation n,

401. Find nli)mooxn ifb>1, b<1, and b=1.

n
402. Find an expression for S, = z x; in terms of b
i=0

and x,. What does it physically represent?
403. 1f b= and xo =100, find Sy and  lim S,

404. For what values of b will the series converge and
diverge? What does the series converge to?
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6 | POWER SERIES

Figure 6.1 If you win a lottery, do you get more money by taking a lump-sum payment or by accepting fixed payments over
time? (credit: modification of work by Robert Huffstutter, Flickr)

Chapter Outline

6.1 Power Series and Functions
6.2 Properties of Power Series
6.3 Taylor and Maclaurin Series
6.4 Working with Taylor Series

Introduction

When winning a lottery, sometimes an individual has an option of receiving winnings in one lump-sum payment or receiving
smaller payments over fixed time intervals. For example, you might have the option of receiving 20 million dollars today
or receiving 1.5 million dollars each year for the next 20 years. Which is the better deal? Certainly 1.5 million dollars over
20 years is equivalent to 30 million dollars. However, receiving the 20 million dollars today would allow you to invest the
money.

Alternatively, what if you were guaranteed to receive 1 million dollars every year indefinitely (extending to your heirs) or
receive 20 million dollars today. Which would be the better deal? To answer these questions, you need to know how to use
infinite series to calculate the value of periodic payments over time in terms of today’s dollars (see Example 6.7).

o0
An infinite series of the form Z ¢, x" is known as a power series. Since the terms contain the variable x, power series
n=0

can be used to define functions. They can be used to represent given functions, but they are also important because they
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allow us to write functions that cannot be expressed any other way than as “infinite polynomials.” In addition, power series
can be easily differentiated and integrated, thus being useful in solving differential equations and integrating complicated
functions. An infinite series can also be truncated, resulting in a finite polynomial that we can use to approximate functional
values. Power series have applications in a variety of fields, including physics, chemistry, biology, and economics. As we
will see in this chapter, representing functions using power series allows us to solve mathematical problems that cannot be
solved with other techniques.

6.1 | Power Series and Functions

Learning Objectives

6.1.1 Identify a power series and provide examples of them.
6.1.2 Determine the radius of convergence and interval of convergence of a power series.
6.1.3 Use a power series to represent a function.

A power series is a type of series with terms involving a variable. More specifically, if the variable is x, then all the terms
of the series involve powers of x. As a result, a power series can be thought of as an infinite polynomial. Power series are
used to represent common functions and also to define new functions. In this section we define power series and show how
to determine when a power series converges and when it diverges. We also show how to represent certain functions using
power series.

Form of a Power Series

A series of the form
o0
n_ 2
cpXx " =cogtcpx+cyx+ e,
n=0
where x is a variable and the coefficients c, are constants, is known as a power series. The series

(o8]
l+x+x2 4= ) %"
n=20

is an example of a power series. Since this series is a geometric series with ratio » = |xI, we know that it converges if

lxl < 1 and diverges if |x| > 1.

Definition

A series of the form

S ) (6.1)
Z cnx"=copt e x+cyxt4
n=0
is a power series centered at x = 0. A series of the form
S n ) (6.2)
Z chnx—a)'=cotci(x—a)+cy(x—a)"+ -
n=20

is a power series centered at x = a.

To make this definition precise, we stipulate that x%=1 and (x— a)O =1 evenwhen x =0 and x = a, respectively.

The series
& n
Z S I e cuNip S
n!
n=0

and
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0
Z A =1+ x+ 22 + 306 + -
n=0

are both power series centered at x = (. The series

(o]

(x=2)"

x=-2° =27
P oNCES R - -

3.32 4.33

_ x—2
=1+ 5.3 +

is a power series centered at x = 2.

Convergence of a Power Series

Since the terms in a power series involve a variable x, the series may converge for certain values of x and diverge for other
values of x. For a power series centered at x = a, the value of the series at x = a is given by c(. Therefore, a power

series always converges at its center. Some power series converge only at that value of x. Most power series, however,
converge for more than one value of x. In that case, the power series either converges for all real numbers x or converges

(e8]
for all x in a finite interval. For example, the geometric series Z x" converges for all x in the interval (-1, 1), but
n=0

diverges for all x outside that interval. We now summarize these three possibilities for a general power series.

Theorem 6.1: Convergence of a Power Series

0

Consider the power series Z ¢, (x — a)". The series satisfies exactly one of the following properties:
n=0

i. The series converges at x = a and diverges for all x # a.

ii. The series converges for all real numbers x.

ili. There exists a real number R > 0 such that the series converges if |x —al < R and diverges if |x —al > R.

At the values x where |x — al = R, the series may converge or diverge.

Proof

Suppose that the power series is centered at @ = 0. (For a series centered at a value of a other than zero, the result follows
(o]

by letting y = x — a and considering the series Z ¢, y".) We must first prove the following fact:
n=1
(o] (o]
If there exists a real number d # 0 such that z c,d" converges, then the series z ¢, x" converges absolutely for
n=0 n=0
all x such that |x| < |d]|.

o0

Since Z ¢,d" converges, the nth term c,d" — 0 as n — co. Therefore, there exists an integer N such that
n=0

lcnd"| <1 forall n > N. Writing

|Cn xn| = |Cn dnl

n
X
i

we conclude that, forall n > N,

n

ens"] <[

The series
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n

Ny X
P
[e5)

is a geometric series that converges if %‘ < 1. Therefore, by the comparison test, we conclude that Z cpx" also
n=N

(o8]
converges for |x| < |d|. Since we can add a finite number of terms to a convergent series, we conclude that Z cpx"
n=0

converges for |x| < |d|.

With this result, we can now prove the theorem. Consider the series

(o)

Z a,x"

n=0
and let S be the set of real numbers for which the series converges. Suppose that the set S = {0}. Then the series falls
under case i. Suppose that the set S is the set of all real numbers. Then the series falls under case ii. Suppose that S # {0}
and S is not the set of real numbers. Then there exists a real number x* # 0 such that the series does not converge. Thus,
the series cannot converge for any x such that |x| > |x *|. Therefore, the set S must be a bounded set, which means that it

must have a smallest upper bound. (This fact follows from the Least Upper Bound Property for the real numbers, which is
beyond the scope of this text and is covered in real analysis courses.) Call that smallest upper bound R. Since S # {0},

the number R > 0. Therefore, the series converges for all x such that |x| < R, and the series falls into case iii.

O
o0
If a series Z ¢, (x —a)" falls into case iii. of Convergence of a Power Series, then the series converges for all x
n=20
such that |x —al < R for some R > 0, and diverges for all x such that |x — al > R. The series may converge or diverge
o0
at the values x where |x —al = R. The set of values x for which the series Z ¢ (x —a)" converges is known as the
n=0
interval of convergence. Since the series diverges for all values x where |x — al > R, the length of the interval is 2R, and

therefore, the radius of the interval is R. The value R is called the radius of convergence. For example, since the series
[©]

Z x" converges for all values x in the interval (—1, 1) and diverges for all values x such that [x| > 1, the interval of
n=0

convergence of this series is (—1, 1). Since the length of the interval is 2, the radius of convergence is 1.

Definition

()

Consider the power series Z ¢, (x —a)". The set of real numbers x where the series converges is the interval
n=0

of convergence. If there exists a real number R > 0 such that the series converges for |x —al < R and diverges
for |Ix —al > R, then R is the radius of convergence. If the series converges only at x = a, we say the radius of
convergence is R = 0. If the series converges for all real numbers x, we say the radius of convergence is R = oo
(Figure 6.2).
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Diverges Converges Diverges

A A
' A4 h
- & -
M x
a
@)
Converges
M
r A
= } -~
a
(b)
Diverges Converges Diverges
- % - °r = &
- h's L h's
o A T A "'(
a—R a at+Rr
(©
(o]
Figure 6.2 For a series z ¢ (x —a)" graph (a) shows a
n=0

radius of convergence at R = 0, graph (b) shows a radius of
convergence at R = oo, and graph (c) shows a radius of

convergence at R. For graph (c) we note that the series may or
may not converge at the endpoints x =a+ R and x =a — R.

To determine the interval of convergence for a power series, we typically apply the ratio test. In Example 6.1, we show
the three different possibilities illustrated in Figure 6.2.

Example 6.1

Finding the Interval and Radius of Convergence

For each of the following series, find the interval and radius of convergence.

o n
d. —'
nzon.
o0
b. Z n!x"
n=0
x=2)"
¢ ngo(n+1)3”
Solution

a. To check for convergence, apply the ratio test. We have
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xn+1

p = lim_ (1 D)

n!

=

xn+1

LN [ T

xn+1

. |
lim |[—%— .7
n—>oo(n+1)-nl x"

= lim‘ X
n—ooln+ 1

— : 1
=M, T

=0<1

for all values of x. Therefore, the series converges for all real numbers x. The interval of convergence is
(—o0, 00) and the radius of convergence is R = .

b. Apply the ratio test. For x # 0, we see that

lim m+ DHIx"*!
n— oo n!x"

S
I

nleml(n + x|

Il lim_(n + 1)

= 0.

Therefore, the series diverges for all x # 0. Since the series is centered at x =0, it must converge
there, so the series converges only for x # 0. The interval of convergence is the single value x = 0 and

the radius of convergence is R = 0.
c. In order to apply the ratio test, consider

(x—2)"+1

n+23"+1
n=oo| (x-2)"

(n+1)3"

— g 6= @t 137
n—»oo(n+2)3n+l (x—2)"|
= Jim |62+ D
=300+ 2)

=2

3

Theratio p < 1 if |x — 2] < 3. Since |x — 2| < 3 implies that —3 < x —2 < 3, the series converges
absolutely if —1 < x < 5. Theratio p > 1 if |x — 2| > 3. Therefore, the series diverges if x < —1 or

x> 5. The ratio test is inconclusive if p = 1. The ratio p =1 if and only if x =—1 or x=5. We
need to test these values of x separately. For x = —1, the series is given by
(o]
(G0 N IS I A
PR R R
n=0
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Since this is the alternating harmonic series, it converges. Thus, the series converges at x = —1. For
x =5, the series is given by

o0
1 gLl 1.
n§0n+1_1+2+3+4+ :

This is the harmonic series, which is divergent. Therefore, the power series diverges at x = 5. We
conclude that the interval of convergence is [—1, 5) and the radius of convergence is R = 3.

n

@6'1 ind the interval and radius of for th 'ix
Fin e 1nterval and radius oI convergence for the series S~ W

Representing Functions as Power Series

Being able to represent a function by an “infinite polynomial” is a powerful tool. Polynomial functions are the easiest
functions to analyze, since they only involve the basic arithmetic operations of addition, subtraction, multiplication, and
division. If we can represent a complicated function by an infinite polynomial, we can use the polynomial representation to
differentiate or integrate it. In addition, we can use a truncated version of the polynomial expression to approximate values
of the function. So, the question is, when can we represent a function by a power series?

Consider again the geometric series

) (6.3)
l+x+x2+x0 4 = Z x".
n=0

Recall that the geometric series

a+ar+ar’ +ar + -

converges if and only if |r| < 1. In that case, it converges to I f p Therefore, if 1x| < 1, the series in Example 6.3
converges to l " and we write
l+x4+x24x0 4 = 1leorlxl < 1.
As a result, we are able to represent the function f(x) = %—x by the power series
1+x+x2+x>+ - whenlx < 1.
We now show graphically how this series provides a representation for the function f(x) = %—x by comparing the graph

of fwith the graphs of several of the partial sums of this infinite series.

Example 6.2

Graphing a Function and Partial Sums of its Power Series
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N
Sketch a graph of f(x) = llx and the graphs of the corresponding partial sums Sy (x) = Z x" for
n=0

N =2,4, 6 ontheinterval (—1, 1). Comment on the approximation S as N increases.

Solution

From the graph in Figure 6.3 you see that as N increases, S, becomes a better approximation for f(x) = I l

for x in the interval (-1, 1).

S

-1 -05 o5 1 X
Figure 6.3 The graph shows a function and three
approximations of it by partial sums of a power series.

6.2 N
@ Sketch a graph of f(x) =1 1 3 and the corresponding partial sums Sy (x) = Z 2 for
n=0

N =2, 4, 6 onthe interval (-1, 1).

Next we consider functions involving an expression similar to the sum of a geometric series and show how to represent
these functions using power series.

Example 6.3

Representing a Function with a Power Series

Use a power series to represent each of the following functions f. Find the interval of convergence.

1
a. f(x)=
/ 1+x°
2
b. f(x)=—%
! 4 — x?
Solution

a. You should recognize this function f as the sum of a geometric series, because
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1
1+x> 1- (—x3)'

a

Using the fact that, for |r] < 1, T—

" is the sum of the geometric series

o0
z ar = a+ar+ar* + -,
n=0

we see that, for |—x3| <1,

I
M
—~
>I<K))
\—/S

n=0

=1-3+x0 -+

Since this series converges if and only if ‘—xS | < 1, the interval of convergence is (—1, 1), and we

have

1 :1—x3+x6—x9+---f0r|xl< 1.

1+

b. This function is not in the exact form of a sum of a geometric series. However, with a little algebraic
manipulation, we can relate fto a geometric series. By factoring 4 out of the two terms in the denominator,

we obtain
x2 — x2
412 1— 2
<)
AR
o1-6)
Therefore, we have
x2 — x2
4—x a1 - (1)2
2
x2
— 4

,_.
|
—~~

[SIB)
N —

(3]

) 2
- 2,560

) )

Solving this inequality, we conclude that the interval of convergence is (-2, 2) and

2 2

The series converges as long as < 1 (note that when =1 the series does not converge).




542

Chapter 6 | Power Series

for |x| < 2.

6.3 . 3 . ) . .
@ Represent the function f(x) = =%— using a power series and find the interval of convergence.

2—x

In the remaining sections of this chapter, we will show ways of deriving power series representations for many other
functions, and how we can make use of these representations to evaluate, differentiate, and integrate various functions.
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6.1 EXERCISES

In the following exercises, state whether each statement is
true, or give an example to show that it is false.

1. <
If Z a,x" converges, then a,x" = 0 as n — oo.
n=1
2 00
Z a,x" converges at x =0 for any real numbers
n=1

a.

3. Given any sequence a,, there is always some R > 0,
o0

possibly very small, such that z a,x" converges on
n=1

(=R, R).

4. )
If Z a, x" has radius of convergence R > 0 and if
n=1

|6, < layl for all n, then the radius of convergence of

o0
z b, x" is greater than or equal to R.
n=1

5. &
Suppose that 2 a,(x—3)" converges at x = 6. At
n=0

which of the following points must the series also

converge? Use the fact that if Z a,(x—c)" converges at

X, then it converges at any point closer to c than x.

a x=1

b. x=2

c. x=3

d x=0

e. x=599

f.  x=0.000001

543

6. S
Suppose that Z a,(x+1)" converges at x = —2.

n=0
At which of the following points must the series also

converge? Use the fact that if Z a,(x—c)" converges at

X, then it converges at any point closer to c than x.

a. x=2
b. x=-1
c. x=-3
d x=0
e. x=0.99

f. x=0.000001

a
: - +1
In the following exercises, suppose that 'C’l—n| -1 as

n — oo. Find the radius of convergence for each series.

7. &
Z a, 2" x"

10. i": a,(=D"x"
=0 10"

11. & 9
> an (="

n=20

12. & 5
D an (="
n=0
In the following exercises, find the radius of convergence

R and interval of convergence for Z a, x" with the given

coefficients a,.
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15. & n

16. & n

(o]
17 Z nle’l
2n

18. & k
2 K

0
19. Z 2Kk
"

20. &
2

2. &

22, & n X"
Z =D ln(2n)

n=

In the following exercises, find the radius of convergence
of each series.

23 (k)2
(26!

k=1

24. i 2n)!x"
= n2n

25, &
Zf 1-3.5- (2k—1) x
26 SN 2462k &
= @R!
27. & n
n; @ where (Z)=k'(nn—ik)'
n

28. &
Z sin? nx"

In the following exercises, use the ratio test to determine
the radius of convergence of each series.
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29, & (n')3
Gn)!™

30. i 2 ()’

= (3n)!
31. i nln
n
n=1"
32. i (2n)'
= n2n
1 [o0]
. . . _ n
In the following exercises, given that %= n;ox

with convergence in (—1, 1), find the power series for

each function with the given center a, and identify its
interval of convergence.

33. S =5 a=1 (Hint: 5 1=

1
(-2

34. fx) =

1 .
ca=0

35 f)=—%2—;a=0
! 1—x2

36. fe— L .,
f=res?

2
37. f()C) — X 2;6120
1+x

38. fx) = a=1

. f0=1Llia=0.

40, p) = 1_4 S a=0
Ay = 1_)sz2’a_0
2 f<x>=5_4x—xz+2;a_2

Use the next exercise to find the radius of convergence of
the given series in the subsequent exercises.
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43. Explain  why, if lay Un  r>o, then
lan x"|''" — |xir < 1 whenever |x| < % and, therefore,
[oe]
the radius of convergence of Z a,x"is R= %
n=1
o0
44. 2 X
n
n=1"
0 k
= \2k+3
46. 2 k
(M) Xk
=\ k+3
47. & n
Z ay = (nlln _ 1) X"
n=1
48. <
Suppose that p(x) = z a,x" suchthat a, =0 ifn
n=0
is even. Explain why p(x) = p(—x).
49. <
Suppose that p(x) = Z a,x" suchthat a, =0 ifn
n=0
is odd. Explain why p(x) = —p(—x).
50. <
Suppose that p(x) = z a,x" converges on
n=0

(=1, 1]. Find the interval of convergence of p(Ax).

51. <
Suppose that p(x) = Z a,x"™ converges on
n=20

(=1, 1]. Find the interval of convergence of p(2x — 1).

(o)

In the following exercises, suppose that p(x) = Z ayx"
n=0
o . a
satisfies lim YC‘Z—H =1 where a, > 0 for each n. State
n — oo n

whether each series converges on the full interval
(=1, 1), or if there is not enough information to draw a

conclusion. Use the comparison test when appropriate.

52. i a 2

545
54, & 5
Z app X" (Hint:x = +Vx?)
n=0
55. 2 5
Z anzx” (Hint: Let by = ay, if k =n~ for some
n=0

n, otherwise b, = 0.)

56. Suppose that p(x) is a polynomial of degree N. Find

o0
the radius and interval of convergence of Z pm)x".
n=1

57. [T] Plot the graphs of 1 lx

and of the partial sums

N
Sy = Z x" for n=10,20,30 on the interval
n=0

1
1—x

by Sp near x = —1 and near x =1 as N increases.

[—0.99, 0.99]. Comment on the approximation of

58. [T] Plot the graphs of —In(1 —x) and of the partial

N n
sums Sy = z XT for n =10, 50, 100 on the interval

n=1

[—0.99, 0.99]. Comment on the behavior of the sums near

x=—1 and near x = 1 as N increases.

59. N
[T] Plot the graphs of the partial sums §,, = z x_2

n=1n

for n=10, 50, 100 on the interval [—0.99, 0.99].

Comment on the behavior of the sums near x = —1 and

near x = 1 as N increases.

60. [T] Plot the graphs of the partial sums

N
Sy= Q. sinnx" for n=10, 50, 100 on the interval
n=1

[—0.99, 0.99]. Comment on the behavior of the sums near

x=—1 andnear x = 1 as N increases.

61. [T] Plot the graphs of the partial sums

s i prA T 3,5,10 on th
N—nzo(—)m or n=»>5,), on the

interval [—2#z, 27]. Comment on how these plots

approximate sinx as N increases.

62. [T] Plot the
ul 2n

Sy = Z (=" 2= for n=3,5, 10 on the interval
o DG

graphs of the partial sums

[-27, 27]. Comment on how these plots approximate

cosx as N increases.
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6.2 | Properties of Power Series

Learning Objectives

6.2.1 Combine power series by addition or subtraction.

6.2.2 Create a new power series by multiplication by a power of the variable or a constant, or by
substitution.

6.2.3 Multiply two power series together.
6.2.4 Differentiate and integrate power series term-by-term.

In the preceding section on power series and functions we showed how to represent certain functions using power series.
In this section we discuss how power series can be combined, differentiated, or integrated to create new power series. This
capability is particularly useful for a couple of reasons. First, it allows us to find power series representations for certain

elementary functions, by writing those functions in terms of functions with known power series. For example, given the

power series representation for f(x) = ;, we can find a power series representation for f’(x) = % Second,

1—x 1-x
being able to create power series allows us to define new functions that cannot be written in terms of elementary functions.
This capability is particularly useful for solving differential equations for which there is no solution in terms of elementary
functions.

Combining Power Series

If we have two power series with the same interval of convergence, we can add or subtract the two series to create a new
power series, also with the same interval of convergence. Similarly, we can multiply a power series by a power of x or
evaluate a power series at x™ for a positive integer m to create a new power series. Being able to do this allows us to find

power series representations for certain functions by using power series representations of other functions. For example,

since we know the power series representation for f(x) = ;x’ we can find power series representations for related

1
functions, such as

— _3x -_ 1
y= 1_x2andy_(x—1)(x—3)'

In Combining Power Series we state results regarding addition or subtraction of power series, composition of a power
series, and multiplication of a power series by a power of the variable. For simplicity, we state the theorem for power series
centered at x = (. Similar results hold for power series centered at x = a.

Theorem 6.2: Combining Power Series

o0 o0
Suppose that the two power series Z cpx" and Z d,x" converge to the functions f and g, respectively, on a
n=0 n=0

common interval I.

o0
i. The power series Z (cnx™ + dyx") convergesto f+ g onl
n=0

o0
ii. For any integer m > 0 and any real number b, the power series Z bx™ ¢, x" converges to bx™ f(x) on L.
n=0

(o)

iii. For any integer m > 0 and any real number b, the series Z ¢, (bx™)" converges to f(bx™) for all x such
n=0

that bx™ isin L.
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Proof
o0

o0 o0
We prove i. in the case of the series Z (cpx" +d,x"). Suppose that Z cpx" and Z d,x" converge to the
n=0 n=0 n=0

functions f and g, respectively, on the interval I. Let x be a point in I and let S (x) and T (x) denote the Nth partial sums

o0 o0
of the series Z cpx" and Z d,x", respectively. Then the sequence {S (x)} converges to f(x) and the sequence
n=0 n=0

o0
{T (x)} converges to g(x). Furthermore, the Nth partial sum of Z (cnx"+dyx") is
n=0

N N N
Z (cnx"+dyx") = Z cpxt+ Z dyx"
n=0 n=0 n=0
Because
Nli_r)noo(S N +Ty (x)) = Nli_r)nooS N+ Nli—I>nooTN (%)

= f( + g,
o0
we conclude that the series Z (cpx" +d,x") converges to f(x) + g(x).
n=0

O

We examine products of power series in a later theorem. First, we show several applications of Combining Power Series
and how to find the interval of convergence of a power series given the interval of convergence of a related power series.

Example 6.4

Combining Power Series

o0

Suppose that Z a,x" is a power series whose interval of convergence is (—1, 1), and suppose that
n=0

o0
Z b, x" is a power series whose interval of convergence is (-2, 2).
n=0

(o]
a. Find the interval of convergence of the series Z (@nx™ + by x").
n=0

o0
b. Find the interval of convergence of the series Z a,3"x".
n=0

Solution

(o8]
a. Since the interval (—1, 1) is a common interval of convergence of the series Z a,x" and
n=0

o0
Z b, x", the interval of convergence of the series Z (@nx™+byx") is (-1, 1).
n=0 n=0
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o]

b. Since Z a,x" is a power series centered at zero with radius of convergence 1, it converges for all x in
n=0

the interval (—1, 1). By Combining Power Series, the series

o0 o0
Z a,3"x" = Z a, (3x)"

n=0 n=0

converges if 3x is in the interval (—1, 1). Therefore, the series converges for all x in the interval

Fhd)

6.4 =
@/ Suppose that Z a,x" has an interval of convergence of (—1, 1). Find the interval of convergence of

n=0
IRACH
n=0

In the next example, we show how to use Combining Power Series and the power series for a funct