
Object-Oriented Programming (OOP) with
Java

Collection Editor:
R.G. (Dick) Baldwin

Object-Oriented Programming (OOP) with
Java

Collection Editor:
R.G. (Dick) Baldwin

Authors:
R.G. (Dick) Baldwin
R.L. Martinez, PhD

Online:
< http://cnx.org/content/col11441/1.206/ >

OpenStax-CNX

This selection and arrangement of content as a collection is copyrighted by R.G. (Dick) Baldwin. It is licensed under

the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

Collection structure revised: November 26, 2016

PDF generated: November 28, 2016

For copyright and attribution information for the modules contained in this collection, see p. 2679.

Table of Contents

1 Preface
1.1 Jy0010: Preface to OOP with Java . 1

2 Programming Fundamentals

2.1 Jb0103 Preface to Programming Fundamentals with Java . 5
2.2 Jb0105: Java OOP: Similarities and Di�erences between Java and C++ . 7
2.3 Jb0110: Java OOP: Programming Fundamentals, Getting Started . 11
2.4 Jb0110r Review . 17
2.5 Jb0115: Java OOP: First Program . 21
2.6 Jb0120: Java OOP: A Gentle Introduction to Java Programming . 26
2.7 Jb0120r Review . 34
2.8 Jb0130: Java OOP: A Gentle Introduction to Methods in Java . 39
2.9 Jb0130r Review . 47
2.10 Jb0140: Java OOP: Java comments . 52
2.11 Jb0140r Review . 58
2.12 Jb0150: Java OOP: A Gentle Introduction to Java Data Types . 61
2.13 Jb0150r Review . 75
2.14 Jb0160: Java OOP: Hello World 83
2.15 Jb0160r Review . 90
2.16 Jb0170: Java OOP: A little more information about classes. 96
2.17 Jb0170r: Review . 99
2.18 Jb0180: Java OOP: The main method. 102
2.19 Jb0180r Review . 107
2.20 Jb0190: Java OOP: Using the System and PrintStream Classes . 111
2.21 Jb0190r: Review . 116
2.22 Jb0200: Java OOP: Variables . 122
2.23 Jb0200r: Review . 137
2.24 Jb0210: Java OOP: Operators 149
2.25 Jb0210r Review . 159
2.26 Jb0220: Java OOP: Statements and Expressions 176
2.27 Jb0220r Review . 179
2.28 Jb0230: Java OOP: Flow of Control . 183
2.29 Jb0230r Review . 200
2.30 Jb0240: Java OOP: Arrays and Strings 208
2.31 Jb0240r Review . 222
2.32 Jb0250: Java OOP: Brief Introduction to Exceptions . 230
2.33 Jb0260: Java OOP: Command-Line Arguments . 233
2.34 Jb0260r Review . 237
2.35 Jb0270: Java OOP: Packages 241
2.36 Jb0280: Java OOP: String and StringBu�er . 250
2.37 Jb0280r Review . 261
2.38 Jb0290: The end of Programming Fundamentals . 270

3 ITSE 2321 Object-Oriented Programming (Java)

3.1 Preface . 273
3.2 Essence of OOP . 301
3.3 Multimedia 503
3.4 The Java Collections Framework 906
3.5 Practice Programs 1186

4 ITSE2317 - Java Programming (Intermediate)

iv

4.1 Preface 1225
4.2 Essence of OOP . 1227
4.3 Generics 1312
4.4 Event Handling . 1437
4.5 JavaServer Pages (JSP) . 1984

5 INEW 2338 Advanced Java (Web)

5.1 Preface 1987
5.2 Network Programming . 1989
5.3 Search Engines . 2090
5.4 Servlets . 2099
5.5 JSON . 2210
5.6 Frameworks . 2308

6 GAME 2302 - Mathematical Applications for Game Development

6.1 Jy0040: GAME2302: Mathematical Applications for Game Development 2311

7 OOP Self-Assessment
7.1 Ap0005: Preface to OOP Self-Assessment 2313
7.2 Ap0010: Self-assessment, Primitive Types . 2314
7.3 Ap0020: Self-assessment, Assignment and Arithmetic Operators . 2336
7.4 Ap0030: Self-assessment, Relational Operators, Increment Operator, and Control

Structures . 2364
7.5 Ap0040: Self-assessment, Logical Operations, Numeric Casting, String Concate-

nation, and the toString Method . 2390
7.6 Ap0050: Self-assessment, Escape Character Sequences and Arrays . 2410
7.7 Ap0060: Self-assessment, More on Arrays 2438
7.8 Ap0070: Self-assessment, Method Overloading . 2463
7.9 Ap0080: Self-assessment, Classes, Constructors, and Accessor Methods 2480
7.10 Ap0090: Self-assessment, the super keyword, �nal keyword, and static methods 2500
7.11 Ap0100: Self-assessment, The this keyword, static �nal variables, and initializa-

tion of instance variables 2518
7.12 Ap0110: Self-assessment, Extending classes, overriding methods, and polymor-

phic behavior . 2541
7.13 Ap0120: Self-assessment, Interfaces and polymorphic behavior 2562
7.14 Ap0130: Self-assessment, Comparing objects, packages, import directives, and

some common exceptions . 2593
7.15 Ap0140: Self-assessment, Type conversion, casting, common exceptions, public

class �les, javadoc comments and directives, and null references . 2613

8 Anatomy of a Game Engine

8.1 Jy0060: Anatomy of a Game Engine 2635

9 Principles of Object-Oriented Programming

9.1 Jy0070-Principles of Object-Oriented Programming 2637

10 Programming Oldies But Goodies

10.1 Jy0050: Programming Oldies But Goodies . 2639

11 Objects First

11.1 Gf0100: Objects First with Greenfoot . 2641

12 Appendices

12.1 Java3140 Java OOP Java Documentation . 2647

Index . 2663
Attributions . 2679

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

Chapter 1

Preface

1.1 Jy0010: Preface to OOP with Java1

1.1.1 Table of Contents

• Welcome (p. 1)
• Getting started with Java programming (p. 2)

· The JDK and the JRE (p. 3)
· The Java API documentation (p. 3)
· A suitable text editor (p. 3)

• Miscellaneous (p. 4)

1.1.2 Welcome

Welcome to my collection titled Object-Oriented Programming (OOP) with Java .
During the past nineteen years, I have published hundreds of Java and OOP programming tutorials on

a variety of di�erent topics and websites. I have also developed the teaching materials for several di�erent
college-level programming courses in Java/OOP.

A work in progress
This is a work in progress. I am currently combining selected content from those earlier endeavors with

new material that I am developing to create a freely downloadable Book that covers Java/OOP programming
from programming fundamentals to very advanced OOP concepts.

Among other things, the collection contains the material that I use to teach the following courses at
Austin Community College in Austin Texas:

• ITSE 2321 - Object-Oriented Programming (Java) 2

• ITSE2317 - Java Programming (Intermediate) 3

• INEW2338 - Advanced Java Programming 4

• GAME 2302 Mathematical Applications for Game Development 5

The collection also includes:

1This content is available online at <http://cnx.org/content/m45136/1.19/>.
2http://cnx.org/contents/-2RmHFs_:6GrxCfXx
3http://cnx.org/contents/-2RmHFs_:JVTd7bX1
4http://cnx.org/contents/-2RmHFs_:boF3E5Bs
5http://cnx.org/contents/Ki_nRUo6:SGyUbirS

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1

2 CHAPTER 1. PREFACE

• An OOP self-assessment test 6

• Course materials for a complete course in Programming Fundamentals 7

Because it is a work in progress, the collection is growing on a daily basis. If you don't �nd what you need
today, come back and take another look in a week or two and you may �nd what you need then.

Download options
I encourage you to take advantage of all of the download options (most of which are free) that cnx.org

8 has to o�er. You can also customize this material for use in your organized courses or for personal self
study.

Feedback is appreciated
And if you �nd the material useful, I would like to hear more about how you are using it.

Legacy versus openstax presentation format Early in 2014, cnx.org 9 began a transition
from a legacy presentation format 10 to a new openstax 11 presentation format. As of January 8,
2016, some of the functionality of the legacy presentation format has not yet been ported to the
openstax presentation format.

If you �nd yourself viewing one of my collections or modules in the openstax 12 presentation format
and some of the links appear to be broken, some of the images fail to display properly, etc., you
may need to revert to the legacy presentation format 13 .

You can switch from openstax format to legacy format by selecting the Legacy Site link
in the upper-right corner of the page when viewing a collection or module in openstax format.

When you are viewing a module in the legacy format, you can switch to the openstax format
by selecting a link that normally appears at the beginning of the page and reads something like the
following: "Note: You are viewing an old style version of this document. The new style version is
available here."

Terminology: The folks at cnx.org 14 have adopted some new terminology in conjunction with
this transition. For example, the entity that is referred to as a Collection in the legacy format
is referred to as a Book in the openstax format. The entity that is referred to as a Module
in the legacy format is referred to as a Page in the openstax format. You will probably �nd
that I use these terms somewhat interchangeably in this material.

The landing module or page: It is possible to open and view material at the level of a
Collection in the legacy format as shown here 15 . However, (with some exceptions) when
you open a Book in the openstax format, you will actually land on the �rst Page in the
book as shown here 16 . In other words, a Book is not a "stand alone" entity in the openstax
format.

1.1.3 Getting started with Java programming

As is the case with many worthwhile endeavors, Java programming requires that you have some tools to
begin. Fortunately, all of the software tools that you will need to get started programming in Java are
available for free downloading.

6http://cnx.org/contents/-2RmHFs_:4OPmk79Y
7http://cnx.org/contents/-2RmHFs_:pDHzTeQb
8http://cnx.org/
9http://cnx.org/

10https://legacy.cnx.org/content/col11441/latest/
11http://cnx.org/contents/fb64661c-5b3f-4ea8-97c6-e48df112438a
12http://cnx.org/contents/fb64661c-5b3f-4ea8-97c6-e48df112438a
13https://legacy.cnx.org/content/col11441/latest/
14http://cnx.org/
15https://legacy.cnx.org/content/col11441
16http://cnx.org/contents/fb64661c-5b3f-4ea8-97c6-e48df112438a

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

3

In addition to a computer with web access, you will need:

• The Java Development Kit (JDK) and Java Runtime Engine (JRE)
• The Java API documentation
• A suitable text editor

1.1.3.1 The JDK and the JRE

The JDK, the JRE, and the API documentation are all freely available from Oracle. As of January 2016, you
will �nd links to the documentation on the web page titled Java Platform Standard Edition 8 Documentation
17 . (The links given in this module may change as new versions of Java are released, but newer versions
shouldn't be too di�cult to locate with a web search.)

Download
The JDK and the included JRE can be downloaded from http://www.oracle.com/technetwork/java/javase/downloads/index.html

18 That page provides several download options. Beginners should download the Java Platform (JDK)
for the latest released version. (The JRE is included in the JDK package, so you don't need to download
both.)

Install
You will also probably need to follow the installation instructions 19 for your computer. Pay partic-

ular attention to the instructions for setting the path and classpath environment variables. This
is where many students stumble. Another useful document on the path and classpath is available at
http://docs.oracle.com/javase/tutorial/essential/environment/paths.html 20

1.1.3.2 The Java API documentation

The Java Platform, Standard Edition 8 API Speci�cation is available here 21 . You should be able to �nd
the documentation for later versions with a web search.

Also see my Java OOP documentation 22 module for instructions on how to use the documentation.

1.1.3.3 A suitable text editor

The module titled Jb0110: Java OOP: Programming Fundamentals, Getting Started 23 explains how to use
a text editor to create Java program code. Just about any text editor will do as long as you can ensure that
the �le name extension is .java. Something as simple as Windows Notepad or Windows WordPad would
probably be best for your �rst few simple programs.

Soon, however, you will probably want to upgrade to an editor that uses di�erent colors to identify the
di�erent parts of your program. My favorite color-coded editor is the free version of JCreator 24 . (The
free version seems to have disappeared from their web page so you may have trouble �nding it.)

Another free editor is DrJava 25 . An advantage of this editor is that it can be run from a USB drive
with no installation required. Another possibility, although I have never had occasion to use it, is jGRASP
26 . Numerous other Java color-coded editors, including BlueJ 27 are available for free downloading on the
web.

17http://docs.oracle.com/javase/8/docs/
18http://www.oracle.com/technetwork/java/javase/downloads/index.html
19http://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html
20http://docs.oracle.com/javase/tutorial/essential/environment/paths.html
21http://docs.oracle.com/javase/8/docs/api/index.html
22http://cnx.org/contents/-2RmHFs_:uk8CM_FG
23http://cnx.org/contents/-2RmHFs_:kg0JHepy
24http://www.jcreator.com/
25http://drjava.sourceforge.net/
26http://www.jgrasp.org/
27http://www.bluej.org/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

4 CHAPTER 1. PREFACE

1.1.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jy0010: Preface to Object-Oriented Programming (OOP) with Java
• File: Jy0010.htm
• Published: 11/16/12
• Revised: 01/09/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

Chapter 2

Programming Fundamentals

2.1 Jb0103 Preface to Programming Fundamentals with Java1

Revised: Sun Mar 27 10:29:44 CDT 2016

This Page is included in the following Books:

• Programming Fundamentals with Java 2

• Object-Oriented Programming (OOP) with Java 3

2.1.1 Table of Contents

• Welcome (p. 5)
• The DrJava IDE and the Java Development Kit (p. 6)
• Miscellaneous (p. 6)

2.1.2 Welcome

Welcome to Programming Fundamentals with Java.
This book is a compilation of material that I have published over the years for the bene�t of those

students who desire to enroll in my beginning OOP course but who don't have the required prerequisite
knowledge for that course. If you fall in that category, or if you just want to get a good introduction to
computer programming, you may �nd this material useful.

Even if you have completed a programming fundamentals course in another language, or you have consid-
erable programming experience in another language, you may still �nd this material useful as an introduction
to the Java programming language and its syntax.

In case you decide that you don't need to study the material in this group of modules, you may still �nd
it useful to take a look at the following three modules. These three modules will show you how to con�gure
your computer and get started programming in Java.

• Jb0110: Java OOP: Programming Fundamentals, Getting Started 4

• Jb0110r Review 5

1This content is available online at <http://cnx.org/content/m45179/1.13/>.
2http://cnx.org/contents/EHRr6hjR:pDHzTeQb
3http://cnx.org/contents/-2RmHFs_:kFS-maG_
4http://cnx.org/contents/-2RmHFs_:kg0JHepy
5http://cnx.org/contents/-2RmHFs_:bYbw870e

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

5

6 CHAPTER 2. PROGRAMMING FUNDAMENTALS

• Jb0115: Java OOP: First Program 6

You may also �nd it useful to search the web for and study a few tutorials on the Windows "command
prompt" as well as a few tutorials on Windows batch �les. Here are a couple of possibilities that I found
with a rudimentary search:

• Windows Command Prompt in 15 Minutes 7

• Windows Batch Scripting: Getting Started 8

If you are using a di�erent operating system, you may need to �nd similar tutorials that match up with the
operating system that you are using.

Most of the topics in this Book are divided into two modules � a primary module and a review module.
The review modules contain review questions and answers keyed to the material in the primary modules.

In addition to the modules contained in this group, you will �nd several of my other tutorials on program-
ming fundamentals at Obg0510: Programming Fundamentals 9 . Those tutorials are still in their original
html format and you may need to go to the Legacy Site 10 to access them fully. They are awaiting conversion
to cnxml, which is a requirement for publishing them as modules on cnx.org.

As you work your way through the modules in this group, you should prepare yourself for the more
challenging ITSE 2321 OOP tracks identi�ed below:

• Java 1600: Objects and Encapsulation 11

• Java 3000: The Guzdial-Ericson Multimedia Class Library 12

• Java 4010: Getting Started with Java Collections 13

2.1.3 The DrJava IDE and the Java Development K it

In order to work with the material in this group of Programming Fundamentals modules, you will need
access to Oracle's Java Development Kit 14 (JDK) . You will also need access to a text editor, preferably
one that is tailored to the creation of Java programs. One such freely available text editor is named DrJava
15 .

However, DrJava is more than just a text editor. It is an Integrated Development Environment ((IDE)
that is designed for use by students learning how to program in the Java programming language. I recommend
it for use with this group of Programming Fundamentals modules.

See A Quick Start Guide to DrJava 16 for instructions on downloading and installing both the DrJava
IDE and Oracle's Java Development Kit (JDK) .

The Quick Start Guide also provides instructions for using the DrJava IDE.

2.1.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

6http://cnx.org/contents/-2RmHFs_:snYAmEHy
7http://www.cs.princeton.edu/courses/archive/spr05/cos126/cmd-prompt.html
8http://steve-jansen.github.io/guides/windows-batch-scripting/part-1-getting-started.html
9http://cnx.org/contents/1J-75Flv:lOzgIE83

10https://legacy.cnx.org/content/m48033/1.1/#Tutorial_Links
11http://cnx.org/contents/-2RmHFs_:rOlnsVRr
12http://cnx.org/contents/-2RmHFs_:0xo_9JXz
13http://cnx.org/contents/-2RmHFs_:BaPSYll8
14http://www.oracle.com/technetwork/java/javase/downloads/index.html
15http://www.drjava.org/
16http://www.drjava.org/docs/quickstart/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

7

• Module name: Jb0103 Preface to Programming Fundamentals with Java
• File: Jb0103.htm
• Published: 11/22/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.2 Jb0105: Java OOP: Similarities and Di�erences between Java
and C++17

Revised: Sun Mar 27 11:30:53 CDT 2016

This Page is included in the following Books:

• Programming Fundamentals with Java 18

• Object-Oriented Programming (OOP) with Java 19

2.2.1 Table of Contents

• Preface (p. 7)
• Similarities and di�erences (p. 8)
• Miscellaneous (p. 11)

2.2.2 Preface

This module, which presents some of the similarities and di�erences between Java and C++, is provided
solely for the bene�t of those students who are already familiar with C++ and are making the transition
from C++ into Java.

If you have some familiarity with C++, you may �nd the material in this module helpful. If not, simply
skip this module and move on to the next module in the collection.

In general, students in Prof. Baldwin's Java/OOP courses are not expected to have any speci�c knowledge
of C++.

17This content is available online at <http://cnx.org/content/m45142/1.4/>.
18http://cnx.org/contents/EHRr6hjR:pDHzTeQb
19http://cnx.org/contents/-2RmHFs_:kFS-maG_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

8 CHAPTER 2. PROGRAMMING FUNDAMENTALS

This module is intended to be general in nature. Therefore, although a few update notes were added
prior to publication at cnx.org, no signi�cant e�ort has been made to keep it up to date relative to any
particular version of the Java JDK or any particular version of C++. Changes have occurred in both Java
and C++ since the �rst publication of this document in 1997. Those changes may not be re�ected in this
module.

2.2.3 Similarities and di�erences

This list of similarities and di�erences is based heavily on The Java Language Environment, A White Paper
20 by James Gosling and Henry McGilton and Thinking in Java by Bruce Eckel, which was freely available
on the web when this document was �rst published.

Java does not support typedefs , de�nes , or a preprocessor . Without a preprocessor, there are
no provisions for including header �les.

Since Java does not have a preprocessor there is no concept of #de�ne macros or manifest constants
. However, the declaration of named constants is supported in Java through use of the �nal keyword.

Java does not support enums but, as mentioned above, does support named constants . (Note: the
enum type 21 was introduced into Java sometime between the �rst publication of this document and Java
version 7.)

Java supports classes , but does not support structures or unions .
All stand-alone C++ programs require a function named main and can have numerous other functions,

including both stand-alone functions and functions that are members of a class. There are no stand-alone
functions in Java. Instead, there are only functions that are members of a class, usually called methods.
However, a Java application (not a Java applet) does require a class de�nition containing a main method.

Global functions and global data are not allowed in Java. However, variables that are declared static
are shared among all objects instantiated from the class in which the static variables are declared.
(Generally, static has a somewhat di�erent meaning in C++ and Java. For example, the concept of a static
local variable does not exist in Java as it does in C++.)

All classes in Java ultimately inherit from the class named Object . This is signi�cantly di�erent from
C++ where it is possible to create inheritance trees that are completely unrelated to one another. All Java
objects contain the eleven methods that are inherited from the Object class.

All function or method de�nitions in Java are contained within a class de�nition. To a C++ programmer,
they may look like inline function de�nitions, but they aren't. Java doesn't allow the programmer to request
that a function be made inline, at least not directly.

Both C++ and Java support class (static) methods or functions that can be called without the require-
ment to instantiate an object of the class.

The interface keyword in Java is used to create the equivalence of an abstract base class containing
only method declarations and constants. No variable data members or method de�nitions are allowed in a
Java interface de�nition. (True abstract base classes can also be created in Java.) The interface concept
is not supported by C++ but can probably be emulated.

Java does not support multiple class inheritance. To some extent, the interface feature provides the
desirable features of multiple class inheritance to a Java program without some of the underlying problems.

While Java does not support multiple class inheritance, single inheritance in Java is similar to C++, but
the manner in which you implement inheritance di�ers signi�cantly, especially with respect to the use of
constructors in the inheritance chain.

In addition to the access modi�ers applied to individual members of a class, C++ allows you to provide
an additional access modi�er when inheriting from a class. This latter concept is not supported by Java.

Java does not support the goto statement (but goto is a reserved word) . However, it does support
labeled break and continue statements, a feature not supported by C++. In certain restricted situations,
labeled break and continue statements can be used where a goto statement might otherwise be used.

20http://net.uom.gr/Books/Manuals/langenviron-a4.pdf
21http://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

9

Java does not support operator overloading .
Java does not support automatic type conversions (except where guaranteed safe) .
Unlike C++, Java has a String type, and objects of this type are immutable (cannot be modi�ed)

. (Note, although I'm not certain, I believe that the equivalent of a Java String type was introduced into
C++ sometime after the original publication of this document.)

Quoted strings are automatically converted into String objects in Java. Java also has a StringBu�er
type. Objects of this type can be modi�ed, and a variety of string manipulation methods are provided.

Unlike C++, Java provides true arrays as �rst-class objects. There is a length member, which tells you
how big the array is. An exception is thrown if you attempt to access an array out of bounds. All arrays
are instantiated in dynamic memory and assignment of one array to another is allowed. However, when
you make such an assignment, you simply have two references to the same array. Changing the value of an
element in the array using one of the references changes the value insofar as both references are concerned.

Unlike C++, having two "pointers" or references to the same object in dynamic memory is not necessarily
a problem (but it can result in somewhat confusing results) . In Java, dynamic memory is reclaimed
automatically, but is not reclaimed until all references to that memory become NULL or cease to exist.
Therefore, unlike in C++, the allocated dynamic memory cannot become invalid for as long as it is being
referenced by any reference variable.

Java does not support pointers (at least it does not allow you to modify the address contained in
a pointer or to perform pointer arithmetic) . Much of the need for pointers was eliminated by providing
types for arrays and strings. For example, the oft-used C++ declaration char* ptr needed to point to the
�rst character in a C++ null-terminated "string" is not required in Java, because a string is a true object
in Java.

A class de�nition in Java looks similar to a class de�nition in C++, but there is no closing semicolon.
Also forward reference declarations that are sometimes required in C++ are not required in Java.

The scope resolution operator (::) required in C++ is not used in Java. The dot is used to construct all
fully-quali�ed references. Also, since there are no pointers, the pointer operator (->) used in C++ is not
required in Java.

In C++, static data members and functions are called using the name of the class and the name of the
static member connected by the scope resolution operator. In Java, the dot is used for this purpose.

Like C++, Java has primitive types such as int , �oat , etc. Unlike C++, the size of each primitive
type is the same regardless of the platform. There is no unsigned integer type in Java. Type checking and
type requirements are much tighter in Java than in C++.

Unlike C++, Java provides a true boolean type. (Note, the C++ equivalent of the Java boolean type
may have been introduced into C++ subsequent to the original publication of this document.)

Conditional expressions in Java must evaluate to boolean rather than to integer, as is the case in C++.
Statements such as

if(x+y)...
are not allowed in Java because the conditional expression doesn't evaluate to a boolean .
The char type in C++ is an 8-bit type that maps to the ASCII (or extended ASCII) character

set. The char type in Java is a 16-bit type and uses the Unicode character set (the Unicode values
from 0 through 127 match the ASCII character set) . For information on the Unicode character set see
http://www.unicode.org/ 22 .

Unlike C++, the � operator in Java is a "signed" right bit shift, inserting the sign bit into the vacated
bit position. Java adds an operator that inserts zeros into the vacated bit positions.

C++ allows the instantiation of variables or objects of all types either at compile time in static memory or
at run time using dynamic memory. However, Java requires all variables of primitive types to be instantiated
at compile time, and requires all objects to be instantiated in dynamic memory at runtime. Wrapper classes
are provided for all primitive types to allow them to be instantiated as objects in dynamic memory at runtime
if needed.

C++ requires that classes and functions be declared before they are used. This is not necessary in Java.

22http://www.unicode.org/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

10 CHAPTER 2. PROGRAMMING FUNDAMENTALS

The "namespace" issues prevalent in C++ are handled in Java by including everything in a class, and
collecting classes into packages.

C++ requires that you re-declare static data members outside the class. This is not required in Java.
In C++, unless you speci�cally initialize variables of primitive types, they will contain garbage. Although

local variables of primitive types can be initialized in the declaration, primitive data members of a class cannot
be initialized in the class de�nition in C++.

In Java, you can initialize primitive data members in the class de�nition. You can also initialize them in
the constructor. If you fail to initialize them, they will be initialized to zero (or equivalent) automatically.

Like C++, Java supports constructors that may be overloaded. As in C++, if you fail to provide
a constructor, a default constructor will be provided for you. If you provide a constructor, the default
constructor is not provided automatically.

All objects in Java are passed by reference, eliminating the need for the copy constructor used in C++.
(In reality, all parameters are passed by value in Java. However, passing a copy of a reference variable

makes it possible for code in the receiving method to access the object referred to by the variable, and
possibly to modify the contents of that object. However, code in the receiving method cannot cause the
original reference variable to refer to a di�erent object.)

There are no destructors in Java. Unused memory is returned to the operating system by way of a
garbage collector , which runs in a di�erent thread from the main program. This leads to a whole host of
subtle and extremely important di�erences between Java and C++.

Like C++, Java allows you to overload functions (methods) . However, default arguments are not
supported by Java.

Unlike C++, Java does not support templates. Thus, there are no generic functions or classes. (Note,
generics similar to C++ templates were introduced into Java in version 5 subsequent to the original publi-
cation of this document.)

Unlike C++, several "data structure" classes are contained in the "standard" version of Java. (Note,
the Standard Template Library was introduced into the C++ world subsequent to the original publication
of this document.)

More speci�cally, several "data structure" classes are contained in the standard class library that is
distributed with the Java Development Kit (JDK). For example, the standard version of Java provides the
containers Vector and Hashtable that can be used to contain any object through recognition that any
object is an object of type Object . However, to use these containers, you must perform the appropriate
upcasting and downcasting, which may lead to e�ciency problems. (Note, the upcasting and downcasting
requirements were eliminated in conjunction with the introduction of "generics" into Java mentioned earlier.)

Multithreading is a standard feature of the Java language.
Although Java uses the same keywords as C++ for access control: private , public , and protected

, the interpretation of these keywords is signi�cantly di�erent between Java and C++.
There is no virtual keyword in Java. All non-static methods use dynamic binding, so the virtual

keyword isn't needed for the same purpose that it is used in C++.
Java provides the �nal keyword that can be used to specify that a method cannot be overridden and

that it can be statically bound. (The compiler may elect to make it inline in this case.)
The detailed implementation of the exception handling system in Java is signi�cantly di�erent from that

in C++.
Unlike C++, Java does not support operator overloading. However, the (+) and (+=) operators are

automatically overloaded to concatenate strings, and to convert other types to string in the process.
As in C++, Java applications can call functions written in another language. This is commonly referred

to as native methods . However, applets cannot call native methods.
Unlike C++, Java has built-in support for program documentation. Specially written comments can be

automatically stripped out using a separate program named javadoc to produce program documentation.
Generally Java is more robust than C++ due to the following:

• Object handles (references) are automatically initialized to null.
• Handles are checked before accessing, and exceptions are thrown in the event of problems.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

11

• You cannot access an array out of bounds.
• The potential for memory leaks is prevented (or at least greatly reduced) by automatic garbage

collection.

2.2.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0105: Java OOP: Similarities and Di�erences between Java and C++
• File: Jb0105.htm
• Originally published: 1997
• Published at cnx.org: 11/17/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.3 Jb0110: Java OOP: Programming Fundamentals, Getting
Started23

Revised: Sun Mar 27 11:59:05 CDT 2016

This Page is included in the following Books:

• Programming Fundamentals with Java 24

• Object-Oriented Programming (OOP) with Java 25

23This content is available online at <http://cnx.org/content/m45137/1.5/>.
24http://cnx.org/contents/EHRr6hjR:pDHzTeQb
25http://cnx.org/contents/-2RmHFs_:kFS-maG_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

12 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.3.1 Table of Contents

• Preface (p. 12)

· General (p. 12)
· Prerequisites (p. 12)
· Viewing tip (p. 12)

* Listings (p. 13)

• Writing, compiling, and running Java programs (p. 13)

· Writing Java code (p. 13)
· Preparing to compile and run Java code (p. 13)

* Downloading the java development kit (JDK) (p. 13)
* Installing the JDK (p. 13)
* The JDK documentation (p. 14)

· Compiling and running Java code (p. 14)

* Write your Java program (p. 14)
* Create a batch �le (p. 14)
* A test program (p. 15)

• Miscellaneous (p. 16)

2.3.2 Preface

2.3.2.1 General

This module is part of a sub-collection of modules designed to help you learn to program computers.
This module explains how to get started programming using the Java programming language.

2.3.2.2 Prerequisites

In addition to an Internet connection and a browser, you will need the following tools (as a minimum) to
work through the exercises in these modules:

• The Sun/Oracle Java Development Kit (JDK) (See http://www.oracle.com/technetwork/java/javase/downloads/index.html
26)

• Documentation for the Sun/Oracle Java Development Kit (JDK) (See
http://download.oracle.com/javase/7/docs/api/ 27 or the documentation for the latest version
of the JDK.)

• A simple IDE or text editor for use in writing Java code.

The minimum prerequisites for understanding the material in these modules include:

• An understanding of algebra.
• An understanding of all of the material covered in the earlier modules in this Book.

2.3.2.3 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

26http://www.oracle.com/technetwork/java/javase/downloads/index.html
27http://download.oracle.com/javase/7/docs/api/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

13

2.3.2.3.1 Listings

• Listing 1 (p. 14) . Windows batch �le.
• Listing 2 (p. 15) . A test program.

2.3.3 Writing, compiling, and running Java programs

2.3.3.1 Writing Java code

Writing Java code is straightforward. You can write Java code using any plain text editor. You simply need
to cause the output �le to have an extension of .java.

There are a number of high-level Integrated Development Environments (IDEs) available, such as
Eclipse and NetBeans, but they tend to be overkill for the relatively simple Java programs described in these
modules.

There are also some low-level IDEs available, such as JCreator and DrJava, which are very useful. I
normally use a free version of JCreator, mainly because it contains a color-coded editor.

So, just �nd an editor that you are happy with and use it to write your Java code.

2.3.3.2 Preparing to compile and run Java code

Perhaps the most complicated thing is to get your computer set up for compiling and running Java code in
the �rst place.

2.3.3.2.1 Downloading the java development kit (JDK)

You will need to download and install the free Java JDK from the Oracle/Sun website. As of November,
2012, you will �nd that website at http://www.oracle.com/technetwork/java/javase/downloads/index.html
28

There is a 64-bit version of the JDK, which works well on my home computer and on my o�ce computer.
However, some older computers may not be able to handle the 64-bit version. A 32-bit version is provided
to be used on older computers.

Whether you elect to use the 32-bit or 64-bit version is strictly up to you. Either of them should do the
job very nicely.

2.3.3.2.2 Installing the JDK

As of November 2012, you will �nd installation instructions at
http://download.oracle.com/javase/7/docs/webnotes/install/windows/jdk-installation-windows.html 29

.
I strongly recommend that you read the instructions and pay particular attention to the information

having to do with setting the path environment variable.
A word of caution
If you happen to be running Windows Vista or Windows 7, you may need to use something like the

following when updating the PATH Environment Variable

... ;C:\Program Files (x86)\Java\jdk1.6.0_26\bin

in place of

... ;C:\Program Files\Java\jdk1.7.0\bin

as shown in the installation instructions.
I don't have any experience with any Linux version. Therefore, I don't have any hints to o�er there.

28http://www.oracle.com/technetwork/java/javase/downloads/index.html
29http://download.oracle.com/javase/7/docs/webnotes/install/windows/jdk-installation-windows.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

14 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.3.3.2.3 The JDK documentation

It is very di�cult to program in Java without access to the documentation for the JDK.
Several di�erent types of Java documentation are available online at

http://www.oracle.com/technetwork/java/javase/documentation/index.html 30 .
Speci�c documentation for classes, methods, etc., is available online at

http://download.oracle.com/javase/7/docs/api/ 31 .
It is also possible to download the documentation and install it locally if you have room on your

disk. The download links for JDK 6 and JDK 7 documentation are also shown on the page at
http://www.oracle.com/technetwork/java/javase/downloads/index.html 32 .

You may also want to search for and use the documentation for the latest version of the JDK.

2.3.3.3 Compiling and running Java code

There are a variety of ways to compile and run Java code. The way that I will describe here is the most
basic and, in my opinion, the most reliable. These instructions apply to a Windows operating system. If you
are using a di�erent operating system, you will need to translate the instructions to your operating system.

2.3.3.3.1 Write your Java program

Begin by using your text editor to write your Java program into one or more text �les, each with an extension
of .java. (Files of this type are often referred to as source code �les.) Save the source code �les in an empty
folder somewhere on your disk. Make sure that the name of the class containing the main method
(which you will learn about in a future module) matches the name of the �le in which that class is contained
(except for the extension of .java on the �le name, which does not appear in the class name) .

2.3.3.3.2 Create a batch �le

Use your text editor to create a batch �le (or whatever the equivalent is for your operating system) containing
the text shown in Listing 1 (p. 14) (with the modi�cations discussed below) and store it in the same folder
as your Java source code �les..

Then execute the batch �le, which in turn will execute the program if there are no compilation errors.

Listing 1 . Windows batch �le.

echo off

cls

del *.class

javac -cp .; hello.java

java -cp .; hello

pause

Table 2.1

30http://www.oracle.com/technetwork/java/javase/documentation/index.html
31http://download.oracle.com/javase/7/docs/api/
32http://www.oracle.com/technetwork/java/javase/downloads/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

15

Comments regarding the batch �le
The commands in the batch �le of Listing 1 (p. 14) will

• Open a command-line screen for the folder containing the batch �le.
• Delete all of the compiled class �les from the folder. (If the folder doesn't contain any class �les, this

will be indicated on the command-line screen.)
• Attempt to compile the program in the �le named hello.java.
• Attempt to run the compiled program using a compiled Java �le named hello.class .
• Pause and wait for you to dismiss the command-line screen by pressing a key on the keyboard.

If errors occur, they will be reported on the command-line screen and the program won't be executed.
If your program is named something other than hello , (which it typically would be) substitute the

new name for the word hello where it appears twice in the batch �le.
Don't delete the pause command
The pause command causes the command-line window to stay on the screen until you dismiss it by

pressing a key on the keyboard. You will need to examine the contents of the window if there are errors
when you attempt to compile and run your program, so don't delete the pause command.

Translate to other operating systems
The format of the batch �le in Listing 1 (p. 14) is a Windows format. If you are using a di�erent

operating system, you will need to translate the information in Listing 1 (p. 14) into the correct format for
your operating system.

2.3.3.3.3 A test program

The test program in Listing 2 (p. 15) can be used to con�rm that Java is properly installed on your computer
and that you can successfully compile and execute Java programs.

Listing 2 . A test program.

class hello {

public static void main(String[] args){

System.out.println("Hello World");

}//end main

}//end class

Table 2.2

Instructions
Copy the code shown in Listing 2 (p. 15) into a text �le named hello.java and store in an empty folder

somewhere on your disk.
Create a batch �le named hello.bat containing the text shown in Listing 1 (p. 14) and store that �le

in the same folder as the �le named hello.java .
Execute the batch �le.
If everything is working, a command-line screen should open and display the following text:

Hello World

Press any key to continue . . .

Congratulations
If that happens, you have just written, compiled and executed your �rst Java program.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

16 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Oops
If that doesn't happen, you need to go back to the installation instructions and see if you can determine

why the JDK isn't properly installed.
If you get an error message similar to the following, that probably means that you didn't set the path

environment variable correctly.

'javac' is not recognized as an internal or external command,

operable program or batch file.

Beyond that, I can't provide much advice in the way of troubleshooting hints.

2.3.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0110: Java OOP: Programming Fundamentals, Getting Started
• File: Jb0110.htm
• Published: 11/16/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

17

2.4 Jb0110r Review33

Revised: Sun Mar 27 18:44:45 CDT 2016

This Page is included in the following Books:

• Programming Fundamentals with Java 34

• Object-Oriented Programming (OOP) with Java 35

2.4.1 Table of Contents

• Preface (p. 17)
• Questions (p. 17)

· 1 (p. 17) , 2 (p. 17) , 3 (p. 17) , 4 (p. 17) , 5 (p. 18) , 6 (p. 18)

• Listings (p. 18)
• Answers (p. 19)
• Miscellaneous (p. 20)

2.4.2 Preface

This module contains review questions and answers keyed to the module titled Jb0110: Java OOP: Pro-
gramming Fundamentals, Getting Started 36 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

2.4.3 Questions

2.4.3.1 Question 1 .

True or false? You need a special IDE to write Java code.
Answer 1 (p. 20)

2.4.3.2 Question 2

True or false? All of the software that you need to create, compile, and run Java programs is free.
Answer 2 (p. 20)

2.4.3.3 Question 3

True or false? Installing the Java JDK can be a little di�cult.
Answer 3 (p. 20)

2.4.3.4 Question 4

True or false? Java is so easy that you don't need documentation to program using Java.
Answer 4 (p. 20)

33This content is available online at <http://cnx.org/content/m45162/1.7/>.
34http://cnx.org/contents/EHRr6hjR:pDHzTeQb
35http://cnx.org/contents/-2RmHFs_:kFS-maG_
36http://cnx.org/content/m45137

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

18 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.4.3.5 Question 5

True or false? The most fundamental way to compile and run Java applications is from the command line.
Answer 5 (p. 19)

2.4.3.6 Question 6

Write a simple test program that can be used to con�rm that the JDK is properly installed on your system.
Answer 6 (p. 19)

2.4.4 Listings

• Listing 1 (p. 19) . A Java test program.

This image was inserted here simply to insert some space between the questions and the answers to keep
them from being visible on the screen at the same time.

The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-
Oriented Programming.

Here is another image that was inserted for the same purpose � to insert space between the questions
and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

19

2.4.5 Answers

2.4.5.1 Answer 6

If you can compile and run the program code shown in Listing 1 (p. 19) , the JDK is probably installed
properly on your computer.

Listing 1 . A Java test program.

class hello {

public static void main(String[] args){

System.out.println("Hello World");

}//end main

}//end class

Table 2.3

Back to Question 6 (p. 18)

2.4.5.2 Answer 5

True. Although a variety of IDEs are available that can be used to compile and run Java applications, the
most fundamental way is to compile and run the programs from the command line. A batch �le in Windows,

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

20 CHAPTER 2. PROGRAMMING FUNDAMENTALS

or the equivalent in other operating systems, can be of some help in reducing the amount of typing required
to compile and run a Java application from the command line.

Back to Question 5 (p. 18)

2.4.5.3 Answer 4

False. Java uses huge class libraries, which few if any of us can memorize. Therefore, it is very di�cult to
program in Java without access to the documentation for the JDK.

As of November 2012, several di�erent types of Java documentation are available online at
http://www.oracle.com/technetwork/java/javase/documentation/index.html 37 .

Back to Question 4 (p. 17)

2.4.5.4 Answer 3

True. Installing the Java JDK can be a little di�cult depending on your experi-
ence and knowledge. As of November 2012, you will �nd installation instructions at
http://download.oracle.com/javase/7/docs/webnotes/install/windows/jdk-installation-windows.html 38

.
Back to Question 3 (p. 17)

2.4.5.5 Answer 2

True. You will need to download and install the free Java JDK from
the Oracle/Sun website. As of November, 2012, you will �nd that website at
http://www.oracle.com/technetwork/java/javase/downloads/index.html 39

Back to Question 2 (p. 17)

2.4.5.6 Answer 1

False. You can write Java code using any plain text editor. You simply need to cause the output �le to have
an extension of .java.

Back to Question 1 (p. 17)

2.4.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0110r Review for Programming Fundamentals, Getting Started
• File: Jb0110r.htm
• Published: 11/20/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

37http://www.oracle.com/technetwork/java/javase/documentation/index.html
38http://download.oracle.com/javase/7/docs/webnotes/install/windows/jdk-installation-windows.html
39http://www.oracle.com/technetwork/java/javase/downloads/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

21

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.5 Jb0115: Java OOP: First Program40

Revised: Sun Mar 27 18:57:37 CDT 2016

This Page is included in the following Books:

• Programming Fundamentals with Java 41

• Object-Oriented Programming (OOP) with Java 42

2.5.1 Table of Contents

• Preface (p. 21)

· Viewing tip (p. 22)

* Figures (p. 22)
* Listings (p. 22)

• Discussion (p. 22)

· Instructions for compiling and running the program (p. 22)
· Comments (p. 22)
· Program output (p. 22)

• Run the program (p. 23)
• Miscellaneous (p. 23)
• Complete program listing (p. 24)

2.5.2 Preface

The purpose of this module is to present the �rst complete Java program of the collection that previews the
most common forms of the three pillars of procedural programming:

• sequence
• selection
• loop

The program also illustrates

• calling a method,
• passing a parameter to the method, and
• receiving a returned value from the method.

As mentioned above, this is simply a preview. Detailed discussions of these topics will be presented in future
modules.

40This content is available online at <http://cnx.org/content/m45220/1.6/>.
41http://cnx.org/contents/EHRr6hjR:pDHzTeQb
42http://cnx.org/contents/-2RmHFs_:kFS-maG_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

22 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.5.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

2.5.2.1.1 Figures

• Figure 1 (p. 23) . Program output.

2.5.2.1.2 Listings

• Listing 1 (p. 24) . Source code for FirstProgram.

2.5.3 Discussion

2.5.3.1 Instructions for compiling and running the program

Assuming that the Java Development Kit (JDK) is properly installed on your computer (see Jb0110:
Java OOP: Programming Fundamentals, Getting Started 43), do the following to compile and run this
program.

1. Copy the text from Listing 1 (p. 24) into a text �le named FirstProgram.java and store the �le
in a folder on your disk.

2. Open a command-line window in the folder containing the �le.
3. Type the following command at the prompt to compile the program:

javac FirstProgram.java

4. Type the following command at the prompt to run the program:

java FirstProgram

2.5.3.2 Comments

Any text in the program code that begins with // is a comment. The compiler will ignore everything from
the // to the end of the line.

Comments were inserted into the program code to explain the code.
The compiler also ignores blank lines.
Note that this program was designed to illustrate the concepts while being as non-cryptic as possible.

2.5.3.3 Program output

The program should display the text shown in Figure 1 (p. 23) on the screen except that the time will be
di�erent each time you run the program.

Figure 1 . Program output.

continued on next page

43http://cnx.org/content/m45137

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

23

value in = 5

Odd time = 1353849164875

countA = 0

countA = 1

countA = 2

countB = 0

countB = 1

countB = 2

value out = 10

Table 2.4

2.5.4 Run the program

I encourage you to copy the code from Listing 1 (p. 24) . Compile the code and execute it. Experiment with
the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

2.5.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0115: Java OOP: First Program
• File: Jb0115.htm
• Published: 11/25/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

2.5.6 Complete program listing

A complete listing of the program follows.
Listing 1 . Source code for FirstProgram.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

24 CHAPTER 2. PROGRAMMING FUNDAMENTALS

/* Begin block comment

This is the beginning of a block comment in Java.

Everything in this block comment is for human consumption

and will be ignored by the Java compiler.

File: FirstProgram.java

Copyright 2012, R.G. Baldwin

This program is designed to illustrate the most common

forms of the three pillars of procedural programming in

Java code:

sequence

selection

loop

The program also illustrates calling a method, passing

a parameter to the method, and receiving a returned

value from the method.

Assuming that the Java Development Kit (JDK) is properly

installed on your computer, do the following to compile

and run this program.

1. Copy this program into a file named FirstProgram.java

and store the file in a folder on your disk.

2. Open a command-line window in the folder containing

the file.

3. Type the following command to compile the program:

javac FirstProgram.java

4.4. Type the following command to run the program:

java FirstProgram

Any text that begins with // in the following program

code is a comment. The compiler will ignore everything

from the // to the end of the line.

The compiler also ignores blank lines.

Note that this program was designed to illustrate the

concepts while being as non-cryptic as possible.

The program should display the following text on the

screen except that the time will be different each time

that you run the program.

value in = 5

Odd time = 1353849164875

countA = 0

countA = 1

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

25

countA = 2

countB = 0

countB = 1

countB = 2

value out = 10

End block comment ***************************************/

//The actual program begins with the next line.

import java.util.*;

class FirstProgram{

//The program consists of a sequence of statements.

//The next statement is the beginning of the main

// method, which is required in all Java applications.

public static void main(String[] args){

//Program execution begins here.

//Declare and initialize a variable.

int var = 5;

//Statements of the following type display

// information on the screen

System.out.println("value in = " + var);

//Call a method and pass a parameter to the method.

//Save the returned value in var, replacing what

// was previously stored there.

//Control is passed to the method named firstMethod.

var = firstMethod(var);

//Control has returned from the method named

// firstMethod.

System.out.println("value out = " + var);

//Program execution ends here

}//end main method

/****visual separator comment**************************/

public static int firstMethod(int inData){

//Control is now in this method.

//Illustrate selection

//Get the elapsed time in milliseconds since Jan 1970.

long time = new Date().getTime();

//Select even or odd time and display the results

if(time % 2 == 0){

System.out.println("Even time = " + time);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

26 CHAPTER 2. PROGRAMMING FUNDAMENTALS

}else{

System.out.println("Odd time = " + time);

}//end if-else selection

//Illustrate a while loop

int countA = 0;

while(countA < 3){

System.out.println("countA = " + countA);

//Increment the counter

countA = countA + 1;

}//end while loop

//Illustrate a for loop

for(int countB = 0; countB < 3; countB = countB + 1){

System.out.println("countB = " + countB);

}//end for loop

//Illustrate returning a value from a method and

// returning control back to the calling method.

return 2*inData;

}//end firstMethod

}//end class FirstProgram

//The program ends with the previous line.

-end-

2.6 Jb0120: Java OOP: A Gentle Introduction to Java
Programming44

Revised: Sun Mar 27 19:13:53 CDT 2016

This Page is included in the following Books:

• Programming Fundamentals with Java 45

• Object-Oriented Programming (OOP) with Java 46

2.6.1 Table of Contents

• Preface (p. 27)

· General (p. 27)
· Prerequisites (p. 27)
· Viewing tip (p. 27)

* Figures (p. 27)
* Listings (p. 27)

• Discussion and sample code (p. 28)

· Introduction (p. 28)

44This content is available online at <http://cnx.org/content/m45138/1.6/>.
45http://cnx.org/contents/EHRr6hjR:pDHzTeQb
46http://cnx.org/contents/-2RmHFs_:kFS-maG_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

27

· Compartments (p. 28)
· Checkout counter example (p. 28)
· Sample program (p. 31)

• Run the program (p. 32)
• Miscellaneous (p. 32)

2.6.2 Preface

2.6.2.1 General

This module is part of a collection of modules designed to help you learn to program computers.
It provides a gentle introduction to Java programming.

2.6.2.2 Prerequisites

In addition to an Internet connection and a browser, you will need the following tools (as a minimum) to
work through the exercises in these modules:

• The Sun/Oracle Java Development Kit (JDK) (See http://www.oracle.com/technetwork/java/javase/downloads/index.html
47)

• Documentation for the Sun/Oracle Java Development Kit (JDK) (See
http://download.oracle.com/javase/7/docs/api/ 48)

• A simple IDE or text editor for use in writing Java code.

The minimum prerequisites for understanding the material in these modules include:

• An understanding of algebra.
• An understanding of all of the material covered in the earlier modules in this collection.

2.6.2.3 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

2.6.2.3.1 Figures

• Figure 1 (p. 29) . A checkout counter algorithm.

2.6.2.3.2 Listings

• Listing 1 (p. 31) . Program named Memory01.
• Listing 2 (p. 31) . Batch �le for Memory01.

47http://www.oracle.com/technetwork/java/javase/downloads/index.html
48http://download.oracle.com/javase/7/docs/api/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

28 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.6.3 Discussion and sample code

2.6.3.1 Introduction

All data is stored in a computer in numeric form. Computer programs do what they do by executing a series
of calculations on numeric data. It is the order and the pattern of those calculations that distinguishes one
computer program from another.

Avoiding the detailed work
Fortunately, when we program using a high-level programming language such as Java, much of the

detailed work is done for us behind the scenes.
Musicians or conductors
As programmers, we are more like conductors than musicians. The various parts of the computer represent

the musicians. We tell them what to play, and when to play it, and if we do our job well, we produce a
solution to a problem.

2.6.3.2 Compartments

As the computer program performs its calculations in the correct order, it is often necessary for it to store
intermediate results someplace, and then come back and get them to use them in subsequent calculations
later. The intermediate results are stored in memory, often referred to as RAM or Random Access Memory
.

A mechanical analogy
We can think of random access memory as being analogous to a metal rack containing a large number of

compartments. The compartments are all the same size and are arranged in a column. Each compartment
has a numeric address printed above it. No two compartments have the same numeric address. Each
compartment also has a little slot into which you can insert a name or a label for the compartment. No two
compartments can have the same name.

Joe, the computer program
Think of yourself as a computer program. You have the ability to write values on little slips of paper and

to put them into the compartments. You also have the ability to read the values written on the little slips
of paper and to use those values for some purpose. However, there are two rules that you must observe:

• You may not remove a slip of paper from a compartment without replacing it by another slip of paper
on which you have written a value.

• You may not put a slip of paper in a compartment without removing the one already there.

2.6.3.3 Checkout counter example

In understanding how you might behave as a human computer program, consider yourself to have a job
working at the checkout counter of a small grocery store in the 1930s.

You have two tools to work with:

• A mechanical adding machine
• The rack of compartments described above

Initialization
Each morning, the owner of the grocery store tells you to insert a name in the slot above each compartment

and to place a little slip of paper with a number written on it inside each compartment. (In programming
jargon, we would refer to this as initialization.)

Each of the names on the compartments represents a type of grocery such as

• Beans
• Apples

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

29

• Pears

No two compartments can have the same name.
No compartment is allowed to have more than one slip of paper inside it.
The price of a can of beans
When you place a new slip of paper in a compartment, you must be careful to remove and destroy the

one that was already there.
Each slip of paper that you insert into a compartment contains the price for the type of grocery identi�ed

by the label on the compartment.
For example, the slip of paper in the compartment labeled Beans may contain the value 15, meaning

that each can of beans costs 15 cents.
The checkout procedure
As each customer comes to your checkout counter during the remainder of the day, you execute the

following procedure:

• Examine each grocery item to determine its type.
• Read the price stored in the compartment corresponding to that type of grocery.
• Add that price to that customer's bill using your mechanical adding machine.

In programming jargon, we would say that as you process each grocery item for the same customer, you are
looping . We would also say that you are executing a procedure or an algorithm .

When you have processed all of the grocery items for a particular customer, you would

• Press the TOTAL key on the adding machine,
• Turn the crank, and
• Present the customer with the bill.

A schematic representation of the procedure
We might represent the procedure in schematic form as shown in Figure 1 (p. 29) .

Figure 1 . A checkout counter algorithm.

For each customer, do the following:

For each item, do the following:

a. Identify the type of grocery item

b. Get the price from the compartment

c. Add the price to accumulated total

End loop on grocery items

Present customer with a bill

End loop on a specific customer

Table 2.5

Common programming activities
This procedure illustrates the three activities commonly believed to be the fundamental activities of any

computer program:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

30 CHAPTER 2. PROGRAMMING FUNDAMENTALS

• sequence
• selection
• loop

Sequence
A sequence of operations is illustrated by the three items labeled a, b, and c in Figure 1 (p. 29) because

they are executed in sequential order.
Selection
The process of identifying the type of grocery item is often referred to as selection . A selection operation

is the process of selecting among two or more choices.
Loop
The process of repetitively examining each grocery item and processing it is commonly referred to as a

loop . In the early days of programming, for a programming language named FORTRAN, this was referred
to as a do loop .

An algorithm
The entire procedure is often referred to as an algorithm .
Modifying stored data
Sometimes during the day, the owner of the grocery store may come to you and say that he is going to

increase the price of a can of Beans from 15 cents to 25 cents and asks you to take care of the change in
price.

You write 25 on a slip of paper and put it in the compartment labeled Beans, being careful to remove
and destroy the slip of paper that was previously in that compartment. For the rest of the day, the new
price for Beans will be used in your calculations unless the owner asks you to change it again.

Not a bad analogy
This is a pretty good analogy to how random access memory is actually used by a computer program.
Names versus addresses
As a programmer using a high-level language such as Java, you usually don't have to be concerned about

the numeric addresses of the compartments.
You are able to think about them and refer to them in terms of their names. (Names are easier to

remember than numeric addresses). However, deep inside the computer, these names are cross-referenced
to addresses and at the lowest level, the program works with memory addresses instead of names.

Execute an algorithm
A computer program always executes some sort of procedure, which is often called an algorithm . The

algorithm may be very simple as described in the checkout counter example described above, or it may be
very complex as would be the case for a spreadsheet program. As the program executes its algorithm, it
uses the random access memory to store and retrieve the data that is needed to execute the algorithm.

Why is it called RAM?
The reason this kind of memory is called RAM or random access memory is that it can be accessed

in any order.
Sequential memory
Some types of memory, such as a magnetic tape, must be accessed in sequential order. This means that

to get a piece of data (the price of beans, for example) from deep inside the memory, it is necessary to
start at the beginning and examine every piece of data until the correct one is found.

Combination random/sequential
Other types of memory, such as disks, provide a combination of sequential and random access. For

example, the data on a disk is stored in tracks that form concentric circles on the disk. The tracks can be
accessed in random order, but the data within a track must be accessed sequentially starting at a speci�c
point on the track.

Sequential memory isn't very good for use by most computer programs because access to each particular
piece of data is quite slow.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

31

2.6.3.4 Sample program

Listing 1 (p. 31) shows a sample Java program that illustrates the use of memory for the storage and retrieval
of data.

Listing 1 . Program named Memory01.

//File Memory01.java

class Memory01 {

public static void main(String[] args){

int beans;

beans = 25;

System.out.println(beans);

}//end main

}//End Memory01 class

Table 2.6

Listing 2 (p. 31) shows a batch �le that you can use to compile and run this program.

Listing 2 . Batch �le for Memory01.

echo off

cls

del *.class

javac -cp .; Memory01.java

java -cp .; Memory01

pause

Table 2.7

Using the procedure that you learned in the Getting Started 49 module, you should be able to compile
and execute this program. When you do, the program should display 25 on your computer screen.

Variables
You will learn in a future lesson that the term variable is synonymous with the term compartment

that I have used for illustration purposes in this lesson.
The important lines of code
The use of memory is illustrated by the three lines of code in Listing 1 (p. 31) that begin with int ,

beans , and System . We will ignore the other lines in the program in this module and learn about
them in future modules.

Declaring a variable

49http://cnx.org/content/m45137/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

32 CHAPTER 2. PROGRAMMING FUNDAMENTALS

A memory compartment (or variable) is set aside and given the name beans by the line that begins
with int in Listing 1 (p. 31) .

In programmer jargon, this is referred to as declaring a variable . The process of declaring a variable

• causes memory to be set aside to contain a value, and
• causes that chunk of memory to be given a name.

That name can be used later to refer to the value stored in that chunk of memory or variable.
This declaration in Listing 1 (p. 31) speci�es that any value stored in the variable must be of type int

. Basically, this means that the value must be an integer. Beyond that, don't worry about what the type
means at this point. I will explain the concept of type in detail in a future module.

Storing a value in the variable
A value of 25 is stored in the variable named beans by the line in Listing 1 (p. 31) that begins with

the word beans .
In programmer jargon, this is referred to as assigning a value to a variable .
From this point forward, when the code in the program refers to this variable by its name, beans , the

reference to the variable will be interpreted to mean the value stored there.
Retrieving a value from the variable
The line in Listing 1 (p. 31) that begins with the word System reads the value stored in the variable

named beans by referring to the variable by its name.
This line also causes that value to be displayed on your computer screen. However, at this point, you

needn't worry about what causes it to be displayed. You will learn those details in a future module. Just
remember that the reference to the variable by its name, beans , reads the value stored in the variable.

The remaining details
Don't be concerned at this point about the other details in the program. They are there to make it

possible for you to compile and execute the program. You will learn about them in future modules.

2.6.4 Run the program

I encourage you to run the program that I presented in this lesson to con�rm that you get the same results.
Experiment with the code, making changes, and observing the results of your changes. Make certain that
you can explain why your changes behave as they do.

2.6.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0120: Java OOP: A Gentle Introduction to Java Programming
• File: Jb0120.htm
• Published: 11/16/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

33

a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

34 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.7 Jb0120r Review50

Revised: Sun Mar 27 19:22:43 CDT 2016

This Page is included in the following Books:

• Programming Fundamentals with Java 51

• Object-Oriented Programming (OOP) with Java 52

2.7.1 Table of Contents

• Preface (p. 34)
• Questions (p. 34)

· 1 (p. 34) , 2 (p. 34) , 3 (p. 34) , 4 (p. 35) , 5 (p. 35) , 6 (p. 35) , 7 (p. 35) , 8 (p. 35) , 9 (p. 35)
, 10 (p. 35) , 11 (p. 35)

• Answers (p. 37)
• Miscellaneous (p. 38)

2.7.2 Preface

This module contains review questions and answers keyed to the module titled Jb0120: Java OOP: A Gentle
Introduction to Java Programming 53 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

2.7.3 Questions

2.7.3.1 Question 1 .

True or false? All data is stored in a computer in numeric form. Computer programs do what they do by
executing a series of calculations on numeric data. It is the order and the pattern of those calculations that
distinguishes one computer program from another.

Answer 1 (p. 38)

2.7.3.2 Question 2

True or false? When we program using Java, we must perform most of the detailed work.
Answer 2 (p. 38)

2.7.3.3 Question 3

True or false? As the computer program performs its calculations in the correct order, it is often necessary
for it to store intermediate results someplace, and then come back and get them to use them in subsequent
calculations later.

Answer 3 (p. 38)

50This content is available online at <http://cnx.org/content/m45164/1.6/>.
51http://cnx.org/contents/EHRr6hjR:pDHzTeQb
52http://cnx.org/contents/-2RmHFs_:kFS-maG_
53http://cnx.org/content/m45138

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

35

2.7.3.4 Question 4

True or false? The structured solution to a computer programming problem is often called an algorithm.
Answer 4 (p. 38)

2.7.3.5 Question 5

Which, if any of the following activities is not commonly believed to be fundamental activities of any computer
program:

• A. sequence
• B. selection
• C. loop

Answer 5 (p. 38)

2.7.3.6 Question 6

True or false? As a programmer using a high-level language such as Java, you usually don't have to be
concerned about the numeric memory addresses of variables.

Answer 6 (p. 38)

2.7.3.7 Question 7

Why is modern computer memory often referred to as RAM?
Answer 7 (p. 38)

2.7.3.8 Question 8

True or false? The process of declaring a variable

• causes memory to be set aside to contain a value, and
• causes that chunk of memory to be given an address.

Answer 8 (p. 37)

2.7.3.9 Question 9

True or false? A value of the type int must be an integer.
Answer 9 (p. 37)

2.7.3.10 Question 10

True or false? In programmer jargon, storing a value in a variable is also referred to as assigning a value to
a variable.

Answer 10 (p. 37)

2.7.3.11 Question 11

True or false? A reference to a variable name in Java code returns the value stored in the variable.
Answer 11 (p. 37)
What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

36 CHAPTER 2. PROGRAMMING FUNDAMENTALS

The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-
Oriented Programming.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

37

2.7.4 Answers

2.7.4.1 Answer 11

True.
Back to Question 11 (p. 35)

2.7.4.2 Answer 10

True.
Back to Question 10 (p. 35)

2.7.4.3 Answer 9

True.
Back to Question 9 (p. 35)

2.7.4.4 Answer 8

False. The process of declaring a variable

• causes memory to be set aside to contain a value, and
• causes that chunk of memory to be given a name .

Back to Question 8 (p. 35)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

38 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.7.4.5 Answer 7

Modern computer memory is often called RAM or random access memory because it can be accessed in
any order.

Back to Question 7 (p. 35)

2.7.4.6 Answer 6

True. You are able to think about variables and refer to them in terms of their names. (Names are easier to
remember than numeric addresses). However, deep inside the computer, these names are cross-referenced
to addresses and at the lowest level, the program works with memory addresses instead of names.

Back to Question 6 (p. 35)

2.7.4.7 Answer 5

None. All three are commonly believed to be the fundamental activities of any computer program.
Back to Question 5 (p. 35)

2.7.4.8 Answer 4

True.
Back to Question 4 (p. 35)

2.7.4.9 Answer 3

True.
Back to Question 3 (p. 34)

2.7.4.10 Answer 2

False. Fortunately, when we program using a high-level programming language such as Java, much of the
detailed work is done for us behind the scenes.

Back to Question 2 (p. 34)

2.7.4.11 Answer 1

True.
Back to Question 1 (p. 34)

2.7.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0120r Review for A Gentle Introduction to Java Programming.
• File: Jb0120r.htm
• Published: 12/20/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

39

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.8 Jb0130: Java OOP: A Gentle Introduction to Methods in Java54

Revised: Sun Mar 27 20:13:16 CDT 2016

This page is included in the following Books:

• Programming Fundamentals with Java 55

• Object-Oriented Programming (OOP) with Java 56

2.8.1 Table of Contents

• Preface (p. 39)

· General (p. 39)
· Prerequisites (p. 40)
· Viewing tip (p. 40)

* Listings (p. 40)

• Discussion and sample code (p. 40)

· Introduction (p. 40)
· Standard methods (p. 41)
· Passing parameters (p. 41)
· Returning values (p. 41)
· Writing your own methods (p. 42)
· Sample program (p. 42)

* Interesting code fragments (p. 42)

• Run the program (p. 45)
• Complete program listings (p. 45)
• Miscellaneous (p. 46)

2.8.2 Preface

2.8.2.1 General

This module is part of a collection of modules designed to help you learn to program computers.
It provides a gentle introduction to Java programming methods.

54This content is available online at <http://cnx.org/content/m45139/1.6/>.
55http://cnx.org/contents/EHRr6hjR:pDHzTeQb
56http://cnx.org/contents/-2RmHFs_:kFS-maG_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

40 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.8.2.2 Prerequisites

In addition to an Internet connection and a browser, you will need the following tools (as a minimum) to
work through the exercises in these modules:

• The Sun/Oracle Java Development Kit (JDK) (See http://www.oracle.com/technetwork/java/javase/downloads/index.html
57)

• Documentation for the Sun/Oracle Java Development Kit (JDK) (See
http://download.oracle.com/javase/7/docs/api/ 58)

• A simple IDE or text editor for use in writing Java code.

The minimum prerequisites for understanding the material in these modules include:

• An understanding of algebra.
• An understanding of all of the material covered in the earlier modules in this collection.

2.8.2.3 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

2.8.2.3.1 Listings

• Listing 1 (p. 42) . The price of beans.
• Listing 2 (p. 43) . Compute the square root of the price of beans.
• Listing 3 (p. 44) . Display the square root value.
• Listing 4 (p. 44) . Calling the same methods again.
• Listing 5 (p. 45) . The program named SqRt01.
• Listing 6 (p. 46) . A batch �le for compiling and running the program named SqRt01.

2.8.3 Discussion and sample code

2.8.3.1 Introduction

Methods have been used in computer programming since the early days of programming. Methods are often
called functions, procedures, subroutines, and various other names.

Calculate the square root
Suppose that your program needs to calculate the square root of a number. Referring back to your

high-school algebra book, you could refresh your memory on how to calculate a square root. Then you could
construct the algorithm describing that process.

Having the algorithm available, you could write the code to calculate the square root and insert it into
your program code. Then you could compile, and run your program. If you did it all correctly, your program
should calculate the square root. (For reasons that will become apparent later, I will refer to the code that
you inserted as in-line code.)

Oops, need to do it all over again
Suppose that further on in your program you discover that you need to calculate the square root of

another number. And later, you discover that you need to calculate the square root of still another number.
Obviously, with a few changes, you could copy your original code and insert it as in-line code at each
location in your program where you need to calculate the square root of a number.

Is there a better way?

57http://www.oracle.com/technetwork/java/javase/downloads/index.html
58http://download.oracle.com/javase/7/docs/api/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

41

However, after doing this a few times, you might start asking if there is a better way. The answer is
"yes, there is a better way."

A method provides a better way
The better way is to create a separate program module that has the ability to calculate the square root

and make that module available for use as a helper to your main program each time your main program
needs to calculate a square root. In Java, this separate program module is called a method .

2.8.3.2 Standard methods

The Java programming language contains a large number of methods (in the class libraries) that are already
available for your use. (Later, I will illustrate the use of a standard method for calculating the square root
of a number.)

In addition to the standard methods that are already available, if you need a method to perform some
function and there is no standard method already available to perform that function, you can write your
own method.

2.8.3.3 Passing parameters

Make the method general
Normally, when designing and writing a method such as one that can calculate the square root of a

number, it is desirable to write it in such a way that it can calculate the square root of any number (as
opposed to only one speci�c number) . This is accomplished through the use of something called parameters
.

The process of causing a method to be executed is commonly referred to as calling the method .
Pass me the number please
When your program calls the square-root method, it will need to tell the method the value for which the

square root is needed.
In general, many methods will require that you provide certain kinds of information when you call them.

The code in the method needs this information to be able to accomplish its purpose.
Passing parameters
This process of providing information to a method when you call it is commonly referred to as passing

parameters to the method. For the square-root method, you need to pass a parameter whose value is the
value of the number for which you need the square root.

2.8.3.4 Returning values

A method will usually

• perform an action
• send back an answer. or
• some combination of the two

Performing an action
An example of a method that performs an action is the standard method named println . We used

the println method in an earlier module to cause information to be displayed on the computer screen.
This method does not need to send back an answer, because that is not the objective of the method. The
objective is simply to display some information.

Sending back an answer
On the other hand, a method that is designed to calculate the square root of a number needs to be able

to send the square-root value back to the program that called the method. After all, it wouldn't be very
useful if the method calculated the square root and then kept it a secret. The process of sending back an
answer is commonly referred to as returning a value .

Returned values can be ignored

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

42 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Methods can be designed in such a way that they either will or will not return a value. When a method
does return a value, the program that called the method can either pay attention to that value and use it
for some purpose, or ignore it entirely.

For example, in some cases where a method performs an action and also returns a value, the calling
program may elect to ignore the returned value. On the other hand, if the sole purpose of a method is to
return a value, it wouldn't make much sense for a program to call that method and then ignore the value
that is returned (although that would be technically possible) .

2.8.3.5 Writing your own methods

As mentioned earlier, you can write your own methods in Java. I mention this here so you will know that it
is possible. I will have more to say about writing your own methods in future modules.

2.8.3.6 Sample program

A complete listing of a sample program named SqRt01.java is provided in Listing 5 (p. 45) near the end
of the lesson. A batch �le that you can use to compile and run the program is provided in Listing 6 (p. 46) .

When you compile and run the program, the following output should appear on your computer screen:

5.049752469181039

6.0

As you will see shortly, these are the square root values respectively for 25.5 and 36.

2.8.3.6.1 Interesting code fragments

I will explain portions of this program in fragments. I will explain only those portions of the program that
are germane to this module. Don't worry about the other details of the program. You will learn about those
details in future modules.

You may �nd it useful to open this lesson in another browser window so that you can easily scroll back
and forth among the fragments while reading the discussion.

The �rst code fragment that I will explain is shown in Listing 1 (p. 42) .

Listing 1 . The price of beans.

double beans;

beans = 25.5;

Table 2.8

What is the price of beans?
The code fragment shown in Listing 1 (p. 42) declares a variable named beans and assigns a value

of 25.5 to the variable. (I brie�y discussed the declaration of variables in a previous module. I will discuss
them in more detail in a future module.)

What is that double thing?
In an earlier module, I declared a variable with a type named int . At that time, I explained that only

integer values could be stored in that variable.
The variable named beans in Listing 1 (p. 42) is declared to be of the type double . I will explain

the concept of data types in detail in a future module. Brie�y, double means that you can store any

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

43

numeric value in this variable, with or without a decimal part. In other words, you can store a value of 3 or
a value of 3.33 in this variable, whereas a variable with a declared type of int won't accept a value of 3.33.

Every method has a name
Every method, every variable, and some other things as well have names. The names in Java are case

sensitive . By case sensitive, I mean that the method named amethod is not the same as the method
named aMethod .

A few words about names in Java
There are several rules that de�ne the format of allowable names in Java. You can dig into this in more

detail on the web if you like, but if you follow these two rules, you will be okay:

• Use only letters and numbers in Java names.
• Always make the �rst character a letter.

A standard method named sqrt
Java provides a Math library that contains many standard methods. Included in those methods is

a method named sqrt that will calculate and return the square root of a number that is passed as a
parameter when the method is called.

The sqrt method is called on the right-hand side of the equal sign (=) in the code fragment in Listing
2 (p. 43) .

Listing 2 . Compute the square root of the price of beans.

double sqRtBns = Math.sqrt(beans);

Table 2.9

Calling the sqrt method
I'm not sure why you would want to do this, but the code fragment in Listing 2 (p. 43)

• calls the sqrt method and
• passes a copy of the value stored in the beans variable as a parameter.

The sqrt method calculates and returns the square root of the number that it receives as its incoming
parameter. In this case, it returns the square root of the price of a can of beans.

A place to save the square root
I needed some place to save the square root value until I could display it on the computer screen later

in the program. I declared another variable named sqRtBns in the code fragment in Listing 2 (p. 43) .
I also caused the value returned from the sqrt method to be stored in, or assigned to, this new variable
named sqRtBns .

How should we interpret this code fragment?
You can think of the process implemented by the code fragment in Listing 2 (p. 43) as follows.
First note that there is an equal sign (=) near the center of the line of code. (Later we will learn that

this is called the assignment operator.)
The code on the left-hand side of the assignment operator causes a new chunk of memory to be set aside

and named sqRtBns . (We call this chunk of code a variable.)
The code on the right-hand side of the assignment operator calls the sqrt method, passing a copy of

the value stored in the beans variable to the method.
When the sqrt method returns the value that is the square root of its incoming parameter, the

assignment operator causes that value to be stored and saved in (assigned to) the variable named sqRtBns
.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

44 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Now display the square root value
The code in the fragment in Listing 3 (p. 44) causes the value now stored in sqRtBns to be displayed

on the computer screen.

Listing 3 . Display the square root value.

System.out.println(sqRtBns);

Table 2.10

Another method is called here
The display of the square root value is accomplished by

• calling another standard method named println and
• passing a copy of the value stored in sqRtBns as a parameter to the method.

The println method performs an action (displaying something on the computer screen) and doesn't
return a value.

A method exhibits behavior
We say that a method exhibits behavior. The behavior of the sqrt method is to calculate and return

the square root of the value passed to it as a parameter.
The behavior of the println method is to cause its incoming parameter to be displayed on the computer

screen.
What do we mean by syntax?
Syntax is a word that is often used in computer programming. The thesaurus in the editor that I am

using to type this document says that a synonym for syntax is grammar.
I also like to think of syntax as meaning something very similar to format.
Syntax for passing parameters
Note the syntax in Listing 2 (p. 43) and Listing 3 (p. 44) for passing a parameter to the method. The

syntax consists of following the name of the method with a pair of matching parentheses that contain the
parameter. If more than one parameter is being passed, they are all included within the parentheses and
separated by commas. Usually, the order of the parameters is important if more than one parameter is being
passed.

Reusing the methods
The purpose of the code fragment in Listing 4 (p. 44) is to illustrate the reusable nature of methods.

Listing 4 . Calling the same methods again.

double peas;

peas = 36.;

double sqRtPeas = Math.sqrt(peas);

System.out.println(sqRtPeas);

Table 2.11

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

45

The code in this fragment calls the same sqrt method that was called before. In this case, the method
is called to calculate the square root of the value stored in the variable named peas instead of the value
stored in the variable named beans .

This fragment saves the value returned from the sqrt method in a new variable named sqRtPeas .
Then the fragment calls the same println method as before to display the value now stored in the variable
named sqRtPeas .

Write once and use over and over
Methods make it possible to write some code once and then use that code many times in the same

program. This is the opposite of in-line code , which requires you to write essentially the same code
multiple times in order to accomplish the same purpose more than once in a program.

2.8.4 Run the program

I encourage you to run the program that I presented in this lesson to con�rm that you get the same results.
Experiment with the code, making changes, and observing the results of your changes. Make certain that
you can explain why your changes behave as they do.

2.8.5 Complete program listings

Listing 5 (p. 45) is a complete listing of the program named SqRt01 .

Listing 5 . The program named SqRt01.

//File SqRt01.java

class SqRt01 {

public static void main(String[] args){

double beans;

beans = 25.5;

double sqRtBns = Math.sqrt(beans);

System.out.println(sqRtBns);

double peas;

peas = 36.;

double sqRtPeas = Math.sqrt(peas);

System.out.println(sqRtPeas);

}//end main

}//End SqRt01 class

Table 2.12

Listing 6 (p. 46) contains the commands for a batch �le that can be used to compile and run the program
named SqRt01 .

Listing 6 . A batch �le for compiling and running the program named SqRt01.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

46 CHAPTER 2. PROGRAMMING FUNDAMENTALS

echo off

cls

del *.class

javac -cp .; SqRt01.java

java -cp .; SqRt01

pause

Table 2.13

2.8.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0130: Java OOP: A Gentle Introduction to Methods in Java
• File: Jb0130.htm
• Published: 12/16/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

47

2.9 Jb0130r Review59

Revised: Sun Mar 27 20:24:28 CDT 2016

This page is included in the following Books:

• Programming Fundamentals with Java 60

• Object-Oriented Programming (OOP) with Java 61

2.9.1 Table of Contents

• Preface (p. 47)
• Questions (p. 47)

· 1 (p. 47) , 2 (p. 47) , 3 (p. 47) , 4 (p. 47) , 5 (p. 48) , 6 (p. 48) , 7 (p. 48) , 8 (p. 48) , 9 (p. 48)
, 10 (p. 48) , 11 (p. 48) , 12 (p. 50) , 13 (p. 49) , 14 (p. 49) , 15 (p. 49)

• Answers (p. 50)
• Miscellaneous (p. 52)

2.9.2 Preface

This module contains review questions and answers keyed to the module titled Jb0130: Java OOP: A Gentle
Introduction to Methods in Java 62 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

2.9.3 Questions

2.9.3.1 Question 1 .

True or false? Methods are often called functions, procedures, subroutines, and various other names.
Answer 1 (p. 52)

2.9.3.2 Question 2

True or false? A Java method can be thought of as a separate program module that has the ability to do
something useful. Having written the method, you can make it available for use as a helper to your main
program each time your main program needs to have that useful thing done.

Answer 2 (p. 52)

2.9.3.3 Question 3

True or false? In Java, you must write all of the methods that you need.
Answer 3 (p. 51)

2.9.3.4 Question 4

True or false? In the following statement, sqRtPeas is the name of a method.
System.out.println(sqRtPeas);
Answer 4 (p. 51)

59This content is available online at <http://cnx.org/content/m45165/1.6/>.
60http://cnx.org/contents/EHRr6hjR:pDHzTeQb
61http://cnx.org/contents/-2RmHFs_:kFS-maG_
62http://cnx.org/content/m45139

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

48 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.9.3.5 Question 5

True or false? Java only allows you to use the pre-written methods in the class libraries.
Answer 5 (p. 51)

2.9.3.6 Question 6

Normally, when designing and writing a method such as one that can calculate the square root of a number,
it is desirable to write it in such a way that it can calculate the square root of any number (as opposed to
only one speci�c number) . How is that accomplished?

Answer 6 (p. 51)

2.9.3.7 Question 7

True or false? According to common programming jargon, the process of causing a method to be executed
is commonly referred to as setting the method.

Answer 7 (p. 51)

2.9.3.8 Question 8

True or false? This process of providing information to a method when you call it is commonly referred to
as sending a message to the method.

Answer 8 (p. 51)

2.9.3.9 Question 9

True or false? When called, a method will usually

• perform an action
• send back an answer. or
• some combination of the two

Answer 9 (p. 51)

2.9.3.10 Question 10

True or false? A value of type double can be (almost) any numeric value, positive or negative, with or
without a decimal part.

Answer 10 (p. 51)

2.9.3.11 Question 11

True or false? Java is not a case-sensitive programming language.
Answer 11 (p. 51)

2.9.3.12 Question 12

True or false? The following two rules will generally su�ce to keep you out of trouble when de�ning variable
and method names in Java:

• Use only letters and numbers in Java names.
• Always make the �rst character a letter.

Answer 12 (p. 50)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

49

2.9.3.13 Question 13

True or false? In Java, the assignment operator is the % character.
Answer 13 (p. 50)

2.9.3.14 Question 14

True or false? The behavior of the sqrt method is to calculate and display the square root of the value
passed to it as a parameter.

Answer 14 (p. 50)

2.9.3.15 Question 15

True or false? The syntax for passing parameters to a method consists of following the name of the method
with a pair of matching parentheses that contain the parameter or parameters. If more than one parameter
is being passed, they are all included within the parentheses and separated by commas. The order of the
parameters is not important.

Answer 15 (p. 50)
What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

50 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.9.4 Answers

2.9.4.1 Answer 15

False. Normally the order in which parameters are passed to a method is very important.
Back to Question 15 (p. 49)

2.9.4.2 Answer 14

False. The behavior of the sqrt method is to calculate and return the square root of the value passed
to it as a parameter.

Back to Question 14 (p. 49)

2.9.4.3 Answer 13

False. In Java, the assignment operator is the = character.
Back to Question 13 (p. 49)

2.9.4.4 Answer 12

True.
Back to Question 12 (p. 48)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

51

2.9.4.5 Answer 11

False. Just like C, C++, and C#, Java is very much a case-sensitive programming language.
Back to Question 11 (p. 48)

2.9.4.6 Answer 10

True.
Back to Question 10 (p. 48)

2.9.4.7 Answer 9

True.
Back to Question 9 (p. 48)

2.9.4.8 Answer 8

False. If you continue in this �eld of study, you will learn that we send messages to objects by calling
methods that belong to the objects. The process of providing information to a method when you call it is
commonly referred to as passing parameters to the method.

Back to Question 8 (p. 48)

2.9.4.9 Answer 7

False. The process of causing a method to be executed is commonly referred to as calling or possibly
invoking the method.

Back to Question 7 (p. 48)

2.9.4.10 Answer 6

That is accomplished through the use of something called method parameters .
Back to Question 6 (p. 48)

2.9.4.11 Answer 5

False. In addition to the standard methods that are already available, if you need a method to perform some
function and there is no standard method already available to perform that function, you can write your
own method.

Back to Question 5 (p. 48)

2.9.4.12 Answer 4

False. In the following statement, println is the name of a method. sqRtPeas is the name of a variable
whose contents are being passed as a parameter to the println method.

System.out.println(sqRtPeas);
Back to Question 4 (p. 47)

2.9.4.13 Answer 3

False. The Java programming environment contains a large number of methods (in the class libraries) that
are already available for you to use when you need them.

Back to Question 3 (p. 47)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

52 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.9.4.14 Answer 2

True.
Back to Question 2 (p. 47)

2.9.4.15 Answer 1

True.
Back to Question 1 (p. 47)

2.9.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0130r Review: A Gentle Introduction to Methods in Java
• File: Jb0130r.htm
• Published: 12/20/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.10 Jb0140: Java OOP: Java comments63

Revised: Sun Mar 27 20:34:41 CDT 2016

This page is included in the following Books:

• Programming Fundamentals with Java 64

• Object-Oriented Programming (OOP) with Java 65

63This content is available online at <http://cnx.org/content/m45140/1.6/>.
64http://cnx.org/contents/EHRr6hjR:pDHzTeQb
65http://cnx.org/contents/-2RmHFs_:kFS-maG_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

53

2.10.1 Table of Contents

• Preface (p. 53)

· General (p. 53)
· Prerequisites (p. 53)
· Viewing tip (p. 53)

* Figures (p. 53)
* Listings (p. 54)

• Discussion and sample code (p. 54)

· Comments (p. 54)
· Sample program (p. 55)

* Interesting code fragments (p. 55)

• Run the program (p. 56)
• Complete program listings (p. 56)
• Miscellaneous (p. 57)

2.10.2 Preface

2.10.2.1 General

This module is part of a collection of modules designed to help you learn to program computers.
It explains Java comments.

2.10.2.2 Prerequisites

In addition to an Internet connection and a browser, you will need the following tools (as a minimum) to
work through the exercises in these modules:

• The Sun/Oracle Java Development Kit (JDK) (See http://www.oracle.com/technetwork/java/javase/downloads/index.html
66)

• Documentation for the Sun/Oracle Java Development Kit (JDK) (See
http://download.oracle.com/javase/7/docs/api/ 67)

• A simple IDE or text editor for use in writing Java code.

The minimum prerequisites for understanding the material in these modules include:

• An understanding of algebra.
• An understanding of all of the material covered in the earlier modules in this collection.

2.10.2.3 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

2.10.2.3.1 Figures

• Figure 1 (p. 54) . Three styles of comments.

66http://www.oracle.com/technetwork/java/javase/downloads/index.html
67http://download.oracle.com/javase/7/docs/api/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

54 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.10.2.3.2 Listings

• Listing 1 (p. 55) . A multi-line comment.
• Listing 2 (p. 56) . Three single-line comments.
• Listing 3 (p. 56) . The program named Comments01.
• Listing 4 (p. 57) . Batch �le to compile and run the program named Comments01.

2.10.3 Discussion and sample code

2.10.3.1 Comments

Producing and using a Java program consists of the following steps:

1. Write the source code.
2. Compile the source code.
3. Execute the program.

The source code consists of a set of instructions that will later be presented to a special program called a
compiler for the purpose of producing a program that can be executed. In other words, when you write the
source code, you are writing instructions that the compiler will use to produce the executable program.

Some things should be ignored
Sometimes, when you are writing source code, you would like to include information that may be useful

to you, but should be ignored by the compiler. Information of that sort is called a comment .
Three styles of comments
Java supports the three styles of comments shown in Figure 1 (p. 54) .

Figure 1 . Three styles of comments.

/** special documentation comment

used by the javadoc tool */

/* This is a

multi-line comment */

//Single-line comment

program code // Another single-line comment

Table 2.14

The javadoc tool
The javadoc tool mentioned in Figure 1 (p. 54) is a special program that is used to produce documentation

for Java programs. Comments of this style begin with /** and end with */ as shown in Figure 1 (p. 54) .
The compiler ignores everything in the source code that begins and ends with this pattern of characters.

Documentation produced using the javadoc program is very useful for on-line or on-screen documentation.
Multi-line comments
Multi-line comments begin with /* and end with */ as shown in Figure 1 (p. 54) . As you have probably

already guessed, the compiler also ignores everything in the source code that matches this format. (A
javadoc comment is simply a multi-line comment insofar as the compiler knows. Only the special program
named javadoc.exe cares about javadoc comments.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

55

The multi-line comment style is particularly useful for creating large blocks of information that should
be ignored by the compiler. This style can be used to produce a comment consisting of a single line of text
as well. However, the single-line comment style discussed in the next section requires less typing.

Single-line comments
Single-line comments begin with // and end at the end of the line. The compiler ignores the // and

everything following the slash characters to the end of the line.
This style is particularly useful for inserting short comments throughout the source code. In this case,

the // can appear at the beginning of the line as shown in Figure 1 (p. 54) , or can appear anywhere in the
line, including at the end of some valid source code (also shown in Figure 1 (p. 54) (p. 54)) .

2.10.3.2 Sample program

The purpose of the program named Comments01 , which is shown in Listing 3 (p. 56) near the end of
the module, is to illustrate the use of single and multi-line comments. The program does not contain any
javadoc comments.

The commands for a batch �le that you can use to compile and run this program are provided in Listing
4 (p. 57) .

When you compile and run the program, the following text should appear on your command-line screen:

Hello World

2.10.3.2.1 Interesting code fragments

I will explain this program in fragments, and will explain only those portions of the program that are germane
to this module. Don't worry about the other details of the program at this time. You will learn about those
details in future modules.

A multi-line comment
Listing 1 (p. 55) , shows a multi-line comment, which consists of three lines of text.
As required, this multi-line comment begins with /* and ends with */. The extra stars on the third line

are simply part of the comment.
You will often see formats similar to this being used to provide a visual separation between multi-line

comments and the other parts of a program.

Listing 1 . A multi-line comment.

/*File Comments01.java

This is a multi-line comment.

***/

Table 2.15

Single-line comments
Listing 2 (p. 56) shows three single-line comments. Can you spot them? Remember, single-line comments

begin with //.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

56 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Listing 2 . Three single-line comments.

class Comments01 {

//This is a single-line comment

public static void main(String[] args){

System.out.println("Hello World");

}//end main

}//End class

Table 2.16

One of the comments in Listing 2 (p. 56) starts at the beginning of the line. The other two comments
follow some program code.

2.10.4 Run the program

I encourage you to run the program that I presented in this lesson to con�rm that you get the same results.
Experiment with the code, making changes, and observing the results of your changes. Make certain that
you can explain why your changes behave as they do.

2.10.5 Complete program listings

Listing 3 (p. 56) contains a complete listing of the program named Comments01 .

Listing 3 . The program named Comments01.

/*File Comments01.java

This is a multi-line comment.

***/

class Comments01 {

//This is a single-line comment

public static void main(String[] args){

System.out.println("Hello World");

}//end main

}//End class

Table 2.17

Listing 4 (p. 57) contains the commands for a batch �le that can be used to compile and run the program
named Comments01 .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

57

Listing 4 . Batch �le to compile and run the program named Comments01.

echo off

cls

del *.class

javac -cp .; Comments01.java

java -cp .; Comments01

pause

Table 2.18

2.10.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: JJb0140: Java OOP: Java comments
• File: Jb0140.htm
• Published: 11/16/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

58 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.11 Jb0140r Review68

Revised: Sun Mar 27 20:40:28 CDT 2016

This page is included in the following Books:

• Programming Fundamentals with Java 69

• Object-Oriented Programming (OOP) with Java 70

2.11.1 Table of Contents

• Preface (p. 58)
• Questions (p. 58)

· 1 (p. 58) , 2 (p. 58) , 3 (p. 58) , 4 (p. 58) , 5 (p. 59) , 6 (p. 59) , 7 (p. 59) , 8 (p. 59)

• Answers (p. 60)
• Miscellaneous (p. 61)

2.11.2 Preface

This module contains review questions and answers keyed to the module titled Jb0140: Java OOP: Java
comments 71 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

2.11.3 Questions

2.11.3.1 Question 1 .

True or false? Comments in your source code are ignored by the compiler.
Answer 1 (p. 61)

2.11.3.2 Question 2

True or false? Java supports the four styles of comments.
Answer 2 (p. 61)

2.11.3.3 Question 3

True or false? The javadoc tool is a special program that is used to compile Java programs.
Answer 3 (p. 61)

2.11.3.4 Question 4

True or false? Comments recognized by the javadoc tool begin with /** and end with */
Answer 4 (p. 61)

68This content is available online at <http://cnx.org/content/m45169/1.6/>.
69http://cnx.org/contents/EHRr6hjR:pDHzTeQb
70http://cnx.org/contents/-2RmHFs_:kFS-maG_
71http://cnx.org/content/m45140

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

59

2.11.3.5 Question 5

True or false? Multi-line comments begin with /# and end with #/
Answer 5 (p. 60)

2.11.3.6 Question 6

True or false? The multi-line comment style is particularly useful for creating large blocks of information
that should be ignored by the compiler.

Answer 6 (p. 60)

2.11.3.7 Question 7

True or false? The multi-line comment style cannot be used to produce a comment consisting of a single line
of text.

Answer 7 (p. 60)

2.11.3.8 Question 8

True or false? Single-line comments begin with // and end at the end of the line.
Answer 8 (p. 60)
What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

60 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.11.4 Answers

2.11.4.1 Answer 8

True.
Back to Question 8 (p. 59)

2.11.4.2 Answer 7

False. The multi-line comment style can be used to produce a comment consisting of none, one, or more
lines of text.

Back to Question 7 (p. 59)

2.11.4.3 Answer 6

True.
Back to Question 6 (p. 59)

2.11.4.4 Answer 5

False. Multi-line comments begin with /* and end with */
Back to Question 5 (p. 59)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

61

2.11.4.5 Answer 4

True.
Back to Question 4 (p. 58)

2.11.4.6 Answer 3

False. The javadoc tool is a special program that is used to produce documentation for Java program.
Back to Question 3 (p. 58)

2.11.4.7 Answer 2

False. Java supports the three styles of comments.
Back to Question 2 (p. 58)

2.11.4.8 Answer 1

True.
Back to Question 1 (p. 58)

2.11.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0140r Review: Java comments
• File: Jb0140r.htm
• Published: 11/21/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.12 Jb0150: Java OOP: A Gentle Introduction to Java Data Types72

Revised: Sun Mar 27 21:20:50 CDT 2016

This page is included in the following Books:

72This content is available online at <http://cnx.org/content/m45141/1.5/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

62 CHAPTER 2. PROGRAMMING FUNDAMENTALS

• Programming Fundamentals with Java 73

• Object-Oriented Programming (OOP) with Java 74

2.12.1 Table of Contents

• Preface (p. 62)

· General (p. 62)
· Prerequisites (p. 62)
· Viewing tip (p. 63)

* Figures (p. 63)

• Discussion (p. 63)

· Introduction (p. 63)
· Primitive types (p. 65)

* Whole-number types (p. 65)
* Floating-point types (p. 67)
* The character type (p. 71)
* The boolean type (p. 71)

· User-de�ned or reference types (p. 72)
· Sample program (p. 73)

• Miscellaneous (p. 74)

2.12.2 Preface

2.12.2.1 General

This module is part of a collection of modules designed to help you learn to program computers.
It introduces Java data types.

2.12.2.2 Prerequisites

In addition to an Internet connection and a browser, you will need the following tools (as a minimum) to
work through the exercises in these modules:

• The Sun/Oracle Java Development Kit (JDK) (See http://www.oracle.com/technetwork/java/javase/downloads/index.html
75)

• Documentation for the Sun/Oracle Java Development Kit (JDK) (See
http://download.oracle.com/javase/7/docs/api/ 76)

• A simple IDE or text editor for use in writing Java code.

The minimum prerequisites for understanding the material in these modules include:

• An understanding of algebra.
• An understanding of all of the material covered in the earlier modules in this collection.

73http://cnx.org/contents/EHRr6hjR:pDHzTeQb
74http://cnx.org/contents/-2RmHFs_:kFS-maG_
75http://www.oracle.com/technetwork/java/javase/downloads/index.html
76http://download.oracle.com/javase/7/docs/api/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

63

2.12.2.3 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures while you are reading about them.

2.12.2.3.1 Figures

• Figure 1 (p. 66) . Range of values for whole-number types.
• Figure 2 (p. 67) . De�nition of �oating point.
• Figure 3 (p. 68) . Di�erent ways to represent 623.57185.
• Figure 4 (p. 68) . Relationships between multiplicative factors and exponentiation.
• Figure 5 (p. 69) . Other ways to represent the same information.
• Figure 6 (p. 69) . Still other ways to represent 623.57185.
• Figure 7 (p. 70) . Range of values for �oating-point types.
• Figure 8 (p. 71) . Example of the use of the boolean type.

2.12.3 Discussion

2.12.3.1 Introduction

Type-sensitive languages
Java and some other modern programming languages make heavy use of a concept that we refer to as

type , or data type .
We refer to those languages as type-sensitive languages . Not all languages are type-sensitive languages.

In particular, some languages hide the concept of type from the programmer and automatically deal with
type issues behind the scenes.

So, what do we mean by type?
One analogy that comes to my mind is international currency. For example, many years ago, I spent a

little time in Japan and quite a long time on an island named Okinawa (Okinawa is now part of Japan) .
Types of currency
At that time, as now, the type of currency used in the United States was the dollar. The type of currency

used in Japan was the yen, and the type of currency used on the island of Okinawa was also the yen. However,
even though two of the currencies had the same name, they were di�erent types of currency, as determined
by the value relationships among them.

The exchange rate
As I recall, at that time, the exchange rate between the Japanese yen and the U.S. dollar was 360 yen for

each dollar. The exchange rate between the Okinawan yen and the U.S. dollar was 120 yen for each dollar.
This suggests that the exchange rate between the Japanese yen and the Okinawan yen would have been 3
Japanese yen for each Okinawan yen.

Analogous to di�erent types of data
So, why am I telling you this? I am telling you this to illustrate the concept that di�erent types of

currency are roughly analogous to di�erent data types in programming.
Purchasing transactions were type sensitive
In particular, because there were three di�erent types of currency involved, the di�erences in the types

had to be taken into account in any purchasing transaction to determine the price in that particular currency.
In other words, the purchasing process was sensitive to the type of currency being used for the purchase
(type sensitive) .

Di�erent types of data
Type-sensitive programming languages deal with di�erent types of data. Some data types such at type

int involve whole numbers only (no fractional parts are allowed) .
Other data types such as double involve numbers with fractional parts.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

64 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Some data types conceptually have nothing to do with numeric values, but deal only with the concept of
true or false (boolean) or with the concept of the letters of the alphabet and the punctuation characters
(char) .

Type speci�cation
For every di�erent type of data used with a particular programming language, there is a speci�cation

somewhere that de�nes two important characteristics of the type:

1. What is the set of all possible data values that can be stored in an instance of the type (we will learn
some other names for instance later) ?

2. Once you have an instance of the type, what are the operations that you can perform on that instance
alone, or in combination with other instances?

What do I mean by an instance of a type?
Think of the type speci�cation as being analogous to the plan or blueprint for a model airplane. Assume

that you build three model airplanes from the same set of plans. You will have created three instances of
the plans.

We might say that an instance is the physical manifestation of a plan or a type.
Using mixed types
Somewhat secondary to the speci�cations for the di�erent types, but also extremely important, is a set

of rules that de�ne what happens when you perform an operation involving mixed types (such as making a
purchase using some yen currency in combination with some dollar currency) .

The short data type
For example, in addition to the integer type int , there is a data type in Java known as short . The

short type is also an integer type.
If you have an instance of the short type, the set of all possible values that you can store in that

instance is the set of all the whole numbers ranging from -32,768 to +32,767.
This constitutes a set of 65,536 di�erent values, including the value zero. No other value can be stored

in an instance of the type short . For example, you cannot store the value 35,000 in an instance of the
type short in Java. If you need to store that value, you will need to use some type other than short .

Kind of like an odometer
This is somewhat analogous to the odometer in your car (the thing that records how many miles the car

has been driven) . For example, depending on the make and model of car, there is a speci�ed set of values
that can appear in the odometer. The value that appears in the odometer depends on how many miles your
car has been driven.

It is fairly common for an odometer to be able to store and to display the set of all positive values
ranging from zero to 99999. If your odometer is designed to store that set of values and if you drive your
car more than 99999 miles, it is likely that the odometer will roll over and start back at zero after you pass
the 99999-mile mark. In other words, that particular odometer does not have the ability to store a value of
100,000 miles. Once you pass the 99999-mark, the data stored in the odometer is corrupt.

Now let's return to the Java type named short
Assume that you have two instances of the type short in a Java program. What are the operations

that you can perform on those instances? For example:

• You can add them together.
• You can subtract one from the other.
• You can multiply one by the other.
• You can divide one by the other.
• You can compare one with the other to determine which is algebraically larger.

There are some other operations that are allowed as well. In fact, there is a well-de�ned set of operations
that you are allowed to perform on those instances. That set of operations is de�ned in the speci�cation for
the type short .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

65

What if you want to do something di�erent?
However, if you want to perform an operation that is not allowed by the type speci�cation, then you will

have to �nd another way to accomplish that purpose.
For example, some programming languages allow you to raise whole-number types to a power (examples:

four squared, six cubed, nine to the fourth power, etc.) . However, that operation is not allowed by the
Java speci�cation for the type short . If you need to do that operation with a data value of the Java
short type, you must �nd another way to do it.

Two major categories of type
Java data types can be subdivided into two major categories:

• Primitive types
• User-de�ned or reference types

These categories are discussed in more detail in the following sections.

2.12.3.2 Primitive types

Java is an extensible programming language
What this means is that there is a core component to the language that is always available. Beyond this,

individual programmers can extend the language to provide new capabilities. The primitive types discussed
in this section are the types that are part of the core language. A later section will discuss user-de�ned types
that become available when a programmer extends the language.

More subdivision
It seems that when teaching programming, I constantly �nd myself subdividing topics into sub-topics. I

am going to subdivide the topic of Primitive Types into four categories:

• Whole-number types
• Floating-point types
• Character types
• Boolean types

Hopefully this categorization will make it possible for me to explain these types in a way that is easier for
you to understand.

2.12.3.2.1 Whole-number types

The whole-number types, often called integer types, are relatively easy to understand. These are types
that can be used to represent data without fractional parts.

Applesauce and hamburger
For example, consider purchasing applesauce and hamburger. At the grocery store where I shop, I am

allowed to purchase cans of applesauce only in whole-number or integer quantities.
Can purchase integer quantities only
For example, the grocer is happy to sell me one can of applesauce and is even happier to sell me 36 cans

of applesauce. However, she would be very unhappy if I were to open a can of applesauce in the store and
attempt to purchase 6.3 cans of applesauce.

Counting doesn't require fractional parts
A count of the number of cans of applesauce that I purchase is somewhat analogous to the concept of

whole-number data types in Java. Applesauce is not available in fractional parts of cans (at my grocery
store) .

Fractional pounds of hamburger are available
On the other hand, the grocer is perfectly willing to sell me 6.3 pounds of hamburger. This is somewhat

analogous to �oating-point data types in Java.
Accommodating applesauce and hamburger in a program

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

66 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Therefore, if I were writing a program dealing with quantities of applesauce and hamburger, I might elect
to use a whole number type to represent cans of applesauce and to use a �oating-point type to represent
pounds of hamburger.

Di�erent whole-number types
In Java, there are four di�erent whole-number types:

• byte
• short
• int
• long

(The char type is also a whole number type, but since it is not intended to be used for arithmetic, I discuss
it later as a character type.)

The four types di�er primarily in terms of the range of values that they can accommodate and the amount
of computer memory required to store instances of the types.

Di�erences in operations?
Although there are some subtle di�erences among the four whole-number types in terms of the operations

that you can perform on them, I will defer a discussion of those di�erences until a more advanced module.
(For example some operations require instances of the byte and short types to be converted to type
int before the operation takes place.)

Algebraically signed values
All four of these types can be used to represent algebraically signed values ranging from a speci�c negative

value to a speci�c positive value.
Range of the byte type
For example, the byte type can be used to represent the set of whole numbers ranging from -128 to

+127 inclusive. (This constitutes a set of 256 di�erent values, including the value zero.)
The byte type cannot be used to represent any value outside this range. For example, the byte type

cannot be used to represent either -129 or +128.
No fractional parts allowed by the byte type
Also, the byte type cannot be used to represent fractional values within the allowable range. For

example, the byte type cannot be used to represent the value of 63.5 or any other value that has a fractional
part.

Like a strange odometer
To form a crude analogy, the byte type is sort of like a strange odometer in a new (and unusual) car

that shows a mileage value of -128 when you �rst purchase the car. As you drive the car, the negative values
shown on the odometer increment toward zero and then pass zero. Beyond that point they increment up
toward the value of +127.

Oops, numeric over�ow!
When the value passes (or attempts to pass) +127 miles, something bad happens. From that point

forward, the value shown on the odometer is not a reliable indicator of the number of miles that the car has
been driven.

Ranges for each of the whole-number types
Figure 1 (p. 66) shows the range of values that can be accommodated by each of the four whole-number

types supported by the Java programming language:

Figure 1 . Range of values for whole-number types.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

67

byte

-128 to +127

short

-32768 to +32767

int

-2147483648 to +2147483647

long

-9223372036854775808 to +9223372036854775807

Table 2.19

Can represent some fairly large values
As you can see, the int and long types can represent some fairly large values. However, if your task

involves calculations such as distances in interstellar space, these ranges probably won't accommodate your
needs. This will lead you to consider using the �oating-point types discussed in the upcoming sections. I
will discuss the operations that can be performed on whole-number types more fully in future modules.

2.12.3.2.2 Floating-point types

Floating-point types are a little more complicated than whole-number types. I found the de�nition of
�oating-point shown in Figure 2 (p. 67) in the Free On-Line Dictionary of Computing at this URL 77 .

Figure 2 . De�nition of �oating point.

A number representation consisting of a mantissa, M, an exponent, E, and an (assumed) radix (or "base") . The number represented is M*R^E where R is the radix - usually ten but sometimes 2.

Table 2.20

So what does this really mean?
Assuming a base or radix of 10, I will attempt to explain it using an example.
Consider the following value:
623.57185
I can represent this value in any of the ways shown in Figure 3 (p. 68) (where * indicates multiplication).

77http://foldoc.org/�oating+point

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

68 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Figure 3 . Di�erent ways to represent 623.57185.

.62357185*1000

6.2357185*100

62.357185*10

623.57185*1

6235.7185*0.1

62357.185*0.01

623571.85*0.001

6235718.5*0.0001

62357185.*0.00001

Table 2.21

In other words, I can represent the value as a mantissa (62357185) multiplied by a factor where the
purpose of the factor is to represent a left or right shift in the position of the decimal point.

Now consider the factor
Each of the factors shown in Figure 3 (p. 68) represents the value of ten raised to some speci�c power,

such as ten squared, ten cubed, ten raised to the fourth power, etc.
Exponentiation
If we allow the following symbol (^) to represent exponentiation (raising to a power) and allow the

following symbol (/) to represent division, then we can write the values for the above factors in the ways
shown in Figure 4 (p. 68) .

Note in particular the characters following the �rst equal character (=) on each line, which I will refer
to later as the exponents.

Figure 4 . Relationships between multiplicative factors and exponentiation.

1000 = 10^+3 = 1*10*10*10

100 = 10^+2 = 1*10*10

10 = 10^+1 = 1*10

1 = 10^+0 = 1

0.1 = 10^-1 = 1/10

0.01 = 10^-2 = 1/(10*10)

0.001 = 10^-3 = 1/(10*10*10)

0.0001 = 10^-4 = 1/(10*10*10*10)

0.00001 = 10^-5 = 1/(10*10*10*10*10)

Table 2.22

In the above notation, the term 10^+3 means 10 raised to the third power.
The zeroth power
By de�nition, the value of any value raised to the zeroth power is 1. (Check this out in your high-school

algebra book.)
The exponent and the factor
Hopefully, at this point you will understand the relationship between the exponent and the factor intro-

duced earlier in Figure 3 (p. 68) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

69

Di�erent ways to represent the same value
Having reached this point, by using substitution, I can rewrite the original set of representations (p. 68)

of the value 623.57185 in the ways shown in Figure 5 (p. 69) .
(It is very important to for you to understand that these are simply di�erent ways to represent the same

value.)

Figure 5 . Other ways to represent the same information.

.62357185*10^+3

6.2357185*10^+2

62.357185*10^+1

623.57185*10^+0

6235.7185*10^-1

62357.185*10^-2

623571.85*10^-3

6235718.5*10^-4

62357185.*10^-5

Table 2.23

A simple change in notation
Finally, by making a simplifying change in notation where I replace (*10^) by (E) I can rewrite the

di�erent representations of the value of 623.57185 in the ways shown in Figure 6 (p. 69) .

Figure 6 . Still other ways to represent 623.57185.

.62357185E+3

6.2357185E+2

62.357185E+1

623.57185E+0

6235.7185E-1

62357.185E-2

623571.85E-3

6235718.5E-4

62357185.E-5

Table 2.24

Getting the true value
Floating point types represent values as a mantissa containing a decimal point along with an exponent

value which tells how many places to shift the decimal point to the left or to the right in order to determine
the true value.

Positive exponent values mean that the decimal point should be shifted to the right. Negative exponent
values mean that the decimal point should be shifted to the left.

Maintaining fractional parts
One advantage of �oating-point types is that they can be used to maintain fractional parts in data values,

such as 6.3 pounds of hamburger.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

70 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Accommodating a very large range of values
Another advantage is that a very large range of values can be represented using a reasonably small amount

of computer memory for storage of the values.
Another example
For example (assuming that I counted the number of digits correctly) the following very large value

62357185000000000000000000000000000000.0

can be represented as

6.2357185E+37

Similarly, again assuming that I counted the digits correctly, the following very small value

0.0000000000000000000000000000062357185

can be represented as

6.2357185E-30

When would you use �oating-point?
If you happen to be working in an area where you

• need to keep track of fractional parts (such as the amount of hamburger in a package) ,
• have to work with extremely large numbers (distances between galaxies) , or
• have to work with extremely small values (the size of atomic particles) ,

then you will need to use the �oating-point types.
Don't use �oating-point in �nancial transactions
You probably don't want to use �oating-point in �nancial calculations, however, because there is a lot of

rounding that takes place in �oating-point calculations. In other words, �oating point calculations provide
answers that are very close to the truth but the answers are often not exact.

Two �oating-point types
Java supports two di�erent �oating point types:

• �oat
• double

These two types di�er primarily in terms of the range of values that they can support.
Range of values for �oating point types
The table in Figure 7 (p. 70) (p. 70) shows the smallest and largest values that can be accommodated

by each of the �oating-point types. Values of either type can be either positive or negative.

Figure 7 . Range of values for �oating-point types.

float

1.4E-45 to 3.4028235E38

double

4.9E-324 to 1.7976931348623157E308

Table 2.25

I will discuss the operations that can be performed on �oating-point types in a future module.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

71

2.12.3.2.3 The character type

Computers deal only in numeric values. They don't know how to deal directly with the letters of the alphabet
and punctuation characters. This gives rise to a type named char .

Purpose of the char type
The purpose of the character type is to make it possible to represent the letters of the alphabet, the

punctuation characters, and the numeric characters internally in the computer. This is accomplished by
assigning a numeric value to each character, much as you may have done to create secret codes when you
were a child.

A single character type
Java supports a single character type named char . The char type uses a standard character represen-

tation known as Unicode to represent up to 65,535 di�erent characters.
Why so many characters?
The reason for the large number of possible characters is to make it possible to represent the characters

making up the alphabets of many di�erent countries and many di�erent spoken languages.
What are the numeric values representing characters?
As long as the characters that you use in your program appear on your keyboard, you usually don't have

a need to know the numeric value associated with the di�erent characters. If you are curious, however, the
upper-case A is represented by the value 65 in the Unicode character set.

Representing a character symbolically
In Java, you usually represent a character in your program by surrounding it with apostrophes as shown

below:
'A'.
The Java programming tools know how to cross reference that speci�c character symbol against the

Unicode table to obtain the corresponding numeric value. (A discussion of the use of the char type to
represent characters that don't appear on your keyboard is beyond the scope of this module.)

I will discuss the operations that can be performed on the char type in a future module.

2.12.3.2.4 The boolean type

The boolean type is the simplest type supported by Java. It can have only two values:

• true
• false

Generally speaking, about the only operations that can be directly applied to an instance of the boolean
type are to change it from true to false , and vice versa. However, the boolean type can be included
in a large number of somewhat higher-level operations.

The boolean type is commonly used in some sort of a test to determine what to do next, such as that
shown in Figure 8 (p. 71) .

Figure 8 . Example of the use of the boolean type.

Perform a test that returns a value of type boolean.

if that value is true,

do one thing

otherwise (meaning that value is false)

do a different thing

Table 2.26

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

72 CHAPTER 2. PROGRAMMING FUNDAMENTALS

I will discuss the operations that can be performed on the boolean type in more detail in a future
module.

2.12.3.3 User-de�ned or reference types

Extending the language
Java is an extensible programming language. By this, I mean that there is a core component to

the language that is always available. Beyond the core component, di�erent programmers can extend the
language in di�erent ways to meet their individual needs.

Creating new types
One of the ways that individual programmers can extend the language is to create new types. When

creating a new type, the programmer must de�ne the set of values that can be stored in an instance of the
type as well as the operations that can be performed on instances of the type.

No magic involved
While this might initially seem like magic, once you get to the heart of the matter, it is really pretty

straightforward. New types are created by combining instances of primitive types along with instances of
other user-de�ned types. In other words, the process begins with the primitive types explained earlier and
builds upward from there.

An example
For example, a String type, which can be used to represent a person's last name, is just a grouping of

a bunch of instances of the primitive char or character type.
A user-de�ned Person type, which could be used to represent both a person's �rst name and their last

name, might simply be a grouping of two instances of the user-de�ned String type. (The String type
is part of the Java standard library. However, the standard library doesn't have a type named Person .
If you need that type, you will have to de�ne it yourself.)

Di�erences
The biggest conceptual di�erence between the String type and the Person type is that the String

type is contained in the standard Java library while the Person type isn't in that library. However, you
could put it in a library of your own design if you choose to do so.

Removing types
You could easily remove the String type from your copy of the standard Java library if you choose

to do so, although that would probably be a bad idea. However, you cannot remove the primitive double
type from the core language without making major modi�cations to the language.

The company telephone book
A programmer responsible for producing the company telephone book might create a new type that can

be used to store the �rst and last names along with the telephone number of an individual. That programmer
might choose to give the new type the name Employee .

The programmer could create an instance of the Employee type to represent each employee in the
company, populating each such instance with the name and telephone number for an individual employee.
(At this point, let me sneak a little jargon in and tell you that we will be referring to such instances as

objects.)
A comparison operation
The programmer might de�ne one of the allowable operations for the new Employee type to be a

comparison between two objects of the new type to determine which is greater in an alphabetical sorting sense.
This operation could be used to sort the set of objects representing all of the employees into alphabetical
order. The set of sorted objects could then be used to print a new telephone book.

A name-change operation
Another allowable operation that the programmer might de�ne would be the ability to change the name

stored in an object representing a particular employee. For example when Suzie Smith marries Tom Jones,
she might elect to thereafter be known as

• Suzie Smith

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

73

• Suzie Jones,
• Suzie Smith-Jones,
• Suzie Jones-Smith, or
• something entirely di�erent.

In this case, there would be a need to modify the object that represents Suzie in order to re�ect her newly-
elected surname. (Or perhaps Tom Jones might elect to thereafter be known as Tom Jones-Smith, in which
case it would be necessary to modify the object that represents him.)

An updated telephone book
The person charged with maintaining the database could

• use the name-changing operation to modify the object and change the name,
• make use of the sorting operation to re-sort the set of objects, and
• print and distribute an updated version of the telephone book.

Many user-de�ned types already exist
Unlike the primitive types which are prede�ned in the core language, I am unable to give you much in

the way of speci�c information about user-de�ned types, simply because they don't exist until a user de�nes
them.

I can tell you, however, that when you obtain the Java programming tools from Sun, you not only receive
the core language containing the primitive types, you also receive a large library containing several thousand
user-de�ned types that have already been de�ned. A large documentation package is available from Sun to
help you determine the individual characteristics of these user-de�ned types.

The most important thing
At this stage in your development as a Java programmer, the most important thing for you to know

about user-de�ned types is that they are possible.
You can de�ne new types. Unlike earlier procedural programming languages such as C and Pascal, you

are no longer forced to adapt your problem to the available tools. Rather, you now have the opportunity to
extend the tools to make them better suited to solve your problem.

The class de�nition
The speci�c mechanism that makes it possible for you to de�ne new types in Java is a mechanism known

as the class de�nition .
In Java, whenever you de�ne a new class, you are at the same time de�ning a new type. Your new type

can be as simple, or as complex and powerful as you want it to be.
An object (instance) of your new type can contain a very small amount of data, or it can contain a very

large amount of data. The operations that you allow to be performed on an object of your new type can be
rudimentary, or they can be very powerful.

It is all up to you
Whenever you de�ne a new class (type) you not only have the opportunity to de�ne the data de�nition

and the operations, you also have a responsibility to do so.
Much to learn and much to do
But, you still have much to learn and much to do before you will need to de�ne new types.
There are a lot of fundamental programming concepts that we will need to cover before we seriously

embark on a study involving the de�nition of new types.
For the present then, simply remember that such a capability is available, and if you work to expand

your knowledge of Java programming one small step at a time, when we reach the point of de�ning new
types, you will be ready and eager to do so.

2.12.3.4 Sample program

I'm not going to provide a sample program in this module. Instead, I will be using what you have learned
about Java data types in the sample programs in future modules.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

74 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.12.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0150: Java OOP: A Gentle Introduction to Java Data Types
• File: Jb0150.htm
• Published: 11/17/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

75

2.13 Jb0150r Review78

Revised: Sun Mar 27 23:06:45 CDT 2016

This page is included in the following Books:

• Programming Fundamentals with Java 79

• Object-Oriented Programming (OOP) with Java 80

2.13.1 Table of Contents

• Preface (p. 75)
• Questions (p. 75)

· 1 (p. 75) , 2 (p. 75) , 3 (p. 75) , 4 (p. 75) , 5 (p. 76) , 6 (p. 76) , 7 (p. 76) , 8 (p. 76) , 9 (p. 76)
, 10 (p. 76) , 11 (p. 76) , 12 (p. 81) , 13 (p. 77) , 14 (p. 77) , 15 (p. 77) , 16 (p. 77) , 17 (p. 77) ,
18 (p. 77) , 19 (p. 77) , 20 (p. 78) , 21 (p. 78) , 22 (p. 78) , 23 (p. 78) , 24 (p. 78) , 25 (p. 78) ,

• Answers (p. 80)
• Miscellaneous (p. 82)

2.13.2 Preface

This module contains review questions and answers keyed to the module titled Jb0150: Java OOP: A Gentle
Introduction to Java Data Types 81 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

2.13.3 Questions

2.13.3.1 Question 1 .

True or false? Java is a type-sensitive language.
Answer 1 (p. 82)

2.13.3.2 Question 2

True or false? Data type double involves whole numbers only (no fractional parts are allowed) .
Answer 2 (p. 82)

2.13.3.3 Question 3

True or false? Type double involves numbers with fractional parts.
Answer 3 (p. 82)

2.13.3.4 Question 4

True or false? All Java data types conceptually have something to do with numeric values.
Answer 4 (p. 82)

78This content is available online at <http://cnx.org/content/m45168/1.6/>.
79http://cnx.org/contents/EHRr6hjR:pDHzTeQb
80http://cnx.org/contents/-2RmHFs_:kFS-maG_
81http://cnx.org/content/m45141

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

76 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.13.3.5 Question 5

True or false? The Java char type deals conceptually with the letters of the alphabet, the numeric
characters, and the punctuation characters.

Answer 5 (p. 82)

2.13.3.6 Question 6

True or false? For every di�erent type of data used with a particular programming language, there is a
speci�cation somewhere that de�nes two important characteristics of the type:

1. What is the set of all possible data values that can be stored in an instance of the type?
2. Once you have an instance of the type, what are the operations that you can perform on that instance

alone, or in combination with other instances?

Answer 6 (p. 82)

2.13.3.7 Question 7

True or false? If you have an instance of the byte type, the set of all possible values that you can store in
that instance is the set of all the whole numbers ranging from -256 to +255.

Answer 7 (p. 82)

2.13.3.8 Question 8

Name or describe four of the operations that you can perform with data of type short .
Answer 8 (p. 81)

2.13.3.9 Question 9

True or false? Java data types can be subdivided into two major categories:

• Primitive types
• User-de�ned or reference types

Answer 9 (p. 81)

2.13.3.10 Question 10

True or false? The primitive types are not part of the core language.
Answer 10 (p. 81)

2.13.3.11 Question 11

True or false? For purposes of discussion, primitive types can be subdivided into four categories:

• Whole-number types
• Floating-point types
• Character types
• Boolean types

Answer 11 (p. 81)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

77

2.13.3.12 Question 12

True or false? In Java, there are three di�erent whole-number types:

• byte
• short
• int

Answer 12 (p. 81)

2.13.3.13 Question 13

True or false? The whole-number types di�er in terms of the range of values that they can accommodate
and the amount of computer memory required to store instances of the types.

Answer 13 (p. 81)

2.13.3.14 Question 14

True or false? Java provides an unsigned version of all of the primitive whole-number types.
Answer 14 (p. 81)

2.13.3.15 Question 15

True or false? Floating point types represent values as a mantissa containing a decimal point along with an
exponent value that tells how many places to shift the decimal point to the left or to the right in order to
determine the true value.

Answer 15 (p. 81)

2.13.3.16 Question 16

True or false? With a �oating point type, positive exponent values mean that the decimal point should be
shifted to the left. Negative exponent values mean that the decimal point should be shifted to the right.

Answer 16 (p. 81)

2.13.3.17 Question 17

True or false? Java supports two di�erent �oating point types:

• �oat
• double

Answer 17 (p. 80)

2.13.3.18 Question 18

True or false? The purpose of the char type is to make it possible to represent the letters of the alphabet,
the punctuation characters, and the numeric characters internally in the computer. This is accomplished by
assigning a numeric value to each character.

Answer 18 (p. 80)

2.13.3.19 Question 19

True or false? The char type uses a standard character representation known as Unicode to represent
up to 65,535 di�erent characters.

Answer 19 (p. 80)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

78 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.13.3.20 Question 20

True or false? In Java, you usually represent a character in your program by surrounding it with quotation
marks as shown below:

"A".
Answer 20 (p. 80)

2.13.3.21 Question 21

True or false? The boolean type can have three values:

• true
• false
• maybe

Answer 21 (p. 80)

2.13.3.22 Question 22

True or false? Java is an extensible programming language, meaning that there is a core component to
the language that is always available. Beyond the core component, di�erent programmers can extend the
language in di�erent ways to meet their individual needs.

Answer 22 (p. 80)

2.13.3.23 Question 23

True or false? As is the case in C++, one of the ways that individual programmers can extend the Java
language is to create overloaded operators for the primitive types.

Answer 23 (p. 80)

2.13.3.24 Question 24

True or false? One of the ways that individual programmers can extend the Java language is to create new
types.

Answer 24 (p. 80)

2.13.3.25 Question 25

True or false? The speci�c Java mechanism that makes it possible for programmers to de�ne new types is a
mechanism known as the class de�nition .

Answer 25 (p. 80)
What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

79

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

80 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.13.4 Answers

2.13.4.1 Answer 25

True.
Back to Question 25 (p. 78)

2.13.4.2 Answer 24

True.
Back to Question 24 (p. 78)

2.13.4.3 Answer 23

False. Java does not allow programmers to create overloaded operators for the primitive types.
Back to Question 23 (p. 78)

2.13.4.4 Answer 22

True.
Back to Question 22 (p. 78)

2.13.4.5 Answer 21

False. The boolean type can have only two values:

• true
• false

Back to Question 21 (p. 78)

2.13.4.6 Answer 20

False. In Java, you usually represent a character in your program by surrounding it with apostrophes as
shown below:

'A'.
Back to Question 20 (p. 78)

2.13.4.7 Answer 19

True.
Back to Question 19 (p. 77)

2.13.4.8 Answer 18

True.
Back to Question 18 (p. 77)

2.13.4.9 Answer 17

True.
Back to Question 17 (p. 77)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

81

2.13.4.10 Answer 16

False. With a �oating point type, positive exponent values mean that the decimal point should be shifted
to the right . Negative exponent values mean that the decimal point should be shifted to the left .

Back to Question 16 (p. 77)

2.13.4.11 Answer 15

True.
Back to Question 15 (p. 77)

2.13.4.12 Answer 14

False. Other than type char , there are no unsigned whole-number primitive types in Java.
Back to Question 14 (p. 77)

2.13.4.13 Answer 13

True.
Back to Question 13 (p. 77)

2.13.4.14 Answer 12

False. In Java, there are �ve di�erent whole-number types:

• byte
• short
• int
• long
• char

Back to Question 12 (p. 77)

2.13.4.15 Answer 11

True.
Back to Question 11 (p. 76)

2.13.4.16 Answer 10

False. The primitive types are part of the core language.
Back to Question 10 (p. 76)

2.13.4.17 Answer 9

True.
Back to Question 9 (p. 76)

2.13.4.18 Answer 8

Four of the possible operations are:

• You can add them together.
• You can subtract one from the other.
• You can multiply one by the other.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

82 CHAPTER 2. PROGRAMMING FUNDAMENTALS

• You can divide one by the other.

Back to Question 8 (p. 76)

2.13.4.19 Answer 7

False. If you have an instance of the byte type, the set of all possible values that you can store in that
instance is the set of all the whole numbers ranging from -128 to +127.

Back to Question 7 (p. 76)

2.13.4.20 Answer 6

True.
Back to Question 6 (p. 76)

2.13.4.21 Answer 5

True.
Back to Question 5 (p. 76)

2.13.4.22 Answer 4

False. In Java, data type boolean conceptually has nothing to do with numeric values, but deals only
with the concept of true or false .

Back to Question 4 (p. 75)

2.13.4.23 Answer 3

True.
Back to Question 3 (p. 75)

2.13.4.24 Answer 2

False. Some data types such at type int involve whole numbers only (no fractional parts are allowed) .
Back to Question 2 (p. 75)

2.13.4.25 Answer 1

True.
Back to Question 1 (p. 75)

2.13.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0150r Review: A Gentle Introduction to Java Data Types
• File: Jb0150r.htm
• Published: 11/21/12

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

83

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.14 Jb0160: Java OOP: Hello World82

Revised: Sat Sep 03 18:11:42 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 83

• Object-Oriented Programming (OOP) with Java 84

2.14.1 Table of Contents

• Preface (p. 83)
• Viewing tip (p. 84)

· Figures (p. 84)
· Listings (p. 84)

• Introduction (p. 84)
• The Java version of Hello World (p. 85)
• Interesting code fragments (p. 86)
• General information (p. 87)
• Run the program (p. 88)
• Miscellaneous (p. 88)
• Complete program listing (p. 88)

2.14.2 Preface

It is traditional in introductory programming courses to write and explain a simple program that prints the
text "Hello World" on the computer screen.

This module continues that tradition.

82This content is available online at <http://cnx.org/content/m45143/1.7/>.
83http://cnx.org/contents/EHRr6hjR:pDHzTeQb
84http://cnx.org/contents/-2RmHFs_:kFS-maG_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

84 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.14.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

2.14.2.1.1 Figures

• Figure 1 (p. 85) . How to compile and run a Java application.

2.14.2.1.2 Listings

• Listing 1 (p. 86) . Beginning of the class named hello1.
• Listing 2 (p. 86) . Beginning of the main method.
• Listing 3 (p. 86) . Display the string Hello World.
• Listing 4 (p. 87) . End of the class named hello1.
• Listing 5 (p. 89) . Complete program listing.

2.14.3 Introduction

This module introduces you to Java programming by presenting and discussing a traditional Hello World
program.

Two approaches
Java programs can be written and executed in several di�erent ways, including the following:

• Stand-alone application from the command line.
• Applet that runs under control of a Java-capable browser.

It is also possible in many cases to write applets, which can be run in a stand-alone mode from the command
line, or can be run under control of a Java-capable browser. An example of such an applet will be presented
in a future module.

Applets vs. applications
Programming an "application" in Java is signi�cantly di�erent from programming an "applet." Applets

are designed to be downloaded and executed on-line under control of a browser.
Restrictions on applets
Their functionality of an applet is usually restricted in an attempt to prevent downloaded applets from

damaging your computer or your data. No such restrictions apply to the functionality of a Java application.
Class de�nitions
All Java programs consist of one or more class de�nitions. In this course, I will often refer to the

primary class de�nition for a Java application as the controlling class .
The main method
A stand-alone Java application requires a method named main in its controlling class .
An Applet does not require a main method. The reason that a Java Applet does not require a

main method will be explained in a future module.
Getting started
Figure 1 (p. 85) shows the steps for compiling and running a Java application.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

85

Figure 1. How to compile and run a Java application.

Here are the steps for compiling and running a Java application, based on the assumption that you are
running under Windows. If you are running under some other operating system, you will need to translate
these instructions to that OS.
1. Download and install the JDK from Oracle. Also consider downloading and installing the documenta-
tion, which is a separate download.
2. Using any editor that can produce a plain text �le (such as Notepad), create a source code �le with
the extension on the �le name being .java This �le contains your actual Java instructions. (You can
copy some sample programs from the early lessons in this collection to get started.)
3. Open a command-line window and change directory to the directory containing the source �le. It
doesn't really matter which directory the source �le is in, but I normally put my Java �les in a directory
all their own.
4. Assume that the name of the �le is joe.java , just to have something de�nitive to refer to.
5. To compile the �le, enter the following command at the prompt:

javac joe.java

6. Correct any compiler errors that show up. Once you have corrected all compiler errors, the javac
program will execute and return immediately to the prompt with no output. At that point, the directory
should also contain a �le named joe.class and possibly some other �les with a .class extension as well.
These are the compiled Java �les.
7. To run the program, enter the following command:

java joe

8. If your program produces the correct output, congratulations. You have written, compiled, and
executed a Java application. If not, you will need to determine why not.

Table 2.27

2.14.4 The Java version of Hello World

The class �le
Compiled Java programs are stored in "bytecode" form in a �le with an extension of .class where the

name of the �le is the same as the name of the controlling class (or other class) in the program.
The main method is static
The main method in the controlling class of an application must be static , which results in main

being a class method.
Class methods can be called without a requirement to instantiate an object of the class.
When a Java application is started, the Java Virtual Machine or JVM (an executable �le named

java.exe) �nds and calls the main method in the class whose name matches the name of the class �le
speci�ed on the command line.

Running an application
For example, to start the JVM and run a Java application named hello1 , a command such as the

following must be executed at the operating system prompt:

java hello1

This command instructs the operating system to start the JVM, and then instructs the JVM to �nd and
execute the java application stored in the �le named hello1.class . (Note that the .class extension is not
included in the command.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

86 CHAPTER 2. PROGRAMMING FUNDAMENTALS

This sample program is a Java application named hello1.java .
When compiled, it produces a class �le named hello1.class .
When the program is run, the JVM calls the main method de�ned in the controlling class .
The main method is a class method.
Class methods can be called without a requirement to instantiate an object of the class.
The program displays the following words on the screen:

Hello World

2.14.5 Interesting code fragments

I will explain this program code in fragments. A complete listing of the program is provided in Listing 5 (p.
89) .

The code fragment in Listing 1 (p. 86) shows the �rst line of the class de�nition for the controlling class
named hello1 . (I will discuss class de�nitions in detail in a future module.)

Listing 1 . Beginning of the class named hello1.

class hello1 { //define the controlling class

Table 2.28

The code fragment in Listing 2 (p. 86) begins the de�nition of the main method. I will also discuss
method de�nitions in detail in a future module.

Listing 2 . Beginning of the main method.

public static void main(String[] args){

Table 2.29

The fragment in Listing 3 (p. 86) causes the string Hello World to be displayed on the command-line
screen.

The statement in Listing 3 (p. 86) is an extremely powerful statement from an object-oriented program-
ming viewpoint. When you understand how it works, you will be well on your way to understanding the
Java version of Object-Oriented Programming (OOP).

I will discuss this statement in more detail later in a future module.

Listing 3 . Display the string Hello World.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

87

System.out.println("Hello World");

Table 2.30

Listing 4 (p. 87) ends the main method and also ends the class de�nition for the class named hello1
.

Listing 4 . End of the class named hello1.

}//end main

}//End hello1 class

Table 2.31

The complete program listing
As mentioned earlier, a complete listing of the program is provided in Listing 5 (p. 89) near the end of

the module.

2.14.6 General information

This program illustrates several general aspects of Java programming.
Overall skeleton of java program
The overall skeleton of any Java program consists of one or more class de�nitions.
All methods and variables must be de�ned inside a class de�nition. There can be no freestanding

methods or global variables.
File names and extensions
The name of the controlling class should be the same as the name of the source �le that contains it.
Files containing source code in Java have an extension of java .
The main method
The controlling class de�nition for an application must contain the main method.
The primary class �le
The �le produced by compiling the �le containing the controlling class has the same name as the con-

trolling class, and has an extension of class .
Many class �les may be produced
The java compiler produces a separate �le for every class de�nition contained in an application or applet,

even if two or more class de�nitions are contained in the same source �le.
Thus, the compilation of a large application can produce many di�erent class �les.
What are jar �les?
A feature known as a jar �le can be used to consolidate those class �les into a single �le for more

compact storage, distribution, and transmission. Such a �le has an extension of .jar . (A jar �le is similar
to a zip �le except that it is specialized for use with Java programs.)

The main method is static
The controlling class for a Java application must contain a static method named main .
When you run the application using the JVM, you specify the name of the class �le that you want to

run.
The JVM then calls the main method de�ned in the class �le having that name. This is possible

because a class method can be called without a requirement to instantiate an object of the class.
The main method de�ned in that class de�nition controls the �ow of the program.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

88 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.14.7 Run the program

I encourage you to copy the code from Listing 5 (p. 89) . Compile the code and execute it. Experiment with
the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

2.14.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0160: Java OOP: Hello World
• File: Jb0160.htm
• Originally published: 1997
• Published at cnx.org: 11/17/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

2.14.9 Complete program listing

A complete listing of the program discussed in this module is provided in Listing 5 (p. 89) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

89

Listing 5 . Complete program listing.

/*File hello1.java Copyright 1997, R.G.Baldwin

This is a Java application program .

When compiled, this program produces the class named:

hello1.class

When the Java interpreter is called upon the application's

controlling class using the following statement at the

command line:

java hello1

the interpreter starts the program by calling the main

method defined in the controlling class. The main method is

a class method which can be called without the requirement

to instantiate an object of the class.

The program displays the following words on the screen:

Hello World

***/

class hello1 { //define the controlling class

//define main method

public static void main(String[] args){

//display text string

System.out.println("Hello World");

}//end main

}//End hello1 class.

Table 2.32

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

90 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.15 Jb0160r Review85

Revised: Mon Mar 28 00:15:46 CDT 2016

This page is included in the following Books:

• Programming Fundamentals with Java 86

• Object-Oriented Programming (OOP) with Java 87

2.15.1 Table of Contents

• Preface (p. 90)
• Questions (p. 90)

· 1 (p. 90) , 2 (p. 90) , 3 (p. 90) , 4 (p. 90) , 5 (p. 91) , 6 (p. 91) , 7 (p. 91) , 8 (p. 91) , 9 (p. 91)
, 10 (p. 91) , 11 (p. 91) , 12 (p. 94) , 13 (p. 91)

• Listings (p. 92)
• Answers (p. 93)
• Miscellaneous (p. 96)

2.15.2 Preface

This module contains review questions and answers keyed to the module titled Jb0160: Java OOP: Hello
World 88 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

2.15.3 Questions

2.15.3.1 Question 1 .

True or false? Applications are designed to be downloaded and executed on-line under control of a web
browser, while applets are designed to be executed in a stand-alone mode from the command line.

Answer 1 (p. 95)

2.15.3.2 Question 2

True or false? All applications and applets written in Java require a main method.
Answer 2 (p. 95)

2.15.3.3 Question 3

Explain the relationship between the name of the class �le for a Java application and the location of the
main method in the application.

Answer 3 (p. 95)

2.15.3.4 Question 4

Explain how you cause a method to be a class method in Java.
Answer 4 (p. 95)

85This content is available online at <http://cnx.org/content/m45159/1.9/>.
86http://cnx.org/contents/EHRr6hjR:pDHzTeQb
87http://cnx.org/contents/-2RmHFs_:kFS-maG_
88http://cnx.org/content/m45143

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

91

2.15.3.5 Question 5

True or false? Class methods can be called without the requirement to instantiate an object of the class:
Answer 5 (p. 95)

2.15.3.6 Question 6

Write the source code for a Java application that will display your name and address on the standard output
device. Show the command-line statement that would be required to execute a compiled version of your
application.

Answer 6 (p. 94)

2.15.3.7 Question 7

Show the three styles of comment indicators that are supported by Java.
Answer 7 (p. 94)

2.15.3.8 Question 8

True or false? Java allows free-standing methods outside of a class de�nition?
Answer 8 (p. 94)

2.15.3.9 Question 9

What is the relationship between the name of the controlling class in an application and the names of the
�les that comprise that application.

Answer 9 (p. 94)

2.15.3.10 Question 10

What is the relationship between the number of classes in an application and the number of separate �les
with the class extension that go to make up that application? How does this change when all the classes
are de�ned in the same source �le?

Answer 10 (p. 94)

2.15.3.11 Question 11

True or false? Class methods in Java can only be called relative to a speci�c object.
Answer 11 (p. 94)

2.15.3.12 Question 12

Write the signature line for the main method in a Java application.
Answer 12 (p. 94)

2.15.3.13 Question 13

Write a Java application that will display your name on the screen.
Answer 13 (p. 93)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

92 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.15.4 Listings

• Listing 1 (p. 93) . Listing for Answer 13.
• Listing 2 (p. 94) . Listing for Answer 7.
• Listing 3 (p. 95) . Listing for Answer 6.

What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

93

2.15.5 Answers

2.15.5.1 Answer 13

Listing 1 . Listing for Answer 13.

/*File SampProg02.java from lesson 10

Copyright 1997, R.G.Baldwin

Without reviewing the following solution, write an

application that will display your name on the screen.

**/

class SampProg02 { //define the controlling class

public static void main(String[] args){ //define main

System.out.println("Dick Baldwin");

}//end main

}//End SampProg02 class.

Table 2.33

Back to Question 13 (p. 91)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

94 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.15.5.2 Answer 12

public static void main(String[] args)

Back to Question 12 (p. 91)

2.15.5.3 Answer 11

False. Class methods can be called by joining the name of the class with the name of the method using
a period.

Back to Question 11 (p. 91)

2.15.5.4 Answer 10

Each class de�nition results in a separate class �le regardless of whether or not the classes are de�ned
in separate source �les.

Back to Question 10 (p. 91)

2.15.5.5 Answer 9

One of the �les must have the same name as the controlling class with an extension of class .
Back to Question 9 (p. 91)

2.15.5.6 Answer 8

False.
Back to Question 8 (p. 91)

2.15.5.7 Answer 7

Listing 2. Listing for Answer 7.

/** special documentation comment used by the JDK javadoc tool */

/* C/C++ style multi-line comment */

// C/C++// C/C++ style single-line comment

Table 2.34

Back to Question 7 (p. 91)

2.15.5.8 Answer 6

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

95

Listing 3. Listing for Answer 6.

/*File Name01.java

This is a Java application that will display a

name on the standard output device.

The command required at the command line to execute this

program is:

java Name01

**/

class Name01 { //define the controlling class

public static void main(String[] args){ //define main

System.out.println(

"Dick Baldwin\nAustin Community College\nAustin, TX");

}//end main

}//End Name01 class.

Table 2.35

Note that the \n characters in Listing 3 (p. 95) cause the output display to advance to the next line.
Back to Question 6 (p. 91)

2.15.5.9 Answer 5

True.
Back to Question 5 (p. 91)

2.15.5.10 Answer 4

Preface or precede the name of the method with the static keyword.
Back to Question 4 (p. 90)

2.15.5.11 Answer 3

The name of the class �le must be the same as the name of the class that contains the main method
(sometimes called the controlling class) .

Back to Question 3 (p. 90)

2.15.5.12 Answer 2

False. Applets do not require a main method while applications do require a main method.
Back to Question 2 (p. 90)

2.15.5.13 Answer 1

False. Applications are for stand-alone use while applets are for browsers.
Back to Question 1 (p. 90)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

96 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.15.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0160r Review: Hello World
• File: Jb0160r.htm
• Published: 11/18/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.16 Jb0170: Java OOP: A little more information about classes.89

Revised: Mon Mar 28 00:23:43 CDT 2016

This page is included in the following Books:

• Programming Fundamentals with Java 90

• Object-Oriented Programming (OOP) with Java 91

2.16.1 Table of Contents

• Preface (p. 96)
• Listings (p. 97)
• Introduction (p. 97)
• De�ning a class in Java (p. 97)
• Miscellaneous (p. 98)

2.16.2 Preface

This module is part of a collection of modules designed to help you learn to program computers.
This module sheds a little more light on the Java construct called a class .

89This content is available online at <http://cnx.org/content/m45144/1.4/>.
90http://cnx.org/contents/EHRr6hjR:pDHzTeQb
91http://cnx.org/contents/-2RmHFs_:kFS-maG_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

97

2.16.3 Listings

• Listing 1 (p. 97) . General syntax for de�ning a Java class.

2.16.4 Introduction

New types
Java makes extensive use of classes. When a class is de�ned in Java, a new type comes into being. The

new type de�nition can then be used to instantiate (create instances of) one or more objects of that new
type.

A blueprint
The class de�nition provides a blueprint that describes the data contained within, and the behavior

of objects instantiated according to the new type.
The data
The data is contained in variables de�ned within the class (often called member variables, data members,

attributes, �elds, properties, etc.).
The behavior
The behavior is controlled by methods de�ned within the class.
State and behavior
An object is said to have state and behavior . At any instant in time, the state of an object is

determined by the values stored in its variables and its behavior is determined by its methods .
Class vs. instance
It is possible to de�ne:

• instance variables and instance methods
• static or class variables and static or class methods.

Instance variables and instance methods can only be accessed through an object instantiated from the class.
They belong to the individual objects, (which is why they are called instance variables and instance methods)
.

Class variables and class methods can be accessed without �rst instantiating an object. They are
shared among all of the objects instantiated from the class and are even accessible in the total absence of an
object of the class.

The class name alone is su�cient for accessing class variables and class methods by joining the name
of the class to the name of the variable or method using a period.

2.16.5 De�ning a class in Java

The general syntax for de�ning a class in Java is shown in Listing 1 (p. 97) .

Listing 1 . General syntax for de�ning a Java class.

class MyClassName{

. . .

} //End of class definition.

Table 2.36

This syntax de�nes a class and creates a new type named MyClassName .
The de�nitions of variables, methods, constructors, and a variety of other members are inserted between

the opening and closing curly brackets.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

98 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.16.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0170: Java OOP: A little more information about classes.
• File: Jb0170.htm
• Originally published: 1997

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

99

2.17 Jb0170r: Review92

Revised: Mon Mar 28 10:56:27 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 93

• Object-Oriented Programming (OOP) with Java 94

2.17.1 Table of Contents

• Preface (p. 99)
• Questions (p. 99)

· 1 (p. 99) , 2 (p. 99) , 3 (p. 99) , 4 (p. 99) , 5 (p. 100) , 6 (p. 100) , 7 (p. 100) , 8 (p. 100)

• Answers (p. 101)
• Miscellaneous (p. 102)

2.17.2 Preface

This module contains review questions and answers keyed to the module titled Jb0170: Java OOP: A little
more information about classes 95 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

2.17.3 Questions

2.17.3.1 Question 1 .

List two of the many names commonly used for variables de�ned within a class in Java.
Answer 1 (p. 102)

2.17.3.2 Question 2

List two of the many names commonly used for the functions de�ned within a class in Java.
Answer 2 (p. 102)

2.17.3.3 Question 3

An object is said to have state and behavior . At any instant in time, the state of an object is determined
by the values stored in its (a)___________ and its behavior is determined by its (b)__________.

Answer 3 (p. 102)

2.17.3.4 Question 4

What keyword is used to cause a variable or method to become a class variable or class method in Java?
Answer 4 (p. 101)

92This content is available online at <http://cnx.org/content/m45177/1.6/>.
93http://cnx.org/contents/EHRr6hjR:pDHzTeQb
94http://cnx.org/contents/-2RmHFs_:kFS-maG_
95http://cnx.org/content/m45144

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

100 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.17.3.5 Question 5

True or false? Instance variables and instance methods can only be accessed through an object of the
class in Java.

Answer 5 (p. 101)

2.17.3.6 Question 6

True or false? In Java, the class name alone is su�cient for accessing class variables and class methods
by joining the name of the class with the name of the variable or method using a colon.

Answer 6 (p. 101)

2.17.3.7 Question 7

True or false? Show the general syntax of an empty class de�nition in Java.
Answer 7 (p. 101)

2.17.3.8 Question 8

True or false? The syntax for a class de�nition in Java requires a semicolon following the closing curly
bracket.

Answer 8 (p. 101)
What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

101

2.17.4 Answers

2.17.4.1 Answer 8

False. Java does not require the use of a semicolon following the closing curly bracket in a class de�nition.
Back to Question 8 (p. 100)

2.17.4.2 Answer 7

class NameOfClass{}
Back to Question 7 (p. 100)

2.17.4.3 Answer 6

False. A colon is not used in Java. Instead, a period is used in Java.
Back to Question 6 (p. 100)

2.17.4.4 Answer 5

True.
Back to Question 5 (p. 100)

2.17.4.5 Answer 4

static
Back to Question 4 (p. 99)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

102 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.17.4.6 Answer 3

• (a) instance variables
• (b) methods

Back to Question 3 (p. 99)

2.17.4.7 Answer 2

Member functions and instance methods.
Back to Question 2 (p. 99)

2.17.4.8 Answer 1

Instance variables and attributes.
Back to Question 1 (p. 99)

2.17.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0170r: Review: A little more information about classes
• File: Jb0170r.htm
• Published: 11/21/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.18 Jb0180: Java OOP: The main method.96

Revised: Mon Mar 28 11:21:22 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 97

• Object-Oriented Programming (OOP) with Java 98

96This content is available online at <http://cnx.org/content/m45145/1.6/>.
97http://cnx.org/contents/EHRr6hjR:pDHzTeQb
98http://cnx.org/contents/-2RmHFs_:kFS-maG_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

103

2.18.1 Table of Contents

• Preface (p. 103)

· Viewing tip (p. 103)

* Figures (p. 103)

• The main method in Java (p. 103)
• Miscellaneous (p. 106)

2.18.2 Preface

This module is part of a collection of modules designed to help you learn to program computers.
Every Java application requires a class containing a method named main . This module provides

information on the main method.

2.18.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures while you are reading about them.

2.18.2.1.1 Figures

• Figure 1 (p. 103) . The method signature according to Niemeyer and Peck.
• Figure 2 (p. 105) . The method signature according to Oracle.
• Figure 3 (p. 105) . Allowable signatures for the main method.

2.18.3 The main method in Java

There must be a main method in the controlling class in every Java application.
The method signature
The Java literature frequently refers to the signature of a method, or the method signature .
Exploring Java by Patrick Niemeyer and Joshua Peck (O'Reilly) provides the de�nition of a method

signature shown in Figure 1 (p. 103) .

Figure 1. The method signature according to Niemeyer and Peck .

"A method signature is a collection of information about the method, as in a C prototype or a forward
function declaration in other languages. It includes the method's name, type, and visibility, as well as its
arguments and return type."

Table 2.37

Type
Apparently in this de�nition, the authors are referring to the type of the method as distinguishing

between static and non-static. (Other literature refers to the type of a function or method as being the
return type which according to the above de�nition is a separate part of the signature.)

Visibility
Apparently also the use of the word visibility in the above de�nition refers to the use of public ,

private , etc.
According to Oracle...
Oracle's Java Tutorials 99 , on the other hand, describe the method signature as in Figure 2 (p. 105) .

99http://docs.oracle.com/javase/tutorial/java/javaOO/methods.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

104 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

105

Figure 2. The method signature according to Oracle .

De�nition: Two of the components of a method declaration comprise the method signature � the method's
name and the parameter types.

Table 2.38

As you can see, the Oracle de�nition is more restrictive than the Niemeyer and Peck de�nition.
Bottom line on method signature
The method signature can probably be thought of as providing information about the programming

interface to the method. In other words, it provides the information that you need to be able to call the
method in your program code.

Signature of main method
The controlling class of every Java application must contain a main method having one of the signatures

shown in Figure 3 (p. 105) .

Figure 3 . Allowable signatures for the main method.

public static void main(String[] args)

public static void main(String args[])

Table 2.39

(I prefer the �rst signature in Figure 3 (p. 105) (p. 105) as being the most descriptive of an array of
String references which is what is passed in as an argument.)
public
The keyword public indicates that the method can be called by any object. A future module will

discuss the keywords public , private , and protected in more detail.
static
The keyword static indicates that the method is a class method, which can be called without the

requirement to instantiate an object of the class. This is used by the JVM to launch the program by calling
the main method of the class identi�ed in the command to start the program.

void
The keyword void indicates that the method doesn't return any value.
args
The formal parameter args is a reference to an array object of type String . The array elements

contain references to String objects that encapsulate String representations of the arguments, if any,
entered at the command line.

Note that the args parameter must be speci�ed whether or not the user is required to enter command-
line arguments and whether or not the code in the program actually makes use of the argument. Also note
that the name can be any legal Java identi�er. It doesn't have to be args . It could be joe or sue, for
example.

The length property
The parameter named args is a reference to an array object. Java array objects have a property named

length , which speci�es the number of elements in the array.
The runtime system monitors for the entry of command-line arguments by the user and constructs the

String array containing those arguments.
Processing command-line arguments

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

106 CHAPTER 2. PROGRAMMING FUNDAMENTALS

The args.length property can be used by the code in the program to determine the number of arguments
actually entered by the user.

If the length property is not equal to zero, the �rst string in the array corresponds to the �rst argument
entered on the command line.

Command-line arguments along with strings and String arrays will be discussed in more detail in a
future module.

2.18.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0180: Java OOP: The main method.
• File: Jb0180.htm
• Originally published: 1997
• Published at cnx.org: 11/17/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

107

2.19 Jb0180r Review100

Revised: Mon Mar 28 11:31:59 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 101

• Object-Oriented Programming (OOP) with Java 102

2.19.1 Table of Contents

• Preface (p. 107)
• Questions (p. 107)

· 1 (p. 107) , 2 (p. 107) , 3 (p. 107) , 4 (p. 107) , 5 (p. 108) , 6 (p. 108) , 7 (p. 108) , 8 (p. 108)

• Answers (p. 110)
• Miscellaneous (p. 111)

2.19.2 Preface

This module contains review questions and answers keyed to the module titled Jb0180: Java OOP: The main
method 103 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

2.19.3 Questions

2.19.3.1 Question 1 .

Write the method signature for the main method in a Java application.
Answer 1 (p. 110)

2.19.3.2 Question 2

Brie�y explain the reason that the main method in a Java application is declared public .
Answer 2 (p. 110)

2.19.3.3 Question 3

Explain the reason that the main method in a Java application must be declared static .
Answer 3 (p. 110)

2.19.3.4 Question 4

Describe the purpose of the keyword void when used as the return type for the main method.
Answer 4 (p. 110)

100This content is available online at <http://cnx.org/content/m45171/1.7/>.
101http://cnx.org/contents/EHRr6hjR:pDHzTeQb
102http://cnx.org/contents/-2RmHFs_:kFS-maG_
103http://cnx.org/content/m45145

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

108 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.19.3.5 Question 5

True or false? If the Java application is not designed to use command-line arguments, it is not necessary to
include a formal parameter for the main method.

Answer 5 (p. 110)

2.19.3.6 Question 6

True or false? When using command-line arguments in Java, if the name of the string array is args ,
the args.length variable can be used by the code in the program to determine the number of arguments
actually entered.

Answer 6 (p. 110)

2.19.3.7 Question 7

True or false? The �rst string in the array of command-line arguments contains the name of the Java
application

Answer 7 (p. 110)

2.19.3.8 Question 8

The controlling class of every Java application must contain a main method. Can other classes in the
same application also have a main method? If not, why not? If so, why might you want to do that?

Answer 8 (p. 110)
What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

109

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

110 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.19.4 Answers

2.19.4.1 Answer 8

Any and all classes in a Java application can have a main method. Only the one in the controlling class
for the program being executed is actually called.

It is often desirable to provide a main method for a class that will not ultimately be the controlling
class to allow the class to be tested in a stand-alone mode, independent of other classes.

Back to Question 8 (p. 108)

2.19.4.2 Answer 7

False. Unlike C++, the �rst string in the array of command-line arguments in a Java application does not
contain the name of the application.

Back to Question 7 (p. 108)

2.19.4.3 Answer 6

True.
Back to Question 6 (p. 108)

2.19.4.4 Answer 5

False. The main method in a Java program must always provide the formal argument list regardless of
whether it is actually used in the program.

Back to Question 5 (p. 108)

2.19.4.5 Answer 4

The void keyword when used as the return type for any Java method indicates that the method does not
return anything.
Back to Question 4 (p. 107)

2.19.4.6 Answer 3

The keyword static indicates that the method is a class method which can be called without the
requirement to instantiate an object of the class. This is used by the Java virtual machine to launch the
program by calling the main method of the class identi�ed in the command to start the program.

Back to Question 3 (p. 107)

2.19.4.7 Answer 2

The keyword public indicates that the method can be called by any object.
Back to Question 2 (p. 107)

2.19.4.8 Answer 1

public static void main(String[] args)

Back to Question 1 (p. 107)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

111

2.19.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0180r Review: The main method
• File: Jb0180r.htm
• Published: 11/21/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.20 Jb0190: Java OOP: Using the System and PrintStream
Classes104

Revised: Mon Mar 28 11:44:44 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 105

• Object-Oriented Programming (OOP) with Java 106

2.20.1 Table of Contents

• Preface (p. 112)

· Viewing tip (p. 112)

* Listings (p. 112)

• Introduction (p. 112)
• Discussion (p. 112)
• A word about class variables (p. 114)
• Run the program (p. 114)
• Miscellaneous (p. 114)

104This content is available online at <http://cnx.org/content/m45148/1.5/>.
105http://cnx.org/contents/EHRr6hjR:pDHzTeQb
106http://cnx.org/contents/-2RmHFs_:kFS-maG_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

112 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.20.2 Preface

This module takes a preliminary look at the complexity of OOP by examining some aspects of the System
and PrintStream classes.

2.20.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the listings while you are reading about them.

2.20.2.1.1 Listings

• Listing 1 (p. 112) . The program named hello1.
• Listing 2 (p. 113) . Display the string "Hello World".

2.20.3 Introduction

This lesson introduces you to the use of the System and PrintStream classes in Java. This is our �rst
introduction to the complexity that can accompany the OOP paradigm. It gets a little complicated, so
you might need to pay special attention to the discussion.

2.20.4 Discussion

What does the main method do?
The main method in the controlling class of a Java application controls the �ow of the program.
The main method can also access other classes along with the variables and methods of those classes

and of objects instantiated from those classes.
The hello1 Application
Listing 1 (p. 112) shows a simple Java application named hello1 .
(By convention, class de�nitions should begin with an upper-case character. However, the original

version of this module was written and published in 1997, before that convention was �rmly established.)

Listing 1 . The program named hello1.

/*File hello1.java Copyright 1997, R.G.Baldwin

**/

class hello1 { //define the controlling class

//define main method

public static void main(String[] args){

//display text string

System.out.println("Hello World");

}//end main

}//End hello1 class. No semicolon at end of Java class.

Table 2.40

Does this program Instantiate objects?
This is a simple example that does not instantiate objects of any other class.
Does this program access another class?

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

113

However, it does access another class. It accesses the System class that is provided with the Java
development kit. (The System class will be discussed in more detail in a future module.)

The variable named out
The variable named out , referred to in Listing 1 (p. 112) as System.out , is a class variable of

the System class. (A class variable is a variable that is declared to be static.)
Recall that a class variable can be accessed without a requirement to instantiate an object of the class.

As is the case with all variables, the class variable must be of some speci�c type.
Primitive variables vs. reference variables
A class variable may be a primitive variable , which contains a primitive value, or it may be a reference

variable , which contains a reference to an object.
(I'll have more to say about the di�erence between primitive variables and reference variables in a future

module.)
The variable named out in this case is a reference variable , which refers to an object of another type.
Accessing class variables
You access class variables or class methods in Java by joining the name of the class to the name of the

variable or method with a period as shown below.

System.out

accesses the class variable named out in the Java class named System .

The PrintStream class
Another class that is provided with the Java development kit is the PrintStream class. The

PrintStream class is in a package of classes that are used to provide stream input/output capability
for Java.

What does the out variable refer to?
The out variable in the System class refers to (points to) an instance of the PrintStream class

(a PrintStream object), which is automatically instantiated when the System class is loaded into the
application.

We will be discussing the PrintStream class along with a number of other classes in detail in a future
module on input/output streams, so this is not intended to be an exhaustive discussion.

The println method
The PrintStream class has an instance method named println , which causes its argument to be

displayed on the standard output device when it is called.
(Typically, the standard output device is the command-line window. However, it is possible to redirect

it to some other device.)
Accessing an instance method
The method named println can be accessed by joining a PrintStream object's reference to the

name of the method using a period.
Thus, (assuming that the standard output device has not been redirected) , the statement shown in

Listing 2 (p. 113) causes the string "Hello World" (without the quotation marks) to be displayed in the
command-line window.

Listing 2 . Display the string "Hello World".

System.out.println("Hello World");

Table 2.41

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

114 CHAPTER 2. PROGRAMMING FUNDAMENTALS

This statement calls the println method of an object instantiated from the PrintStream class,
which is referred to (pointed to) by the variable named out , which is a class variable of the System
class.

Read the previous paragraph very carefully. As I indicated when I started this module, this is our �rst
introduction to the complexity that can result from use of the OOP paradigm. (It can get even more
complicated.) If this is not clear to you, go back over it and think about it until it becomes clear.

2.20.5 A word about class variables

How many instances of a class variable exist?
The runtime system allocates a class variable only once no matter how many instances (objects) of the

class are instantiated.
All objects of the class share the same physical memory space for the class variable.
If a method in one object changes the value stored in the class variable, it is changed insofar as all of the

objects are concerned. (This is about as close to a global variable as you can get in Java.)
Accessing a class variable
You can use the name of the class to access class variables by joining the name of the class to the name

of the variable using a period.
You can also access a class variable by joining the name of a reference variable containing an object's

reference to the name of the variable using a period as the joining operator.
Referencing object methods via class variables
Class variables are either primitive variables or reference variables. (Primitive variables contain primitive

values and reference variables contain references to objects.)
A referenced object may provide methods to control the behavior of the object. In Listing 2 (p. 113) ,

we accessed the println method of an object of the PrintStream class referred to by the class variable
named out .

Instance variables and methods
As a side note, in addition to class variables, Java provides instance variables and instance methods .

Every instance of a class has its own set of instance variables. You can only access instance variables and
instance methods through an object of the class.

2.20.6 Run the program

I encourage you to copy the code from Listing 1 (p. 112) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

2.20.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0190: Java OOP: Using the System and PrintStream Classes
• File: Jb0190.htm
• Originally published: 1997
• Published at cnx.org: 11/18/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

115

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

116 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.21 Jb0190r: Review107

Revised: Mon Mar 28 11:58:41 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 108

• Object-Oriented Programming (OOP) with Java 109

2.21.1 Table of Contents

• Preface (p. 116)
• Questions (p. 116)

· 1 (p. 116) , 2 (p. 116) , 3 (p. 116) , 4 (p. 117) , 5 (p. 117) , 6 (p. 117) , 7 (p. 117) , 8 (p. 117) ,
9 (p. 117) , 10 (p. 117) , 11 (p. 117) , 12 (p. 120) , 13 (p. 118) , 14 (p. 118) , 15 (p. 118) , 16
(p. 118) , 17 (p. 118) , 18 (p. 118)

• Answers (p. 120)
• Miscellaneous (p. 122)

2.21.2 Preface

This module contains review questions and answers keyed to the module titled Jb0190: Java OOP: Using
the System and PrintStream Classes 110 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

2.21.3 Questions

2.21.3.1 Question 1 .

True or false? The main method in the controlling class of a Java application controls the �ow of the
program.

Answer 1 (p. 122)

2.21.3.2 Question 2

True or false? The main method cannot access the variables and methods of objects instantiated from
other classes.

Answer 2 (p. 121)

2.21.3.3 Question 3

True or false? The main method must instantiate objects of other classes in order for the program to
execute.

Answer 3 (p. 121)

107This content is available online at <http://cnx.org/content/m45175/1.7/>.
108http://cnx.org/contents/EHRr6hjR:pDHzTeQb
109http://cnx.org/contents/-2RmHFs_:kFS-maG_
110http://cnx.org/content/m45148

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

117

2.21.3.4 Question 4

True or false? In order to be useful, the System class must be used to instantiate objects in a Java
application.

Answer 4 (p. 121)

2.21.3.5 Question 5

True or false? Class variables such as the out variable of the System class must be of some speci�c
type.

Answer 5 (p. 121)

2.21.3.6 Question 6

True or false? Class variables must be of a primitive type such as int or �oat .
Answer 6 (p. 121)

2.21.3.7 Question 7

True or false? The out variable in the System class is of a primitive type.
Answer 7 (p. 121)

2.21.3.8 Question 8

What does the following code fragment access?

System.out

Answer 8 (p. 121)

2.21.3.9 Question 9

True or false? An object of type PrintStream is automatically instantiated when the System class is
loaded into an application.

Answer 9 (p. 121)

2.21.3.10 Question 10

True or false? The out variable in the System class refers to an instance of what class?
Answer 10 (p. 121)

2.21.3.11 Question 11

True or false? The println method is an instance method of what class?
Answer 11 (p. 120)

2.21.3.12 Question 12

What is the primary behavior of the println method?
Answer 12 (p. 120)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

118 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.21.3.13 Question 13

How can the println method be accessed?
Answer 13 (p. 120)

2.21.3.14 Question 14

Assuming that the standard output device has not been redirected, write a code fragment that will cause
your name to be displayed on the screen.

Answer 14 (p. 120)

2.21.3.15 Question 15

Explain how your code fragment in Answer 14 (p. 120) produces the desired result.
Answer 15 (p. 120)

2.21.3.16 Question 16

If you have a class named MyClass that has a class variable named myClassVariable that requires
four bytes of memory and you instantiate ten objects of type MyClass , how much total memory will
be allocated to contain the allocated variables (assume that the class de�nition contains no other class,
instance, or local variables) .

Answer 16 (p. 120)

2.21.3.17 Question 17

How many actual instances of the variable named out are allocated in memory by the following code
fragment?

System.out.println("Dick Baldwin");

Answer 17 (p. 120)

2.21.3.18 Question 18

If you have a class named MyClass that has an instance variable named myInstanceVariable that
requires four bytes of memory and you instantiate ten objects of type MyClass , how much total memory
will be allocated to contain the allocated variables (assume that the class de�nition contains no other class,
instance, or local variables) .

Answer 18 (p. 120)
What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

119

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

120 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.21.4 Answers

2.21.4.1 Answer 18

Every instance of a class has its own set of instance variables. You can only access instance variables and
instance methods through an object of the class. In this case, forty bytes of memory would be required to
contain the instance variables of the ten objects.

Back to Question 18 (p. 118)

2.21.4.2 Answer 17

Only one, because out is a class variable of the System class.
Back to Question 17 (p. 118)

2.21.4.3 Answer 16

The runtime system allocates a class variable only once no matter how many instances of the class are
instantiated. Thus, all objects of the class share the same physical memory space for the class variable, and
in this case, only four bytes of memory will be allocated to contain the allocated variables.

Back to Question 16 (p. 118)

2.21.4.4 Answer 15

The statement in Answer 14 (p. 120) calls the println method belonging to an object of the PrintStream
class, which is referenced (pointed to) by the out variable, which is a class variable of the System
class.

Back to Question 15 (p. 118)

2.21.4.5 Answer 14

System.out.println("Dick Baldwin");

Back to Question 14 (p. 118)

2.21.4.6 Answer 13

The println method can be accessed by joining the name of a variable that references a PrintStream
object to the name of the println method using a period.

Back to Question 13 (p. 118)

2.21.4.7 Answer 12

The println method causes its argument to be displayed on the standard output device. (The standard
output device is the screen by default, but can be redirected by the user at the operating system level.)

Back to Question 12 (p. 117)

2.21.4.8 Answer 11

The println method is an instance method of the PrintStream class.
Back to Question 11 (p. 117)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

121

2.21.4.9 Answer 10

The out variable in the System class refers to an instance of the PrintStream class (a PrintStream
object), which is automatically instantiated when the System class is loaded into the application.

Back to Question 10 (p. 117)

2.21.4.10 Answer 9

True.
Back to Question 9 (p. 117)

2.21.4.11 Answer 8

The code fragment accesses the contents of the class variable named out in the class named System .
Back to Question 8 (p. 117)

2.21.4.12 Answer 7

False. the variable named out de�ned in the System class is a reference variable that points to an object
of another type.

Back to Question 7 (p. 117)

2.21.4.13 Answer 6

False. A class variable can be a primitive type, or it can be a reference variable that points to another
object.

Back to Question 6 (p. 117)

2.21.4.14 Answer 5

True.
Back to Question 5 (p. 117)

2.21.4.15 Answer 4

False. The System class has several class variables (including out and in) that are useful
without the requirement to instantiate an object of the System class.

Back to Question 4 (p. 117)

2.21.4.16 Answer 3

False. While it is probably true that the main method must instantiate objects of other classes in order
to accomplish much that is of value, this is not a requirement. The main method in the "Hello World"
program of this module 111 does not instantiate objects of any class at all.

Back to Question 3 (p. 116)

2.21.4.17 Answer 2

False. The main method can access the variables and methods of objects instantiated from other classes.
Otherwise, the �ow of the program would be stuck within the main method itself and wouldn't be very
useful.

Back to Question 2 (p. 116)

111http://cnx.org/content/m45148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

122 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.21.4.18 Answer 1

True.
Back to Question 1 (p. 116)

2.21.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0190r: Review: Using the System and PrintStream Classes
• File: Jb0190r.htm
• Published: 11/22/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.22 Jb0200: Java OOP: Variables112

Revised: Mon Mar 28 12:30:19 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 113

• Object-Oriented Programming (OOP) with Java 114

2.22.1 Table of Contents

• Preface (p. 123)

· Viewing tip (p. 123)

* Figures (p. 123)
* Listings (p. 123)

• Introduction (p. 123)

112This content is available online at <http://cnx.org/content/m45150/1.5/>.
113http://cnx.org/contents/EHRr6hjR:pDHzTeQb
114http://cnx.org/contents/-2RmHFs_:kFS-maG_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

123

• Sample program named simple1 (p. 124)

· Discussion of the simple1 program (p. 126)

• Variables (p. 126)

· Primitive types (p. 128)

* Object-oriented wrappers for primitive types (p. 129)

· Reference types (p. 130)
· Variable names (p. 131)

• Scope (p. 132)
• Initialization of variables (p. 135)
• Run the programs (p. 135)
• Miscellaneous (p. 135)

2.22.2 Preface

Earlier modules have touched brie�y on the topic of variables. This module discusses Java variables in depth.

2.22.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

2.22.2.1.1 Figures

• Figure 1 (p. 126) . Screen output from the program named simple1.
• Figure 2 (p. 128) . Information about the primitive types in Java.
• Figure 3 (p. 132) . Rules for naming variables.
• Figure 4 (p. 132) . Rules for legal identi�ers.
• Figure 5 (p. 132) . Scope categories.

2.22.2.1.2 Listings

• Listing 1 (p. 125) . Source code for the program named simple1.
• Listing 2 (p. 126) . Declaring and initializing two variables named ch1 and ch2.
• Listing 3 (p. 127) . Display the character.
• Listing 4 (p. 127) . Beginning of a while loop.
• Listing 5 (p. 128) . Beginning of the main method.
• Listing 6 (p. 129) . The program named wrapper1.
• Listing 7 (p. 131) . Aspects of using a wrapper class.
• Listing 8 (p. 134) . The program named member1.
• Listing 9 (p. 135) . Initialization of variables.

2.22.3 Introduction

The �rst step
The �rst step in learning to use a new programming language is usually to learn the foundation concepts

such as

• variables
• types

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

124 CHAPTER 2. PROGRAMMING FUNDAMENTALS

• expressions
• �ow-of-control, etc.

This and several future modules concentrate on that foundation.
A sample program
The module begins with a sample Java program named simple1 . The user is asked to enter some text

and to terminate with the # character.
(This program contains a lot of code that you are not yet prepared to understand. For the time being,

just concentrate on the use of variables in the program. You will learn about the other aspects of the program
in future modules.)

The program loops, saving individual characters until encountering the # character. When it encounters
the # character, it terminates and displays the character entered immediately prior to the # character.

2.22.4 Sample program named simple1

A complete listing of the program named simple1 is provided in Listing 1 (p. 125) . Discussions of selected
portions of the program are presented later in the module.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

125

Listing 1 . Source code for the program named simple1.

/*File simple1.java Copyright 1997, R.G.Baldwin

This Java application reads bytes from the keyboard until

encountering the integer representation of '#'. At

the end of each iteration, it saves the byte received and

goes back to get the next byte.

When the '#' is entered, the program terminates input and

displays the character which was entered before the #.

**/

class simple1 { //define the controlling class

//It is necessary to declare that this method

// can throw the exception shown below (or catch it).

public static void main(String[] args) //define main

throws java.io.IOException {

//It is necessary to initialize ch2 to avoid a compiler

// error (possibly uninitialized variable) at the

// statement which displays ch2.

int ch1, ch2 = '0';

System.out.println(

"Enter some text, terminate with #");

//Get and save individual bytes

while((ch1 = System.in.read()) != '#')

ch2 = ch1;

//Display the character immediately before the #

System.out.println(

"The char before the # was " + (char)ch2);

}//end main

}//End simple1 class.

Table 2.42

Program output
The output produced by compiling and running this program is shown in Figure 1 (p. 126) . The second

line of text in Figure 1 (p. 126) ending with the # character was typed by the user.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

126 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Figure 1 . Screen output from the program named simple1.

Enter some text, terminate with #

abcde#

The char before the # was e

Table 2.43

2.22.4.1 Discussion of the simple1 program

Purpose
I will use the program shown in Listing 1 (p. 125) to discuss several important aspects of the structure

of a Java program. I will also provide two additional sample programs that illustrate speci�c points not
illustrated in the above program later in this module.

2.22.5 Variables

What is a variable? Variables are used in a Java program to contain data that changes during
the execution of the program.

Declaring a variable
To use a variable, you must �rst notify the compiler of the name and the type of the variable. This

is known as declaring a variable .
The syntax for declaring a variable is to precede the name of the variable with the name of the type

of the variable as shown in Listing 2 (p. 126) . It is also possible (but not always required) to initialize a
variable in Java when it is declared as shown in Listing 2 (p. 126) .

Listing 2 . Declaring and initializing two variables named ch1 and ch2.

int ch1, ch2 = '0';

Table 2.44

The statement in Listing 2 (p. 126) declares two variables of type int , initializing the second variable
(ch2) to the value of the zero character (0). (Note that I didn't say initialized to the value zero.)

Di�erence between zero and '0' - Unicode characters The value of the zero character is
not the same as the numeric value of zero, but hopefully you already knew that.

As an aside, characters in Java are 16-bit entities called Unicode characters instead of 8-bit entities
as is the case with many programming languages. The purpose is to provide many more possible
characters including characters used in alphabets other than the one used in the United States.

Initialization of the variable
Initialization of the variable named ch2 in this case was necessary to prevent a compiler error. Without

initialization of this variable, the compiler would recognize and balk at the possibility that an attempt might
be made to execute the statement shown in Listing 3 (p. 127) with a variable named ch2 that had not
been initialized

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

127

Listing 3 . Display the character.

System.out.println("The char before the # was "

+ (char)ch2);

Table 2.45

Error checking by the compiler
The strong error-checking capability of the Java compiler would refuse to compile this program until that

possibility was eliminated by initializing the variable.
Using the cast operator
You should also note that the contents of the variable ch2 is being cast as type char in Listing 3

(p. 127) .
(A cast is used to change the type of something to a di�erent type.)
Recall that ch2 is a variable of type int , containing the numeric value that represents a character.
We want to display the character that the numeric value represents and not the numeric value itself.

Therefore, we must cast it (purposely change its type for the evaluation of the expression) . Otherwise,
we would not see the character on the screen. Rather, we would see the numeric value that represents that
character.

Initialization of instance variables and local variables: As another aside, member
variables in Java are automatically initialized to zero or the equivalent of zero. However, local
variables , of which ch2 is an example, are not automatically initialized.

Why declare the variables as type int?
It was necessary to declare these variables as type int because the statement in Listing 4 (p. 127)

(more speci�cally, the call to the System.in.read method) returns a value of type int .

Listing 4 . Beginning of a while loop.

while((ch1 = System.in.read()) != '#') ch2 = ch1;

Table 2.46

Java provides very strict type checking and generally refuses to compile statements with type mismatches.
(There is a lot of complicated code in Listing 4 (p. 127) (p. 127) that I haven't previously explained.

I will explain that code later in this and future modules.)
Another variable declaration
The program in Listing 1 (p. 125) also makes another variable declaration shown by the statement in

Listing 5 (p. 128) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

128 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Listing 5 . Beginning of the main method.

public static void main(String[] args) //define main method

Table 2.47

An array of String references
In Listing 5 (p. 128) , the formal argument list of the main method declares an argument named args

(�rst cousin to a variable) as a reference to an array object of type String .
Capturing command-line arguments in Java
As you learned in an earlier module, this is the feature of Java that is used to capture arguments entered

on the command line, and is required whether arguments are entered or not. In this case, no command-line
arguments were entered, and the variable named args is simply ignored by the remainder of the program.

The purpose of the type of a variable

All variables must have a declared type The type determines the set of values that can be
stored in the variable and the operations that can be performed on the variable.

For example, the int type can only contain whole numbers (integers) . A whole host of operations are
possible with an int variable including add, subtract, divide, etc.

Signed vs. unsigned variables
Unlike C++, all variables of type int in Java contain signed values. In fact, with the exception of type

char , all primitive numeric types in Java contain signed values.
Platform independence
At this point in the history of Java, a variable of a speci�ed type is represented exactly the same way

regardless of the platform on which the application or applet is being executed.
This is one of the features that causes compiled Java programs to be platform-independent.

2.22.5.1 Primitive types

In Java, there are two major categories of data types:

• primitive types
• reference (or object) types.

Primitive variables contain a single value of one of the eight primitive types shown in Listing 2 (p. 126) .
Reference variables contain references to objects (or null, meaning that they don't refer to anything) .
The eight primitive types in Java?
The table in Figure 2 (p. 128) lists all of the primitive types in Java along with their size and format,

and a brief description of each.

Figure 2 . Information about the primitive types in Java.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

129

Type Size/Format Description

byte 8-bit two's complement Byte-length integer

short 16-bit two's complement Short integer

int 32-bit two's complement Integer

long 64-bit two's complement Long Integer

float 32-bit IEEE 754 format Single-precision

floating point

double 64-bit IEEE 754 format Double-precision

floating point

char 16-bit Unicode character Single character

boolean true or false True or False

Table 2.48

The char type
The char type is a 16-bit Unicode character value that has the possibility of representing more than

65,000 di�erent characters.
Evaluating a primitive variable
A reference to the name of a primitive variable in program code evaluates to the value stored in the

variable. In other words, when you call out the name of a primitive variable in your code, what you get back
is the value stored in the variable.

2.22.5.1.1 Object-oriented wrappers for primitive types

Primitive types are not objects
Primitive data types in Java (int, double, etc.) are not objects. This has some rami�cations as to how

they can be used (passing to methods, returning from methods, etc.) .
The generic Object type
Later on in this course of study, you will learn that much of the power of Java derives from the ability to

deal with objects of any type as the generic type Object . For example, several of the standard classes in
the API (such as the powerful Vector class) are designed to work only with objects of type Object .

(Note that this document was originally published prior to the introduction of generics in Java. The
introduction of generics makes it possible to cause the Vector class to deal with objects of types other
than Object . However, that doesn't eliminate the need for wrapper classes.)

Converting primitives to objects
Because it is sometimes necessary to deal with a primitive value as though it were an object, Java provides

wrapper classes that support object-oriented functionality for Java's primitive data types.
The Double wrapper class
This is illustrated in the program shown in Listing 6 (p. 129) that deals with a double type as an

object of the class Double .
(Remember, Java is a case-sensitive language. Note the di�erence between the primitive double type

and the class named Double .)

Listing 6 . The program named wrapper1.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

130 CHAPTER 2. PROGRAMMING FUNDAMENTALS

/*File wrapper1.java Copyright 1997, R.G.Baldwin

This Java application illustrates the use of wrappers

for the primitive types.

This program produces the following output:

My wrapped double is 5.5

My primitive double is 10.5

**/

class wrapper1 { //define the controlling class

public static void main(String[] args){//define main

//The following is the declaration and instantiation of

// a Double object, or a double value wrapped in an

// object. Note the use of the upper-case D.

Double myWrappedData = new Double(5.5);

//The following is the declaration and initialization

// of a primitive double variable. Note the use of the

// lower-case d.

double myPrimitiveData = 10.5;

//Note the call to the doubleValue() method to obtain

// the value of the double wrapped in the Double

// object.

System.out.println(

"My wrapped double is " + myWrappedData.doubleValue());

System.out.println(

"My primitive double is " + myPrimitiveData);

}//end main

}//End wrapper1 class.

Table 2.49

The operation of this program is explained in the comments, and the output from the program is shown
in the comments at the beginning.

2.22.5.2 Reference types

Once again, what is a primitive type?
Primitive types are types where the name of the variable evaluates to the value stored in the variable.
What is a reference type?
Reference types in Java are types where the name of the variable evaluates to the address of the location

in memory where the object referenced by the variable is stored.

The above statement may not really be true? However, we can think of it that way.
Depending on the particular JVM in use, the reference variable may refer to a table in memory
where the address of the object is stored. In that case the second level of indirection is handled
behind the scenes and we don't have to worry about it.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

131

Why would a JVM elect to implement another level of indirection? Wouldn't that make programs
run more slowly?

One reason has to do with the need to compact memory when it becomes highly fragmented. If the
reference variables all refer directly to memory locations containing the objects, there may be many
reference variables that refer to the same object. If that object is moved for compaction purposes,
then the values stored in every one of those reference variables would have to be modi�ed.

However, if those reference variables all refer to a table that has one entry that speci�es where the
object is stored, then when the object is moved, only the value of that one entry in the table must
be modi�ed.

Fortunately, that all takes place behind the scenes and we as programmers don't need to worry
about it.

Primitive vs. reference variables
We will discuss this in more detail in a future module. For now, su�ce it to say that in Java, a variable

is either a primitive type or a reference type, and cannot be both.
Declaring, instantiating, initializing, and manipulating a reference variable
The fragment of code shown in Listing 7 (p. 131) , (which was taken from the program shown in

Listing 6 (p. 129) (p. 129) that deals with wrappers) does the following. It

• declares,
• instantiates,
• initializes, and
• manipulates a variable of a reference type named myWrappedData .

In Listing 7 (p. 131) , the variable named myWrappedData contains a reference to an object of type
Double .

Listing 7 . Aspects of using a wrapper class.

Double myWrappedData = new Double(5.5);

//Code deleted for brevity

//Note the use of the doubleValue() method to obtain the

// value of the double wrapped in the Double object.

System.out.println

("My wrapped double is " + myWrappedData.doubleValue());

Table 2.50

2.22.5.3 Variable names

The rules for naming variables are shown in Figure 3 (p. 132) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

132 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Figure 3 . Rules for naming variables.

• Must be a legal Java identi�er (see below) consisting of a series of Unicode characters. Unicode
characters are stored in sixteen bits, allowing for a very large number of di�erent characters. A
subset of the possible character values matches the 127 possible characters in the ASCII character
set, and the extended 8-bit character set, ISO-Latin-1 (The Java Handbook, page 60, by Patrick
Naughton).

• Must not be the same as a Java keyword and must not be true or false.
• Must not be the same as another variable whose declaration appears in the same scope.

Table 2.51

The rules for legal identi�ers are shown in Figure 4 (p. 132) .

Figure 4 . Rules for legal identi�ers.

• In Java, a legal identi�er is a sequence of Unicode letters and digits of unlimited length.
• The �rst character must be a letter.
• All subsequent characters must be letters or numerals from any alphabet that Unicode supports.
• In addition, the underscore character (_) and the dollar sign ($) are considered letters and may be

used as any character including the �rst one.

Table 2.52

2.22.6 Scope

What is the scope of a Java variable?
The scope of a Java variable is de�ned by the block of code within which the variable is accessible.
(Brie�y, a block of code consists of none, one, or more statements enclosed by a pair of matching curly

brackets.)
The scope also determines when the variable is created (memory set aside to contain the data stored in

the variable) and when it possibly becomes a candidate for destruction (memory returned to the operating
system for recycling and re-use) .

Scope categories
The scope of a variable places it in one of the four categories shown in Figure 5 (p. 132) .

Figure 5 . Scope categories.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

133

• member variable
• local variable
• method parameter
• exception handler parameter

Table 2.53

Member variable
A member variable is a member of a class (class variable) or a member of an object instantiated from

that class (instance variable) . It must be declared within a class, but not within the body of a method or
constructor of the class.

Local variable
A local variable is a variable declared within the body of a method or constructor or within a block of

code contained within the body of a method or constructor.
Method parameters
Method parameters are the formal arguments of a method. Method parameters are used to pass values

into and out of methods. The scope of a method parameter is the entire method for which it is a parameter.
Exception handler parameters
Exception handler parameters are arguments to exception handlers. Exception handlers will be discussed

in a future module.
Illustrating di�erent types of variables in Java
The Java program shown in Listing 8 (p. 134) illustrates

• member variables (class and instance) ,
• local variables, and
• method parameters.

An illustration of exception handler parameters will be deferred until exception handlers are discussed in a
future module.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

134 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Listing 8 . The program named member1.

/*File member1.java Copyright 1997, R.G.Baldwin

Illustrates class variables, instance

variables, local variables, and method parameters.

Output from this program is:

Class variable is 5

Instance variable is 6

Method parameter is 7

Local variable is 8

**/

class member1 { //define the controlling class

//declare and initialize class variable

static int classVariable = 5;

//declare and initialize instance variable

int instanceVariable = 6;

public static void main(String[] args){ //main method

System.out.println("Class variable is "

+ classVariable);

//Instantiate an object of the class to allow for

// access to instance variable and method.

member1 obj = new member1();

System.out.println("Instance variable is "

+ obj.instanceVariable);

obj.myMethod(7); //call the method

//declare and intitialize a local variable

int localVariable = 8;

System.out.println("Local variable is "

+ localVariable);

}//end main

void myMethod(int methodParameter){

System.out.println("Method parameter is "

+ methodParameter);

}//end myMethod

}//End member1 class.

Table 2.54

Declaration of local variables
In Java, local variables are declared within the body of a method or within a block of code contained

within the body of a method.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

135

Scope of local variables
The scope of a local variable extends from the point at which it is declared to the end of the block of

code in which it is declared.
What is a "block" of code?
A block of code is de�ned by enclosing it within curly brackets as in { ... }.
Therefore, the scope of a local variable can be the entire method, or can reduced by declaring it within

a block of code within the method.

Special case, scope within a for loop Java treats the scope of a variable declared within the
initialization clause of a for statement to be limited to the total extent of the for statement.

A future module will explain what is meant by a for statement or a for loop.

2.22.7 Initialization of variables

Initializing primitive local variables
Local variables of primitive types can be initialized when they are declared using statements such the

one shown in Listing 9 (p. 135) .

Listing 9 . Initialization of variables.

int MyVar, UrVar = 6, HisVar;

Table 2.55

Initializing member variables
Member variables can also be initialized when they are declared.
In both cases, the type of the value used to initialize the variable must match the type of the variable.
Initializing method parameters and exception handler parameters
Method parameters and exception handler parameters are initialized by the values passed to the method

or exception handler by the calling program.

2.22.8 Run the programs

I encourage you to copy the code from Listing 1 (p. 125) , Listing 6 (p. 129) , and Listing 8 (p. 134) .
Compile the code and execute it. Experiment with the code, making changes, and observing the results of
your changes. Make certain that you can explain why your changes behave as they do.

2.22.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0200: Java OOP: Variables
• File: Jb0200.htm
• Originally published: 1997
• Published at cnx.org: 11/18/12

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

136 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

137

2.23 Jb0200r: Review115

Revised: Mon Mar 28 13:31:46 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 116

• Object-Oriented Programming (OOP) with Java 117

2.23.1 Table of Contents

• Preface (p. 137)
• Questions (p. 137)

· 1 (p. 137) , 2 (p. 137) , 3 (p. 137) , 4 (p. 138) , 5 (p. 138) , 6 (p. 138) , 7 (p. 138) , 8 (p. 138) ,
9 (p. 138) , 10 (p. 138) , 11 (p. 138) , 12 (p. 147) , 13 (p. 138) , 14 (p. 139) , 15 (p. 139) , 16
(p. 139) , 17 (p. 139) , 18 (p. 139) , 19 (p. 139) , 20 (p. 139) , 21 (p. 139) , 22 (p. 139) , 23 (p.
139) , 24 (p. 140) , 25 (p. 140) , 26 (p. 140) , 27 (p. 140) , 28 (p. 140) , 29 (p. 140) , 30 (p. 140)
, 31 (p. 140) , 32 (p. 140) , 33 (p. 140) , 34 (p. 141) , 35 (p. 141) , 36 (p. 141) , 37 (p. 141) , 38
(p. 141) , 39 (p. 141)

• Listings (p. 141)
• Answers (p. 143)
• Miscellaneous (p. 149)

2.23.2 Preface

This module contains review questions and answers keyed to the module titled Jb0200: Java OOP: Variables
118 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

2.23.3 Questions

2.23.3.1 Question 1 .

Write a Java application that reads characters from the keyboard until encountering the # character. Echo
each character to the screen as it is read. Terminate the program when the user enters the # character.

Answer 1 (p. 148)

2.23.3.2 Question 2

What is the common name for the Java program element that is used to contain data that changes during
the execution of the program?

Answer 2 (p. 148)

2.23.3.3 Question 3

What must you do to make a variable available for use in a Java program?
Answer 3 (p. 148)

115This content is available online at <http://cnx.org/content/m45173/1.8/>.
116http://cnx.org/contents/EHRr6hjR:pDHzTeQb
117http://cnx.org/contents/-2RmHFs_:kFS-maG_
118http://cnx.org/content/m45150/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

138 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.23.3.4 Question 4

True or false? In Java, you are required to initialize the value of all variables when they are declared.
Answer 4 (p. 148)

2.23.3.5 Question 5

Show the proper syntax for declaring two variables and initializing one of them using a single Java statement.
Answer 5 (p. 147)

2.23.3.6 Question 6

True or false? The Java compiler will accept statements with type mismatches provided that a suitable type
conversion can be implemented by the compiler at compile time.

Answer 6 (p. 147)

2.23.3.7 Question 7

Show the proper syntax for the declaration of a variable of type String[] in the argument list of the main
method of a Java program and explain its purpose.

Answer 7 (p. 147)

2.23.3.8 Question 8

Describe the purpose of the type de�nition in Java.
Answer 8 (p. 147)

2.23.3.9 Question 9

True or false? Variables of type int can contain either signed or unsigned values.
Answer 9 (p. 147)

2.23.3.10 Question 10

What is the important characteristic of type de�nitions in Java that strongly supports the concept of
platform independence of compiled Java programs?

Answer 10 (p. 147)

2.23.3.11 Question 11

What are the two major categories of types in Java?
Answer 11 (p. 147)

2.23.3.12 Question 12

What is the maximum number of values that can be stored in a variable of a primitive type in Java?
Answer 12 (p. 147)

2.23.3.13 Question 13

List the primitive types in Java.
Answer 13 (p. 146)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

139

2.23.3.14 Question 14

True or false? Java stores variables of type char according to the 8-bit extended ASCII table.
Answer 14 (p. 146)

2.23.3.15 Question 15

True or false? In Java, the name of a primitive variable evaluates to the value stored in the variable.
Answer 15 (p. 146)

2.23.3.16 Question 16

True or false? Variables of primitive data types in Java are true objects.
Answer 16 (p. 146)

2.23.3.17 Question 17

Why do we care that variables of primitive types are not true objects?
Answer 17 (p. 146)

2.23.3.18 Question 18

What is the name of the mechanism commonly used to convert variables of primitive types to true objects?
Answer 18 (p. 146)

2.23.3.19 Question 19

How can you tell the di�erence between a primitive type and a wrapper for the primitive type when the
two are spelled the same?

Answer 19 (p. 146)

2.23.3.20 Question 20

Show the proper syntax for declaring a variable of type double and initializing its value to 5.5.
Answer 20 (p. 146)

2.23.3.21 Question 21

Show the proper syntax for declaring a variable of type Double and initializing its value to 5.5.
Answer 21 (p. 145)

2.23.3.22 Question 22

Show the proper syntax for extracting the value from a variable of type Double .
Answer 22 (p. 145)

2.23.3.23 Question 23

True or false? In Java, the name of a reference variable evaluates to the address of the location in memory
where the variable is stored.

Answer 23 (p. 145)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

140 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.23.3.24 Question 24

What is a legal identi�er in Java?
Answer 24 (p. 145)

2.23.3.25 Question 25

What are the rules for variable names in Java?
Answer 25 (p. 144)

2.23.3.26 Question 26

What is meant by the scope of a Java variable?
Answer 26 (p. 144)

2.23.3.27 Question 27

What are the four possible scope categories for a Java variable?
Answer 27 (p. 144)

2.23.3.28 Question 28

What is a member variable?
Answer 28 (p. 144)

2.23.3.29 Question 29

Where are local variables declared in Java?
Answer 29 (p. 144)

2.23.3.30 Question 30

What is the scope of a local variable in Java?
Answer 30 (p. 144)

2.23.3.31 Question 31

What de�nes a block of code in Java?
Answer 31 (p. 144)

2.23.3.32 Question 32

What is the scope of a variable that is declared within a block of code that is de�ned within a method and
which is a subset of the statements that make up the method?

Answer 32 (p. 143)

2.23.3.33 Question 33

What is the scope of a variable declared within the initialization clause of a for statement in Java? Provide
an example code fragment.

Answer 33 (p. 143)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

141

2.23.3.34 Question 34

What are method parameters and what are they used for?
Answer 34 (p. 143)

2.23.3.35 Question 35

What is the scope of a method parameter ?
Answer 35 (p. 143)

2.23.3.36 Question 36

What are exception handler parameters ?
Answer 36 (p. 143)

2.23.3.37 Question 37

Write a Java application that illustrates member variables (class and instance) , local variables, and method
parameters.

Answer 37 (p. 143)

2.23.3.38 Question 38

True or false? Member variables in a Java class can be initialized when the class is de�ned.
Answer 38 (p. 143)

2.23.3.39 Question 39

How are method parameters initialized in Java?
Answer 39 (p. 143)

2.23.4 Listings

• Listing 1 (p. 145) . Listing for Answer 22.
• Listing 2 (p. 148) . Listing for Answer 1.

What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

142 CHAPTER 2. PROGRAMMING FUNDAMENTALS

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

143

2.23.5 Answers

2.23.5.1 Answer 39

Method parameters are initialized by the values passed to the method.
Back to Question 39 (p. 141)

2.23.5.2 Answer 38

True.
Back to Question 38 (p. 141)

2.23.5.3 Answer 37

See the application named member1 in this module 119 for an example of such an application.
Back to Question 37 (p. 141)

2.23.5.4 Answer 36

Exception handler parameters are arguments to exception handlers, which will be discussed in a future
module.

Back to Question 36 (p. 141)

2.23.5.5 Answer 35

The scope of a method parameter is the entire method for which it is a parameter.
Back to Question 35 (p. 141)

2.23.5.6 Answer 34

Method parameters are the formal arguments of a method. Method parameters are used to pass values
into and out of methods.

Back to Question 34 (p. 141)

2.23.5.7 Answer 33

Java treats the scope of a variable declared within the initialization clause of a for statement to be limited
to the total extent of the for statement. A sample code fragment follows where cnt is the variable being
discussed:

for(int cnt = 0; cnt < max; cnt++){

//do something

}//end of

Back to Question 33 (p. 140)

2.23.5.8 Answer 32

In Java, the scope can be reduced by placing it within a block of code within the method. The scope
extends from the point at which it is declared to the end of the block of code in which it is declared.

Back to Question 32 (p. 140)

119http://cnx.org/content/m45150/latest/#Listing_8

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

144 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.23.5.9 Answer 31

A block of code is de�ned by enclosing it within curly brackets as shown below
{ ... } .
Back to Question 31 (p. 140)

2.23.5.10 Answer 30

The scope of a local variable extends from the point at which it is declared to the end of the block of code
in which it is declared.

Back to Question 30 (p. 140)

2.23.5.11 Answer 29

In Java, local variables are declared within the body of a method or constructor, or within a block of code
contained within the body of a method or constructor.

Back to Question 29 (p. 140)

2.23.5.12 Answer 28

A member variable is a member of a class (class variable) or a member of an object instantiated from
that class (instance variable). It must be declared within a class, but not within the body of a method or
constructor of the class.

Back to Question 28 (p. 140)

2.23.5.13 Answer 27

The scope of a variable places it in one of the following four categories:

• member variable
• local variable
• method parameter
• exception handler parameter

Back to Question 27 (p. 140)

2.23.5.14 Answer 26

The scope of a Java variable is the block of code within which the variable is accessible.
Back to Question 26 (p. 140)

2.23.5.15 Answer 25

The rules for Java variable names are as follows:

• Must be a legal Java identi�er consisting of a series of Unicode characters.
• Must not be the same as a Java keyword and must not be true or false.
• Must not be the same as another variable whose declaration appears in the same scope.

Back to Question 25 (p. 140)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

145

2.23.5.16 Answer 24

In Java, a legal identi�er is a sequence of Unicode letters and digits of unlimited length. The �rst character
must be a letter. All subsequent characters must be letters or numerals from any alphabet that Unicode
supports. In addition, the underscore character (_) and the dollar sign ($) are considered letters and
may be used as any character including the �rst one.

Back to Question 24 (p. 140)

2.23.5.17 Answer 23

False. The name of a reference variable evaluates to either null, or to information that can be used to access
an object whose reference has been stored in the variable.

Back to Question 23 (p. 139)

2.23.5.18 Answer 22

Later versions of Java support either syntax shown in Listing 1 (p. 145) .

Listing 1 . Listing for Answer 22.

class test{

public static void main(String[] args){

Double var1 = 5.5;

double var2 = var1.doubleValue();

System.out.println(var2);

double var3 = var1;

System.out.println(var3);

}//end main

}//end class test

Table 2.56

Back to Question 22 (p. 139)

2.23.5.19 Answer 21

The proper syntax for early versions of Java is shown below. Note the upper-case D . Also note the
instantiation of a new object of type Double .

Double myWrappedData = new Double(5.5);

Later versions of Java support the following syntax with the new object of type Double being instantiated
automatically:

Double myWrappedData = 5.5;

Back to Question 21 (p. 139)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

146 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.23.5.20 Answer 20

The proper syntax is shown below. Note the lower-case d .

double myPrimitiveData = 5.5;

Back to Question 20 (p. 139)

2.23.5.21 Answer 19

The name of the primitive type begins with a lower-case letter and the name of the wrapper type begins
with an upper-case letter such as double and Double . Note that in some cases, however, that they are
not spelled the same. For example, the Integer class is the wrapper for type int .

Back to Question 19 (p. 139)

2.23.5.22 Answer 18

Wrapper classes
Back to Question 18 (p. 139)

2.23.5.23 Answer 17

This has some rami�cations as to how variables can be used (passing to methods, returning from methods,
etc.) . For example, all variables of primitive types are passed by value to methods meaning that the code
in the method only has access to a copy of the variable and does not have the ability to modify the variable.

Back to Question 17 (p. 139)

2.23.5.24 Answer 16

False. Primitive data types in Java (int, double, etc.) are not true objects.
Back to Question 16 (p. 139)

2.23.5.25 Answer 15

True.
Back to Question 15 (p. 139)

2.23.5.26 Answer 14

False. The char type in Java is a 16-bit Unicode character.
Back to Question 14 (p. 139)

2.23.5.27 Answer 13

• byte
• short
• int
• long
• �oat
• double
• char

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

147

• boolean

Back to Question 13 (p. 138)

2.23.5.28 Answer 12

Primitive types contain a single value.
Back to Question 12 (p. 138)

2.23.5.29 Answer 11

Java supports both primitive types and reference (or object) types.
Back to Question 11 (p. 138)

2.23.5.30 Answer 10

In Java, a variable of a speci�ed type is represented exactly the same way regardless of the platform on
which the application or applet is being executed.

Back to Question 10 (p. 138)

2.23.5.31 Answer 9

False. In Java, all variables of type int contain signed values.
Back to Question 9 (p. 138)

2.23.5.32 Answer 8

All variables in Java must have a de�ned type . The de�nition of the type determines the set of values
that can be stored in the variable and the operations that can be performed on the variable.

Back to Question 8 (p. 138)

2.23.5.33 Answer 7

The syntax is shown in boldface below:

public static void main(String[] args)

In this case, the type of variable declared is an array of type String named args (type String[]) .
The purpose of the String array variable in the argument list is to make it possible to capture arguments
entered on the command line.

Back to Question 7 (p. 138)

2.23.5.34 Answer 6

False. Fortunately, Java provides very strict type checking and generally refuses to compile statements with
type mismatches.

Back to Question 6 (p. 138)

2.23.5.35 Answer 5

int firstVariable, secondVariable = 10;

Back to Question 5 (p. 138)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

148 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.23.5.36 Answer 4

False: In Java, it is possible to initialize the value of a variable when it is declared, but initialization is not
required. (Note however that in some situations, the usage of the variable may require that it be purposely
initialized.) .

Back to Question 4 (p. 138)

2.23.5.37 Answer 3

To use a variable, you must notify the compiler of the name and the type of the variable (declare the
variable).

Back to Question 3 (p. 137)

2.23.5.38 Answer 2

variable
Back to Question 2 (p. 137)

2.23.5.39 Answer 1

Listing 2 . Listing for Answer 1.

/*File simple4.java

This application reads characters from the keyboard until

encountering the # character and echoes each character to

the screen. The program terminates when the user enters

the # character.

**/

class simple4 { //define the controlling class

public static void main(String[] args)

throws java.io.IOException {

int ch1 = 0;

System.out.println(

"Enter some text, terminate with #");

while((ch1 = System.in.read()) != '#')

System.out.print((char)ch1);

System.out.println("Goodbye");

}//end main

}//End simple4 class.

Table 2.57

Back to Question 1 (p. 137)

2.23.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

149

• Module name: Jb0200r: Review: Variables
• File: Jb0200r.htm
• Published: 11/23/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.24 Jb0210: Java OOP: Operators120

Revised: Mon Mar 28 13:56:51 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 121

• Object-Oriented Programming (OOP) with Java 122

2.24.1 Table of Contents

• Preface (p. 150)

· Viewing tip (p. 150)

* Listings (p. 150)

• Introduction (p. 150)
• Operators (p. 150)

· Arithmetic operators (p. 154)
· Relational and conditional (logical) operators (p. 155)
· Bitwise operators (p. 156)
· Assignment operators (p. 157)

• Miscellaneous (p. 158)

2.24.2 Preface

Earlier modules have touched brie�y on the topic of operators . This module discusses Java operators
in depth.

120This content is available online at <http://cnx.org/content/m45195/1.6/>.
121http://cnx.org/contents/EHRr6hjR:pDHzTeQb
122http://cnx.org/contents/-2RmHFs_:kFS-maG_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

150 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.24.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the listings while you are reading about them.

2.24.2.1.1 Listings

• Listing 1 (p. 153) . Illustration of pre�x and post�x notation.
• Listing 2 (p. 155) . Illustration of relational operators.

2.24.3 Introduction

The �rst step in learning to use a new programming language is usually to learn the foundation concepts
such as

• variables,
• operators,
• types,
• expressions,
• �ow-of-control, etc.

This module concentrates on the operators used in Java.

2.24.4 Operators

Unary and binary operators
Java provides a set of operators that can be used to perform an action on one, two, or three (p. 150)

operands. An operator that operates on one operand is called a unary operator. An operator that operates
on two operands is called a binary operator. An operator that operates on three operands is called a
ternary operator.

Some operators can behave either as a unary or as a binary operator. The best known such operator is
probably the minus sign (-) . As a binary operator, the minus sign causes its right operand to be subtracted
from its left operand. As a unary operator, the minus sign causes the algebraic sign of the right operand to
be changed.

A ternary operator
Java has only one operator that takes three operands. It is a conditional operator, which I sometimes

refer to as a cheap if statement.
The �rst operand is a boolean expression, which is followed by a question mark character (?) . The

question mark is followed by a second operand, which is followed by a colon character (:) . The colon
character is followed by the third operand.

If the boolean expression evaluates to true, the value of the operand following the ? is returned.
Otherwise, the value of the operand following the : is returned.

An example of the syntax follows:

Ternary operator syntax boolean expression ? value1 : value2

Overloaded operators
Unlike C++, Java does not support the creation of overloaded operators in program code. (If you don't

know what this means, don't worry about it.)
Operators from previous programs
The statements in the following note box illustrate the use of the following operators from Java programs

in earlier modules :

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

151

• =
• !=
• +
• (char)

Operators from previous programs

int ch1, ch2 = '0';

while((ch1 = System.in.read()) != '#') ch2 = ch1;

System.out.println("The char before the # was "

+ (char)ch2);

The plus and cast operators
Of particular interest in this list (p. 151) is the plus sign (+) and the cast operator (char) .
In Java, the plus sign can be used to perform arithmetic addition. It can also be used to concatenate

strings. When the plus sign is used in the manner shown above (p. 151) , the operand on the right is
automatically converted to a character string before being concatenated with the operand on the left.

The cast operator is used in this case (p. 151) to purposely convert the integer value contained in the
int variable ch2 to a character type suitable for concatenating with the string on the left of the plus sign.
Otherwise, Java would attempt to convert and display the value of the int variable as a series of digits
representing the numeric value of the character because the character is stored in a variable of type int .

The increment operator
An extremely important unary operator is the increment operator identi�ed by two plus characters

with no space between them (++) .
The increment operator causes the value of its operand to be increased by one.

The decrement operator There is also a decrement operator (�) that causes the value of its
operand to be decreased by one.

The increment and decrement operators are used in both pre�x and post�x notation.
Pre�x and post�x increment and decrement operators

With the pre�x version, the operand appears to the right of the operator (++X) , while with the
post�x version, the operand appears to the left of the operator (X++) .

What's the di�erence in pre�x and post�x?
The di�erence in pre�x and post�x has to do with the point in the sequence of operations that the

increment (or decrement) actually occurs if the operator and its operand appear as part of a larger overall
expression.

(There is e�ectively no di�erence if the operator and its operand do not appear as part of a larger overall
expression.)

Pre�x behavior
With the pre�x version, the variable is incremented (or decremented) before it is used to evaluate the

larger overall expression.
Post�x behavior
With the post�x version, the variable is used to evaluate the larger overall expression before it is

incremented (or decremented) .
Illustration of pre�x and post�x behavior
The use of both the pre�x and post�x versions of the increment operator is illustrated in the Java

program shown in Listing 1 (p. 153) . The output produced by the program is show in the comments at the
beginning of the program.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

152 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Listing 1 . Illustration of pre�x and post�x notation.

/*File incr01.java Copyright 1997, n

Illustrates the use of the prefix and the postfix increment

operator.

The output from the program follows:

a = 5

b = 5

a + b++ = 10

b = 6

c = 5

d = 5

c + ++d = 11

d = 6

***/

class incr01 { //define the controlling class

public static void main(String[] args){ //main method

int a = 5, b = 5, c = 5, d = 5;

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("a + b++ = " + (a + b++));

System.out.println("b = " + b);

System.out.println();

System.out.println("c = " + c);

System.out.println("d = " + d);

System.out.println("c + ++d = " + (c + ++d));

System.out.println("d = " + d);

}//end main

}//End incr01 class.

Table 2.58

Binary operators and in�x notation
Binary operators use in�x notation, which means that the operator appears between its operands.
General behavior of an operator
As a result of performing the speci�ed action, an operator can be said to return a value (or evaluate to

a value) of a given type. The type of value returned depends on the operator and the type of the operands.

Evaluating to a value To evaluate to a value means that after the action is performed, the
operator and its operands are e�ectively replaced in the expression by the value that is returned.

Operator categories
I will divide Java's operators into the following categories for further discussion:

• arithmetic operators

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

153

• relational and conditional (logical) operators
• bitwise operators
• assignment operators

2.24.4.1 Arithmetic operators

Java supports various arithmetic operators on all �oating point and integer numbers.
The binary arithmetic operators
The following table lists the binary arithmetic operators supported by Java.

The binary arithmetic operators

Operator Description

+ Adds its operands

- Subtracts the right operand from the left

operand

* Multiplies the operands

/ Divides the left operand by the right operand

% Remainder of dividing the left operand by

the right operand

String concatenation
As mentioned earlier, the plus operator (+) is also used to concatenate strings as in the following code

fragment:

String concatenation

"MyVariable has a value of "

+ MyVariable + " in this program."

Coercion
Note that this operation (p. 154) also coerces the value of MyVariable to a string representation for

use in the expression only. However, the value stored in the variable is not modi�ed in any lasting way.
Unary arithmetic operators
Java supports the following unary arithmetic operators.

Unary arithmetic operators

Operator Description

+ Indicates a positive value

- Negates, or changes algebraic sign

++ Adds one to the operand,

both prefix and postfix

-- Subtracts one from operand,

both prefix and postfix

The result of the increment and decrement operators being either pre�x or post�x was discussed earlier
(p. 151) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

154 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.24.4.2 Relational and conditional (logical) operators

Binary Relational operators
Java supports the set of binary relational operators shown in the following table. Relational operators

in Java return either true or false as a boolean type.

Binary Relational operators

Operator Returns true if

> Left operand is greater than right operand

>= Left operand is greater than or equal to

right operand

< Left operand is less than right operand

<= Left operand is less than or equal to

right operand

== Left operand is equal to right operand

!= Left operand is not equal to right operand

Conditional expressions
Relational operators are frequently used in the conditional expressions of control statement such as the

one in the code fragment shown below.

Conditional expressions

if(LeftVariable <= RightVariable). . .

Illustration of relational operators
The program shown in Listing 2 (p. 155) illustrates the result of applying relational operators in Java.

The output is shown in the comments at the beginning of the program. Note that the program automatically
displays true and false as a result of applying the relational operators.

Listing 2 . Illustration of relational operators.

/*File relat01.java Copyright 1997, R.G.Baldwin

Illustrates relational operators.

Output is

The relational 6<5 is false

The relational 6>5 is true

***/

class relat01 { //define the controlling class

public static void main(String[] args){ //main method

System.out.println("The relational 6<5 is "

+(6<5));
System.out.println("The relational 6>5 is "

+(6>5));
}//end main

}//End relat01 class.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

155

Table 2.59

Conditional operators
The relational operators are often combined with another set of operators (referred to as conditional or

logical operators) to construct more complex expressions.
Java supports three such operators as shown in the following table.

Conditional or logical operators

Operator Typical Use Returns true if

&& Left && Right Left and Right are both true

|| Left || Right Either Left or Right is true

! ! Right Right is false

The operands shown in the table (p. 156) must be boolean types, or must have been created by the
evaluation of an expression that returns a boolean type.

Left to right evaluation
An important characteristic of the behavior of the logical and and the logical or operators is that

the expressions are evaluated from left to right, and the evaluation of the expression is terminated as soon
as the result of evaluating the expression can be determined.

For example, in the following expression, if the variable a is less than the variable b , there is no
need to evaluate the right operand of the || to determine that the result of evaluating the entire expression
would be true . Therefore, evaluation will terminate as soon as the answer can be determined.

Left to right evaluation

(a < b) || (c < d)

Don't confuse bitwise and with logical and
As discussed in the next section, the symbols shown below are the bitwise and and the bitwise or

.

Bitwise and and bitwise or

& bitwise and

| bitwise or

One author states that in Java, the bitwise and operator can be used as a synonym for the logical and
and the bitwise or can be used as a synonym for the logical inclusive or if both of the operands are
boolean . (I recommend that you don't do that because it could cause confusion for someone reading
your code.)

Note however that according to a di�erent author, in this case, the evaluation of the expression is not
terminated until all operands have been evaluated, thus eliminating the possible advantage of the left-to-right
evaluation.

2.24.4.3 Bitwise operators

Java provides a set of operators that perform actions on their operands one bit at a time as shown in the
following table.

Bitwise operators

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

156 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Operator Typical Use Operation

� OpLeft � Dist Shift bits of OpLeft right

by Dist bits (signed)

� OpLeft � Dist Shift bits of OpLeft left

by Dist bits

�> OpLeft �> Dist Shift bits of OpLeft right

by Dist bits (unsigned)

& OpLeft & OpRight Bitwise and of the

two operands

| OpLeft | OpRight Bitwise

Populating vacated bits for shift operations
The signed right shift operation populates the vacated bits with the sign bit, while the left shift and

the unsigned right shift populate the vacated bits with zeros.
In all cases, bits shifted o� the end are lost.
The rule for bitwise and
The bitwise and operation operates according to the rule that the bitwise and of two 1 bits is a 1 bit.
Any other combination results in a 0 bit.
Bitwise inclusive or
For the inclusive or , if either bit is a 1, the result is a 1.
Otherwise, the result is a 0.
Bitwise exclusive or
For the exclusive or , if either but not both bits is a 1, the result is a 1.
Otherwise, the result is a 0.
Another way to state this is if the bits are di�erent, the result is a 1. If the two bits are the same, the

result is a 0.
The complement operator
Finally, the complement operator changes each 1 to a 0 and changes each 0 to a 1.

2.24.4.4 Assignment operators

Simple assignment operator
The (=) is a value assigning binary operator in Java. The value stored in memory and represented

by the right operand is copied into the memory represented by the left operand.
Using the assignment operator with reference variables
You need to be careful and think about what you are doing when you use the assignment operator with

reference variables in Java. If you assign one reference variable to another, you simply end up with two
reference variables that refer to the same object. You do not end up with two di�erent objects.

(If what you need is another copy of the object, you may be able to use the clone method to
accomplish that.)

Shortcut assignment operators
Java supports the following list of shortcut assignment operators. These operators allow you to perform

an assignment and another operation with a single operator.

Shortcut assignment operators

+=

-=

*=

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

157

/=

%=

&=

|=

^=

�=

�=

�>=

For example, the two statements that follow perform the same operation.

Illustration of shortcut assignment operation

x += y;

x = x + y;

2.24.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0210: Java OOP: Operators
• File: Jb0210
• Originally published: 1997
• Published at cnx.org: 11/23/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

158 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.25 Jb0210r Review123

Revised: Mon Mar 28 14:04:36 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 124

• Object-Oriented Programming (OOP) with Java 125

2.25.1 Table of Contents

• Preface (p. 159)
• Questions (p. 159)

· 1 (p. 159) , 2 (p. 159) , 3 (p. 159) , 4 (p. 160) , 5 (p. 160) , 6 (p. 160) , 7 (p. 160) , 8 (p. 160) ,
9 (p. 160) , 10 (p. 160) , 11 (p. 160) , 12 (p. 174) , 13 (p. 160) , 14 (p. 161) , 15 (p. 161) , 16
(p. 161) , 17 (p. 161) , 18 (p. 161) , 19 (p. 162) , 20 (p. 162) , 21 (p. 162) , 22 (p. 162) , 23 (p.
162) , 24 (p. 162) , 25 (p. 163) , 26 (p. 163) , 27 (p. 163) , 28 (p. 163) , 29 (p. 163) , 30 (p. 163)
, 31 (p. 163) , 32 (p. 163) , 33 (p. 163) , 34 (p. 164) , 35 (p. 164) , 36 (p. 164) , 37 (p. 164) , 38
(p. 164)

• Listings (p. 165)
• Answers (p. 167)
• Miscellaneous (p. 176)

2.25.2 Preface

This module contains review questions and answers keyed to the module titled Jb0210: Java OOP: Operators
126 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

2.25.3 Questions

2.25.3.1 Question 1 .

An operator performs an action on what? Provide the name.
Answer 1 (p. 175)

2.25.3.2 Question 2

What do we call an operator that operates on only one operand?
Answer 2 (p. 175)

2.25.3.3 Question 3

What do we call an operator that operates on two operands?
Answer 3 (p. 175)

123This content is available online at <http://cnx.org/content/m45186/1.7/>.
124http://cnx.org/contents/EHRr6hjR:pDHzTeQb
125http://cnx.org/contents/-2RmHFs_:kFS-maG_
126http://cnx.org/content/m45195

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

159

2.25.3.4 Question 4

Is the minus sign a unary or a binary operator, or both? Explain your answer.
Answer 4 (p. 175)

2.25.3.5 Question 5

Describe operator overloading.
Answer 5 (p. 175)

2.25.3.6 Question 6

True or false? Java programmers may overload operators.
Answer 6 (p. 175)

2.25.3.7 Question 7

Show the symbols used for the following operators in Java: assignment , not equal , addition , cast .
Answer 7 (p. 175)

2.25.3.8 Question 8

Are any operators automatically overloaded in Java? If so, identify one and describe its overloaded behavior.
Answer 8 (p. 175)

2.25.3.9 Question 9

What is the purpose of the cast operator?
Answer 9 (p. 174)

2.25.3.10 Question 10

True or false? The increment operator is a binary operator.
Answer 10 (p. 174)

2.25.3.11 Question 11

Show the symbol for the increment operator.
Answer 11 (p. 174)

2.25.3.12 Question 12

Describe the appearance and the behavior of the increment operator with both pre�x and post�x notation.
Show example, possibly incomplete, code fragments illustrating both notational forms.

Answer 12 (p. 174)

2.25.3.13 Question 13

Show the output that would be produced by the Java application in Listing 1 (p. 161) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

160 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Listing 1 . Listing for Question 13.

class incr01 { //define the controlling class

public static void main(String[] args){ //define main

int x = 5, X = 5, y = 5, Y = 5;

System.out.println("x = " + x);

System.out.println("X = " + X);

System.out.println("x + X++ = " + (x + X++));

System.out.println("X = " + X);

System.out.println();

System.out.println("y = " + y);

System.out.println("Y = " + Y);

System.out.println("y + ++Y = " + (y + ++Y));

System.out.println("Y = " + Y);

}//end main

}//End incr01 class. Note no semicolon required

//End Java application

Table 2.60

Answer 13 (p. 174)

2.25.3.14 Question 14

True or false? Binary operators use out�x notation. If your answer is False, explain why.
Answer 14 (p. 174)

2.25.3.15 Question 15

In practice, what does it mean to say that an operator that has performed an action returns a value (or
evaluates to a value) of a given type?

Answer 15 (p. 174)

2.25.3.16 Question 16

Show and describe at least �ve of the binary arithmetic operators supported by Java (Clari�cation: binary
operators does not mean bitwise operators).

Answer 16 (p. 173)

2.25.3.17 Question 17

In addition to arithmetic addition, what is another use for the plus operator (+) ? Show an example code
fragment to illustrate your answer. The code fragment need not be a complete statement.

Answer 17 (p. 173)

2.25.3.18 Question 18

When the plus operator (+) is used as a concatenation operator, what is the nature of its behavior if its
left operand is of type String and its right operand is not of type String ? If the right operand is a
variable that is not of type String , what is the impact of this behavior on that variable.

Answer 18 (p. 173)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

161

2.25.3.19 Question 19

Show and describe four unary arithmetic operators supported by Java.
Answer 19 (p. 173)

2.25.3.20 Question 20

What is the type returned by relational operators in Java?
Answer 20 (p. 172)

2.25.3.21 Question 21

Show and describe six di�erent relational operators supported by Java.
Answer 21 (p. 172)

2.25.3.22 Question 22

Show the output that would be produced by the Java application shown in Listing 2 (p. 162) .

Listing 2 . Listing for Question 22.

class relat01 { //define the controlling class

public static void main(String[] args){ //define main

System.out.println("The relational 6<5 is " + (6<5));

System.out.println("The relational 6>5 is " + (6>5));

}//end main

}//End relat01 class. Note no semicolon required

//End Java application

Table 2.61

Answer 22 (p. 172)

2.25.3.23 Question 23

Show and describe three operators (frequently referred to as conditional or logical operators) that are
often combined with relational operators to construct more complex expressions (often called conditional
expressions) . Hint: The || operator returns true if either the left operand, the right operand, or both
operands are true. What are the other two and how do they behave?

Answer 23 (p. 172)

2.25.3.24 Question 24

Describe the special behavior of the || operator in the following expression for the case where the value of
the variable a is less than the value of the variable b .

(a < b) || (c < d)

Answer 24 (p. 171)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

162 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.25.3.25 Question 25

Show the symbols used for the bitwise and operator and the bitwise inclusive or operator.
Answer 25 (p. 171)

2.25.3.26 Question 26

Show and describe seven operators in Java that perform actions on the operands one bit at a time (bitwise
operators) .

Answer 26 (p. 171)

2.25.3.27 Question 27

True or false? In Java, the signed right shift operation populates the vacated bits with the zeros, while the
left shift and the unsigned right shift populate the vacated bits with the sign bit. If your answer is False,
explain why.

Answer 27 (p. 171)

2.25.3.28 Question 28

True or false? In a signed right-shift operation in Java, the bits shifted o� the right end are lost. If your
answer is False, explain why.

Answer 28 (p. 171)

2.25.3.29 Question 29

Using the symbols 1 and 0, construct a truth table showing the four possible combinations of 1 and 0. Using
a 1 or a 0, show the result of the bitwise and operation on these four combinations of 1 and 0.

Answer 29 (p. 170)

2.25.3.30 Question 30

Using the symbols 1 and 0 construct a truth table showing the four possible combinations of 1 and 0. Using
a 1 or a 0, show the result of the bitwise inclusive or operation on these four combinations of 1 and 0.

Answer 30 (p. 170)

2.25.3.31 Question 31

Using the symbols 1 and 0 construct a truth table showing the four possible combinations of 1 and 0. Using
a 1 or a 0, show the result of the bitwise exclusive or operation on these four combinations of 1 and 0.

Answer 31 (p. 170)

2.25.3.32 Question 32

True or false? For the exclusive or , if the two bits are di�erent, the result is a 1. If the two bits are the
same, the result is a 0. If your answer is False, explain why.

Answer 32 (p. 170)

2.25.3.33 Question 33

Is the assignment operator a unary operator or a binary operator. Select one or the other.
Answer 33 (p. 170)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

163

2.25.3.34 Question 34

True or false? In Java, when using the assignment operator, the value stored in memory and represented by
the right operand is copied into the memory represented by the left operand. If your answer is False, explain
why.

Answer 34 (p. 170)

2.25.3.35 Question 35

Show two of the shortcut assignment operators and explain how they behave by comparing them with the
regular (non-shortcut) versions. Hint: the (^=) operator is a shortcut assignment operator.

Answer 35 (p. 169)

2.25.3.36 Question 36

Write a Java application that clearly illustrates the di�erence between the pre�x and the post�x versions of
the increment operator. Provide a termination message that displays your name.

Answer 36 (p. 169)

2.25.3.37 Question 37

Write a Java application that illustrates the use of the following relational operators:

<
>
<=
>=
==

!=

Provide appropriate text in the output. Also provide a termination message with your name.
Answer 37 (p. 167)

2.25.3.38 Question 38

write a Java application that illustrates the use of the following logical or conditional operators:

Logical or conditional operators

&&

||

!

Provide appropriate text in the output. Also provide a termination message with your name.
Answer 38 (p. 167)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

164 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.25.4 Listings

• Listing 1 (p. 161) . Listing for Question 13.
• Listing 2 (p. 162) . Listing for Question 22.
• Listing 3 (p. 167) . Listing for Answer 38.
• Listing 4 (p. 168) . Listing for Answer 37.
• Listing 5 (p. 169) . Listing for Answer 36.

What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

165

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

166 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.25.5 Answers

2.25.5.1 Answer 38

Listing 3 . Listing for Answer 38.

/*File SampProg09.java from module 22

Copyright 1997, R.G.Baldwin

Without reviewing the following solution, write a Java

application that illustrates the use of the following

logical or conditional operators:

&& || !

Provide appropriate text in the output. Also provide

a termination message with your name.

***/

class SampProg09 { //define the controlling class

public static void main(String[] args){ //define main

System.out.println("true and true is "

+ (true && true));

System.out.println("true and false is "

+ (true && false));

System.out.println("true or true is "

+ (true || true));

System.out.println("true or false is "

+ (true || false));

System.out.println("false or false is "

+ (false || false));

System.out.println("not true is " + (! true));

System.out.println("not false is " + (! false));

System.out.println("Terminating, Dick Baldwin");

}//end main

}//End SampProg09 class. Note no semicolon required

Table 2.62

Back to Question 38 (p. 164)

2.25.5.2 Answer 37

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

167

Listing 4 . Listing for Answer 37.

/*File SampProg08.java from module 22

Copyright 1997, R.G.Baldwin

Without reviewing the following solution, write a Java

application that illustrates the use of the following

relational operators:

< > <= >= == !=

Provide appropriate text in the output. Also provide

a termination message with your name.

***/

class SampProg08 { //define the controlling class

public static void main(String[] args){ //define main

System.out.println("The relational 6<5 is "

+ (6<5));

System.out.println("The relational 6>5 is "

+ (6>5));

System.out.println("The relational 5>=5 is "

+ (5>=5));

System.out.println("The relational 5<=5 is "

+ (5<=5));

System.out.println("The relational 6==5 is "

+ (6==5));

System.out.println("The relational 6!=5 is "

+ (6!=5));

System.out.println("Terminating, Dick Baldwin");

}//end main

}//End SampProg08 class. Note no semicolon required

Table 2.63

Back to Question 37 (p. 164)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

168 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.25.5.3 Answer 36

Listing 5 . Listing for Answer 36.

/*File SampProg07.java from module 22

Copyright 1997, R.G.Baldwin

Without reviewing the following solution, write a Java

application that clearly illustrates the difference between

the prefix and the postfix versions of the increment

operator.

Provide a termination message that displays your name.

***/

class SampProg07{

static public void main(String[] args){

int x = 3;

int y = 3;

int z = 10;

System.out.println("Prefix version gives "

+ (z + ++x));

System.out.println("Postfix version gives "

+ (z + y++));

System.out.println("Terminating, Dick Baldwin");

}//end main

}//end class SampProg07

Table 2.64

Back to Question 36 (p. 164)

2.25.5.4 Answer 35

Java supports the following list of shortcut assignment operators. These operators allow you to perform
an assignment and another operation with a single operator.

+=

-=

*=

/=

%=

&=

|=

^=

�=

�=

�>=

• Available for free at Connexions <http://cnx.org/content/col11441/1.206>

169

For example, the two statements that follow perform the same operation.

x += y;
• x = x + y;

The behavior of each of the shortcut assignment operators follows this same pattern.
Back to Question 35 (p. 164)

2.25.5.5 Answer 34

True.
Back to Question 34 (p. 164)

2.25.5.6 Answer 33

The assignment operator is a binary operator.
Back to Question 33 (p. 163)

2.25.5.7 Answer 32

True.
Back to Question 32 (p. 163)

2.25.5.8 Answer 31

The answer for the bitwise exclusive or is:

• 11 1 xor 1 produces 0
• 10 1 xor 0 produces 1
• 01 0 xor 1 produces 1
• 00 0 xor 0 produces 0

Back to Question 31 (p. 163)

2.25.5.9 Answer 30

The answer for the bitwise inclusive or is:

• 11 1 or 1 produces 1
• 10 1 or 0 produces 1
• 01 0 or 1 produces 1
• 00 0 or 0 produces 0

Back to Question 30 (p. 163)

2.25.5.10 Answer 29

The answer for the bitwise and is:

• 11 1 and 1 produces 1
• 10 1 and 0 produces 0
• 01 0 and 1 produces 0
• 00 0 and 0 produces 0

Back to Question 29 (p. 163)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

170 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.25.5.11 Answer 28

True: Bits shifted o� the right end are lost.
Back to Question 28 (p. 163)

2.25.5.12 Answer 27

False: In Java, the signed right shift operation populates the vacated bits with the sign bit, while the left
shift and the unsigned right shift populate the vacated bits with zeros.

Back to Question 27 (p. 163)

2.25.5.13 Answer 26

The following table shows the seven bitwise operators supported by Java.

Bitwise operators

Operator Typical Use Operation

� OpLeft � Dist Shift bits of OpLeft right by

Dist bits (signed)

� OpLeft � Dist Shift bits of OpLeft left by

Dist bits

�> OpLeft �> Dist Shift bits of OpLeft right

by Dist bits (unsigned)

& OpLeft & OpRight Bitwise and of the two

operands

| OpLeft | OpRight Bitwise

Back to Question 26 (p. 163)

2.25.5.14 Answer 25

The bitwise and operator and the bitwise inclusive or operator are shown below.

Two bitwise operators

& bitwise and

| bitwise inclusive or

Back to Question 25 (p. 163)

2.25.5.15 Answer 24

An important characteristic of the behavior of the logical and operator and the logical or operator
in Java is that the expressions containing them are evaluated from left to right. The evaluation of the
expression is. terminated as soon as the result of evaluating the expression can be determined. For example,
in the expression given in Question 24 (p. 162) , if the variable a is less than the variable b , there is
no need to evaluate the right operand of the || operator to determine the value of the entire expression.
Therefore, evaluation will terminate as soon as it is determined that a is less than b .

Back to Question 24 (p. 162)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

171

2.25.5.16 Answer 23

The following three logical or conditional operators are supported by Java.

The logical or conditional operators

Operator Typical Use Returns true if

&& Left && Right Left and Right are both true

|| Left || Right Either Left or Right is true

! ! Right Right is false

Back to Question 23 (p. 162)

2.25.5.17 Answer 22

This program produces the following output:

The relational 6<5 is false

The relational 6>5 is true

Back to Question 22 (p. 162)

2.25.5.18 Answer 21

Java supports the following set of relational operators:

Relational operators

Operator Returns true if

> Left operand is greater than right operand

>= Left operand is greater than or equal

to right operand

< Left operand is less than right operand

<= Left operand is less than or equal

to right operand

== Left operand is equal to right operand

!= Left operand is not equal to right operand

Back to Question 21 (p. 162)

2.25.5.19 Answer 20

Relational operators return the boolean type in Java.
Back to Question 20 (p. 162)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

172 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.25.5.20 Answer 19

Java supports the following four unary arithmetic operators.

Unary arithmetic operators

Operator Description

+ Indicates a positive value

- Negates, or changes algebraic sign

++ Adds one to the operand,

both prefix and postfix

-- Subtracts one from operand,

both prefix and postfix

Back to Question 19 (p. 162)

2.25.5.21 Answer 18

The operator coerces the value of the right operand to a string representation for use in the expression only.
If the right operand is a variable, the value stored in the variable is not modi�ed in any way.

Back to Question 18 (p. 161)

2.25.5.22 Answer 17

The plus operator (+) is also used to concatenate strings as in the following code fragment:

String concatenation

"MyVariable has a value of "

+ MyVariable + " in this program."

Back to Question 17 (p. 161)

2.25.5.23 Answer 16

Java support various arithmetic operators on �oating point and integer numbers. The following table lists
�ve of the binary arithmetic operators supported by Java.

Binary arithmetic operators

Operator Description

+ Adds its operands

- Subtracts the right operand from the left

operand

* Multiplies the operands

/ Divides the left operand by the right

operand

% Remainder of dividing the left operand by

the right operand

Back to Question 16 (p. 161)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

173

2.25.5.24 Answer 15

As a result of performing the speci�ed action, an operator can be said to return a value (or evaluate to a
value) of a given type. The type depends on the operator and the type of the operands. To evaluate to a
value means that after the action is performed, the operator and its operands are e�ectively replaced in the
expression by the value that is returned.

Back to Question 15 (p. 161)

2.25.5.25 Answer 14

False: Binary operators use in�x notation, which means that the operator appears between its operands.
Back to Question 14 (p. 161)

2.25.5.26 Answer 13

The output from this Java application follows:

• x = 5
• X = 5
• x + X++ = 10
• X = 6
• y = 5
• Y = 5
• y + ++Y = 11
• Y = 6

Back to Question 13 (p. 160)

2.25.5.27 Answer 12

The increment operator may be used with both pre�x and post�x notation. Basically, the increment
operator causes the value of the variable to which it is applied to be increased by one.

With pre�x notation, the operand appears to the right of the operator (++X) , while with post�x
notation, the operand appears to the left of the operator (X++) .

The di�erence in behavior has to do with the point in the sequence of operations that the increment
actually occurs.

With the pre�x version, the variable is incremented before it is used to evaluate the larger overall
expression in which it appears. With the post�x version, the variable is used to evaluate the larger overall
expression and then the variable is incremented.

Back to Question 12 (p. 160)

2.25.5.28 Answer 11

The symbol for the increment operator is two plus signs with no space between them (++).
Back to Question 11 (p. 160)

2.25.5.29 Answer 10

False: The increment operator is a unary operator.
Back to Question 10 (p. 160)

2.25.5.30 Answer 9

The cast operator is used to purposely convert from one type to another.
Back to Question 9 (p. 160)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

174 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.25.5.31 Answer 8

The plus sign (+) is automatically overloaded in Java. The plus sign can be used to perform arithmetic
addition. It can also be used to concatenate strings. However, the plus sign does more than concatenate
strings. It also performs a conversion to String type. When the plus sign is used to concatenate strings
and one operand is a string, the other operand is automatically converted to a character string before being
concatenated with the existing string.

Back to Question 8 (p. 160)

2.25.5.32 Answer 7

The operators listed in order are:

• =
• !=
• +
• (char)

where the cast operator is being used to cast to the type char .
Back to Question 7 (p. 160)

2.25.5.33 Answer 6

Java does not support operator overloading by programmers.
Back to Question 6 (p. 160)

2.25.5.34 Answer 5

For those languages that support it (such as C++) operator overloading means that the programmer can
rede�ne the behavior of an operator with respect to objects of a new type de�ned by that program.

Back to Question 5 (p. 160)

2.25.5.35 Answer 4

Both. As a binary operator, the minus sign causes its right operand to be subtracted from its left operand.
As a unary operator, the minus sign causes the algebraic sign of the right operand to be changed.

Back to Question 4 (p. 160)

2.25.5.36 Answer 3

An operator that operates on two operands is called a binary operator.
Back to Question 3 (p. 159)

2.25.5.37 Answer 2

An operator that operates on only one operand is called a unary operator.
Back to Question 2 (p. 159)

2.25.5.38 Answer 1

An operator performs an action on one or two operands.
Back to Question 1 (p. 159)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

175

2.25.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0210r Review: Operators
• File: Jb0210r.htm
• Originally published: 1997
• Published at cnx.org: 11/23/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.26 Jb0220: Java OOP: Statements and Expressions127

Revised: Mon Mar 28 14:22:16 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 128

• Object-Oriented Programming (OOP) with Java 129

2.26.1 Table of Contents

• Preface (p. 176)
• Introduction (p. 177)
• Expressions (p. 177)
• Statements (p. 177)
• Further reading (p. 177)
• Miscellaneous (p. 177)

2.26.2 Preface

Java programs are composed of statements, and statements are constructed from expressions. This module
takes a very brief look at Java statements and expressions.

127This content is available online at <http://cnx.org/content/m45192/1.5/>.
128http://cnx.org/contents/EHRr6hjR:pDHzTeQb
129http://cnx.org/contents/-2RmHFs_:kFS-maG_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

176 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.26.3 Introduction

The �rst step
The �rst step in learning to use a new programming language is usually to learn the foundation concepts

such as variables, types, expressions, �ow-of-control, etc. This module concentrates on expressions and
statements.

2.26.4 Expressions

The hierarchy
Java programs are composed of statements, and statements are constructed from expressions.
An expression is a speci�c combination of operators and operands, that evaluates to a single value. The

operands can be variables, constants, or method calls.
A method call evaluates to the value returned by the method.
Named constants
Java supports named constants that are implemented through the use of the �nal keyword.
The syntax for creating a named constant in Java is as follows:

Named constants

final float PI = 3.14159;

While this is not a constant type, it does produce a value that can be referenced in the program and which
cannot be modi�ed.

The �nal keyword prevents the value of PI from being modi�ed in this case (p. 177) . You will learn
later that there are some other uses for the �nal keyword in Java as well.

Operator precedence
The order in which the operations are performed determines the result. You can control the order of

evaluation by the use of matching parentheses.
If you don't provide such parentheses, the order will be determined by the precedence of the operators

(you should �nd and review a table of Java operator precedence) with the operations having higher
precedence being evaluated �rst.

2.26.5 Statements

According to The Java Tutorials 130 , "A statement forms a complete unit of execution."
A statement is constructed by combining one or more expressions into a compound expression and

terminating that expression with a semicolon.

2.26.6 Further reading

As of November 2012, a good tutorial on this topic is available on the Oracle website titled Expressions,
Statements, and Blocks 131 .

2.26.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

130http://docs.oracle.com/javase/tutorial/java/nutsandbolts/expressions.html
131http://docs.oracle.com/javase/tutorial/java/nutsandbolts/expressions.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

177

• Module name: Jb0220: Java OOP: Statements and Expressions
• File: Jb0220.htm
• Originally published: 1997
• Published at cnx.org: 11/24/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

178 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.27 Jb0220r Review132

Revised: Mon Mar 28 14:27:27 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 133

• Object-Oriented Programming (OOP) with Java 134

2.27.1 Table of Contents

• Preface (p. 179)
• Questions (p. 179)

· 1 (p. 179) , 2 (p. 179) , 3 (p. 179) , 4 (p. 179) , 5 (p. 180) , 6 (p. 180) , 7 (p. 180) , 8 (p. 180) ,
9 (p. 180)

• Answers (p. 182)
• Miscellaneous (p. 183)

2.27.2 Preface

This module contains review questions and answers keyed to the module titled Jb0220: Java OOP: State-
ments and Expressions 135 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

2.27.3 Questions

2.27.3.1 Question 1 .

A Java program is composed of a series of what?
Answer 1 (p. 183)

2.27.3.2 Question 2

Statements in Java are constructed from what?
Answer 2 (p. 182)

2.27.3.3 Question 3

Describe an expression in Java.
Answer 3 (p. 182)

2.27.3.4 Question 4

What does a method call evaluate to in Java?
Answer 4 (p. 182)

132This content is available online at <http://cnx.org/content/m45189/1.6/>.
133http://cnx.org/contents/EHRr6hjR:pDHzTeQb
134http://cnx.org/contents/-2RmHFs_:kFS-maG_
135http://cnx.org/content/m45192

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

179

2.27.3.5 Question 5

True or false? Java supports named constants. If false, explain why.
Answer 5 (p. 182)

2.27.3.6 Question 6

Provide a code fragment that illustrates the syntax for creating a named constant in Java.
Answer 6 (p. 182)

2.27.3.7 Question 7

True or false? Java supports a constant type. If false, explain why.
Answer 7 (p. 182)

2.27.3.8 Question 8

What is the common method of controlling the order of evaluation of expressions in Java?
Answer 8 (p. 182)

2.27.3.9 Question 9

If you don't use matching parentheses to control the order of evaluation of expressions, what is it that
controls the order of evaluation?

Answer 9 (p. 182)
What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

180 CHAPTER 2. PROGRAMMING FUNDAMENTALS

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

181

2.27.4 Answers

2.27.4.1 Answer 9

If you don't provide matching parentheses to control the order of evaluation, the order will be determined
by the precedence of the operators with the operations having higher precedence being evaluated �rst. For
example, multiply and divide have higher precedence than add and subtract.

Back to Question 9 (p. 180)

2.27.4.2 Answer 8

You can control the order of evaluation by the use of matching parentheses.
Back to Question 8 (p. 180)

2.27.4.3 Answer 7

False. Java does not support a constant type. However, in Java, it is possible to achieve the same result by
declaring and initializing a variable and making it �nal .

Back to Question 7 (p. 180)

2.27.4.4 Answer 6

The syntax for creating a named constant in Java is shown below.

A named constant in Java

final float PI = 3.14159;

Back to Question 6 (p. 180)

2.27.4.5 Answer 5

True. Java supports named constants that are constructed using variable declarations with the �nal
keyword.

Back to Question 5 (p. 180)

2.27.4.6 Answer 4

A method call evaluates to the value returned by the method.
Back to Question 4 (p. 179)

2.27.4.7 Answer 3

An expression is a speci�c combination of operators and operands that evaluates to a particular value. The
operands can be variables, constants, or method calls.

Back to Question 3 (p. 179)

2.27.4.8 Answer 2

Statements in Java re constructed from expressions.
Back to Question 2 (p. 179)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

182 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.27.4.9 Answer 1

A Java program is composed of a series of statements.
Back to Question 1 (p. 179)

2.27.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0220r Review: Statements and Expressions
• File: Jb0220r.htm
• Originally published: 1997
• Published at cnx.org: 11/24/12
• Revised: 12/04/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.28 Jb0230: Java OOP: Flow of Control136

Revised: Mon Mar 28 15:04:52 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 137

• Object-Oriented Programming (OOP) with Java 138

2.28.1 Table of Contents

• Preface (p. 184)

· Viewing tip (p. 184)

* Figures (p. 184)
* Listings (p. 184)

136This content is available online at <http://cnx.org/content/m45196/1.8/>.
137http://cnx.org/contents/EHRr6hjR:pDHzTeQb
138http://cnx.org/contents/-2RmHFs_:kFS-maG_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

183

• Introduction (p. 185)

· Flow of control (p. 185)
· The while statement (p. 186)
· The if-else statement (p. 187)
· The switch-case statement (p. 187)
· The for loop (p. 188)
· The for-each loop (p. 192)
· The do-while loop (p. 193)
· The break and continue statements (p. 193)
· Unlabeled break and continue (p. 193)
· Labeled break and continue statements (p. 193)

* Labeled break statements (p. 194)
* Labeled continue statements (p. 197)

· The return statement (p. 197)
· Exception handling (p. 198)

• Looking ahead (p. 198)
• Miscellaneous (p. 198)

2.28.2 Preface

Java supports several di�erent statements designed to alter or control the logical �ow of the program. This
module explores those statements.

2.28.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

2.28.2.1.1 Figures

• Figure 1 (p. 185) . Statements that support �ow of control.
• Figure 2 (p. 186) . Syntax of a while statement.
• Figure 3 (p. 187) . Syntax of an if-else statement.
• Figure 4 (p. 188) . Syntax of a switch-case statement.
• Figure 5 (p. 189) . Syntax of a for loop.
• Figure 6 (p. 193) . Syntax of a do-while loop.
• Figure 7 (p. 194) . Syntax of a labeled statement.
• Figure 8 (p. 197) . An empty return statement.
• Figure 9 (p. 197) . Returning a value from a method.

2.28.2.1.2 Listings

• Listing 1 (p. 186) . Sample Java while statement.
• Listing 2 (p. 190) . A program that won't compile.
• Listing 3 (p. 191) . Another program that won't compile.
• Listing 4 (p. 191) . A program that will compile.
• Listing 5 (p. 192) . Another program that will compile.
• Listing 6 (p. 195) . The program named switch1.java.
• Listing 7 (p. 196) . The program named switch2.java.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

184 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.28.3 Introduction

The �rst step
The �rst step in learning to use a new programming language is usually to learn the foundation concepts

such as variables, types, expressions, �ow-of-control, etc. This module concentrates on �ow-of-control .

2.28.4 Flow of control

What is �ow of control?
Java supports several di�erent kinds of statements designed to alter or control the logical �ow of the

program.
The ability to alter the logical �ow of the program is often referred to as Flow of Control .
Statements that support �ow of control
Figure 1 (p. 185) lists the statements supported by Java for controlling the logical �ow of the program.

Figure 1 . Statements that support �ow of control.

Statement Type

if-else selection

switch-case selection

for loop

for-each loop

while loop

do-while loop

try-catch-finally exception handling

throw exception handling

break miscellaneous

continue miscellaneous

label: miscellaneous

return miscellaneous

goto reserved by Java but not supported

Table 2.65

2.28.4.1 The while statement

We've seen the while statement in earlier modules. Several of the programs in earlier modules contained
a while statement designed to control the logical �ow of the program.

Syntax of a while statement
The general syntax of a while statement is shown in Figure 2 (p. 186) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

185

Figure 2 . Syntax of a while statement.

while (conditional expression)

statement or compound statement;

Table 2.66

Behavior of a while statement
The three pillars of procedural programming are

• sequence
• selection
• loop

The while statement is commonly used to create a loop structure, often referred to as a while loop .
Once the while statement is encountered in the sequence of code, the program will continue to execute

the statement or compound statement shown in Figure 2 (p. 186) for as long as the conditional expression
evaluates to true. (Note that a compound statement is created by enclosing two or more statements inside
a pair of matching curly brackets, thus creating a block of code as the body of the while statement or
loop.)

Sample Java while statement
The while statement shown in Listing 1 (p. 186) was extracted from a Java program in an earlier

module.

Listing 1 . Sample Java while statement.

while((ch1 = System.in.read()) != '#')

ch2 = ch1;

Table 2.67

The in variable of the System class
The System class de�nes a class variable named in . Because it is a class variable, it can be

accessed using the name of the System class without the requirement to instantiate an object of the
System class.

What the in variable contains
The in variable refers to an instance of a class that provides a read method that returns a character

from the standard input device (typically the keyboard) .
Therefore, the expression System.in.read() in Listing 1 (p. 186) constitutes a call to the read

method of the object referred to by the in variable of the System class.
A while loop is an entry condition loop
The while statement is used to form an entry condition loop. The signi�cance of an entry condition

loop is that the conditional expression is tested before the statements in the loop are executed. If it tests
false initially, the statements in the loop are never executed.

The while loop shown in Listing 1 (p. 186) will continue reading characters from the keyboard for as
long as the character entered is not the # character. (Recall the not equal (!=) operator from an earlier
module.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

186 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.28.4.2 The if-else statement

The general syntax of an if-else statement is shown in Figure 3 (p. 187) .

Figure 3 . Syntax of an if-else statement.

if(conditional expression)

statement or compound statement;

else //optional

statement or compound statement; //optional

Table 2.68

The if-else statement is the most basic of the statements used to control the logical �ow of a Java
program. It is used to satisfy the selection pillar mentioned earlier (p. 186) .

This statement will execute a speci�ed block of code if some particular condition is true, and optionally,
will execute a di�erent block of code if the condition is not true.

The else clause shown in Figure 3 (p. 187) is optional. If it is not provided and the condition is not
true, control simply passes to the next statement following the If statement with none of the code in the
body of the if statement being executed. If the condition is true, the code in the body of the if statement
is executed.

If the else clause is provided and the condition is true, the code in the body of the if clause is executed
and the code in the body of the else clause is ignored.

If the else clause is provided and the condition is false, the code in the body of the if clause is ignored
and the code in the body of the else clause is executed.

In all cases, control passes to the next statement following the if-else statement when the code in the
if-else statement has �nished executing. In other words, this is not a loop structure.

2.28.4.3 The switch-case statement

The switch-case statement is another implementation of the selection pillar mentioned earlier (p. 186)
. The general syntax of a switch-case statement is shown in Figure 4 (p. 188) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

187

Figure 4 . Syntax of a switch-case statement.

switch(expression){

case constant:

//sequence of optional statements

break; //optional

case constant:

//sequence of optional statements

break; //optional

.

.

.

default //optional

//sequence of optional statements

}

Table 2.69

The type of the expression
According to the book, Java Language Reference , by Mark Grand, the expression shown in the �rst

line in Figure 4 (p. 188) must be of type byte , char , short , or int .
The behavior of the switch-case statement
The expression is tested against a series of case constants of the same type as the expression. If a match

is found, the sequence of optional statements associated with that case is executed.
Execution of statements continues until the optional break is encountered. When break is encoun-

tered, execution of the switch statement is terminated and control passes to the next statement following
the switch statement.

If there is no break statement, all of the statements following the matching case will be executed
including those in cases further down the page.

The optional default keyword
If no match is found and the optional default keyword along with a sequence of optional statements has

been provided, those statements will be executed.
Labeled break
Java also supports labeled break statements. This capability can be used to cause Java to exhibit di�erent

behavior when switch statements are nested. This will be explained more fully in a later section on labeled
break statements.

2.28.4.4 The for loop

The for statement is another implementation of the loop pillar mentioned earlier (p. 186) .
Actions of a for loop
The operation of a loop normally involves three actions in addition to executing the code in the body of

the loop:

• Initialize a control variable.
• Test the control variable in a conditional expression.
• Update the control variable.

Grouping the actions
Java provides the for loop construct that groups these three actions in one place.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

188 CHAPTER 2. PROGRAMMING FUNDAMENTALS

The syntax of a for loop
A for loop consists of three clauses separated by semicolons as shown in Figure 5 (p. 189) .

Figure 5 . Syntax of a for loop.

for (first clause; second clause; third clause)

single or compound statement

Table 2.70

Contents of the clauses
The �rst and third clauses can contain one or more expressions, separated by the comma operator .
The comma operator
The comma operator guarantees that its left operand will be executed before its right operand.
(While the comma operator has other uses in C++, this is the only use of the comma operator in Java.)
Behavior and purpose of the �rst clause
The expressions in the �rst clause are executed only once, at the beginning of the loop. Any legal

expression(s) may be contained in the �rst clause, but typically the �rst clause is used for initialization.
Declaring and initializing variables in the �rst clause
Variables can be declared and initialized in the �rst clause, and this has an interesting rami�cation

regarding scope that will be discussed later.
Behavior of the second clause
The second clause consists of a single expression that must evaluate to a boolean type with a value

of true or false. The expression in the second clause must eventually evaluate to false to cause the loop to
terminate.

Typically relational expressions or relational and conditional expressions are used in the second clause.
When the test is performed
The value of the second clause is tested when the statement �rst begins execution, and at the beginning

of each iteration thereafter. Therefore, just like the while loop, the for loop is an entry condition loop
.

When the third clause is executed
Although the third clause appears physically at the top of the loop, it isn't executed until the statements

in the body of the loop have completed execution.
This is an important point since this clause is typically used to update the control variable, and perhaps

other variables as well.
What the third clause can contain
Multiple expressions can appear in the third clause, separated by the comma operator. Again, those

expressions will be executed from left to right. If variables are updated in the third clause and used in the
body of the loop, it is important to understand that they do not get updated until the execution of the body
is completed.

Declaring a variable in a for loop
As mentioned earlier, it is allowable to declare variables in the �rst clause of a for loop.
You can declare a variable with a given name outside (prior to) the for loop, or you can declare it

inside the for loop, but not both.
If you declare it outside the for loop, you can access it either outside or inside the loop.
If you declare it inside the loop, you can access it only inside the loop. In other words, the scope of

variables declared inside a for loop is limited to the loop.
This is illustrated in following sequence of four simple programs.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

189

This program won't compile
The Java program shown in Listing 2 (p. 190) refuses to compile with a complaint that a variable named

cnt has already been declared in the method when the attempt is made to declare it in the for loop.

Listing 2 . A program that won't compile.

/*File for1.java Copyright 1997, R.G.Baldwin

This program will not compile because the variable

named cnt is declared twice.

**/

class for1 { //define the controlling class

public static void main(String[] args){ //main method

int cnt = 5; //declare local method variable

System.out.println(

"Value of method var named cnt is " + cnt);

for(int cnt = 0; cnt < 2; cnt++)

System.out.println(

"Value of loop var named cnt is " + cnt);

System.out.println(

"Value of method var named cnt is " + cnt);

}//end main

}//End controlling class. Note no semicolon required

Table 2.71

The program shown in Listing 3 (p. 191) also won't compile, but for a di�erent reason.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

190 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Listing 3 . Another program that won't compile.

/*File for2.java Copyright 1997, R.G.Baldwin

This program will not compile because the variable

declared inside the for loop is not accessible

outside the loop.

**/

class for2 { //define the controlling class

public static void main(String[] args){ //main method

for(int cnt = 0; cnt < 2; cnt++)

System.out.println(

"Value of loop var named cnt is " + cnt);

System.out.println(

"Value of method var named cnt is " + cnt);

}//end main

}//End controlling class. Note no semicolon required

Table 2.72

The declaration of the variable named cnt , outside the for loop, was removed from Listing 3 (p.
191) and the declaration inside the loop was allowed to remain. This eliminated the problem of attempting
to declare the variable twice.

However, this program refused to compile because an attempt was made to access the variable named
cnt outside the for loop. This was not allowed because the variable was declared inside the for loop
and the scope of the variable was limited to the loop.

This program will compile
The Java program shown in Listing 4 (p. 191) will compile and run because the variable named cnt

that is declared inside the for loop is accessed only inside the for loop. No reference to a variable with
the same name appears outside the loop.

Listing 4 . A program that will compile.

/*File for3.java Copyright 1997, R.G.Baldwin

This program will compile because the variable declared

inside the for loop is accessed only inside the loop.

**/

class for3 { //define the controlling class

public static void main(String[] args){ //main method

for(int cnt = 0; cnt < 2; cnt++)

System.out.println(

"Value of loop var named cnt is " + cnt);

}//end main

}//End controlling class.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

191

Table 2.73

This program will also compile
Similarly, the program shown in Listing 5 (p. 192) will compile and run because the variable named

cnt was declared outside the for loop and was not declared inside the for loop. This made it possible
to access that variable both inside and outside the loop.

Listing 5 . Another program that will compile.

/*File for4.java Copyright 1997, R.G.Baldwin

This program will compile and run because the variable

named cnt is declared outside the for loop and is not

declared inside the for loop.

**/

class for4 { //define the controlling class

public static void main(String[] args){ //main method

int cnt = 5; //declare local method variable

System.out.println(

"Value of method var named cnt is " + cnt);

for(cnt = 0; cnt < 2; cnt++)

System.out.println(

"Value of loop var named cnt is " + cnt);

System.out.println(

"Value of method var named cnt is " + cnt);

}//end main

}//End controlling class. Note no semicolon required

Table 2.74

Empty clauses in a for loop
The �rst and third clauses in a for loop can be left empty but the semicolons must be there as

placeholders.
One author suggests that even the middle clause can be empty, but it isn't obvious to this author how

the loop would ever terminate if there is no conditional expression to be evaluated. Perhaps the loop could
be terminated by using a break inside the loop, but in that case, you might just as well use a while loop.

2.28.4.5 The for-each loop

There is another form of loop structure that is often referred to as a for-each loop. In order to appreciate
the bene�ts of this loop structure, you need to be familiar with Java collections and iterators, both of which
are beyond the scope of this module.

As near as I can tell, there is nothing that you can do with the for-each loop that you cannot also do
with the conventional for loop described above. Therefore, I rarely use it. You can �nd a description of
the for-each loop on this Oracle website 139 .

I don't plan to discuss it further in this module. However, before you go for a job interview, you should
probably do some online research and learn about it because an interviewer could use a question about the
for-each loop to trip you up in the Q and A portion of the interview.

139http://docs.oracle.com/javase/1.5.0/docs/guide/language/foreach.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

192 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.28.4.6 The do-while loop

The do-while loop is another implementation of the loop pillar mentioned earlier (p. 186) . However, it
di�ers from the while loop and the for loop in one important respect; it is an exit-condition loop.

An exit-condition loop
Java provides an exit-condition loop having the syntax shown in Figure 6 (p. 193) .

Figure 6 . Syntax of a do-while loop.

do {

statements

} while (conditional expression);

Table 2.75

Behavior
The statements in the body of the loop continue to be executed for as long as the conditional expression

evaluates to true. An exit-condition loop guarantees that the body of the loop will be executed at least one
time, even if the conditional expression evaluates to false the �rst time it is tested.

2.28.4.7 The break and continue statements

General behavior
Although some authors suggest that the break and continue statements provide an alternative to the

infamous goto statement of earlier programming languages, it appears that the behaviors of the labeled
break and labeled continue statements are much more restrictive than a general goto .

2.28.4.8 Unlabeled break and continue

The break and continue statements are supported in both labeled and unlabeled form.
First consider the behavior of break and continue in their unlabeled con�guration.
Use of a break statement
The break statement can be used in a switch statement or in a loop. When encountered in a switch

statement, break causes control to be passed to the next statement outside the innermost enclosing switch
statement.

When break is encountered in a loop, it causes control to be passed to the next statement outside the
innermost enclosing loop.

As you will see later, labeled break statements can be used to pass control to the next statement following
switch or loop statements beyond the innermost switch or loop statement when those statements are nested.

Use of a continue statement
The continue statement cannot be used in a switch statement, but can be used inside a loop.
When an unlabeled continue statement is encountered, it causes the current iteration of the current loop

to be terminated and the next iteration to begin.
A labeled continue statement can cause control to be passed to the next iteration of an outer enclosing

loop in a nested loop situation.
An example of the use of an unlabeled switch statement is given in the next section.

2.28.4.9 Labeled break and continue statements

This section discusses the use of labeled break and continue statements.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

193

2.28.4.9.1 Labeled break Statements

One way to describe the behavior of a labeled break in Java is to say: "Break all the way out of the labeled
statement."

Syntax of a labeled statement
To begin with, the syntax of a labeled statement is a label followed by a colon ahead of the statement as

shown in Figure 7 (p. 194) .

Figure 7 . Syntax of a labeled statement.

myLabel: myStatement;

Table 2.76

The label can be any legal Java identi�er.
Behavior of labeled break
The behavior of a labeled break can best be illustrated using nested switch statements. For a comparison

of labeled and unlabeled switch statements, consider the program shown in Listing 6 (p. 195) named
switch1 , which does not use a labeled break. Even though this program has a labeled statement, that
statement is not referenced by a break . Therefore, the label is of no consequence.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

194 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Listing 6 . The program named switch1.java.

/*File switch1.java

This is a Java application which serves as a baseline

comparison for switch2.java which uses a labeled break.

Note that the program uses nested switch statements.

The program displays the following output:

Match and break from here

Case 6 in outer switch

Default in outer switch

Beyond switch statements

**/

class switch1 { //define the controlling class

public static void main(String[] args){ //main method

//Note that the following labeled switch statement is

// not referenced by a labeled break in this program.

// It will be referenced in the next program.

outerSwitch: switch(5){//labeled outer switch statement

case 5: //execute the following switch statement

//Note that the code for this case is not followed

// by break. Therefore, execution will fall through

// the case 6 and the default.

switch(1){ //inner switch statement

case 1: System.out.println(

"Match and break from here");

break; //break with no label

case 2: System.out.println(

"No match for this constant");

break;

}//end inner switch statement

case 6: System.out.println("Case 6 in outer switch");

default: System.out.println(

"Default in outer switch");

}//end outer switch statement

System.out.println("Beyond switch statements");

}//end main

}//End switch1 class.

Table 2.77

After reviewing switch1.java , consider the same program named switch2.java shown in Listing 7
(p. 196) , which was modi�ed to use a labeled break.

The outputs from both programs are shown in the comments at the beginning of the program. By
examining the second program, and comparing the output from the second program with the �rst program,

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

195

you should be able to see how the use of the labeled break statement causes control to break all the way out
of the labeled switch statement.

Listing 7 . The program named switch2.java.

/*File switch2.java

This is a Java application which uses a labeled break.

Note that the program uses nested switch statements.

See switch1.java for a comparison program which does not

use a labeled break.

The program displays the following output:

Match and break from here

Beyond switch statements

**/

class switch2 { //define the controlling class

public static void main(String[] args){ //main method

outerSwitch: switch(5){//labeled outer switch statement

case 5: //execute the following switch statement

//Note that the code for this case is not followed by

// break. Therefore, except for the labeled break at

// case 1, execution would fall through the case 6 and

// the default as demonstrated in the program named

// switch1. However, the use of the labeled break

// causes control to break all the way out of the

// labeled switch bypassing case 6 and the default.

switch(1){ //inner switch statement

case 1: System.out.println(

"Match and break from here");

break outerSwitch; //break with label

case 2: System.out.println(

"No match for this constant");

break;

}//end inner switch statement

case 6: System.out.println(

"Case 6 in outer switch");

default: System.out.println("Default in outer switch");

}//end outer switch statement

System.out.println("Beyond switch statements");

}//end main

}//End switch1 class.

Table 2.78

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

196 CHAPTER 2. PROGRAMMING FUNDAMENTALS

The modi�ed program in Listing 7 (p. 196) uses a labeled break statement in the code group for case 1
whereas the original program in Listing 6 (p. 195) has an unlabeled break in that position.

By comparing the output from this program with the output from the previous program, you can see
that execution of the labeled break statement caused control to break all the way out of the labeled switch
statement completely bypassing case 6 and default.

As you can see from examining the output, the labeled break statement causes the program to break all
the way out of the switch statement which bears a matching label.

A similar situation exists when a labeled break is used in nested loops with one of the enclosing outer
loops being labeled. Control will break out of the enclosing loop to which the labeled break refers. It will
be left as an exercise for the student to demonstrate this behavior to his or her satisfaction.

2.28.4.9.2 Labeled continue statements

Now consider use of the labeled continue statement. A continue statement can only be used in a loop;
it cannot be used in a switch. The behavior of a labeled continue statement can be described as follows:
"Terminate the current iteration and continue with the next iteration of the loop to which the label refers."

Again, it will be left as an exercise for the student to demonstrate this behavior to his or her satisfaction.

2.28.4.10 The return statement

Use of the return statement
Java supports the use of the return statement to terminate a method and (optionally) return a value

to the calling method.
The return type
The type of value returned must match the type of the declared return value for the method.
The void return type
If the return value is declared as void , you can use the syntax shown in Figure 8 (p. 197) to terminate

the method. (You can also simply allow the method to run out of statements to execute.)

Figure 8 . An empty return statement.

return;

Table 2.79

Returning a value
If the method returns a value, follow the word return with an expression (or constant) that evaluates

to the value being returned as shown in Figure 9 (p. 197) .

Figure 9 . Returning a value from a method.

return x+y;

Table 2.80

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

197

Return by value only
You are allowed to return only by value . In the case of primitive types, this returns a copy of the

returned item. In the case of objects, returning by value returns a copy of the object's reference.
What you can do with a copy the object's reference
Having a copy of the reference is just as good as having the original reference. A copy of the reference

gives you access to the object.
When Java objects are destroyed
All objects in Java are stored in dynamic memory and that memory is not overwritten until all references

to that memory cease to exist.
Java uses a garbage collector running on a background thread to reclaim memory from objects that have

become eligible for garbage collection .
An object becomes eligible for garbage collection when there are no longer any variables, array elements,

or similar storage locations containing a reference to the object. In other words, it becomes eligible when
there is no way for the program code to �nd a reference to the object.

2.28.4.11 Exception handling

Exception handling is a process that modi�es the �ow of control of a program, so it merits being mentioned
in this module. However, it is a fairly complex topic, which will be discussed in detail in future modules.

Su�ce it at this point to say that whenever an exception is detected, control is transferred to exception
handler code if such code has been provided. Otherwise, the program will terminate. Thus, the exception
handling system merits being mentioned in discussions regarding �ow of control.

2.28.5 Looking ahead

As you approach the end of this group of Programming Fundamentals modules, you should be preparing
yourself for the more challenging ITSE 2321 OOP tracks identi�ed below:

• Java OOP: The Guzdial-Ericson Multimedia Class Library 140

• Java OOP: Objects and Encapsulation 141

2.28.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0230: Java OOP: Flow of Control
• File: Jb0230.htm
• Originally published: 1997
• Published at cnx.org: 11/24/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

140http://cnx.org/content/m44148
141http://cnx.org/content/m44153

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

198 CHAPTER 2. PROGRAMMING FUNDAMENTALS

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

199

2.29 Jb0230r Review142

Revised: Mon Mar 28 15:41:09 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 143

• Object-Oriented Programming (OOP) with Java 144

2.29.1 Table of Contents

• Preface (p. 200)
• Questions (p. 200)

· 1 (p. 200) , 2 (p. 200) , 3 (p. 200) , 4 (p. 201) , 5 (p. 201) , 6 (p. 201) , 7 (p. 201) , 8 (p. 201) ,
9 (p. 201) , 10 (p. 201) , 11 (p. 201) , 12 (p. 205) , 13 (p. 201) , 14 (p. 202) , 15 (p. 202) , 16
(p. 202) , 17 (p. 202) , 18 (p. 202) , 19 (p. 202) , 20 (p. 202) , 21 (p. 202)

• Answers (p. 204)
• Miscellaneous (p. 207)

2.29.2 Preface

This module contains review questions and answers keyed to the module titled Jb0230: Java OOP: Flow of
Control 145 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

2.29.3 Questions

2.29.3.1 Question 1 .

List and describe eight of the statements used in Java programs to alter or control the logical �ow of the
program.

Answer 1 (p. 207)

2.29.3.2 Question 2

Provide pseudo-code that illustrates the general syntax of a while statement.
Answer 2 (p. 207)

2.29.3.3 Question 3

True or false? During the execution of a while statement, the program will continue to execute the
statement or compound statement for as long as the conditional expression evaluates to true, or until a
break , continue ,or return statement is encountered. If false, explain why.

Answer 3 (p. 207)

142This content is available online at <http://cnx.org/content/m45218/1.7/>.
143http://cnx.org/contents/EHRr6hjR:pDHzTeQb
144http://cnx.org/contents/-2RmHFs_:kFS-maG_
145http://cnx.org/content/m45196

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

200 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.29.3.4 Question 4

True or false? A while loop is an entry condition loop. If false, explain why.
Answer 4 (p. 206)

2.29.3.5 Question 5

What is the signi�cance of an entry condition loop?
Answer 5 (p. 206)

2.29.3.6 Question 6

Provide pseudo-code illustrating the general syntax of the if-else statement.
Answer 6 (p. 206)

2.29.3.7 Question 7

Provide pseudo-code illustrating the general syntax of the switch-case statement.
Answer 7 (p. 206)

2.29.3.8 Question 8

Describe the behavior of a switch-case statement. Provide a pseudo-code fragment that illustrates your
description of the behavior. Do not include a description of labeled break statements.

Answer 8 (p. 205)

2.29.3.9 Question 9

What are the three actions normally involved in the operation of a loop (in addition to executing the code
in the body of the loop) ?

Answer 9 (p. 205)

2.29.3.10 Question 10

True or false? A for loop header consists of three clauses separated by colons. If false, explain why.
Answer 10 (p. 205)

2.29.3.11 Question 11

Provide pseudo-code illustrating the general syntax of a for loop
Answer 11 (p. 205)

2.29.3.12 Question 12

True or false? In a for loop, the �rst and third clauses within the parentheses can contain one or more
expressions, separated by the comma operator. If False, explain why.

Answer 12 (p. 205)

2.29.3.13 Question 13

What is the guarantee made by the comma operator ?
Answer 13 (p. 204)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

201

2.29.3.14 Question 14

True or false? The expressions within the �rst clause in the parentheses in a for loop are executed only
once during each iteration of the loop. If false, explain why.

Answer 14 (p. 204)

2.29.3.15 Question 15

While any legal expression(s) may be contained in the �rst clause within the parentheses of a for loop, the
�rst clause has a speci�c purpose. What is that purpose?

Answer 15 (p. 204)

2.29.3.16 Question 16

True or false? Variables can be declared and initialized within the �rst clause in the parentheses of a for
loop. If false, explain why.

Answer 16 (p. 204)

2.29.3.17 Question 17

True or false? The second clause in the parentheses of a for loop consists of a single expression which must
eventually evaluate to true to cause the loop to terminate. If false, explain why.

Answer 17 (p. 204)

2.29.3.18 Question 18

True or false? A for loop is an exit condition loop. If false, explain why.
Answer 18 (p. 204)

2.29.3.19 Question 19

True or false? Because a for loop is an entry condition loop, the third clause inside the parentheses is
executed at the beginning of each iteration. If false, explain why.

Answer 19 (p. 204)

2.29.3.20 Question 20

True or false? A return statement is used to terminate a method and (optionally) return a value to the
calling method. If False, explain why.

Answer 20 (p. 204)

2.29.3.21 Question 21

True or false? Exception handling modi�es the �ow of control of a Java program. If false, explain why.
Answer 21 (p. 204)
What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

202 CHAPTER 2. PROGRAMMING FUNDAMENTALS

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

203

2.29.4 Answers

2.29.4.1 Answer 21

True.
Back to Question 21 (p. 202)

2.29.4.2 Answer 20

True.
Back to Question 20 (p. 202)

2.29.4.3 Answer 19

False. Although the third clause appears physically at the top of the loop, it isn't executed until the
statements in the body of the loop have completed execution. This is an important point since this clause is
typically used to update the control variable, and perhaps other variables as well. If variables are updated
in the third clause and used in the body of the loop, it is important to understand that they do not get
updated until the execution of the body is completed.

Back to Question 19 (p. 202)

2.29.4.4 Answer 18

False. The value of the second clause is tested when the statement �rst begins execution, and at the beginning
of each iteration thereafter. Therefore, the for loop is an entry condition loop.

Back to Question 18 (p. 202)

2.29.4.5 Answer 17

False. The second clause consists of a single expression which must eventually evaluate to false (not true)
to cause the loop to terminate.

Back to Question 17 (p. 202)

2.29.4.6 Answer 16

True.
Back to Question 16 (p. 202)

2.29.4.7 Answer 15

Typically the �rst clause is used for initialization. The intended purpose of the �rst clause is initialization.
Back to Question 15 (p. 202)

2.29.4.8 Answer 14

False. The expressions in the �rst clause are executed only once, at the beginning of the loop, regardless of
the number of iterations.

Back to Question 14 (p. 202)

2.29.4.9 Answer 13

The comma operator guarantees that its left operand will be executed before its right operand.
Back to Question 13 (p. 201)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

204 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.29.4.10 Answer 12

True.
Back to Question 12 (p. 201)

2.29.4.11 Answer 11

The general syntax of a for loop follows:

Syntax of a for loop

for (first clause; second clause; third clause)

single or compound statement

Back to Question 11 (p. 201)

2.29.4.12 Answer 10

False: A for loop header consists of three clauses separated by semicolons, not colons.
Back to Question 10 (p. 201)

2.29.4.13 Answer 9

The operation of a loop normally involves the following three actions in addition to executing the code in
the body of the loop:

• Initialize a control variable.
• Test the control variable in a conditional expression.
• Update the control variable.

Back to Question 9 (p. 201)

2.29.4.14 Answer 8

The pseudo-code fragment follows:

Syntax of a switch-case statement

switch(expression){

case constant:

sequence of optional statements

break; //optional

case constant:

sequence of optional statements

break; //optional

.

.

.

default //optional

sequence of optional statements

}

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

205

An expression is tested against a series of unique integer constants. If a match is found, the sequence of
optional statements associated with the matching constant is executed. Execution of statements continues
until an optional break is encountered. When break is encountered, execution of the switch statement
is terminated and control is passed to the next statement following the switch statement.

If no match is found and the optional default keyword along with a sequence of optional statements
has been provided, those statements will be executed.

Back to Question 8 (p. 201)

2.29.4.15 Answer 7

The general syntax of the switch-case statement follows:

Syntax of a switch-case statement

switch(expression){

case constant:

sequence of optional statements

break; //optional

case constant:

sequence of optional statements

break; //optional

.

.

.

default //optional

sequence of optional statements

}

Back to Question 7 (p. 201)

2.29.4.16 Answer 6

The general syntax of the if-else statement is:

Syntax of an if-else statement

if(conditional expression)

statement or compound statement;

else //optional

statement or compound statement; //optional

Back to Question 6 (p. 201)

2.29.4.17 Answer 5

The signi�cance of an entry condition loop is that the conditional expression is tested before the statements
in the loop are executed. If it tests false initially, the statements in the loop will not be executed.

Back to Question 5 (p. 201)

2.29.4.18 Answer 4

True.
Back to Question 4 (p. 201)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

206 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.29.4.19 Answer 3

True. Note however that including a return statement inside a while statement is probably considered
poor programming practice.

Back to Question 3 (p. 200)

2.29.4.20 Answer 2

The general syntax of a while statement follows :

Syntax of a while statement

while (conditional expression)

statement or compound statement;

Back to Question 2 (p. 200)

2.29.4.21 Answer 1

The following table lists the statements supported by Java for controlling the logical �ow of the program.

Flow of control statements

Statement Typeif-else selection

switch-case selection

for loop

for-each loop

while loop

do-while loop

try-catch-finally exception handling

throw exception handling

break miscellaneous

continue miscellaneous

label: miscellaneous

return miscellaneous

goto reserved by Java but not supported

Back to Question 1 (p. 200)

2.29.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0230r Review: Flow of Control
• File: Jb0230r.htm
• Originally published: 1997
• Published at cnx.org: 11/25/12

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

207

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.30 Jb0240: Java OOP: Arrays and Strings146

Revised: Mon Mar 28 16:20:59 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 147

• Object-Oriented Programming (OOP) with Java 148

2.30.1 Table of Contents

• Preface (p. 208)

· Viewing tip (p. 209)

* Figures (p. 209)
* Listings (p. 209)

• Introduction (p. 209)
• Arrays (p. 209)
• Arrays of Objects (p. 216)
• Strings (p. 218)

· String Concatenation (p. 218)
· Arrays of String References (p. 219)

• Run the programs (p. 220)
• Looking ahead (p. 220)
• Miscellaneous (p. 221)

2.30.2 Preface

This module takes a preliminary look at arrays and strings. More in-depth discussions will be provided in
future modules. For example, you will �nd a more in-depth discussions of array objects in the following
modules:

• Java OOP: Array Objects, Part 1 149

146This content is available online at <http://cnx.org/content/m45214/1.8/>.
147http://cnx.org/contents/EHRr6hjR:pDHzTeQb
148http://cnx.org/contents/-2RmHFs_:kFS-maG_
149http://cnx.org/content/m44198

• Available for free at Connexions <http://cnx.org/content/col11441/1.206>

208 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Java OOP: Array Objects, Part 2 150

• Java OOP: Array Objects, Part 3 151

2.30.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

2.30.2.1.1 Figures

• Figure 1 (p. 210) . Formats for declaring a reference variable for an array object.
• Figure 2 (p. 210) . Allocating memory for the array object.
• Figure 3 (p. 211) . Declaration and instantiation can be separated.
• Figure 4 (p. 211) . General syntax for combining declaration and instantiation.
• Figure 5 (p. 211) . An example of array indexing syntax.
• Figure 6 (p. 212) . The use of the length property in the conditional clause of a for loop.
• Figure 7 (p. 218) . A string literal.
• Figure 8 (p. 218) . String concatenation.
• Figure 9 (p. 220) . Declaring and instantiating a String array.
• Figure 10 (p. 220) . Allocating memory to contain the String objects.

2.30.2.1.2 Listings

• Listing 1 (p. 213) . The program named array01.
• Listing 2 (p. 215) . The program named array02.
• Listing 3 (p. 217) . The program named array03.

2.30.3 Introduction

The �rst step
The �rst step in learning to use a new programming language is usually to learn the foundation concepts

such as variables, types, expressions, �ow-of-control, arrays, strings, etc. This module concentrates on arrays
and strings.

Array and String types
Java provides a type for both arrays and strings from which objects of the speci�c type can be instantiated.

Once instantiated, the methods belonging to those types can be called by way of the object.

2.30.4 Arrays

Arrays and Strings
Java has a true array type and a true String type with protective features to prevent your program

from writing outside the memory bounds of the array object or the String object. Arrays and strings are
true objects.

Declaring an array
You must declare an array before you can use it. (More properly, you must declare a reference variable

to hold a reference to the array object.) In declaring the array, you must provide two important pieces of
information:

150http://cnx.org/content/m44199
151http://cnx.org/content/m44200

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

209

• the name of a variable to hold a reference to the array object
• the type of data to be stored in the elements of the array object

Di�erent declaration formats
A reference variable capable of holding a reference to an array object can be declared using either format

shown in Figure 1 (p. 210) . (I personally prefer the �rst option because I believe it is more indicative of
the purpose of the declaration. However, both options produce the same result � a reference variable capable
of storing a reference to an array object.)

Figure 1 . Formats for declaring a reference variable for an array object.

int[] myArray;

int myArray[];

Table 2.81

Declaration does not allocate memory
As with other objects, the declaration of the reference variable does not allocate memory to contain the

array data. Rather it simply allocates memory to contain a reference to the array.
Allocating memory for the array object
Memory to contain the array object must be allocated from dynamic memory using statements such as

those shown in Figure 2 (p. 210) .

Figure 2 . Allocating memory for the array object.

int[] myArrayX = new int[15];

int myArrayY[] = new int[25];

int[] myArrayZ = {3,4,5};

Table 2.82

The statements in Figure 2 (p. 210) simultaneously declare the reference variable and cause memory to
be allocated to contain the array.

Also note that the last statement in Figure 2 (p. 210) is di�erent from the �rst two statements. This
syntax not only sets aside the memory for the array object, the elements in the array are initialized by
evaluating the expressions shown in the coma-separated list inside the curly brackets.

On the other hand, the array elements in the �rst two statements in Figure 2 (p. 210) are automatically
initialized with the default value for the type.

Declaration and allocation can be separated
It is not necessary to combine these two processes. You can execute one statement to declare the reference

variable and another statement to cause the array object to be instantiated some time later in the program
as shown in Figure 3 (p. 211) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

210 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Figure 3 . Declaration and instantiation can be separated.

int[] myArray;

. . .

myArray = new int[25];

Table 2.83

Causing memory to be set aside to contain the array object is commonly referred to as instantiating the
array object (creating an instance of the array object) .

If you prefer to declare the reference variable and instantiate the array object at di�erent points in your
program, you can use the syntax shown in Figure 3 (p. 211) . This pattern is very similar to the declaration
and instantiation of all objects.

General syntax for combining declaration and instantiation
The general syntax for declaring and instantiating an array object is shown in Figure 4 (p. 211) .

Figure 4 . General syntax for combining declaration and instantiation.

typeOfElements[] nameOfRefVariable =

new typeOfElements[sizeOfArray]

Table 2.84

Accessing array elements
Having instantiated an array object, you can access the elements of the array using indexing syntax that

is similar to many other programming languages. An example is shown in Figure 5 (p. 211) .

Figure 5 . An example of array indexing syntax.

myArray[5] = 6;

myVar = myArray[5];

Table 2.85

The value of the �rst index
Array indices always begin with 0.
The length property of an array
The code fragment in Figure 6 (p. 212) illustrates another interesting aspect of arrays. (Note the use

of length in the conditional clause of the for loop.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

211

Figure 6 . The use of the length property in the conditional clause of a for loop.

for(int cnt = 0; cnt < myArray.length; cnt++)

myArray[cnt] = cnt;

Table 2.86

All array objects have a length property that can be accessed to determine the number of elements in
the array. (The number of elements cannot change once the array object is instantiated.)

Types of data that you can store in an array object
Array elements can contain any Java data type including primitive values and references to ordinary

objects or references to other array objects.
Constructing multi-dimensional arrays
All array objects contains a one-dimensional array structure. You can create multi-dimensional arrays

by causing the elements in one array object to contain references to other array objects. In e�ect, you can
create a tree structure of array objects that behaves like a multi-dimensional array.

Odd-shaped multi-dimensional arrays
The program array01 shown in Listing 1 (p. 213) illustrates an interesting aspect of Java arrays. Java

can produce multi-dimensional arrays that can be thought of as an array of arrays. However, the secondary
arrays need not all be of the same size.

In the program shown in Listing 1 (p. 213) , a two-dimensional array of integers is declared and instanti-
ated with the primary size (size of the �rst dimension) being three. The sizes of the secondary dimensions
(sizes of each of the sub-arrays) is 2, 3, and 4 respectively.

Can declare the size of secondary dimension later
When declaring a "two-dimensional" array, it is not necessary to declare the size of the secondary

dimension when the primary array is instantiated. Declaration of the size of each sub-array can be deferred
until later as illustrated in this program.

Accessing an array out-of-bounds
This program also illustrates the result of attempting to access an element that is out-of-bounds. Java

protects you from such programming errors.
ArrayIndexOutOfBoundsException
An exception occurs if you attempt to access out-of-bounds, as shown in the program in in Listing 1 (p.

213) .
In this case, the exception was simply allowed to cause the program to terminate. The exception could

have been caught and processed by an exception handler, a concept that will be explored in a future module.
The program named array01
The entire program is shown in Listing 1 (p. 213) . The output from the program is shown in the

comments at the top of the listing.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

212 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Listing 1 . The program named array01.

/*File array01.java Copyright 1997, R.G.Baldwin

Illustrates creation and manipulation of two-dimensional

array with the sub arrays being of different lengths.

Also illustrates detection of exception when an attempt is

made to store a value out of the array bounds.

This program produces the following output:

00

012

0246

Attempt to access array out of bounds

java.lang.ArrayIndexOutOfBoundsException:

at array01.main(array01.java: 47)

**/

class array01 { //define the controlling class

public static void main(String[] args){ //main method

//Declare a two-dimensional array with a size of 3 on

// the primary dimension but with different sizes on

// the secondary dimension.

//Secondary size not specified initially

int[][] myArray = new int[3][];

myArray[0] = new int[2];//secondary size is 2

myArray[1] = new int[3];//secondary size is 3

myArray[2] = new int[4];//secondary size is 4

//Fill the array with data

for(int i = 0; i < 3; i++){

for(int j = 0; j < myArray[i].length; j++){

myArray[i][j] = i * j;

}//end inner loop

}//end outer loop

//Display data in the array

for(int i = 0; i < 3; i++){

for(int j = 0; j < myArray[i].length; j++){

System.out.print(myArray[i][j]);

}//end inner loop

System.out.println();

}//end outer loop

//Attempt to access an out-of-bounds array element

System.out.println(

"Attempt to access array out of bounds");

myArray[4][0] = 7;

//The above statement produces an ArrayIndexOutOfBounds

// exception.

}//end main

}//End array01 class.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

213

Table 2.87

Assigning one array to another array � be careful
Java allows you to assign one array to another. You must be aware, however, that when you do this, you

are simply making another copy of the reference to the same data in memory.
Then you simply have two references to the same data in memory, which is often not a good idea. This

is illustrated in the program named array02 shown in Listing 2 (p. 215) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

214 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Listing 2 . The program named array02 .

/*File array02.java Copyright 1997, R.G.Baldwin

Illustrates that when you assign one array to another

array, you end up with two references to the same array.

The output from running this program is:

firstArray contents

0 1 2

secondArray contents

0 1 2

Change a value in firstArray and display both again

firstArray contents

0 10 2

secondArray contents

0 10 2

**/

class array02 { //define the controlling class

int[] firstArray;

int[] secondArray;

array02() {//constructor

firstArray = new int[3];

for(int cnt = 0; cnt < 3; cnt++) firstArray[cnt] = cnt;

secondArray = new int[3];

secondArray = firstArray;

}//end constructor

public static void main(String[] args){//main method

array02 obj = new array02();

System.out.println("firstArray contents");

for(int cnt = 0; cnt < 3; cnt++)

System.out.print(obj.firstArray[cnt] + " ");

System.out.println();

System.out.println("secondArray contents");

for(int cnt = 0; cnt < 3; cnt++)

System.out.print(obj.secondArray[cnt] + " ");

System.out.println();

System.out.println(

"Change value in firstArray and display both again");

obj.firstArray[1] = 10;

System.out.println("firstArray contents");

for(int cnt = 0; cnt < 3; cnt++)

System.out.print(obj.firstArray[cnt] + " ");

System.out.println();

System.out.println("secondArray contents");

for(int cnt = 0; cnt < 3; cnt++)

System.out.print(obj.secondArray[cnt] + " ");

System.out.println();

}//end main

}//End array02 class.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

215

Table 2.88

2.30.5 Arrays of Objects

An array of objects really isn't an array of objects
There is another subtle issue that you need to come to grips with before we leave our discussion of arrays.

In particular, when you create an array of objects, it really isn't an array of objects.
Rather, it is an array of object references (or null) . When you assign primitive values to the elements

in an array object, the actual primitive values are stored in the elements of the array.
However, when you assign objects to the elements in an array , the actual objects aren't actually stored

in the array elements. Rather, the objects are stored somewhere else in memory. The elements in the array
contain references to those objects.

All the elements in an array of objects need not be of the same actual type
The fact that the array is simply an array of reference variables has some interesting rami�cations. For

example, it isn't necessary that all the elements in the array be of the same type, provided the reference
variables are of a type that will allow them to refer to all the di�erent types of objects.

For example, if you declare the array to contain references of type Object , those references can refer
to any type of object (including array objects) because a reference of type Object can be used to refer
to any object.

You can do similar things using interface types. I will discuss interface types in a future module.
Often need to downcast to use an Object reference
If you store all of your references as type Object , you will often need to downcast the references to

the true type before you can use them to access the instance variables and instance methods of the objects.
Doing the downcast no great challenge as long as you can decide what type to downcast them to.
The Vector class
There is a class named Vector that takes advantage of this capability. An object of type Vector is

a self-expanding array of reference variables of type Object . You can use an object of type Vector to
manage a group of objects of any type, either all of the same type, or mixed.

(Note that you cannot store primitive values in elements of a non-primitive or reference type. If you
need to do that, you will need to wrap your primitive values in an object of a wrapper class as discussed in
an earlier module.)

A sample program using the Date class
The sample program, named array03 and shown in Listing 3 (p. 217) isn't quite that complicated.

This program behaves as follows:

• Declare a reference variable to an array of type Date . (The actual type of the variable is Date[].)
• Instantiate a three-element array of reference variables of type Date .
• Display the contents of the array elements and con�rm that they are all null as they should be.

(When created using this syntax, new array elements contain the default value, which is null for
reference types.)

• Instantiate three objects of type Date and store the references to those objects in the three elements
of the array.

• Access the references from the array and use them to display the contents of the individual Date
objects.

As you might expect from the name of the class, each object contains information about the date.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

216 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Listing 3 . The program named Array03 .

/*File array03.java Copyright 1997, R.G.Baldwin

Illustrates use of arrays with objects.

Illustrates that "an array of objects" is not really an

array of objects, but rather is an array of references

to objects. The objects are not stored in the array,

but rather are stored somewhere else in memory and the

references in the array elements refer to them.

The output from running this program is:

myArrayOfRefs contains

null

null

null

myArrayOfRefs contains

Sat Dec 20 16:56:34 CST 1997

Sat Dec 20 16:56:34 CST 1997

Sat Dec 20 16:56:34 CST 1997

**/

import java.util.*;

class array03 { //define the controlling class

Date[] myArrayOfRefs; //Declare reference to the array

array03() {//constructor

//Instantiate the array of three reference variables

// of type Date. They will be initialized to null.

myArrayOfRefs = new Date[3];

//Display the contents of the array.

System.out.println("myArrayOfRefs contains");

for(int cnt = 0; cnt < 3; cnt++)

System.out.println(this.myArrayOfRefs[cnt]);

System.out.println();

//Instantiate three objects and assign references to

// those three objects to the three reference

// variables in the array.

for(int cnt = 0; cnt < 3; cnt++)

myArrayOfRefs[cnt] = new Date();

}//end constructor

//---//

public static void main(String[] args){//main method

array03 obj = new array03();

System.out.println("myArrayOfRefs contains");

for(int cnt = 0; cnt < 3; cnt++)

System.out.println(obj.myArrayOfRefs[cnt]);

System.out.println();

}//end main

}//End array03 class.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

217

Table 2.89

2.30.6 Strings

What is a string?
A string is commonly considered to be a sequence of characters stored in memory and accessible as a

unit.
Java implements strings using the String class and the StringBu�er class.
What is a string literal?
Java considers a series of characters surrounded by quotation marks as shown in Figure 7 (p. 218) to be

a string literal.

Figure 7 . A string literal.

"This is a string literal in Java."

Table 2.90

This is just an introduction to strings
A major section of a future module will be devoted to the topic of strings, so this discussion will be brief.
String objects cannot be modi�ed
String objects cannot be changed once they have been created. (They are said to be immutable.) If

you have that need, use the StringBu�er class instead.
StringBu�er objects can be used to create and manipulate character data as the program executes.

2.30.6.1 String Concatenation

Java supports string concatenation using the overloaded + operator as shown in Figure 8 (p. 218) .

Figure 8 . String concatenation.

"My variable has a value of " + myVar

+ " at this point in the program."

Table 2.91

Coercion of an operand to type String
The overloaded + operator is used to concatenate strings. If either operand is type String , the other

operand is coerced into type String and the two strings are concatenated.
Therefore, in addition to concatenating the strings, Java also converts values of other types, such as

myVar in Figure 8 (p. 218) , to character-string format in the process.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

218 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.30.6.2 Arrays of String References

Declaring and instantiating a String array
The statement in Figure 9 (p. 220) declares and instantiates an array of references to �ve String

objects.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

219

Figure 9 . Declaring and instantiating a String array.

String[] myArrayOfStringReferences = new String[5];

Table 2.92

No string data at this point
Note however, that this array doesn't contain the actual String objects. Rather, it simply sets aside

memory for storage of �ve references of type String . (The array elements are automatically initialized to
null.) No memory has been set aside to store the characters that make up the individual String objects.
You must allocate the memory for the actual String objects separately using code similar to the code
shown in Figure 10 (p. 220) .

Figure 10 . Allocating memory to contain the String objects.

myArrayOfStringReferences[0] = new String(

"This is the first string.");

myArrayOfStringReferences[1] = new String(

"This is the second string.");

Table 2.93

The new operator is not required for String class
Although it was used in Figure 10 (p. 220) , the new operator is not required to instantiate an object

of type String . I will discuss the ability of Java to instantiate objects of type String without the
requirement to use the new operator in a future module.

2.30.7 Run the programs

I encourage you to copy the code from Listing 1 (p. 213) , Listing 2 (p. 215) , and Listing 3 (p. 217) .
Compile the code and execute it. Experiment with the code, making changes, and observing the results of
your changes. Make certain that you can explain why your changes behave as they do.

2.30.8 Looking ahead

As you approach the end of this group of Programming Fundamentals modules, you should be preparing
yourself for the more challenging ITSE 2321 OOP tracks identi�ed below:

• Java OOP: The Guzdial-Ericson Multimedia Class Library 152

• Java OOP: Objects and Encapsulation 153

152http://cnx.org/content/m44148
153http://cnx.org/content/m44153

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

220 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.30.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0240: Java OOP: Arrays and Strings
• File: Jb0240.htm
• Originally published: 1997
• Published at cnx.org: 11/25/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

221

2.31 Jb0240r Review154

Revised: Mon Mar 28 16:31:25 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 155

• Object-Oriented Programming (OOP) with Java 156

2.31.1 Table of Contents

• Preface (p. 222)
• Questions (p. 222)

· 1 (p. 222) , 2 (p. 222) , 3 (p. 222) , 4 (p. 222) , 5 (p. 223) , 6 (p. 223) , 7 (p. 223) , 8 (p. 223) ,
9 (p. 223) , 10 (p. 223) , 11 (p. 223) , 12 (p. 228) , 13 (p. 224) , 14 (p. 224) , 15 (p. 224) , 16
(p. 224) , 17 (p. 224) , 18 (p. 224)

• Listings (p. 224)
• Answers (p. 226)
• Miscellaneous (p. 230)

2.31.2 Preface

This module contains review questions and answers keyed to the module titled Jb0240: Java OOP: Arrays
and Strings 157 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

2.31.3 Questions

2.31.3.1 Question 1 .

True or false? Arrays and Strings are true objects. If false, explain why.
Answer 1 (p. 230)

2.31.3.2 Question 2

True or false? It is easy to write outsides the bounds of a String or an array. If false, explain why.
Answer 2 (p. 230)

2.31.3.3 Question 3

You must declare a variable capable of holding a reference to an array object before you can use it. In
declaring the variable, you must provide two important pieces of information. What are they?

Answer 3 (p. 229)

2.31.3.4 Question 4

Provide code fragments that illustrate the two di�erent syntaxes that can be used to declare a variable
capable of holding a reference to an array object that will store data of type int.

Answer 4 (p. 229)

154This content is available online at <http://cnx.org/content/m45208/1.7/>.
155http://cnx.org/contents/EHRr6hjR:pDHzTeQb
156http://cnx.org/contents/-2RmHFs_:kFS-maG_
157http://cnx.org/content/m45214

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

222 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.31.3.5 Question 5

True or false? When you declare a variable capable of holding a reference to an array object, the memory
required to contain the array object is automatically allocated. If false, explain why and show how memory
can be allocated.

Answer 5 (p. 229)

2.31.3.6 Question 6

True or false? It is required that you simultaneously declare the name of the variable and cause memory to
be allocated to contain the array object in a single statement. If false, explain why and show code fragments
to illustrate your answer.

Answer 6 (p. 229)

2.31.3.7 Question 7

True or false? Array indices always begin with 1. If false, explain why.
Answer 7 (p. 228)

2.31.3.8 Question 8

What is the name of the property of arrays that can be accessed to determine the number of elements in the
array? Provide a sample code fragment that illustrates the use of this property.

Answer 8 (p. 228)

2.31.3.9 Question 9

What types of data can be stored in array objects?
Answer 9 (p. 228)

2.31.3.10 Question 10

True or false? Just as in other languages, when you create a multi-dimensional array, the secondary arrays
must all be of the same size. If false, explain your answer. Then provide a code fragment that illustrates
your answer or refer to a sample program in Jb0240: Java OOP: Arrays and Strings 158 that illustrates your
answer.

Answer 10 (p. 228)

2.31.3.11 Question 11

True or false? Just as in other languages, when declaring a two-dimensional array, it is necessary to declare
the size of the secondary dimension when the array is declared. If false, explain your answer. Then provide
a code fragment that illustrates your answer or refer to a sample program in Jb0240: Java OOP: Arrays and
Strings 159 that illustrates your answer.

Answer 11 (p. 228)

2.31.3.12 Question 12

True or false? Java allows you to assign one array to another. Explain what happens when you do this.
Then provide a code fragment that illustrates your answer or refer to a sample program in Jb0240: Java
OOP: Arrays and Strings 160 that illustrates your answer.

158http://cnx.org/content/m45214
159http://cnx.org/content/m45214
160http://cnx.org/content/m45214

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

223

Answer 12 (p. 228)

2.31.3.13 Question 13

Give a brief description of the concept of a string and list the names of two classes used to implement strings?
Answer 13 (p. 228)

2.31.3.14 Question 14

What is the syntax that is used to create a literal string? Provide a code fragment to illustrate your answer.
Answer 14 (p. 227)

2.31.3.15 Question 15

Explain the di�erence between objects of types String and StringBu�er .
Answer 15 (p. 227)

2.31.3.16 Question 16

Provide a code fragment that illustrates how to concatenate strings.
Answer 16 (p. 227)

2.31.3.17 Question 17

Provide a code fragment that declares and instantiates an array object capable of storing references to two
String objects. Explain what happens when this code fragment is executed. Then show a code fragment
that will allocate memory for the actual String objects.

Answer 17 (p. 227)

2.31.3.18 Question 18

Write a Java application that illustrates the creation and manipulation of a two-dimensional array with the
sub arrays being of di�erent lengths. Also cause your application to illustrate that an attempt to access an
array element out of bounds results in an exception being thrown. Catch and process the exception. Display
a termination message with your name.

Answer 18 (p. 226)

2.31.4 Listings

• Listing 1 (p. 226) . Listing for Answer 18.

What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

224 CHAPTER 2. PROGRAMMING FUNDAMENTALS

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

225

2.31.5 Answers

2.31.5.1 Answer 18

Listing 1 . Listing for Answer 18.

class SampProg10 { //define the controlling class

public static void main(String[] args){ //define main

//Declare a two-dimensional array with a size of 3 on

// the primary dimension but with different sizes on

// the secondary dimension.

//Secondary size not specified

int[][] myArray = new int[3][];

myArray[0] = new int[2];//secondary size is 2

myArray[1] = new int[3];//secondary size is 3

myArray[2] = new int[4];//secondary size is 4

//Fill the array with data

for(int i = 0; i < 3; i++){

for(int j = 0; j < myArray[i].length; j++){

myArray[i][j] = i * j;

}//end inner loop

}//end outer loop

//Display data in the array

for(int i = 0; i < 3; i++){

for(int j = 0; j < myArray[i].length; j++){

System.out.print(myArray[i][j]);

}//end inner loop

System.out.println();

}//end outer loop

//Attempt to access an out-of-bounds array element

try{

System.out.println(

"Attempt to access array out of bounds");

myArray[4][0] = 7;

}catch(ArrayIndexOutOfBoundsException e){

System.out.println(e);

}//end catch

System.out.println("Terminating, Dick Baldwin");

}//end main

}//End SampProg10 class. Note no semicolon required

Table 2.94

Back to Question 18 (p. 224)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

226 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.31.5.2 Answer 17

The following statement declares and instantiates an array object capable of storing references to two String
objects.

String[] myArrayOfStringReferences = new String[2];

Note however, that this array object doesn't contain the actual string data. Rather, it simply sets aside
memory for storage of two references to String objects. No memory has been set aside to store the
characters that make up the individual strings. You must allocate the memory for the actual String
objects separately using code similar to the following.

myArrayOfStringReferences[0] = new String(

"This is the first string.");

myArrayOfStringReferences[1] = new String(

"This is the second string.");

Back to Question 17 (p. 224)

2.31.5.3 Answer 16

Java supports string concatenation using the overloaded + operator as shown in the following code fragment:

"My variable has a value of " + myVar +

" at this point in the program."

Back to Question 16 (p. 224)

2.31.5.4 Answer 15

String objects cannot be modi�ed once they have been created. StringBu�er objects can be modi�ed
Back to Question 15 (p. 224)

2.31.5.5 Answer 14

The Java compiler considers a series of characters surrounded by quotation marks to be a literal string, as
in the following code fragment:

"This is a literal string in Java."

Back to Question 14 (p. 224)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

227

2.31.5.6 Answer 13

A string is commonly considered to be a sequence of characters stored in memory and accessible as a unit.
Java implements strings using the String class and the StringBu�er class.

Back to Question 13 (p. 224)

2.31.5.7 Answer 12

Java allows you to assign one array to another. When you do this, you are simply making another copy of
the reference to the same data in memory. Then you have two references to the same data in memory. This
is illustrated in the program named array02.java in Jb0240: Java OOP: Arrays and Strings 161 .

Back to Question 12 (p. 223)

2.31.5.8 Answer 11

False. When declaring a two-dimensional array, it is not necessary to declare the size of the secondary
dimension when the array is declared. Declaration of the size of each sub-array can be deferred until later
as illustrated in the program named array01.java in Jb0240: Java OOP: Arrays and Strings 162 .

Back to Question 11 (p. 223)

2.31.5.9 Answer 10

False. Java can be used to produce multi-dimensional arrays that can be viewed as an array of arrays.
However, the secondary arrays need not all be of the same size. See the program named array01.java in
Jb0240: Java OOP: Arrays and Strings 163 .

Back to Question 10 (p. 223)

2.31.5.10 Answer 9

Array objects can contain any Java data type including primitive values, references to ordinary objects, and
references to other array objects.

Back to Question 9 (p. 223)

2.31.5.11 Answer 8

All array objects have a length property that can be accessed to determine the number of elements in the
array as shown below.

for(int cnt = 0; cnt < myArray.length; cnt++)

myArray[cnt] = cnt;

Back to Question 8 (p. 223)

2.31.5.12 Answer 7

False. Array indices always begin with 0.
Back to Question 7 (p. 223)

161http://cnx.org/content/m45214
162http://cnx.org/content/m45214
163http://cnx.org/content/m45214

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

228 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.31.5.13 Answer 6

False. While it is possible to simultaneously declare the name of the variable and cause memory to be
allocated to contain the array object, it is not necessary to combine these two processes. You can execute
one statement to declare the variable and another statement to cause the memory for the array object to be
allocated as shown below.

int[] myArray;

.

.

.

myArray = new int[25];

Back to Question 6 (p. 223)

2.31.5.14 Answer 5

False. As with other objects. the declaration of the variable does not allocate memory to contain the array
object. Rather it simply allocates memory to contain a reference to the array object. Memory to contain
the array object must be allocated from dynamic memory using statements such as the following.

int[] myArray = new int[15];

int myArray[] = new int[25];

int[] myArray = {1,2,3,4,5}

Back to Question 5 (p. 223)

2.31.5.15 Answer 4

int[] myArray;

int myArray[];

Back to Question 4 (p. 222)

2.31.5.16 Answer 3

In declaring the variable, you must provide two important pieces of information:

• the name of the variable
• the type of the variable, which indicates the type of data to be stored in the array

Back to Question 3 (p. 222)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

229

2.31.5.17 Answer 2

False. Java has a true array type and a true String type with protective features to prevent your program
from writing outside the memory bounds of the array or the String .

Back to Question 2 (p. 222)

2.31.5.18 Answer 1

True.
Back to Question 1 (p. 222)

2.31.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0240r Review: Arrays and Strings
• File: Jb0240r.htm
• Originally published: 1997
• Published at cnx.org: 11/26/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.32 Jb0250: Java OOP: Brief Introduction to Exceptions164

Revised: Tue Mar 29 09:51:41 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 165

• Object-Oriented Programming (OOP) with Java 166

164This content is available online at <http://cnx.org/content/m45211/1.5/>.
165http://cnx.org/contents/EHRr6hjR:pDHzTeQb
166http://cnx.org/contents/-2RmHFs_:kFS-maG_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

230 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.32.1 Table of Contents

• Preface (p. 231)

· Viewing tip (p. 231)

* Listings (p. 231)

• Discussion (p. 231)
• Run the program (p. 232)
• Looking ahead (p. 232)
• Miscellaneous (p. 233)

2.32.2 Preface

This module provides a very brief treatment of exception handling. The topic is discussed in detail in the
module titled Java OOP: Exception Handling 167 . The topic is included in this Programming Fundamentals
section simply to introduce you to the concept.

2.32.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
link to easily �nd and view the listing while you are reading about it.

2.32.2.1.1 Listings

• Listing 1 (p. 232) . The program named simple1.

2.32.3 Discussion

What is an exception?
According to The Java Tutorials 168 , "An exception is an event that occurs during the execution of a

program that disrupts the normal �ow of instructions."
A very common example of an exception given in textbooks is code that attempts to divide by zero (this

is easy to demonstrate) .
Throwing an exception
Common terminology states that when this happens, the system throws an exception . If a thrown

exception is not caught , a runtime error may occur.
Purpose of exception handling
The purpose of exception handling is to make it possible for the program to either attempt to recover

from the problem, or at worst shut down the program in a graceful manner, whenever an exception occurs.
Java supports exception handling
Java, C++, and some other programming languages support exception handling in similar ways.
In Java, the exception can be thrown either by the system or by code created by the programmer. There

is a fairly long list of exceptions that will be thrown automatically by the Java runtime system.
Checked exceptions cannot be ignored
Included in that long list of automatic exceptions is a subset known as "checked" exceptions. Checked

exceptions cannot be ignored by the programmer. A method must either specify (declare) or catch all
"checked" exceptions that can be thrown in order for the program to compile.

An example of specifying an exception
I explain the di�erence between specifying and catching an exception in Java OOP: Exception Handling

169 . For now, su�ce it to say that the code that begins with the word "throws" in Listing 1 (p. 232)

167http://cnx.org/content/m44202
168http://docs.oracle.com/javase/tutorial/essential/exceptions/
169http://cnx.org/content/m44202

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

231

speci�es (declares) an exception that can be thrown by the code inside the main method.
If this speci�cation is not made, the program will not compile.

Listing 1 . The program named simple1.

/*File simple1.java Copyright 1997, R.G.Baldwin

**/

class simple1 { //define the controlling class

public static void main(String[] args)

throws java.io.IOException {

int ch1, ch2 = '0';

System.out.println(

"Enter some text, terminate with #");

//Get and save individual bytes

while((ch1 = System.in.read()) != '#') ch2 = ch1;

//Display the character immediately before the #

System.out.println("The char before the # was "

+ (char)ch2);

}//end main

}//End simple1 class.

Table 2.95

The program in Listing 1 (p. 232) does not throw any exceptions directly nor does it attempt to catch
any exceptions. However, it can throw exceptions indirectly through its call to System.in.read .

Because IOException is a checked exception, the main method must either specify it or catch it .
Otherwise the program won't compile. In this case, the main method speci�es the exception as opposed
to catching it.

Very brief treatment
As mentioned earlier, this is a very brief treatment of a fairly complex topic that is discussed in much

more detail in the module titled Java OOP: Exception Handling 170 . The topic was included at this point
simply to introduce you to the concept of exceptions.

2.32.4 Run the program

II encourage you to copy the code from Listing 1 (p. 232) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

2.32.5 Looking ahead

As you approach the end of this group of Programming Fundamentals modules, you should be preparing
yourself for the more challenging ITSE 2321 OOP tracks identi�ed below:

170http://cnx.org/content/m44202

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

232 CHAPTER 2. PROGRAMMING FUNDAMENTALS

• Java OOP: The Guzdial-Ericson Multimedia Class Library 171

• Java OOP: Objects and Encapsulation 172

2.32.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0250: Java OOP: Brief Introduction to Exceptions
• File: Jb0250.htm
• Originally published: 1997
• Published at cnx.org: 11/26/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation :: I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.33 Jb0260: Java OOP: Command-Line Arguments173

Revised: Tue Mar 29 10:02:05 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 174

• Object-Oriented Programming (OOP) with Java 175

2.33.1 Table of Contents

• Preface (p. 234)

· Viewing tip (p. 234)

* Listings (p. 234)

• Discussion (p. 234)

171http://cnx.org/content/m44148
172http://cnx.org/content/m44153
173This content is available online at <http://cnx.org/content/m45246/1.6/>.
174http://cnx.org/contents/EHRr6hjR:pDHzTeQb
175http://cnx.org/contents/-2RmHFs_:kFS-maG_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

233

• Run the program (p. 236)
• Looking ahead (p. 236)
• Miscellaneous (p. 236)

2.33.2 Preface

Although the use of command-line arguments is rare is this time of Graphical User Interfaces (GUI) , they
are still useful for testing and debugging code. This module explains the use of command-line arguments in
Java.

2.33.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
link to easily �nd and view the listing while you are reading about it.

2.33.2.1.1 Listings

• Listing 1 (p. 235) . Illustration of command-line arguments.

2.33.3 Discussion

Familiar example from DOS
Java programs can be written to accept command-line-arguments.
DOS users will be familiar with commands such as the following:

Familiar DOS command

copy fileA fileB

In this case, copy is the name of the program to be executed, while �leA and �leB are command-line
arguments.

Java syntax for command-line arguments
The Java syntax for supporting command-line arguments is shown below (note the formal argument list

for the main method) .

Java syntax for command-line arguments

public static void main(String[] args){

. . .

}//end main method

In Java, the formal argument list for the main method must appear in the method signature whether or
not the program is written to support the use of command-line arguments. If the argument isn't used, it is
simply ignored.

Where the arguments are stored
The parameter args contains a reference to a one-dimensional array object of type String .
Each of the elements in the array (including the element at index zero) contains a reference to an object

of type String . Each object of type String encapsulates one command-line argument.
The number of arguments entered by the user

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

234 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Recall from an earlier module on arrays that the number of elements in a Java array can be obtained
from the length property of the array. Therefore, the number of arguments entered by the user is equal
to the value of the length property. If the user didn't enter any arguments, the value will be zero.

Command-line arguments are separated by the space character. If you need to enter an argument that
contains a space, surround the entire argument with quotation mark characters as in "My command line
argument" .

The �rst command-line argument is encapsulated in the String object referred to by the contents of
the array element at index 0, the second argument is referred to by the element at index 1, etc.

Sample Java program
The sample program in Listing 1 (p. 235) illustrates the use of command-line arguments.

Listing 1 . Illustration of command-line arguments.

/*File cmdlin01.java Copyright 1997, R.G.Baldwin

This Java application illustrates the use of Java

command-line arguments.

When this program is run from the command line as follows:

java cmdlin01 My command line arguments

the program produces the following output:

My

command

line

arguments

**/

class cmdlin01 { //define the controlling class

public static void main(String[] args){ //main method

for(int i=0; i < args.length; i++)

System.out.println(args[i]);

}//end main

}//End cmdlin01 class.

Table 2.96

The output from running this program for a speci�c input is shown in the comments at the beginning of
the program.

2.33.4 Run the program

I encourage you to copy the code Listing 1 (p. 235) . Compile the code and execute it. Experiment with the
code, making changes, and observing the results of your changes. Make certain that you can explain why
your changes behave as they do.

2.33.5 Looking ahead

As you approach the end of this group of Programming Fundamentals modules, you should be preparing
yourself for the more challenging ITSE 2321 OOP tracks identi�ed below:

• Available for free at Connexions <http://cnx.org/content/col11441/1.206>

235

Java OOP: The Guzdial-Ericson Multimedia Class Library 176

• Java OOP: Objects and Encapsulation 177

2.33.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0260: Java OOP: Command-Line Arguments
• File: Jb0260.htm
• Originally published: 1997
• Published at cnx.org: 11/27/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

176http://cnx.org/content/m44148
177http://cnx.org/content/m44153

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

236 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.34 Jb0260r Review178

Revised: Tue Mar 29 10:09:37 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 179

• Object-Oriented Programming (OOP) with Java 180

2.34.1 Table of Contents

• Preface (p. 237)
• Questions (p. 237)

· 1 (p. 237) , 2 (p. 237) , 3 (p. 237) , 4 (p. 237) , 5 (p. 238) , 6 (p. 238)

• Listings (p. 238)
• Answers (p. 239)
• Miscellaneous (p. 241)

2.34.2 Preface

This module contains review questions and answers keyed to the module titled Jb0260: Java OOP: Command-
Line Arguments 181 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

2.34.3 Questions

2.34.3.1 Question 1 .

Provide a common example of a command-line statement that illustrates the use of command-line-arguments.
Answer 1 (p. 240)

2.34.3.2 Question 2

Describe the purpose of command-line-arguments.
Answer 2 (p. 240)

2.34.3.3 Question 3

True or false? In Java, syntax provisions must be made in the method signature for the main method to
accommodate command-line-arguments even if the remainder of the program is not designed to make use of
them. If False, explain why.

Answer 3 (p. 240)

2.34.3.4 Question 4

Provide the method signature for the main method in a Java application that is designed to accommodate
the use of command-line-arguments. Identify the part of the method signature that applies to command-
line-arguments and explain how it works.

Answer 4 (p. 240)

178This content is available online at <http://cnx.org/content/m45244/1.7/>.
179http://cnx.org/contents/EHRr6hjR:pDHzTeQb
180http://cnx.org/contents/-2RmHFs_:kFS-maG_
181http://cnx.org/content/m45246

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

237

2.34.3.5 Question 5

Explain how a Java application can determine the number of command-line-arguments actually entered by
the user.

Answer 5 (p. 240)

2.34.3.6 Question 6

Write a program that illustrates the handling of command-line arguments in Java.
Answer 6 (p. 239)

2.34.4 Listings

• Listing 1 (p. 239) . Handling command-line arguments in Java.

What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

238 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.34.5 Answers

2.34.5.1 Answer 6

Listing 1 . Handling command-line arguments in Java.

/*File SampProg11.java from module 32

Copyright 1997, R.G.Baldwin

Without reviewing the following solution, write a Java

application that illustrates the handling of command-line

arguments in Java.

Provide a termination message that displays your name.

**/

class SampProg11 { //define the controlling class

public static void main(String[] args){ //define main

for(int i=0; i < args.length; i++)

System.out.println(args[i]);

System.out.println("Terminating, Dick Baldwin");

}//end main

}//End SampProg11 class.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

239

Table 2.97

Back to Question 6 (p. 238)

2.34.5.2 Answer 5

The number of command-line arguments is equal to the number of elements in the array of references to
String objects referred to by args . The number of elements is indicated by the value of the length
property of the array. If the value is zero, the user didn't enter any command-line arguments.

Back to Question 5 (p. 238)

2.34.5.3 Answer 4

The Java syntax for command-line arguments is shown below.

Java syntax for command-line arguments.

public static void main(String[] args){

. . .

}//end main method

Each of the elements in the array object referred to by args (including the element at position zero)
contains a reference to a String object that encapsulates one of the command-line arguments.

Back to Question 4 (p. 237)

2.34.5.4 Answer 3

True.
Back to Question 3 (p. 237)

2.34.5.5 Answer 2

Command-line-arguments are used in many programming and computing environments to provide informa-
tion to the program at startup that it will need to ful�ll its mission during that particular invocation.

Back to Question 2 (p. 237)

2.34.5.6 Answer 1

DOS users will be familiar with commands such as the following:

Command-line arguments in DOS

copy fileA fileB

In this case, copy is the name of the program to be executed, while �leA and �leB are command-line
arguments.

Back to Question 1 (p. 237)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

240 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.34.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0260r Review: Command-Line Arguments
• File: Jb0260r.htm
• Originally published: 1997
• Published at cnx.org: 11/25/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.35 Jb0270: Java OOP: Packages182

Revised: Tue Mar 29 10:38:11 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 183

• Object-Oriented Programming (OOP) with Java 184

2.35.1 Table of Contents

• Preface (p. 242)

· Viewing tip (p. 242)

* Listings (p. 242)

• Introduction (p. 242)
• Classpath environment variable (p. 242)
• Developing your own packages (p. 243)

· The package directive (p. 244)
· The import directive (p. 245)
· Compiling programs with the package directive (p. 245)

182This content is available online at <http://cnx.org/content/m45229/1.6/>.
183http://cnx.org/contents/EHRr6hjR:pDHzTeQb
184http://cnx.org/contents/-2RmHFs_:kFS-maG_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

241

· Sample program (p. 246)

• Run the program (p. 249)
• Looking ahead (p. 249)
• Miscellaneous (p. 250)

2.35.2 Preface

This module explains the concept of packages and provides a sample program that illustrates the concept.

2.35.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the listings while you are reading about them.

2.35.2.1.1 Listings

• Listing 1 (p. 247) . File: Package00.java.
• Listing 2 (p. 248) . File Package01.java.
• Listing 3 (p. 248) . File Package02.java.
• Listing 4 (p. 249) . File: CompileAndRun.bat.

2.35.3 Introduction

Before you can understand much about packages, you will need to understand the classpath environment
variable , so that is where I will begin the discussion.

After learning about the classpath environment variable, you will learn how to create your own packages.

2.35.4 Classpath environment variable

The purpose of the classpath environment variable is to tell the JVM and other Java applications (such as
the javac compiler) where to �nd class �les and class libraries. This includes those class �les that are part
of the JDK and class �les that you may create yourself.

I am assuming that you already have some familiarity with the use of environment variables in your
operating system. All of the discussion in this module will be based on the use of a generic form of Windows.
(By generic, I mean not tied to any particular version of Windows.) Hopefully you will be able to translate
the information to your operating system if you are using a di�erent operating system.

In a nutshell Environment variables provide information that the operating system uses to do
its job.

There are usually a fairly large number of environment variables installed on a machine at any give time. If
you would like to see what kind of environment variables are currently installed on your machine, bring up
a command-line prompt and enter the command set . This should cause the names of several environment
variables, along with their settings to be displayed on your screen.

While you are at it, see if any of those items begin with CLASSPATH= . If so, you already have a
classpath environment variable set on your machine, but it may not contain everything that you need.

I am currently using a Windows 7 operating system and no classpath environment variable is set on it. I
tend to use the -cp switch option (see Listing 4 (p. 249)) in the JDK to set the classpath on a temporary
basis when I need it to be set.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

242 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Rather than trying to explain all of the rami�cations regarding the classpath, I will simply refer you to
an Oracle document on the topic titled Setting the class path 185 .

I will also refer you to Java OOP: The Guzdial-Ericson Multimedia Class Library 186 where I discuss the
use of the classpath environment variable with a Java multimedia class library.

Some rules
There are some rules that you must follow when working with the classpath variable, and if you fail to

do so, things simply won't work.
For example, if your class �les are in a jar �le, the classpath must end with the name of that jar �le.
On the other hand, if the class �les are not in a jar �le, the classpath must end with the name of the

folder that contains the class �les.
Your classpath must contain a fully-quali�ed path name for every folder that contains class �les of interest,

or for every jar �le of interest. The paths should begin with the letter specifying the drive and end either
with the name of the jar �le or the name of the folder that contains the class �les. .

If you followed the default JDK installation procedure and are simply compiling and executing Java
programs in the current directory you probably won't need to set the classpath. By default, the system
already knows (or can �gure out) how to allow you to compile and execute programs in the current
directory and how to use the JDK classes that come as part of the JDK.

However, if you are using class libraries other than the standard Java library, are saving your class �les
in one or more di�erent folders, or are ready to start creating your own packages, you will need to set the
classpath so that the system can �nd the class �les in your packages.

2.35.5 Developing your own packages

One of the problems with storing all of your class �les in one or two folders is that you will likely experience
name con�icts between class �les.

Every Java program can consist of a large number of separate classes. A class �le is created for each class
that is de�ned in your program, even if they are all combined into a single source �le.

It doesn't take very many programs to create a lot of class �les, and it isn't long before you �nd yourself
using the same class names over again. If you do, you will end up overwriting class �les that were previously
stored in the folder.

For me, it only takes two GUI programs to get in trouble because I tend to use the same class names in
every program for certain standard operations such as closing a Frame or processing an ActionEvent
. For the case of the ActionEvent , the body of the class varies from one application to the next so it
doesn't make sense to turn it into a library class.

So we need a better way to organize our class �les, and the Java package provides that better way.
The Java package approach allows us to store our class �les in a hierarchy of folders (or a jar �le

that represents that hierarchy) while only requiring that the classpath variable point to the top of the
hierarchy. The remaining hierarchy structure is encoded into our programs using package directives and
import directives.

Now here is a little jewel of information that cost me about seven hours of e�ort to discover when I
needed it badly.

When I �rst started developing my own packages, I spent about seven hours trying to determine why the
compiler wouldn't recognize the top-level folder in my hierarchy of package folders.

I consulted numerous books by respected authors and none of them was any help at all. I �nally found the
following statement in the Java documentation (when all else fails, read the documentation) . By the way,
a good portion of that wasted seven hours was spent trying to �nd this information in the documentation
which is voluminous.

The following text was extracted directly from the JDK 1.1 documentation If you
want the CLASSPATH to point to class �les that belong to a package, you should specify a path

185http://docs.oracle.com/javase/7/docs/technotes/tools/windows/classpath.html
186http://cnx.org/content/m44148

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

243

name that includes the path to the directory one level above the directory having the name of your
package.

For example, suppose you want the Java interpreter to be able to �nd classes in the package
mypackage. If the path to the mypackage directory is C:\java\MyClasses\mypackage, you would
set the CLASSPATH variable as follows:

set CLASSPATH=C:\java\MyClasses

If you didn't catch the signi�cance of this, read it again. When you are creating a classpath variable to
point to a folder containing classes, it must point to the folder. However, when you are creating a classpath
variable to point to your package, it must point to the folder that is one level above the directory that is the
top-level folder in your package.

Once I learned that I had to cause the classpath to point to the folder immediately above the �rst folder
in the hierarchy that I was including in my package directives, everything started working.

2.35.5.1 The package directive

So, what is the purpose of a package directive, and what does it look like?

Purpose of a package directive The purpose of the package directive is to identify a particular
class (or group of classes contained in a single source �le (compilation unit)) as belonging to a
speci�c package.

This is very important information for a variety of reasons, not the least of which is the fact that the entire
access control system is wrapped around the concept of a class belonging to a speci�c package. For example,
code in one package can only access public classes in a di�erent package.

Stated in the simplest possible terms, a package is a group of class �les contained in a single folder on
your hard drive.

At compile time, a class can be identi�ed as being part of a particular package by providing a package
directive at the beginning of the source code..

A package directive, if it exists, must occur at the beginning of the source code (ignoring comments and
white space) . No text other than comments and whitespace is allowed ahead of the package directive.

If your source code �le does not contain a package directive, the classes in the source code �le become
part of the default package . With the exception of the default package, all packages have names, and
those names are the same as the names of the folders that contain the packages. There is a one-to-one
correspondence between folder names and package names. The default package doesn't have a name.

Some examples of package directives that you will see in upcoming sample programs follow:

Example package directives

package Combined.Java.p1;

package Combined.Java.p2;

Given the following as the classpath on my hypothetical machine,
CLASSPATH=.;c:\Baldwin\JavaProg
these two package directives indicate that the class �les being governed by the package directives are

contained in the following folders:

c:\Baldwin\JavaProg\Combined\Java\p1
c:\Baldwin\JavaProg\Combined\Java\p2

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

244 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Notice how I concatenated the package directive to the classpath setting and substituted the backslash
character for the period when converting from the package directive to the fully-quali�ed path name.

Code in one package can refer to a class in another package (if it is otherwise accessible) by qualifying
the class name with its package name as follows :

Combined.Java.p2.Access02 obj02 =

new Combined.Java.p2.Access02();

Obviously, if we had to do very much of that, it would become very burdensome due to the large amount of
typing required. As you already know, the import directive is available to allow us to specify the package
containing the class just once at the beginning of the source �le and then refer only to the class name for
the remainder of that source �le.

2.35.5.2 The import directive

This discussion will be very brief because you have been using import directives since the very �rst module.
Therefore, you already know what they look like and how to use them.

If you are interested in the nitty-gritty details (such as what happens when you provide two import
directives that point to two di�erent packages containing the same class �le name) , you can consult the
Java Language Reference by Mark Grand, or you can download the Java language speci�cation from Oracle's
Java website.

The purpose of the import directive is to help us avoid the burdensome typing requirement (p. 245)
described in the previous section when referring to classes in a di�erent package.

An import directive makes the de�nitions of classes from other packages available on the basis of their
�le names alone.

You can have any number of import directives in a source �le. However, they must occur after the
package directive (if there is one) and before any class or interface declarations.

There are essentially two di�erent forms of the import directive, one with and the other without a wild
card character (*) . These two forms are illustrated in the following box.

Two forms of import directives

import java.awt.*

import java.awt.event.ActionEvent

The �rst import directive makes all of the class �les in the java.awt package available for use in the code
in a di�erent package by referring only to their �le names.

The second import directive makes only the class �le named ActionEvent in the java.awt.event
package available by referring only to the �le name.

2.35.5.3 Compiling programs with package directives

So, how do you compile programs containing package directives? There are probably several ways. I am
going to describe one way that I have found to be successful.

First, you must create your folder hierarchy to match the package directive that you intend to use.
Remember to construct this hierarchy downward relative to the folder speci�ed at the end of your classpath
setting. If you have forgotten the critical rule (p. 243) in this respect, go back and review it.

Next, place source code �les in each of the folders where you intend for the class �les associated with
those source code �les to reside. (After you have compiled and tested the program, you can remove the
source code �les if you wish.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

245

You can compile the source code �les individually if you want to, but that isn't necessary.
One of the source code �les will contain the controlling class . The controlling class is the class that

contains the main method that will be executed when you run the program from the command line using
the JVM.

Make the directory containing that source code �le be the current directory. (If you don't know what
the current directory is, go out and get yourself a DOS For Dummies book and read it.)

Each of the source code �les must contain a package directive that speci�es the package that will contain
the compiled versions of all the class de�nitions in that source code �le. Using the instructions that I am
giving you, that package directive will also describe the folder that contains the source code �le.

Any of the source code �les containing code that refers to classes in a di�erent package must also contain
the appropriate import directives, or you must use fully-quali�ed package names to refer to those classes.

Then use the javac program with your favorite options to compile the source code �le containing the
controlling class. This will cause all of the other source code �les containing classes that are linked to the
code in the controlling class, either directly or indirectly, to be compiled also. At least an attempt will be
made to compile them all. You may experience a few compiler errors if your �rst attempt at compilation is
anything like mine.

Once you eliminate all of the compiler errors, you can test the application by using the java program
with your favorite options to execute the controlling class.

Once you are satis�ed that everything works properly, you can copy the source code �les over to an
archive folder and remove them from the package folders if you want to do so.

Finally, you can also convert the entire hierarchy of package folders to a jar �le if you want to, and
distribute it to your client. If you don't remember how to install it relative to the classpath variable, go back
and review that part of the module.

Once you have reached this point, how do you execute the program. I will show you how to execute the
program from the command line in the sample program in the next section. (Actually I will encapsulate
command-line commands in a batch �le and execute the batch �le. That is a good way to guard against
typing errors.)

2.35.5.4 Sample program

The concept of packages can get very tedious in a hurry. Let's take a look at a sample program that is
designed to pull all of this together.

This application consists of three separate source �les located in three di�erent packages. Together they
illustrates the use of package and import directives, along with javac to build a standalone Java application
consisting of classes in three separate packages.

(If you want to con�rm that they are really in di�erent packages, just make one of the classes referred
to by the controlling class non-public and try to compile the program.)

In other words, in this sample program, we create our own package structure and populate it with a set
of cooperating class �les.

A folder named jnk is a child of the root folder on the M-drive.
A folder named SampleCode is a child of the folder named jnk .
A folder named Combined is a child of the folder named SampleCode .
A folder named Java is a child of the folder named Combined .
Folders named p1 and p2 are children of the folder named Java .
The �le named Package00.java , shown in Listing 1 (p. 247) is stored in the folder named Java .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

246 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Listing 1 . File: Package00.java.

/*File Package00.java Copyright 1997, R.G.Baldwin

Illustrates use of package and import directives to

build an application consisting of classes in three

separate packages.

The output from running the program follows:

Starting Package00

Instantiate obj of public classes in different packages

Constructing Package01 object in folder p1

Constructing Package02 object in folder p2

Back in main of Package00

**/

package Combined.Java; //package directive

//Two import directives

import Combined.Java.p1.Package01;//specific form

import Combined.Java.p2.*; //wildcard form

class Package00{

public static void main(String[] args){ //main method

System.out.println("Starting Package00");

System.out.println("Instantiate obj of public " +

"classes in different packages");

new Package01();//Instantiate objects of two classes

new Package02();// in different packages.

System.out.println("Back in main of Package00");

}//end main method

}//End Package00 class definition.

Table 2.98

The �le named Package01.java , shown in Listing 2 (p. 248) is stored in the folder named p1 .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

247

Listing 2 . File Package01.java.

/*File Package01.java Copyright 1997, R.G.Baldwin

See discussion in file Package00.java

**/

package Combined.Java.p1;

public class Package01 {

public Package01(){//constructor

System.out.println(

"Constructing Package01 object in folder p1");

}//end constructor

}//End Package01 class definition.

Table 2.99

The �le named Package02.java , shown in Listing 3 (p. 248) is stored in the folder named p2 .

Listing 3 . File Package02.java.

/*File Package02.java Copyright 1997, R.G.Baldwin

See discussion in file Package00.java

**/

package Combined.Java.p2;

public class Package02 {

public Package02(){//constructor

System.out.println(

"Constructing Package02 object in folder p2");

}//end constructor

}//End Package02 class definition.

Table 2.100

The �le named CompileAndRun .bat, shown in Listing 4 (p. 249) is stored in the folder named
SampleCode .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

248 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Listing 4 . File: CompileAndRun.bat.

echo off

rem This file is located in folder named M:\SampleCode,
rem which is Parent of folder Combined.

del Combined\Java*.class
del Combined\Java\p1*.class
del Combined\Java\p2*.class

javac -cp M:\jnk\SampleCode Combined\Java\Package00.java

java -cp M:\jnk\SampleCode Combined.Java.Package00

pause

Table 2.101

The controlling class named Package00 is stored in the package named Combined.Java , as declared
in Listing 1 (p. 247) .

The class named Package01 is stored in the package named Combined.Java.p1 , as declared in
Listing 2 (p. 248) .

The class named Package02 is stored in the package named Combined.Java.p2 , as declared in
Listing 3 (p. 248) .

The controlling class named Package00 imports Combined.Java.p1.Package01 and Com-
bined.Java.p2.* , as declared in Listing 1 (p. 247) .

Code in the main method of the controlling class in Listing 1 (p. 247) instantiates objects of the
other two classes in di�erent packages. The constructors for those two classes announce that they are being
constructed.

The two classes being instantiated are public . Otherwise, it would not be possible to instantiate them
from outside their respective packages.

This program was tested using JDK 7 under Windows by executing the batch �le named CompileAn-
dRun.bat .

The classpath is set to the parent folder of the folder named Combined (M:\jnk\SampleCode) by
the -cp switch in the �le named CompileAndRun.bat .

The output from running the program is shown in the comments at the beginning of Listing 1 (p. 247) .

2.35.6 Run the program

I encourage you to copy the code from Listing1 (p. 247) through Listing 4 (p. 249) into a properly constructed
tree of folders. Compile the code and execute it. Experiment with the code, making changes, and observing
the results of your changes. Make certain that you can explain why your changes behave as they do.

2.35.7 Looking ahead

As you approach the end of this group of Programming Fundamentals modules, you should be preparing
yourself for the more challenging ITSE 2321 OOP tracks identi�ed below:

• Java OOP: The Guzdial-Ericson Multimedia Class Library 187

187http://cnx.org/content/m44148

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

249

• Java OOP: Objects and Encapsulation 188

2.35.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0270: Java OOP: Packages
• File: Jb0270.htm
• Originally published: 1997
• Published at cnx.org: 11/25/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.36 Jb0280: Java OOP: String and StringBu�er189

Revised: Tue Mar 29 11:14:56 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 190

• Object-Oriented Programming (OOP) with Java 191

2.36.1 Table of Contents

• Preface (p. 251)

· Viewing tip (p. 251)

* Listings (p. 251)

• Introduction (p. 251)
• You can't modify a String object, but you can replace it (p. 251)

188http://cnx.org/content/m44153
189This content is available online at <http://cnx.org/content/m45237/1.6/>.
190http://cnx.org/contents/EHRr6hjR:pDHzTeQb
191http://cnx.org/contents/-2RmHFs_:kFS-maG_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

250 CHAPTER 2. PROGRAMMING FUNDAMENTALS

• Why are there two string classes? (p. 253)
• Creating String and StringBu�er objects (p. 253)

· The sample program named String02 (p. 253)
· Alternative String instantiation constructs (p. 255)
· Instantiating StringBu�er objects (p. 255)
· Declaration, memory allocation, and initialization (p. 256)
· Instantiating an empty StringBu�er object (p. 256)

• Accessor methods (p. 257)

· Constructors and methods of the String class (p. 257)
· String objects encapsulate data (p. 257)
· Creating String objects without calling the constructor (p. 258)

• Memory management by the StringBu�er class (p. 258)
• The toString method (p. 258)
• Strings and the Java compiler (p. 258)
• Concatenation and the + operator (p. 259)
• Run the programs (p. 259)
• Looking ahead (p. 259)
• Miscellaneous (p. 260)

2.36.2 Preface

This module discusses the String and StringBu�er classes in detail.

2.36.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the listings while you are reading about them.

2.36.2.1.1 Listings

• Listing 1 (p. 252) . File String01.java
• Listing 2 (p. 254) . File String02.java.

2.36.3 Introduction

A string in Java is an object. Java provides two di�erent string classes from which objects that encapsulate
string data can be instantiated:

• String
• StringBu�er

The String class is used for strings that are not allowed to change once an object has been instantiated
(an immutable object) . The StringBu�er class is used for strings that may be modi�ed by the program.

2.36.4 You can't modify a String object, but you can replace it

While the contents of a String object cannot be modi�ed, a reference to a String object can be caused
to point to a di�erent String object as illustrated in the sample program shown in Listing 1 (p. 252) .
Sometimes this makes it appear that the original String object is being modi�ed.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

251

Listing 1 . File String01.java.

/*File String01.java Copyright 1997, R.G.Baldwin

This application illustrates the fact that while a String

object cannot be modified, the reference variable can be

modified to point to a new String object which can have

the appearance of modifying the original String object.

The program was tested using JDK 1.1.3 under Win95.

The output from this program is

Display original string values

THIS STRING IS NAMED str1

This string is named str2

Replace str1 with another string

Display new string named str1

THIS STRING IS NAMED str1 This string is named str2

Terminating program

**/

class String01{

String str1 = "THIS STRING IS NAMED str1";

String str2 = "This string is named str2";

public static void main(String[] args){

String01 thisObj = new String01();

System.out.println("Display original string values");

System.out.println(thisObj.str1);

System.out.println(thisObj.str2);

System.out.println("Replace str1 with another string");

thisObj.str1 = thisObj.str1 + " " + thisObj.str2;

System.out.println("Display new string named str1");

System.out.println(thisObj.str1);

System.out.println("Terminating program");

}//end main()

}//end class String01

Table 2.102

It is important to note that the following statement does not modify the original object pointed to by
the reference variable named str1 .

thisObj.str1 = thisObj.str1 + " " + thisObj.str2;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

252 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Rather, this statement creates a new object, which is concatenation of two existing objects and causes the
reference variable named str1 to point to the new object instead of the original object.

The original object then becomes eligible for garbage collection (unless there is another reference to the
object hanging around somewhere) .

Many aspects of string manipulation can be accomplished in this manner, particularly when the methods
of the String class are brought into play.

2.36.5 Why are there two string classes?

According to The Java Tutorial by Campione and Walrath:

"Because they are constants, Strings are typically cheaper than StringBu�ers and they can be
shared. So it's important to use Strings when they're appropriate."

2.36.6 Creating String and StringBu�er objects

The String and StringBu�er classes have numerous overloaded constructors and many di�erent
methods. I will attempt to provide a sampling of constructors and methods that will prepare you to explore
other constructors and methods on your own.

The next sample program touches on some of the possibilities provided by the wealth of constructors and
methods in the String and StringBu�er classes.

At this point, I will refer you to Java OOP: Java Documentation 192 where you will �nd a link to
online Java documentation. Among other things, the online documentation provides a list of the overloaded
constructors and methods for the String and StringBu�er classes.

As of Java version 7, there are four overloaded constructors in the StringBu�er class and about
thirteen di�erent overloaded versions of the append method. There are many additional methods in the
StringBu�er class including about twelve overloaded versions of the insert method.

As you can see, there are lots of constructors and lots of methods from which to choose. One of your
challenges as a Java programmer will be to �nd the right methods of the right classes to accomplish what
you want your program to accomplish.

2.36.6.1 The sample program named String02

The sample program shown in Listing 2 (p. 254) illustrates a variety of ways to create and initialize String
and StringBu�er objects.

192http://cnx.org/content/m45117

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

253

Listing 2 . File String02.java.

/*File String02.java Copyright 1997, R.G.Baldwin

Illustrates different ways to create String objects and

StringBuffer objects.

The program was tested using JDK 1.1.3 under Win95.

The output from this program is as follows. In some cases,

manual line breaks were inserted to make the material fin

this presentation format.

Create a String the long way and display it

String named str2

Create a String the short way and display it

String named str1

Create, initialize, and display a StringBuffer using new

StringBuffer named str3

Try to create/initialize StringBuffer without

using new - not allowed

Create an empty StringBuffer of default length

Now put some data in it and display it

StringBuffer named str5

Create an empty StringBuffer and specify length

when it is created

Now put some data in it and display it

StringBuffer named str6

Try to create and append to StringBuffer without

using new -- not allowed

**/

class String02{

void d(String displayString){//method to display strings

System.out.println(displayString);

}//end method d()

public static void main(String[] args){

String02 o = new String02();//obj of controlling class

o.d("Create a String the long way and display it");

String str1 = new String("String named str2");

o.d(str1 + "\n");

o.d("Create a String the short way and display it");

String str2 = "String named str1";

o.d(str2 + "\n");

o.d("Create, initialize, and display a StringBuffer " +

"using new");

StringBuffer str3 = new StringBuffer(

"StringBuffer named str3");

o.d(str3.toString()+"\n");

o.d("Try to create/initialize StringBuffer without " +

"using new - not allowed\n");
//StringBuffer str4 = "StringBuffer named str4";x

o.d("Create an empty StringBuffer of default length");

StringBuffer str5 = new StringBuffer();

o.d("Now put some data in it and display it");

//modify length as needed

str5.append("StringBuffer named str5");

o.d(str5.toString() + "\n");

o.d("Create an empty StringBuffer and specify " +

"length when it is created");

StringBuffer str6 = new StringBuffer(

"StringBuffer named str6".length());

o.d("Now put some data in it and display it");

str6.append("StringBuffer named str6");

o.d(str6.toString() + "\n");

o.d("Try to create and append to StringBuffer " +

"without using new -- not allowed");

//StringBuffer str7;

//str7.append("StringBuffer named str7");

}//end main()

}//end class String02

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

254 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Table 2.103

2.36.6.2 Alternative String instantiation constructs

The �rst thing to notice is that a String object can be created using either of the following constructs:

Alternative String instantiation constructs

String str1 = new String("String named str2");

String str2 = "String named str1";

The �rst approach uses the new operator to instantiate an object while the shorter version doesn't use
the new operator.

Later I will discuss the fact that

• the second approach is not simply a shorthand version of the �rst construct, but that
• they involve two di�erent compilation scenarios with the second construct being more e�cient than

the �rst.

2.36.6.3 Instantiating StringBu�er objects

The next thing to notice is that a similar alternative strategy does not hold for the StringBu�er class.
For example, it is not possible to create a StringBu�er object without use of the new operator.

(It is possible to create a reference to a StringBu�er object but it is later necessary to use the new
operator to actually instantiate an object.)

Note the following code fragments that illustrate allowable and non-allowable instantiation scenarios for
StringBu�er objects.

Instantiating StringBu�er objects

//allowed

StringBuffer str3 = new StringBuffer(

"StringBuffer named str3");

//not allowed

//StringBuffer str4 = "StringBuffer named str4";

o.d("Try to create and append to StringBuffer " +

"without using new -- not allowed");

//StringBuffer str7;

//str7.append("StringBuffer named str7");

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

255

2.36.6.4 Declaration, memory allocation, and initialization

To review what you learned in an earlier module, three steps are normally involved in creating an object
(but the third step may be omitted) .

• declaration
• memory allocation
• initialization

The following code fragment performs all three steps:

Declaration, memory allocation, and initialization

StringBuffer str3 =

new StringBuffer("StringBuffer named str3");

The code

StringBuffer str3

declares the type and name of a reference variable of the correct type for the bene�t of the compiler.
The new operator allocates memory for the new object.
The constructor call

StringBuffer("StringBuffer named str3")

constructs and initializes the object.

2.36.6.5 Instantiating an empty StringBu�er object

The instantiation of the StringBu�er object shown above (p. 256) uses a version of the constructor that
accepts a String object and initializes the StringBu�er object when it is created.

The following code fragment instantiates an empty StringBu�er object of a default capacity and then
uses a version of the append method to put some data into the object. (Note that the data is actually a
String object � a sequence of characters surrounded by quotation marks.)

Instantiating an empty StringBu�er object

//default initial length

StringBuffer str5 = new StringBuffer();

//modify length as needed

str5.append("StringBuffer named str5");

It is also possible to specify the capacity when you instantiate a StringBu�er object.
Some authors suggest that if you know the �nal length of such an object, it is more e�cient to specify

that length when the object is instantiated than to start with the default length and then require the system
to increase the length "on the �y" as you manipulate the object.

This is illustrated in the following code fragment. This fragment also illustrates the use of the length
method of the String class just to make things interesting. (A simple integer value for the capacity of
the StringBu�er object would have worked just as well.)

Instantiating a StringBu�er object of a non-default length

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

256 CHAPTER 2. PROGRAMMING FUNDAMENTALS

StringBuffer str6 = new StringBuffer(

"StringBuffer named str6".length());

str6.append("StringBuffer named str6");

2.36.7 Accessor methods

The following quotation is taken directly from The Java Tutorial by Campione and Walrath.

"An object's instance variables are encapsulated within the object, hidden inside, safe from inspec-
tion or manipulation by other objects. With certain well-de�ned exceptions, the object's methods
are the only means by which other objects can inspect or alter an object's instance variables. En-
capsulation of an object's data protects the object from corruption by other objects and conceals
an object's implementation details from outsiders. This encapsulation of data behind an object's
methods is one of the cornerstones of object-oriented programming."

The above statement lays out an important consideration in good object-oriented programming.
The methods used to obtain information about an object are often referred to as accessor methods .

2.36.7.1 Constructors and methods of the String class

I told you in an earlier section (p. 253) that the StringBu�er class provides a large number of overloaded
constructors and methods. The same holds true for the String class.

Once again, I will refer you to Java OOP: Java Documentation 193 where you will �nd a link to online
Java documentation. Among other things, the documentation provides a list of the overloaded constructors
and methods for the String class

2.36.7.2 String objects encapsulate data

The characters in a String object are not directly available to other objects. However, as you can see
from the documentation, there are a large number of methods that can be used to access and manipulate
those characters. For example, in an earlier sample program (Listing 2 (p. 254) (p. 254)) , I used the
length method to access the number of characters stored in a String object as shown in the following
code fragment.

StringBuffer str6 = new StringBuffer(

"StringBuffer named str6".length());

In this case, I applied the length method to a literal string, but it can be applied to any valid representation
of an object of type String .

I then passed the value returned by the length method to the constructor for a StringBu�er object.
As you can determine by examining the argument lists for the various methods of the String class,

• some methods return data stored in the string while
• other methods return information about that data.

For example, the length method returns information about the data stored in the String object.
Methods such as charAt and substring return portions of the actual data.
Methods such toUpperCase can be thought of as returning the data, but returning it in a di�erent

format.
193http://cnx.org/content/m45117

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

257

2.36.7.3 Creating String objects without calling the constructor

Methods in other classes and objects may create String objects without an explicit call to the constructor
by the programmer. For example the toString method of the Float class receives a �oat value as an
incoming parameter and returns a reference to a String object that represents the �oat argument.

2.36.8 Memory management by the StringBu�er class

If the additional characters cause the size of the StringBu�er to grow beyond its current capacity when
characters are added, additional memory is automatically allocated.

However, memory allocation is a relatively expensive operation and you can make your code more e�cient
by initializing StringBu�er capacity to a reasonable �rst guess. This will minimize the number of times
memory must be allocated for it.

When using the insert methods of the StringBu�er class, you specify the index before which you
want the data inserted.

2.36.9 The toString method

Frequently you will need to convert an object to a String object because you need to pass it to a method
that accepts only String values (or perhaps for some other reason) .

All classes inherit the toString method from the Object class. Many of the classes override this
method to provide an implementation that is meaningful for objects of that class.

In addition, you may sometimes need to override the toString method for classes that you de�ne to
provide a meaningful toString behavior for objects of that class.

I explain the concept of overriding the toString method in detail in the module titled Java OOP:
Polymorphism and the Object Class 194 .

2.36.10 Strings and the Java compiler

In Java, you specify literal strings between double quotes as in:

Literal strings

"I am a literal string of the String type."

You can use literal strings anywhere you would use a String object.
You can also apply String methods directly to a literal string as in an earlier program (p. 254) that

calls the length method on a literal string as shown below.

Using String methods with literal strings

StringBuffer str6 = new StringBuffer(

StringBuffer named str6".length());

Because the compiler automatically creates a new String object for every literal string, you can use a
literal string to initialize a String object (without use of the new operator) as in the following code
fragment from a previous program (p. 252) :

194http://cnx.org/content/m44190

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

258 CHAPTER 2. PROGRAMMING FUNDAMENTALS

String str1 = "THIS STRING IS NAMED str1";

The above construct is equivalent to, but more e�cient than the following, which, according to The Java
Tutorial by Campione and Walrath, ends up creating two String objects instead of one:

String str1 = new String("THIS STRING IS NAMED str1");

In this case, the compiler creates the �rst String object when it encounters the literal string, and the
second one when it encounters new String() .

2.36.11 Concatenation and the + operator

The plus (+) operator is overloaded so that in addition to performing the normal arithmetic operations, it
can also be used to concatenate strings.

This will come as no surprise to you because we have been using code such as the following since the
beginning of this group of Programming Fundamentals modules:

String cat = "cat";

System.out.println("con" + cat + "enation");

According to Campione and Walrath, Java uses StringBu�er objects behind the scenes to implement
concatenation. They indicate that the above code fragment compiles to:

String cat = "cat";

System.out.println(new StringBuffer().append("con").

append(cat).append("enation"));

Fortunately, that takes place behind the scenes and we don't have to deal directly with the syntax.

2.36.12 Run the programs

I encourage you to copy the code from Listing 1 (p. 252) and Listing 2 (p. 254) . Compile the code and
execute it. Experiment with the code, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

2.36.13 Looking ahead

As you approach the end of this group of Programming Fundamentals modules, you should be preparing
yourself for the more challenging ITSE 2321 OOP 195 tracks identi�ed below:

• Java OOP: The Guzdial-Ericson Multimedia Class Library 196

• Java OOP: Objects and Encapsulation 197

195http://cnx.org/content/m45222
196http://cnx.org/content/m44148
197http://cnx.org/content/m44153

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

259

2.36.14 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0280: Java OOP: String and StringBu�er
• File: Jb0280.htm
• Originally published: 1997
• Published at cnx.org: 11/25/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

260 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.37 Jb0280r Review198

Revised: Tue Mar 29 11:29:05 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 199

• Object-Oriented Programming (OOP) with Java 200

2.37.1 Table of Contents

• Preface (p. 261)
• Questions (p. 261)

· 1 (p. 261) , 2 (p. 261) , 3 (p. 261) , 4 (p. 261) , 5 (p. 262) , 6 (p. 262) , 7 (p. 262) , 8 (p. 262) ,
9 (p. 262) , 10 (p. 262) , 11 (p. 262) , 12 (p. 263) , 13 (p. 263) , 14 (p. 263)

• Listings (p. 263)
• Answers (p. 265)
• Miscellaneous (p. 269)

2.37.2 Preface

This module contains review questions and answers keyed to the module titled Jb0280: Java OOP: String
and StringBu�er 201 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

2.37.3 Questions

2.37.3.1 Question 1 .

Java provides two di�erent string classes from which string objects can be instantiated. What are they?
Answer 1 (p. 269)

2.37.3.2 Question 2

True or false? The StringBu�er class is used for strings that are not allowed to change. The String
class is used for strings that are modi�ed by the program. If false, explain why.

Answer 2 (p. 269)

2.37.3.3 Question 3

True or false? While the contents of a String object cannot be modi�ed, a reference to a String object
can be caused to point to a di�erent String object. If false, explain why.

Answer 3 (p. 269)

2.37.3.4 Question 4

True or false? The use of the new operator is required for instantiation of objects of type String . If
false, explain your answer.

Answer 4 (p. 269)

198This content is available online at <http://cnx.org/content/m45241/1.7/>.
199http://cnx.org/contents/EHRr6hjR:pDHzTeQb
200http://cnx.org/contents/-2RmHFs_:kFS-maG_
201http://cnx.org/content/m45237

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

261

2.37.3.5 Question 5

True or false? The use of the new operator is required for instantiation of objects of type StringBu�er
. If false, explain your answer

Answer 5 (p. 268)

2.37.3.6 Question 6

Provide a code fragment that illustrates how to instantiate an empty StringBu�er object of a default
length and then use a version of the append method to put some data into the object.

Answer 6 (p. 268)

2.37.3.7 Question 7

Without specifying any explicit numeric values, provide a code fragment that will instantiate an empty
StringBu�er object of the correct initial length to contain the string "StringBu�er named str6" and then
store that string in the object.

Answer 7 (p. 268)

2.37.3.8 Question 8

Provide a code fragment consisting of a single statement showing how to use the Integer wrapper class to
convert a string containing digits to an integer and store it in a variable of type int .

Answer 8 (p. 268)

2.37.3.9 Question 9

Explain the di�erence between the capacity method and the length method of the StringBu�er
class.

Answer 9 (p. 268)

2.37.3.10 Question 10

True or false? The following is a valid code fragment. If false, explain why.

StringBuffer str6 =

new StringBuffer("StringBuffer named str6".length());

Answer 10 (p. 268)

2.37.3.11 Question 11

Which of the following code fragments is the most e�cient, �rst or second?

String str1 = "THIS STRING IS NAMED str1";

String str1 = new String("THIS STRING IS NAMED str1");

Answer 11 (p. 268)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

262 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.37.3.12 Question 12

Write a Java application that illustrates the fact that while a String object cannot be modi�ed, the
reference variable can be modi�ed to point to a new String object, which can have the appearance of
modifying the original String object.

Answer 12 (p. 267)

2.37.3.13 Question 13

Write a Java application that illustrates di�erent ways to create String objects and StringBu�er objects.
Answer 13 (p. 266)

2.37.3.14 Question 14

Write a Java application that illustrates conversion from string to numeric.
Answer 14 (p. 265)

2.37.4 Listings

• Listing 1 (p. 265) . File SampProg26.java.
• Listing 2 (p. 266) . File SampProg25.java.
• Listing 3 (p. 267) . File SampProg24.java.

What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

263

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

264 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.37.5 Answers

2.37.5.1 Answer 14

Listing 1 . File SampProg26.java.

/*File SampProg26.java from module 50

Copyright 1997, R.G.Baldwin

Without viewing the solution that follows, write a Java

application that illustrates conversion from string to

numeric, similar to the atoi() function in C.

The output from the program should be:

The value of the int variable num is 3625

===

*/

class SampProg26{

public static void main(String[] args){

int num = new Integer("3625").intValue();

System.out.println(

"The value of the int variable num is " + num);

}//end main()

}//end class SampProg26

Table 2.104

Back to Question 14 (p. 263)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

265

2.37.5.2 Answer 13

Listing 2 . File SampProg25.java.

/*File SampProg25.java from module 50

Copyright 1997, R.G.Baldwin

Write a Java application that illustrates different ways to

create String objects and StringBuffer objects.

The output from this program should be (line breaks

manually inserted to make it fit the format):

Create a String using new and display it

String named str2

Create a String without using new and display it

String named str1

Create, initialize, and display a StringBuffer using new

StringBuffer named str3

Try to create/initialize StringBuffer without using new

Create an empty StringBuffer of default length

Now put some data in it and display it

StringBuffer named str5

Create an empty StringBuffer and specify length when

created

Now put some data in it and display it

StringBuffer named str6

Try to create and append to StringBuffer without using new

**/

class SampProg25{

void d(String displayString){//method to display strings

System.out.println(displayString);

}//end method d()

public static void main(String[] args){

//instantiate an object to display methods

SampProg25 o = new SampProg25();

o.d("Create a String using new and display it");

String str1 = new String("String named str2");

o.d(str1 + "\n");

o.d(

"Create a String without using new and display it");

String str2 = "String named str1";

o.d(str2 + "\n");

o.d("Create, initialize, and display a StringBuffer "

+ "using new");

StringBuffer str3 = new StringBuffer(

"StringBuffer named str3");

o.d(str3.toString()+"\n");

o.d("Try to create/initialize StringBuffer without "

+ "using new \n");
//StringBuffer str4 = //not allowed by compiler

// "StringBuffer named str4";

o.d(

"Create an empty StringBuffer of default length");

//accept default initial length

StringBuffer str5 = new StringBuffer();

o.d("Now put some data in it and display it");

//modify length as needed

str5.append("StringBuffer named str5");

o.d(str5.toString() + "\n");

o.d("Create an empty StringBuffer and specify length "

+ "when created");

StringBuffer str6 = new StringBuffer(

"StringBuffer named str6".length());

o.d("Now put some data in it and display it");

str6.append("StringBuffer named str6");

o.d(str6.toString() + "\n");

o.d(

"Try to create and append to StringBuffer without "

+ "using new");

//StringBuffer str7;

//str7.append("StringBuffer named str7");

}//end main()

}//end class SampProg25

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

266 CHAPTER 2. PROGRAMMING FUNDAMENTALS

Table 2.105

Back to Question 13 (p. 263)

2.37.5.3 Answer 12

Listing 3 . File SampProg24.java.

/*File SampProg24.java from module 50

Copyright 1997, R.G.Baldwin

Without viewing the solution that follows, Write a Java

application that illustrates the fact that while a String

object cannot be modified, the reference variable can be

modified to point to a new String object which can have the

appearance of modifying the original String object.

The output from this program should be

Display original string values

THIS STRING IS NAMED str1

This string is named str2

Replace str1 with another string

Display new string named str1

THIS STRING IS NAMED str1 This string is named str2

Terminating program

**/

class SampProg24{

String str1 = "THIS STRING IS NAMED str1";

String str2 = "This string is named str2";

public static void main(String[] args){

SampProg24 thisObj = new SampProg24();

System.out.println("Display original string values");

System.out.println(thisObj.str1);

System.out.println(thisObj.str2);

System.out.println(

"Replace str1 with another string");

thisObj.str1 = thisObj.str1 + " " + thisObj.str2;

System.out.println("Display new string named str1");

System.out.println(thisObj.str1);

System.out.println("Terminating program");

}//end main()

}//end class SampProg24

Table 2.106

Back to Question 12 (p. 263)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

267

2.37.5.4 Answer 11

The �rst code fragment is the most e�cient.
Back to Question 11 (p. 262)

2.37.5.5 Answer 10

True.
Back to Question 10 (p. 262)

2.37.5.6 Answer 9

The capacity method returns the amount of space currently allocated for the StringBu�er object. The
length method returns the amount of space used.
Back to Question 9 (p. 262)

2.37.5.7 Answer 8

int num = new Integer("3625").intValue();

Back to Question 8 (p. 262)

2.37.5.8 Answer 7

StringBuffer str6 =

new StringBuffer("StringBuffer named str6".length());

str6.append("StringBuffer named str6");

Back to Question 7 (p. 262)

2.37.5.9 Answer 6

StringBuffer str5 =

new StringBuffer();//accept default initial length

str5.append(

"StringBuffer named str5");//modify length as needed

Back to Question 6 (p. 262)

2.37.5.10 Answer 5

True.
Back to Question 5 (p. 262)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

268 CHAPTER 2. PROGRAMMING FUNDAMENTALS

2.37.5.11 Answer 4

False. A String object can be instantiated using either of the following statements:

String str1 = new String("String named str2");

String str2 = "String named str1";

Back to Question 4 (p. 261)

2.37.5.12 Answer 3

True.
Back to Question 3 (p. 261)

2.37.5.13 Answer 2

False. This statement is backwards. The String class is used for strings that are not allowed to change.
The StringBu�er class is used for strings that are modi�ed by the program.

Back to Question 2 (p. 261)

2.37.5.14 Answer 1

The two classes are:

• String
• StringBu�er

Back to Question 1 (p. 261)

2.37.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0280r Review: String and StringBu�er
• File: Jb0280r.htm
• Originally published: 1997
• Published at cnx.org: 11/29/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

269

a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.38 Jb0290: The end of Programming Fundamentals202

Revised: Tue Mar 29 11:40:13 CDT 2016
This page is included in the following Books:

• Programming Fundamentals with Java 203

• Object-Oriented Programming (OOP) with Java 204

2.38.1 Looking ahead

You have now reached the end of this Programming Fundamentals 205 book.
The next stop along your journey to become a Java/OOP programmer should be either the OOP Self-

Assessment 206 , or the course material for the ITSE 2321 OOP 207 tracks identi�ed below:

• Java OOP: The Guzdial-Ericson Multimedia Class Library 208

• Java OOP: Objects and Encapsulation 209

2.38.2 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jb0290: Java OOP: The end of Programming Fundamentals
• File: Jb0290.htm
• Published: 11/29/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive

202This content is available online at <http://cnx.org/content/m45257/1.5/>.
203http://cnx.org/contents/EHRr6hjR:pDHzTeQb
204http://cnx.org/contents/-2RmHFs_:kFS-maG_
205http://cnx.org/content/m45179
206http://cnx.org/content/m45252
207http://cnx.org/content/m45222
208http://cnx.org/content/m44148
209http://cnx.org/content/m44153

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

270 CHAPTER 2. PROGRAMMING FUNDAMENTALS

compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

Chapter 3

ITSE 2321 Object-Oriented
Programming (Java)

3.1 Preface

3.1.1 Jy0020: Java OOP: Preface to ITSE 2321
1

Revised: Tue Oct 04 15:00:17 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 2

• Object-Oriented Programming (OOP) with Java 3

3.1.1.1 Table of contents

• Table of contents (p. 273)
• Welcome (p. 274)
• Course description (p. 274)
• Course prerequisite (p. 274)

· Prerequisite waiver (p. 274)

• Prior to enrolling (p. 274)
• Course material (p. 275)

· Preface (p. 275)

* Preface to ITSE 2321 (p. 275)
* Completing the First Assignment (p. 275)
* Con�guring Your Computer (p. 275)

· Essence of OOP (p. 275)
· Multimedia (p. 276)
· The Java Collections Framework (p. 276)
· Practice Programs (p. 276)
· Java Documentation (p. 276)

• Downloads (p. 276)
• Miscellaneous (p. 276)

1This content is available online at <http://cnx.org/content/m45222/1.22/>.
2http://cnx.org/contents/dzOvxPFw
3http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

271

272 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.1.1.2 Welcome

Welcome to the course material for ITSE 2321 - Object-Oriented Programming (Java) , which I
teach at Austin Community College 4 in Austin, TX.

The college website for this course is: http://www.austincc.edu/baldwin/ 5

3.1.1.3 Course description

As of November 2012, the description for this course reads:
"ITSE 2321 - Object-Oriented Programming (Java)
Introduction to object-oriented programming. Emphasis on the fundamentals of structured design

with classes, including development, testing, implementation, and documentation. Includes object-oriented
programming techniques, classes, and objects."

3.1.1.4 Course prerequisite

The prerequisite for the course is COSC 1336 or department approval.
As of November 2012, the description for the prerequisite course reads:
"COSC 1336 - Programming Fundamentals I
Introduces the fundamental concepts of structured programming. Topics include software development

methodology, data types, control structures, functions, arrays, and the mechanics of running, testing, and
debugging. This course assumes computer literacy. This course requires the same math skills necessary for
College Algebra. Students should either have taken or be currently enrolled in College Algebra or a course
that requires College Algebra."

3.1.1.4.1 Prerequisite waiver

Beginning in August of 2013, you might want to petition the department head for a waiver of the prerequisite
course if you meet the following requirements:

• You understand and can answer at least 80-percent of the questions in modules Ap0005: Preface
to OOP Self-Assessment 6 through Ap0060: Self-assessment, More on Arrays 7 in a "closed-book"
setting.

• You understand and can write at least 80-percent of the programs in the Challenge program questions
in modules Ap0005: Preface to OOP Self-Assessment 8 through Ap0060: Self-assessment, More on
Arrays 9 in a "closed-book" setting.

• You understand and can answer at least 80-percent of the questions posed on the Review pages in
Programming Fundamentals 10 in a "closed-book" setting

3.1.1.5 Prior to enrolling

I recommend that you understand and be able to answer at least 80-percent of the questions in modules
Ap0005: Preface to OOP Self-Assessment 11 through Ap0060: Self-assessment, More on Arrays 12 in a
"closed-book" setting.

4http://www.austincc.edu/
5http://www.austincc.edu/baldwin/
6http://cnx.org/contents/1CVBGBJj:4OPmk79Y
7http://cnx.org/contents/1CVBGBJj:BeZmA_ea
8http://cnx.org/contents/1CVBGBJj:4OPmk79Y
9http://cnx.org/contents/1CVBGBJj:BeZmA_ea

10http://cnx.org/contents/EHRr6hjR
11http://cnx.org/contents/1CVBGBJj:4OPmk79Y
12http://cnx.org/contents/1CVBGBJj:BeZmA_ea

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

273

I also recommend that you understand and can write at least 80-percent of the programs in the Chal-
lenge program questions in modules Ap0005: Preface to OOP Self-Assessment 13 through Ap0060: Self-
assessment, More on Arrays 14 in a "closed-book" setting.

I also recommend that you read and/or study all of the modules in Programming Fundamentals 15 in
whatever depth is necessary to ensure that you can answer at least 80-percent of the questions posed on the
Review pages of that book in a "closed-book" setting.

3.1.1.6 Course material

This course material consists of a more than 30 di�erent modules arranged in the following sections:

• Preface

· Preface to ITSE 2321
· Completing the First Assignment
· Con�guring Your Computer

• Essence of OOP
• Multimedia
• The Java Collections Framework
• Practice Programs
• Java Documentation

3.1.1.6.1 Preface

3.1.1.6.1.1 Preface to ITSE 2321

This is the module 16 that you are reading now.

3.1.1.6.1.2 Completing the First Assignment

This module 17 helps students navigate through the learning process so that they can complete the �rst
assignment on or before the deadline.

3.1.1.6.1.3 Con�guring Your Computer

This module 18 provides a step-by-step procedure for con�guring a Windows computer to support the types
of sample programs and assignments involved in this course.

Perhaps the �rst thing that you should do when considering enrollment in this course is to visit this
module 19 and con�rm that you are able to understand and to replicate the procedures and the results
explained there.

3.1.1.6.2 Essence of OOP

The modules in the Essence of OOP 20 section are more or less theoretical in nature. Sample programs in
this section are intended to illustrate the OOP concepts being discussed with no e�ort being made to cause
those programs to have any relation to real-world applications.

13http://cnx.org/contents/1CVBGBJj:4OPmk79Y
14http://cnx.org/contents/1CVBGBJj:BeZmA_ea
15http://cnx.org/contents/EHRr6hjR:pDHzTeQb
16http://cnx.org/contents/dzOvxPFw:6GrxCfXx
17http://cnx.org/contents/dzOvxPFw:5oiUHDPw
18http://cnx.org/contents/dzOvxPFw:s3zdocvh
19http://cnx.org/contents/dzOvxPFw:s3zdocvh
20http://cnx.org/contents/dzOvxPFw:rOlnsVRr

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

274 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.1.1.6.3 Multimedia

The modules in the Multimedia 21 section are intended to illustrate OOP concepts using sample programs
that clearly represent real-world applications. In particular, most of the sample programs in this section use
OOP concepts to manipulate digital images of the sort that are produced by your digital camera. (See
some examples in Java3000: The Guzdial-Ericson Multimedia Class Library 22 .)

3.1.1.6.4 The Java Collections Framework

The modules in this section are intended to help you learn about The Java Collections Framework 23 . Once
you learn how to use the framework, it is unlikely that you will need to reinvent common data structures,
search algorithms, or sorting algorithms again, because those capabilities are neatly packaged within the
framework.

3.1.1.6.5 Practice Programs

This section 24 provides the source code for a large number of programs illustrating important aspects of
object-oriented programming with Java.

3.1.1.6.6 Java Documentation

As the name suggests, the material in this section is intended to show you how to access and how to use the
standard Java documentation.

3.1.1.7 Downloads

Unless the format has changed, you should be able to see a green button labeled Get This Book! near
the upper-right on this page. (You may need to adjust the zoom factor on your browser to cause it to
appear. If you don't see the green button, scroll to the bottom of this page where you should see a tab
labeled Downloads+ .) Click the button or the tab to see some of the download options for this book.

You may �nd additional download options both for the book (collection) and for the individual page
(module) by:

• Clicking the link labeled CNX Author | Legacy Site in the upper right corner of this or any other
page in the book.

• Scrolling to the bottom of the page on the legacy site where you may see a DOWNLOAD: label,
below which you may see a COLLECTION AS: label and a MODULE AS: label.

• Selecting the link labeled More downloads... to the right of either of those labels.

I encourage you to take advantage of all of the download options that OpenStax has to o�er in order to
customize this material for use in your organized courses or for personal self study. If you elect to download
the book in the O�ine ZIP format, see the book titled OpenStax Download Cleaner 25 for instructions
on how to make that material more useful than it might otherwise be.

And if you �nd the material useful, I would like to hear more about how you are using it.

3.1.1.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

21http://cnx.org/contents/dzOvxPFw:0xo_9JXz
22http://cnx.org/contents/dzOvxPFw:0xo_9JXz
23http://cnx.org/contents/dzOvxPFw:BaPSYll8
24http://cnx.org/contents/dzOvxPFw:nezOEDSQ
25http://cnx.org/contents/QqpQSOsH

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

275

• Module name: Jy0020: Java OOP: Preface to ITSE 2321
• File: Jy0020.htm
• Published: 11/25/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.1.2 Java1554 Completing the First Assignment
26

Revised: Mon Oct 03 12:22:30 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 27

• Object-Oriented Programming (OOP) with Java 28

3.1.2.1 Table of contents

• Table of contents (p. 277)
• Preface (p. 278)

· Viewing tip (p. 278)

* Figures (p. 278)
* Listings (p. 278)

• General background information (p. 278)

· Orientation and the rules of the road (p. 278)
· Con�gure your computer (p. 279)
· Review programming fundamentals in Java (p. 279)
· Learn object-oriented programming fundamentals (p. 279)

• Discussion and sample code (p. 280)

· Working with turtles in general (p. 280)
· Drawing a circle with a turtle (p. 281)

• Run the programs (p. 282)
• Complete program listings (p. 282)
• Miscellaneous (p. 285)

26This content is available online at <http://cnx.org/content/m63203/1.3/>.
27http://cnx.org/contents/dzOvxPFw
28http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

276 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.1.2.2 Preface

Many students in this course have di�culty getting started and fail to submit the �rst assignment by the
prescribed deadline. Many (but not all) of those students either withdraw too late to get a refund or fail
the course altogether.

The purpose of this lesson is to lay out a set of steps that students can follow in order

• to get started promptly, and
• to submit a correct copy of the �rst assignment before the deadline.

Note that this lesson won't write the �rst assignment for you. Rather, it will help you navigate the learning
process so that you can accomplish that on your own.

3.1.2.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

3.1.2.2.1.1 Figures

• Figure 1. (p. 281) Graphic output from Turtles01.
• Figure 2. (p. 282) Graphic output from Circles01.

3.1.2.2.1.2 Listings

• Listing 1 (p. 282) . The driver class named Turtles01.
• Listing 2 (p. 283) . The class named Turtles01Runner.
• Listing 3 (p. 284) . The class named Circles01.
• Listing 4 (p. 284) . The class named Circles01Runner.

3.1.2.3 General background information

This section will describe the things that you need to do before you begin writing code for the �rst assignment.

3.1.2.3.1 Orientation and the rules of the road

As of September 2016, Austin Community College 29 uses a learning management system (LMS) known as
Blackboard (Bb) 30 . When you enroll in this course, you will have access to the course in Bb. The �rst
thing that you should do is to open the course in Bb and read all of the announcements, paying particular
attention to the requirement for online orientation.

The next thing that you should do is go to the page 31 on the college website containing links to all of
the courses that I teach. Locate your course among the various courses listed there. Select the link that
points to the syllabus page for my courses. Then select the link to the syllabus for your course and read the
syllabus. Make certain that you understand all of the information provided in the syllabus.

Once you understand the information in the syllabus, return to the page 32 containing links to all of
the courses that I teach. Locate your course among the various courses listed there and select the link that
points to the Main page for your course. Read that page and all of the pages referenced by links on that
page.

29http://www.austincc.edu/
30http://www.blackboard.com/learning-management-system/blackboard-learn.aspx
31http://www.austincc.edu/baldwin/
32http://www.austincc.edu/baldwin/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

277

By this point, you should fully understand the rules of the road for this course. Go back to your course
in Bb and complete the orientation test.

If you have questions along the way, be sure to ask those questions.

3.1.2.3.2 Con�gure your computer

The next step is to con�gure your computer to make it compatible with the requirements of this course. Go
to Java 1560: Con�guring Your Computer 33 . Study that lesson carefully. Make absolutely certain that
you can replicate all of the procedures and results shown there with the possible exception of the material in
the section titled Compare the graphic output from each of two Java programs 34 . (I exclude that section
only because you don't have the output from two Java programs to compare at this point.)

Once you have accomplished that, you should probably skip ahead and con�rm that you can replicate
the procedures and results described in the lesson titled Java3000: The Guzdial-Ericson Multimedia Class
Library 35 . You could hold o� and do that later if you prefer but you de�nitely need to accomplish that
before you begin to write your �rst assignment program.

3.1.2.3.3 Review programming fundamentals in Java

Now that you have your computer con�gured, it is time to begin learning how to use the Java programming
language for object-oriented programming. The �rst step is to review the Ebook titled Programming Funda-
mentals with Java 36 in whatever depth you need in order to transfer your prior knowledge of programming
fundamentals to the Java programming language. (Note that the previous text refers to programming
fundamentals and not to object-oriented programming fundamentals . That is the topic of
the next section.)

3.1.2.3.4 Learn object-oriented programming fundamentals

This is where things become more interesting. At this point, you will need to begin studying three portions
of two di�erent Ebooks in parallel and to integrate what you learn in your mind.

First and foremost, you need to begin studying the material that begins at Java1600: Objects and
Encapsulation 37 in order to start understanding the important aspects of object-oriented programming.

In conjunction with that, you need to start taking the assessment tests in the Ebook titled Java OOP
Self-Assessment 38 to con�rm your knowledge of that material.

Once you start feeling comfortable that you are gaining an understanding of OOP from a largely theo-
retical viewpoint, you need to study the following six lessons for the purpose of applying the OOP concepts
to more meaningful programs .

• Java3000: The Guzdial-Ericson Multimedia Class Library 39

• Java3000r Review 40

• Java3002: Creating and Manipulating Turtles and Pictures in a World Object 41

• Java3002r Review 42

• Java3003: Drawing Graphs with Turtles and Pixels 43

33http://cnx.org/contents/dzOvxPFw:s3zdocvh
34http://cnx.org/contents/dzOvxPFw:s3zdocvh#Compare_the_graphic_output_from_each_of_two_Java_programs
35http://cnx.org/contents/dzOvxPFw:0xo_9JXz
36http://cnx.org/contents/EHRr6hjR
37http://cnx.org/contents/dzOvxPFw:rOlnsVRr
38http://cnx.org/contents/1CVBGBJj
39http://cnx.org/contents/dzOvxPFw:0xo_9JXz
40http://cnx.org/contents/dzOvxPFw:qJgLGFl5
41http://cnx.org/contents/dzOvxPFw:WpmhN38H
42http://cnx.org/contents/dzOvxPFw:C0a0NBaZ
43http://cnx.org/contents/dzOvxPFw:Sc6k8KyF

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

278 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• Program 1 44 in the section titled Java OOP: ITSE 2321 Practice Group 1 45

3.1.2.4 Discussion and sample code

By the time you understand the material in the six lessons listed above (p. 279) , you should be fully capable
of writing and submitting a correct version of the �rst assignment. However, in case you need more help in
that regard, I am going to provide two sample programs, each of which deals with part of the requirements of
the �rst programming assignment. It will be up to you to understand and to integrate the concepts illustrated
by these sample programs into a single program that satis�es the requirements of the �rst assignment.

Note that in addition to these two sample programs and the sample programs in the lessons listed above
(p. 279) , there are many other sample programs in the section of the Ebook that begins here 46 .

3.1.2.4.1 Working with turtles in general

Most of the programming assignments in this course are structured as follows. Along with a program
speci�cation document, I provide a short Java source code �le containing a class de�nition that I often refer
to as the driver class. I also provide any necessary image �les.

The student is not allowed to make any changes to the driver class. Instead, the student must write
one or more source code �les which, when compiled and executed in conjunction with the driver class, will
produce the required output. In the program that I describe here, the driver class is named Turtles01 and
the code that the student would be required to write would be in the class named Turtles01Runner .

The student only submits the source code �les for the classes de�ned by the student. In this program,
that code would be in a �le named Turtles01Runner.java .

Listing 1 (p. 282) and Listing 2 (p. 283) near the end of the lesson show the source code for the driver
class and the Turtles01Runner class for this program.

This program produces the output image shown in Figure 1 (p. 281) .

44http://cnx.org/contents/dzOvxPFw:nezOEDSQ#Program_1
45http://cnx.org/contents/dzOvxPFw:nezOEDSQ
46http://cnx.org/contents/dzOvxPFw:nezOEDSQ

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

279

Figure 1. Graphic output from Turtles01.

Once you have access to the �rst assignment, you should be able to some similarities between the output
image in Figure 1 (p. 281) and the required output image for the �rst assignment.

3.1.2.4.2 Drawing a circle with a turtle

Like the previous program, the program presented in this section has a driver class named Circles01 and
another class named Circles01Runner . The source code for those two class de�nitions is shown in
Listing 3 (p. 284) and Listing 4 (p. 284) .

The output image produced by this program is shown in Figure 2 (p. 282) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

280 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 2. Graphic output from Circles01.

3.1.2.5 Run the programs

I encourage you to copy the code from Listing 1 (p. 282) through Listing 4 (p. 284) . Compile and execute
the code for each program and con�rm that you get the same results as those shown in Figure 1 (p. 281) and
Figure 2 (p. 282) . (Click here 47 to download a zip �le containing the image �le required by the Turtles
program.)

Experiment with the code, making changes, and observing the results of your changes. Make certain that
you can explain why your changes behave as they do.

3.1.2.6 Complete program listings

Listing 1 . The driver class named Turtles01.

/*File Turtles01 Copyright 2010 R.G.Baldwin

***/

import java.awt.Color;

public class Turtles01{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

Turtles01Runner obj = new Turtles01Runner();

obj.run();

47http://cnx.org/content/m63203/latest/Turtles01.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

281

}//end main

}//end class Turtles01

//End program specifications.

Listing 2 . The class named Turtles01Runner.

/*File Turtles01Runner Copyright 2016 R.G.Baldwin

***/

import java.awt.Color;

class Turtles01Runner{

//Declare the World and Turtle objects.

private World mars;

private Turtle aTurtle;

public void run(){

//Replace the default all-white picture with another

// picture.

Picture picture = new Picture("Turtles01.jpg");

mars =

new World(picture.getWidth(),picture.getHeight());

mars.setPicture(picture);

aTurtle = new Turtle(mars);

aTurtle.penDown();

aTurtle.setPenColor(Color.GREEN);

aTurtle.setPenWidth(1);

aTurtle.forward(110);

aTurtle.turn(-90);

aTurtle.setPenWidth(2);

aTurtle.setPenColor(Color.RED);

aTurtle.forward(110);

aTurtle.turn(-90);

aTurtle.setPenWidth(3);

aTurtle.setPenColor(Color.YELLOW);

aTurtle.forward(110);

aTurtle.setPenWidth(4);

aTurtle.setPenColor(Color.BLUE);

aTurtle.forward(110);

aTurtle.turn(-90);

aTurtle.setPenWidth(5);

aTurtle.setPenColor(Color.GREEN);

aTurtle.forward(110);

}//end run method

}//end class Turtles01Runner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

282 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 3 . The class named Circles01.

/*File Circles01 Copyright 2016 R.G.Baldwin

***/

import java.awt.Color;

public class Circles01{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

Circles01Runner obj = new Circles01Runner();

obj.run();

}//end main

}//end class Circles01

//End program specifications.

Listing 4 . The class named Circles01Runner.

/*File Circles01Runner Copyright 2016 R.G.Baldwin

***/

import java.awt.Color;

class Circles01Runner{

//Declare the World and Turtle objects.

private World mars;

private Turtle aTurtle;

public void run(){

mars = new World(240,240);

aTurtle = new Turtle(mars);

double radius = 110;

aTurtle.turn(90);

aTurtle.penUp();

aTurtle.setPenColor(Color.RED);

aTurtle.setPenWidth(1);

aTurtle.forward((int)radius);

//Draw the semicircle

aTurtle.penDown();

aTurtle.setPenWidth(3);

double dY = 0.0;

double dX = radius;

while(dX > -radius){

dX-=1;

dY = Math.sqrt(radius*radius - dX*dX);

aTurtle.moveTo((int)dX+mars.getWidth()/2,

(int)dY+mars.getHeight()/2);

}//end while loop

}//end run method

}//end class Circles01Runner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

283

3.1.2.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java1554 Completing the First Assignment
• File: Java1554.htm
• Published: 10/02/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.1.3 Java 1560: Con�guring Your Computer
48

Revised: Tue Sep 20 11:47:25 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 49

• Object-Oriented Programming (OOP) with Java 50

3.1.3.1 Table of contents

• Table of contents (p. 285)
• Preface (p. 286)

· Viewing tip (p. 287)

* Figures (p. 287)
* Listings (p. 287)

• Download, install, and test the Java Development Kit (JDK) (p. 288)

· Download and install the JDK (p. 288)
· Test the JDK (p. 288)
· Compile and run a simple text-based Java program with a single source code �le (p. 290)
· Compile and run a simple text-based Java program with two source code �les (p. 290)

• Download, install, and test the multimedia library (p. 291)

48This content is available online at <http://cnx.org/content/m63123/1.6/>.
49http://cnx.org/contents/dzOvxPFw
50http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

284 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

· Download the library (p. 292)
· Prepare the library for use (p. 292)
· Library documentation (p. 292)
· Compile and run a graphics program with a single source code �le (p. 292)
· Compile and run a graphics program with two source code �les and an image �le (p. 293)

• Running pre-compiled programs (p. 295)
• Compare the graphic output from each of two Java programs (p. 297)
• Miscellaneous (p. 298)

3.1.3.2 Preface

I have published several Ebooks dealing with Java programming in general and the courses that I teach at
Austin Community College in particular. That list includes the following Ebooks:

• ITSE 2321 - Object-Oriented Programming (Java) 51 : This Ebook.
• Programming Fundamentals with Java 52

• Java OOP Self-Assessment 53

• ITSE 2317 - Java Programming (Intermediate) 54

• INEW 2338 - Advanced Java Programming 55

• The json-simple Java Library 56

• GAME 2302 - Mathematical Applications for Game Development 57

• Object-Oriented Programming (OOP) with Java 58

• AP Computer Science A, Clari�cation of the Java Subset 59

• Accessible Objected-Oriented Programming Concepts for Blind Students using Java 60

• Anatomy of a Game Engine 61

• Fun with Java 62

• Image Processing using Java 63

• Java Graphics 64

• Java Sound 65

• Java Swing from A to Z 66

• Java2D Graphics 67

• JavaBeans Components 68

• Morse Code and Computer Programs 69

• Programming Oldies But Goodies 70

51http://cnx.org/contents/dzOvxPFw
52http://cnx.org/contents/EHRr6hjR:pDHzTeQb
53http://cnx.org/contents/1CVBGBJj
54http://cnx.org/contents/Rl23r3Lw
55http://cnx.org/contents/yWyT-uhM
56http://cnx.org/contents/5sRB9gpG
57http://cnx.org/contents/Ki_nRUo6:SGyUbirS
58http://cnx.org/contents/-2RmHFs_:kFS-maG_
59http://cnx.org/contents/2bKkYivW:uCarXUQ0
60http://cnx.org/contents/27YG7QNc:YTv-wnpo
61http://cnx.org/contents/oOLSrHU0:eHQuSS4W
62http://cnx.org/contents/3T7WEdtD:wS9aDaUn
63http://cnx.org/contents/ycm9ykKB:EXrAm_4l
64http://cnx.org/contents/rrRQJ3ZS:DHabim1Z
65http://cnx.org/contents/COh26rPj:Kib1Isp5
66http://cnx.org/contents/JbJvdDy4:C9qrp5I8
67http://cnx.org/contents/7tjDQie6:HDK3pMT2
68http://cnx.org/contents/u_b-KzFY:7dn3cpHx
69http://cnx.org/contents/zWWYKvGC
70http://cnx.org/contents/1J-75Flv:tQAVqK0b

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

285

Various lessons in those Ebooks explain how to con�gure your computer for compiling and executing the sam-
ple programs in those Ebooks. However, I continue to receive questions from students in this course (ITSE
2321 - Object-Oriented Programming (Java)) who are confused about how to con�gure their computers for
this course.

In this lesson, I will provide a step-by-step procedure for con�guring a Windows computer to support the
types of sample programs and assignments involved in this course. This won't be the most elegant procedure
or necessarily the best procedure. However, it will be a procedure that should make it possible for students
having minimal knowledge of such topics as Windows environment variables , Windows batch �les ,
Windows command-line operations , etc. to successfully con�gure their computer for use in this course.

Note: If you are using an operating system other than Windows, you may need to �nd someone
who can translate the steps in this procedure into the corresponding set of steps for your operating
system.

The instructions in this procedure will be current for the 64-bit version of Windows 7 and the Java JDK
in September of 2016. As time goes by, some of the links may change and you may need to modify your
response to the instructions to accommodate those changes. Also, the user interface for newer versions of
Windows may be di�erent from Windows 7. An e�ort will be made to write the instructions in such a way
as to accommodate such changes.

You will probably need administrator privileges on your computer in order to install the software.
The instructions in this procedure will concentrate on the "what" and not the "why" .. Don't be

concerned if you don't understand the code used in these instructions. You will learn why the code behaves
as it does in future lessons. Just follow the instructions and con�rm that you can produce the results shown
in this lesson to con�rm that your computer is properly con�gured.

3.1.3.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

3.1.3.2.1.1 Figures

• Figure 1. (p. 289) Screen output for the initial test.
• Figure 2. (p. 289) Screen output for the expanded test.
• Figure 3. (p. 290) Text output from the program named Hello01.
• Figure 4. (p. 291) Text output from the program named Hello02.
• Figure 5. (p. 293) Graphic output from the program named Hello03.
• Figure 6. (p. 294) Graphic output from the program named Hello04.
• Figure 7. (p. 296) Graphic output from the program named Hello05.
• Figure 8. (p. 298) Compare the graphic output images from two Java programs.

3.1.3.2.1.2 Listings

• Listing 1 (p. 289) . Initial contents of JDKtest.bat.
• Listing 2 (p. 289) . Expanded contents of JDKtest.bat.
• Listing 3 (p. 290) . Source code for the class named Hello01.
• Listing 4 (p. 290) . Commands for the batch �le named Hello01.bat.
• Listing 5 (p. 290) . Source code for the class named Hello02.
• Listing 6 (p. 291) . Source code for the class named Hello02Runner.
• Listing 7 (p. 291) . Commands for the batch �le named Hello02.bat.
• Listing 8 (p. 292) . Source code for the class named Hello03.
• Listing 9 (p. 293) . Commands for the batch �le named Hello03.bat.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

286 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• Listing 10 (p. 293) . Source code for the class named Hello04.
• Listing 11 (p. 294) . Source code for the class named Hello04Runner.
• Listing 12 (p. 294) . Commands for the batch �le named Hello04.bat.
• Listing 13 (p. 296) . Commands for the batch �le named RunHello05.bat.

3.1.3.3 Download, install, and test the Java Development Kit (JDK)

The �rst step is to download, install, and test the Java Development Kit (JDK) from the Oracle website.

3.1.3.3.1 Download and install the JDK

Open the Oracle website in your browser at http://www.oracle.com/technetwork/java/javase/downloads/index.html
71 .

Click the download button labeled Java Platform (JDK) 8u101 / 8u102 . (Note that this label
and the labels and titles mentioned below may change as newer versions of the JDK are released.)

Click the radio button labeled Accept License Agreement in the section titled Java SE Devel-
opment Kit 8u101 .

Locate the line item labeled Windows x64 in the column titled Product/File Description .
Click the link labeled jdk-8u101-windows-x64.exe in the column labeled Download immediately

to the right of the Windows x64 label..
Click the Save File button when the Windows dialog opens asking if you would like to save this �le.

Depending on the version of the JDK, a �le with a name similar to jdk-8u101-windows-x64.exe will be
saved in the folder that your computer and your browser uses to save download �les. Find and double-click
that �le. Click the Yes button when Windows asks if you want to allow the program to make changes to
your computer.

A series of installation dialogs will be presented by Windows. Simply click the Next button in each
dialog to cause the full JDK to be installed in the default location on your C-drive. Click the Close button
in the �nal dialog that appears indicating that the JDK has been successfully installed.

Open Windows Explorer on the C-drive and navigate to a folder having a path similar to C:\Program
Files\Java\jdk1.8.0_101\bin . (The exact name will depend on the version of the JDK that you
downloaded.) Write the path down somewhere and save it because you are going to need it later.

Examine the contents of the bin folder. It should contain a large number of �les including the following
two �les: javac.exe and java.exe . Those are the program �les for the compiler and the Java Virtual
Machine respectively. As you will see later, they are used to compile and run a Java program.

At this point, if you are skilled at such Windows operations as setting environment variables, you
can return to the page at http://www.oracle.com/technetwork/java/javase/downloads/index.html
72 , �nd and select a link to Installation instructions , and complete the installation according
to those instructions. However, many students in this course don't have those skills. If you are in
group that lacks those skills, you can simply skip this step and continue with the following section
titled Test the JDK. The following instructions assume that you have skipped this step.

3.1.3.3.2 Test the JDK

Now that you have installed the JDK, you need to test it to con�rm that it is properly installed.
Open Windows Explorer and create an empty folder somewhere on your C-drive; it doesn't matter where

you locate the folder. Name the folder JDKtest .
Using Windows Notepad along with the path that you saved earlier, create a �le named JDKtest.bat

in that folder containing the text shown in Listing 1 (p. 289) . Use your path in place of my path to construct

71http://www.oracle.com/technetwork/java/javase/downloads/index.html
72http://www.oracle.com/technetwork/java/javase/downloads/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

287

the command. (Note that the extension must be .bat and not .txt. Note also that you must surround the
path that you saved earlier with matching quotation characters when you construct the command.)

Listing 1 . Initial contents of JDKtest.bat.

echo off

"C:\Program Files\Java\jdk1.8.0_101\bin"\javac -version

pause

Double click the �le named JDKtest.bat . If everything has been done correctly up to this point, a black
command-line window should appear on your screen containing text similar to that shown in Figure 1 (p.
289) .

Figure 1. Screen output for the initial test.

C:\jnk\6\JDKtest>echo off

javac 1.8.0_101

Press any key to continue . . .

The �rst line of text in your output will re�ect the location of the folder named JDKtest on your C-drive.
The second line of text will re�ect the version number of the JDK that you have installed.
The third line of text should be unchanged unless a future version of Windows changes the format of

that line of text. (This line of text is produced by the pause command in the batch �le. Without
this command, the command-line window would appear momentarily and then disappear before you have a
chance to examine it.)

If you are unable to get this result, you need to go back and follow the steps more carefully. If you
are certain that you have followed the steps and are still unable to get this result, please let me know. It
is possible that I may have made an error in describing the steps or that I need to update the steps to
accommodate a future version of the JDK or of Windows.

If you do get this result, update the contents of the �le named JDKtest.bat to match that shown in
Listing 2 (p. 289) .

Listing 2 . Expanded contents of JDKtest.bat.

echo off

"C:\Program Files\Java\jdk1.8.0_101\bin"\javac -version

"C:\Program Files\Java\jdk1.8.0_101\bin"\java -version

pause

Double click the �le named JDKtest.bat . A black command-line window should appear on your screen
containing text similar to that shown in Figure 2 (p. 289) .

Figure 2. Screen output for the expanded test.

C:\jnk\6\JDKtest>echo off

javac 1.8.0_101

java version "1.8.0_101"

Java(TM) SE Runtime Environment (build 1.8.0_101-b13)

Java HotSpot(TM) 64-Bit Server VM (build 25.101-b13, mixed mode)

Press any key to continue . . .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

288 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

The second and third lines of text should re�ect the version of the JDK that you have installed.
The fourth and �fth lines of text will be di�erent for future versions of the JDK but they should be

similar to that shown.
Once again, if you are unable to get this result, you need to go back and follow the steps more carefully.
If you are able to get this result, this con�rms that the JDK is properly installed on your computer.

3.1.3.3.3 Compile and run a simple text-based Java program with a single source code �le

Now that you have con�rmed that the JDK is properly installed on your computer, it is time to write,
compile, and execute a very simple Java program.

Using Windows Explorer, open a new folder on your C-drive named Hello01 . Using Notepad or
another text editor of your choice, create a �le in that folder named Hello01.java containing the code
shown in Listing 3 (p. 290) .

Listing 3 . Source code for the class named Hello01.

class Hello01{

public static void main(String[] args){

System.out.println("Hello World from Hello01");

}//end main

}//end class

Now using the path that you saved earlier, create a batch �le named Hello01.bat in that same folder
containing the commands shown in Listing 4 (p. 290) .

Listing 4 . Commands for the batch �le named Hello01.bat.

echo off

"C:\Program Files\Java\jdk1.8.0_101\bin"\javac Hello01.java

"C:\Program Files\Java\jdk1.8.0_101\bin"\java Hello01

pause

Double click the batch �le. A black command-line screen should appear and display the program output
text shown in Figure 3 (p. 290) .

Figure 3. Text output from the program named Hello01.

Hello World from Hello01

Press any key to continue . . .

3.1.3.3.4 Compile and run a simple text-based Java program with two source code �les

Assuming that you were able to produce the output shown in the previous section it's time to write, compile,
and execute a slightly more complex program consisting of two Java source code �les.

Create a new folder named Hello02 . Create a Java source code �le in that folder named Hello02.java
containing the code shown in Listing 5 (p. 290) .

Listing 5 . Source code for the class named Hello02.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

289

class Hello02{

public static void main(String[] args){

new Hello02Runner().run();

}//end main

}//end class

Create another Java source code �le in that folder named Hello02Runner.java containing the code shown
in Listing 6 (p. 291) .

Listing 6 . Source code for the class named Hello02Runner.

class Hello02Runner{

void run(){

System.out.println("Hello World from Hello02");

}//end main

}//end class

Create a batch �le named Hello02.bat containing the commands shown in Listing 7 (p. 291) .

Listing 7 . Commands for the batch �le named Hello02.bat.

echo off

"C:\Program Files\Java\jdk1.8.0_101\bin"\javac Hello02.java

"C:\Program Files\Java\jdk1.8.0_101\bin"\java Hello02

pause

Double click the batch �le. A black command-line screen should appear and display the program output
text shown in Figure 4 (p. 291) .

Figure 4. Text output from the program named Hello02.

Hello World from Hello02

Press any key to continue . . .

If you have been successful to this point, you should now be able to compile and execute the code for any
text-based program involved in this course.

3.1.3.4 Download, install, and test the multimedia library

Many of the sample programs and assignments in this course make use of a multimedia class library developed
and made available by Mark Guzdial 73 and Barbara Ericson 74 of the Georgia Institute of Technology.
Therefore, it will be necessary for you to download and install that library on your computer.

The Guzdial-Ericson library was originally published by Guzdial and Ericson in conjunction with their
book Introduction to Computing and Programming with Java: A Multimedia Approach 75 . While the book
isn't free, the library is freely available and is published under a Creative Commons Attribution 3.0 United
States License 76 .

73http://www.cc.gatech.edu/∼guzdial/
74http://coweb.cc.gatech.edu/ice-gt/8
75http://www.pearsonhighered.com/educator/academic/product/0,3110,0131496980,00.html
76http://creativecommons.org/licenses/by/3.0/us/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

290 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.1.3.4.1 Download the library

As of September 2016, the library can be downloaded in a zip �le named bookClasses-3-9-10-
with-doc.zip at http://home.cc.gatech.edu/TeaParty/47. 77 Additional information is available at
http://coweb.cc.gatech.edu/mediaComp-plan/101 78 .

In order to work with the sample programs and assignments that use the library, you will need to download
a copy of the zip �le from the site listed above. To guard against the possibility of that link becoming broken
at some point in the future, I am depositing a backup copy of the zip �le containing the library on the
cnx.org site and you can download it here 79 .

3.1.3.4.2 Prepare the library for use

Once you have downloaded the zip �le, you will need to extract the folder named bookClasses from the
zip �le and store it as a folder in the root of your C-drive. The path to the library will then be:

C:\bookClasses

Once you have stored the bookClasses folder on your C-drive as described above, DO NOT do anything
that will modify the contents of the folder. For example, don't try to compile the source code in the library.
The source code in the library has already been compiled. The library is completely ready for use as received
in the download.

3.1.3.4.3 Library documentation

When you examine the contents of the bookClasses folder, you will see that in addition to source code
and compiled class �les for the library, the folder also contains javadoc documentation for the library in
a folder named doc and some other material as well. Go to the doc folder and open the �le named
index.html in your browser to view the documentation.

3.1.3.4.4 Compile and run a graphics program with a single source code �le

This section will demonstrate how to use the multimedia library to create and display a simple graphics
window.

Create an empty folder named Hello03 on your C-drive.
Create a Java source code �le named Hello03.java containing the code shown in Listing 8 (p. 292)

and store the �le in the folder named Hello03 .

Listing 8 . Source code for the class named Hello03.

import java.awt.Color;

class Hello03{

public static void main(String[] args){

Picture pix = new Picture(300,100);

pix.setAllPixelsToAColor(Color.RED);

pix.addMessage("Hello World from Hello03",50,50);

pix.explore();

}// end main

}//end class

77http://home.cc.gatech.edu/TeaParty/47.
78http://coweb.cc.gatech.edu/mediaComp-plan/101
79http://cnx.org/content/m63123/latest/bookClasses-3-9-10-with-doc.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

291

Create a batch �le named Hello03.bat containing the commands shown in Listing 9 (p. 293) . Store the
batch �le in the folder named Hello03 .

Listing 9 . Commands for the batch �le named Hello03.bat.

echo off

"C:\Program Files\Java\jdk1.8.0_101\bin"\javac -cp .;C:\bookClasses Hello03.java

"C:\Program Files\Java\jdk1.8.0_101\bin"\java -cp .;C:\bookClasses Hello03

Double click the batch �le. As before, a black command-line window will appear on your screen. In this
case, however, there is nothing interesting in the command-line window. The interesting output will appear
on your screen in the form of a graphics window as shown in Figure 5 (p. 293) .

Figure 5. Graphic output from the program named Hello03.

If you click the large X in the upper-right corner of the window, both the graphics window and the black
command-line window should disappear from your screen.

3.1.3.4.5 Compile and run a graphics program with two source code �les and an image �le

Now I will show you how to write, compile, and execute a slightly more complex graphics program consisting
of two Java source code �les and an image �le.

Begin by creating an empty folder named Hello04 on your C-drive.
Click here 80 to download a zip �le containing an image �le named Hello04-a.jpg . Extract and save

the image �le in the folder named Hello04 .
Create a Java source code �le named Hello04.java containing the code shown in Listing 10 (p. 293) .

Save the �le in the folder named Hello04 .

Listing 10 . Source code for the class named Hello04.

80http://cnx.org/content/m63123/latest/Hello04-a.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

292 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

class Hello04{

public static void main(String[] args){

new Hello04Runner().run();

}// end main

}//end class

Create another Java source code �le named Hello04Runner.java containing the code shown in Listing
11 (p. 294) . Save the �le in the folder named Hello04 .

Listing 11 . Source code for the class named Hello04Runner.

class Hello04Runner{

void run(){

Picture pix = new Picture("Hello04-a.jpg");

pix.addMessage("Hello World from Hello04",100,100);

pix.explore();

}// end main

}//end class

Using your path, create a batch �le named Hello04.bat containing the commands shown in Listing 12 (p.
294) . Save the �le in the folder named Hello04 .

Listing 12 . Commands for the batch �le named Hello04.bat.

echo off

"C:\Program Files\Java\jdk1.8.0_101\bin"\javac -cp .;C:\bookClasses Hello04.java

"C:\Program Files\Java\jdk1.8.0_101\bin"\java -cp .;C:\bookClasses Hello04

Double click the batch �le. As before, a black command-line window will appear on your screen. Also as
before, there is nothing interesting in the command-line window. The interesting output will appear on your
screen in the form of a graphics window as shown in Figure 6 (p. 294) .

Figure 6. Graphic output from the program named Hello04.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

293

That is the end of the con�guration procedure. If you have been successful in carrying out all of these
instructions, given the source code, you should now be able to compile and execute the code for any program
involved in this course that uses Ericson's multimedia library. Of course, writing that source code is another
matter altogether.

3.1.3.5 Running pre-compiled programs

There are a couple more basic skills that students need in order to successfully complete this course.

• Students need to be able to run pre-compiled programs when provided the class �les and images �les
required by the program.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

294 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• Students need to be able to run two di�erent Java programs and compare the output text and/or
graphic images produced by the two programs.

This section will deal with the �rst of those two skills. The second skill will be dealt with in the next section.
Begin by creating a new empty folder named Hello05 .
Click here 81 to download a zip �le named Hello05.zip . The zip �le contains the following three �les,

which are the �les required to run a pre-compiled program named Hello05 .

• Hello05.class
• Hello05Runner.class
• Hello05-a.jpg

Extract the contents of the zip �le and store them in the folder named Hello05 ..
Create a batch �le named RunHello05.bat containing the commands shown in Listing 13 (p. 296) .

Store the batch �le in the folder named Hello05 . (Note that unlike the previous batch �les, this batch
�le does not execute the compiler program named javac .)

Listing 13 . Commands for the batch �le named RunHello05.bat.

echo off

"C:\Program Files\Java\jdk1.8.0_101\bin"\java -cp .;C:\bookClasses Hello05

Double click the batch �le to run the program. The output should be as shown in Figure 7 (p. 296) .

Figure 7. Graphic output from the program named Hello05.

81http://cnx.org/content/m63123/latest/Hello05.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

295

3.1.3.6 Compare the graphic output from each of two Java programs

Follow the procedure described here (p. 293) to compile and run the program named Hello04 producing
the graphic output shown in Figure 6 (p. 294) . The graphic output will appear in the upper-left corner of
the screen.

Using the mouse, grab the output window by the banner at the top and drag it to the right side of the
screen.

Follow the procedure described here (p. 295) to run the program named Hello05 producing the graphic
output shown in Figure 7 (p. 296) . The graphic output will appear in the upper-left corner of the screen.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

296 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Using the mouse, drag the windows and position them side-by-side on your screen as shown in Figure 8
(p. 298) . Visually compare the images to see if they match.

Figure 8. Compare the graphic output images from two Java programs.

You may also �nd it useful to position the windows one above the other, depending on which aspect of the
images you need to compare.

3.1.3.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java 1560: Con�guring Your Computer
• File: Java 1560.htm
• Published: 09/18/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

297

-end-

3.1.4 Java1562: Email Noti�cation of Ebook Changes
82

Revised: Thu Oct 06 14:34:55 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 83

• Object-Oriented Programming (OOP) with Java 84

3.1.4.1 Table of contents

• Table of contents (p. 299)
• Preface (p. 299)
• Creating an account (p. 299)
• Activating the Email noti�cation (p. 299)
• Adding Ebooks to the list of your favorite Ebooks (p. 300)
• Deactivating Email noti�cation (p. 301)
• Miscellaneous (p. 301)

3.1.4.2 Preface

Would you like to receive an Email noti�cation whenever I add a new page to an Ebook, update a page in
an Ebook, or remove a page from an Ebook? As of October 2016, OpenStax CNX 85 provides a feature
called a lens that makes that possible. This page provides instructions for registering to receive Email
noti�cations of Ebook changes. (A lens provides some other capabilities as well, but I won't discuss those
other capabilities here.)

3.1.4.3 Creating an account

Viewing content (such as this Ebook) on OpenStax CNX 86 doesn't require a login. However, if you create
a free account, that will allow you to activate the Email noti�cation feature and to access some other features
as well.

Click here 87 to request a free OpenStax CNX 88 account. (Note that access to some of the features
granted by an account require access to the legacy server, which may be slower than you are accustomed
to.)

3.1.4.4 Activating the Email noti�cation

When you create your account, a default lens named My Favorites will be automatically created for
the account. Although you can create other lenses with di�erent names, that isn't necessary to activate the
Email noti�cation feature.

The following instructions assume that you have created an account and you are viewing one of my
Ebooks such as ITSE 2321 - Object-Oriented Programming (Java) 89 .

82This content is available online at <http://cnx.org/content/m63206/1.2/>.
83http://cnx.org/contents/dzOvxPFw
84http://cnx.org/contents/-2RmHFs_
85http://cnx.org/
86http://cnx.org/
87https://legacy.cnx.org/new_account?came_from=mydashboard
88http://cnx.org/
89http://cnx.org/contents/dzOvxPFw

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

298 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Begin by selecting the link titled CNX Author | Legacy Site in the upper-right corner of any page
in the Ebook. For the example of the Ebook titled ITSE 2321 - Object-Oriented Programming (Java) 90 ,
selecting that link should cause you to land on a page that displays the same page of the same Ebook in the
legacy format. (Note that an Ebook is called a Collection in the legacy format.)

The page that you land on will have the following tabs at the top of the page:

• Home
• Content
• Lenses
• About Us
• Help
• MyCNX

Select the tab labeled MyCNX . You will land on your home page in the authoring section of the website
under the tab labeled MyCNX .

If you are not already logged in, you will land on a page asking you to log in. Go ahead and log in using
the account that you created earlier. After logging in, you will land on your home page in the authoring
section of the website under the tab labeled MyCNX .

Select the link labeled Lenses in the upper-left portion of the page. You will see a list of any lenses
that you have created plus the default lens named My Favorites . Select the edit link next to the
link for the lens named My Favorites . You should land on a page containing a tab labeled Edit lens
properties . Select that tab to edit the properties of the My Favorites lens.

Check the box labeled Receive e-mails when any content included in this lens is changed.
Then select the button labeled Save at the bottom of the page. You are now registered to receive Email
noti�cations when the contents of your favorite Ebooks change.

Note that this capability is not restricted to this Ebook. As of October 2016, you can use this procedure
to register for Email noti�cations of changes to any Ebook published on OpenStax CNX 91 , including the
open textbooks such as College Physics 92 .

3.1.4.5 Adding Ebooks to the list of your favorite Ebooks

Once you have completed the registration described above, if you are viewing a page in an Ebook and you
want to add the Ebook to your My Favorites lens,

• Select the CNX Author | Legacy Site link in the upper-right corner of the page.
• Select the link labeled Add to Favorites at the top of the page that you land on.

At that point, you can add the page or the entire Collection (Ebook) to the lens.
Having added the Ebook or page to the lens, you will receive an Email message notifying you when

that material is modi�ed and republished. The Email message identi�es the page and provides some other
information as well.

Please be aware that whenever I modify a page, I sometimes require several cycles of check-
out/modify/upload/publish before I am satis�ed with the modi�ed version. In such a situation,
you may receive several Email messages in succession.

90http://cnx.org/contents/dzOvxPFw
91http://cnx.org/
92http://cnx.org/contents/Ax2o07Ul

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

299

3.1.4.6 Deactivating Email noti�cation

If you decide that you don't want to receive Email noti�cations, you can repeat the process described above
and remove the check from the box labeled Receive e-mails when any content included in this lens
is changed.

Or, you could go to your MyCNX page, select the link to Lenses , select the edit link for the My
Favorites lens, check the box next to the troublesome item, and select the Remove from lens button.

3.1.4.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java1562: Email Noti�cation of Ebook Changes
• File: Java1562.htm
• Published: 10/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.2 Essence of OOP

3.2.1 Java1600: Objects and Encapsulation
93

Revised: Wed Mar 30 17:09:41 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 94

• Object-Oriented Programming (OOP) with Java 95

93This content is available online at <http://cnx.org/content/m44153/1.5/>.
94http://cnx.org/contents/dzOvxPFw
95http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

300 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.2.1.1 Table of Contents

• Preface (p. 302)

· The essence of OOP (p. 302)
· Viewing tip (p. 302)

* Listings (p. 302)

• Preview (p. 302)
• Discussion and sample code (p. 303)
• Summary (p. 308)
• What's next? (p. 309)
• Miscellaneous (p. 309)

3.2.1.2 Preface

This module is the �rst in a series of modules designed to teach you about the essence of Object-Oriented
Programming (OOP) using Java.

3.2.1.2.1 The essence of OOP

My dictionary provides several de�nitions for the word essence. Among those de�nitions are the following:

• The property necessary to the nature of a thing
• The most signi�cant property of a thing

Thus, this miniseries will describe and discuss the necessary and most signi�cant aspects of OOP using Java.
In other words, I will discuss the essence of OOP using Java. For the �rst few modules, I will provide that
information in a high-level format, devoid of any requirement to understand detailed Java syntax. In those
cases where an understanding of Java syntax is required, I will provide the necessary syntax information in
the form of supplementary notes.

Therefore, if you have a general understanding of computer programming, you should be able to read
and understand the modules in this miniseries, even if you don't have a strong background in the Java
programming language.

3.2.1.2.2 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

3.2.1.2.2.1 Listings

• Listing 1 (p. 306) . Instantiating a new Radio object.
• Listing 2 (p. 308) . Calling the playStation method.

3.2.1.3 Preview

In order to understand OOP, you need to understand the following three concepts:

• Encapsulation
• Inheritance
• Polymorphism

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

301

This module will concentrate on encapsulation. Encapsulation will be used as a springboard for a discussion
of objects.

A description of an object-oriented program will be provided, along with a description of an object, and
how it relates to encapsulation.

In order to relate object-oriented programming to the real world, a car radio will be used to illustrate and
discuss several aspects of software objects. For example, you will learn that car radios, as well as software
objects, have the ability to store data, along with the ability to modify or manipulate that data.

You will learn that car radios, as well as software objects, have the ability to accept messages and to
perform an action, modify their state, return a value, or some combination of the above.

You will learn some of the jargon used in OOP, including persistence, state, messages, methods, and
behaviors.

You will learn where objects come from, and you will learn that a class is a set of plans that can be used
to construct objects. You will learn that a Java object is an instance of a class .

You will see a little bit of Java code, used to create an object, and then to send a message to that object
(invoke a method on the object).

You will learn about Java references and reference variables. You will also learn a little about memory
allocation for objects and variables in Java.

3.2.1.4 Discussion and sample code

Purpose of the miniseries
As mentioned earlier, I will describe and discuss the necessary and most signi�cant aspects of OOP using

Java.
The three pillars
Most books on OOP will tell you that in order to understand OOP, you need to understand the following

three concepts:

• Encapsulation
• Inheritance
• Polymorphism

I agree with that assessment.
(Some books will also add abstraction and/or late binding to the list. I tend to think of those two topics

as being included in one or more of the three concepts listed above.)
Begin with encapsulation
Generally, speaking, these three concepts increase in di�culty going down the list from top to bottom.

Therefore, I will begin with Encapsulation and work my way down the list in successive modules.
What is an Object-Oriented Program?
Many authors would answer this question something like the following:
An Object-Oriented Program consists of a group of cooperating objects, exchanging messages, for the

purpose of achieving a common objective.
What is an object?
An object is a software construct that encapsulates data, along with the ability to use or modify that

data, into a software entity.
What is encapsulation?
An interesting description of encapsulation was provided in an article by Rocky Lhotka regarding

VB.NET. That description reads as follows:
"Encapsulation is the concept that an object should totally separate its interface from its implementation.

All the data and implementation code for an object should be entirely hidden behind its interface.
The idea is that we can create an interface (Public methods in a class) and, as long as that interface

remains consistent, the application can interact with our objects. This remains true even if we entirely
rewrite the code within a given method thus the interface is independent of the implementation."

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

302 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

I like this description, so I won't try to improve on it. However, I will try to illustrate it in the paragraphs
that follow.

A real-world analogy
Abstract concepts, such as the concept of an object or encapsulation, can often be best understood by

comparing them to real-world analogies. One imperfect, but fairly good analogy to a software object is the
radio in your car.

The ability to store data
Your car radio probably has the ability to store data, and to allow you to use and modify that data at

will. (However, you can only use and modify that data through use of the human interface that is provided
by the manufacturer of the radio.)

The data that can be stored in your car radio probably includes a list of �ve or more frequencies that
correspond to your favorite radio stations.

Using the stored data
The radio provides a mechanism (human interface) that allows you to use the data stored therein.
When you press one of the frequency-selector buttons on the front of the radio, the radio automatically

tunes itself to the frequency corresponding to that button. (In this case, you, the user, are sending a
message to the radio object asking it to perform a particular action.)

If you have previously stored a favorite frequency in the storage location corresponding to that button,
pressing the button (sending the message) will cause the radio station transmitting at that frequency to
be heard through the radio's speakers.

If you have not previously stored a favorite frequency in the storage location corresponding to that button,
you will probably only hear static. (That doesn't mean that the radio object failed to respond correctly to
the message. It simply means that its response was based on bad data.)

Modifying the stored data
The human interface also makes it possible for you to store or modify those �ve or more frequency values.

This is done in di�erent ways for di�erent radios. On my car radio, the procedure is:

• Manually tune the radio to the desired frequency
• Press one of the buttons and hold it down for several seconds.

When the radio beeps, I know that the new frequency value has been stored in a storage location that
corresponds to that particular button.

Please change your state
What I have done here is to send a message to the radio object asking it to change its state. The beep

that I hear could be interpreted as the radio object returning a value back to me indicating that the mission
has been accomplished. (Alternately, we might say that the radio object sent a message back to me.)

We say that an object has changed its state when one or more data values stored in the object have been
modi�ed.

We also say that when an object responds to a message, it will usually perform an action, change its
state, return a value, or some combination of the above.

Please perform an action
Following this, when I press that button (send a message) , the radio object will be automatically tuned

to that frequency.

Historical note: While the ability to cause your car radio to remember your list of favorite
stations may seem like a miracle of modern digital electronics, the truth is that radios had this
capability long before they contained digital electronics. My �rst car had a radio that accomplished
this feat using strings, pulleys, and levers.

As I recall, in order to set the frequency for a button, I had to manually tune the radio to a station
by turning a knob, pull one of the buttons out about a quarter of an inch, and then push it in again.
From that point until I did the same thing again, whenever I pressed that button, some kind of a

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

303

mechanical contraption caused a big rotary capacitor to turn just the right amount to tune for a
particular radio station.

Also, I remember my grandfather having a table-model radio in the early 1940's that had radio
buttons. He used them to select his favorite stations, as he surfed the airwaves.

(Interestingly, the term radio button has now become a part of programming jargon, signifying
certain visual components used in graphical user interfaces.)

Enough of that, now back to my modern car radio
If I drive to Dallas and press a button that I have associated with a particular radio station in Austin,

I will probably hear static. In that case, I may want to change the frequency value associated with that
button. I can follow the same procedure described earlier to set the frequency value associated with that
button to correspond to one of the radio stations in Dallas. (Again, I would be sending a message to the
radio object asking it to change its state.)

Jargon
As you can see from the above discussion, the world of OOP is awash with jargon, and the ability to

translate the jargon is essential to an understanding of the published material on OOP. Therefore, as we
progress through this series of modules, I will introduce you to some of that jargon and try to help you
understand the meaning of the jargon.

Persistence
The ability of your car radio to remember your list of favorite stations is often referred to as persistence.

An object that has the ability to store and remember values is often said to have persistence.
State
It is often said that the state of an object at a particular point in time is determined by the values

stored in the object. In our analogy, even if we own identical radios, unless the two of us have the same list
of favorite radio stations, associated with the same combination of buttons, the state of your radio object at
any particular point in time will be di�erent from the state of my radio object.

Identical objects with identical states: It is perfectly OK for the two of us to own identical
radios and to cause the two radio objects to contain the same list of frequencies. Even if two
objects have the same state at the same time, they are still separate and distinct objects. While
this is obvious in the real world of car radios, it may not be quite as obvious in the virtual world
of computer programming.

Sending a message
A person who speaks in OOP-speak might say that pressing one of the frequency-selector buttons on the

front of the radio sends a message to the radio object, asking it to perform an action (tune to a particular
station) . That person might also say that storing a new frequency that corresponds to a particular button
entails sending a message to the radio object asking it to change its state.

Invoking or calling a method
Java-speak is a little more speci�c than general OOP-speak. In Java-speak, we might say that pressing

one of the selector buttons on the front of the radio invokes or calls a method on the radio object. The
behavior of the method is to cause the object to perform an action.

As a practical matter, the physical manifestation of sending a message to an object in Java is to cause
that object to execute one of its methods.

Similarly, we might say that storing a new frequency that corresponds to a particular button invokes a
setter method on the radio object.

(In an earlier paragraph, I said that I could follow a speci�c procedure to set the frequency value
associated with a button to correspond to one of the radio stations in Dallas. Note the use of the words set
and setter in this jargon.)

Behavior
In addition to state, objects are often also said to have behavior . The overall behavior of an object is

determined by the combined behaviors of its individual methods.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

304 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

For example, one of the behaviors exhibited by our radio object is the ability to play the radio station
at a particular frequency. When a frequency is selected by pressing a selector button, the radio knows how
to translate the radio waves at that frequency into audio waves compatible with our range of hearing, and
to send those audio waves out through the speakers.

Thus, the radio object behaves in a speci�c way in response to a message asking it to tune to a particular
frequency.

Where do objects come from?
In order to mass-produce car radios, someone must �rst create a set of plans, (drawings, or blueprints)

for the radio. Once the plans are available, the manufacturing people can produce millions of nearly identical
radios.

A class de�nition is a set of plans
The same is true for software objects. In order to create a software object in Java, it is necessary for

someone to �rst create a plan.
In Java, we refer to that plan as a class .
The class is de�ned by a Java programmer. Once the class de�nition is available, that programmer, (or

other programmers) , can use it to produce millions of nearly identical objects.
(While millions may sound like a lot of objects, I'm con�dent that since Java was released into the

programming world around 1997, Java programmers around the world have created millions of objects using
the standard Java class named Button .)

An instance of a class
If we were standing at the output end of the factory that produces car radios, we might pick up a brand

new radio and say that it is an instance of the plans used to produce the radio. (Unless they were
object-oriented programmers, the people around us might think we were a little odd when they hear us say
that.)

However, it is common jargon to refer to a software object as an instance of a class .
To instantiate an object
Furthermore, somewhere along the way, someone turned the word instance into a verb, and it is also

common jargon to say that when creating a new object, we are instantiating an object.
A little bit of code
It is time to view a little bit of Java code.
Assuming that you have access to a class de�nition, there are several di�erent ways that you can create

an object in Java. The most common way is using syntax similar to that shown in Listing 1 (p. 306) below.

Listing 1 . Instantiating a new Radio object.

Radio myObjRef = new Radio();

Table 3.1

What does this mean?
Technically, the expression on the right-hand side of the equal sign in Listing 1 (p. 306) applies the

new operator to a constructor for the class named Radio in order to cause the new object to come into
existence and to occupy memory.

(Su�ce it at this point to say that a constructor is code that assists in the creation of an object according
to the plans contained in a class de�nition. The primary purpose of a constructor is to provide initial values
for the new object, but the constructor is not restricted to that behavior alone.)

A reference to the object
The right-hand expression in Listing 1 (p. 306) returns a reference to the new object.
What can you do with a reference?

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

305

The reference can later be used to send messages to the new object (call methods belonging to the new
object) .

Saving the reference
In order to use the reference later, it is necessary to save it for later use.
The expression on the left-hand side of the equal sign in Listing 1 (p. 306) declares a variable of the type

Radio named myObjRef .
(Because this type of variable will ultimately be used to store a reference to an object, we often refer to

it by the term reference variable .)
What does this mean?
Declaring a variable causes memory to be set aside for use by the variable. Values can then be stored in

that memory space and accessed later by calling up the name given to the variable when it was declared.
Assignment of values
The equal sign in Listing 1 (p. 306) causes the object's reference returned by the right-hand expression to

be assigned to, or saved as a value in, the reference variable named myObjRef (created by the left-hand
expression) . In Java, we refer to the equal sign (=) as the assignment operator.

Memory allocation
Once the code in Listing 1 (p. 306) has �nished execution, two distinct and di�erent chunks of memory

have been allocated and populated.
One (potentially large) chunk of memory has been allocated (by the right-hand expression) to contain

the object itself. This chunk of memory has been populated according to the plans contained in the de�nition
of the class named Radio .

The other chunk of memory is a relatively small chunk allocated (by the left-hand expression) for the
reference variable containing the reference to the object.

Calling a method on the object
Assume that the de�nition of the Radio class de�nes a method with the following format (also assume

that this method is intended to simulate pressing a frequency-selector button on the front of the radio) :

public void playStation(int stationNumber)

What does this mean?
Generally, in our radio-object context, this format implies that the behavior of the method named

playStation will cause the speci�c station identi�ed by an integer value passed as stationNumber to
be selected for play.

Public and void
The void return type means that the method doesn't return a value.
The public modi�er means that the button can be pressed by anyone in the car who can reach it.
(Car radios don't have frequency-selector buttons corresponding to the private modi�er in Java.)
The method signature
Continuing with our exposure of jargon, some authors would say that the following constitutes the

method signature for the method identi�ed above:

playStation(int stationNumber)

A little more Java code
Listing 2 (p. 308) shows the code from the earlier listing, expanded to cause the method named

playStation to be called.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

306 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 2 . Calling the playStation method.

Radio myObjRef = new Radio();

myObjRef.playStation(3);

Table 3.2

The �rst statement in Listing 2 (p. 308) is a repeat of the statement from the earlier listing. It is repeated
here simply to maintain continuity.

Method invocation syntax
The second statement in Listing 2 (p. 308) is new.
This statement shows the syntax used to send a message to a Java object, or to call a method on that

object (depending on whether you prefer OOP-speak or Java-speak) .
Join the method name to the reference
The syntax required to call a method on a Java object joins the name of the method to the object's

reference, using a period as the joining operator.
(In this case, the object's reference is stored in the reference variable named myObjRef . However,

there are cases where an object's reference may be created and used in the same expression without storing
it in a reference variable. We often refer to such an object as an anonymous object.)

Pressing a radio button
Given the previous discussion, the numeric value 3, passed to the method when it is called, simulates

the pressing of the third button on the front of the radio (or the fourth button if you elect to number your
buttons 0, 1, 2, 3, 4, 5) .

3.2.1.5 Summary

This is the �rst in a miniseries of modules that describe and discuss the necessary and most signi�cant
(essential) aspects of OOP using Java.

In order to understand OOP, you need to understand the following three concepts:

• Encapsulation
• Inheritance
• Polymorphism

This module has concentrated on encapsulation. Encapsulation was used as a springboard for a discussion
of objects.

A description of an object-oriented program was provided, along with a description of an object, and
how it relates to encapsulation.

In order to relate object-oriented programming to the real world, a car radio was used to illustrate and
discuss several aspects of software objects.

You learned that car radios, as well as software objects, have the ability to store data, along with the
ability to modify or manipulate that data.

You learned that car radios, as well as software objects, have the ability to accept messages and to
perform an action, modify their state, return a value, or some combination of the above.

You learned some of the jargon used in OOP, including persistence, state, messages, methods, and
behaviors.

You learned where objects come from, and you learned that a class is a set of plans that can be used to
construct objects. You learned that a Java object is an instance of a class .

You saw a little bit of Java code, used to create an object, and then to send a message to that object
(invoke a method on the object).

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

307

You learned about Java references and reference variables. You learned a little about memory allocation
for objects and variables in Java.

3.2.1.6 What's next?

The next module in the miniseries will introduce you to the Java class.
Continuing with the real-world example introduced in this module, the next module will provide a

complete Java program that simulates the manufacture and use of a car radio.
Along the way, you will see examples of (or read about) class de�nitions, constructing objects, saving

references to objects, setter methods, sending messages to objects, instance variables and methods, class
variables, array objects, persistence, and objects performing actions.

3.2.1.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Objects and Encapsulation
• File: Java1600.htm
• Published: 12/10/01

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have misappropriated copies of my modules from cnx.org, con-
verted them to Kindle books, and placed them for sale on Amazon.com showing me as the author.
I receive no compensation for those sales and don't know who does receive compensation. If you
purchase such a book, please be aware that it is a bootleg copy of a module that is freely available
on cnx.org.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.2.2 Java1602: Classes
96

Revised: Wed Mar 30 18:00:37 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 97

• Object-Oriented Programming (OOP) with Java 98

96This content is available online at <http://cnx.org/content/m44150/1.8/>.
97http://cnx.org/contents/dzOvxPFw
98http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

308 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.2.2.1 Table of Contents

• Preface (p. 310)

· Viewing tip (p. 310)

* Figures (p. 310)
* Listings (p. 310)

• Preview (p. 310)
• Discussion and sample code (p. 311)
• Summary (p. 317)
• What's next? (p. 317)
• Miscellaneous (p. 318)
• Complete program listing (p. 318)

3.2.2.2 Preface

This module is the second in a collection of modules designed to teach you about the essence of Object-
Oriented Programming (OOP) using Java.

3.2.2.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

3.2.2.2.1.1 Figures

• Figure 1 (p. 313) . Screen output.

3.2.2.2.1.2 Listings

• Listing 1 (p. 311) . The class named Radio01.
• Listing 2 (p. 312) . Constructing a Radio object.
• Listing 3 (p. 312) . Programming the radio buttons.
• Listing 4 (p. 313) . Pressing a button on the radio.
• Listing 5 (p. 314) . The Radio class.
• Listing 6 (p. 314) . An instance variable.
• Listing 7 (p. 315) . The setStationNumber method.
• Listing 8 (p. 316) . The playStation method.
• Listing 9 (p. 319) . The program named Radio01.

3.2.2.3 Preview

This module will concentrate primarily on a discussion of the Java class .
A simple Java program will be discussed to illustrate the de�nition and use of two di�erent classes. Taken

in combination, these two classes simulate the manufacture and the use of the car radio object discussed in
an earlier module.

You will see how to write code to create a new Radio object by applying the new operator to the
class named Radio . You will also see how to save that object's reference in a reference variable of type
Radio .

You will see how to write code that is used to simulate the association of a radio button with a particular
radio station.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

309

You will see how to write code that is used to simulate the pressing of a radio button to play the radio
station associated with that button.

You will see the de�nition of a class named Radio01 . This class consists simply of the main method.
The main method of a Java application is executed by the Java Virtual Machine when the application is
run. Thus, it is the driver for the entire application.

You will see the de�nition of a class named Radio . This class includes one instance variable and two
instance methods.

(The instance variable is a reference variable that refers to a special kind of object that I refer to as an
array object. I will provide a very brief discussion on array objects in this module. I will have more to say
about array objects in a subsequent module.)

I will also provide a short discussion of class variables, which are not used in this program. I will explain
that the use of class variables can often lead to undesirable side e�ects.

Finally, I will provide a very brief discussion of the syntax of a simple class de�nition in Java.

3.2.2.4 Discussion and sample code

What is a class?
I explained in an earlier module that a class is a plan from which many objects can be created. I likened

the class de�nition to the plans from which millions of nearly identical car radios can be produced.
A simple Java program
In order to help you to get started on the right foot, and in support of future discussions, it will be

advantageous to provide and discuss a simple Java program in this module.
The car radio example
Harking back to an earlier module, Listing 9 (p. 319) , near the end of this module, shows the code for

a simple Java application that simulates the manufacture and use of a car radio.
Explain in fragments
In order to help you to focus speci�cally on important sections of code, I will explain the code for this

program in fragments.
Top-level classes
This program contains two top-level class de�nitions. (Java also supports inner classes as opposed to

top-level classes. Inner classes will be explained in detail in subsequent modules in this series.)
The class named Radio01
One of those class de�nitions, named Radio01 , is shown in its entirety in Listing 1 (p. 311) . The

other class named Radio will be discussed later.

Listing 1 . The class named Radio01.

public class Radio01{

public static void main(

String[] args){

Radio myObjRef = new Radio();

myObjRef.setStationNumber(3,93.5);

myObjRef.playStation(3);

}//end main

}//end class Radio01

Table 3.3

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

310 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

The class named Radio01 consists simply of the main method. The main method of a Java
application is executed by the Java Virtual Machine when the application is run. Thus, it is the driver for
the entire application.

The driver class
The code in Listing 1 (p. 311) simulates the manufacturer of the radio and the use of the radio by the

end user. Without getting into a lot of detail regarding Java syntax, I will further subdivide and discuss this
code in the following listings.

Constructing a Radio object
As discussed in a previous module, the code in Listing 2 (p. 312) applies the new operator to the

constructor for the Radio class, causing a new object to be created according to the plans speci�ed in the
class named Radio .

Listing 2 . Constructing a Radio object.

Radio myObjRef = new Radio();

Table 3.4

Saving a reference to the Radio object
Also as discussed in a previous module, the code in Listing 2 (p. 312) declares a reference variable of

type Radio and stores the new object's reference in that variable.
Programming the radio buttons
The code in Listing 3 (p. 312) is new to this discussion. This statement simulates the process of

associating a particular radio station with a particular button - programming a button on the radio.
As I explained in a previous module, this is accomplished for my car radio by manually tuning the radio to

a desired station and then holding the radio button down until it beeps. You have probably done something
similar to this to the radio in your car.

Listing 3 . Programming the radio buttons.

myObjRef.setStationNumber(3, 93.5);

Table 3.5

The statement in Listing 3 (p. 312) accomplishes the association of a simulated button to a simulated
radio station by calling the method named setStationNumber on the reference to the Radio object.
(Recall that this sends a message to the object asking it to change its state.)

The parameters passed to the method cause radio button number 3 to be associated with the frequency
93.5 MHz. (The value 93.5 is stored in the variable that represents button number 3.)

Sending a message to the object
Using typical OOP jargon, the statement in Listing 3 (p. 312) sends a message to the Radio object,

asking it to change its state according to the values passed as parameters.
Pressing a button on the radio
Finally, the code in Listing 4 (p. 313) calls the method named playStation on the Radio object,

passing the integer value 3 (the button number) as a parameter.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

311

Listing 4 . Pressing a button on the radio.

myObjRef.playStation(3);

Table 3.6

Another message
This code sends a message to the object asking it to perform an action. In this case, the action requested

by the message is:

• Tune yourself to the frequency previously associated with button number 3
• Play the radio station that you �nd at that frequency through the speakers

How does this simulated radio play?
This simple program doesn't actually play music. As you will see later, this causes the message shown in

Figure 1 (p. 313) to appear on the computer screen, simulating the selection and playing of a speci�c radio
station.

Figure 1 . Screen output.

Playing the station at 93.5 Mhz

Table 3.7

The Radio class
Listing 5 (p. 314) shows the class de�nition for the Radio class in its entirety.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

312 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 5 . The Radio class .

class Radio{

//This class simulates the plans from

// which the radio object is created.

protected double[] stationNumber =

new double[5];

public void setStationNumber(

int index,double freq){

stationNumber[index] = freq;

}//end method setStationNumber

public void playStation(int index){

System.out.println(

"Playing the station at "

+ stationNumber[index]

+ " Mhz");

}//end method playStation

}//end class Radio

Table 3.8

Note that the code in Listing 5 (p. 314) does not contain an explicit constructor. If you don't de�ne
a constructor when you de�ne a new class, a default version of the constructor is provided on your behalf.
That is the case for this simple program.

(Constructors will be explained in detail in subsequent modules.)
The plans for an object
The code in Listing 5 (p. 314) provides the plans from which one or more objects that simulate physical

radios can be constructed.
An object instantiated (an object is an instance of a class) from the code in Listing 5 (p. 314) simulates

a physical radio. I will subdivide this code into fragments and discuss it in the following listings.
An instance variable
In a previous module, I explained that we often say that an object is an instance of a class. (A physical

radio is one instance of the plans used to produce it.) The code in Listing 6 (p. 314) shows the declaration
and initialization of what is commonly referred to as an instance variable .

Listing 6 . An instance variable.

protected double[] stationNumber =

new double[5];

Table 3.9

Why call it an instance variable?

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

313

The name instance variable comes from the fact that every instance of the class (object) has one.
(Every radio produced from the same set of plans has the ability to associate a frequency with each selector
button on the front of the radio.)

Class variables - an aside
Note that Java also supports something called a class variable , which is di�erent from an instance

variable.
Class variables are shared among all of the objects created from a given class. Stated di�erently, no

matter how many objects are instantiated from a class de�nition, they all share a single copy of each class
variable.

There is no analogy to a class variable in a physical radio object. Radios are installed in di�erent cars
separated from each other by thousands of miles. Therefore, there can be no sharing of anything among
di�erent physical radio objects.

(Well, that may not be entirely true. In today's technology, di�erent radio objects could potentially
share something at a common location via satellite communications, but my car radio doesn't do anything
like that.)

Class variables can cause undesirable side e�ects
While class variables are relatively easy to use in Java, they are di�cult to explain from an OOP viewpoint.

Also, it is my opinion that from a good overall design viewpoint, class variables should be used very sparingly,
if at all.

Therefore, for the �rst several modules, I will exclude the possibility of class variables in this series of
modules. (I will explain the use of class variables in Java in a subsequent module.)

Reference to an array object
Now, let's get back to the instance variable named stationNumber shown in Listing 6 (p. 314) .

Without getting into a lot of detail, this variable is also a reference variable, referring to an array object.
The array object encapsulates a simple one-dimensional array with �ve elements of type double .

(Java array indices begin with zero, so the index values for this array extend from 0 to 4 inclusive. I will
also discuss array objects in more detail in a subsequent module.)

Persistence
The array object is where the data is stored that associates the frequency of a radio station with the

simulated physical button on the front of the radio.
Each element in the array corresponds to one frequency-selector button on the front of the radio. Hence,

the radio simulated by an object of the Radio class has �ve simulated frequency-selector buttons.
The array object exists when the code in Listing 6 (p. 314) has �nished executing. Each element in the

array has been automatically initialized to a value of 0.0 (double-precision �oat value of zero) .
The setStationNumber method
Listing 7 (p. 315) shows the setStationNumber method in its entirety

Listing 7 . The setStationNumber method.

public void setStationNumber(

int index,double freq){

stationNumber[index] = freq;

}//end method setStationNumber

Table 3.10

Associates radio station with button
This is the method that is used to simulate the behavior of having the user associate a particular button

with a particular radio station. (Recall that this is accomplished on my car radio by manually tuning the

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

314 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

radio to a speci�c station and then holding the button down until it beeps. Your car radio probably operates
in some similar way.)

This method receives two incoming parameters:

• An integer that corresponds to a button number (button numbers are assumed to begin with 0 and
extend through 4 in order to match array indexes)

• A frequency value to be associated with the indicated button.

Save the frequency value
The code in the method stores the frequency value in an element of the array object discussed earlier.
The element number is speci�ed by the value of index shown in square brackets in the assignment

expression. (This syntax is similar to storing a value in an array element in most programming languages
that I am familiar with.)

Pressing a radio button to select a station
Listing 8 (p. 316) shows the playStation method. This is the method that simulates the result of

having the user press a button on the front of the radio to select a particular radio station for play.

Listing 8 . The playStation method.

public void playStation(int index){

System.out.println(

"Playing the station at "

+ stationNumber[index]

+ " Mhz");

}//end method playStation

Table 3.11

Selecting and playing a radio station
The method receives an integer index value as an incoming parameter. This index corresponds to the

number of the button pressed by the user. This method simulates the playing of the radio station by

• extracting the appropriate frequency value from the array object, and
• displaying that value on the computer screen along with some surrounding text.

When called by code in the main method of this program, this method produces the message shown in
Figure 1 (p. 313) on the computer screen

That summarizes the code and the behavior of this simple program.
Class de�nition syntax
There are a number of items that can appear in a class de�nition, including the following:

• Instance variables
• Class variables
• Instance methods
• Class methods
• Constructors
• Static initializer blocks
• Inner classes

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

315

Let's keep it simple
In order to make these modules as easy to understand as possible, the �rst several modules will ignore

the possibility of class variables, class methods, static initializer blocks, and inner classes.
As mentioned in the earlier discussion of class variables, these elements aren't particularly di�cult to

use, but they create a lot of complications when attempting to explain OOP from the viewpoint of Java
programming.

Therefore, the �rst several modules in the series will assume that class de�nitions are limited to the
following elements:

• Instance variables
• Instance methods
• Constructors

A constructor
A constructor is used only once in the lifetime of an object. It participates in the task of creating

(instantiating) and initializing the object. Following instantiation, the state and behavior of an object
depends entirely on instance variables, class variables, instance methods, and class methods.

Instance variables and methods
The class named Radio discussed earlier contains

• one instance variable named stationNumber , and
• two instance methods named setStationNumber and playStation .

3.2.2.5 Summary

This module has concentrated primarily on a discussion of the Java class.
A simple Java program was discussed to illustrate the de�nition and use of two di�erent classes. Taken

in combination, these two classes simulate the manufacture and use of the car radio object introduced in an
earlier module.

You saw how to write code to create a new Radio object by applying the new operator to the class
named Radio .

You also saw how to save that object's reference in a reference variable of type Radio .
You saw how to write code (in an instance method named setStationNumber) used to simulate

the association of a radio button with a particular radio station.
You saw how to write code (in an instance method named playStation) to simulate the pressing of

a radio button to play the radio station associated with that button.
You saw the de�nition of the class named Radio01 , which consists simply of the main method. The

main method of a Java application is executed by the Java Virtual Machine when the application is run.
You saw the de�nition of the class named Radio . This class includes one instance variable and two

instance methods. (The instance variable is a reference variable that refers to a special kind of object that
I refer to as an array object. I provided a very brief discussion on array objects. I will have more to say on
this topic in a subsequent module.)

I provided a short discussion of class variables, which are not used in this program. I explained that the
use of class variables can often lead to undesirable side e�ects.

Finally, I provided a very brief discussion of the syntax of a simple class de�nition in Java.

3.2.2.6 What's next?

Recall that in order to understand OOP, you must understand the following three concepts:

• Encapsulation
• Inheritance

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

316 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• Polymorphism

The next module will begin a discussion of inheritance. Overall, the discussion of inheritance will require
more than one module. In the next module, I will discuss how the de�nition of a class de�nes a new data
type. I will show you how to extend an existing class. I will explain what is inherited through inheritance.
I will discuss code reuse and explicit constructors.

Finally, I will illustrate all of the above in a simple program that extends the Radio class discussed in
this module into a new class named Combo that simulates an upgraded radio containing a tape player.
(Yes, at one point in history, car radios did contain tape players.)

3.2.2.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Classes
• File: Java1602.htm
• Published: 12/24/01

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have misappropriated copies of my modules from cnx.org, con-
verted them to Kindle books, and placed them for sale on Amazon.com showing me as the author.
I receive no compensation for those sales and don't know who does receive compensation. If you
purchase such a book, please be aware that it is a bootleg copy of a module that is freely available
on cnx.org.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.2.2.8 Complete program listing

Listing 9 (p. 319) provides a complete listing of the program named Radio01 .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

317

Listing 9 . The program named Radio01.

/*File Radio01.java

Copyright 2001, R.G.Baldwin

Simulates manufacture and use of a

car radio.

This program produces the following

output on the computer screen:

Playing the station at 93.5 Mhz

**************************************/

public class Radio01{

//This class simulates the

// manufacturer and the human user

public static void main(

String[] args){

Radio myObjRef = new Radio();

myObjRef.setStationNumber(3,93.5);

myObjRef.playStation(3);

}//end main

}//end class Radio01

//---------------------------------//

class Radio{

//This class simulates the plans from

// which the radio object is created.

protected double[] stationNumber =

new double[5];

public void setStationNumber(

int index,double freq){

stationNumber[index] = freq;

}//end method setStationNumber

public void playStation(int index){

System.out.println(

"Playing the station at "

+ stationNumber[index]

+ " Mhz");

}//end method playStation

}//end class Radio

Table 3.12

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

318 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.2.3 Java1604: Inheritance, Part 1
99

Revised: Thu Aug 11 14:31:01 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 100

• Object-Oriented Programming (OOP) with Java 101

3.2.3.1 Table of Contents

• Preface (p. 320)

· Viewing tip (p. 320)

* Figures (p. 320)
* Listings (p. 320)

• Preview (p. 321)
• Discussion and sample code (p. 321)
• Summary (p. 329)
• What's next? (p. 329)
• Miscellaneous (p. 329)
• Complete program listing (p. 330)

3.2.3.2 Preface

This module is one of a series of modules designed to teach you about the essence of Object-Oriented
Programming (OOP) using Java.

3.2.3.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

3.2.3.2.1.1 Figures

• Figure 1 (p. 328) . Program output.

3.2.3.2.1.2 Listings

• Listing 1 (p. 322) . Beginning of the Combo class.
• Listing 2 (p. 323) . The insertTape method.
• Listing 3 (p. 324) . The removeTape method.
• Listing 4 (p. 324) . The playTape method.
• Listing 5 (p. 325) . Modi�ed Radio class.
• Listing 6 (p. 326) . Tape status.
• Listing 7 (p. 326) . Change to the playStation method.
• Listing 8 (p. 327) . The class named Radio02.
• Listing 9 (p. 331) . The program named Radio02.

99This content is available online at <http://cnx.org/content/m44193/1.8/>.
100http://cnx.org/contents/dzOvxPFw
101http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

319

3.2.3.3 Preview

Extending a class
This module shows you how to extend an existing class to create a new class. The new class is the

blueprint for a new type.
Inheritance and code reuse
The existing class is often called the superclass and the new class is often called the subclass . This

is the mechanism for class inheritance in Java. Inheritance provides a formal mechanism for code reuse.
The subclass inherits all of the variables and all of the methods de�ned in the superclass.
Although not explicitly demonstrated in this module, whenever you declare a reference variable whose

type is de�ned by a class, that variable can be used to store references to objects instantiated from that class
or instantiated from any subclass of that class. Furthermore, that reference can be used to call methods
de�ned in or inherited into that class with no requirement for a cast. If the method is de�ned in that class
and overridden in the subclass, and if the object is actually of the subclass type, the overridden version will
be executed. This is polymorphism.

Car radios with tape players
A class from a previous module (whose objects represent car radios) is extended to de�ne a new class,

whose objects represent expanded car radios that contain tape players. (Yes, at one point in history, car
radios did contain tape players instead of CDs.)

Sending messages to the object
Objects of the new class know how to respond to messages for inserting, playing, and removing a tape,

in addition to those messages that are appropriate for objects of the original Radio class.

3.2.3.4 Discussion and sample code

The three pillars of OOP
In an earlier module, I explained that most books on OOP will tell you that in order to understand OOP,

you must understand the following three concepts:

• Encapsulation
• Inheritance
• Polymorphism

I agree with that assessment.
Encapsulation
The �rst module in this series provided an explanation of encapsulation.
Inheritance
This module (and some modules to follow) will provide an explanation of inheritance. I will use another

simple program to explain the concept of inheritance.
Polymorphism
Polymorphism is the most complex of the three, and will be explained in future modules.
A new data type
Whenever you de�ne a class in Java, you cause a new data type to become available to the program.

Therefore, whenever you need a new data type, you can de�ne a new class to make that type available.
Extending a class
De�ning a new class (to create a new type) can involve a lot of e�ort. Sometimes you have an option

that can greatly reduce the e�ort required to create your new type. If a class (type) already exists that is
close to what you need, you can often extend that class to produce a new class that is closer to what you
need.

In many cases, this will require much less e�ort than that required to start from scratch and de�ne a
new class to establish a new type. The ability to extend one class into another new class is the essence of
inheritance .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

320 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

According to the current jargon, the new class is called the subclass and the class that is extended is
called the superclass .

Although not explicitly demonstrated in this module, whenever you declare a reference variable whose
type is de�ned by a class, that variable can be used to store references to objects instantiated from that class
or instantiated from any subclass of that class. Furthermore, that reference can be used to call methods
de�ned in or inherited into that class with no requirement for a cast. If the method is de�ned in that class
and overridden in the subclass, and if the object is actually of the subclass type, the overridden version will
be executed. This is polymorphism.

What is inherited?
The subclass inherits all of the variables and all of the methods de�ned in (or inherited into) the

superclass, almost as if you had completely de�ned the new class from scratch, and had reproduced all of
the code already de�ned in the existing superclasses.

Code reuse
Therefore, inheritance often makes it possible to de�ne a new class with a minimum requirement to write

new code by formally reusing the code that was previously written into the superclasses. Sometimes you can
get by with simply extending the existing class.

Sometimes, however, it is also necessary to make changes to the existing class to improve its ability to be
extended in a meaningful way. (That is the case with the sample program discussed in this module, but the
next module will show you how to avoid that issue.) It all depends on how the existing class was designed
in the �rst place. Ideally the original design of the class will be such that modi�cation of the original class
is not necessary.

The Radio class
A previous program de�ned a class named Radio . Objects instantiated from the Radio class (see

the previous modules for a discussion of instantiating objects) were intended to simulate car radios. (Note
that the car radios simulated by objects of the Radio class didn't have built-in tape players.)

The Combo class
In this module, I will use inheritance to extend the Radio class into a new class named Combo .

Objects instantiated from the Combo class are intended to simulate car radios with a built-in tape player.
A complete listing of the new program is shown in Listing 9 (p. 331) near the end of the module.
Will discuss in fragments
As usual, I will discuss this program in fragments. I will begin my discussion with the de�nition of the

new class named Combo . Then I will come back and discuss the class named Radio and the driver
class named Radio02 .

The combo class
The code in Listing 1 (p. 322) shows the beginning of the class named Combo .

Listing 1 . Beginning of the Combo class.

class Combo extends Radio{

public Combo(){//constructor

System.out.println(

"Combo object constructed");

}//end constructor

Table 3.13

Two new items
There are two new items in Listing 1 (p. 322) that you did not see in the code in the previous modules.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

321

Combo extends Radio
First, the class named Combo extends the class named Radio . This means that an object

instantiated from the Combo class will contain all of the variables and all the methods de�ned in the
Combo class, plus all the variables and methods de�ned in the Radio class, and its superclasses. (The
variables and methods of the superclass are inherited into the subclass.)

An explicit constructor
Second, the class named Combo de�nes an explicit constructor.
De�ning a constructor is optional
When de�ning a new class, it is not necessary to de�ne a constructor. If you don't de�ne a constructor,

a default constructor will be provided automatically.
Why de�ne a constructor?
The intended purpose of a constructor is to initialize the instance variables belonging to the new object.

However, constructors can do other things as well. In this case, I used an explicit constructor to display a
message when the object is instantiated from the class named Combo .

Brief discussion of constructors
I'm not going to discuss constructors in detail at this point. However, I will give you a few rules regarding

constructors.

• Constructors (like methods) can be overloaded. (I will explain what overloading means in a
subsequent module.)

• The names of constructors must match the names of the classes in which they are de�ned.
• A constructor signature never indicates a return type (such as void or double) .
• The code in a constructor never contains a return statement.

Instance methods
The new class named Combo de�nes three instance methods, each of which has to do with the handling

of tape in the tape player:

• insertTape
• removeTape
• playTape

(If you feel ambitious, you could upgrade this class even further to add features such as rewind, fast forward,
pause, etc.).

The insertTape method
The entire method named insertTape is shown in Listing 2 (p. 323) . This is the method that is used

to simulate the insertion of a tape by the user.

Listing 2 . The insertTape method.

public void insertTape(){

System.out.println("Insert Tape");

tapeIn = true;

System.out.println(" Tape is in");

System.out.println(

" Radio is off");

}//end insertTape method

Table 3.14

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

322 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

The most signi�cant thing about the code in Listing 2 (p. 323) is the assignment of the true value to
the boolean variable named tapeIn . Other than setting the value of the tapeIn variable to true ,
the code in Listing 2 (p. 323) simply prints some messages to indicate what is going on.

What is tapeIn used for?
As you will see shortly, the value of the variable named tapeIn is used to determine if it is possible to

play the tape or to play the radio.
According to that logic:

• If tapeIn is true, it is possible to play the tape but it is not possible to play the radio.
• If tapeIn is false, it is possible to play the radio, but it is not possible to play the tape.

tapeIn is not declared in the Combo class
It is also worthy of note that in this version of the program, the variable named tapeIn is not declared

in the Combo class (this will change in the next module where the program uses method overriding) .
Rather, this variable is inherited from the Radio class that is extended by the Combo class.

The removeTape method
The removeTape method of the Combo class is shown in Listing 3 (p. 324) . Its behavior is pretty

much the reverse of the insertTape method, so I won't discuss it further.

Listing 3 . The removeTape method.

public void removeTape(){

System.out.println("Remove Tape");

tapeIn = false;

System.out.println(

" Tape is out");

System.out.println(

" Radio is on");

}//end removeTape method\

Table 3.15

The playTape method
Listing 4 (p. 324) shows the method named playTape de�ned in the new Combo class.

Listing 4 . The playTape method .

public void playTape(){

System.out.println("Play Tape");

if(!tapeIn){//tapeIn is false

System.out.println(

" Insert the tape first");

}else{//tapeIn is true

System.out.println(

" Tape is playing");

}//end if/else

}//end playTape

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

323

Table 3.16

Con�rm that the tape is ready
Calling the method named playTape can be thought of as sending a message to the Combo object

asking it to play the tape. The code in the playTape method checks to con�rm that the value stored in
the tapeIn variable is true before executing the request to play the tape.

If tapeIn is false , an error message is displayed advising the user to insert the tape �rst.
If tapeIn is true , the method prints a message indicating that the tape is playing.
Modi�ed Radio class
Listing 5 (p. 325) shows the de�nition of the modi�ed version of the class named Radio .

Listing 5 . Modi�ed Radio class.

class Radio{

protected double[] stationNumber =

new double[5];

protected boolean tapeIn = false;

//---------------------------------//

public void setStationNumber(

int index,double freq){

stationNumber[index] = freq;

System.out.println("Button "

+ index + " programmed");

}//end method setStationNumber

//---------------------------------//

public void playStation(int index){

System.out.println("Play Radio");

if(!tapeIn){//tapeIn is false

System.out.println(

" Playing the station at "

+ stationNumber[index]

+ " Mhz");

}else{//tapeIn is true

System.out.println(

" Remove the tape first");

}//end if/else

}//end method playStation

}//end class Radio

Table 3.17

Tape status
The �rst signi�cant change that was made to the class named Radio is shown in Listing 6 (p. 326)

below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

324 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 6 . Tape status.

protected boolean tapeIn = false;

Table 3.18

The statement in Listing 6 (p. 326) declares and initializes a new instance variable named tapeIn . As
explained earlier, this instance variable is used to indicate whether or not a tape is inserted. (The Combo
class inherits this variable.)

Earlier in this module, I explained how the playTape method of the Combo class uses this value to
determine whether or not to attempt to play a tape.

Change to the playStation method
The signi�cant change that was made to the method named playStation of the Radio class is shown

in Listing 7 (p. 326) below.

Listing 7 . Change to the playStation method.

if(!tapeIn){//tapeIn is false

System.out.println(

" Playing the station at "

+ stationNumber[index]

+ " Mhz");

}else{//tapeIn is true

System.out.println(

" Remove the tape first");

}//end if/else

Table 3.19

Check the tape status
The code in Listing 7 (p. 326) uses tapeIn to check the tape status before attempting to tune the radio

station and play the radio. If a tape is inserted, this method simply displays an error message instructing
the user to remove the tape �rst.

So, what's the big deal with inheritance?
The fact that it was necessary for me to make changes to the class named Radio greatly reduced the

bene�t of inheritance in this case. However, even in this case, the use of inheritance eliminated the need for
me to de�ne a new class that reproduces all of the code in the class named Radio .

(In the next module, I will explain the process of overriding methods. I will show you how to use method
overriding to accomplish these same purposes by extending the Radio class, without any requirement to
modify the code in the Radio class. That will be a much better illustration of the bene�ts of inheritance.)

The driver class
The new driver class named Radio02 is shown in Listing 8 (p. 327) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

325

Listing 8 . The class named Radio02.

public class Radio02{

//This class simulates the

// manufacturer and the human user

public static void main(

String[] args){

Combo myObjRef = new Combo();

myObjRef.setStationNumber(3,93.5);

myObjRef.playStation(3);

myObjRef.insertTape();

myObjRef.playStation(3);

myObjRef.removeTape();

myObjRef.playStation(3);

myObjRef.playTape();

myObjRef.insertTape();

myObjRef.playTape();

myObjRef.removeTape();

myObjRef.playStation(3);

}//end main

}//end class Radio02

Table 3.20

New object of the Combo class
The most signi�cant change in this class (relative to the driver class named Radio01 in a previous

module) is the statement that instantiates a new object of the Combo class (instead of the Radio class)
.

All of the other new code in Listing 8 (p. 327) is used to send messages to the new object in order to
exercise its behavior.

Program output
The Combo object responds to those messages by producing the screen output shown in Figure 1 (p.

328) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

326 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 1 . Program output.

Combo object constructed

Button 3 programmed

Play Radio

Playing the station at 93.5 Mhz

Insert Tape

Tape is in

Radio is off

Play Radio

Remove the tape first

Remove Tape

Tape is out

Radio is on

Play Radio

Playing the station at 93.5 Mhz

Play Tape

Insert the tape first

Insert Tape

Tape is in

Radio is off

Play Tape

Tape is playing

Remove Tape

Tape is out

Radio is on

Play Radio

Playing the station at 93.5 Mhz

Table 3.21

An exercise for the student
As the old saying goes, I will leave it as an exercise for the student to correlate the messages in Listing

8 (p. 327) with the output shown in Figure 1 (p. 328) .

3.2.3.5 Summary

Extending an existing class often provides an easy way to create a new type. This is primarily true when an
existing class creates a type whose features are close to, but not identical to the features needed in the new
type.

When an existing class is extended to de�ne a new class, the existing class is often called the superclass
and the new class is often called the subclass .

The subclass inherits all of the variables and all of the methods de�ned in the superclass and its super-
classes.

Although not explicitly demonstrated in this module, whenever you declare a reference variable whose
type is de�ned by a class, that variable can be used to store references to objects instantiated from that class
or instantiated from any subclass of that class. Furthermore, that reference can be used to call methods
de�ned in or inherited into that class with no requirement for a cast. If the method is de�ned in that class
and overridden in the subclass, and if the object is actually of the subclass type, the overridden version will
be executed. This is polymorphism.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

327

Inheritance provides a formal mechanism for code reuse.
This module modi�es slightly, and then extends the Radio class from a previous module to de�ne a

new class named Combo . Objects of the Combo class simulate car radios that contain tape players.
Objects of the Combo class know how to respond to messages for inserting, playing, and removing a tape,
in addition to those messages appropriate for an object of the Radio class.

The changes that were required in the de�nition of the Radio class provide for the fact that it is not
possible to play a radio station and to play a tape at the same time. This change was necessary because the
original designer of the Radio class (this author) didn't design that class with the idea of extending it
to include a tape player. This points out the importance of thinking ahead when de�ning a new class.

3.2.3.6 What's next?

In the next module, I will show you how to use method overriding to cause the behavior of a method
inherited into a subclass to be appropriate for an object instantiated from the subclass.

I will also show you how to use method overriding to eliminate the above requirement to modify the
Radio class before extending it.

3.2.3.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Inheritance, Part 1
• File: Java1604.htm
• Published: 01/14/02

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have misappropriated copies of my modules from cnx.org, con-
verted them to Kindle books, and placed them for sale on Amazon.com showing me as the author.
I receive no compensation for those sales and don't know who does receive compensation. If you
purchase such a book, please be aware that it is a bootleg copy of a module that is freely available
on cnx.org.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.2.3.8 Complete program listing

A complete listing of the program is shown in Listing 9 (p. 331) below.
The primary di�erence between this program and the program in the earlier module (whose objects

simulate car radios) is the inclusion in this program of a new class named Combo . The class named
Combo extends the original Radio class to create a new type of radio that also contains a tape player.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

328 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 9 . The program named Radio02.

/*File Radio02.java

Copyright 2002, R.G.Baldwin

Simulates the manufacture and use of a

combination car radio and tape player.

This program produces the following

output on the computer screen:

Combo object constructed

Button 3 programmed

Play Radio

Playing the station at 93.5 Mhz

Insert Tape

Tape is in

Radio is off

Play Radio

Remove the tape first

Remove Tape

Tape is out

Radio is on

Play Radio

Playing the station at 93.5 Mhz

Play Tape

Insert the tape first

Insert Tape

Tape is in

Radio is off

Play Tape

Tape is playing

Remove Tape

Tape is out

Radio is on

Play Radio

Playing the station at 93.5 Mhz

**************************************/

public class Radio02{

//This class simulates the

// manufacturer and the human user

public static void main(

String[] args){

Combo myObjRef = new Combo();

myObjRef.setStationNumber(3,93.5);

myObjRef.playStation(3);

myObjRef.insertTape();

myObjRef.playStation(3);

myObjRef.removeTape();

myObjRef.playStation(3);

myObjRef.playTape();

myObjRef.insertTape();

myObjRef.playTape();

myObjRef.removeTape();

myObjRef.playStation(3);

}//end main

}//end class Radio02

//===================================//

class Radio{

//This class simulates the plans from

// which the radio object is created.

protected double[] stationNumber =

new double[5];

protected boolean tapeIn = false;

//---------------------------------//

public void setStationNumber(

int index,double freq){

stationNumber[index] = freq;

System.out.println("Button "

+ index + " programmed");

}//end method setStationNumber

//---------------------------------//

public void playStation(int index){

System.out.println("Play Radio");

if(!tapeIn){

System.out.println(

" Playing the station at "

+ stationNumber[index]

+ " Mhz");

}else{

System.out.println(

" Remove the tape first");

}//end if/else

}//end method playStation

}//end class Radio

//===================================//

class Combo extends Radio{

public Combo(){//constructor

System.out.println(

"Combo object constructed");

}//end constructor

//---------------------------------//

public void insertTape(){

System.out.println("Insert Tape");

tapeIn = true;

System.out.println(" Tape is in");

System.out.println(

" Radio is off");

}//end insertTape method

//---------------------------------//

public void removeTape(){

System.out.println("Remove Tape");

tapeIn = false;

System.out.println(

" Tape is out");

System.out.println(

" Radio is on");

}//end removeTape method

//---------------------------------//

public void playTape(){

System.out.println("Play Tape");

if(!tapeIn){

System.out.println(

" Insert the tape first");

}else{

System.out.println(

" Tape is playing");

}//end if/else

}//end playTape

}//end class combo

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

329

Table 3.22

-end-

3.2.4 Java1606: Inheritance, Part 2
102

Revised: Thu Aug 11 14:45:15 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 103

• Object-Oriented Programming (OOP) with Java 104

3.2.4.1 Table of Contents

• Preface (p. 332)

· Viewing tip (p. 332)

* Figures (p. 332)
* Listings (p. 332)

• Preview (p. 333)
• Discussion and sample code (p. 333)
• Summary (p. 338)
• What's next? (p. 338)
• Miscellaneous (p. 338)
• Complete program listing (p. 338)

3.2.4.2 Preface

This module is one of a series of modules designed to teach you about the essence of Object-Oriented
Programming (OOP) using Java.

3.2.4.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

3.2.4.2.1.1 Figures

• Figure 1 (p. 337) . Program output.

3.2.4.2.1.2 Listings

• Listing 1 (p. 334) . The class named Radio.
• Listing 2 (p. 335) . Beginning of the Combo class.
• Listing 3 (p. 335) . The overridden playStation method.
• Listing 4 (p. 336) . The driver class.
• Listing 5 (p. 339) . The program named Radio03.

102This content is available online at <http://cnx.org/content/m44156/1.8/>.
103http://cnx.org/contents/dzOvxPFw
104http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

330 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.2.4.3 Preview

This module builds on the previous module 105 . It is recommended that you study that module before
embarking on this module.

The program discussed in this module extends a Radio class to produce a new class that simulates an
upgraded car radio containing a tape player.

Method overriding is used to modify the behavior of a method of the Radio class named playStation
, to cause that method to behave appropriately when a tape has been inserted into the tape player.

3.2.4.4 Discussion and sample code

Inheriting methods and variables
When you de�ne a class that extends another class, an object instantiated from your new class will

contain all of the methods and all of the variables de�ned in your new class. The object will also contain all
of the methods and all of the variables de�ned in all of the superclasses of your new class.

The behavior of the methods
The behavior of the methods de�ned in a superclass and inherited into your new class may, or may not,

be appropriate for an object instantiated from your new class. If those methods are appropriate, you can
simply leave them alone.

Overriding to change behavior
If the behavior of one or more methods de�ned in a superclass and inherited into your new class is not

appropriate for an object of your new class, you can change that behavior by overriding the method in
your new class.

How do you override a method?
To override a method in your new class, simply reproduce the name, argument list, and return type of

the original method in a new method de�nition in your new class. Then provide a body for the new method.
Write code in that body to cause the behavior of the overridden method to be appropriate for an object of
your new class.

Here is a more precise description of method overriding taken from the excellent book entitled The
Complete Java 2 Certi�cation Study Guide , by Roberts, Heller, and Ernest:

"A valid override has identical argument types and order, identical return type, and is not less accessible
than the original method. The overriding method must not throw any checked exceptions that were not
declared for the original method."

Any method that is not declared �nal can be overridden in a subclass.
Overriding versus overloading
Don't confuse method overriding with method overloading . Here is what Roberts, Heller, and Ernest

have to say about overloading methods:
"A valid overload di�ers in the number or type of its arguments. Di�erences in argument names are not

signi�cant. A di�erent return type is permitted, but is not su�cient by itself to distinguish an overloading
method."

Car radios with built-in tape players
This module presents a sample program that duplicates the functionality of the program named Radio02

discussed in the previous module. A class named Radio is used to de�ne the speci�cs of objects intended
to simulate car radios.

A class named Combo extends the Radio class to de�ne the speci�cs of objects intended to simulate
improved car radios having built-in tape players.

Modi�cation of the superclass
In the program named Radio02 in the previous module, it was necessary to modify the superclass

before extending it to provide the desired functionality. (The requirement to modify the superclass before
extending it seriously detracts from the bene�ts of inheritance.)

No superclass modi�cation in this module

105http://cnx.org/contents/dzOvxPFw:ZMA3cfBy

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

331

The sample program (named Radio03) in this module uses method overriding to provide the same
functionality as the previous program named Radio02 , without any requirement to modify the superclass
before extending it. (Thus this program is more representative of the bene�ts available through inheritance
than was the program in the previous module.)

Overridden playStation method
In particular, a method named playStation , de�ned in the superclass named Radio , is overridden

in the subclass named Combo .
The original version of playStation in the superclass supports only radio operations. The overridden

version of playStation de�ned in the subclass supports both radio operations and tape operations.
(The behavior of the version of playStation de�ned in the Radio class is not appropriate for an

object of the Combo class. Therefore, the method was overridden in the Combo class to cause its
behavior to be appropriate for objects instantiated from the Combo class.)

A complete listing of the program is shown in Listing 5 (p. 339) near the end of this module.
The class named Radio
As usual, I will discuss the program in fragments.
Listing 1 (p. 334) shows the superclass named Radio . This code is shown here for easy referral. It

is identical to the code for the same class used in the program named Radio01 discussed in an earlier
module.

Listing 1 . The class named Radio.

class Radio{

protected double[] stationNumber =

new double[5];

public void setStationNumber(

int index,double freq){

stationNumber[index] = freq;

}//end method setStationNumber

public void playStation(int index){

System.out.println(

"Playing the station at "

+ stationNumber[index]

+ " Mhz");

}//end method playStation

}//end class Radio

Table 3.23

Will override playStation
The class named Combo (discussed below) will extend the class named Radio . The method

named playStation , shown in Listing 1 (p. 334) , will be overridden in the class named Combo .
If you examine the code for the playStation method in Listing 1 (p. 334) , you will see that it assumes

radio operations only and doesn't support tape operations. That is the reason that it needs to be overridden.
(For example, it doesn't know that it should refuse to play a radio station when a tape is being played.)

The Combo class
Listing 2 (p. 335) shows the beginning of the class de�nition for the class named Combo . The

Combo class extends the class named Radio .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

332 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 2 . Beginning of the Combo class.

class Combo extends Radio{

private boolean tapeIn = false;

//---------------------------------//

public Combo(){//constructor

System.out.println(

"Combo object constructed");

}//end constructor

//---------------------------------//

Table 3.24

The tapeIn variable
The most important thing about the code in Listing 2 (p. 335) is the declaration of the instance variable

named tapeIn .
(In the program named Radio02 in the previous module, this variable was declared in the class named

Radio and inherited into the class named Combo . That was one of the undesirable changes required
for the class named Radio in that module.)

In this version of the program, the variable named tapeIn is declared in the subclass instead of in the
superclass. Thus, it is not necessary to modify the superclass before extending it.

The constructor
The constructor in Listing 2 (p. 335) is the same as in the previous program named Radio02 , so I

won't discuss it further.
The overridden playStation method
The overridden version of the method named playStation is shown in Listing 3 (p. 335) . As you

can see, this version of the method duplicates the signature of the playStation method in the superclass
named Radio , but provides a di�erent body.

Listing 3 . The overridden playStation method.

public void playStation(int index){

System.out.println("Play Radio");

if(!tapeIn){//tapeIn is false

System.out.println(

" Playing the station at "

+ stationNumber[index]

+ " Mhz");

}else{//tapeIn is true

System.out.println(

" Remove the tape first");

}//end if/else

}//end method playStation

Table 3.25

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

333

Aware of the tape system
This overridden version of the playStation method in Listing 3 (p. 335) is aware of the existence of

the tape system and behaves accordingly.
Depending on the value of the variable named tapeIn , this method will either

• tune and play a radio station, or
• display a message instructing the user to remove the tape.

Which version of playStation is executed?
When the playStation method is called on an object of the Combo class, the overridden version of

the method (and not the original version de�ned in the superclass named Radio) is the version that is
actually executed.

Although not particularly obvious in this example, this is one of the important characteristics of runtime
polymorphism . When a method is called on a reference to an object, it is the type of the object (and not
the type of the variable containing the reference to the object) that is used to determine which version of
the method is actually executed.

Three other instance methods
The subclass named Combo de�nes three other instance methods:

• insertTape
• removeTape
• playTape

The code in these three methods is identical to the code in the methods having the same names in the
program named Radio02 in the previous module. I discussed that code in the previous module and won't
repeat that discussion here. You can view those methods in the complete listing of the program shown in
Listing 5 (p. 339) near the end of this module.

The driver class
Listing 4 (p. 336) shows the code for the driver class named Radio03.

Listing 4 . The driver class.

public class Radio03{

//This class simulates the

// manufacturer and the human user

public static void main(

String[] args){

Combo myObjRef = new Combo();

myObjRef.setStationNumber(3,93.5);

myObjRef.playStation(3);

myObjRef.insertTape();

myObjRef.playStation(3);

myObjRef.removeTape();

myObjRef.playStation(3);

myObjRef.playTape();

myObjRef.insertTape();

myObjRef.playTape();

myObjRef.removeTape();

myObjRef.playStation(3);

}//end main

}//end class Radio03

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

334 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.26

The code in Listing 4 (p. 336) is also identical to the code in the program named Radio02 discussed
in the previous module. Therefore, I won't discuss it in detail here.

A new object of the Combo class
I present this code here solely to emphasize that this code instantiates a new object of the Combo

class. This assures that the overridden version of the method named playStation will be executed by the
statements in Listing 4 (p. 336) that call the playStation method.

(Although it is not the case in Listing 4 (p. 336) , even if the reference to the object of type Combo
had been stored in a reference variable of type Radio , instead of a reference variable of type Combo ,
calling the playStation method on that reference would have caused the overridden version of the method
to have been executed. That is the essence of runtime polymorphism based on overridden methods in Java.)

Program output
This program produces the output shown in Figure 1 (p. 337) on the computer screen.

Figure 1 . Program output.

Combo object constructed

Play Radio

Playing the station at 93.5 Mhz

Insert Tape

Tape is in

Radio is off

Play Radio

Remove the tape first

Remove Tape

Tape is out

Radio is on

Play Radio

Playing the station at 93.5 Mhz

Play Tape

Insert the tape first

Insert Tape

Tape is in

Radio is off

Play Tape

Tape is playing

Remove Tape

Tape is out

Radio is on

Play Radio

Playing the station at 93.5 Mhz

Table 3.27

I will leave it as an exercise for the student to compare this output with the messages sent to the object
by the code in Listing 4 (p. 336) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

335

3.2.4.5 Summary

An object instantiated from a class that extends another class will contain all of the methods and all of the
variables de�ned in the subclass, plus all of the methods and all of the variables inherited into the subclass.

The behavior of methods inherited into the subclass may not be appropriate for an object instantiated
from the subclass. You can change that behavior by overriding the method in the de�nition of the subclass.

To override a method in the subclass, reproduce the name, argument list, and return type of the original
method in a new method de�nition in the subclass. Make sure that the overridden method is not less
accessible than the original method. Also, make sure that it doesn't throw any checked exceptions that were
not declared for the original method.

Provide a body for the overridden method, causing the behavior of the overridden method to be appro-
priate for an object of the subclass. Any method that is not declared �nal can be overridden in a subclass.
The program discussed in this module extends a Radio class to produce a subclass that simulates an
upgraded car radio containing a tape player.

Method overriding is used to modify the behavior of an inherited method named playStation to cause
that method to behave appropriately when a tape has been inserted into the radio.

Method overriding is di�erent from method overloading . Method overloading will be discussed in
the next module.

3.2.4.6 What's next?

In the next module, I will explain the use of overloaded methods for the purpose of achieving compile-time
polymorphism.

3.2.4.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Inheritance, Part 2
• File: Java1606.htm
• Published: 01/28/02

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have misappropriated copies of my modules from cnx.org, con-
verted them to Kindle books, and placed them for sale on Amazon.com showing me as the author.
I receive no compensation for those sales and don't know who does receive compensation. If you
purchase such a book, please be aware that it is a bootleg copy of a module that is freely available
on cnx.org.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.2.4.8 Complete program listing

A complete listing of the program is shown in Listing 5 (p. 339) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

336 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 5 . The program named Radio03.

Copyright 2002, R.G.Baldwin

Simulates the manufacture and use of a

combination car radio and tape player.

Uses method overriding to avoid

modifying the class named Radio.

This program produces the following

output on the computer screen:

Combo object constructed

Play Radio

Playing the station at 93.5 Mhz

Insert Tape

Tape is in

Radio is off

Play Radio

Remove the tape first

Remove Tape

Tape is out

Radio is on

Play Radio

Playing the station at 93.5 Mhz

Play Tape

Insert the tape first

Insert Tape

Tape is in

Radio is off

Play Tape

Tape is playing

Remove Tape

Tape is out

Radio is on

Play Radio

Playing the station at 93.5 Mhz

**************************************/

public class Radio03{

//This class simulates the

// manufacturer and the human user

public static void main(

String[] args){

Combo myObjRef = new Combo();

myObjRef.setStationNumber(3,93.5);

myObjRef.playStation(3);

myObjRef.insertTape();

myObjRef.playStation(3);

myObjRef.removeTape();

myObjRef.playStation(3);

myObjRef.playTape();

myObjRef.insertTape();

myObjRef.playTape();

myObjRef.removeTape();

myObjRef.playStation(3);

}//end main

}//end class Radio03

//===================================//

class Radio{

//This class simulates the plans from

// which the radio object is created.

// This code is the same as in the

// program named Radio01.

protected double[] stationNumber =

new double[5];

public void setStationNumber(

int index,double freq){

stationNumber[index] = freq;

}//end method setStationNumber

//This version of playStation doesn't

// accommodate tape operations.

public void playStation(int index){

System.out.println(

"Playing the station at "

+ stationNumber[index]

+ " Mhz");

}//end method playStation

}//end class Radio

//===================================//

class Combo extends Radio{

private boolean tapeIn = false;

//---------------------------------//

public Combo(){//constructor

System.out.println(

"Combo object constructed");

}//end constructor

//---------------------------------//

//Overridden playStation method. This

// overridden version accommodates

// tape operations.

public void playStation(int index){

System.out.println("Play Radio");

if(!tapeIn){

System.out.println(

" Playing the station at "

+ stationNumber[index]

+ " Mhz");

}else{

System.out.println(

" Remove the tape first");

}//end if/else

}//end method playStation

//---------------------------------//

public void insertTape(){

System.out.println("Insert Tape");

tapeIn = true;

System.out.println(

" Tape is in");

System.out.println(

" Radio is off");

}//end insertTape method

//---------------------------------//

public void removeTape(){

System.out.println("Remove Tape");

tapeIn = false;

System.out.println(

" Tape is out");

System.out.println(

" Radio is on");

}//end removeTape method

//---------------------------------//

public void playTape(){

System.out.println("Play Tape");

if(!tapeIn){

System.out.println(

" Insert the tape first");

}else{

System.out.println(

" Tape is playing");

}//end if/else

}//end playTape

}//end class combo

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

337

Table 3.28

-end-

3.2.5 Java1608: Polymorphism Based on Overloaded Methods
106

Revised: Thu Mar 31 11:22:34 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 107

• Object-Oriented Programming (OOP) with Java 108

3.2.5.1 Table of Contents

• Preface (p. 340)

· Viewing tip (p. 340)

* Listings (p. 340)

• Preview (p. 341)
• Discussion and sample code (p. 341)
• Summary (p. 345)
• What's next? (p. 346)
• Miscellaneous (p. 346)
• Complete program listings (p. 347)

3.2.5.2 Preface

This module is one of a series of modules designed to teach you about the essence of Object-Oriented
Programming (OOP) using Java.

3.2.5.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

3.2.5.2.1.1 Listings

• Listing 1 (p. 343) . De�nition of the class named A.
• Listing 2 (p. 344) . De�nition of the class named B.
• Listing 3 (p. 345) . De�nition of the driver class named Poly01.
• Listing 4 (p. 347) . Complete program listing.

106This content is available online at <http://cnx.org/content/m44182/1.5/>.
107http://cnx.org/contents/dzOvxPFw
108http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

338 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.2.5.3 Preview

Previous modules introduced overloading and overriding methods. This module concentrates on the use
of method overloading to achieve compile-time polymorphism .

Every class in Java is a direct or indirect subclass of the class named Object . Methods de�ned in the
class named Object are inherited into all other classes. Inherited methods that are not declared �nal
may be overridden to make their behavior more appropriate for objects instantiated from the new class.

Overloaded methods have the same name and di�erent formal argument lists. They may or may not
have the same return type.

Polymorphism manifests itself in Java in the form of multiple methods having the same name. This mod-
ule concentrates on method overloading, sometimes referred to as compile-time polymorphism . Subsequent
modules concentrate on method overriding, sometimes referred to as runtime polymorphism .

Overloaded methods may all be de�ned in the same class, or may be de�ned in di�erent classes as long
as those classes have a superclass-subclass relationship.

3.2.5.4 Discussion and sample code

Three concepts
In an earlier module, I explained that most books on OOP will tell you that in order to understand OOP,

you must understand the following three concepts:

• Encapsulation
• Inheritance
• Polymorphism

I agree with that assessment.
Encapsulation and inheritance
Previous modules in this series have explained Encapsulation and Inheritance. This module will tackle

the somewhat more complex topic of Polymorphism.
Overloading and overriding methods
In the modules on inheritance, you learned a little about overloading and overriding methods (you will

learn more about these concepts as you progress through these modules) . This module concentrates on the
use of overloaded methods to achieve compile-time polymorphism.

Real-world scenarios
The sample programs that I used in the previous modules in this series dealt with two kinds of car radios:

• Plain car radios
• Car radios having built-in tape players

I couched those programs in a real-world scenario in an attempt to convince you that encapsulation and
inheritance really do have a place in the real world.

Programs were fairly long
However, even though those programs were simple in concept, they were relatively long. That made them

somewhat di�cult to explain due simply to the amount of code involved.
Keep it short and simple
Beginning with this module, I am going to back away from real-world scenarios and begin using sample

programs that are as short and as simple as I know how to make them, while still illustrating the important
points under discussion.

My objective in this and future modules is to make the polymorphic concepts as clear as possible without
having those concepts clouded by other programming issues.

I will simply ask you to trust me when I tell you that polymorphism has enormous applicability in the
real world.

A little more on inheritance

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

339

There is another aspect of inheritance that I didn't explain in the previous modules.
Every class extends some other class
Every class in Java extends some other class. If you don't explicitly specify the class that your new class

extends, it will automatically extend the class named Object .
A class hierarchy
Thus, all classes in Java exist in a class hierarchy where the class named Object forms the root of the

hierarchy.
Some classes extend Object directly, while other classes are subclasses of Object further down the

hierarchy.
Methods in the Object class
The class named Object de�nes default versions of the following methods:

• clone()
• equals(Object obj)
• �nalize()
• getClass()
• hashCode()
• notify()
• notifyAll()
• toString()
• wait()
• wait(long timeout)
• wait(long timeout, int nanos)

As you can see, this list includes three overloaded versions of the method named wait . The three versions
have the same name but di�erent formal argument lists. Thus, these three methods are overloaded versions
of the method name wait .

Every class inherits these eleven methods
Because every class is either a direct or indirect subclass of Object , every class in Java, (including

new classes that you de�ne) , inherit these eleven methods.
To be overridden ...
Some of these eleven methods are intended to be overridden for various purposes. However, some of

them, such as getClass , notify , and the three versions of wait , are intended to be used directly
without overriding. (Although not shown here, these �ve methods are declared to be �nal , meaning that
they may not be overridden.)

What is polymorphism?
The meaning of the word polymorphism is something like one name, many forms.
How does Java implement polymorphism?
Polymorphism manifests itself in Java in the form of multiple methods having the same name.
In some cases, multiple methods have the same name, but di�erent formal argument lists (overloaded

methods) . In other cases, multiple methods have the same name, same return type, and same formal
argument list (overridden methods) .

Three distinct forms of polymorphism
From a practical programming viewpoint, polymorphism manifests itself in three distinct forms in Java:

• Method overloading
• Method overriding through inheritance
• Method overriding through the Java interface

Method overloading
I will begin the discussion of polymorphism with method overloading, which is the simplest of the three.

I will cover method overloading in this module and will cover polymorphism based on overridden methods
and interfaces in subsequent modules.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

340 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Method overloading versus method overriding
Don't confuse method overloading with method overriding .
Java allows you to have two or more method de�nitions in the same scope with the same name, provided

that they have di�erent formal argument lists.
More speci�cally, here is what Roberts, Heller, and Ernest have to say about overloading methods in

their excellent book titled The Complete Java 2 Certi�cation Study Guide :
"A valid overload di�ers in the number or type of its arguments. Di�erences in argument names are not

signi�cant. A di�erent return type is permitted, but is not su�cient by itself to distinguish an overloading
method."

Similarly, as a preview of things to come, here is what they have to say about method overriding:
"A valid override has identical argument types and order, identical return type, and is not less accessible

than the original method. The overriding method must not throw any checked exceptions that were not
declared for the original method."

You should read these two descriptions carefully and make certain that you recognize the di�erences.
Compile-time polymorphism
Some authors refer to method overloading as a form of compile-time polymorphism , as distinguished

from run-time polymorphism .
This distinction comes from the fact that, with overloaded methods, for each method call, the compiler

determines which method (from a group of overloaded methods) will be executed, and this decision is made
when the program is compiled. (In contrast, I will tell you later that the determination of which overridden
method to execute isn't made until runtime.)

Selection based on the argument list
In practice, the compiler simply examines the types, number, and order of the parameters being passed

in an overloaded method call, and selects the overloaded method having a matching formal argument list.
A sample program
I will discuss a sample program named Poly01 to illustrate method overloading. A complete listing of

the program can be viewed in Listing 4 (p. 347) near the end of the module.
Within the class and the hierarchy
Method overloading can occur both within a class de�nition, and vertically within the class inheritance

hierarchy. (In other words, an overloaded method can be inherited into a class that de�nes other overloaded
versions of the method.) The program named Poly01 illustrates both aspects of method overloading.

Class B extends class A, which extends Object
Upon examination of the program, you will see that the class named A extends the class named

Object . You will also see that the class named B extends the class named A .
The class named Poly01 is a driver class whose main method exercises the methods de�ned in the

classes named A and B .
Once again, this program is not intended to correspond to any particular real-world scenario. Rather, it

is a very simple program designed speci�cally to illustrate method overloading.
Will discuss in fragments
As is my usual approach, I will discuss this program in fragments. The code in Listing 1 (p. 343) de�nes

the class named A , which explicitly extends Object .

Listing 1 . De�nition of the class named A.

class A extends Object{

public void m(){

System.out.println("m()");

}//end method m()

}//end class A

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

341

Table 3.29

Redundant code
Explicitly extending Object is not required (but it also doesn't hurt anything to do it) .
By default, the class named A would extend the class named Object automatically, unless the class

named A explicitly extends some other class.
The method named m()
The code in Listing 1 (p. 343) de�nes a method named m() . Note that this version of the method

has an empty argument list (it doesn't receive any parameters when it is executed) . The behavior of the
method is simply to display a message indicating that it has been called.

The class named B
Listing 2 (p. 344) contains the de�nition for the class named B . The class named B extends the

class named A , and inherits the method named m de�ned in the class named A .

Listing 2 . De�nition of the class named B.

class B extends A{

public void m(int x){

System.out.println("m(int x)");

}//end method m(int x)

//---------------------------------//

public void m(String y){

System.out.println("m(String y)");

}//end method m(String y)

}//end class B

Table 3.30

Overloaded methods
In addition to the inherited method named m , the class named B de�nes two overloaded versions of

the method named m :

• m(int x)
• m(String y)

(Note that each of these two versions of the method receives a single parameter, and the type of the
parameter is di�erent in each case.)

As with the version of the method having the same name de�ned in the class named A , the behavior
of each of these two methods is to display a message indicating that it has been called.

The driver class
Listing 3 (p. 345) contains the de�nition of the driver class named Poly01 .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

342 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 3 . De�nition of the driver class named Poly01.

public class Poly01{

public static void main(String[] args){

B var = new B();

var.m();

var.m(3);

var.m("String");

}//end main

}//end class Poly01

Table 3.31

Call all three overloaded methods
The code in the main method

• Instantiates a new object of the class named B , and
• Successively calls each of the three overloaded versions of the method named m on the reference to

that object.

One version is inherited
The overloaded version of the method named m , de�ned in the class named A , is inherited into the

class named B . Therefore, it can be called on a reference to an object instantiated from the class named
B .

Two versions de�ned in class B
The other two versions of the method named m are de�ned in the class named B . Thus, they also

can be called on a reference to an object instantiated from the class named B .
The output
As you would expect, the output produced by sending messages to the object asking it to execute each

of the three overloaded versions of the method named m is:

m()

m(int x)

m(String y)

Note that the values of the parameters passed to the methods do not appear in the output. Rather, in this
simple example, the parameters are used solely to make it possible for the compiler to select the correct
version of the overloaded method to execute.

This output con�rms that each overloaded version of the method is properly selected for execution based
on the matching of method parameters to the formal argument list of each method.

3.2.5.5 Summary

Previous modules introduced overloading and overriding methods. This module concentrates on the use
of method overloading to achieve compile-time polymorphism .

All classes in Java form a hierarchy with a class named Object at the root of the hierarchy. Thus,
every class in Java is a direct or indirect subclass of the class named Object .

If a new class doesn't explicitly extend some other class, it will, by default, automatically extend the
class named Object .

The Object class de�nes default versions of eleven di�erent methods. These methods are inherited
into all other classes, and some (those not declared �nal) may be overridden to make their behavior
more appropriate for objects instantiated from the new class.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

343

Overloaded methods have the same name and di�erent formal argument lists. They may or may not
have the same return type.

Three of the eleven methods de�ned in the class named Object are overloaded versions of the method
name wait . One version takes no parameters. A second version takes a single parameter of type long .
The third version takes two parameters, one of type long , and one of type int .

The word polymorphism means something like one name, many forms . Polymorphism manifests itself
in Java in the form of multiple methods having the same name.

Polymorphism manifests itself in three distinct forms in Java:

• Method overloading
• Method overriding through inheritance
• Method overriding through the Java interface

This module concentrates on method overloading , sometimes referred to as compile-time polymorphism .
This form of polymorphism is distinguished by the fact that the compiler selects a speci�c method from two
or more overloaded methods on the basis of the types and the number of parameters passed to the method
when it is called. The selection is made when the program is compiled (rather than being made later when
the program is run) .

Overloaded methods may all be de�ned in the same class, or may be de�ned in di�erent classes as long
as those classes have a superclass-subclass relationship in the class hierarchy.

The sample program in this module illustrates three overloaded versions of the same method name with
two of the versions being de�ned in a single class, and the other version being de�ned in the superclass of
that class.

3.2.5.6 What's next?

The next module in this collection teaches you about assignment compatibility, type conversion, and casting
for both primitive and reference types.

It also teaches you about the relationship between reference types, method calls, and the location in the
class hierarchy where a method is de�ned.

3.2.5.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Polymorphism Based on Overloaded Methods
• File: Java1608.htm
• Published: 02/11/02

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have misappropriated copies of my modules from cnx.org, con-
verted them to Kindle books, and placed them for sale on Amazon.com showing me as the author.
I receive no compensation for those sales and don't know who does receive compensation. If you
purchase such a book, please be aware that it is a bootleg copy of a module that is freely available
on cnx.org.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

344 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.2.5.8 Complete program listings

A complete listing of the program is shown in Listing 4 (p. 347) below.

Listing 4 . Complete program listing.

/*File Poly01.java

Copyright 2002, R.G.Baldwin

Program output is:

m()

m(int x)

m(String y)

**************************************/

class A extends Object{

public void m(){

System.out.println("m()");

}//end method m()

}//end class A

//===================================//

class B extends A{

public void m(int x){

System.out.println("m(int x)");

}//end method m(int x)

//---------------------------------//

public void m(String y){

System.out.println("m(String y)");

}//end method m(String y)

}//end class B

//===================================//

public class Poly01{

public static void main(String[] args){

B var = new B();

var.m();

var.m(3);

var.m("String");

}//end main

}//end class Poly01

Table 3.32

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

345

3.2.6 Java1610: Polymorphism, Type Conversion, Casting, etc.
109

Revised: Thu Mar 31 11:49:25 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 110

• Object-Oriented Programming (OOP) with Java 111

3.2.6.1 Table of Contents

• Preface (p. 348)

· Viewing tip (p. 348)

* Listings (p. 348)

• Preview (p. 349)
• Discussion and sample code (p. 349)
• Summary (p. 355)
• What's next? (p. 356)
• Miscellaneous (p. 356)
• Complete program listings (p. 356)

3.2.6.2 Preface

This module is one of a series of modules designed to teach you about the essence of Object-Oriented
Programming (OOP) using Java.

3.2.6.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

3.2.6.2.1.1 Listings

• Listing 1 (p. 351) . De�nition of the class named A.
• Listing 2 (p. 351) . De�nition of the class named B.
• Listing 3 (p. 352) . De�nition of the class named C.
• Listing 4 (p. 352) . Beginning of the class named Poly02.
• Listing 5 (p. 353) . An illegal operation.
• Listing 6 (p. 353) . An ine�ective downcast.
• Listing 7 (p. 354) . A downcast to type B.
• Listing 8 (p. 354) . Declare a variable of type B.
• Listing 9 (p. 354) . Cannot be assigned to type C.
• Listing 10 (p. 355) . Another failed attempt.
• Listing 11 (p. 357) . Complete program listing.

109This content is available online at <http://cnx.org/content/m44168/1.5/>.
110http://cnx.org/contents/dzOvxPFw
111http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

346 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.2.6.3 Preview

This module discusses type conversion for both primitive and reference types.
A value of a particular type may be assignment compatible with variables of other types, in which case

the value can be assigned directly to the variable. Otherwise, it may be possible to perform a cast on the
value to change its type and assign it to the variable as the new type.

With regard to reference types, whether or not a cast can be successfully performed

• depends on the relationships of the classes involved in the class hierarchy.

A reference to any object can be assigned to a reference variable of the type Object , because the Object
class is a superclass of every other class.

When we cast a reference along the class hierarchy in a direction from the root class Object toward
the leaves, we often refer to it as a downcast .

Whether or not a method can be called on a reference to an object depends on

• the current type of the reference, and
• the location in the class hierarchy where the method is de�ned.

In order to use a reference of a class type to call a method, the method must be de�ned at or above that
class in the class hierarchy.

A sample program is provided that illustrates much of the detail involved in type conversion, method
calls, and casting with respect to reference types.

3.2.6.4 Discussion and sample code

What is polymorphism?
As a quick review, the meaning of the word polymorphism is something like one name, many forms .
How does Java implement polymorphism?
Polymorphism manifests itself in Java in the form of multiple methods having the same name.
In some cases, multiple methods have the same name, but di�erent formal argument lists (overloaded

methods, which were discussed in a previous module) .
In other cases, multiple methods have the same name, same return type, and same formal argument list

(overridden methods) .
Three distinct forms of polymorphism
From a practical programming viewpoint, polymorphism manifests itself in three distinct forms in Java:

• Method overloading
• Method overriding through inheritance
• Method overriding through the Java interface

I covered method overloading as one form of polymorphism in a previous module.
We need to backtrack
In this module, I will backtrack a bit and discuss the conversion of references from one type to another.
I will begin the discussion of polymorphism through method overriding and inheritance in the next

module. I will cover interfaces in a future module.
Assignment compatibility and type conversion
As a background for polymorphism, you need to understand something about assignment compatibility

and type conversion .
A value of a given type is assignment compatible with another type if

• a value of the �rst type
• can be successfully assigned to a variable of the second type.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

347

Type conversion and the cast operator
In some cases, type conversion happens automatically. In other cases, type conversion must be forced

through the use of a cast operator .
A cast operator is a unary operator, which has a single right operand. The physical representation of

the cast operator is the name of a type inside a pair of matching parentheses, as in:

(int)

Applying a cast operator
Applying a cast operator to the name of a variable doesn't actually change the type of the variable.

However, it does cause the contents of the variable to be treated as a di�erent type for the evaluation of the
expression in which the cast operator is contained. Thus, the application of a cast operator is a short-term
operation.

Primitive values and type conversion
Assignment compatibility issues come into play for both primitive types and reference types.
Values of type boolean can only be assigned to variables of type boolean (you cannot change the

type of a boolean) .
Otherwise, a primitive value can be assigned to any variable of a type

• whose range is as wide or wider
• than the range of the type of the value.

In that case, the type of the value is automatically converted to the type of the variable.
(For example, types byte and short can be assigned to a variable of type int without

the requirement for a cast because type int has a wider range than either type byte or type
short .)

Conversion to narrower range
On the other hand, a primitive value of a given type cannot be assigned to a variable of a type with

a narrower range than the type of the value, unless the cast operator is used to force a type
conversion.

Oftentimes, such a conversion will result in the loss of data, and that loss is the responsibility of the
programmer who performs the cast.

Assignment compatibility for references
Assignment compatibility, with respect to references, doesn't involve range issues, as is the case with

primitives. Instead, the reference to an object instantiated from a given class can be assigned to:

• Any reference variable whose type is the same as the class from which the object was instantiated.

• Any reference variable whose type is a superclass of the class from which the object was instantiated.
• Any reference variable whose type is an interface that is implemented by the class from which the

object was instantiated.
• Any reference variable whose type is an interface that is implemented by a superclass of the class from

which the object was instantiated, and
• A few other cases involving the class and interface hierarchy.

Such an assignment does not require the use of a cast operator.
Type Object is completely generic
A reference to any object can be assigned to a reference variable of the type Object , because the

Object class is a superclass of every other class.
Converting reference types with a cast
Assignments of references, other than those listed above (p. 350) , require the use of a cast operator to

purposely change the type of the reference.
Doesn't work in all cases

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

348 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

However, it is not possible to perform a successful cast to convert the type of a reference in all cases.
Generally, a cast can only be performed among reference types that fall on the same ancestral line of

the class hierarchy, or on an ancestral line of an interface hierarchy. For example, a reference cannot be
successfully cast to the type of a sibling or a cousin in the class hierarchy.

Downcasting
When we cast a reference along the class hierarchy in a direction from the root class Object toward

the leaves, we often refer to it as a downcast .
While it is also possible to cast in the direction from the leaves to the root, this happens automatically,

and the use of a cast operator is not required.
A sample program
The program named Poly02 , shown in Listing 11 (p. 357) near the end of the module, illustrates the

use of the cast operator with references.
When you examine that program, you will see that two classes named A and C each extend the class

named Object . Hence, we might say that they are siblings in the class hierarchy.
Another class named B extends the class named A . Thus, we might say that A is a child of

Object , and B is a child of A .
The class named A
The de�nition of the class named A is shown in Listing 1 (p. 351) . This class extends the class named

Object .
(Recall that it is not necessary to explicitly state that a class extends the class named Object . Any

class that does not explicitly extend some other class will automatically extend Object by default. The
class named A is shown to extend Object here simply for clarity of presentation.)

Listing 1 . De�nition of the class named A.

class A extends Object{

//this class is empty

}//end class A

Table 3.33

The class named A is empty. It was included in this example for the sole purpose of adding a layer of
inheritance to the class hierarchy.

The class named B
Listing 2 (p. 351) shows the de�nition of the class named B . This class extends the class named A .

Listing 2 . De�nition of the class named B.

class B extends A{

public void m(){

System.out.println("m in class B");

}//end method m()

}//end class B

Table 3.34

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

349

The method named m()
The class named B de�nes a method named m() . The behavior of the method is simply to display

a message each time it is called.
The class named C
Listing 3 (p. 352) contains the de�nition of the class named C , which also extends Object .

Listing 3 . De�nition of the class named C.

class C extends Object{

//this class is empty

}//end class C

Table 3.35

The class named C is also empty. It was included in this example as a sibling class for the class named
A . Stated di�erently, it was included as a class that is not in the ancestral line of the class named B .

The driver class
Listing 4 (p. 352) shows the beginning of the driver class named Poly02 .

Listing 4 . Beginning of the class named Poly02.

public class Poly02{

public static void main(String[] args){

Object var = new B();

Table 3.36

An object of the class named B
The code in Listing 4 (p. 352) instantiates an object of the class B and assigns the object's reference

to a reference variable of type Object .
(It is important to note that the reference to the object of type B was not assigned to a reference

variable of type B . Instead, it was assigned to a reference variable of type Object .)
This assignment is allowable because Object is a superclass of B . In other words, the reference to

the object of the class B is assignment compatible with a reference variable of the type Object .
Automatic type conversion
In this case, the reference of type B is automatically converted to type Object and assigned to

the reference variable of type Object . (Note that the use of a cast operator was not required in this
assignment.)

Only part of the story
However, assignment compatibility is only part of the story. The simple fact that a reference is assignment

compatible with a reference variable of a given type says nothing about what can be done with the reference
after it is assigned to the reference variable.

An illegal operation
For example, in this case, the reference variable that was automatically converted to type Object cannot

be used directly to call the method named m() on the object of type B . This is indicated in Listing 5
(p. 353) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

350 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 5 . An illegal operation.

//var.m();

Table 3.37

An attempt to call the method named m() on the reference variable of type Object in Listing 5 (p.
353) resulted in a compiler error. It was necessary to convert the statement into a comment in order to get
the program to compile successfully.

An important rule
In order to use a reference of a class type to call a method, the method must be de�ned at or above that

class in the class hierarchy.
This case violates the rule
In this case, the method named m() is de�ned in the class named B , which is two levels down from

the class named Object .
When the reference to the object of the class B was assigned to the reference variable of type Object

, the type of the reference was automatically converted to type Object .
Therefore, because the reference is of type Object , it cannot be used directly to call the method

named m() .
The solution is a downcast
In this case, the solution to the problem is a downcast. The code in Listing 6 (p. 353) shows an attempt

to solve the problem by casting the reference down the hierarchy to type A .

Listing 6 . An ine�ective downcast.

//((A)var).m();

Table 3.38

Still doesn't solve the problem
However, this still doesn't solve the problem, and the result is another compiler error. Again, it was

necessary to convert the statement into a comment in order to get the program to compile.
What is the problem here?
The problem is that the downcast simply didn't go far enough down the inheritance hierarchy.
The class named A neither de�nes nor inherits the method named m() . The method named m()

is de�ned in class B , which is a subclass of class A .
Therefore, a reference of type A is no more useful than a reference of type Object insofar as calling

the method named m() is concerned.
The real solution
The solution to the problem is shown in Listing 7 (p. 354) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

351

Listing 7 . A downcast to type B.

((B)var).m();

Table 3.39

The code in Listing 7 (p. 354) casts (temporarily converts) the reference value contained in the Object
variable named var down to type B .

The method named m() is de�ned in the class named B . Therefore, a reference of type B can be
used to call the method.

The code in Listing 7 (p. 354) compiles and executes successfully. This causes the method named m()
to execute, producing the following output on the computer screen.

m in class B

A few odds and ends
Before leaving this topic, let's look at a couple more issues. The code in Listing 8 (p. 354) declares and

populates a new variable of type B .

Listing 8 . Declare a variable of type B.

B v1 = (B)var;

Table 3.40

The code in Listing 8 (p. 354) also uses a cast to:

• Convert the contents of the Object variable to type B
• Assign the converted reference to the new reference variable of type B.

A legal operation
This is a legal operation. In this class hierarchy, the reference to the object of the class B can be

assigned to a reference variable of the types B , A , or Object .
Cannot be assigned to type C
However, the reference to the object of the class B cannot be assigned to a reference variable of any

other type, including the type C . An attempt to do so is shown in Listing 9 (p. 354) .

Listing 9 . Cannot be assigned to type C.

//C v2 = (C)var;

Table 3.41

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

352 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

The code in Listing 9 (p. 354) attempts to cast the reference to type C and assign it to a reference
variable of type C .

A runtime error
Although the program will compile, it won't execute. An attempt to execute the statement in Listing

9 (p. 354) results in a ClassCastException at runtime. As a result, it was necessary to convert the
statement into a comment in order to execute the program.

Another failed attempt
Similarly, an attempt to cast the reference to type B and assign it to a reference variable of type C ,

as shown in Listing 10 (p. 355) , won't compile.

Listing 10 . Another failed attempt.

//C v3 = (B)var;

Table 3.42

The problem here is that the class C is not a superclass of the class named B . Therefore, a reference
of type B is not assignment compatible with a reference variable of type C .

Again, it was necessary to convert the statement into a comment in order to compile the program.

3.2.6.5 Summary

This module discusses type conversion for both primitive and reference types.
A value of a particular type may be assignment compatible with variables of other types.
If the type of a value is not assignment compatible with a variable of a given type, it may be possible to

perform a cast on the value to change its type and assign it to the variable as the new type. For primitive
types, this will often result in the loss of information.

Except for type boolean , values of primitive types can be assigned to any variable whose type represents
a range that is as wide or wider than the range of the value's type. (Values of type boolean can only
be assigned to variables of type boolean .)

With respect to reference types, the reference to an object instantiated from a given class can be assigned
to any of the following without the use of a cast:

• Any reference variable whose type is the same as the class from which the object was instantiated.
• Any reference variable whose type is a superclass of the class from which the object was instantiated.
• Any reference variable whose type is an interface that is implemented by the class from which the

object was instantiated.
• Any reference variable whose type is an interface that is implemented by a superclass of the class from

which the object was instantiated.
• A few other cases involving the class and interface hierarchy.

Assignments of references, other than those listed above, require the use of a cast to change the type of the
reference.

It is not always possible to perform a successful cast to convert the type of a reference. Whether or not a
cast can be successfully performed depends on the relationship of the classes involved in the class hierarchy.

A reference to any object can be assigned to a reference variable of the type Object , because the
Object class is a superclass of every other class.

When we cast a reference along the class hierarchy in a direction from the root class Object toward
the leaves, we often refer to it as a downcast .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

353

Whether or not a method can be called on a reference to an object depends on the current type of the
reference and the location in the class hierarchy where the method is de�ned. In order to use a reference of
a class type to call a method, the method must be de�ned at or above that class in the class hierarchy.

A sample program is provided that illustrates much of the detail involved in type conversion, method
invocation, and casting with respect to reference types.

3.2.6.6 What's next?

I will begin the discussion of runtime polymorphism through method overriding and inheritance in the next
module.

I will demonstrate that for runtime polymorphism, the selection of a method for execution is based on the
actual type of object whose reference is stored in a reference variable, and not on the type of the reference
variable on which the method is called.

3.2.6.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Polymorphism, Type Conversion, Casting, etc.
• File: Java1610.htm
• Published: 02/26/02

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have misappropriated copies of my modules from cnx.org, con-
verted them to Kindle books, and placed them for sale on Amazon.com showing me as the author.
I receive no compensation for those sales and don't know who does receive compensation. If you
purchase such a book, please be aware that it is a bootleg copy of a module that is freely available
on cnx.org.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.2.6.8 Complete program listings

A complete listing of the program is shown in Listing 11 (p. 357) below.

Listing 11 . Complete program listing.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

354 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

/*File Poly02.java

Copyright 2002, R.G.Baldwin

This program illustrates downcasting

Program output is:

m in class B

**************************************/

class A extends Object{

//this class is empty

}//end class A

//===================================//

class B extends A{

public void m(){

System.out.println("m in class B");

}//end method m()

}//end class B

//===================================//

class C extends Object{

//this class is empty

}//end class C

//===================================//

public class Poly02{

public static void main(String[] args){

Object var = new B();

//Following will not compile

//var.m();

//Following will not compile

//((A)var).m();

//Following will compile and run

((B)var).m();

//Following will compile and run

B v1 = (B)var;

//Following will not execute

//C v2 = (C)var;

//Following will not compile

//C v3 = (B)var;

}//end main

}//end class Poly02

Table 3.43

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

355

3.2.7 Java1612: Runtime Polymorphism through Inheritance
112

Revised: Thu Mar 31 12:36:11 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 113

• Object-Oriented Programming (OOP) with Java 114

3.2.7.1 Table of Contents

• Preface (p. 358)

· Viewing tip (p. 358)

* Listings (p. 358)

• Preview (p. 359)
• Discussion and sample code (p. 359)
• Summary (p. 364)
• What's next? (p. 365)
• Miscellaneous (p. 365)
• Complete program listing (p. 365)

3.2.7.2 Preface

This module is one of a series of modules designed to teach you about the essence of Object-Oriented
Programming (OOP) using Java.

3.2.7.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

3.2.7.2.1.1 Listings

• Listing 1 (p. 360) . De�nition of the class named A.
• Listing 2 (p. 361) . De�nition of the class named B.
• Listing 3 (p. 361) . Beginning of the driver class named Poly03.
• Listing 4 (p. 362) . Polymorphic behavior.
• Listing 5 (p. 363) . Source of a compiler error.
• Listing 6 (p. 363) . A new object of type A.
• Listing 7 (p. 366) . Complete program listing.

3.2.7.3 Preview

What is polymorphism?
The meaning of the word polymorphism is something like one name, many forms .
How does Java implement polymorphism?
Polymorphism manifests itself in Java in the form of multiple methods having the same name.
In some cases, multiple methods have the same name, but di�erent formal argument lists (overloaded

methods, which were discussed in a previous module) .

112This content is available online at <http://cnx.org/content/m44177/1.5/>.
113http://cnx.org/contents/dzOvxPFw
114http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

356 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

In other cases, multiple methods have the same name, same return type, and same formal argument list
(overridden methods) .

Three distinct forms of polymorphism
From a practical programming viewpoint, polymorphism manifests itself in three distinct forms in Java:

• Method overloading
• Method overriding through class inheritance
• Method overriding through the Java interface

I covered method overloading as one form of polymorphism (compile-time polymorphism) in a previous
module. I also explained automatic type conversion and the use of the cast operator for type conversion in
a previous module.

In this module ...
I will begin the discussion of runtime polymorphism through method overriding and class inheritance in

this module. I will cover interfaces in a future module.
The essence of runtime polymorphic behavior
With runtime polymorphism based on method overriding,

• the decision as to which version of a method will be executed is based on
• the actual type of the object whose reference is stored in the reference variable, and
• not on the type of the reference variable on which the method is called.

Late binding
The decision as to which version of the method to call cannot be made at compile time. That decision

must be deferred and made at runtime. This is sometimes referred to as late binding .

3.2.7.4 Discussion and sample code

Operational description of runtime polymorphism
Here is an operational description of runtime polymorphism as implemented in Java through class inher-

itance and method overriding:

• Assume that a class named SuperClass de�nes a method named method .
• Assume that a class named SubClass extends SuperClass and overrides the method named

method .
• Assume that a reference to an object of the class named SubClass is assigned to a reference variable

named ref of type SuperClass .
• Assume that the method named method is then called on the reference variable using the following

syntax:

· ref.method()

• Result: The version of the method named method that will actually be executed is the
overridden version in the class named SubClass , and is not the version that is de�ned in the class
named SuperClass, even though the reference to the object of type SubClass is stored in a
variable of type SuperClass .

This is runtime polymorphism in a nutshell, which is sometimes also referred to as late-binding.
Runtime polymorphism is very powerful
As you gain more experience with Java, you will learn that much of the power of OOP using Java is

centered on runtime polymorphism using class inheritance, interfaces, and method overriding. (The use of
interfaces for polymorphism will be discussed in a future module.)

An important attribute of runtime polymorphism
The decision as to which version of the method to execute

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

357

• is based on the actual type of object whose reference is stored in the reference variable, and
• is not based on the type of the reference variable on which the method is called.

Why is it called runtime polymorphism?
The reason that this type of polymorphism is often referred to as runtime polymorphism is because the

decision as to which version of the method to execute cannot be made until runtime. The decision cannot
be made at compile time.

Why defer the decision?
The decision cannot be made at compile time because the compiler has no way of knowing (when the

program is compiled) the actual type of the object whose reference will be stored in the reference variable .
In an extreme case, for example, the object might be de-serialized at runtime from a network connection

of which the compiler has no knowledge.
Could be either type
For the situation described above, that de-serialized object could just as easily be of type SuperClass

as of type SubClass . In either case, it would be valid to assign the object's reference to the same
superclass reference variable.

If the object were of the SuperClass type, then a call to the method named method on the reference
would cause the version of the method de�ned in SuperClass , and not the version de�ned in SubClass
, to be executed. (The version executed is determined by the type of the object and not by the type of the
reference variable containing the reference to the object.)

Sample Program
Let's take a look at a sample program that illustrates runtime polymorphism using class inheritance and

overridden methods. The name of the program is Poly03 . A complete listing of the program is shown in
Listing 7 (p. 366) near the end of the module.

Listing 1 (p. 360) shows the de�nition of a class named A , which extends the class named Object .
(Remember that any class that doesn't extend some other class automatically extends Object by

default, and it is not necessary to show that explicitly as I did in this example.)

Listing 1 . De�nition of the class named A.

class A extends Object{

public void m(){

System.out.println("m in class A");

}//end method m()

}//end class A

Table 3.44

The class named A de�nes a method named m() .
Behavior of the method
The behavior of the method, as de�ned in the class named A , is to display a message indicating that

it has been called, and that it is de�ned in the class named A .
This message will allow us to determine which version of the method is executed in each case discussed

later.
The class named B
Listing 2 (p. 361) shows the de�nition of a class named B that extends the class named A .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

358 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 2 . De�nition of the class named B.

class B extends A{

public void m(){

System.out.println("m in class B");

}//end method m()

}//end class B

Table 3.45

The class named B overrides (rede�nes) the method named m() , which it inherits from the class
named A .

Behavior of the overridden version of the method
Like the inherited version, the overridden version displays a message indicating that it has been called.

However, the message is di�erent from the message displayed by the inherited version discussed above. The
overridden version tells us that it is de�ned in the class named B . (The behavior of the overridden version
of the method is appropriate for an object instantiated from the class named B .)

Again, this message will allow us to determine which version of the method is executed in each case
discussed later.

The driver class
Listing 3 (p. 361) shows the beginning of the driver class named Poly03 .

Listing 3 . Beginning of the driver class named Poly03.

public class Poly03{

public static void main(String[] args){

Object var = new B();

((B)var).m();

Table 3.46

A new object of the class B
The code in the main method begins by instantiating a new object of the class named B , and

assigning the object's reference to a reference variable of type Object .
(Recall that this is legal because an object's reference can be assigned to any reference variable whose

type is a superclass of the class from which the object was instantiated. The class named Object is the
superclass of all classes.)

Downcast and call the method
If you read the earlier module on casting, it will come as no surprise to you that the second statement in

the main method, which casts the reference down to type B and calls the method named m() on it,
will compile and execute successfully.

Which version is executed?
The execution of the method produces the following output on the computer screen:

m in class B

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

359

By examining the output, you can con�rm that the version of the method that was overridden in the class
named B is the version that was executed.

Why was this version executed?
This should also come as no surprise to you. The cast converts the type of the reference from type

Object to type B .
You can always call a public method belonging to an object using a reference to the object whose type

is the same as the class from which the object was instantiated.
Not runtime polymorphic behavior
Just for the record, the above call to the method does not constitute runtime polymorphism (in my

opinion) . I included that call to the method to serve as a backdrop for what follows.
Runtime polymorphic behavior
However, the following call to the method does constitute runtime polymorphism.
The statement in Listing 4 (p. 362) casts the reference down to type A and calls the method named

m() on that reference.
It may not come as a surprise to you that the call to the method shown in Listing 4 (p. 362) also compiles

and runs successfully.

Listing 4 . Polymorphic behavior.

((A)var).m();

Table 3.47

The method output
Here is the punch line. Not only does the statement in Listing 4 (p. 362) compile and run successfully,

it produces the following output, (which is exactly the same output as before) :

m in class B

Same method executed in both cases
It is important to note that this output, (produced by casting the reference variable to type A instead

of type B) , is exactly the same as that produced by the earlier call to the method when the reference
was cast to type B . This means that the same version of the method was executed in both cases.

This con�rms that, even though the type of the reference was converted to type A , (rather than type
Object or type B) , the overridden version of the method de�ned in class B was actually executed.
This is an example of runtime polymorphic behavior.
The version of the method that was executed was based on

• the actual type of the object, B , and
• not on the type of the reference, A .

This is an extremely powerful and useful concept.
Another call to the method
Now take a look at the statement in Listing 5 (p. 363) . Will this statement compile and execute

successfully? If so, which version of the method will be executed?

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

360 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 5 . Source of a compiler error.

var.m();

Table 3.48

Compiler error
The code in Listing 5 (p. 363) attempts, unsuccessfully, to call the method named m() using the

reference variable named var , which is of type Object . The result is a compiler error, which, depending
on your version of the JDK, will be similar to the following:

Poly03.java:40: cannot resolve symbol

symbol : method m ()

location: class java.lang.Object

var.m();

^

Some important rules
The Object class does not de�ne a method named m() . Therefore, the overridden method named

m() in the class named B is not an overridden version of a method that is de�ned in the class named
Object .

Necessary, but not su�cient
Runtime polymorphism based on class inheritance requires that the type of the reference variable be a

superclass of the class from which the object (on which the method will be called) is instantiated.
However, while necessary, that is not su�cient.
The type of the reference variable must also be a class that either de�nes or inherits the method

that will ultimately be called on the object.
This method is not de�ned in the Object class
Since the class named Object neither de�nes nor inherits the method named m() , a reference of

type Object does not qualify as a participant in runtime polymorphic behavior in this case. The attempt
to use it as a participant resulted in the compiler error given above.

One additional scenario
Before leaving this topic, let's look at one additional scenario to help you distinguish what is, and what

is not, runtime polymorphism. Consider the code shown in Listing 6 (p. 363) .

Listing 6 . A new object of type A.

var = new A();

((A)var).m();

Table 3.49

A new object of type A
The code in Listing 6 (p. 363) instantiates a new object of the class named A , and stores the object's

reference in the original reference variable named var of type Object .
(As a side note, this overwrites the previous contents of the reference variable with a new reference and

causes the object whose reference was previously stored there to become eligible for garbage collection.)
Downcast and call the method

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

361

Then the code in Listing 6 (p. 363) casts the reference down to type A , (the type of the object to
which the reference refers) , and calls the method named m() on the downcast reference.

The output
As you would probably predict, this produces the following output on the computer screen:

m in class A

In this case, the version of the method de�ned in the class named A , (not the version de�ned in B)
was executed.

Not polymorphic behavior
In my view, this is not polymorphic behavior (at least it isn't a very useful form of polymorphic behavior)

. This code simply converts the type of the reference from type Object to the type of the class from which
the object was instantiated, and calls one of its methods. Nothing special takes place regarding a selection
among di�erent versions of the method.

Some authors may disagree
While some authors might argue that this is technically runtime polymorphic behavior, in my view at

least, it does not illustrate the real bene�ts of runtime polymorphic behavior. The bene�ts of runtime
polymorphic behavior generally accrue when the actual type of the object is a subclass of the type of the
reference variable containing the reference to the object.

Once again, what is runtime polymorphism?
As I have discussed in this module, runtime polymorphic behavior based on class inheritance occurs when

• The type of the reference is a superclass of the class from which the object was instantiated.
• The version of the method that is executed is the version that is either de�ned in, or inherited into,

the class from which the object was instantiated.

More than you ever wanted to hear
And that is probably more than you ever wanted to hear about runtime polymorphism based on class

inheritance.
A future module will discuss runtime polymorphism based on the Java interface. From a practical

viewpoint, you will �nd the rules to be similar but somewhat di�erent in the case of the Java interface.
A very important concept
As an example of the importance of runtime polymorphism in Java, the entire event-driven graphical

user interface structure of Java is based on runtime polymorphism involving the Java interface.

3.2.7.5 Summary

Polymorphism manifests itself in Java in the form of multiple methods having the same name.
From a practical programming viewpoint, polymorphism manifests itself in three distinct forms in Java:

• Method overloading
• Method overriding through class inheritance
• Method overriding through the Java interface

This module discusses method overriding through class inheritance.
With runtime polymorphism based on method overriding, the decision as to which version of a method

will be executed is based on the actual type of object whose reference is stored in the reference variable, and
not on the type of the reference variable on which the method is called.

The decision as to which version of the method to call cannot be made at compile time. That decision
must be deferred and made at runtime. This is sometimes referred to as late binding.

This is illustrated in the sample program discussed in this module.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

362 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.2.7.6 What's next?

In the next module, I will continue my discussion of the implementation of polymorphism using method
overriding through class inheritance, and I will concentrate on a special case in that category.

Speci�cally, I will discuss the use of the Object class as a completely generic type for storing references
to objects of subclass types, and explain how that results in a very useful form of runtime polymorphism.

3.2.7.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Runtime Polymorphism through Class Inheritance
• File: Java1612.htm
• Published: 02/27/02

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have misappropriated copies of my modules from cnx.org, con-
verted them to Kindle books, and placed them for sale on Amazon.com showing me as the author.
I receive no compensation for those sales and don't know who does receive compensation. If you
purchase such a book, please be aware that it is a bootleg copy of a module that is freely available
on cnx.org.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.2.7.8 Complete program listing

A complete listing of the program is shown in Listing 7 (p. 366) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

363

Listing 7 . Listing 7 (p. 366) : Complete program listing.

/*File Poly03.java

Copyright 2002, R.G.Baldwin

This program illustrates downcasting

and polymorphic behavior

Program output is:

m in class B

m in class B

m in class A

**************************************/

class A extends Object{

public void m(){

System.out.println("m in class A");

}//end method m()

}//end class A

//===================================//

class B extends A{

public void m(){

System.out.println("m in class B");

}//end method m()

}//end class B

//===================================//

public class Poly03{

public static void main(String[] args){

Object var = new B();

//Following will compile and run

((B)var).m();

//Following will also compile

// and run due to polymorphic

// behavior.

((A)var).m();

//Following will not compile

//var.m();

//Instantiate obj of class A

var = new A();

//Call the method on it

((A)var).m();

}//end main

}//end class Poly03

Table 3.50

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

364 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.2.8 Java1614: Polymorphism and the Object Class
115

Revised: Thu Aug 11 20:51:34 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 116

• Object-Oriented Programming (OOP) with Java 117

3.2.8.1 Table of Contents

• Preface (p. 367)

· Viewing tip (p. 367)

* Listings (p. 367)

• Preview (p. 367)
• Discussion and sample code (p. 368)
• Summary (p. 373)
• What's next? (p. 373)
• Miscellaneous (p. 373)
• Complete program listing (p. 374)

3.2.8.2 Preface

This module is one of a series of modules designed to teach you about the essence of Object-Oriented
Programming (OOP) using Java.

3.2.8.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

3.2.8.2.1.1 Listings

• Listing 1 (p. 369) . De�nition of the class named A.
• Listing 2 (p. 369) . De�nition of the class named B.
• Listing 3 (p. 370) . De�nition of the class named C.
• Listing 4 (p. 371) . Beginning of the class named Poly04.
• Listing 5 (p. 372) . A new object of the class named B.
• Listing 6 (p. 372) . A new object of the class named C.
• Listing 7 (p. 375) . Complete program listing.

3.2.8.3 Preview

What is polymorphism?
If you have studied the earlier modules in this collection, you should already know what polymorphism

is, how it is implemented in Java, the three distinct forms of polymorphism in Java, etc.
I discussed runtime polymorphism implemented through method overriding and class inheritance in a

previous module. However, before leaving that topic, I need to discuss an important special case.

115This content is available online at <http://cnx.org/content/m44190/1.7/>.
116http://cnx.org/contents/dzOvxPFw
117http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

365

In this module, I will discuss the use of the Object class as a completely generic type for storing
references to objects of subclass types, and will explain how that results in a very useful form of runtime
polymorphism.

I will brie�y discuss the default versions of eleven methods de�ned in the Object class, and will explain
that in many cases, those default versions are meant to be overridden.

3.2.8.4 Discussion and sample code

The Java Collections Framework
Java supports a framework, known as the Java Collections Framework, which you can read about here

118 .
Without getting into a lot of detail, the framework provides several concrete implementations of interfaces

with names like list , set , and map .
The classes that provide the implementations have names like LinkedList , TreeSet , ArrayList

, Vector , and Hashtable . As you might recognize, the framework satis�es the requirements for what
we might refer to as classical data structures.

Not the purpose ...
However, it is not the purpose of this module to discuss either the Java Collections Framework, or classical

data structures. Rather, they are mentioned here simply because the framework provides a good example of
the use of the Object class as a generic type for runtime polymorphic behavior.

(Also beyond the scope of this module is the fact that the framework provides an outstanding example
of the implementation of polymorphic behavior through the use of the Java interface. The use of the Java
interface is a topic for a future module)

References of type Object
The classes mentioned above store references to objects created according to interfaces, contracts, and

stipulations provided by the framework. More importantly for the purposes of this module, those references
are stored as type Object . (See Java4210: Getting Started with Generics 119 for additional information
on this topic.)

The Object type is a completely generic type, which can be used to store a reference to any object
that can be instantiated in Java.

Methods de�ned in the Object class
In an earlier module, I told you that the class named Object de�nes default versions of the following

methods:

• clone()
• equals(Object obj)
• �nalize()
• getClass()
• hashCode()
• notify()
• notifyAll()
• toString()
• wait()
• wait(long timeout)
• wait(long timeout, int nanos)

Every class inherits these methods
Because every class is either a direct or indirect subclass of Object , every class in Java, (including

new classes that you de�ne) , inherits these eleven methods.
To be overridden ...

118http://cnx.org/contents/dzOvxPFw:BaPSYll8
119http://cnx.org/contents/-2RmHFs_:Ss0r2-1m

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

366 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Some of these eleven methods are intended to be overridden for various purposes.
Calling methods of the Object class
You can store a reference to any object in a reference variable of type Object .
If you have studied the previous modules in this collection, you also know how runtime polymorphism

based on class inheritance works.
Given the above, you should know that you can call any of the methods de�ned in the Object class on

any reference to any object stored in a reference variable of type Object (including the references stored
in the concrete implementations of the Java Collections Framework) .

And the behavior will be ...
If the class from which that object is instantiated inherits or de�nes an overridden version of one of

the methods in the above list, calling that method on the reference will cause the overridden version to be
executed.

Otherwise, calling that method on the reference will cause the default version de�ned in the Object
class to be executed.

A sample program
This is illustrated in the program named Poly04 , which you can view in its entirety in Listing 7 (p.

375) near the end of this module.
For purposes of illustration, this program deals speci�cally with the method named toString from the

above list, but it could deal just as well with other non-�nal methods in the list.
The class named A
Listing 1 (p. 369) de�nes a class named A , which extends the class named Object (recall that it is

not necessary to explicitly show that a class extends Object).

Listing 1 . De�nition of the class named A.

class A extends Object{

//This class is empty

}//end class A

Table 3.51

Does not override the toString method
The most important thing to note about the class named A is that it does not override any of the

methods that it inherits from the class named Object .
For purposes of this illustration, we will say that it inherits the default version of the method named

toString , from the class named Object . (We will see an example of the behavior of the default version
of the toString method shortly.)

The class named B
Listing 2 (p. 369) contains the de�nition of a class named B . This class extends the class named A .

Listing 2 . De�nition of the class named B.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

367

class B extends A{

public String toString(){

return "toString in class B";

}//end overridden toString()

}//end class B

Table 3.52

Overrides the toString method
Of particular interest, for purposes of this module, is the fact that the class named B does override the

inherited t oString method.
(The class named B inherits the default version of the method, because its superclass named A ,

which extends Object , does not override the toString method.)
Purpose of the toString method
The purpose of the toString method is to return a reference to an object of the class String that

represents an object instantiated from a class that overrides the method.
Here is part of what Sun has to say about the toString method:
"Returns a string representation of the object. In general, the toString method returns a string that

"textually represents" this object. The result should be a concise but informative representation that is easy
for a person to read. It is recommended that all subclasses override this method."

Behavior of the overridden version
As you can see, I didn't follow Sun's advice very closely in this program. To begin with, I didn't override

the toString method in the class named A .
Further, the behavior of my overridden version of the toString method in the class named B doesn't

provide much in the way of a textual representation of an object instantiated from class B .
My overridden version simply returns a reference to a String object, containing text that indicates

that the overridden version of the method de�ned in the class named B has been executed. (Of course,
there wasn't much about an object instantiated from the class named B that could be represented in a
textual way.)

Will be useful later
The reference to the String object returned by the overridden version of the toString method will

prove useful later when we need to determine which version of the method is actually executed.
The class named C
Listing 3 (p. 370) shows the de�nition of a class named C , which extends the class named B , and

overrides the method named toString again. (A non-�nal method can be overridden by every class that
inherits it, resulting in potentially many di�erent overridden versions of a method in a class hierarchy.)

Listing 3 . De�nition of the class named C.

class C extends B{

public String toString(){

return "toString in class C";

}//end overridden toString()

}//end class C

Table 3.53

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

368 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Behavior of overridden version
The behavior of this overridden version of the method is similar to, but di�erent from the overridden

version in the class B .
In this case, the method returns a reference to a String object that can be used to con�rm that this

overridden version of the method has been executed.
The driver class
Finally, Listing 4 (p. 371) shows the beginning of the driver class named Poly04 .

Listing 4 . Beginning of the class named Poly04.

public class Poly04{

public static void main(String[] args){

Object varA = new A();

String v1 = varA.toString();

System.out.println(v1);

Table 3.54

A new object of the class A
The main method of the driver class begins by instantiating a new object of the class A , and saving

the object's reference in a reference variable of type Object , named varA .
Call toString method on the reference
Then the code in Listing 4 (p. 371) calls the toString method on the reference variable named varA

, saving the returned reference to the String in a reference variable of type String named v1 .
Display the returned String
Finally, that reference is passed to the println method, causing the String returned by the toString

method to be displayed on the computer screen.
(In a future module, you will learn that some of the code in Listing 4 (p. 371) (p. 371) is redundant.)
This causes the following text to be displayed on the computer screen:

A@111f71

Pretty ugly, huh?
Nowhere does our program explicitly show the creation of any text that looks anything like this. Where

did it come from?
Default toString behavior
What you are seeing here is the String produced by the default version of the toString method, as

de�ned by the class named Object .
Class A does not override toString
Recall that our new class named A does not override the toString method. Therefore, when the

toString method is called on a reference to an object of the class A , the default version of the method
is executed, producing output similar to that shown above (p. 371) .

What does Sun have to say?
Here is more of what Sun has to say about the default version of the toString method
"The toString method for class Object returns a string consisting of the name of the class of which

the object is an instance, the at-sign character `@', and the unsigned hexadecimal representation of the hash
code of the object."

You should recognize this as a description of the output produced by calling the toString method on
the reference to the object of the class A . That explains the ugliness of the screen output shown above
(p. 371) (hexadecimal representations of hashcodes are usually pretty ugly) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

369

A new object of the class B
Now consider the code shown in Listing 5 (p. 372) , which instantiates a new object of the class named

B , and stores the object's reference in a reference variable of type Object .

Listing 5 . A new object of the class named B.

Object varB = new B();

String v2 = varB.toString();

System.out.println(v2);

Table 3.55

Call toString and display the result
The code in Listing 5 (p. 372) calls the toString method on the reference of type Object , saving the

returned reference in the reference variable named v2 . (Recall that the toString method is overridden
in the class named B.)

As before, the reference is passed to the println method, which causes the following text to be displayed
on the computer screen.

toString in class B

Do you recognize this?
You should recognize this as the text that was encapsulated in the String object by the overridden

version of the toString method de�ned in the class named B .
Overridden version of toString was executed
This veri�es that even though the reference to the object of the class B was stored in a reference variable

of type Object , the overridden version of the toString method de�ned in the class named B was
executed (instead of the default version de�ned in the class named Object) . This is a good example of
runtime polymorphic behavior , as described in a previous module.

As you learned in the previous module, the selection of a method for execution is based on the actual
type of object whose reference is stored in a reference variable, and not on the type of the reference
variable on which the method is called.

An object of the class C
Finally, the code in Listing 6 (p. 372)

• Instantiates a new object of the class C .
• Stores the object's reference in a reference variable of type Object .
• Calls the toString method on the reference.
• Displays the returned string on the computer screen.

Listing 6 . A new object of the class named C.

Object varC = new C();

String v3 = varC.toString();

System.out.println(v3);

Table 3.56

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

370 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

What will the output look like?
By now, you should know what to expect in the way of text appearing on the computer screen. The code

in Listing 6 (p. 372) causes the following text to be displayed:

toString in class C

Overridden version of toString was called
This con�rms what you should already have known by now. In particular, even though the reference to

the object of the class C is stored in a reference variable of type Object , the overridden version of
the toString method de�ned in the class named C was executed. Again, this is runtime polymorphic
behavior based on class inheritance and method overriding.

No downcasting was required
It is also very important to note that no downcasting was required in order to call the toString method

in any of the cases shown above.
Because a default version of the toString method is de�ned in the Object class, the toString

method can be called without a requirement for downcasting on a reference to any object stored in a variable
of type Object . This holds true for any of the eleven methods de�ned in the class named Object
(although some of those methods are declared �nal and therefore may not be overridden) .

3.2.8.5 Summary

Polymorphism manifests itself in Java in the form of multiple methods having the same name.
From a practical programming viewpoint, polymorphism manifests itself in three distinct forms in Java:

• Method overloading
• Method overriding through class inheritance
• Method overriding through the Java interface

In this module, I have continued my discussion of the implementation of polymorphism using method over-
riding through class inheritance, and have concentrated on a special case in that category.

More speci�cally, in this module, I have discussed the use of the Object class as a completely generic
type for storing references to objects of subclass types, and have explained how that results in a very useful
form of runtime polymorphism. .

I brie�y mentioned the default version of the eleven methods de�ned in the Object class, and explained
that in some cases, those default versions are meant to be overridden.

I provided a sample program that illustrates the overriding of the toString method, which is one of
the eleven methods de�ned in the Object class.

3.2.8.6 What's next?

In the next module, I will embark on an explanation of runtime polymorphic behavior based on the Java
interface and method overriding.

In my opinion, this is one of the most important concepts in Java OOP, and the one that seems to give
students the greatest amount of di�culty.

3.2.8.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Polymorphism and the Object Class
• File: Java1614.htm
• Published: 03/13/02

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

371

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have misappropriated copies of my modules from cnx.org, con-
verted them to Kindle books, and placed them for sale on Amazon.com showing me as the author.
I receive no compensation for those sales and don't know who does receive compensation. If you
purchase such a book, please be aware that it is a bootleg copy of a module that is freely available
on cnx.org.

A�liation :: I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.2.8.8 Complete program listing

A complete listing of the program is shown in Listing 7 (p. 375) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

372 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 7 . Complete program listing.

/*File Poly04.java

Copyright 2002, R.G.Baldwin

This program illustrates polymorphic

behavior

Program output is:

A@111f71

toString in class B

toString in class C

**************************************/

class A extends Object{

//This class is empty

}//end class A

//===================================//

class B extends A{

public String toString(){

return "toString in class B";

}//end overridden toString()

}//end class B

//===================================//

class C extends B{

public String toString(){

return "toString in class C";

}//end overridden toString()

}//end class B

//===================================//

public class Poly04{

public static void main(String[] args){

Object varA = new A();

String v1 = varA.toString();

System.out.println(v1);

Object varB = new B();

String v2 = varB.toString();

System.out.println(v2);

Object varC = new C();

String v3 = varC.toString();

System.out.println(v3);

}//end main

}//end class Poly04

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

373

Table 3.57

-end-

3.2.9 Java1616: Polymorphism and Interfaces, Part 1
120

Revised: Thu Mar 31 14:33:41 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 121

• Object-Oriented Programming (OOP) with Java 122

3.2.9.1 Table of Contents

• Preface (p. 376)

· Viewing tip (p. 376)

* Listings (p. 376)

• Preview (p. 377)
• Discussion and sample code (p. 377)
• Summary (p. 384)
• What's next? (p. 384)
• Miscellaneous (p. 384)
• Complete program listings (p. 385)

3.2.9.2 Preface

This module is one of a series of modules designed to teach you about the essence of Object-Oriented
Programming (OOP) using Java.

3.2.9.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

3.2.9.2.1.1 Listings

• Listing 1 (p. 378) . De�nition of interfaces named I1 and I2.
• Listing 2 (p. 379) . De�nition of the class named A.
• Listing 3 (p. 379) . De�nition of the class named B.
• Listing 4 (p. 381) . De�nition of the class named C.
• Listing 5 (p. 381) . The driver class named Poly05.
• Listing 6 (p. 386) . Complete program listing.

120This content is available online at <http://cnx.org/content/m44195/1.6/>.
121http://cnx.org/contents/dzOvxPFw
122http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

374 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.2.9.3 Preview

Method overloading
I covered method overloading as one form of polymorphism (compile-time polymorphism) in a previous

module. I also explained automatic type conversion and the use of the cast operator for type conversion in
a previous module.

Method overriding and class inheritance
I also discussed runtime polymorphism implemented through method overriding and class inheritance in

previous modules.
Using the Java interface
In this module and the next, I will explain runtime polymorphism as implemented using method overriding

and the Java interface.
A very important concept
In my opinion, this is one of the most important concepts in Java OOP, and the one that seems to give

students the greatest amount of di�culty. Therefore, I will try to take it slow and easy. As usual, I will
illustrate the concept using sample programs.

I will also tie this concept back to the concept of polymorphism using method overriding through inher-
itance.

A skeleton program
In this module, I will present a simple skeleton program that illustrates many of the important aspects

of polymorphic behavior based on the Java interface.
Multiple inheritance and the cardinal rule
I will explain how the implementation of interfaces in Java is similar to multiple inheritance. I will explain

the cardinal rule of interface implementation.
A new relationship
I will explain that objects instantiated from classes that implement the same interface have a new rela-

tionship that goes beyond the relationship imposed by the standard class hierarchy.
One object, many types
I will explain that due to the combination of the class hierarchy and the fact that a class can implement

many di�erent interfaces, a single object in Java can be treated as many di�erent types. However, for any
given type, there are restrictions on the methods that can be called on the object.

Many classes, one type
I will explain that because di�erent classes can implement the same interface, objects instantiated from

di�erent classes can be treated as a common interface type.
Interfaces are critical to Java programming
I will suggest that there is little if anything useful that can be done in Java without understanding and

using interfaces.
In support of this suggestion, I will discuss several real-world examples of the use of the Java inter-

face, including the Delegation Event Model, the Model View Control paradigm, and iterators in Java data
structures.

3.2.9.4 Discussion and sample code

Listing 6 (p. 386) near the end of the module contains a very simple program named Poly05 .
The purpose of this program is to illustrate polymorphic behavior using interfaces in addition to class

inheritance.
Designed to illustrate structure
This is a skeleton program designed solely to illustrate the inheritance and interface implementation

structure in as simple a program as possible. (I will put some meat on this skeleton using another program
in the next module.)

Empty methods

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

375

Except for the two methods that return type String , all of the methods in the program are empty.
(Methods that return type String cannot be empty. They must contain a return statement in order to
compile successfully.)

Interface de�nitions
Listing 1 (p. 378) shows the de�nition of two simple interfaces named I1 and I2 .

Listing 1 . De�nition of interfaces named I1 and I2.

interface I1{

public void p();

}//end interface I1

//===================================//

interface I2 extends I1{

public void q();

}//end interface I2

Table 3.58

Similar but di�erent
An interface de�nition is similar to a class de�nition. However, there are some very important di�erences.
No single hierarchy
To begin with, unlike the case with classes, there is no single interface hierarchy. Also, multiple inheritance

is allowed when extending interfaces.
A new interface can extend none, one, or more existing interfaces. In Listing 1 (p. 378) , I2 extends

I1 , but I1 doesn't extend any other interface (and unlike classes, an interface doesn't automatically
extend another interface by default) .

Two kinds of members allowed
Only two kinds of members are allowed in an interface de�nition:

• Methods, which are implicitly abstract
• Variables, which are implicitly constant (�nal)

Each of the interfaces in Listing 1 (p. 378) declares an implicitly abstract method (an abstract method does
not have a body) .

Neither of the interfaces in Listing 1 (p. 378) declares any variables (they aren't needed for the purpose
of this module) .

A new data type
I told you earlier that when you de�ne a new class, you cause a new data type to become available to

your program. The same is true of an interface de�nition. Each interface de�nition constitutes a new type.
The class named A
Listing 2 (p. 379) de�nes a very simple class named A , which in turn de�nes two methods named

toString and x .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

376 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 2 . De�nition of the class named A.

class A extends Object{

public String toString(){

return "toString in A";

}//end toString()

//---------------------------------//

public String x(){

return "x in A";

}//end x()

//---------------------------------//

}//end class A

Table 3.59

Overridden toString
The method named toString in Listing 2 (p. 379) is actually an overridden version of the method

having the same name that is de�ned in the class named Object . (Recall that a previous module made
heavy use of overridden versions of the toString method.)

New method
The method named x is newly de�ned in the class named A . (The method named x is not

inherited into the class named A , because the class named Object does not de�ne a method named
x .)

The class named B
Listing 3 (p. 379) contains material that is new to this module.

Listing 3 . De�nition of the class named B.

class B extends A implements I2{

public void p(){

}//end p()

//---------------------------------//

public void q(){

}//end q();

//---------------------------------//

}//end class B

Table 3.60

Implementing an interface
Listing 3 (p. 379) de�nes a class named B , which extends the class named A , and implements

the interface named I2 .
As you already know, a class in Java can extend only one other class. However, a Java class can implement

any number of interfaces. (Multiple inheritance is allowed with interfaces.)
Similar to an abstract class

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

377

An interface is similar, but not identical, to an abstract class. (An abstract class may contain
abstract methods or concrete methods, or a combination of the two while all of the methods in an interface
are implicitly abstract.)

Restrictions
An abstract class cannot be instantiated. Thus, an abstract class is only useful when it is extended by

another class.
An interface also cannot be instantiated.
Implicitly abstract methods
As mentioned above, all methods declared in an interface are implicitly abstract, but that is not true

for an abstract class. An abstract class can also contain fully-de�ned (concrete) methods. Regardless, an
abstract class cannot be instantiated.

A totally abstract class
At the risk of o�ending the purists, I will coin a new term here and say that an interface is similar to a

totally abstract class (one that contains only abstract method declarations and �nal variables) .
To a �rst degree of approximation then, we might say that the class named B is not only a subclass of

the class named A , it is also a subclass of the totally abstract class named I2 . (This is pretty far
out with respect to terminology, so to avoid being embarrassed, you probably shouldn't repeat it to anyone
else.)

Since I2 extends I1 , we might also say that the class named B is a subclass of the totally abstract
class named I1 .

A di�erent kind of thinking
With this kind of thinking, we have suddenly make it possible for Java classes to support multiple

inheritance , with the stipulation that all but one of the inherited classes must be totally abstract classes .
Be very careful with this way of thinking
However, we need to be very careful with this kind of thinking. While it may help some students to

understand the role of interfaces in Java, there are probably some hidden dangers lurking here.
Back to the safety zone
The safest course of action is to simply say that the class named B :

• Extends the class named A
• Implements the interface named I2 directly
• Implements the interface named I1 through inheritance

Java does not support multiple inheritance, but it does allow you to extend one class and implement any
number of interfaces.

The cardinal rule regarding interface implementation
The cardinal rule in implementing interfaces is:
If a class implements an interface, it must provide a concrete de�nition for all the methods declared

by that interface, and all the methods inherited by that interface. Otherwise, the class must be declared
abstract and the de�nitions must be provided by a class that extends the abstract class.

The cardinal rule regarding class inheritance
A similar rule exists for de�ning classes that inherit abstract methods from other classes:
If a class inherits one or more abstract methods from its superclasses, it must provide concrete de�nitions

for all the inherited abstract methods. Otherwise, the class must be declared abstract and the concrete
de�nitions must be provided by a class that extends the abstract class.

What does that mean in this case?
In this case, this means that the class named B must provide concrete de�nitions for the methods

named p and q , because:

• The class named B implements the interface named I2 .
• The method named q is declared in the interface named I2 .
• The interface named I2 extends the interface named I1 .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

378 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• The method named p is declared in the interface named I1 .

As in method overriding, the signature of the concrete method in the de�ning class must match the signature
of the method as it is declared in the interface.

Class B satis�es the cardinal rule
As you can see from Listing 3 (p. 379) , the class named B does provide concrete (but empty)

de�nitions of the methods named p and q .
(As mentioned earlier, I made the methods empty in this program for simplicity. However, it is not

uncommon to de�ne empty methods in classes that implement interfaces that declare a large number of
methods, such as the MouseListener interface. See my tutorials on event-driven programming here
123 for examples.)

The class named C
Listing 4 (p. 381) de�nes a class named C , which extends Object , and also implements I2 . As

in the case of the class named B , this class must, and does, provide concrete (but empty) de�nitions for
the methods named p and q .

Listing 4 . De�nition of the class named C.

class C extends Object implements I2{

public void p(){

}//end p()

//---------------------------------//

public void q(){

}//end q();

//---------------------------------//

}//end class B

Table 3.61

A driver class
Finally, the driver class named Poly05 shown in Listing 5 (p. 381) de�nes an empty main method.

Listing 5 . The driver class named Poly05.

public class Poly05{

public static void main(String[] args){

}//end main

}//end class Poly05

Table 3.62

Doesn't do anything
As mentioned earlier, the purpose of this program is solely to illustrate an inheritance and interface

structure. This program can be compiled and executed, but it doesn't do anything useful.

123http://cnx.org/contents/-2RmHFs_:qfO9iJX-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

379

A new relationship
At this point, it might be useful for you to sketch out the structure in a simple hierarchy diagram.
If you do, you will see that implementation of the interface named I2 by the classes named B and

C , has created a relationship between those two classes that is totally independent of the normal class
hierarchical relationship.

What is the new relationship?
By declaring that both of these classes implement the same interface named I2 , we are guaranteeing

that an object of either class will contain concrete de�nitions of the two methods declared in the interfaces
named I2 and I1 .

Furthermore, we are guaranteeing that objects instantiated from the two classes can be treated as the
common type I2 .

(Important : references to any objects instantiated from classes that implement I2 , can
be stored in reference variables of the type I2 , and any of the interface methods can be called on those
references.)

We know the user interface
The signatures of the interface methods in the two classes must match the signatures declared in the

interfaces.
This means that if we have access to the documentation for the interfaces, we also know the signatures

of the interface methods for objects instantiated from any class that implements the interfaces.
Di�erent behavior
However, and this is extremely important, the behavior of the interface methods as de�ned in the class

named B may be (and often will be) entirely di�erent from the behavior of the interface methods having
the same signatures as de�ned in the class named C .

Possibly the most powerful concept in Java
This is possibly the most powerful (and most di�cult) concept embodied in the Java programming

language.
If you don't understand interfaces ...
I usually tell my students several times each semester that if they don't understand interfaces, they don't

really understand Java.
It is unlikely that you will ever be successful as a Java programmer without an understanding of interfaces.
There are very few worthwhile programs that can be written in Java without an understanding of inter-

faces.
The core aspect
So, what is the core aspect of this concept that is so powerful?
I told you earlier that each interface de�nition constitutes a new type. As a result, a reference to any

object instantiated from any class that implements a given interface can be treated as the type of the
interface.

So what!
When a reference to an object is treated as an interface type, any method declared in, or inherited into

that interface can be called on the reference to the object.
However, the behavior of the method when called on references to di�erent objects of the same interface

type may be very di�erent. In the current jargon, the behavior is appropriate for the object on which it is
called .

One object, many types
Furthermore, because a single class can implement any number of di�erent interfaces, a single object

instantiated from a given class can be treated as any of the interface types implemented by the class from
which it is instantiated. Therefore, a single object in Java can be treated as many di�erent types.

(However, when an object is treated as an interface type, only those methods declared in that interface
can be called on the object. To call other methods on the object, it necessary to cast the object's reference
to a di�erent type.)

Treating di�erent types of objects as a common type

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

380 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

All of this also makes it possible to treat objects instantiated from widely di�ering classes as the same
type, provided that all of those classes implement the same interface.

Important : When an interface method is called on one of the objects using the reference of the interface
type, the behavior of the method will be as de�ned by the author of the speci�c class that implemented the
interface. The behavior of the method will often be di�erent for di�erent objects instantiated from di�erent
classes that implement the same interface.

Receiving parameters as interface types
Methods can receive parameters that are references of interface types. In this case, the author of the

code that calls interface methods on the incoming reference doesn't need to know, and often doesn't care,
about the name of the class from which the object was instantiated. (For a discussion of this capability,
see my tutorials on the Java Collections Framework, which you can read about here 124 .)

A common example
A very common example is to store references to objects instantiated from di�erent classes, (which

implement the same interface) in some sort of data structure (such as list or a set) and then to call the
same methods on each of the references in the collection.

Heart of the Delegation Event Model
For example, this methodology is at the heart of the Delegation Event Model , which forms the basis

of Graphical User Interfaces and event-driven programming in Java.
This often entails de�ning classes that implement standard interfaces such as MouseListener ,

WindowListener , TextListener , etc. In this case, the programmer de�nes the interface methods to
be appropriate for a listener object instantiated from a speci�c class. Then a reference to the listener object
is registered on an event source as the interface type .

Later when an event of that type occurs, the source object calls one or more interface methods on the
listener object using the reference of the interface type. The event source object doesn't know or care about
the class from which the object was instantiated. In fact, it doesn't even care how the interface method
behaves when it is called. The responsibility of the source object ends when it calls the appropriate interface
method on the listener object.

Model View Control
This same methodology is also critical to the use of the Model View Control paradigm in Java using

the Observer interface and the Observable class. In this case, view objects instantiated from di�erent
classes that implement the Observer interface can register themselves on a model object that extends the
Observable class. Then each time the data being maintained in the model changes, each of the views will
be noti�ed so that they can update themselves.

JavaBeans Components
This concept is also critical to the use of bound and constrained properties in JavaBeans Components.

One bean can register itself on other beans to be noti�ed each time the value of a bound or constrained
property changes. In the case of constrained properties, the bean that is noti�ed has the option of vetoing
the change.

Java Collections Framework
The Java Collections Framework is also totally dependent on the use of interfaces. As I mentioned earlier,

you can read all about this in my tutorials on the Java Collections Framework, which you can read about
here 125 .

Iterators and Enumerators
If you appreciate data structures, you will also appreciate iterators. In Java, Iterator is an interface,

and an object that knows how to iterate across a data structure is an object of a class that implements the
Iterator interface.

As a result, the users of the concrete implementations in the Java Collections Framework don't need
to know any of the implementation details of the collection to create and use an iterator. All of the work
necessary to properly create an iterator is done by the author of the class that implements the appropriate

124http://cnx.org/contents/dzOvxPFw:BaPSYll8
125http://cnx.org/contents/dzOvxPFw:BaPSYll8

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

381

Collection interfaces. All the user needs to understand is the behavior of the three methods declared in the
Iterator interface.

3.2.9.5 Summary

Polymorphic behavior, based on the Java interface, is one of the most important concepts in Java OOP
In this module, I began my discussion of runtime polymorphism as implemented using method overriding

and the Java interface.
I presented a simple skeleton program that illustrated many of the important aspects of polymorphic

behavior based on the Java interface.
By using a nonstandard notation of my own design, (a totally abstract class) , I explained how the

implementation of interfaces in Java is similar to multiple inheritance.
I explained the cardinal rule, which is:
If a class implements an interface, it must provide a concrete de�nition for all the methods declared

by that interface, and all the methods inherited by that interface. Otherwise, the class must be declared
abstract and the de�nitions must be provided by a class that extends the abstract class.

I explained that objects instantiated from classes that implement the same interface have a new relation-
ship that goes beyond the relationship imposed by the standard class hierarchy.

I explained that due to the combination of the class hierarchy and the fact that a class can implement
many di�erent interfaces, a single object in Java can be treated as many di�erent types. However, for any
given type, there are restrictions on the methods that can be called on the object.

I also explained that because di�erent classes can implement the same interface, objects instantiated
from di�erent classes can be treated as a common interface type.

I suggested that there is little if anything useful that can be done in Java without understanding and
using interfaces.

Finally I discussed some real-world examples of the use of the Java interface:

• Delegation event model
• Model View Control paradigm
• Bound and constrained properties in JavaBeans Components
• Java Collections Framework Iterators and Enumerators

3.2.9.6 What's next?

In the next module, I will explain a more substantive program as I continue my discussion of polymorphic
behavior using the Java interface.

3.2.9.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Polymorphism and Interfaces, Part 1
• File: Java1616.htm
• Published: 03/27/02

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

382 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have misappropriated copies of my modules from cnx.org, con-
verted them to Kindle books, and placed them for sale on Amazon.com showing me as the author.
I receive no compensation for those sales and don't know who does receive compensation. If you
purchase such a book, please be aware that it is a bootleg copy of a module that is freely available
on cnx.org.

A�liation :: I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.2.9.8 Complete program listings

A complete listing of the sample program is shown in Listing 6 (p. 386) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

383

Listing 6 . Complete program listing.

/*File Poly05.java

Copyright 2002, R.G.Baldwin

**************************************/

interface I1{

public void p();

}//end interface I1

//===================================//

interface I2 extends I1{

public void q();

}//end interface I2

//===================================//

class A extends Object{

public String toString(){

return "toString in A";

}//end toString()

//---------------------------------//

public String x(){

return "x in A";

}//end x()

//---------------------------------//

}//end class A

//===================================//

class B extends A implements I2{

public void p(){

}//end p()

//---------------------------------//

public void q(){

}//end q();

//---------------------------------//

}//end class B

//===================================//

class C extends Object implements I2{

public void p(){

}//end p()

//---------------------------------//

public void q(){

}//end q();

//---------------------------------//

}//end class B

//===================================//

public class Poly05{

public static void main(String[] args){

}//end main

}//end class Poly05

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

384 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.63

-end-

3.2.10 Java1618: Polymorphism and Interfaces, Part 2
126

Revised: Thu Aug 11 21:36:45 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 127

• Object-Oriented Programming (OOP) with Java 128

3.2.10.1 Table of Contents

• Preface (p. 387)

· Viewing tip (p. 387)

* Listings (p. 387)

• Preview (p. 388)
• Discussion and sample code (p. 388)
• Summary (p. 396)
• What's next? (p. 397)
• Miscellaneous (p. 397)
• Complete program listing (p. 397)

3.2.10.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

3.2.10.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them..

3.2.10.2.1.1 Listings

• Listing 1 (p. 389) . De�nition of the interfaces named I1 and I2.
• Listing 2 (p. 389) . De�nition of the class named A.
• Listing 3 (p. 390) . De�nition of the class named B.
• Listing 4 (p. 390) . De�nition of the class named C.
• Listing 5 (p. 391) . Beginning of the class named Poly06.
• Listing 6 (p. 392) . Try unsuccessfully to call the method named q.
• Listing 7 (p. 392) . Successfully call the method named q.
• Listing 8 (p. 392) . Instantiate a new object of the class B.
• Listing 9 (p. 393) . Try unsuccessfully to call the method named x.
• Listing 10 (p. 394) . Successfully call the method named x.
• Listing 11 (p. 394) . Call the toString method.
• Listing 12 (p. 395) . Try unsuccessfully to call the method named p.

126This content is available online at <http://cnx.org/content/m44196/1.9/>.
127http://cnx.org/contents/dzOvxPFw
128http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

385

• Listing 13 (p. 395) . Successfully call the method named p.
• Listing 14 (p. 396) . A walk in the park.
• Listing 15 (p. 398) . Complete program listing.

3.2.10.3 Preview

Method overloading
I covered method overloading as one form of polymorphism (compile-time polymorphism) in a previous

module.
Method overriding and class inheritance
I discussed runtime polymorphism implemented through method overriding and class inheritance in

more than one previous module.
Using the Java interface
In this and the previous module, I am explaining runtime polymorphism as implemented using method

overriding and the Java interface.
A very important concept
In my opinion, this is one of the most important concepts in Java OOP, and the one that seems to give

students the greatest amount of di�culty. Therefore, I am trying to take it slow and easy. As usual, I am
illustrating the concept using sample programs.

A skeleton program
In the previous module, I presented a simple skeleton program that illustrated many of the important

aspects of polymorphic behavior based on the Java interface.
Multiple inheritance and the cardinal rule
I explained how the implementation of interfaces in Java is similar to multiple inheritance. I explained

the cardinal rule of interface implementation.
A new relationship
I explained that objects instantiated from classes that implement the same interface have a new relation-

ship that goes beyond the relationship imposed by the standard class hierarchy.
One object, many types
I explained that due to the combination of the class hierarchy and the fact that a class can implement

many di�erent interfaces, a single object in Java can be treated as many di�erent types. However, for any
given type, there are restrictions on the methods that can be called on the object.

Many classes, one type
I explained that because di�erent classes can implement the same interface, objects instantiated from

di�erent classes can be treated as a common interface type.
Interfaces are critical to Java programming
I suggested that there is little if anything useful that can be done in Java without understanding and

using interfaces. In support of this suggestion, I discussed several real-world examples of the use of the Java
interface, including the Delegation Event Model and the Model View Control paradigm.

Another sample program
In this module, I will present another sample program that will take you deeper into the world of

polymorphism as implemented using the Java interface.
The sample program that I will discuss in this module will illustrate (in a very basic form) some of the

things that you can do with interfaces, along with some of the things that you cannot do with interfaces. In
order to write programs that do something worthwhile, you will need to extend the concepts illustrated by
this sample program into real-world requirements.

3.2.10.4 Discussion and sample code

Now, let's take a look at a sample program named Poly06 that is much simpler than any of the real-world
examples that you will see in future modules.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

386 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

This program is designed to be very simple, while still illustrating runtime polymorphism using interfaces,
class inheritance, and overridden methods.

You can view a complete listing of the program in Listing 15 (p. 398) near the end of the module.
Same structure as before
Note that this program has the same structure as Poly05 discussed in the previous module 129 . (I

strongly recommend that you study the previous module before continuing with this module.) However,
unlike the program in the previous module, the methods in this version of the program are not empty. When
a method is called in this version, something happens. (Admittedly not much happens. Text is displayed
on the computer screen, but that is something.)

The interface de�nitions
Listing 1 (p. 389) shows the de�nition of the two interfaces named I1 and I2 .

Listing 1 . De�nition of the interfaces named I1 and I2.

interface I1{

public void p();

}//end interface I1

//===================================//

interface I2 extends I1{

public void q();

}//end interface I2

Table 3.64

Since the methods declared in an interface are not allowed to have a body, these interface de�nitions are
identical to those shown in the program from the previous module.

The class named A
Similarly, Listing 2 (p. 389) shows the de�nition of the class named A along with the de�nition of the

method named x , and the overridden method named toString .

Listing 2 . De�nition of the class named A.

class A extends Object{

public String toString(){

return "toString in A";

}//end toString()

//---------------------------------//

public String x(){

return "x in A";

}//end x()

//---------------------------------//

}//end class A

129http://cnx.org/contents/dzOvxPFw:LAUK4UwQ

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

387

Table 3.65

These two methods were also fully de�ned in the program from the previous module, so there is no change
here either.

The method named B
Listing 3 (p. 390) de�nes the class named B , which extends A , and implements I2 .

Listing 3 . De�nition of the class named B.

class B extends A implements I2{

public void p(){

System.out.println("p in B");

}//end p()

//---------------------------------//

public void q(){

System.out.println("q in B");

}//end q();

//---------------------------------//

}//end class B

Table 3.66

Actually implements two interfaces
Although it isn't obvious from an examination of Listing 3 (p. 390) alone, the class named B actually

implements both I2 and I1 . This is because the interface named I2 extends I1 . Thus, the class
named B implements I2 directly, and implements I1 through interface inheritance.

The cardinal rule
In case you have forgotten it, the cardinal rule for implementing interfaces is:
If a class implements an interface, it must provide a concrete de�nition for all the methods declared

by that interface, and all the methods inherited by that interface. Otherwise, the class must be declared
abstract and the de�nitions must be provided by a class that extends the abstract class.

Must de�ne two methods
As a result, the class named B must provide concrete de�nitions for the methods p and q . (The

method named p is declared in interface I1 and the method named q is declared in interface I2 .)
As you can see from Listing 3 (p. 390) , the behavior of each of these methods is to display a message

indicating that it has been executed. This will be useful later to tell us exactly which method is executed
when we exercise the objects in the main method of the driver class.

The class named C
Listing 4 (p. 390) shows the upgraded version of the class named C .

Listing 4 . De�nition of the class named C.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

388 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

class C extends Object implements I2{

public void p(){

System.out.println("p in C");

}//end p()

//---------------------------------//

public void q(){

System.out.println("q in C");

}//end q();

//---------------------------------//

}//end class C

Table 3.67

In this upgraded version, the methods named p and q each display a message indicating that they
have been executed. Again, this will be useful later to let us know exactly which version of the methods
named p and q get executed when we exercise the objects.

The driver class
Listing 5 (p. 391) shows the beginning of the class named Poly06 . The main method in this class

instantiates objects of the classes named B and C , and exercises them to illustrate what can, and what
cannot be done with them.

Listing 5 . Beginning of the class named Poly06.

public class Poly06{

public static void main(

String[] args){

I1 var1 = new B();

var1.p();//OK

Table 3.68

A new data type
As explained in the previous module, when you de�ne a new interface, you create a new data type.
You can store the reference to any object instantiated from any class that implements the interface in a

reference variable of that type.
A new object of the class B
The code shown in Listing 5 (p. 391) instantiates a new object of the class B .
Important: stored as type I1
It is important to note that the code in Listing 5 (p. 391) stores the object's reference in a reference

variable of the interface type I1 (not as the class type B) .
Call an interface method
Following this, the code in Listing 5 (p. 391) successfully calls the method named p on the reference,

producing the following output on the computer screen:

p in B

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

389

Why is this allowed?
This is allowable because the method named p is declared in the interface named I1 .
Which version of the method was executed?
It is also important to note, (by observing the output) , that the version of the method de�ned in the

class named B (and not the version de�ned in the class named C) was actually executed.
Attempt unsuccessfully to call q
Next, the code in Listing 6 (p. 392) attempts, unsuccessfully, to call the method named q on the same

reference variable of type I1 .

Listing 6 . Try unsuccessfully to call the method named q.

var1.q();//won't compile

Table 3.69

Why did it fail?
Even though the class named B , from which the object was instantiated, de�nes the method named

q , that method is neither declared nor inherited into the interface named I1 .
Therefore, a reference of type I1 cannot be used to call the method named q .
The solution is a type conversion
Listing 7 (p. 392) shows the solution to the problem presented by Listing 6 (p. 392) .

Listing 7 . Successfully call the method named q.

((I2)var1).q();//OK

Table 3.70

As in the case of polymorphism involving class inheritance, the solution is to change the type of the
reference to a type that either declares or inherits the method named q .

In this case, this takes the form of using a cast operator to temporarilhy convert the type of the reference
from type I1 , to type I2 , and then calling the method named q on that reference of a new type.

This produces the following output:

q in B

Using type I2 directly
Listing 8 (p. 392) instantiates a new object of the class B and stores the object's reference in a reference

variable of the interface type I2 .

Listing 8 . Instantiate a new object of the class B.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

390 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

I2 var2 = new B();

var2.p();//OK

var2.q();//OK

Table 3.71

Call both methods successfully
Then the code successfully calls both the methods p and q on that reference, producing the following

output:

p in B

q in B

Why does this work?
This works because:

• The interface named I2 declares the method named q
• The interface named I2 inherits the declaration of the method named p
• The class named B implements the interface named I2 and provides concrete de�nitions of both

the methods p and q .

Attempt, unsuccessfully, to call x on var2
Following this, the code in Listing 9 (p. 393) attempts, unsuccessfully, to call the method named x on

the reference variable named var2 of type I2 . This code produces a compiler error.

Listing 9 . Try unsuccessfully to call the method named x.

String var3 = var2.x();

Table 3.72

The object of class B has a method named x
At this point, the reference variable named var2 contains a reference to an object instantiated from

the class named B .
Furthermore, the class named B inherits the method named x from the class named A .
Necessary, but not su�cient
However, the fact that the object contains the method is not su�cient to make it executable in this case.
Same song, di�erent verse
The interface named I2 neither declares nor inherits the method named x .
Therefore, the method named x cannot be called using the reference stored in the variable named var2

unless the reference is converted either to type A (where the method named x is de�ned) or type
B (where the method named x is inherited) .

Do the type conversion
The required type conversion is accomplished in Listing 10 (p. 394) where the reference is temporarily

converted to type A using a cast operator. (It would also work to cast it to type B .)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

391

Listing 10 . Successfully call the method named x.

String var3 = ((A)var2).x();//OK

System.out.println(var3);

Table 3.73

The String produced by the �rst statement in Listing 10 (p. 394) is passed to the println method
causing the following text to be displayed on the computer screen:

x in A

Get ready for a surprise
If you have now caught onto the general scheme of things, the next thing that I am going to show you

may result in a little surprise.
Successfully call the toString method on var2
The �rst statement in Listing 11 (p. 394) successfully calls the toString method on the object of the

class B whose reference is stored as type I2 .

Listing 11 . Call the toString method.

var3 = var2.toString();//OK

System.out.println(var3);

Table 3.74

How can this work?
How can this work when the interface named I2 neither declares nor inherits a method named toString

.
A subtle di�erence in behavior
I am unable to point you to any Oracle documentation to verify the following. (I also admit that I

haven't spent a large amount of time searching for such documentation).
With respect to the eleven methods declared in the Object class (listed in an earlier module) , a

reference of an interface type acts like it is also of type Object .
And the end result is ...
This allows the methods declared in the Object class to be called on references held as interface types

without a requirement to cast the references to type Object . (Later, I will show you that the reverse is
not true.)

The output
Therefore, the two statements shown in Listing 11 (p. 394) cause the following to be displayed on the

computer screen:

toString in A

Polymorphism applies
Note that the object whose reference is held in var2 was instantiated from the class named B , which

extends the class named A .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

392 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Due to polymorphism, the toString method that was actually executed in Listing 11 (p. 394) was
the overridden version de�ned in class A , and not the default version de�ned in the Object class. The
overridden version in class A was inherited into class B .

The reverse is not true
While a reference of an interface type also acts like type Object , a reference of type Object does

not act like an interface type.
Store a reference as type Object
The code in Listing 12 (p. 395) instantiates a new object of type B and stores it in a reference of type

Object .
Attempt unsuccessfully to call p
Then it attempts, unsuccessfully, to call the method named p on the reference.

Listing 12 . Try unsuccessfully to call the method named p.

Object var4 = new B();

var4.p();//won't compile

Table 3.75

Same song, an even di�erent verse
The code in Listing 12 (p. 395) won't compile, because the Object class neither de�nes nor inherits

the method named p .
In order to call the method named p on the reference of type Object , the type of the reference must

be changed to either:

• The class in which the method is de�ned
• An interface that declares the method, which is implemented by the class in which the method is

de�ned
• A couple of other possibilities involving subclasses or sub-interfaces

Convert reference to type I1
The code in Listing 13 (p. 395) uses a cast operator to temporarily convert the reference from type

Object to type I1 , and calls the method named p on the converted reference.

Listing 13 . Successfully call the method named p.

((I1)var4).p();//OK

Table 3.76

The output
The code in Listing 13 (p. 395) compiles and executes successfully, producing the following text on the

computer screen:

p in B

A walk in the park
If you understand all of the above, understanding the code in Listing 14 (p. 396) should be like a walk

in the park on a sunny day.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

393

Listing 14. A walk in the park.

var2 = new C();

var2.p();//OK

var2.q();//OK

Table 3.77

Class C implements I2
Recall that the class named C also implements the interface named I2 .
The code in Listing 14 (p. 396) instantiates a new object of the class named C , and stores the object's

reference in the existing reference variable named var2 of type I2 .
Then it calls the methods named p and q on that reference, causing the following text to be displayed

on the computer screen:

p in C

q in C

Which methods were executed?
This con�rms that the methods that were actually executed were the versions de�ned in the class named

C (and not the versions de�ned in the class named B) .
Same method name, di�erent behavior
It is important to note that the behavior of the methods named p and q , as de�ned in the class

named C , is di�erent from the behavior of the methods having the same signatures de�ned in the class
named B . Therein lies much of the power of the Java interface.

The power of the Java interface
Using interface types, it is possible to collect many objects instantiated from many di�erent classes

(provided all the classes implement a common interface) , and store each of the references in some kind of
collection as the interface type.

Appropriate behavior
Then it is possible to call any of the interface methods on any of the objects whose references are stored

in the collection.
To use the current jargon, when a given interface method is called on a given reference, the behavior that

results will be appropriate to the class from which that particular object was instantiated.
This is runtime polymorphism based on interfaces and overridden methods.

3.2.10.5 Summary

If you don't understand interfaces ...
If you don't understand interfaces, you don't understand Java, and it is highly unlikely that you will be

successful as a Java programmer.
Interfaces are indispensable in Java
Beyond writing "Hello World" programs, there is little if anything that can be accomplished using Java

without understanding and using interfaces.
What can you do with interfaces?
The sample program that I discussed in this module has illustrated (in a very basic form) some of the

things that you can do with interfaces, along with some of the things that you cannot do with interfaces.
In order to write programs that do something worthwhile, you will need to extend the concepts illustrated

by this sample program into real-world requirements.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

394 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.2.10.6 What's next?

Java supports the use of static member variables and static methods in class de�nitions.
While static members can be useful in some situations, the existence of static members tends to

complicate the overall object-oriented structure of Java.
Furthermore, the overuse of static members can lead to problems similar to those experienced in

languages like C and C++ that support global variables and global functions.
The use of static members will be discussed in the next module.

3.2.10.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Polymorphism and Interfaces, Part 2
• File: Java1618.htm
• Published: 04/10/02

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have misappropriated copies of my modules from cnx.org, con-
verted them to Kindle books, and placed them for sale on Amazon.com showing me as the author.
I receive no compensation for those sales and don't know who does receive compensation. If you
purchase such a book, please be aware that it is a bootleg copy of a module that is freely available
on cnx.org.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.2.10.8 Complete program listing

A complete listing of the sample program is shown in Listing 15 (p. 398) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

395

Listing 15 . Complete program listing.

/*File Poly06.java

Copyright 2002, R.G.Baldwin

This program illustrates polymorphic

behavior using interfaces in addition

to class inheritance.

The program output is:

p in B

q in B

p in B

q in B

x in A

toString in A

p in B

p in C

q in C

**************************************/

interface I1{

public void p();

}//end interface I1

//===================================//

interface I2 extends I1{

public void q();

}//end interface I2

//===================================//

class A extends Object{

public String toString(){

return "toString in A";

}//end toString()

//---------------------------------//

public String x(){

return "x in A";

}//end x()

//---------------------------------//

}//end class A

//===================================//

class B extends A implements I2{

public void p(){

System.out.println("p in B");

}//end p()

//---------------------------------//

public void q(){

System.out.println("q in B");

}//end q();

//---------------------------------//

}//end class B

//===================================//

class C extends Object implements I2{

public void p(){

System.out.println("p in C");

}//end p()

//---------------------------------//

public void q(){

System.out.println("q in C");

}//end q();

//---------------------------------//

}//end class B

//===================================//

public class Poly06{

public static void main(

String[] args){

I1 var1 = new B();

var1.p();//OK

//var1.q();//won't compile

((I2)var1).q();//OK

System.out.println("");//blank line

I2 var2 = new B();

var2.p();//OK

var2.q();//OK

//Following won't compile

//String var3 = var2.x();

String var3 = ((A)var2).x();//OK

System.out.println(var3);

var3 = var2.toString();//OK

System.out.println(var3);

System.out.println("");//blank line

Object var4 = new B();

//var4.p();//won't compile

((I1)var4).p();//OK

System.out.println("");//blank line

var2 = new C();

var2.p();//OK

var2.q();//OK

System.out.println("");//blank line

}//end main

}//end class Poly06

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

396 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.78

-end-

3.2.11 Java1620: Static Members
130

Revised: Thu Mar 31 15:56:25 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 131

• Object-Oriented Programming (OOP) with Java 132

3.2.11.1 Table of Contents

• Preface (p. 399)

· Viewing tip (p. 399)

* Figures (p. 399)
* Listings (p. 400)

• Preview (p. 400)
• Discussion and sample code (p. 401)
• Summary (p. 413)
• What's next? (p. 413)
• Miscellaneous (p. 414)
• Complete program listing (p. 414)

3.2.11.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

3.2.11.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

3.2.11.2.1.1 Figures

• Figure 1 (p. 405) . Output date and time.
• Figure 2 (p. 407) . Five seconds later.
• Figure 3 (p. 408) . Same date and time as before.
• Figure 4 (p. 409) . A new date and time.
• Figure 5 (p. 410) . Same date and time as before.
• Figure 6 (p. 412) . Output from overridden toString method in Date class.

130This content is available online at <http://cnx.org/content/m44197/1.8/>.
131http://cnx.org/contents/dzOvxPFw
132http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

397

3.2.11.2.1.2 Listings

• Listing 1 (p. 404) . Beginning of the class named MyClass01.
• Listing 2 (p. 404) . Signature of the main method.
• Listing 3 (p. 405) . Display some text.
• Listing 4 (p. 405) . Display date information.
• Listing 5 (p. 406) . A �ve-second delay.
• Listing 6 (p. 406) . Instantiate a new object.
• Listing 7 (p. 406) . Display the new Date object.
• Listing 8 (p. 407) . Accessing class variable via an object.
• Listing 9 (p. 408) . Another new object.
• Listing 10 (p. 408) . Display the date and time.
• Listing 11 (p. 409) . Display date information.
• Listing 12 (p. 410) . Revisiting System.out.println.
• Listing 13 (p. 415) . Complete program listing.

3.2.11.3 Preview

Static members
There is another aspect of OOP in Java that I have avoided up to this point in the discussion: static

variables and static methods.
Tends to complicate ...
I have avoided this topic because, while not particularly di�cult, the existence of static members tends

to break up the simple structures that I have discussed in previous modules in this collection.
While static members can be useful in some situations, the existence of static members tends to

complicate the overall object-oriented structure of Java.
Avoid overuse of static members
Furthermore, the overuse of static members can lead to problems similar to those experienced in

languages like C and C++ that support global variables and global functions.
When to use static members
I will discuss the use of static members in this module, and will provide some guidelines for their use.
The class named Class
I will also introduce the class named Class and discuss how it enters into the use of static variables

and methods.
Instance members versus class members
I will describe the di�erences between instance members and class members with particular emphasis

being placed on their accessibility.
Three kinds of objects
From a conceptual viewpoint, there are at least three kinds of objects involved in a Java program:

• Ordinary objects
• Array objects
• Class objects

Ordinary objects
All (or at least most) of the discussion up to this point in the collection deals with what I have referred

to in the above list as ordinary objects .
These are the objects that you instantiate in you code by applying the new operator to a constructor

for a class in order to create a new instance (object) of that class. (There are also a couple of other ways
to create ordinary objects, but I'm not going to get into that at this time.)

Array objects
I haven't discussed array objects thus far in this collection. (I will discuss them in a future module.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

398 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Su�ce it for now to say that array objects are objects whose purpose is to encapsulate a one-dimensional
array structure that can contain either primitive values, or references to other objects (including other array
objects).

I will discuss Class objects in this module.

3.2.11.4 Discussion and sample code

Class objects
Let me emphasize at the beginning that the following discussion is conceptual in nature. In this

discussion, I will describe how the Java system behaves, not necessarily how it is implemented. In other
words, however it is implemented, it behaves as though it is implemented in the manner described below.

The class named Class
There is a class whose name is Class . The purpose of this class is to encapsulate information about

some other class (actually, it can also be used to encapsulate information about primitive types as well as
class types).

Here is part of what Sun has to say about this class:
"Instances of the class Class represent classes and interfaces in a running Java application. ...
Class has no public constructor. Instead Class objects are constructed automatically by the Java

Virtual Machine as classes are loaded ..."
What does this mean?
As a practical matter, when one or more objects are instantiated from a given class, an extra object of

the Class class is also instantiated automatically. This object contains information about the class from
which the objects were instantiated. (Note that it is also possible to cause a Class object that describes
a speci�c class to be created in the absence of objects of that class, but that is a topic that will be reserved
for more advanced modules.)

A real-world analogy
Here is an attempt to describe a real-world analogy. Remember that a class de�nition contains the

blueprint for objects instantiated from that class.
A certain large construction company is in the business of building condominium projects. This contractor

builds condos of many di�erent sizes, types, and price ranges. However, each di�erent condo project contains
condos of only two or three di�erent types or price ranges.

A library of blueprints
There is a large library of blueprints at the contractor's central o�ce. This library contains blueprints

for all of the di�erent types of condos that the contractor has built or is building. (This library is analogous
to the class libraries available to the Java programmer.)

A subset from the blueprint library
When a condo project begins, the contractor delivers copies of several sets of blueprints to the construction

site. The blueprints delivered to that site describe only the types of condos being constructed on that site.
Condo is analogous to an object
Each condo unit is analogous to an ordinary Java object .
Each set of blueprints delivered to the construction site is roughly analogous to an object of the class

named Class . In other words, each set of blueprints describes one or more condo units constructed from
that set of blueprints.

When construction is complete
When the construction project is complete, the contractor delivers a set of blueprints for each type of

condo unit to the management �rm that has been hired to manage the condo complex. Each set of blueprints
continues to be analogous to an object of the class named Class . The blueprints remain at the site of the
condo units.

RTTI
Thus, information regarding the construction, wiring, plumbing, air conditioning, etc., for each condo

unit (object) continues to be available at the site even after the construction has been completed. (This is

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

399

somewhat analogous to something called runtime type information and often abbreviated as RTTI. A Class
object contains RTTI for objects instantiated from that class.)

What are those analogies again?
In the above scenario, each condo unit is (roughly) analogous to an object instantiated from a speci�c

class (set of blueprints).
Each set of blueprints remaining onsite after construction is complete is roughly analogous to a Class

object that describes the characteristics of one or more condo units.
What do you care?
Until you get involved in such advanced topics as re�ection and introspection , you don't usually have

much involvement or much interest in Class objects. They are created automatically, and are primarily
used by the Java virtual machine during runtime to help it do the things that it needs to do.

An exception to that rule
However, there is one area where you will be interested in the use of these Class objects from early on.

You will be interested whenever variables or methods in the class de�nition are declared to be static .
Class variables and class methods
According to the current jargon, declaring a member variable to be static causes it to be a class

variable . (Note that local variables cannot be declared static . Only member variables can be declared
static .) Similarly, declaring a method to be static causes it to be a class method.

Instance variables and methods
On the other hand, according to the current jargon, not declaring a variable to be static causes it to

be an instance variable , and not declaring a method to be static causes it to be an instance method .
In general, we can refer to them as class members and instance members .
What is the di�erence?
Here are some of the di�erences between class and instance members insofar as this discussion is

concerned.
How many copies of member variables exist?
Every object instantiated from a given class has its own copy of each instance variable de�ned in the

class. (Instance variables are not shared among objects.) However, every object instantiated from a given
class shares the same copy of each class variable de�ned in the class. (It is as though the class variable
belongs to the single Class object and not to the individual objects instantiated from that class.)

Access to an instance variable
Every object has its own copy of each instance variable (the object owns the instance variable). There-

fore, the only way that you can access an instance variable is to use that object's reference to send a message
to the object requesting access to the variable (even then, you may not be given access, depending on access
modi�ers).

Why call it an instance variable?
According to the current jargon, an object is an instance of a class . (I probably told you that

somewhere before in this collection.) Each object has its own copy of each non-static variable. Hence, they
are often called instance variables. (Every instance of the class owns one and they are not implicitly shared
among instances.)

Access to a class variable
You can also send a message to an object requesting access to a class variable that the object shares with

other objects instantiated from the same class. (Again, you may or may not gain access, depending the
access modi�ers).

Access using the Class object
More importantly, you can also access a class variable without a requirement to go through an object

instantiated from the class. (In fact, a class variable can be accessed in the total absence of objects
of that class.) (Remember, this discussion is conceptual in nature, and may not represent an actual
implementation.)

Assuming that a class variable is otherwise accessible, you can access the class variable by sending an
access request message to the Class object to which the variable belongs.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

400 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

One way to think of this
To help you keep track of things in a message-passing sense, you can pretend that there is a global

reference variable whose name is the same as the name of a class.
This (hypothetical) reference variable contains a reference to the Class object that owns the class

variable. Using standard Java message-passing syntax, you can access the class variable by joining the name
of the reference variable to the name of the class variable with a period. Example syntax is shown below:

ReferenceVariableName.ClassVariableName

As a result of the hypothetical substitution process that I described above, this is equivalent to the following:

ClassName.ClassVariableName

We will see an example of this in the sample program that I will discuss later.
Be careful with this thought process
While this thought process may be useful when thinking about static variables and methods, I want

to point out, that the thought process breaks down very quickly when dealing with Class objects in a
deeper sense.

For example, when calling the getName method on a Class object, an actual reference of type
Class is required to access the members of the Class object. The name of the class will not su�ce.

If this discussion of a global reference variable whose name matches the name of the class is confusing
to you, just forget it. Simply remember that you can access class variables by joining the name of the class
to the name of the class variable using a period as the joining operator.

Characteristics of class methods
I'm not going to talk very much about instance methods and class methods in this module. However,

there are a couple of characteristics of class methods that deserve a brief discussion in this context.
Cannot access instance members
First, the code in a class method has direct access only to other static members of the class. (A class

method does not have direct access to instance variables or instance methods of the class.) This is sort of
like saying that a class method has access to the methods and variables belonging to the Class object, but
does not have access to the methods and variables belonging to the ordinary objects instantiated from the
class described by the Class object.

Once again, be careful
Once again, this thinking breaks down very quickly once you get beyond static members. A Class

object also has instance methods, such as getName , which can only be accessed using an actual reference
to the Class object.

Now you are probably beginning to understand why I deferred this discussion until after I �nished
discussing the easy stu�.

No object required
Another important characteristic is that a class method can be accessed without a requirement for an

object of the class to exist.
As with class variables, class methods can be accessed by joining the name of the class to the name of

the method with a period.
I will illustrate much of this with a sample program named MyClass01 .
Discuss in fragments
I will discuss the program in fragments. You will �nd a complete listing of the program in Listing 13 (p.

415) near the end of the module.
Listing 1 (p. 404) shows the beginning of the class de�nition.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

401

Listing 1 . Beginning of the class named MyClass01.

class MyClass01{

static Date v1 = new Date();

Date v2 = new Date();

Table 3.79

Two member variables
The code in Listing 1 (p. 404) declares two member variables, named v1 and v2 , and initializes

each of those variables with a reference to a new object of the Date class. (When instantiated using
the constructor with no arguments, the new Date object encapsulates the current date and time from the
system clock.)

Note the static keyword
The important thing to note here is the use of the static keyword when declaring the variable named

v1 . This causes v1 to be a class variable , exhibiting the characteristics of class variables described
earlier.

An instance variable
On the other hand, the variable named v2 is not declared static . This causes it to be an instance

variable , as described above.
The main method is a class method
Listing 2 (p. 404) shows the signature for the main method.

Listing 2 . Signature of the main method.

public static void main(String[] args){

Table 3.80

The important thing to note here is that the main method is declared static . That causes it to be
a class method .

As a result, the main method can be called without a requirement for an object of the class to exist.
(Also, the main method has direct access only to other static members.)

How a Java application starts running
In fact, that is how the Java Virtual Machine starts an application running.
First the JVM �nds the speci�ed �le having an extension of .class. Then it examines that �le to see

if it has a main method with the correct signature. If not, an error occurs.
If the JVM �nds a main method with the correct signature, it calls that method without instantiating

an object of the class. That is how the Java Virtual Machine causes a Java application to start running.
A side note regarding applets
For those of you who are familiar with Java applets, you should know that this is not the case for an

applet. An applet does not use a main method. When an applet is started, an object of the controlling
class is instantiated by the browser, by the appletviewer program, or by whatever program is being used
to control the execution of the applet.

A poor programming technique
Basically, this entire sample program is coded inside the main method. As a practical manner, this is

a very poor programming technique, but it works well for this example.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

402 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Display some text
The code in Listing 3 (p. 405) , which is the �rst executable statement in the main method, causes

the words Static variable to appear on the computer screen. I will come back and discuss the details of
this and similar statements later in the module.

Listing 3 . Display some text.

System.out.println("Static variable");

Table 3.81

Display date information
Continuing with the code in the main method, the code in Listing 4 (p. 405) causes the current

contents of the Date object referred to by the contents of the class variable named v1 to be displayed
on the computer screen.

Listing 4 . Display date information.

System.out.println(MyClass01.v1);

Table 3.82

No object required
For the moment, concentrate on the text inside the parentheses in the statement in Listing 4 (p. 405) .
Because the variable named v1 is a class variable, it's value is accessed by joining the name of the class

to the name of the variable with a period.
What was the output?
I will discuss the remaining portion of statements of this sort later. For now, just be aware that the code

in Listing 4 (p. 405) caused the output shown in Figure 1 (p. 405) to be displayed on my computer screen
when I ran the program.

Figure 1 . Output date and time.

Mon Sep 17 09:52:27 CDT 2001

Table 3.83

Displays date and time
Obviously, the date and time displayed will depend on when you run the program. As you can see, I �rst

wrote this module and ran this program in 2001.
Pay particular attention to the seconds portion of the time. I will refer back to this later.
A �ve-second delay
The code in Listing 5 (p. 406) (still in the main method) causes the main thread of the program to

go to sleep for �ve seconds. Don't worry about it if you don't understand this code. The only reason that I
included it in the program was to force a �ve-second delay in the execution of the program.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

403

Listing 5 . A �ve-second delay.

try{

Thread.currentThread().sleep(5000);

}catch(InterruptedException e){}

Table 3.84

Instantiate a new object
Having caused the program to sleep for �ve seconds, the code in Listing 6 (p. 406) instantiates a new

object of the class named MyClass01 . This code stores the new object's reference in the reference variable
named ref1 .

Listing 6 . Instantiate a new object .

MyClass01 ref1 = new MyClass01();

Table 3.85

A new Date object also
Recall from Listing 1 (p. 404) above that the class declares an instance variable named v2 of the type

Date .
When the new object is instantiated by the code in Listing 6 (p. 406) , a new Date object is also

instantiated. A reference to that object is stored in the instance variable named v2 . (In other words, the
new object of the class MyClass01 owns a reference to a new object of the class Date . That reference
is stored in an instance variable named v2 in the new MyClass01 object.)

Display the new Date object
The code in Listing 7 (p. 406) causes a textual representation of the new Date object referred to by

the reference variable named v2 belonging to the object referred to by the reference variable named ref1
, to be displayed on the standard output device.

Listing 7 . Display the new Date object .

System.out.println(ref1.v2);

Table 3.86

Five seconds later
This code caused the date and time shown in Figure 2 (p. 407) to appear on the computer screen when

I ran the program:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

404 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 2 . Five seconds later.

Mon Sep 17 09:52:32 CDT 2001

Table 3.87

The date and time shown in Figure 2 (p. 407) is �ve seconds later than the time re�ected in the Date
object referred to by the class variable named v1 (see Figure 1 (p. 405)) . That time was displayed by
the code in Listing 4 (p. 405) earlier.

So, what does this mean?
It means that the Date object referred to by the static reference variable named v1 was created

�ve seconds earlier than the Date object referred to by the instance variable named v2 .
When is a class variable created?
I can't tell you precisely when a class variable comes into existence. All I can say is that the virtual

machine brings it into existence as soon as it is needed.
My guess is that it comes into existence at the �rst mention (in the program) of the class to which it

belongs.
When is an instance variable created?
An instance variable doesn't come into existence until the object to which it belongs is created. (An

instance variable cannot exist until the object to which it belongs exists.)
If the instance variable is initialized with a reference to a new object (such as a new Date object in

this sample program), that new object comes into existence when the object to which it belongs comes into
existence.

A �ve-second delay
In this program, I purposely inserted a �ve-second delay between the �rst mention of the class named

MyClass01 in Listing 4 (p. 405) , and the instantiation of the object of the class named MyClass01 in
Listing 6 (p. 406) .

As a result, the Date object referred to by the instance variable named v2 was created about �ve
seconds later than the Date object referred to by the class variable named v1 .

This is re�ected in the date and time values displayed and discussed above.
Accessing class variable via an object
While it is possible to access a class variable using the name of the class joined to the name of the variable,

it is also possible to access a class variable using a reference to any object instantiated from the class.
(As mentioned earlier, if two or more objects are instantiated from the same class, they share the same

class variable.)
The code in parentheses in Listing 8 (p. 407) uses the reference variable named ref1 to access the class

variable named v1 , and to cause the contents of the Date object referred to by the class variable to be
displayed.

Listing 8 . Accessing class variable via an object.

System.out.println(ref1.v1);

Table 3.88

The output
This caused the date and time shown in Figure 3 (p. 408) to be displayed on my computer screen.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

405

Figure 3 . Same date and time as before.

Mon Sep 17 09:52:27 CDT 2001

Table 3.89

Same date and time as before
As you have probably already surmised, this is the same date and time shown earlier in Figure 1 (p. 405)

. This is because the code in Listing 8 (p. 407) refers to the same class variable as the code in Listing 4 (p.
405) .

Nothing has caused the contents of that class variable to change, so both Figure 1 (p. 405) and Figure 3
(p. 408) display the contents of the same Date object.

(Only one class variable exists and it doesn't matter how you access it. Either way, you gain access to
the same Date object whose reference is stored in the class variable. Thus, the same date and time is
shown in both cases.)

Another new object
If you examine the code in Listing 13 (p. 415) near the end of the program, you will see that an additional

�ve-second delay is introduced at this point in the program.
Following that delay, the code in Listing 9 (p. 408) instantiates another new object of the class named

MyClass01 , and stores the object's reference in a new reference variable named ref2 .
(The object referred to by ref1 is a di�erent object than the object referred to by ref2 . Each object

has its own instance variable named v2 , and in this case, each instance variable is initialized to instantiate
and refer to a new Date object when the new MyClass01 object is instantiated.)

Listing 9 . Another new object .

MyClass01 ref2 = new MyClass01();

Table 3.90

Display the date and time
Then, the code in Listing 10 (p. 408) causes the contents of the Date object referred to by the instance

variable named v2 in the second object of the class named MyClass01 to be displayed.

Listing 10 . Display the date and time .

System.out.println(ref2.v2);

Table 3.91

This caused the output shown in Figure 4 (p. 409) to be displayed on my computer screen when I ran
the program.

(Once again, you will get di�erent results if you compile and run the program because the date and time
shown is the date and time that you run the program.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

406 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 4 . A new date and time.

Mon Sep 17 09:52:37 CDT 2001

Table 3.92

Five seconds later
As you have probably �gured out by now, the time encapsulated in this Date object is �ve seconds

later than the time encapsulated in the Date object displayed in Figure 2 (p. 407) . This is because the
program was put to sleep for �ve seconds between the instantiation of the two objects referred to by ref1
and ref2 .

Every object has one
Every object instantiated from a given class has its own copy of each instance variable declared in the

class de�nition. There is no sharing of instance variables among objects.
Each instance variable comes into existence when the object to which it belongs comes into existence,

and ceases to exist when the object to which it belongs ceases to exist.
Eligible for garbage collection
If the instance variables are reference variables holding references to other objects, as is the case here,

and if there are no other reference variables holding references to those same objects, the secondary objects
cease to exist when the primary objects cease to exist.

Technically, the objects may not actually cease to exist. Technically they become eligible for garbage
collection, which means that the memory that they occupy becomes eligible for reuse. However, as a practical
matter, they cease to exist insofar as the program is concerned because they are no longer accessible.

A �ve-second di�erence in the time of creation
Since the two objects referred to by ref1 and ref2 came into existence with a �ve-second delay, the

Date objects belonging to those two object re�ect a �ve-second di�erence in the time encapsulated in the
objects.

Only one copy of class variable exists
Also remember that if a variable is a class variable, only one copy of the variable exists, and all objects

instantiated from the class share that one copy.
This is illustrated by the code in Listing 11 (p. 409) , which uses the reference to the second object

instantiated from the class named MyClass01 , to cause the contents of the class variable named v1 to
be displayed.

Listing 11 . Display date information.

System.out.println(ref2.v1);

}//end main

Table 3.93

The output produced by the code in Listing 11 (p. 409) is shown in Figure 5 (p. 410) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

407

Figure 5 . Same date and time as before.

Mon Sep 17 09:52:27 CDT 2001

Table 3.94

Same output as before
As you can see, this is the same as the output shown in Figure 1 (p. 405) and Figure 3 (p. 408) earlier.
Accessing the same physical class variable
Since only one class variable named v1 exists, and all objects instantiated from the class named

MyClass01 share that single copy, it doesn't matter whether you access the class variable using the name
of the class, or access it using a reference to either of the objects instantiated from the class. In all three
cases, you are accessing the same physical class variable.

Since nothing was done to cause the contents of the class variable to change after it came into existence
and was initialized, Figure 1 (p. 405) , Figure 3 (p. 408) , and Figure 5 (p. 410) are simply three di�erent
displays of the date and time encapsulated in the same Date object whose reference is stored in the class
variable.

Let's revisit System.out.println...
Now, I want to revisit the statement originally shown in Listing 8 (p. 407) and repeated in Listing 12

(p. 410) for viewing convenience.

Listing 12 . Revisiting System.out.println.

System.out.println(ref1.v1);

Table 3.95

Java programmer wanted
I sometimes tell my students that if I were out in industry interviewing prospective Java programmers,

my �rst question would be to ask the prospective employee to tell me everything that she knows about the
statement in Listing 12 (p. 410) .

Covers a lot of Java OOP technology
This is not because there is a great demand for the use of this statement in real-world problems. (In fact,

in a GUI-driven software product world, there is probably very little demand for the use of this statement.)
Rather, it is because a lot of Java object-oriented technology is embodied in this single statement.

In that scenario, I would expect to receive a verbal dissertation of �fteen to twenty minutes in length to
cover all the important points.

The short version
Let me give you the short version. There is a class named System . The System class declares three

static (class) variables having the following types, names, and modi�ers:

• public static �nal PrintStream out
• public static �nal InputStream in
• public static �nal PrintStream err

(Note that these class variables are also declared �nal , causing them to behave as constants.)
A ccess the out variable without an object

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

408 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Because out is a class variable, System.out returns the contents of the class variable named out
(an object of the System class is not required in order to access a class variable of the System class).

In general, (ignoring the possibility of subclasses and interfaces) because out is a reference variable
of type PrintStream , the returned value must either be null (no object reference) or a reference to a
valid PrintStream object.

Object of the PrintStream class
When the Java Virtual Machine starts an application running, it automatically instantiates an object of

the PrintStream class and connects it to the standard output device . (By default, the standard
output device is typically the computer screen, but it can be redirected at the operating system level to be
some other device. The following discussion assumes that the screen is the standard output device.)

Assign object's reference to out variable
When the PrintStream object is instantiated by the virtual machine, the object's reference is assigned

to the class variable of the System class named out . (Because the variable named out is �nal, the
contents of the variable cannot be modi�ed later.)

Reference to a PrintStream object
Therefore, the expression System.out returns a reference to the PrintStream object, which is

connected to the standard output device.
Many instance methods
An object of the PrintStream class contains many instance methods. This includes numerous over-

loaded versions of a method named println . The signature of one of those overloaded versions of the
println method follows :

public void println(Object x)

Textual representation of an object
The purpose of this overloaded version of the println method is to:

• Create a textual representation of the object referred to by the incoming parameter of type Object
(because Object is a totally generic type, this version of the println method can accept an
incoming parameter that is a reference to any type of object)

• Send that textual representation to the output device

In general...
A new PrintStream object can be connected to a variety of output devices when it is instantiated.

However, in the special case of the PrintStream object instantiated by the virtual machine when the
program starts, whose reference is stored in the class variable named out of the System class, the
purpose of the object is to provide a display path to the standard output device.

Our old friend, the toString method
To accomplish this, the code in the version of the println method shown above (p. 411) calls the

toString method on the incoming reference. (I discussed the toString method in detail in earlier
modules in this collection.) The toString method may, or may not, have been overridden in the de�nition
of the class from which the object was instantiated, or in some superclass of the class from which the object
was instantiated.

Default version of toString
If not overridden, the default version of the toString method de�ned in the Object class is used to

produce a textual representation of the object. As we learned in an earlier module, that textual representation
looks something like the following:

ClassName@HexHashCode

Overridden version of toString method
If the class from which the object was instantiated (or some superclass of that class) contains an

overridden version of the toString method, runtime polymorphism kicks in and the overridden version of
the method is executed to produce the textual representation of the object.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

409

The Date class overrides toString
In the case of this sample program, the object was instantiated from the Date class. The Date class

does override the toString method.
When the overridden toString method is called on a Date object's reference, the String returned

by the method looks something like that shown in Figure 6 (p. 412) .

Figure 6 . Output from overridden toString method in Date class.

Mon Sep 17 09:52:27 CDT 2001

Table 3.96

You will recall that this is the output that was produced by the code shown in Listing 8 (p. 407) and
Listing 12 (p. 410) .

More than you ever wanted to know ...
And that is probably more than you ever wanted to know about the expression System.out.println...

.
It is also probably more than you ever wanted to know about class variables, class methods, instance

variables, and instance methods.
Some cautions
Before leaving this topic, I do want to express some cautions. Basically, I want to suggest that you use

static members very sparingly, if at all.
Static variables
To begin with, don't ever use static variables without declaring them �nal unless you understand

exactly why you are declaring them static .
(static �nal variables, or constants, are often very appropriate. See the �elds in the Color class

for example.)
I can think of only a very a few situations in which the use of a non-�nal static variable might be

appropriate.
(One appropriate use might be to count the number of objects instantiated from a speci�c class.)
Static methods
Don't declare methods static if there is any requirement for the method to remember anything from

one call to the next.
There are many appropriate uses for static methods, but in most cases, the purpose of the method

will be to completely perform some action with no requirement to remember anything from that call to the
next.

The method should probably also be self-contained. By this I mean that all information that the method
needs to do its job should either come from incoming parameters or from �nal static member variables
(constants). The method probably should not depend on the values stored in non-�nal static member
variables, which are subject to change over time.

(A static method only has access to other static members of the class, so it cannot depend on
instance variables de�ned in the class.)

An appropriate example of a static method is the sqrt method of the Math class. This method
computes and "Returns the correctly rounded positive square root of a double" where the double value
is provided as a parameter to the method. Each time the method is called, it completes its task and doesn't
attempt to save any values from that call to the next. Furthermore, it gets all the information that it needs
to do its job from an incoming parameter.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

410 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.2.11.5 Summary

Added complexity
The existence of static members tends to break up the simple OOP structures that I have discussed

in previous modules in this collection.
While static members can be useful in some situations, the existence of static members tends to

complicate the overall object-oriented structure of Java.
Furthermore, the overuse of static members can lead to problems similar to those experienced in

languages like C and C++ that support global variables and global functions.
The class named Class
I discussed the class named Class and how a conceptual object of type Class exists in memory

following a reference to a speci�c class in the program code.
The Class object represents the referenced class in memory, and contains the static variables and

static methods belonging to that class. (It contains some other information as well, such as the name of
the superclass.)

Class members and instance members
Class variables and class methods are declared static (declaring a member static in the class

de�nition causes to be called a class member) .
Instance variables and instance methods are not declared static .
Each object has its own copy ...
Every object instantiated from a given class has its own copy of each instance variable declared in the

class de�nition. (Instance variables are not shared among objects.)
Every object instantiated from a given class acts like it has its own copy of every instance method declared

in the class de�nition. (Although instance methods are actually shared among objects in order to reduce
the amount of memory required, they are shared in such a way that they don't appear to be shared.)

Every object shares ...
Every object instantiated from a given class shares the same single copy of each class variable declared

in the class de�nition. Similarly, every object instantiated from a given class shares the same copy of each
class method.

Accessing an instance member
An instance variable or an instance method can only be accessed by using a reference to the object that

owns it. Even then, it may or may not be accessible depending on the access modi�er assigned by the
programmer.

Accessing a class member
The single shared copy of a class variable or a class method can be accessed in either of two ways:

• Via a reference to any object instantiated from the class.
• By simply joining the name of the class to the name of the class variable or the class method.

Again, the variable or method may or may not be accessible, depending on the access modi�ers assigned by
the programmer.

When to use class variables
It is very often appropriate to use �nal static variables, as constants in your programs. It is rarely, if

ever, appropriate to use non-�nal static variables in your programs. The use of non-�nal static variables
should de�nitely be minimized.

When to use static methods
It is often appropriate to use static methods in your programs, provided there is no requirement for

the method to remember anything from one call to the next. Static methods should be self-contained.

3.2.11.6 What's next?

The next module in this collection will address the special case of Array Objects.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

411

3.2.11.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Static Members
• File: Java1620.htm
• Published: 04/24/02

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.2.11.8 Complete program listing

A complete listing of the sample program is shown in Listing 13 (p. 415) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

412 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 13 . Complete program listing.

/*File MyClass01.java

Copyright 2002, R.G.Baldwin

This program illustrates static

members of a class. Output is:

Static variable

Mon Sep 17 09:52:27 CDT 2001

Instance variable

Mon Sep 17 09:52:32 CDT 2001

Static variable

Mon Sep 17 09:52:27 CDT 2001

Instance variable

Mon Sep 17 09:52:37 CDT 2001

Static variable

Mon Sep 17 09:52:27 CDT 2001

**************************************/

import java.util.Date;

class MyClass01{

static Date v1 = new Date();

Date v2 = new Date();

public static void main(

String[] args){

//Display static variable

System.out.println(

"Static variable");

System.out.println(MyClass01.v1);

//Delay for five seconds

try{

Thread.currentThread().sleep(5000);

}catch(InterruptedException e){}

//Instantiate an object and

// display instance variable

MyClass01 ref1 = new MyClass01();

System.out.println();//blank line

System.out.println(

"Instance variable");

System.out.println(ref1.v2);

//Now, display the static

// variable using object reference

System.out.println(

"Static variable");

System.out.println(ref1.v1);

System.out.println();//blank line

//Delay for five seconds

try{

Thread.currentThread().sleep(5000);

}catch(InterruptedException e){}

//Instantiate another object

MyClass01 ref2 = new MyClass01();

System.out.println();//blank line

System.out.println(

"Instance variable");

System.out.println(ref2.v2);

//Now, display the same static

// variable using object reference

System.out.println(

"Static variable");

System.out.println(ref2.v1);

}//end main

}//end class MyClass01

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

413

Table 3.97

-end-

3.2.12 Java1622: Array Objects, Part 1
133

Revised: Fri Apr 01 15:07:49 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 134

• Object-Oriented Programming (OOP) with Java 135

3.2.12.1 Table of Contents

• Preface (p. 416)

· Viewing tip (p. 416)

* Listings (p. 416)

• Preview (p. 417)
• Discussion and sample code (p. 417)
• Summary (p. 425)
• What's next? (p. 426)
• Miscellaneous (p. 426)
• Complete program listing (p. 426)

3.2.12.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

3.2.12.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

3.2.12.2.1.1 Listings

• Listing 1 (p. 418) . Sample variable declarations for array objects.
• Listing 2 (p. 418) . The special case of type Object.
• Listing 3 (p. 419) . Creating array objects.
• Listing 4 (p. 421) . The beginning of the class named Array05.
• Listing 5 (p. 422) . A new ordinary object of class Array05.
• Listing 6 (p. 422) . Populate the second element.
• Listing 7 (p. 423) . Print some data.
• Listing 8 (p. 423) . Produce some more output.
• Listing 9 (p. 426) . Complete program listing.

133This content is available online at <http://cnx.org/content/m44198/1.5/>.
134http://cnx.org/contents/dzOvxPFw
135http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

414 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.2.12.3 Preview

This module explains how array objects �t into the grand scheme of things in Object-Oriented Programming
(OOP) using Java.

A di�erent syntax is required to create array objects than the syntax normally used to create ordinary
objects.

Array objects are accessed via references. Any of the methods of the Object class can be called on a
reference to an array object.

Array objects encapsulate a group of variables. The variables don't have individual names. They are
accessed using positive integer index values. The integer indices of a Java array object always extend from
0 to (n-1) where n is the length of the array encapsulated in the object.

All array objects in Java encapsulate one-dimensional arrays. The component type of an array may itself
be an array type. This makes it possible to create array objects whose individual components refer to other
array objects. This is the mechanism for creating multi-dimensional or ragged arrays in Java.

3.2.12.4 Discussion and sample code

Three kinds of objects
In an earlier module, I told you that from a conceptual viewpoint, there are at least three kinds of objects

involved in a Java program:

• Ordinary objects
• Class objects
• Array objects

Ordinary objects
Most of the discussion up to that point in the collection dealt with what I have referred to in the above

list as ordinary objects .
These are the objects that you instantiate in your code by applying the new operator to a constructor

for a class in order to create a new instance (object) of that class.
Class objects
In that module that discussed Class objects, I emphasized that my discussion of Class objects was

conceptual in nature and did not necessarily represent an actual implementation. I went on to discuss the
class named Class , and discussed how the use of that class �ts into the grand scheme of OOP in Java. I
explained how the existence of class variables and class methods tends to complicate the rather simple
OOP structure consisting only of ordinary objects.

Array objects
I haven't discussed array objects up to this point in this collection. That is the purpose of this module.
Also tends to complicate
The existence of array objects also tends to complicate the OOP structure of a Java program consisting

only of ordinary objects. Even if you don't consider array objects to be a di�erent kind of object, you must
at least consider them to be a special kind of object. A completely di�erent syntax is required to create
array objects than the syntax normally used to instantiate ordinary objects.

References to array objects
Arrays are objects in Java (at least, arrays are always encapsulated in objects). Array objects are

dynamically created. Like ordinary objects, array objects are accessed via references. The reference to an
array object may be assigned to a reference variable whose type is speci�ed as:

TypeName[]

For example, Listing 1 (p. 418) shows some unrelated declarations for variables that are capable of storing
references to array objects.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

415

Listing 1 . Sample variable declarations for array objects.

int[] x1;

Button[] x2;

Object[] x3;

Table 3.98

Note the empty square brackets that are required in the variable declarations in Listing 1 (p. 418) .
The special case of type Object
In addition, a reference to an array object may be assigned to a reference variable of type Object as

shown in Listing 2 (p. 418) , where x4 is a reference to an array object.

Listing 2 . The special case of type Object.

Object x4;

Table 3.99

Note that there are no square brackets in the statement in Listing 2 (p. 418) .
What does this mean?
This means that like ordinary objects, a reference to an array object can be treated as type Object

(with no square brackets).
This further means that any of the methods de�ned in the Object class (such as the toString and

getClass methods) can be called on a reference to an array object.
The String representation of an array object's reference
For example, when the toString method is called on a reference to an array object containing data of

type int , the resulting string will be similar to the following:

[I@73d6a5

Pretty ugly, huh?
You may recognize this as being similar to the default String returned by calling the toString method

on an ordinary object with the name of the class for the ordinary object being replaced by [I .
For example, the String returned by calling the toString method on an object of the class named

Array04 , (with no overridden toString method), looks something like the following.

Array04@73d6a5

(Note that the hexadecimal numeric values following the @ in both of the above examples will change from
one case to the next.)

Calling the getClass method
Similarly, calling the getClass method on references to array objects containing data of the types

Array04 , Button , and int , respectively, and then calling the toString method on the Class
objects returned by the getClass method, produces the following:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

416 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

class [LArray04;

class [Ljava.awt.Button;

class [I

Complicating the OOP structure
I made the following statement in an earlier paragraph:
"The existence of array objects also tends to complicate the OOP structure of a Java program consisting

only of ordinary objects."
Array object is not a subclass of class Object
An array object can be treated as type Object for purposes of calling the methods of the Object

class on the reference to the array object. However, it would probably be misleading to say that an array
object is instantiated from a subclass of the Object class.

The new operator and the constructor name
Ordinary objects are created by applying the new operator to the constructor for a class, where the

name of the constructor is always the same as the name of the class. That is not the case with array objects.
Array objects are created by applying the new operator to the name of the type of data to be encapsulated
in the array object.

Passing parameters versus square-bracket notation
In addition, whereas the instantiation of ordinary objects involves parameters passed in parentheses, a

square-bracket notation is used instead of parentheses to create an array object. The value in the square
brackets speci�es the length of the array.

Creating an array object
Array objects (with default initialization values) are created by applying the new operator to the

name of the data type to be stored in the array, using a square-bracket notation. An example is shown by
the right-hand portion of the �rst statement in Listing 3 (p. 419) .

Listing 3 . Creating array objects.

int[] x1 = new int[5];

int[] x2 = {1,2,3,4,5};

Table 3.100

A �ve-element array object
The �rst statement in Listing 3 (p. 419) creates an array object capable of storing �ve values of type

int . The statement also assigns the array object's reference to the newly-declared reference variable named
x1 .

Default initial values
Each element in the array is initialized to the default value zero.
(All array elements created in this manner receive a default initial value. Numeric primitive types receive

an initial value of zero. Elements of type boolean receive an initial value of false . Elements whose type
is the name of a class or the name of an interface receive an initial value of null .)

Explicit initialization
The second statement in Listing 3 (p. 419) also creates an array object capable of storing �ve values of

type int , but in this case, the values in the elements are explicitly initialized to the values shown.
(Note that the new operator is not used in the second statement in Listing 3 (p. 419) . This is also a

signi�cant departure from the syntax used to instantiate ordinary objects.)
This array object's reference is assigned to the reference variable named x2 .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

417

Note the empty square brackets in the variable declarations
The syntax of the type speci�cation for the reference variable in each statement in Listing 3 (p. 419) is

di�erent from the syntax used in the type speci�cation for either a primitive variable or an ordinary class
type reference variable (note the square brackets on the left in Listing 3 (p. 419)) . In Listing 3 (p. 419)
, the type speci�cations indicate that each variable is capable of holding a reference to an array object.

The size of the array
Furthermore, the empty square brackets (in the declaration of the reference variable) indicate that the

reference variable doesn't know (and doesn't care) about the size of the array to which it may refer. Each of
the reference variables declared in Listing 3 (p. 419) can refer to a one-dimensional array object of any size.
Also, each of the reference variables can refer to di�erent array objects at di�erent points in time during the
execution of the program.

The Array class As an aside, let me mention that there is a class named Array , which provides
static methods to dynamically create and access Java arrays. The use of the methods of this
class makes it possible to handle arrays with a programming style similar to the programming style
typically used with ordinary objects. However, the use of the methods of the Array class tends
to require more programming e�ort than the square-bracket notation discussed in this module. I
will discuss a sample program that illustrates the methods of the Array class in a future module.

Encapsulating a group of variables
As is the case with other languages that support arrays, array objects in Java encapsulate a group of

variables.
Zero or more variables may be encapsulated in an array object. If the number is zero, the array object

is said to be empty.
(An example of an empty array object is the String[] array passed to the main method in a Java

application when the user doesn't enter any arguments at the command line.)
No individual names
Also, as with other languages that support arrays, the variables encapsulated in an array object don't

have individual names. Rather, they are referenced using positive integer index values.
(Typically, in Java, the index is placed in square brackets, which are applied to the name of the reference

variable holding a reference to the array object.)
Elements or components?
It is common in the literature to refer to the variables that make up an array as its elements . However,

the Java speci�cation refers to them as components. The speci�cation ascribes a di�erent meaning to the
word element, as shown in the following quotation from the speci�cation:

"The value of an array component of type �oat is always an element of the �oat value set ...;
similarly, the value of an array component of type double is always an element of the double value
set."

Another quotation from Sun (shown later in this module) provides a somewhat clearer distinction
between the words component and element .

(However, from force of habit, I will probability use component and element interchangeably in this
module.)

The length of an array
If an array has n components, the length of the array is n . The components of the array are

referenced using integer indices from 0 to (n - 1), inclusive.
Another quotation from Sun
Here is another quotation from the Java speci�cation that explains the type speci�cations for the variable

declarations in Listing 1 (p. 418) and Listing 3 (p. 419) .
"All the components of an array have the same type, called the component type of the array. If the

component type of an array is T, then the type of the array itself is written T[]."
Components may be of an array type

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

418 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

As of this writing, all array objects in Java encapsulate one-dimensional arrays (I have read that this
may change in the future).

The component type of an array may itself be an array type. This makes it possible to create array
objects whose individual components refer to other array objects.

Multi-dimensional or ragged arrays
One way to think of this is to think of the second level of array objects as being sub-arrays of the original

array object. This construct can be used to create multi-dimensional array structures.
(The geometry of such multi-dimensional array structures is not constrained to be rectangles, cubes,

etc., as is the requirement in many other languages. Some authors may refer to this as ragged arrays.)
Tree structures
This process of having the components of an array contain references to sub-arrays can be continued

inde�nitely (well, maybe not inde�nitely, but further than I care to contemplate).
(This can be thought of as a tree structure where each array object containing references to other array

objects is a node in the tree.)
The leaves of the tree
Eventually, the components (the leaves of the tree structure) must refer to a component type that is

not an array type. According to Sun:
"... this is called the element type of the original array, and the components at this level of the data

structure are called the elements of the original array."
Component versus element
Hopefully, the above quotation provides a somewhat clearer distinction between the use of the words

component and element than was presented earlier but then again, maybe not.
Generic references
Any array object's reference can also be assigned to reference variables of the types Object , Cloneable

, or Serializable .
(Object is the class at the top of the inheritance hierarchy. Cloneable and Serializable are

interfaces, which are implemented by all array objects. Thus, a reference to an array object can be treated
as any of these three types.)

Generic array objects
Therefore, if the element type of an array object is one of these types, the elements in the array can refer

to:

• Other array objects
• Ordinary objects
• A mixture of the two

This is illustrated in the sample program named Array05 shown in Listing 9 (p. 426) near the end of the
module.

Will explain in fragments
I will explain this program in fragments. Listing 4 (p. 421) shows the beginning of the controlling class

and the beginning of the main method for the program named Array05 ..

Listing 4 . The beginning of the class named Array05.

public class Array05{

public static void main(String[] args){

int[] v1 = {1,2,3,4,5};

Object[] v2 = new Object[2];

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

419

Table 3.101

Listing 4 (p. 421) creates two array objects.
An array of type int
The �rst array object is a �ve-element array of element type int , with the element values initialized as

shown by the values within the curly brackets. The reference to this array object is assigned to the reference
variable named v1 .

An array of element type Object
The second array object is a two-element array of element type Object , with each of the element values

initialized to their default value of null . The reference to the array object is assigned to the reference
variable named v2 .

(Note that unlike the previous discussion of Object , the declaration of the reference variable in this
case does include empty square brackets. I will have more to say about this later.)

A new object of this class
Listing 5 (p. 422) creates a new ordinary object of class Array05 . The code assigns the object's

reference to the �rst element in the array object of element type Object , referred to by the reference
variable named v2 .

Listing 5 . A new ordinary object of class Array05.

v2[0] = new Array05();

Table 3.102

This is allowable because the reference to an object of any class can be assigned to a reference variable
of type Object .

(The array object referred to by v2 contains two elements, each of which is a reference variable of type
Object .)

Populate the second element
The code in Listing 6 (p. 422) assigns the reference that points to the existing array object of the element

type int to the second element in the array object of element type Object .

Listing 6 . Populate the second element.

v2[1] = v1;

Table 3.103

This is allowable because a reference to any array object can be assigned to a reference variable of type
Object .

Array contains two references
At this point, the array object of element type Object contains two references.
(Each of the elements in an array of the declared type Object[] is a reference of type Object .)
The �rst element refers to an ordinary object of the class Array05 .
The second element refers to an array object of type int , having �ve elements, populated with the

integer values of 1 through 5 inclusive.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

420 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

(Note that this is not a multi-dimensional array in the traditional sense. I will discuss the Java approach
to such multi-dimensional arrays in the next module. This is simply a generic array of element type Object
, one element of which happens to contain a reference to an array object of type int .)

Print some data
The code in Listing 7 (p. 423) passes each of the references to the println method of the PrintStream

class.

Listing 7 . Print some data.

System.out.println(v2[0]);

System.out.println(v2[1]);

Table 3.104

The println method causes the toString method to be called on each reference. The String
returned by the toString method is displayed on the computer screen in each case.

This is allowable because any method de�ned in the Object class (including the toString method)
can be called on any reference stored in a reference variable of type Object .

This is true regardless of whether that reference is a reference to an ordinary object or a reference to an
array object.

The output
Listing 7 (p. 423) causes the following two lines of text to be displayed:

Array05@73d6a5

[I@111f71

Pretty ugly, huh?
In both cases, this is the value of the String returned by the default version of the toString method

de�ned in the Object class. Here is what Sun has to say about that default behavior:
"Returns a string representation of the object. In general, the toString method returns a string that

"textually represents" this object. The result should be a concise but informative representation that is easy
for a person to read. It is recommended that all subclasses override this method.

The toString method for class Object returns a string consisting of the name of the class of which
the object is an instance, the at-sign character `@', and the unsigned hexadecimal representation of the hash
code of the object."

Doesn't address array objects
Obviously, this description of behavior doesn't address the case where the object is an array object, unless

the characters [I are considered to be the name of a class. (I will have a little more to say about this
later.)

Produce some more output
Finally, Listing 8 (p. 423) shows the last statement in this simple program.

Listing 8 . Produce some more output.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

421

System.out.println(((int[])v2[1])[4]);

}//end main

}//end class Array05

Table 3.105

What does this mean?
As you can see, the syntax of this statement is pretty ugly.
Values are accessed from an array object by following the array's reference with a pair of square brackets

containing an integer index value as follows:

v2[1]

Get the value at index 1 as type Object
This code begins by accessing the component at index value 1 of the array object referred to by the

reference variable named v2 .
The value retrieved is a reference, and is retrieved as type Object , (because the variable named v2

was declared to be of type Object[]).
A cast is required
A cast is used to convert from type Object[] to type int[] using the following code:

(int[])

This produces a reference to an array object capable of containing values of type int .
Apply index to the int array
After the type of the reference has been converted, the accessor [4] is applied to the reference. This

causes the int value stored in the array object of type int (at index value 4) to be returned.
(If you refer back to Listing 4 (p. 421) , you will see that the integer value 5 was stored in the element

at index value 4 of this array object.)
You should try to remember this syntax and compare it with the syntax used in the Java approach to

traditional multi-dimensional arrays, which I will discuss in the next module.
The output
Thus, the code in Listing 8 (p. 423) causes the number 5 to be displayed on the computer screen.
Let's recap
To recap, the program named Array05 creates a two-element array object capable of storing references

of type Object .
Object is generic
Because Object is a completely generic type, each of the elements in the array is capable of storing a

reference to any ordinary object, or storing a reference to any array object.
Store reference to ordinary object in generic array
The �rst element in the array is populated with a reference to an ordinary object instantiated from the

class named Array05 .
(Important: The actual object does not occupy the array element. Rather, the actual object exists

someplace else in memory, and a reference to the object occupies the array element.)
Store a reference to an array object in the generic array
The second element in the array of element type Object is populated with a reference to another array

object capable of containing elements of type int .
As above, the actual array object of type int does not occupy the second element. Rather, that array

object exists someplace else in memory, and a reference to the array object occupies the second element in
the array of element type Object .

Display some data

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

422 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

After the array object of element type Object is created and populated, three print statements are
executed to display information about the array object and its contents (those print statements are shown
in Listing 7 (p. 423) and Listing 8 (p. 423)).

The print statements produce the following output on the computer screen:

Array05@73d6a5

[I@111f71

5

Default textual representation of ordinary object
The �rst line of output is the default textual representation of the ordinary object, achieved by calling

the default toString method on the reference to the ordinary object.
Default textual representation of array object
The second line of output is the textual representation of the array object of type int[] , achieved by

calling the default toString method on the reference to the array object.
Primitive value stored in array object
The third line of text is the value stored in element index 4 of the int[] array object whose reference is

stored in element index 1 of the array object of element type Object .
Primitive versus non-primitive array element contents
References to objects are stored in the elements of non-primitive array objects. The objects themselves

exist somewhere else in memory.
Actual primitive values are stored in the elements of a primitive array object.
Thus, the elements of an array object contain actual primitive values, null references, or actual references

to ordinary or array objects, depending on the type of the elements of the array object.

3.2.12.5 Summary

This module begins the discussion of array objects in Java.
The existence of array objects tends to complicate the OOP structure of a Java program otherwise

consisting only of ordinary objects.
A completely di�erent syntax is required to create array objects than the syntax normally used to

instantiate ordinary objects. Ordinary objects are normally instantiated by applying the new operator to
the constructor for the target class passing parameters between a pair of matching parentheses.

Array objects (with default initialization) are created using the new operator, the type of data to be
encapsulated in the array, and a square-bracket notation to specify the length of the array encapsulated
in the object.

Array objects with explicit initialization are created using a comma-separated list of expressions enclosed
in curly brackets.

Arrays in Java are objects, which are dynamically created and allocated to dynamic memory.
Like ordinary objects, array objects are accessed via references. The type of such a reference is considered

to be TypeName[] (note the empty square brackets in the type speci�cation).
A reference to an array object can also be assigned to a reference variable of type Object (note the

absence of square brackets). Thus, any of the methods of the Object class can be called on a reference
to an array object.

As is the case with other languages that support arrays, array objects in Java encapsulate a group of
zero or more variables. The variables encapsulated in an array object don't have individual names. Rather,
they are accessed using positive integer index values.

The integer indices of a Java array object always extend from 0 to (n-1) where n is the length
of the array object.

As of the time of this writing, all array objects in Java encapsulate one-dimensional arrays. However, the
component type of an array may itself be an array type. This makes it possible to create array objects whose
individual components refer to other array objects. This is the mechanism for creating multi-dimensional
or ragged arrays in Java.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

423

The reference to any array object can be assigned to reference variables of the types Object ,
Cloneable , or Serializable . If the element type of an array object is one of these types, the elements
in the array can refer to:

• Other array objects
• Ordinary objects
• A mixture of the two

3.2.12.6 What's next?

This module has barely scratched the surface in explaining how array objects �t into the grand scheme of
things in OOP using Java. In the next module, I will continue the discussion, showing you some of the
(often complex) aspects of using Java array objects to emulate traditional multi-dimensional arrays. I will
also show you how to create ragged arrays in Java.

3.2.12.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Array Objects, Part 1
• File: Java1622.htm
• Published: 05/15/02

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.2.12.8 Complete program listing

A complete listing of the program is shown in Listing 9 (p. 426) below.

Listing 9 . Complete program listing.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

424 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

/*File Array05.java

Copyright 2002, R.G.Baldwin

This program illustrates storage of

references to ordinary objects and

references to array objects in the

same array object of type Object.

Program output is:

Array05@73d6a5

[I@111f71

5

**************************************/

public class Array05{

public static void main(

String[] args){

int[] v1 = {1,2,3,4,5};

Object[] v2 = new Object[2];

v2[0] = new Array05();

v2[1] = v1;

System.out.println(v2[0]);

System.out.println(v2[1]);

System.out.println(

((int[])v2[1])[4]);

}//end main

}//end class Array05

Table 3.106

-end-

3.2.13 Java1624: Array Objects, Part 2
136

Revised: Fri Aug 12 10:34:05 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 137

• Object-Oriented Programming (OOP) with Java 138

3.2.13.1 Table of Contents

• Preface (p. 428)

136This content is available online at <http://cnx.org/content/m44199/1.7/>.
137http://cnx.org/contents/dzOvxPFw
138http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

425

· Viewing tip (p. 428)

* Listings (p. 428)

• Preview (p. 429)
• Discussion and sample code (p. 429)
• Summary (p. 447)
• What's next? (p. 448)
• Miscellaneous (p. 448)
• Complete program listing (p. 448)

3.2.13.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

3.2.13.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

3.2.13.2.1.1 Listings

• Listing 1 (p. 429) . Reference variable declaration..
• Listing 2 (p. 430) . A three-dimensional array object of element type Button.
• Listing 3 (p. 430) . The generic class Object.
• Listing 4 (p. 431) . Primitive type conversions.
• Listing 5 (p. 432) . Initialization.
• Listing 6 (p. 432) . Placement of square brackets.
• Listing 7 (p. 432) . Creating the actual array object.
• Listing 8 (p. 433) . An array access expression.
• Listing 9 (p. 434) . Explicit initialization of array elements.
• Listing 10 (p. 435) . Create a two-dimensional rectangular array structure.
• Listing 11 (p. 436) . Using length to populate the leaves of the tree structure.
• Listing 12 (p. 437) . Display leaf object contents.
• Listing 13 (p. 438) . Beginning of a ragged array with two rows and three columns.
• Listing 14 (p. 438) . Create the leaf array objects.
• Listing 15 (p. 439) . Create the array object.
• Listing 16 (p. 440) . Populate the root object.
• Listing 17 (p. 440) . Populate the leaf array objects.
• Listing 18 (p. 441) . Display data in leaf array objects.
• Listing 19 (p. 442) . A triangular array.
• Listing 20 (p. 442) . Populate the leaf array objects.
• Listing 21 (p. 443) . A more general approach.
• Listing 22 (p. 444) . Populate the leaf objects.
• Listing 23 (p. 446) . Beginning of a more general case.
• Listing 24 (p. 446) . Populate the leaf array elements.
• Listing 25 (p. 446) . Display the output.
• Listing 26 (p. 449) . Complete program listing.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

426 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.2.13.3 Preview

This module explains various details regarding the use of array objects in Java, and illustrates many of those
details through the use of sample code.

A sample program shows you three ways to emulate traditional two-dimensional rectangular arrays, and
also shows you how to create and use ragged arrays.

3.2.13.4 Discussion and sample code

Array objects
A di�erent syntax is required to create array objects than the syntax normally used to create ordinary

objects.
Array objects are accessed via references.
Any of the methods of the Object class can be called on a reference to an array object.
The indices of a Java array object
Array objects encapsulate a group of variables, which don't have individual names. They are accessed

using positive integer index values. The integer indices of a Java array object always extend from 0 to
(n-1) where n is the length of the array encapsulated in the object.

Multidimensional arrays
Array objects in Java encapsulate one-dimensional arrays. However, the component type of an array may

itself be an array type. This makes it possible to create array objects whose individual components refer to
other array objects. This is the mechanism for creating multi-dimensional or ragged arrays in Java.

Such a structure of array objects can be thought of as a tree of array objects, with the data being stored
in the array objects that make up the leaves of the tree.

Array types
When declaring a reference variable capable of referring to an array object, the array type is declared

by writing the name of an element type followed by some number of empty pairs of square brackets []. This
is illustrated in Listing 1 (p. 429) , which declares a reference variable named v1 , capable of storing a
reference to a two-dimensional array of type int .

Listing 1 . Reference variable declaration.

int[][] v1;

Table 3.107

(Note that Listing 1 (p. 429) doesn't really declare a two-dimensional array in the traditional sense of
other programming languages. Rather, it declares a reference variable capable of storing a reference to a
one-dimensional array object, which in turn is capable of storing references to one-dimensional array objects
of type int .)

Multiple pairs of square brackets are allowed
The components in an array object may refer to other array objects. The number of bracket pairs used

in the declaration of the reference variable indicates the depth of array nesting (in the sense that array
elements can refer to other array objects). This is one of the ways that Java implements the concept of
traditional multi-dimensional arrays (I will show you some other ways later in this module).

The code in Listing 1 (p. 429) shows two levels of nesting for the reference variable of type

int[][]

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

427

Length not part of variable declaration
Note that an array's length is not part of its type or reference variable declaration.
Ragged arrays
Note also that multi-dimensional arrays, when implemented in this fashion, are not required to represent

rectangles, cubes, etc. For example, the number of elements in each row of a Java two-dimensional array
can be di�erent. Some authors refer to this as a ragged array .

Allowable types
The speci�ed element type of an array may be any primitive or reference type. Note, however, that all

elements of the array must be of the same type (consistent with the type-conversion rules discussed below)
.

Listing 2 (p. 430) shows the declaration of a reference variable capable of referring to a three -dimensional
array object of element type Button (Button is one of the classes in the standard class library).

Listing 2 . A three-dimensional array object of element type Button.

Button[][][] v2;

Table 3.108

Rules of type conversion and assignment compatibility apply
The normal rules of type conversion and assignment compatibility apply when creating and populating

array objects. For example, if the speci�ed type is the name of a non-abstract class, a null reference or a
reference to any object instantiated from that class or any subclass of that class may be stored in the array
element.

The generic class Object
For example, Listing 3 (p. 430) shows the declaration of a reference variable capable of referring to a

one-dimensional array object of element type Object .
Since Object is the superclass of all other classes, this array object is capable of storing references to

objects instantiated from any other class. (As we saw in the previous module, it is also capable of storing
a reference to any other array object as well.)

Listing 3 . The generic class Object.

Object[] v3;

Table 3.109

Primitive type conversions
Similarly, if the declared element type for the array object is one of the primitive types, the elements of

the array can be used to store values of any primitive type that is assignment compatible with the declared
type (without the requirement for a cast).

For example, the code in Listing 4 (p. 431) shows the creation of a one-dimensional array object capable
of storing values of type int . The array object has a length of 3 elements, and the object's reference is
stored in a reference variable named v1 .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

428 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 4 . Primitive type conversions.

int[] v1;

v1 = new int[3];

byte x1 = 127;

short x2 = 16384;

int x3 = 32000;

v1[0] = x1;

v1[1] = x2;

v1[2] = x3;

Table 3.110

Assignment-compatible assignments
Values of the types byte , short , and int , are stored in the elements of the array object in Listing

4 (p. 431) .
Actual type is lost in the process
It should be noted that the byte and short values are converted to type int as they are stored.

When retrieved later, they will be retrieved as type int . Any indication that these values were ever of any
type other than int is lost in the process of storing and retrieving the values.

What about class types?
If the declared element type is the name of a class, (which may or may not be abstract), a null reference

or a reference to any object instantiated from the class or any subclass of the class may be stored in the
array element.

(Obviously you can't store a reference to an object instantiated from an abstract class, because you can't
instantiate an abstract class.)

What about an interface type?
If the declared element type is an interface type, a null reference or a reference to any object instantiated

from any class that implements the interface can be stored in the array element.
(This is an extremely powerful concept, allowing references to objects instantiated from many di�erent

classes to be collected into an array as the interface type.)
Array reference variables
All array objects are accessed via references. A reference variable whose declared type is an array type

does not contain an array. Rather, it contains either null, or a reference to an array object.
Allocation of memory
Declaring the reference variable does not create an array, nor does it allocate any space for the array

components. It simply causes memory to be allocated for the reference variable itself, which may later
contain a reference to an array object.

Initialization
In the same sense that it is possible to declare a reference variable for an ordinary object, and initialize it

with a reference to an object when it is declared, it is also possible to declare a reference to an array object
and initialize it with a reference to an array object when it is declared. This is illustrated in Listing 5 (p.
432) , which shows the following operations combined into a single statement:

• Declaration of a variable to contain a reference to an array object
• Creation of the array object
• Storage of the array object's reference in the reference variable

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

429

Listing 5 . Initialization.

int[] v1 = new int[3];

Table 3.111

Can refer to di�erent array objects
The length of an array is not established when the reference variable is declared. As with references

to ordinary objects, a reference to an array object can refer to di�erent array objects at di�erent points in
the execution of a program.

For example, a reference variable that is capable of referring to an array of type int[] can refer to an
array object of a given length at one point in the program and can refer to a di�erent array object of the
same type but a di�erent length later in the program.

Placement of square brackets
When declaring an array reference variable, the square brackets [] may appear as part of the type, or

following the variable name, or both. This is illustrated in Listing 6 (p. 432) .

Listing 6 . Placement of square brackets.

int[][] v1;

int[] v2[];

int v3[][];

Table 3.112

Type and length
Once an array object is created, its type and length never changes. A reference to a di�erent array object

must be assigned to the reference variable to cause the reference variable to refer to an array of di�erent
length.

Creating the actual array object
An array object is created by an array creation expression or an array initializer.
An array creation expression (or an array initializer) speci�es:

• The element type
• The number of levels of nested arrays
• The length of the array for at least one of the levels of nesting

Two valid array creation expressions are illustrated by the statements in Listing 7 (p. 432) .

Listing 7 . Creating the actual array object.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

430 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

int[][] v1;

int[] v2[];

v1 = new int[2][3];

v2 = new int[10][];

Table 3.113

A two-dimensional rectangular array
The third statement in Listing 7 (p. 432) creates an array object of element type int with two levels of

nesting. This array object can be thought of as a traditional two-dimensional rectangular array having two
rows and three columns. (This is a somewhat arbitrary choice as to which dimension speci�es the number
of rows and which dimension speci�es the number of columns. You may prefer to reverse the two.)

A ragged array
The fourth statement also creates an array object of element type int with two levels of nesting.

However, the number of elements in each column is not speci�ed at this point, and it is not appropriate to
think of this as a two-dimensional rectangular array. In fact, once the number of elements in each column
has been speci�ed, it may not describe a rectangle at all. Some authors refer to an array of this type as a
ragged array.

The length of the array
The length of the array is always available as a �nal instance variable named length . I will show

you how to use the value of length in a sample program later in this module.
Accessing array elements
An array element is accessed by an array access expression . The access expression consists of an

expression whose value is an array reference followed by an indexing expression enclosed by matching square
brackets.

The expression in parentheses in Listing 8 (p. 433) illustrates an array access expression (or perhaps
two concatenated array access expressions).

Listing 8 . An array access expression.

int[][] v1 = new int[2][3];

System.out.println(v1[0][1]);

Table 3.114

First-level access
This array access expression �rst accesses the contents of the element at index 0 in the array object

referred to by the reference variable named v1 . This element contains a reference to a second array object
(note the double matching square brackets, [][] in the declaration of the variable named v1).

Second-level access
The array access expression in Listing 8 (p. 433) uses that reference to access the value stored in the

element at index value 1 in the second array object. That value is then passed to the println method for
display on the standard output device.

(In this case, the value 0 is displayed, because array elements are automatically initialized to default
values when the array object is created. The default value for all primitive numeric values is zero.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

431

Zero-based indexing
All array indexes in Java begin with 0 . An array with length n can be indexed by the integers 0 to

(n-1) . Array accesses are checked at runtime. If an attempt is made to access the array with any other
index value, an ArrayIndexOutOfBoundsException will be thrown.

Index value types
Arrays must be indexed by integer values of the following types: int , short , byte , or char .

For any of these types other than int , the value will be promoted to an int and used as the index.
An array cannot be accessed using an index of type long . Attempting to do so results in a compiler

error.
Default initialization
If the elements in an array are not purposely initialized when the array is created, the array elements

will be automatically initialized with default values. The default values are:

• All reference types: null
• Primitive numeric types: 0
• Primitive boolean type: false
• Primitive char type: the Unicode character with 16 zero-valued bits

Explicit initialization of array elements
The values in the array elements may be purposely initialized when the array object is created using a

comma-separated list of expressions enclosed by matching curly brackets. This is illustrated in Listing 9 (p.
434) .

Listing 9 . Explicit initialization of array elements.

int[] v1 = {1,2,3,4,5};

Table 3.115

No new operator
Note that this format does not use the new operator. Also note that the expressions in the list may

be much more complex than the simple literal values shown in Listing 9 (p. 434) .
Length and order
When this format is used, the length of the constructed array will equal the number of expressions in the

list.
The expressions in an array initializer are executed from left to right in the order that they occur in the

source code. The �rst expression speci�es the value at index value zero, and the last expression speci�es the
value at index value n-1 (where n is the length of the array).

Each expression must be assignment-compatible with the array's component type, or a compiler error
will occur.

A sample program
The previous paragraphs in this module have explained some of the rules and characteristics regarding

array objects. They have also illustrated some of the syntax involved in the use of array objects in Java.
More powerful and complex
Many aspiring Java programmers �nd the use of array objects to be something less than straightforward,

and that is understandable. In fact, Java array objects are somewhat more powerful than array structures
in many other programming languages, and this power often manifests itself in additional complexity.

A traditional two-dimensional rectangular array
Some of that complexity is illustrated by the program named Array07 , shown in Listing 26 (p. 449)

near the end of this module. This program illustrates three di�erent ways to accomplish essentially the same

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

432 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

task using array objects in Java. That task is to emulate a traditional two-dimensional rectangular array as
found in other programming languages. Two of the ways that are illustrated are essentially ragged arrays
with sub-arrays having equal length.

Ragged arrays
The program also illustrates two di�erent ways to work with array objects and ragged arrays.
Will discuss in fragments
As is my practice, I will discuss and explain the program in fragments.
All of the interesting code in this program is contained in the main method, so I will begin my discussion

with the �rst statement in the main method.
Create a two-dimensional rectangular array structure
Listing 10 (p. 435) creates an array structure that emulates a traditional rectangular array with two rows

and three columns.

Listing 10 . Create a two-dimensional rectangular array structure.

Object[][] v1 = new Object[2][3];

Table 3.116

(Note that unlike the ragged array structures to be discussed later, this approach requires all rows to be
the same length and all columns to be the same length.)

Reference variable declaration
The code to the left of the equal sign (=) in Listing 10 (p. 435) declares a reference variable named

v1 . This reference variable is capable of holding a reference to an array object whose elements are of the
type Object[] ..

In other words, this reference variable is capable of

• holding a reference to an array object,
• whose elements are capable of holding references to other array objects,
• whose elements are of type Object .

Two levels of nesting
The existence of double matching square brackets in the variable declaration in Listing 10 (p. 435)

indicates two levels of nesting.
Restrictions
The elements in the array object referred to by v1 can only hold references to other array objects whose

element type is Object (or references to array objects whose element type is a subclass of Object).
The elements in the array object referred to by v1 cannot hold references to ordinary objects instantiated

from classes, or array objects whose element type is a primitive type.
In other words, the elements in the array object referred to by v1 can only hold references to other

array objects. The element types of those array objects must be assignment compatible with the type
Object (this includes interface types and class types but not primitive types).

A tree of empty array objects
The code to the right of the equal sign (=) in Listing 10 (p. 435) creates a tree structure of array

objects. The object at the root of the tree is an array object of type Object[] , having two elements (a
length of two).

The reference variable named v1 refers to the array object that forms the root of the tree.
Each of the two elements in the root array object is initialized with a reference to another array object.
(These two objects might be viewed as sub-arrays, or as child nodes in the tree structure).

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

433

Each of the child nodes is an array object of type Object � and has a length of three.
Each element in each of the two child node array objects is initialized to the value null (this is the

default initialization for array elements of reference types that don't yet refer to an object).
Recap
To recap, the reference variable named v1 contains a reference to a two-element, one-dimensional array

object. Each element in that array object is capable of storing a reference of type Object[] (a reference
to another one-dimensional array object of type Object).

Two sub-array objects
Two such one-dimensional sub-array (or child node) objects, of element type Object , are created.

References to the two sub-array objects are stored in the elements of the two-element array object at the
root of the tree.

Each of the sub-array objects has three elements. Each element is capable of storing a reference to an
object as type Object .

The leaves of the tree
These two sub-array objects might be viewed as the leaves of the tree structure.
Initialize elements to null
However, the objects of type Object don't exist yet. Therefore, each element in each of the sub-array

objects is automatically initialized to null .
Arrays versus sub-arrays
Note that there is no essential di�erence between an array object and a sub-array object in the above

discussion. The use of the sub pre�x is used to indicate that an ordinary array object belongs to another
array object, because the reference to the sub-array object is stored in an element of the owner object.

Many dimensions are possible
Multi-dimensional arrays of any (reasonable) depth can be emulated in this manner. An array object

may contain references to other array objects, which may contain references to other array objects, and so
on.

The leaves of the tree structure
Eventually, however, the elements of the leaves in the tree structure must be speci�ed to contain either

primitive values or references to ordinary objects. This is where the data is actually stored.
(Note however, that if the leaves are speci�ed to contain references of type Object , they may contain

references to other array objects of any type, and the actual data could be stored in those array objects.)
The length of an array
Every array object contains a public �nal instance variable named length , which contains an integer

value specifying the number of elements in the array.
Once created, the length of the array encapsulated in an array object cannot change. Therefore, the

value of length speci�es the length of the array throughout the lifetime of the array object.
Using length to populate the leaves of the tree structure
The value of length is very handy when processing array objects. This is illustrated in Listing 11 (p.

436) , which uses a nested for loop to populate the elements in the leaves of the tree structure referred to
by v1 . (The elements in the leaf objects are populated with references to objects of type Integer .
Note that Integer is not a primitive type. Instead, it is a wrapper class for primitive data of type int .)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

434 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 11 . Using length to populate the leaves of the tree structure.

for(int i=0;i<v1.length;i++){
for(int j=0;j<v1[i].length;j++){

v1[i][j] =

new Integer((i+1)*(j+1));

}//end inner loop

}//end outer loop

Table 3.117

Using length in loop's conditional expressions
Hopefully by now you can read and understand this code without a lot of help from me. I will point out,

however, that the value returned by v1.length (in the conditional expression for the outer loop) is the
number of leaves in the tree structure (this tree structure has two leaves).

I will also point out that the value returned by v1[i].length (in the conditional expression for the
inner loop) is the number of elements in each leaf array object (each leaf object in this tree structure has
three elements).

Finally, I will point out that the expression v1[i][j] accesses the jth element in the ith leaf, or
sub-array. In the traditional sense of a rectangular array, this could be thought of as the jth column of
the ith row. This mechanism is used to store object references in each element of each of the leaf array
objects.

Populate with references to Integer objects
Thus, each element in each leaf array object is populated with a reference to an object of the type

Integer . Each object of the type Integer encapsulates an int value calculated from the current values
of the two loop counters.

Display leaf object contents
In a similar manner, the code in Listing 12 (p. 437) uses the length values in the conditional expressions

of nested for loops to access the references stored in the elements of the leaf array objects, and to use
those references to access and display the values encapsulated in the Integer objects whose references are
stored in those elements.

Listing 12 . Display leaf object contents.

for(int i=0;i<v1.length;i++){
for(int j=0;j<v1[i].length;j++){

System.out.print(

v1[i][j] + " ");

}//end inner loop

System.out.println();//new line

}//end outer loop

Table 3.118

The rectangular output
The code in Listing 12 (p. 437) produces the following output on the screen.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

435

1 2 3

2 4 6

As you can see, this emulates a traditional two-dimensional array having two rows and three columns.
A ragged array with two rows and three columns
The second approach to emulating a traditional two-dimensional rectangular array will create a ragged

array where each row is the same length.
(It is very important to note that, unlike this case, with a ragged array, the number of elements in each

row or the number of elements in each column can be di�erent.)
The most signi�cant thing about this approach is the manner in which the tree of array objects is created

(see Listing 13 (p. 438)).

Listing 13 . Beginning of a ragged array with two rows and three columns.

Object[][] v2 = new Object[2][];

Table 3.119

Three statements required
With this approach, three statements are required to replace one statement from the previous approach.

(Two additional statements are shown in Listing 14 (p. 438) .)
A single statement in the previous approach (Listing 10 (p. 435)) created all three array objects

required to construct the tree of array objects, and initialized the elements in the leaf array objects with
null values.

Create only the root array object
However, the code in Listing 13 (p. 438) creates only the array object at the root of the tree. That array

object is an array object having two elements capable of storing references of type Object[] .
Empty square brackets
If you compare this statement with the statement in Listing 10 (p. 435) , you will notice that the right-

most pair of square brackets in Listing 13 (p. 438) is empty. Thus, Listing 13 (p. 438) creates only the array
object at the root of the tree, and initializes the elements in that array object with null values.

Leaf array objects don't exist yet
The leaf array objects don't exist at the completion of execution of the statement in Listing 13 (p. 438) .
Create the leaf array objects
The statements in Listing 14 (p. 438) create two array objects of element type Object .

Listing 14 . Create the leaf array objects.

v2[0] = new Object[3];

v2[1] = new Object[3];

Table 3.120

Save the references to the leaves
References to these two leaf objects are stored in the elements of the array object at the root of the tree,

(which was created in Listing 13 (p. 438)). Thus, these two array objects become the leaves of the tree
structure of array objects.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

436 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

This completes the construction of the tree structure. Each element in each leaf object is initialized with
null .

Why bother?
You might ask why I would bother to use this approach, which requires three statements in place of only

one statement in the previous approach.
The answer is that I wouldn't normally use this approach if my objective is to emulate a traditional

rectangular array. However, this approach is somewhat more powerful than the previous approach.
The lengths of the leaf objects can di�er
With this approach, the length values of the two leaf array objects need not be the same. Although I

caused the length value of the leaf objects to be the same in this case, I could just as easily have caused
them to be di�erent lengths (I will illustrate this capability later in the program).

Populate and display the data
If you examine the complete program in Listing 26 (p. 449) near the end of the module, you will see that

nested for loops, along with the value of length was used to populate and display the contents of the
leaf array objects. Since that portion of the code is the same as with the previous approach, I won't show
and discuss it here.

The rectangular output
This approach produced the following output on the screen, (which is the same as before):

1 2 3

2 4 6

Now for something really di�erent
The next approach that I am going to show you for emulating a two-dimensional rectangular array is

signi�cantly di�erent from either of the previous two approaches.
Not element type Object[]
In this approach, I will create a one-dimensional array object of element type Object (not element

type Object[]) . I will populate the elements of that array object with references to other array objects
of element type Object . In doing so, I will create a tree structure similar to those discussed above.

The length of the leaf objects
As with the second approach above, the array objects that make up the leaves of the tree can be any

length, but I will make them the same length in order to emulate a traditional rectangular two-dimensional
array.

Create the array object
First consider the statement shown in Listing 15 (p. 439) . Compare this statement with the statements

shown earlier in Listing 10 (p. 435) and Listing 13 (p. 438) .

Listing 15 . Create the array object.

Object[] v3 = new Object[2];

Table 3.121

No double square brackets
Note in particular that the statement in Listing 15 (p. 439) does not make use of double square brackets,

as was the case in Listing 10 (p. 435) and Listing 13 (p. 438) . Thus, the statement show in Listing 15 (p.
439) is entirely di�erent from the statements shown in Listing 10 (p. 435) and Listing 13 (p. 438) .

Declare a reference variable

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

437

That portion of the statement to the left of the equal sign (=) declares a reference variable capable of
storing a reference to an array object whose elements are capable of storing references of the type Object
(not type Object[] as in the previous examples).

Refer to the root object
This reference variable will refer to an array object that forms the root of the tree structure. However,

the root object in this case will be considerably di�erent from the root objects in the previous two cases.
In the previous two cases, the elements of the root object were required to store references of type

Object[] (note the square brackets). In other words, an array object whose elements are of type
Object[] can only store references to other array objects whose elements are of type Object .

A more general approach
However, an array object whose elements are of type Object (as is the case here), can store:

• References to any object instantiated from any class
• References to array objects whose elements are of any type (primitive or reference)
• A mixture of the two kinds of references .

Therefore, this is a much more general, and much more powerful approach.
A price to pay
However, there is a price to pay for the increased generality and power. In particular, the programmer who

uses this approach must have a much better understanding of Java object-oriented programming concepts
than the programmer who uses the two approaches discussed earlier in this module.

Particularly true relative to �rst approach
This is particularly true relative to the �rst approach discussed earlier. That approach is su�ciently

similar to the use of multi-dimensional arrays in other languages that a programmer with little understanding
of Java object-oriented programming concepts can probably muddle through the syntax based on prior
knowledge. However, it is unlikely that a programmer could muddle through this approach without really
understanding what she is doing.

Won't illustrate true power
Although this approach is very general and very powerful, this sample program won't attempt to illustrate

that power and generality. Rather, this sample program will use this approach to emulate a traditional two-
dimensional rectangular array just like the �rst two approaches discussed earlier. (Later, I will also use this
approach for a couple of ragged arrays.)

Populate the root object
The two statements in Listing 16 (p. 440) create two array objects, each having three elements. Each

element is capable of storing a reference to any object that is assignment compatible with the Object
type.

(Assignment compatibility includes a reference to any object instantiated from any class, or a reference
to any array object of any type (including primitive types), or a mixture of the two.)

Listing 16 . Populate the root object.

v3[0] = new Object[3];

v3[1] = new Object[3];

Table 3.122

References to the two new array objects are stored in the elements of the array object that forms the
root of the tree structure. The two new array objects form the leaves of the tree structure.

Populate the leaf array objects

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

438 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

As in the previous two cases, the code in Listing 17 (p. 440) uses nested for loops to populate the array
elements in the leaf objects with references to new Integer objects. (The Integer objects encapsulate
int values based on the loop counter values for the outer and inner loops.)

Listing 17 . Populate the leaf array objects.

for(int i=0;i<v3.length;i++){
for(int j=0;j<((Object[])v3[i]).length;j++){

((Object[])v3[i])[j] = new Integer((i+1)*(j+1));

}//end inner loop

}//end outer loop

Table 3.123

Added complexity
The added complexity of this approach manifests itself in

• The cast operators shown in Listing 17 (p. 440)
• The attendant required grouping of terms within parentheses

Inside and outside the parentheses
Note that within the inner loop, one of the square-bracket accessor expressions is inside the parentheses

and the other is outside the parentheses.
Why are the casts necessary?
The casts are necessary to convert the references retrieved from the array elements from type Object

to type Object[] . For example, the reference stored in v3[i] is stored as type Object .
Get length of leaf array object
The cast in the following expression converts that reference to type Object[] before attempting to get

the value of length belonging to the array object whose reference is stored there.

((Object[])v3[i]).length

Assign a value to an element in the leaf array object
Similarly, the following expression converts the reference stored in v3[i] from type Object to type

Object[] . Having made the conversion, it then accesses the jth element of the array object whose
reference is stored there (in order to assign a value to that element).

((Object[])v3[i])[j]=

Display data in leaf array objects
Listing 18 (p. 441) uses similar casts to get and display the values encapsulated in the Integer objects

whose references are stored in the elements of the leaf array objects.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

439

Listing 18 . Display data in leaf array objects.

for(int i=0;i<v3.length;i++){
for(int j=0;j<((Object[])v3[i]).length;j++){

System.out.print(((Object[])v3[i])[j] + " ");

}//end inner loop

System.out.println();//new line

}//end outer loop

Table 3.124

The rectangular output
This approach produced the following output on the screen, (which is the same as the previous two

approaches):

1 2 3

2 4 6

Ragged arrays
All the code in the previous three cases has been used to emulate a traditional rectangular two-dimensional

array. In the �rst case, each row was required to have the same number of elements by the syntax used to
create the tree of array objects.

In the second and third cases, each row was not required to have the same number of elements, but they
were programmed to have the same number of elements in order to emulate a rectangular two-dimensional
array.

A triangular array, sort of ...
Now I am going to show you some cases that take advantage of the ragged-array capability of Java

array objects. In the next case, (beginning with Listing 19 (p. 442)), I will create a ragged array having
two rows. The �rst row will have two elements and the second row will have three elements. (This array
object might be thought of as being sort of triangular.)

Listing 19 . A triangular array.

Object[][] v4 = new Object[2][];

v4[0] = new Object[2];

v4[1] = new Object[3];

Table 3.125

You have seen this before
You saw code like this in the second case discussed earlier. However, in that case, the second and third

statements created new array objects having the same length. In this case, the second and third statements
create array objects having di�erent lengths. This is one of the ways to create a ragged array in Java (you
will see another way in the next case that I will discuss).

Populate the leaf array objects
Listing 20 (p. 442) populates the elements of the leaf array objects with references to objects of the class

Integer .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

440 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 20 . Populate the leaf array objects.

for(int i=0;i<v4.length;i++){
for(int j=0;j<v4[i].length;j++){

v4[i][j] =

new Integer((i+1)*(j+1));

}//end inner loop

}//end outer loop

Table 3.126

You have seen this before also
You have also seen the code in Listing 20 (p. 442) before. I repeated it here because this case clearly

emphasizes the value of the length constant that is available in all Java array objects. In the earlier case,
the length of the two leaf array objects was the same, so it would have been feasible to simply hard-code
that value into the conditional expression of the inner for loop.

The length is not the same now
However, in this case, the length of the two leaf array objects is not the same. Therefore, it wouldn't

work to hard-code a limit into the conditional expression of the inner for loop. However, because the
length of each leaf array object is available as a public member of the array object, that value can be used
to control the number of iterations of the inner loop for each separate leaf array object.

The triangular output
The next section of code in the program shown in Listing 26 (p. 449) near the end of the module uses

the same code as before to display the int values encapsulated in the Integer objects whose references
are stored in the leaf array objects. Since it is the same code as before, I won't repeat it here.

The output produced by this case is shown below:

1 2

2 4 6

Note that this is not the same as before, and this output does not describe a rectangular array. Rather, it
describes a ragged array where the rows are of di�erent lengths.

(As I indicated earlier, it is sort of triangular. However, it could be any shape that you might want it
to be.)

A more general approach
The next case, shown in Listing 21 (p. 443) , is the same as the third case discussed earlier, except that

the lengths of the leaf array objects are not the same.
As before, this case creates a one-dimensional array object of type Object (having two elements) that

forms the root of a tree. Each element in the root object contains a reference to another array object of type
Object .
One of those leaf objects has two elements and the other has three elements, thus producing a ragged

array (you could make the lengths of those objects anything that you want them to be).

Listing 21 . A more general approach.

Object[] v5 = new Object[2];

v5[0] = new Object[2];

v5[1] = new Object[3];

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

441

Table 3.127

Populate the leaf objects
As before, the elements in the leaf array objects are populated with references to objects of the class

Integer , which encapsulate int values based on the current value of the loop counters. This is shown in
Listing 22 (p. 444) .

Listing 22 . Populate the leaf objects.

for(int i=0;i<v5.length;i++){
for(int j=0;

j<((Object[])v5[i]).length;
j++){

((Object[])v5[i])[j] =

new Integer((i+1)*(j+1));

}//end inner loop

}//end outer loop

Table 3.128

Same code as before
This is the same code that you saw in Listing 17 (p. 440) . I repeated it here to emphasize the requirement

for casting .
Display the data
This case uses the same code as Listing 18 (p. 441) to display the int values encapsulated by the

Integer objects whose references are stored in the elements of the leaf array objects. I won't repeat that
code here.

The triangular output
The output produced by this case is shown below:

1 2

2 4 6

Note that this is the same as the case immediately prior to this one. Again, it does not describe a rectangular
array. Rather, it describes a ragged array where the rows are of di�erent lengths.

A more general case
I'm going to show you one more general case for a ragged array. This case illustrates a more general

approach. In this case, I will create a one-dimensional array object of element type Object . I will populate
the elements of that array object with references to other array objects. These array objects will be the
leaves of the tree.

Leaf array objects are type int
In this case, the leaves won't be of element type Object . Rather, the elements in the leaf objects will

be designed to store primitive int values.
(An even more general case would be to populate the elements of the root object with references to

a mixture of objects of class types, interface types, and array objects where the elements of the array
objects are designed to store primitives of di�erent types, and references of di�erent types. Note, however,
each leaf array object must be designed to store a single type, but will accept for storage any type that is
assignment-compatible with the speci�ed type for the array object.)

This case begins in Listing 23 (p. 446) , which creates the root array object, and populates its elements
with references to leaf array objects of type int .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

442 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 23 . Beginning of a more general case .

Object[] v6 = new Object[2];

v6[0] = new int[7];

v6[1] = new int[3];

Table 3.129

Leaf objects are di�erent lengths
One of the leaf array objects has a length of 7. The other has a length of 3.
Populate the leaf array elements
Listing 24 (p. 446) populates the elements in the leaf array objects with values of type int .

Listing 24 . Populate the leaf array elements.

for(int i=0;i<v6.length;i++){
for(int j=0;j<((int[])v6[i]).length;j++){

((int[])v6[i])[j] = (i+2)*(j+2);

}//end inner loop

}//end outer loop

Table 3.130

Similar to previous code
The code in Listing 24 (p. 446) is similar to code that you saw earlier. The di�erences are:

• Cast is to type int[] instead of object[]
• Values assigned are type int instead of references to Integer objects

Display the output
Finally, Listing 25 (p. 446) displays the int values stored in the elements of the leaf array objects.

Listing 25 . Display the output.

for(int i=0;i<v6.length;i++){
for(int j=0;j<((int[])v6[i]).length;j++){

System.out.print(((int[])v6[i])[j] + " ");

}//end inner loop

System.out.println();//new line

}//end outer loop

Table 3.131

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

443

The code in Listing 25 (p. 446) is very similar to what you have seen before, and there should be no
requirement for an explanation of this code.

The code in Listing 25 (p. 446) produces the following output:

4 6 8 10 12 14 16

6 9 12

I will leave it as an exercise for the student to correlate the output with the code.

3.2.13.5 Summary

When declaring a reference variable capable of referring to an array object, the array type is declared by
writing the name of an element type followed by some number of empty pairs of square brackets [].

The components in an array object may refer to other array objects. The number of bracket pairs used
in the declaration of the reference variable indicates the depth of array nesting (in the sense that array
elements can refer to other array objects).

An array's length is not part of its type or reference variable declaration.
Multi-dimensional arrays are not required to represent rectangles, cubes, etc. They can be ragged.
The normal rules of type conversion and assignment compatibility apply when creating and populating

array objects.
Object is the superclass of all other classes. Therefore, an array of element type Object is capable

of storing references to objects instantiated from any other class. The type declaration for such an array
object would be Object[] .

An array of element type Object is also capable of storing references to any other array object.
If the declared element type for the array object is one of the primitive types, the elements of the array

can be used to store values of any primitive type that is assignment compatible with the declared type
(without the requirement for a cast).

If the declared element type is the name of a class, (which may or may not be abstract), a null reference
or a reference to any object instantiated from the class or any subclass of the class may be stored in the
array element.

If the declared element type is an interface type, a null reference or a reference to any object instantiated
from any class that implements the interface can be stored in the array element.

A reference variable whose declared type is an array type does not contain an array. Rather, it contains
either null, or a reference to an array object. Declaring the reference variable does not create an array, nor
does it allocate any space for the array components.

It is possible to declare a reference to an array object and initialize it with a reference to an array object
when it is declared.

A reference to an array object can refer to di�erent array objects (of the same element type and di�erent
lengths) at di�erent points in the execution of a program.

When declaring an array reference variable, the square brackets [] may appear as part of the type, or
following the variable name, or both.

Once an array object is created, its type and length never changes.
An array object is created by an array creation expression or an array initializer.
An array creation expression (or an array initializer) speci�es:

• The element type
• The number of levels of nested arrays
• The length of the array for at least one of the levels of nesting

The length of the array is always available as a �nal instance variable named length .
An array element is accessed by an expression whose value is an array reference followed by an indexing

expression enclosed by matching square brackets.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

444 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

If an attempt is made to access the array with an invalid index value, an ArrayIndexOutOfBound-
sException will be thrown.

Arrays must be indexed by integer values of the types int , short , byte , or char . An array
cannot be accessed using an index of type long .

If the elements in an array are not purposely initialized when the array is created, the array elements
will be automatically initialized with default values.

The values in the array elements may be purposely initialized when the array object is created using a
comma-separated list of expressions enclosed by matching curly brackets.

The program in this module illustrated three di�erent ways to emulate traditional rectangular two-
dimensional arrays.

The program also illustrated two di�erent ways to create and work with ragged arrays.

3.2.13.6 What's next?

In the next module, I will provide so additional information about array objects, and then illustrate the use
of the classes named Array and Arrays for the creation and manipulation of array objects.

3.2.13.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Array Objects, Part 2
• File: Java1624.htm
• Published: 05/22/02

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.2.13.8 Complete program listing

A complete listing of the program is shown in Listing 26 (p. 449) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

445

Listing 26 . Complete program listing.

/*File Array07.java

Copyright 2002, R.G.Baldwin

This program illustrates three

different ways to emulate a traditional

rectangular array in Java. Two of

those ways are essentially ragged

arrays with equal-length sub arrays.

The program also illustrates two ways

to create ragged arrays in Java.

Tested using JDK 1.3 under Win 2000.

**************************************/

public class Array07{

public static void main(

String[] args){

//Create an array structure that

// emulates a traditional

// rectangular array with two rows

// and three columns. This

// approach requires all rows to

// be the same length.

Object[][] v1 = new Object[2][3];

//Populate the array elements with

// references to objects of type

// Integer.

for(int i=0;i<v1.length;i++){
for(int j=0;j<v1[i].length;j++){

v1[i][j] =

new Integer((i+1)*(j+1));

}//end inner loop

}//end outer loop

//Display the array elements

for(int i=0;i<v1.length;i++){
for(int j=0;j<v1[i].length;j++){

System.out.print(

v1[i][j] + " ");

}//end inner loop

System.out.println();//new line

}//end outer loop

System.out.println();//new line

//Create a ragged array with two

// rows. The first row has three

// columns and the second row has

// three columns. The length of

// each row could be anything, but

// was set to three to match the

// above array structure.

Object[][] v2 = new Object[2][];

v2[0] = new Object[3];

v2[1] = new Object[3];

//Populate the array elements with

// references to objects of type

// Integer.

for(int i=0;i<v2.length;i++){
for(int j=0;j<v2[i].length;j++){

v2[i][j] =

new Integer((i+1)*(j+1));

}//end inner loop

}//end outer loop

//Display the array elements

for(int i=0;i<v2.length;i++){
for(int j=0;j<v2[i].length;j++){

System.out.print(

v2[i][j] + " ");

}//end inner loop

System.out.println();//new line

}//end outer loop

System.out.println();//new line

//Create a one-dimensional array

// of type Object, which contains

// references to array objects of

// type Object. The secondary

// array objects could be of any

// length, but were set to three

// to match the above array

// structure.

Object[] v3 = new Object[2];

v3[0] = new Object[3];

v3[1] = new Object[3];

//Populate the array elements with

// references to objects of type

// Integer.

for(int i=0;i<v3.length;i++){
for(int j=0;

j<((Object[])v3[i]).length;
j++){

((Object[])v3[i])[j] =

new Integer((i+1)*(j+1));

}//end inner loop

}//end outer loop

//Display the array elements

for(int i=0;i<v3.length;i++){
for(int j=0;

j<((Object[])v3[i]).length;
j++){

System.out.print(

((Object[])v3[i])[j] + " ");

}//end inner loop

System.out.println();//new line

}//end outer loop

System.out.println();//new line

//Create a ragged array with two

// rows. The first row has two

// columns and the second row has

// three columns.

Object[][] v4 = new Object[2][];

v4[0] = new Object[2];

v4[1] = new Object[3];

//Populate the array elements with

// references to objects of type

// Integer.

for(int i=0;i<v4.length;i++){
for(int j=0;j<v4[i].length;j++){

v4[i][j] =

new Integer((i+1)*(j+1));

}//end inner loop

}//end outer loop

//Display the array elements

for(int i=0;i<v4.length;i++){
for(int j=0;j<v4[i].length;j++){

System.out.print(

v4[i][j] + " ");

}//end inner loop

System.out.println();//new line

}//end outer loop

System.out.println();//new line

//Create a one-dimensional array

// of type Object, which contains

// references to array objects of

// type Object. The secondary

// array objects could be of any

// length, but were set to two and

// three to match the ragged array

// above.

Object[] v5 = new Object[2];

v5[0] = new Object[2];

v5[1] = new Object[3];

//Populate the array elements with

// references to objects of type

// Integer.

for(int i=0;i<v5.length;i++){
for(int j=0;

j<((Object[])v5[i]).length;
j++){

((Object[])v5[i])[j] =

new Integer((i+1)*(j+1));

}//end inner loop

}//end outer loop

//Display the array elements

for(int i=0;i<v5.length;i++){
for(int j=0;

j<((Object[])v5[i]).length;
j++){

System.out.print(

((Object[])v5[i])[j] + " ");

}//end inner loop

System.out.println();//new line

}//end outer loop

System.out.println();

//Create a one-dimensional array

// of type int, which contains

// references to array objects of

// type Object. The secondary

// array objects could be of any

// length.

Object[] v6 = new Object[2];

v6[0] = new int[7];

v6[1] = new int[3];

//Now illustrate that the elements

// of the leaves of a ragged array

// implemented in this manner can

// contain primitive values.

// Populate the array elements with

// type int.

for(int i=0;i<v6.length;i++){
for(int j=0;

j<((int[])v6[i]).length;
j++){

((int[])v6[i])[j] = (i+2)*(j+2);

}//end inner loop

}//end outer loop

//Display the array elements

for(int i=0;i<v6.length;i++){
for(int j=0;

j<((int[])v6[i]).length;
j++){

System.out.print(

((int[])v6[i])[j] + " ");

}//end inner loop

System.out.println();//new line

}//end outer loop

}//end main

}//end class Array07

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

446 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.132

-end-

3.2.14 Java1626: Array Objects, Part 3
139

Revised: Fri Apr 01 17:06:27 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 140

• Object-Oriented Programming (OOP) with Java 141

3.2.14.1 Table of Contents

• Preface (p. 450)

· Viewing tip (p. 450)

* Listings (p. 450)

• Preview (p. 451)
• Discussion and sample code (p. 451)
• Summary (p. 459)
• What's next? (p. 460)
• Miscellaneous (p. 460)
• Complete program listing (p. 460)

3.2.14.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

3.2.14.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

3.2.14.2.1.1 Listings

• Listing 1 (p. 452) . Using the newInstance method.
• Listing 2 (p. 454) . Populate the array object.
• Listing 3 (p. 454) . Display the data.
• Listing 4 (p. 455) . An array object of type int.
• Listing 5 (p. 456) . The two-dimensional array object tree.
• Listing 6 (p. 456) . Populate the leaf elements.
• Listing 7 (p. 456) . Display the data.
• Listing 8 (p. 457) . Create, populate, and display an array object.
• Listing 9 (p. 458) . Sort and display the data.
• Listing 10 (p. 458) . Search for an existing string.
• Listing 11 (p. 459) . Search for a non-existing string.
• Listing 12 (p. 461) . Complete program listing.

139This content is available online at <http://cnx.org/content/m44200/1.7/>.
140http://cnx.org/contents/dzOvxPFw
141http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

447

3.2.14.3 Preview

This module discusses various details regarding the use of array objects in Java, including:

• The members of an array object
• The interfaces implemented by array objects
• Class objects and array objects
• The classes named Array and Arrays

3.2.14.4 Discussion and sample code

Members of an array object
An array object has the following members (in addition to the data stored in the object):

• A public �nal variable named length , which contains the number of components of the array
(length may be positive or zero)

• A public method named clone . This method overrides the method of the same name in Object
class.

• Default versions of all the methods inherited from the class named Object , (other than clone ,
which is overridden as described above).

Implements Cloneable and Serializable
Also, every array object implements the Cloneable and Serializable interfaces. (Note that neither

of these interfaces declares any methods.)
What is the Cloneable interface?
Here is what Sun has to say about the Cloneable interface:
"A class implements the Cloneable interface to indicate to the Object.clone() method that it is

legal for that method to make a �eld-for-�eld copy of instances of that class. Attempts to clone instances
that do not implement the Cloneable interface result in the exception CloneNotSupportedException
being thrown."

Thus, the fact than an array object implements the Cloneable interface makes it possible to clone
array objects.

A cloned array is shallow
While it is possible to clone arrays, care must be exercised when cloning multidimensional arrays. That

is because a clone of a multidimensional array is shallow.
What does shallow mean?
Shallow means that the cloning process creates only a single new array.
Subarrays are shared between the original array and the clone.
(Although I'm not certain, I suspect that this may also be the case for cloning array objects containing

references to ordinary objects. I will leave that determination as an exercise for the student. In any event,
be careful if you clone array objects.)

Serialization
Serialization of an object is the process of decomposing the object into a stream of bytes, which can later

be recomposed into a copy of the object. Here is what Sun has to say about the Serializable interface:
"Serializability of a class is enabled by the class implementing the java.io.Serializable interface.

Classes that do not implement this interface will not have any of their state serialized or deserialized.
All subtypes of a serializable class are themselves serializable.
The serialization interface has no methods or �elds and serves only to identify the semantics of being

serializable."
Even though this quotation from Sun doesn't address array objects, because array objects implement the

Serializable interface, they can be serialized and later reconstructed.
Class objects representing array objects

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

448 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

An object of the class named Class can be obtained (by calling the getClass method of the Object
class) to represent the class from which an ordinary object was instantiated.

The Class object is able to answer certain questions about the class that it represents (such as the
name of the superclass), and has other uses as well.

(One of the other uses is to specify the type as a parameter to the methods of the Array class, which
I will illustrate later in this module.)

Every array also has an associated Class object.
That Class object is shared with all other arrays with the same component type.
The superclass of an array type is Object . (Think about this!)
An array of characters is not a string
For the bene�t of the C/C++ programmers in the audience, an array of char is not a String .
(In Java, a string is an object of the String class or the StringBu�er class).
Not terminated by null
Also, neither a String object nor an array of type char is terminated by '\u0000' (the NUL character)

.
(This information is provided for the bene�t of C programmers who are accustomed to working with

so-called null-terminated strings. If you're not a C programmer, don't worry about this.)
A String object in Java is immutable
Once initialized, the contents of a Java String object never change.
On the other hand, an array of type char has mutable elements. The String class provides a method

named toCharArray , which returns an array of characters containing the same character sequence as a
String .

StringBu�er objects
The class named StringBu�er also provides a variety of methods that work with arrays of characters.

The contents of a StringBu�er object are mutable.
The Array and Arrays classes
The classes named Array and Arrays provide methods that you can use to work with array objects.
The Array class provides static methods to dynamically create and access Java arrays.
The Arrays class contains various methods for manipulating arrays (such as sorting and searching).

It also contains a static factory method that allows arrays to be viewed as lists.
A sample program named Array08
The sample program named Array08 (shown in Listing 12 (p. 461) near the end of the module)

illustrates the use of some of these methods.
Will discuss in fragments
As usual, I will discuss this program in fragments. Essentially all of the interesting code is in the method

named main , so I will begin my discussion there. The �rst few fragments will illustrate the creation,
population, and display of a one-dimensional array object whose elements contain references to objects of
type String .

The newInstance method of the Array class
The code in Listing 1 (p. 452) calls the static method of the Array class named newInstance to

create the array object and to store the object's reference in a reference variable of type Object named
v1 .

(Note that there are two overloaded versions of the newInstance method in the Array class. I will
discuss the other one later.)

Listing 1 . Using the newInstance method.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

449

Object v1 = Array.newInstance(

Class.forName("java.lang.String"),3);

Table 3.133

Two parameters required
This version of the newInstance method requires two parameters. The �rst parameter speci�es the

component type. This must be a reference to a Class object representing the component type of the new
array object.

The second parameter, of type int , speci�es the length of the new array object.
The Class object
The second parameter that speci�es the array length is fairly obvious. However, you may need some help

with the �rst parameter. Here is part of what Sun has to say about a Class object.
"Instances of the class Class represent classes and interfaces in a running Java application. Every

array also belongs to a class that is re�ected as a Class object that is shared by all arrays with the same
element type and number of dimensions. The primitive Java types (boolean, byte, char, short, int, long,
�oat, and double), and the keyword void are also represented as Class objects."

Getting a reference to a Class object
I know of three ways to get (or refer to) a Class object.

• Class objects for primitive types
• The getClass method
• The forName method

Class objects for primitive types
There are nine prede�ned Class objects that represent the eight primitive types and void. These are

created by the Java Virtual Machine, and have the same names as the primitive types that they represent:
boolean , byte , char , short , int , long , �oat , and double . You can refer to these class
objects using the following syntax:

• boolean.class,
• int.class,
• �oat.class, etc.

I will illustrate this later in this module.
The getClass method
If you have a reference to a target object (ordinary object or array object), you can gain access to

a Class object representing the class from which that object was instantiated by calling the getClass
method of the Object class, on that object.

The getClass method returns a reference of type Class that refers to a Class object representing
the class from which the target object was instantiated.

The forName method
The static forName method of the Class class accepts the name of a class or interface as an incoming

String parameter, and returns the Class object associated with the class or interface having the given
string name.

(The forName method cannot be used with primitive types as a parameter.)
Class object for the String class
Referring back to Listing 1 (p. 452) , you will see that the �rst parameter passed to the newInstance

method was a reference to a Class object representing the String class.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

450 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Thus, the statement in Listing 1 (p. 452) creates a one-dimensional array object, of component type
String , three elements in length.

The reference to the array object is saved in the generic reference variable of type Object .
(In case you haven't recognized it already, this is an alternative to syntax such as
new String[3] .
Note that there are no square brackets in this alternative approach. Thus, it might be said that this

approach is more mainstream OOP than the approach that requires the use of square brackets.)
Populate the array object
The code in Listing 2 (p. 454) uses two static methods of the Array class to populate the three

elements of the array object with references to objects of type String .

Listing 2 . Populate the array object.

for(int i = 0; i < Array.getLength(v1);i++){

Array.set(v1, i, "a"+i);

}//end for loop

Table 3.134

The getLength method
The getLength method of the Array class is used in Listing 2 (p. 454) to get the length of the

array for use in the conditional expression of a for loop.
Note that unlike the sample programs in the previous module (that stored the array object's reference

as type Object), it was not necessary to cast the reference to type String[] in order to get the length
.

The set method
The set method of the Array class is used in Listing 2 (p. 454) to store references to String objects

in the elements of the array object.
Again, unlike the programs in the previous module, it was not necessary to cast the array reference to

type String[] to access the elements. In fact, there are no square brackets anywhere in Listing 2 (p. 454) .
Display the data
Listing 3 (p. 454) uses a similar for loop to display the contents of the String objects whose references

are stored in the elements of the array object.

Listing 3 . Display the data.

for(int i = 0; i < Array.getLength(v1); i++){

System.out.print(Array.get(v1, i) + " ");

}//end for loop

Table 3.135

No square brackets
Once again, note that no casts, and no square brackets were required in Listing 3 (p. 454) . In fact,

this approach makes it possible to deal with one-dimensional array objects using a syntax that is completely
devoid of square brackets.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

451

Rather than using square brackets to access array elements, this is a method-oriented approach to the
use of array objects. This makes it possible to treat array objects much the same as we treat ordinary objects
in Java.

A two-dimensional rectangular array object tree
Next, I will use the methods of the Array class to create, populate, and display a rectangular two-

dimensional array object tree, whose elements contain references to objects of the class String .
Another overloaded version of newInstance
To accomplish this, I will use the other overloaded version of the newInstance method. This version

requires a reference to an array object of type int as the second parameter.
(Note that the Sun documentation describes two di�erent behaviors for this method, depending on

whether the �rst parameter represents a non-array class or interface, or represents an array type. This
sample program illustrates the �rst possibility.)

The second parameter
As mentioned above, the version of the newInstance method that I am going to use requires a reference

to an array object of type int as the second parameter.
(The length of the array object of type int speci�es the number of dimensions of the multi-dimensional

array object. The contents of the elements of the array object of type int specify the sizes of those
dimensions.)

Thus, my �rst task is to create and populate an array object of type int .
An array object of type int
Listing 4 (p. 455) shows the code required to create and populate the array object of type int . This is

a one-dimensional array object having two elements (length equals 2). The �rst element is populated with
the int value 2 and the second element is populated with the int value 3.

Listing 4 . An array object of type int.

Object v2 = Array.newInstance(int.class,2);

Array.setInt(v2, 0, 2);

Array.setInt(v2, 1, 3);

Table 3.136

Why do we need this array object?
When this array object is used later, in conjunction with the version of the newInstance method that

requires a reference to an array object of type int as the second parameter, this array object will specify
an array object having two dimensions (a rectangular array). The rectangular array will have two rows
and three columns.

Same newInstance method as before
Note that Listing 4 (p. 455) uses the same version of the newInstance method that was used to create

the one-dimensional array object in Listing l (p. 452) .
Class object representing int
Note the syntax of the �rst parameter passed to the newInstance method in Listing 4 (p. 455) . As

mentioned earlier, this is a reference to the prede�ned Class object that represents the primitive type int
. This causes the component type of the array object to be type int .

The setInt method
You should also note the use of the setInt method of the Array class to populate each of the two

elements in the array in Listing 4 (p. 455) (with int values of 2 and 3 respectively).
The two-dimensional array object tree
Listing 5 (p. 456) uses the other overloaded version of the newInstance method to create a two-

dimensional array object tree, having two rows and three columns.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

452 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 5 . The two-dimensional array object tree.

Object v3 = Array.newInstance(Class.forName("java.lang.String"),

(int[])v2);

Table 3.137

A reference to the array object at the root of the tree is stored in the reference variable of type Object
named v3 . Note that the tree is designed to store references to objects of type String .

(The number of dimensions and the size of each dimension are speci�ed by the reference to the array
object of type int passed as the second parameter.)

Square-bracket cast is required here
The required type of the second parameter for this version of the newInstance method is int[] .

Therefore, there was no way for me to avoid the use of square brackets. I could either store the reference to
the array object as type Object and cast it before passing it to the method, (which I did), or save it
originally as type int[] , (which I didn't). Either way, I would have to know about the type int[] .

Populate the leaf elements
The nested for loop in Listing 6 (p. 456) uses the various methods of the Array class to populate

the elements in the leaf array objects with references to objects of the class String .

Listing 6 . Populate the leaf elements.

for(int i=0;i < Array.getLength(v3);i++){

for(int j=0;j < Array.getLength(Array.get(v3,i));j++){

Array.set(Array.get(v3,i),j,"b" + (i+1)*(j+1));

}//end inner loop

}//end outer loop

Table 3.138

Admittedly, the code in Listing 6 (p. 456) is a little complex. However, there is really nothing new there,
so I won't discuss it further.

Display the data
Similarly, the code in Listing 7 (p. 456) uses the methods of the Array class in a nested for loop to

get and display the contents of the String objects whose references are stored in the elements of the leaf
array objects. Again, there is nothing new here, so I won't discuss this code further.

Listing 7 . Display the data.

for(int i=0;i < Array.getLength(v3);i++){

for(int j=0;j < Array.getLength(Array.get(v3,i));j++){

System.out.print(Array.get(Array.get(v3,i),j) + " ");

}//end inner loop

System.out.println();

}//end outer loop

System.out.println();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

453

Table 3.139

Very few square brackets
I will point out that with the exception of the requirement to create and pass an array object as type

int[] , it was possible to write this entire example without the use of square brackets. This further illustrates
the fact that the Array class makes it possible to create and work with array objects in a method-oriented
manner, almost devoid of the use of square-bracket notation.

Sorting and Searching
Many college professors require their students to spend large amounts of time reinventing algorithms for

sorting and searching (and for various collections and data structures as well). There was probably a time
in history when that was an appropriate use of a student's time. However, in my opinion, that time has
passed.

Reuse, don't reinvent
Through a combination of the Arrays class, and the Java Collections Framework , most of the

sorting, searching, data structures, and collection needs that you might have are readily available without a
requirement for you to reinvent them.

(One of the most important concepts in OOP is reuse, don't reinvent .)
I will now illustrate sorting and searching using static methods of the Arrays class.
(Note that the Arrays class is di�erent from the Array class discussed earlier.)
Create, populate, and display an array object
To give us something to work with, Listing 8 (p. 457) creates, populates, and displays the contents of an

array object. Note that the array object is populated with references to String objects. There is nothing
new here, so I won't discuss the code in Listing 8 (p. 457) in detail.

Listing 8 . Create, populate, and display an array object.

Object v4 = Array.newInstance(Class.forName("java.lang.String"),

8);

//Populate the array object.

// Create a gap in the data.

for(int i = 0; i < Array.getLength(v4); i++){

if(i < 4){

Array.set(v4,i,"c"+(8-i));}

else{

Array.set(v4,i,"c"+(18-i));}

}//end for loop

//Display the raw data

for(int i = 0; i < Array.getLength(v4); i++){

System.out.print(Array.get(v4,i)+ " ");

}//end for loop

Table 3.140

The output
The code in Listing 8 (p. 457) produces the following output on the screen:

c8 c7 c6 c5 c14 c13 c12 c11

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

454 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Note that the order of this data is generally descending, and there is no string encapsulating the characters
c4 .

Sort and display the data
The code in Listing 9 (p. 458) uses the sort method of the Arrays class to sort the array data into

ascending order.

Listing 9 . Sort and display the data.

Arrays.sort((Object[])v4);

//Display the sorted data

for(int i = 0; i < Array.getLength(v4); i++){

System.out.print(Array.get(v4, i) + " ");

}//end for loop

Table 3.141

The output
The code in Listing 9 (p. 458) displays the sorted contents of the array object, producing the following

output on the computer screen :

c11 c12 c13 c14 c5 c6 c7 c8

Note that the order of the data in the array object has been modi�ed, and the array data is now in ascending
order.

(This order is based on the natural ordering of the String data. I discuss other ways to order sorted
data in conjunction with the Comparable and Comparator interfaces in my modules on the Java
Collections Framework 142 .)

Binary search
A binary search is a search algorithm that can very quickly �nd an item stored in a sorted collection of

items. In this case, the collection of items is stored in an array object, and the data is sorted in ascending
order.

Search for an existing string
Listing 10 (p. 458) uses the binarySearch method of the Arrays class to perform a search for an

existing String object whose reference is stored in the sorted array. The code searches for the reference to
the String object encapsulating the characters c5 .

Listing 10 . Search for an existing string.

System.out.println(Arrays.binarySearch((Object[])v4,"c5"));

Table 3.142

The result of the search
The code in Listing 10 (p. 458) displays the numeral 4 on the screen.

142http://cnx.org/contents/dzOvxPFw:BaPSYll8

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

455

When the binarySearch method �nds a match, it returns the index value of the matching element. If
you go back and look at the sorted contents (p. 458) of the array shown earlier, you will see that this is the
index of the element containing a reference to a String object that encapsulates the characters c5 .

Search for a non-existing string
The code in Listing 11 (p. 459) uses the binarySearch method to search for a reference to a String

object that encapsulates the characters c4 . As I indicated earlier, a String object that encapsulates
these characters is not represented in the sorted array object.

Listing 11 . Search for a non-existing string.

System.out.println(Arrays.binarySearch((Object[])v4,"c4"));

Table 3.143

The result of the search
The code in Listing 11 (p. 459) produces the following negative numeral on the screen: -5 .
Here is Sun's explanation for the value returned by the binarySearch method:
"Returns: index of the search key, if it is contained in the list; otherwise, (-(insertion point) - 1). The

insertion point is de�ned as the point at which the key would be inserted into the list: the index of the �rst
element greater than the key, or list.size(), if all elements in the list are less than the speci�ed key. Note
that this guarantees that the return value will be >= 0 if and only if the key is found."

Thus, the negative return value indicates that the method didn't �nd a match. The absolute value of
the return value can be used to determine the index of the reference to the target object if it did exist in the
sorted list. I will leave it as an exercise for the student to interpret Sun's explanation beyond this simple
explanation.

Other capabilities
In addition to sorting and searching, the Arrays class provides several other methods that can be used

to manipulate the contents of array objects in Java.

3.2.14.5 Summary

An array object has the following members (in addition to the data stored in the object):

• A public �nal variable named length
• An overridden version of the public method named clone
• Default versions of all the other methods inherited from the class named Object

Every array object implements the Cloneable and Serializable interfaces.
A clone of a multidimensional array is shallow. Therefore, you should exercise caution when cloning array

objects.
Because array objects implement the Serializable interface, they can be serialized and later recon-

structed.
Every array also has an associated Class object.
The classes named Array and Arrays provide methods that you can use to work with array objects.
The Array class provides static methods to dynamically create and access Java array objects.
The Arrays class contains various methods for manipulating arrays (such as sorting and searching).

It also contains a static factory method that allows arrays to be viewed as lists.
Class objects are required when using the methods of the Array class to dynamically create Java array

objects.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

456 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

There are nine prede�ned Class objects that represent the eight primitive types and void. They are
accessed using the following syntax: boolean.class, int.class, etc.

Three ways to get a Class object are:

• Class objects for primitive types: int.class , etc.
• The getClass method
• The forName method

The methods of the Array class make it possible to deal with one-dimensional array objects using a syntax
that is completely devoid of square brackets. This is a method-oriented approach to the use of array
objects. This makes it possible to treat array objects much the same as we treat ordinary objects in Java.
The required syntax for multi-dimensional array objects is mostly devoid of square brackets.

The Arrays class provides methods for sorting and searching array objects as well as performing other
operations on array objects as well.

Through a combination of the Arrays class and the Java Collections Framework, most of the sort-
ing, searching, data structures, and collection needs that you might have are readily available without a
requirement for you to reinvent them.

One of the most important concepts in OOP is reuse, don't reinvent.

3.2.14.6 What's next?

The next module will explain the use of the this and super keywords.

3.2.14.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Array Objects, Part 3
• File: Java1626.htm
• Published: 08/08/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.2.14.8 Complete program listing

A complete listing of the program is shown in Listing 12 (p. 461) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

457

Listing 12 . Complete program listing .

/*File Array08.java

Copyright 2002, R.G.Baldwin

Rev 2/10/02

This program illustrates the use of

static methods of the Array class to

dynamically create and access Java

arrays.

It also illustrates the use of static

methods of the Arrays class to sort

and search array objects.

Tested using JDK 1.3 under Win 2000.

**************************************/

import java.lang.reflect.Array;

import java.util.Arrays;

public class Array08{

public static void main(

String[] args){

try{

//Create, populate, and display a

// one-dimensional array object

// whose elements contain

// references to objects of type

// String.

//Create the array object

Object v1 = Array.newInstance(

Class.forName(

"java.lang.String"), 3);

//Populate the array object

for(int i = 0; i <
Array.getLength(v1); i++){

Array.set(v1, i, "a"+i);

}//end for loop

//Display the data

for(int i = 0; i <
Array.getLength(v1); i++){

System.out.print(

Array.get(v1, i) + " ");

}//end for loop

System.out.println();

System.out.println();

//Create, populate, and display a

// rectangular two-dimensional

// array object tree whose

// elements contain references

// to objects of type String.

//First create an array object of

// type int required as a

// parameter to the newInstance

// method. Populate it to later

// specify a rectangular array

// object tree with two rows and

// three columns.

Object v2 = Array.newInstance(

int.class, 2);

Array.setInt(v2, 0, 2);

Array.setInt(v2, 1, 3);

//Now create the actual two-

// dimensional array object tree.

Object v3 = Array.newInstance(

Class.forName(

"java.lang.String"), (int[])v2);

//Populate the leaf elements with

// references to objects of type

// String.

for(int i=0;i<

Array.getLength(v3);i++){

for(int j=0;j<
Array.getLength(

Array.get(v3,i));j++){

Array.set(Array.get(v3,i), j,

"b" + (i+1)*(j+1));

}//end inner loop

}//end outer loop

//Display the data encapsulated

// in the String objects.

for(int i=0;i<Array.getLength(v3);
i++){

for(int j=0;j<Array.getLength(
Array.get(v3,i));j++){

System.out.print(Array.get(

Array.get(v3,i), j) + " ");

}//end inner loop

System.out.println();

}//end outer loop

System.out.println();

//Now illustrate sorting and

// searching using methods of

// the arrays class.

//Create the array object

Object v4 = Array.newInstance(

Class.forName(

"java.lang.String"), 8);

//Populate the array object.

// Create a gap in the data.

for(int i = 0; i <
Array.getLength(v4); i++){

if(i<4){Array.set(v4, i,

"c"+(8-i));}

else{Array.set(v4, i,

"c"+(18-i));}

}//end for loop

//Display the raw data

for(int i = 0; i <
Array.getLength(v4); i++){

System.out.print(Array.get(v4, i)

+ " ");

}//end for loop

System.out.println();

//Sort array data into

// ascending order.

Arrays.sort((Object[])v4);

//Display the sorted data

for(int i = 0; i <
Array.getLength(v4); i++){

System.out.print(

Array.get(v4, i) + " ");

}//end for loop

System.out.println();

//Search for an existing String

System.out.println(

Arrays.binarySearch((Object[])v4,

"c5"));

//Search for a non-existing String

System.out.println(

Arrays.binarySearch((Object[])v4,

"c4"));

}catch(ClassNotFoundException e){

System.out.println(e);}

}//end main

}//end class Array08

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

458 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.144

-end-

3.2.15 Java1628: The this and super Keywords
143

Revised: Fri Apr 01 17:48:44 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 144

• Object-Oriented Programming (OOP) with Java 145

3.2.15.1 Table of Contents

• Preface (p. 462)

· Viewing tip (p. 462)

* Figures (p. 462)
* Listings (p. 462)

• Preview (p. 463)
• Discussion and sample code (p. 463)
• Summary (p. 477)
• What's next? (p. 477)
• Miscellaneous (p. 477)

3.2.15.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

3.2.15.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

3.2.15.2.1.1 Figures

• Figure 1 (p. 464) . The extends keyword.

3.2.15.2.1.2 Listings

• Listing 1 (p. 466) . The program named This01.
• Listing 2 (p. 468) . The program named This02.
• Listing 3 (p. 470) . The program named This03.
• Listing 4 (p. 473) . The program named Super3.
• Listing 5 (p. 476) . The program named Super4.

143This content is available online at <http://cnx.org/content/m44201/1.8/>.
144http://cnx.org/contents/dzOvxPFw
145http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

459

3.2.15.3 Preview

This module explains the use of the keywords this and super . Short sample programs illustrate
how you can use these keywords for several purposes.

I will discuss and illustrate the use of the this keyword in the following situations:

• To bypass local variables or parameters that hide member variables having the same name, in order to
access the member variable.

• To make it possible for one overloaded constructor to call another overloaded constructor in the same
class.

• To pass a reference to the current object to a method belonging to a di�erent object (as in implementing
callbacks, for example).

I will also discuss and illustrate the use of the super keyword in the following situations:

• To bypass the overridden version of a method in a subclass and execute the version in the superclass.
• To bypass a member variable in a subclass in order to access a member variable having the same name

in a superclass.
• To cause a constructor in a subclass to call a parameterized constructor in the immediate superclass.

3.2.15.4 Discussion and sample code

You already know quite a lot about OOP
By now you know that an object is an instance of a class . You know that all variables and methods

in Java must be contained in a class or an object. You know that the three primary characteristics of an
object-oriented programming language are:

• encapsulation
• inheritance
• polymorphism .

If you have been studying this series of modules on the Essence of OOP in Java, you already know quite a
lot about OOP in general, and the implementation of OOP in Java in particular.

A few more important OOP/Java concepts
However, there are a few more important concepts that I haven't previously discussed in this series of

modules. In this module, I will explain the use of the keywords this and super .
Data and methods
The class provides the plan from which objects are built. This plan de�nes the data that is to be

stored in an object, and the methods for manipulating that data. The data is variously referred to as data
members, �elds , and variables , depending on which book you are reading.

Non-static and static
The data can be further sub-divided into non-static and static , often referred to as i nstance variables

and class variables respectively.
The methods are also often referred to as member methods , and they can also be static or non-static

. Static methods are often referred to as class methods while non-static methods are often referred to as
instance methods .

Instance variables and instance methods
The class body contains the declarations for, and possibly the initialization of all data members (both

class variables and instance variables) as well as the full de�nition of all methods .
In this module, we will be particularly interested in instance variables and instance methods.
Every class is a subclass of Object

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

460 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

By default, every class in Java extends (either directly or indirectly) the class named Object . A new
class may either extend Object , or extend another class that extends Object , or extend another class
further down the inheritance hierarchy.

The immediate parent class of a new class is known as its superclass , and the new class is known as
the subclass .

(Sometimes we use the word superclass to indicate the collection of classes in the inheritance hierarchy
from which a speci�c class is derived.)

If you do not specify the superclass for a new class, it will extend Object by default.
The extends keyword
The keyword extends is used in the class declaration to specify the immediate superclass of the new

class using the syntax shown in Figure 1 (p. 464) .

Figure 1 . The extends keyword.

class NewClass extends SuperClassName{

//body of class

}//end class definition

Table 3.145

Inheritance
A class inherits the variables and methods of its superclass, and of the superclass of that class, etc., all

the way back up the family tree to the single class Object , which is the root of all inheritance.
Thus, an object that is instantiated from a class contains all the instance variables and all the instance

methods de�ned by that that class and de�ned by all its ancestors.
However, the methods may have been overridden one or more times along the way. Also, access to

those variables and methods may have been restricted through the use of the public , private , and
protected keywords.

(There is another access level, often referred to as package private , which is what you get when you
don't use an access keyword.)

The this keyword
Every instance method in every object in Java receives a reference named this when the method is

called. The reference named this is a reference to the object on which the method was called. It can be
used for any purpose for which such a reference is needed.

Three common situations
There are at least three common situations where such a reference is needed:

• To bypass local variables or parameters that hide member variables having the same name, in order to
access the member variable.

• To make it possible for one overloaded constructor to call another overloaded constructor in the same
class.

• To pass a reference to the current object to a method belonging to a di�erent object (as in implementing
callbacks, for example).

Normally, instance methods belonging to an object have direct access to the instance variables belonging to
that object, and to the class variables belonging to the class from which that object was instantiated.

(Class methods never have access to instance variables or instance methods.)
Name can be duplicated
However, the name of a method parameter or constructor parameter can be the same as the name of an

instance variable belonging to the object or a class variable belonging to the class. It is also allowable for

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

461

the name of a local variable to be the same as the name of an instance variable or a class variable. In this
case, the local variable or the parameter is said to hide the member variable having the same name.

Reference named this is passed to instance methods
As mentioned above, whenever an instance method is called on an object, a hidden reference named this

is always passed to the method. The this reference always refers to the object on which the method was
called. This makes it possible for the code in the method to refer back to the object on which the method
was called.

The reference named this can be used to access the member variables hidden by the local variables or
parameters having of the same name.

The sample program named This01
The sample program shown in Listing 1 (p. 466) illustrates the use of the this reference to access a

hidden instance variable named myVar and a hidden class variable named yourVar .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

462 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 1 . The program named This01 .

/*File This01.java

Copyright 2002, R.G.Baldwin

Illustrates use of this keyword to

access hidden member variables.

Tested using JDK 1.4.0 under Win2000

The output from this program is:

myVar parameter = 20

local yourVar variable = 1

Instance variable myVar = 5

Class variable yourVar = 10

**************************************/

class This01 {

int myVar = 0;

static int yourVar = 0;

//Constructor with parameters named

// myVar and yourVar

public This01(int myVar,int yourVar){

this.myVar = myVar;

this.yourVar = yourVar;

}//end constructor

//---------------------------------//

//Method with parameter named myVar

// and local variable named yourVar

void myMethod(int myVar){

int yourVar = 1;

System.out.println(

"myVar parameter = " + myVar);

System.out.println(

"local yourVar variable = "

+ yourVar);

System.out.println(

"Instance variable myVar = "

+ this.myVar);

System.out.println(

"Class variable yourVar = "

+ this.yourVar);

}//end myMethod

//---------------------------------//

public static void main(

String[] args){

This01 obj = new This01(5,10);

obj.myMethod(20);

}//end main method

}//End This01 class definition.
Available for free at Connexions <http://cnx.org/content/col11441/1.206>

463

Table 3.146

The key points
The key points to observe in the program is Listing 1 (p. 466) are:

• When the code refers to myVar or yourVar , the reference resolves to either an incoming parameter
or to a local variable having that name.

• When the code refers to this.myVar or this.yourVar , the reference resolves to the corresponding
instance variable and class variable having that name.

To summarize this situation, every time an instance method is called, it receives a hidden reference named
this . That is a reference to the object on which the method was called.

The code in the method can use that reference to access any instance member of the object on which it
was called, or any class member of the class from which the object was instantiated.

However, when class methods are called, they do not receive such a hidden reference, and therefore, they
cannot refer to any instance members of any object instantiated from the class. They can only access class
members of the same class.

Calling other constructors of the same class
Now I am going to discuss and illustrate the second common situation listed earlier.
A class can de�ne two or more overloaded constructors having the same name and di�erent argument

lists. Sometimes it is useful for one overloaded constructor to call another overloaded constructor in the
same class. When this is done, the constructor being called is referred to as though it were a method whose
name is this , and whose argument list matches the argument list of the constructor being called.

The sample program named This02
This situation is illustrated in the program named This02 shown in Listing 2 (p. 468) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

464 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 2 . The program named This02.

/*File This02.java

Copyright 2002, R.G.Baldwin

Illustrates use of this keyword for one

overloaded constructor to access

another overloaded constructor of the

same class.

Tested using JDK 1.4.0 under Win2000

The output from this program is:

Instance variable myVar = 15

**************************************/

class This02 {

int myVar = 0;

public static void main(

String[] args){

This02 obj = new This02();

obj.myMethod();

}//end main method

//---------------------------------//

//Constructor with no parameters

public This02(){

//Call parameterized constructor

this(15);

}//end constructor

//---------------------------------//

//Constructor with one parameter

public This02(int var){

myVar = var;

}//end constructor

//---------------------------------//

//Method to display member variable

// named myVar

void myMethod(){

System.out.println(

"Instance variable myVar = "

+ myVar);

}//end myMethod

}//End This02 class definition.

Table 3.147

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

465

Calling a noarg constructor
The main method in Listing 2 (p. 468) instantiates a new object by applying the new operator to

the noarg constructor for the class named This02 .
(The common jargon for a constructor that doesn't take any parameters is a noarg constructor.)
The noarg constructor calls a parameterized constructor
The code in the noarg constructor uses the this keyword to call the other overloaded constructor,

passing an int value of 15 as a parameter.
That constructor stores the value of the incoming parameter (15) in the instance variable named myVar

. Then control returns to the noarg constructor, which in turn returns control to the main method.
When control returns to the main method, the new object has been constructed, and the instance variable
named myVar belonging to that object contains the value 15.

Display the value of the instance variable
The next statement in the main method calls the method named myMethod on the object, which

causes the value stored in the instance variable (15) to be displayed on the screen.
The most important statement
For purposes of this discussion, the most important statement in the program is the statement that reads:

this(15);

This is the statement used by one overloaded constructor to call another overloaded constructor.
Callbacks
An extremely important concept in programming is the third situation mentioned in the earlier list (p.

464) . This is a situation where a method in one object calls a method in another object and passes a
reference to itself as a parameter.

(This is sometimes referred to as registration. That is to say, one object registers itself on another
object.)

The method in the second object saves the reference that it receives as an incoming parameter. This
makes it possible for a method in the second object to make a callback to the �rst object sometime later.
This is illustrated in the program named This03 , shown in Listing 3 (p. 470) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

466 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 3 . The program named This03 .

/*File This03.java

Copyright 2002, R.G.Baldwin

Illustrates using the this keyword in

a callback scenario.

Tested using JDK 1.4.0 under Win2000

The output from this program is:

Instance variable myVar = 15

**************************************/

class This03 {

public static void main(

String[] args){

ClassA objA = new ClassA();

ClassB objB = new ClassB();

objA.goRegister(objB);

objB.callHimBack();

objA.showData();

}//end main method

}//End This03 class definition.

//===================================//

class ClassA{

int myVar;

void goRegister(ClassB refToObj){

refToObj.registerMe(this);

}//end goRegister

//---------------------------------//

void callMeBack(int var){

myVar = var;

}//end callMeBack

//---------------------------------//

void showData(){

System.out.println(

"Instance variable myVar = "

+ myVar);

}//end showData

}//end ClassA

//===================================//

class ClassB{

ClassA ref;

void registerMe(ClassA var){

ref = var;

}//end registerMe

//---------------------------------//

void callHimBack(){

ref.callMeBack(15);

}//end callHimBack

}//End ClassB class definition

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

467

Table 3.148

Not intended to be useful
Note that the program in Listing 3 (p. 470) is intended solely to illustrate the concept of a callback, and

is not intended to do anything useful. This is a rather long and convoluted explanation, so please bear with
me.

The main method begins by instantiating two objects, one each from the classes named ClassA and
ClassB .

Go register yourself
Then the main method sends a message to objA telling it to go register itself on objB . A reference

to objB is passed as a parameter to the method named goRegister belonging to objA .
The code in objA uses this reference to call the method named registerMe on objB , passing

this as a parameter. In other words, the code in objA calls a method belonging to objB passing a
reference to itself as a parameter. The code in objB saves that reference in an instance variable for later
use.

Make a callback
Then the main method sends a message to objB asking it to use the saved reference to make a

callback to objA . The code in the method named callHimBack uses the reference to objA saved
earlier to call the method named callMeBack on objA , passing 15 as a parameter. The method named
callMeBack belonging to objA saves that value in an instance variable.

Show the data
Finally, the main method calls the showData method on objA to cause the value stored in the

instance variable belonging to objA to be displayed on the computer screen.
Callbacks are important
Again, this program is provided solely to illustrate the concept of a callback using the this keyword.

In practice, callbacks are used throughout Java, but they are implemented in a somewhat more elegant way,
making use of interfaces.

For example, interfaces with names like Observer and MouseListener are commonly used to register
observer objects on observable objects (sometimes referred to as listeners and sources). Then later in
the program, when something of interest happens on the observable object (the source), all registered
observer objects (the listeners), are noti�ed of the event.

The main point regarding the this reference
The main point of this discussion is that the this reference is available to all instance methods belonging

to an object, and can be used whenever there is a need for a reference to the object on which the method is
called.

To disambiguate something
At least one prominent author uses the word disambiguate to describe the process described by the

�rst item in the earlier list (p. 464) , where the this keyword is used to bypass one variable in favor of a
di�erent variable having the same name. I will also use that terminology in the following discussion.

Three uses of the super keyword
Here are three common uses of the super keyword:

• If your class overrides a method in a superclass, you can use the super keyword to bypass the
overridden version in the class and execute the version in the superclass.

• If a local variable in your method or a member variable in your class hides a member variable in the
superclass (having the same name), you can use the super keyword to access the member variable
in the superclass.

• You can also use super in a constructor of your class to call a parameterized constructor in the
superclass.

The program named Super3
The program in Listing 4 (p. 473) uses super to call a parameterized constructor in the superclass

from the subclass constructor. This is an important use of super .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

468 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

The program also uses this and super to disambiguate a local variable, an instance variable of the
subclass, and an instance variable of the superclass. All three variables have the same name.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

469

Listing 4 . The program named Super3 .

/*File Super3.java

Copyright 2002, R.G.Baldwin

Illustrates use of super reference to

access constructor in superclass. Also

illustrates use of super to

disambiguate instance variable in

subclass from instance variable in

superclass. Illustrates use of this

to disambiguate local variable from

instance variable in subclass.

Tested using JDK 1.4.0 under Win2000

The output from this program is:

In SuperClass constructor.

Setting superclass instance var to 500

In subclass constructor.

Setting subclass instance var to 400

In main

Subclass instance var = 400

In method myMeth

Local var = 300

Subclass instance var = 400

SuperClass instance var = 500

**************************************/

class SuperClass{

int data;

//Parameterized superclass

// constructor

public SuperClass(int val){

System.out.println(

"In SuperClass constructor. ");

System.out.println(

"Setting superclass instance "

+ "var to " + val);

data = val;

System.out.println();//blank line

}//end SuperClass constructor

}//end SuperClass class definition

//===================================//

class Super3 extends SuperClass{

//Instance var in subclass has same

// name as instance var in superclass

int data;

//Subclass constructor

public Super3(){

//Call parameterized SuperClass

// constructor

super(500);

System.out.println(

"In subclass constructor.");

System.out.println(

"Setting subclass instance var "

+ "to 400");

data = 400;

System.out.println();//blank line

}//end subclass constructor

//---------------------------------//

//Method illustrates use of this and

// super to disambiguate local

// variable, instance variable of

// subclass, and instance variable

// of superclass. All three

// variables have the same name.

void myMeth(){

int data = 300;//local variable

System.out.println(

"In method myMeth");

System.out.println("Local var = "

+ data);

System.out.println(

"Subclass instance var = "

+ this.data);

System.out.println(

"SuperClass instance var = "

+ super.data);

}//end method myMeth

//---------------------------------//

public static void main(

String[] args){

Super3 obj = new Super3();

System.out.println("In main");

System.out.println(

"Subclass instance var = "

+ obj.data);

System.out.println();//blank line

obj.myMeth();

}//end main method

}//End Super3 class definition.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

470 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.149

The keyword super is used twice in the program in Listing 4 (p. 473) .
Call a parameterized constructor
The �rst usage of the keyword super appears as the �rst executable statement in the noarg constructor

for the class named Super3 . This statement reads as follows:

super(500);

This statement causes the parameterized constructor for the immediate superclass (the class named Su-
perClass) of the class named Super3 , to be executed before the remaining code in the constructor for
Super3 is executed.
This is the mechanism by which you can cause a parameterized constructor in the immediate superclass

to be executed.
What if you don't do this?
If you don't do this, an attempt will always be made to call a noarg constructor on the superclass before

executing the remaining code in the constructor for your class.
(That is why you should almost always make certain that the classes that you de�ne have a noarg

constructor in addition to any parameterized constructors that you may de�ne.)
First executable statement in constructor
When super(parameters) is used to call the superclass constructor, it must always be the �rst

executable statement in the constructor.
Whenever you call the constructor of a class to instantiate an object, if your constructor doesn't have a

call to super as the �rst executable statement in the constructor, the call to the noarg constructor in
the superclass is made automatically.

In other words, in order to construct an object of a class, it is necessary to �rst construct that part of the
object attributable to the superclass. That normally happens automatically, making use of the superclass
constructor that doesn't take any parameters.

Calling a parameterized constructor
If you want to use a version of the superclass constructor that takes parameters, you can make your own

call to super(parameters) as the �rst executable statement in your constructor (as was done in this
program).

Accessing a superclass member variable
The second use of the super keyword in the program shown in Listing 4 (p. 473) uses the keyword to

bypass an instance variable named data in the class named Super3 , to access and display the value of
an instance variable named data in the superclass named SuperClass .

Note that in that same section of code, the this keyword is used to bypass a local variable named
data in order to display the value of an instance variable named data in the class named Super3 .

Similarly, a statement without the use of either this or super is used to display the value of a local
variable named data .

To disambiguate
Therefore, as stated earlier, the program uses this and super to disambiguate a local variable, an

instance variable of the subclass, and an instance variable of the superclass, where all three variables have
the same name.

Accessing overridden superclass method
As mentioned earlier (p. 471) , if your method overrides a method in its superclass, you can use

the keyword super to call the overridden version in the superclass, possibly completely bypassing the
overridden version in the subclass.

The program named Super4
This is illustrated by the program in Listing 5 (p. 476) . This program contains an overridden version

of a superclass method named meth . The subclass version uses the value of an incoming parameter to
decide whether to call the superclass version and then to call some of its own code, or to execute its own
code exclusively.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

471

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

472 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 5 . The program named Super4 .

/*File Super4.java

Copyright 2002, R.G.Baldwin

Illustrates calling the superclass

version of an overridden method from

code in the subclass version.

Tested using JDK 1.4.0 under Win 2000.

The output from this program is:

In main

Entering overridden method in subclass

Incoming parameter is false

Subclass version only is called

Back in or still in subclass version

Goodbye from subclass version

Entering overridden method in subclass

Incoming parameter is true

SuperClass method called

Back in or still in subclass version

Goodbye from subclass version

Back in main

**************************************/

class SuperClass{

//Following method is overridden in

// the subclass.

void meth(boolean par){

System.out.println(

"Incoming parameter is " + par);

System.out.println(

"SuperClass method called");

}//end meth

}//end SuperClass class definition

//===================================//

class Super4 extends SuperClass{

//Following method overrides method

// in the superclass

void meth(boolean par){

System.out.println(

"Entering overridden method "

+ "in subclass");

//Decide whether to call

// superclass version

if(par)

//Call superclass version

super.meth(par);

else{

//Don't call superclass version

System.out.println(

"Incoming parameter is " + par);

System.out.println(

"Subclass version only is "

+ "called");

}//end else

//Execute some additional code

System.out.println(

"Back in or still in subclass "

+ "version");

System.out.println(

"Goodbye from subclass version");

System.out.println();//blank line

}//end overridden meth()

//---------------------------------//

public static void main(

String[] args){

//instantiate an object of

// this type

Super4 obj = new Super4();

System.out.println("In main");

//Call overridden version of

// method

obj.meth(false);

//Call superclass version of

// method

obj.meth(true);

System.out.println("Back in main");

}//end main method

}//End Super4 class definition.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

473

Table 3.150

Only one statement contains super
The super keyword is used in only one statement in the program in Listing 5 (p. 476) . That statement

appears in the subclass version of an overridden method, and is as follows:

super.meth(par);

This statement is inside the body of an if statement. If the value of par is true, then this statement is
executed, causing the superclass version of the method named meth to be executed (passing the value
of par as a parameter to the superclass method). When the method returns, the remaining code in the
subclass version of the method is executed.

If the value of par is false, the above statement is bypassed, and the superclass version of the method
doesn't get executed. In this case, only the code in the subclass version is executed.

3.2.15.5 Summary

I have discussed and illustrated the use of the this keyword in the following common situations:

• To bypass local variables or parameters that hide member variables having the same name, in order to
access the member variable.

• To make it possible for one overloaded constructor to call another overloaded constructor in the same
class.

• To pass a reference to the current object to a method belonging to a di�erent object (as in implementing
callbacks, for example).

I have also discussed and illustrated the use of the super keyword in the following situations:

• To bypass the overridden version of a method in a subclass and execute the version in the superclass.
• To bypass a member variable in a subclass in order to access a member variable having the same name

in a superclass.
• To cause a constructor in a subclass to call a parameterized constructor in the immediate superclass.

3.2.15.6 What's next?

The next module in this collection will teach you how to use exception handling in Java.

3.2.15.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: The this and super Keywords
• File: Java1628.htm
• Published: 08/08/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

474 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.2.16 Java1630: Exception Handling
146

Revised: Fri Aug 12 11:02:23 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 147

• Object-Oriented Programming (OOP) with Java 148

3.2.16.1 Table of Contents

• Preface (p. 478)

· Viewing tip (p. 478)

* Figures (p. 478)
* Listings (p. 479)

• Preview (p. 479)
• Discussion and sample code (p. 479)
• Summary (p. 502)
• What's next? (p. 502)
• Miscellaneous (p. 502)

3.2.16.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

3.2.16.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

3.2.16.2.1.1 Figures

• Figure 1 (p. 481) . Throwable constructors.
• Figure 2 (p. 482) . Methods of the Throwable class.
• Figure 3 (p. 486) . Compiler error from an unhandled checked exception.
• Figure 4 (p. 487) . Another compiler error.
• Figure 5 (p. 491) . Output from program that throws ArithmeticException.

146This content is available online at <http://cnx.org/content/m44202/1.9/>.
147http://cnx.org/contents/dzOvxPFw
148http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

475

• Figure 6 (p. 492) . Syntax of a try block.
• Figure 7 (p. 493) . Syntax of a catch block.
• Figure 8 (p. 496) . Output produced by the �nally block.
• Figure 9 (p. 496) . Syntax for declaring that a method throws exceptions.
• Figure 10 (p. 497) . Example of a throw statement.
• Figure 11 (p. 499) . Output from the for loop.
• Figure 12 (p. 500) . Output from the exception handler.
• Figure 13 (p. 500) . Output from code following the catch block.

3.2.16.2.1.2 Listings

• Listing 1 (p. 485) . Sample program with no exception handling code.
• Listing 2 (p. 486) . Sample program that �xes one compiler error.
• Listing 3 (p. 488) . Sample program that �xes the remaining compiler error.
• Listing 4 (p. 490) . A sample program that throws an exception.
• Listing 5 (p. 495) . The power of the �nally block.
• Listing 6 (p. 498) . The class named MyException.
• Listing 7 (p. 498) . The try block.
• Listing 8 (p. 499) . A matching catch block.
• Listing 9 (p. 500) . Code following the catch block.
• Listing 10 (p. 501) . Complete program listing for Excep16.

3.2.16.3 Preview

This module explains Exception Handling in Java. The discussion includes the following topics:

• What is an exception?
• How do you throw and catch exceptions?
• What do you do with an exception once you have caught it?
• How do you make use of the exception class hierarchy provided by the Java development environment?

This module will cover many of the details having to do with exception handling in Java. By the end of the
module, you should know that the use of exception handling is not optional in Java, and you should have a
pretty good idea how to use exception handling in a bene�cial way.

3.2.16.4 Discussion and sample code

Introduction
Stated simply, the exception-handling capability of Java makes it possible for you to:

• Monitor for exceptional conditions within your program
• Transfer control to special exception-handling code (which you design) if an exceptional condition

occurs

The basic concept
This is accomplished using the keywords: try , catch , throw , throws , and �nally . The

basic concept is as follows:

• You try to execute the statements contained within a block of code. (A block of code is a group of
one or more statements surrounded by curly brackets.)

• If you detect an exceptional condition within that block, you throw an exception object of a speci�c
type.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

476 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• You catch and process the exception object using code that you have designed.
• You optionally execute a block of code, designated by �nally , which needs to be executed whether

or not an exception occurs. (Code in the �nally block is normally used to perform some type of
cleanup.)

Exceptions in code written by others
There are also situations where you don't write the code to throw the exception object, but an

exceptional condition that occurs in code written by someone else transfers control to exception-handling
code that you write.

For example, the read method of the InputStream class throws an exception of type IOException
if an exception occurs while the read method is executing. In this case, you are responsible only for the
code in the catch block and optionally for the code in the �nally block.

(This is the reason that you must surround the call to System.in.read() with a try block followed
by a catch block, or optionally declare that your method throws an exception of type IOException
.)

Exception hierarchy, an overview
When an exceptional condition causes an exception to be thrown , that exception is represented by an

object instantiated from the class named Throwable or one of its subclasses.
Here is part of what Sun has to say about the Throwable class:
"The Throwable class is the superclass of all errors and exceptions in the Java language. Only objects

that are instances of this class (or one of its subclasses) are thrown by the Java Virtual Machine or can be
thrown by the Java throw statement. Similarly, only this class or one of its subclasses can be the argument
type in a catch clause."

Sun goes on to say:
"Instances of two subclasses, Error and Exception , are conventionally used to indicate that

exceptional situations have occurred. Typically, these instances are freshly created in the context of the
exceptional situation so as to include relevant information (such as stack trace data)."

The Error and Exception classes
The virtual machine and many di�erent methods in many di�erent classes throw exceptions and errors

. I will have quite a lot more to say about the classes named Error and Exception later in this module.
De�ning your own exception types
You may have concluded from the Sun quotation given above that you can de�ne and throw exception

objects of your own design, and if you did, that is a correct conclusion. (Your new class must extend
Throwable or one of its subclasses.)

The di�erence between Error and Exception
As mentioned above, the Throwable class has two subclasses:

• Error
• Exception

What is an error?
What is the di�erence between an Error and an Exception ? Paraphrasing David Flanagan and

his excellent series of books entitled Java in a Nutshell, an Error indicates that a non-recoverable error
has occurred that should not be caught. Errors usually cause the Java virtual machine to display a message
and exit.

Sun says the same thing in a slightly di�erent way:
"An Error is a subclass of Throwable that indicates serious problems that a reasonable application

should not try to catch. Most such errors are abnormal conditions."
For example, one of the subclasses of Error is named VirtualMachineError . This error is "Thrown

to indicate that the Java Virtual Machine is broken or has run out of resources necessary for it to continue
operating. "

What is an exception?

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

477

Paraphrasing Flanagan again, an Exception indicates an abnormal condition that must be properly
handled to prevent program termination.

Sun explains it this way:
"The class Exception and its subclasses are a form of Throwable that indicates conditions that a

reasonable application might want to catch."
As of JDK 1.4.0, there are more than �fty known subclasses of the Exception class. Many of these

subclasses themselves have numerous subclasses, so there is quite a lot of material that you need to become
familiar with.

The RuntimeException class
One subclass of Exception is the class named RuntimeException As of JDK 1.4.0, this class has

about 30 subclasses, many which are further subclassed. The class named RuntimeException is a very
important class.

Unchecked exceptions
The RuntimeException class, and its subclasses, are important not so much for what they do, but

for what they don't do. I will refer to exceptions instantiated from RuntimeException and its subclasses
as unchecked exceptions.

Basically, an unchecked exception is a type of exception that you can optionally handle, or ignore. If you
elect to ignore the possibility of an unchecked exception, and one occurs, your program will terminate as a
result. If you elect to handle an unchecked exception and one occurs, the result will depend on the code that
you have written to handle the exception.

Checked exceptions
All exceptions instantiated from the Exception class, or from subclasses of Exception other than

RuntimeException and its subclasses must either be:

• Handled with a try block followed by a catch block, or
• Declared in a throws clause of any method that can throw them

In other words, checked exceptions cannot be ignored when you write the code in your methods. According
to Flanagan, the exception classes in this category represent routine abnormal conditions that should be
anticipated and caught to prevent program termination.

Checked by the compiler
Your code must anticipate and either handle or declare checked exceptions. Otherwise, your program

won't compile. (These are exception types that are checked by the compiler.)
Throwable constructors and methods
As mentioned above, all errors and exceptions are subclasses of the Throwable class. As of JDK 1.4.0,

the Throwable class provides four constructors and about a dozen methods. The four constructors are
shown in Figure 1 (p. 481) .

Figure 1 . Throwable constructors.

Throwable()

Throwable(String message)

Throwable(String message,Throwable cause)

Throwable(Throwable cause)

Table 3.151

The �rst two constructors have been in Java for a very long time. Basically, these two constructors allow
you to construct an exception object with, or without a String message encapsulated in the object.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

478 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

New to JDK 1.4
The last two constructors are new in JDK 1.4.0. These two constructors are provided to support the

cause facility. The cause facility is new in release 1.4. It is also known as the chained exception 149

facility. (I won't cover this facility in this module. Rather, I plan to cover it in a series of future modules.)
Methods of the Throwable class
Figure 2 (p. 482) shows some of the methods of the Throwable class. (I omitted some of the methods

introduced in JDK 1.4 for the reasons given above.)

Figure 2 . Methods of the Throwable class.

fillInStackTrace()

getStackTrace()

printStackTrace().

setStackTrace(StackTraceElement[] stackTrace)

getLocalizedMessage()

getMessage()

toString()

Table 3.152

The StackTrace
The �rst four methods in Figure 2 (p. 482) deal with the StackTrace . In case you are unfamiliar with

the term StackTrace, this is a list of the methods executed in sequence that led to the exception. (This
is what you typically see on the screen when your program aborts with a runtime error that hasn't been
handled.)

Messages
The two methods dealing with messages provide access to a String message that may be encapsulated

in the exception object. The getMessage class simply returns the message that was encapsulated when
the object was instantiated. (If no message was encapsulated, this method returns null.)

The getLocalizedMessage method is a little more complicated to use. According to Sun, "Subclasses
may override this method in order to produce a locale-speci�c message."

The toString method
The toString method is inherited from the Object class and overridden in the exception subclass

to "return a short description of the Throwable ".
Inherited methods
All exception objects inherit the methods of the Throwable class, which are listed in Figure 2 (p. 482)

. Thus, any of these methods may be called by the code in the catch block in its attempt to successfully
handle the exception.

For example, exceptions may have a message encapsulated in the exception object, which can be accessed
using the getMessage method. You can use this to display a message describing the error or exception.

You can also use other methods of the Throwable class to:

• Display a stack trace showing where the exception or error occurred
• Produce a String representation of the exception object

149http://softwaredev.earthweb.com/java/article/0�12082_1431531_1,00.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

479

So, what is an exception?
According to the online book entitled The Java Tutorial 150 by Campione and Walrath:
"The term exception is shorthand for the phrase "exceptional event". It can be de�ned as follows:
De�nition: An exception is an event that occurs during the execution of a program that disrupts the

normal �ow of instructions."
When an exceptional condition occurs within a method, the method may instantiate an exception object

and hand it o� to the runtime system to deal with it. This is accomplished using the throw keyword.
(This is called throwing an exception.)

To be useful, the exception object should probably contain information about the exception, including
its type and the state of the program when the exception occurred.

Handling the exception
At that point, the runtime system becomes responsible for �nding a block of code designed to handle the

exception.
The runtime system begins its search with the method in which the exception occurred and searches

backwards through the call stack until it �nds a method that contains an appropriate exception handler
(catch block).

An exception handler is appropriate if the type of the exception thrown is the same as the type of
exception handled by the handler, or is a subclass of the type of exception handled by the handler.

Thus, the requirement to handle an exception that has been thrown progresses up through the call stack
until an appropriate handler is found to handle the exception. If no appropriate handler is found, the runtime
system and the program terminate.

(If you have ever had a program terminate with a NullPointerException , then you know how
program termination works).

According to the jargon, the exception handler that is chosen is said to catch the exception.
Advantages of using exception handling
According to Campione and Walrath, exception handling provides the following advantages over "tradi-

tional" error management techniques:

• Separating Error Handling Code from "Regular" Code
• Propagating Errors Up the Call Stack
• Grouping Error Types and Error Di�erentiation

Separating error handling code from regular code
I don't plan to discuss these advantages in detail. Rather, I will simply refer you to The Java Tutorial

151 and other good books where you can read their discussions. However, I will comment brie�y.
Campione and Walrath provide a good illustration where they show how a simple program having about

six lines of code get "bloated" into about 29 lines of very confusing code through the use of traditional error
management techniques. Not only does the program su�er bloat, the logical �ow of the original program
gets lost in the clutter of the modi�ed program.

They then show how to accomplish the same error management using exception handling. Although the
version with exception handling contains about seventeen lines of code, it is orderly and easy to understand.
The additional lines of code do not cause the original logic of the program to get lost.

You must still do the hard work
However, the use of exception handling does not spare you from the hard work of detecting, reporting,

and handling errors. What it does is provide a means to separate the details of what to do when something
out-of-the-ordinary happens from the normal logical �ow of the program code.

Propagating exceptions up the call stack
Sometimes it is desirable to propagate exception handling up the call stack and let the corrective action

be taken at a higher level.

150http://java.sun.com/docs/books/tutorial/
151http://java.sun.com/docs/books/tutorial/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

480 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

For example, you might provide a class with methods that implement a stack . One of the methods of
your class might be to pop an element o� the stack.

What should your program do if a using program attempts to pop an element o� an empty stack? That
decision might best be left to the user of your stack class, and you might simply propagate the noti�cation
up to the calling method and let that method take the corrective action.

Grouping exception types
When an exception is thrown, an object of one of the exception classes is passed as a parameter. Objects

are instances of classes, and classes fall into an inheritance hierarchy in Java. Therefore, a natural hierarchy
can be created, which causes exceptions to be grouped in logical ways.

For example, going back to the stack example, you might create an exception class that applies to all
exceptional conditions associated with an object of your stack class. Then you might extend that class into
other classes that pertain to speci�c exceptional conditions, such as push exceptions, pop exceptions, and
initialization exceptions.

When your code throws an exception object of a speci�c type, that object can be caught by an exception
handler designed either to:

• Catch on the basis of a group of exceptions, or
• Catch on the basis of a subgroup of that group, or
• Catch on the basis of one of the specialized exceptions.

In other words, an exception handler can catch exceptions of the class speci�ed by the type of its parameter,
or can catch exceptions of any subclass of the class speci�ed by the type of its parameter.

More detailed information on exception handling
As explained earlier, except for Throwable objects of type Error and for Throwable.Exception

objects of type RuntimeException , Java programs must either handle or declare all Exception
objects that are thrown. Otherwise, the compiler will refuse to compile the program.

In other words, all exceptions other than those speci�ed above are checked by the compiler, and the
compiler will refuse to compile the program if the exceptions aren't handled or declared. As a result,
exceptions other than those speci�ed above are often referred to as checked exceptions.

Catching an exception
Just to make certain that we are using the same terminology, a method catches an exception by providing

an exception handler whose parameter type is appropriate for that type of exception object. (I will more
or less use the terms catch block and exception handler interchangeably.)

The type of the parameter in the catch block must be the class from which the exception was instan-
tiated, or a superclass of that class that resides somewhere between that class and the Throwable class
in the inheritance hierarchy.

Declaring an exception
If the code in a method can throw a checked exception, and the method does not provide an exception

handler for the type of exception object thrown, the method must declare that it can throw that exception.
The throws keyword is used in the method declaration to declare that it throws an exception of a
particular type.

Any checked exception that can be thrown by a method is part of the method's programming interface
(see the read method of the InputStream class, which throws IOException , for example). Users
of a method must know about the exceptions that a method can throw in order to be able to handle them.
Thus, you must declare the exceptions that the method can throw in the method signature.

Checked exceptions
Checked exceptions are all exception objects instantiated from subclasses of the Exception class other

than those of the RuntimeException class.
Exceptions of all Exception subclasses other than RuntimeException are checked by the compiler

and will result in compiler errors if they are neither caught nor declared .
You will learn how you can create your own exception classes later. Whether your exception objects

become checked or not depends on the class that you extend when you de�ne your exception class.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

481

(If you extend a checked exception class, your new exception type will be a checked exception. Otherwise,
it will not be a checked exception.)

Exceptions that can be thrown within the scope of a method
The exceptions that can be thrown within the scope of a method include not only exceptions which are

thrown by code written into the method, but also includes exceptions thrown by methods called by that
method, or methods called by those methods, etc.

According to Campione and Walrath,
"This ... includes any exception that can be thrown while the �ow of control remains within the method.

Thus, this ... includes both exceptions that are thrown directly by the method with Java's throw statement,
and exceptions that are thrown indirectly by the method through calls to other methods."

Sample programs
Now it's time to take a look at some sample code designed to deal with exceptions of the types delivered

with the JDK. Initially I won't include exception classes that are designed for custom purposes. However, I
will deal with exceptions of those types later in the module.

The �rst three sample programs will illustrate the successive stages of dealing with checked exceptions
by either catching or declaring those exceptions.

Sample program with no exception handling code
The �rst sample program shown in Listing 1 (p. 485) neither catches nor declares the InterruptedEx-

ception which can be thrown by the sleep method of the Thread class.

Listing 1 . Sample program with no exception handling code.

/*File Excep11.java

Copyright 2002, R.G.Baldwin

Tested using JDK 1.4.0 under Win2000

**************************************/

import java.lang.Thread;

class Excep11{

public static void main(

String[] args){

Excep11 obj = new Excep11();

obj.myMethod();

}//end main

//---------------------------------//

void myMethod(){

Thread.currentThread().sleep(1000);

}//end myMethod

}//end class Excep11

Table 3.153

A possible InterruptedException
The code in the main method of Listing 1 (p. 485) calls the method named myMethod . The

method named myMethod calls the method named sleep of the Thread class. The method named
sleep declares that it throws InterruptedException .

InterruptedException is a checked exception. The program illustrates the failure to either catch or
declare InterruptedException in the method named myMethod .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

482 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

As a result, this program won't compile. The compiler error is similar to that shown in Figure 3 (p. 486)
. Note the caret in the last line that points to the point where the compiler detected the problem.

Figure 3 . Compiler error from an unhandled checked exception.

unreported exception

java.lang.InterruptedException;

must be caught or declared to be thrown

Thread.currentThread().sleep(1000);

^

Table 3.154

As you can see, the compiler detected a problem where the sleep method was called, because the
method named myMethod failed to deal properly with an exception that can be thrown by the sleep
method.

Sample program that �xes one compiler error
The next version of the program, shown in Listing 2 (p. 486) , �xes the problem identi�ed with the call

to the sleep method, by declaring the exception in the signature for the method named myMethod .

Listing 2 . Sample program that �xes one compiler error.

/*File Excep12.java

Copyright 2002, R.G.Baldwin

Tested using JDK 1.4.0 under Win2000

**************************************/

import java.lang.Thread;

class Excep12{

public static void main(

String[] args){

Excep12 obj = new Excep12();

obj.myMethod();

}//end main

//---------------------------------//

void myMethod()

throws InterruptedException{

Thread.currentThread().sleep(1000);

}//end myMethod

}//end class Excep12

Table 3.155

Another possible InterruptedException

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

483

As was the case in the previous program, this program also illustrates a failure to catch or declare an
InterruptedException . However, in this case, the problem has moved up one level in the call stack
relative to the problem with the program in Listing 1 (p. 485) .

This program also fails to compile, producing a compiler error similar to that shown in Figure 4 (p. 487)
. Note that the caret indicates that the problem is associated with the call to myMethod .

Figure 4 . Another compiler error.

unreported exception

java.lang.InterruptedException;

must be caught or declared to be thrown

obj.myMethod();

^

Table 3.156

Didn't solve the problem
Simply declaring a checked exception doesn't solve the problem. Ultimately, the exception must be

handled if the compiler problem is to be solved.
(Note, however, that it is possible to declare that the main method throws a checked exception, which

will cause the compiler to ignore it and allow your program to compile.)
The program in Listing 2 (p. 486) eliminated the compiler error identi�ed with the call to the method

named sleep . This was accomplished by declaring that the method named myMethod throws
InterruptedException . However, this simply passed the exception up the call stack to the next higher-level
method in the stack. This didn't solve the problem, it simply handed it o� to another method to solve.

The problem still exists, and is now identi�ed with the call to myMethod where it will have to be
handled in order to make the compiler error go away.

Sample program that �xes the remaining compiler error
The version of the program shown in Listing 3 (p. 488) �xes the remaining compiler error. This program

illustrates both declaring and handling a checked exception. This program compiles and runs successfully.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

484 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 3 . Sample program that �xes the remaining compiler error.

/*File Excep13.java

Copyright 2002, R.G.Baldwin

Tested using JDK 1.4.0 under Win2000

**************************************/

import java.lang.Thread;

class Excep13{

public static void main(

String[] args){

Excep13 obj = new Excep13();

try{//begin try block

obj.myMethod();

}catch(InterruptedException e){

System.out.println(

"Handle exception here");

}//end catch block

}//end main

//---------------------------------//

void myMethod()

throws InterruptedException{

Thread.currentThread().sleep(1000);

}//end myMethod

}//end class Excep13

Table 3.157

The solution to the problem
This solution to the problem is accomplished by surrounding the call to myMethod with a try block,

which is followed immediately by an appropriate catch block. In this case, an appropriate catch block is
one whose parameter type is either InterruptedException , or a superclass of InterruptedException
.

(Note, however, that the superclass cannot be higher than the Throwable class in the inheritance
hierarchy.)

The myMethod method declares the exception
As in the previous version, the method named myMethod (declares the exception and passes it up

the call stack to the method from which it was called.
The main method handles the exception
In the new version shown in Listing 3 (p. 488) , the main method provides a try block with an

appropriate catch block for dealing with the problem (although it doesn't actually deal with it in any
signi�cant way). This can be interpreted as follows:

• Try to execute the code within the try block.
• If an exception occurs, search for a catch block that matches the type of object thrown by the

exception.
• If such a catch block can be found, immediately transfer control to the catch block without executing

any of the remaining code in the try block.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

485

(For simplicity, this program didn't have any remaining code. Some later sample programs will illustrate
code being skipped due to the occurrence of an exception.)

Not a method call
Note that this transfer of control is not a method call. It is an unconditional transfer of control. There

is no return from a catch block.
Matching catch block was found
In this case, there was a matching catch block to receive control. In the event that an Interrupt-

edException is thrown, the program would execute the statement within the body of the catch block,
and then transfer control to the code following the �nal catch block in the group of catch blocks (in
this case, there was only one catch block).

No output is produced
It is unlikely that you will see any output when you run this program, because it is unlikely that an

InterruptedException will be thrown. (I didn't provide any code that will cause such an exception to
occur.)

A sample program that throws an exception
Now let's look at the sample program in Listing 4 (p. 490) , which throws an exception and deals with

it. This program illustrates the implementation of exception handling using the try/catch block structure.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

486 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 4 . A sample program that throws an exception.

/*File Excep14.java

Copyright 2002, R. G. Baldwin

Tested with JDK 1.4.0 under Win2000

**************************************/

class Excep14{

public static void main(

String[] args){

try{

for(int cnt = 2; cnt >-1; cnt--){

System.out.println(

"Running. Quotient is: "

+ 6/cnt);

}//end for-loop

}//end try block

catch(ArithmeticException e){

System.out.println(

"Exception message is: "

+ e.getMessage()

+ "\nStacktrace shows:");

e.printStackTrace();

System.out.println(

"String representation is\n " +

e.toString());

System.out.println(

"Put corrective action here");

}//end catch block

System.out.println(

"Out of catch block");

}//end main

}//end class Excep14

Table 3.158

Keeping it simple
I try to keep my sample programs as simple as possible, introducing the minimum amount of complexity

necessary to illustrate the main point of the program. It is easy to write a really simple program that
throws an unchecked ArithmeticException . Therefore, the program in Listing 4 (p. 490) was written
to throw an ArithmeticException . This was accomplished by trying to perform an integer divide by
zero.

The try/catch structure is the same ...
It is important to note that the try/catch structure illustrated in Listing 4 (p. 490) would be the same

whether the exception is checked or unchecked. The main di�erence is that you are not required by the
compiler to handle unchecked exceptions and you are required by the compiler to either handle or declare
checked exceptions.

Throwing an ArithmeticException

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

487

The code in Listing 4 (p. 490) executes a simple counting loop inside a try block. During each iteration,
the counting loop divides the integer 6 by the value of the counter. When the value of the counter goes to
zero, the runtime system tries to perform an integer divide by zero operation, which causes it to throw an
ArithmeticException .

Transfer control immediately
At that point, control is transferred directly to the catch block that follows the try block. This is

an appropriate catch block because the type of parameter declared for the catch block is Arith-
meticException . It matches the type of the object that is thrown.

(It would also be appropriate if the declared type of the parameter were a superclass of ArithmeticEx-
ception , up to and including the class named Throwable . Throwable is a direct subclass of Object
. If you were to declare the parameter type for the catch block as Object , the compiler would produce
an incompatible type error.)

Calling methods inside the catch block
Once control enters the catch block, three of the methods of the Throwable class are called to

cause information about the situation to be displayed on the screen. The output produced by the program
is similar to that shown in Figure 5 (p. 491) .

Figure 5 . Output from program that throws ArithmeticException.

Running. Quotient is: 3

Running. Quotient is: 6

Exception message is: / by zero

Stacktrace shows:

java.lang.ArithmeticException:

/ by zero

at Excep14.main(Excep14.java:35)

String representation is

java.lang.ArithmeticException:

/ by zero

Put corrective action here

Out of catch block

Table 3.159

Key things to note
The key things to note about the code in Listing 4 (p. 490) and the output in Figure 5 (p. 491) are:

• The code to be protected is contained in a try block.
• The try block is followed immediately by an appropriate catch block.
• When an exception is thrown within the try block, control is transferred immediately to the catch

block with the matching or appropriate parameter type.
• Although the code in the catch block simply displays the current state of the program, it could

contain code that attempts to rectify the problem.
• Once the code in the catch block �nishes executing, control is passed to the next executable statement

following the catch block, which in this program is a print statement.

Doesn't attempt to rectify the problem
This program doesn't attempt to show how an actual program might recover from an exception of this

sort. However, it is clear that (rather than experiencing automatic and unconditional termination) the
program remains in control, and in some cases, recovery might be possible.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

488 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

This sample program illustrates try and catch . The use of �nally , will be discussed and illustrated
later.

A nuisance problem explained
While we are at it, I would be remiss in failing to mention a nuisance problem associated with exception

handling.
As you may recall, the scope of a variable in Java is limited to the block of code in which it is declared.

A block is determined by enclosing code within a pair of matching curly brackets: {...}.
Since a pair of curly brackets is required to de�ne a try block, the scope of any variables or objects

declared inside the try block is limited to the try block.
While this is not an insurmountable problem, it may require you to modify your programming style in

ways that you �nd distasteful. In particular, if you need to access a variable both within and outside the
try block, you must declare it before entering the try block.

The process in more detail
Now that you have seen some sample programs to help you visualize the process, lets discuss the process

in more detail.
The try block
According to Campione and Walrath,
"The �rst step in writing any exception handler is putting the Java statements within which an exception

can occur into a try block. The try block is said to govern the statements enclosed within it and de�nes the
scope of any exception handlers (established by subsequent catch blocks) associated with it."

Note that the terminology being used by Campione and Walrath treats the catch block as the "excep-
tion handler" and treats the try block as something that precedes one or more exception handlers. I don't
disagree with their terminology. I mention it only for the purpose of avoiding confusion over terminology.

The syntax of a try block
The general syntax of a try block, as you saw in the previous program, has the keyword try followed

by one or more statements enclosed in a pair of matching curly brackets, as shown in Figure 6 (p. 492) .

Figure 6 . Syntax of a try block.

try{

//java statements

}//end try block

Table 3.160

Single statement and multiple exceptions
You may have more than one statement that can throw one or more exceptions and you will need to deal

with all of them.
You could put each such statement that might throw exceptions within its own try block and provide

separate exception handlers for each try block.
(Note that some statements, particularly those that call other methods, could potentially throw many

di�erent types of exceptions.)
Thus a try block consisting of a single statement might require many di�erent exception handlers or

catch blocks following it.
Multiple statements and multiple exceptions
You could put all or several of the statements that might throw exceptions within a single try block

and associate multiple exception handlers with it. There are a number of practical issues involved here, and
only you can decide in any particular instance which approach would be best.

The catch blocks must follow the try block

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

489

However you decide to do it, the exception handlers associated with a try block must be placed
immediately following their associated try block. If an exception occurs within the try block, that
exception is handled by the appropriate exception handler associated with the try block. If there is no
appropriate exception handler associated with the try block, the system attempts to �nd an appropriate
exception handler in the next method up the call stack.

A try block must be accompanied by at least one catch block (or one �nally block). Otherwise,
a compiler error that reads something like 'try' without 'catch' or '�nally' will occur.

The catch block(s)
Continuing with what Campione and Walrath have to say:
"Next, you associate exception handlers with a try block by providing one or more catch blocks directly

after the try block."
There can be no intervening code between the end of the try block and the beginning of the �rst

catch block, and no intervening code between catch blocks.
Syntax of a catch block
The general form of a catch block is shown in Figure 7 (p. 493) .

Figure 7 . Syntax of a catch block.

catch(ThrowableObjectType paramName){

//Java statements to handle the

// exception

}//end catch block

Table 3.161

The declaration for the catch block requires a single argument as shown. The syntax for the argument
declaration is the same as an argument declaration for a method.

Argument type speci�es type of matching exception object
The argument type declares the type of exception object that a particular catch block can handle. The

type must be Throwable , or a subclass of the Throwable class discussed earlier.
A parameter provides the local name
Also, as in a method declaration, there is a parameter, which is the name by which the handler can refer

to the exception object. For example, in an earlier program, I used statements such as e.getMessage() to
access an instance method of an exception object caught by the exception handler. In that case, the name
of the parameter was e .

You access the instance variables and methods of exception objects the same way that you access the
instance variables and methods of other objects.

Proper order of catch blocks
According to Campione and Walrath:
"The catch block contains a series of legal Java statements. These statements are executed if and when

the exception handler is called. The runtime system calls the exception handler when the handler is the �rst
one in the call stack whose type matches that of the exception thrown."

Therefore, the order of your exception handlers is very important, particularly if you have some handlers,
which are further up the exception hierarchy than others.

Those handlers that are designed to handle exception types furthermost from the root of the hierarchy
tree (Throwable) should be placed �rst in the list of exception handlers.

Otherwise, an exception handler designed to handle a speci�c type of object may be preempted by another
handler whose exception type is a superclass of that type, if the superclass exception handler appears earlier
in the list of exception handlers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

490 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Catching multiple exception types with one handler
Exception handlers that you write may be more or less specialized. In addition to writing handlers for

very specialized exception objects, the Java language allows you to write general exception handlers that
handle multiple types of exceptions.

A hierarchy of Throwable classes
Java exceptions are Throwable objects (instances of the Throwable class or a subclass of the

Throwable class).
The Java standard library contains numerous classes that are subclasses of Throwable and thus build

a hierarchy of Throwable classes.
According to Campione and Walrath:
"Your exception handler can be written to handle any class that inherits from Throwable . If you

write a handler for a "leaf" class (a class with no subclasses), you've written a specialized handler: it will only
handle exceptions of that speci�c type. If you write a handler for a "node" class (a class with subclasses),
you've written a general handler: it will handle any exception whose type is the node class or any of its
subclasses."

You have a choice
Therefore, when writing exception handlers, you have a choice. You can write a handler whose exception

type corresponds to a node in the inheritance hierarchy, and it will be appropriate to catch exceptions of
that type, or any subclass of that type.

Alternately, you can write a handler whose exception type corresponds to a leaf, in which case, it will
be appropriate to catch exceptions of that type only.

And �nally, you can mix and match, writing some exception handlers whose type corresponds to a node,
and other exception handlers whose type corresponds to a leaf. In all cases, however, be sure to position
your exception handlers in reverse subclass order, with the furthermost subclass from the root appearing
�rst, and the root class appearing last.

The �nally block
And �nally (no pun intended), Campione and Walrath tell us:
"Java's �nally block provides a mechanism that allows your method to clean up after itself regardless of

what happens within the try block. Use the �nally block to close �les or release other system resources."
To elaborate, the �nally block can be used to provide a mechanism for cleaning up open �les, etc.,

before allowing control to be passed to a di�erent part of the program. You accomplish this by writing the
cleanup code within a �nally block.

Code in �nally block is always executed
It is important to remember that the runtime system always executes the code within the �nally block

regardless of what happens within the try block.
If no exceptions are thrown, none of the code in catch blocks is executed, but the code in the �nally

block is executed.
If an exception is thrown and the code in an exception handler is executed, once the execution of that

code is complete, control is passed to the �nally block and the code in the �nally block is executed.
(There is one important exception to the above. If the code in the catch block terminates the program

by executing System.exit(0) , the code in the �nally block will not be executed.)
The power of the �nally block
The sample program shown in Listing 5 (p. 495) illustrates the power of the �nally block.

Listing 5 . The power of the �nally block.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

491

/*File Excep15.java

Copyright 2002, R. G. Baldwin

Tested with JDK 1.4.0 under Win2000

**************************************/

class Excep15{

public static void main(

String[] args){

new Excep15().aMethod();

}//end main

//---------------------------------//

void aMethod(){

try{

int x = 5/0;

}//end try block

catch(ArithmeticException e){

System.out.println(

"In catch, terminating aMethod");

return;

}//end catch block

finally{

System.out.println(

"Executing finally block");

}//end finally block

System.out.println(

"Out of catch block");

}//end aMethod

}//end class Excep15

Table 3.162

Execute return statement in catch block
The code in Listing 5 (p. 495) forces an ArithmeticException by attempting to do an integer divide

by zero. Control is immediately transferred to the matching catch block, which prints a message and then
executes a return statement.

Normally, execution of a return statement terminates the method immediately. In this case, however,
before the method terminates and returns control to the calling method, the code in the �nally block is
executed. Then control is transferred to the main method, which called this method in the �rst place.

Figure 8 (p. 496) shows the output produced by this program.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

492 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 8 . Output produced by the �nally block.

In catch, terminating aMethod

Executing finally block

Table 3.163

This program demonstrates that the �nally block really does have the �nal word.
Declaring exceptions thrown by a method
Sometimes it is better to handle exceptions in the method in which they are detected, and sometimes it

is better to pass them up the call stack and let another method handle them.
In order to pass exceptions up the call stack, you must declare them in your method signature.
To declare that a method throws one or more exceptions, you add a throws clause to the method

signature for the method. The throws clause is composed of the throws keyword followed by a
comma-separated list of all the exceptions thrown by that method.

The throws clause goes after the method name and argument list and before the curly bracket that
de�nes the scope of the method.

Figure 9 (p. 496) shows the syntax for declaring that a method throws four di�erent types of exceptions.

Figure 9 . Syntax for declaring that a method throws exceptions.

void myMethod() throws

InterruptedException,

MyException,

HerException,

UrException

{

//method code

}//end myMethod()

Table 3.164

Assuming that these are checked exceptions, any method calling this method would be required to either
handle these exception types, or continue passing them up the call stack. Eventually, some method must
handle them or the program won't compile.

(Note however that while it might not represent good programming practice, it is allowable to declare
that the main method throws exceptions. This is a way to avoid handling checked exceptions and still
get your program to compile.)

The throw keyword
Before your code can catch an exception, some Java code must throw one. The exception can be

thrown by code that you write, or by code that you are using that was written by someone else.
Regardless of who wrote the code that throws the exception, it's always thrown with the Java throw

keyword. At least that is true for exceptions that are thrown by code written in the Java language.
(Exceptions such as ArithmeticException are also thrown by the runtime system, which is probably

not written using Java source code.)
A single argument is required

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

493

When formed into a statement, the throw keyword requires a single argument, which must be a
reference to an object instantiated from the Throwable class, or any subclass of the Throwable class.
Figure 10 (p. 497) shows an example of such a statement.

Figure 10 . Example of a throw statement.

throw new myThrowableClass("Message");

Table 3.165

If you attempt to throw an object that is not instantiated from Throwable or one of its subclasses,
the compiler will refuse to compile your program.

De�ning your own exception classes
Now you know how to write exception handlers for those exception objects that are thrown by the runtime

system, and thrown by methods in the standard class library.
It is also possible for you to de�ne your own exception classes, and to cause objects of those classes to be

thrown whenever an exception occurs. In this case, you get to decide just what constitutes an exceptional
condition.

For example, you could write a data-processing application that processes integer data obtained via a
TCP/IP link from another computer. If the speci�cation for the program indicates that the integer value 10
should never be received, you could use an occurrence of the integer value 10 to cause an exception object
of your own design to be thrown.

Choosing the exception type to throw
Before throwing an exception, you must decide on its type. Basically, you have two choices in this regard:

• Use an exception class written by someone else, such as the myriad of exception classes de�ned in the
Java standard library.

• De�ne an exception class of your own.

An important question
So, an important question is, when should you de�ne your own exception classes and when should you

use classes that are already available. Because this is only one of many design issues, I'm not going to try
to give you a ready answer to the question. However, I will refer you to The Java Tutorial 152 by Campione
and Walrath where you will �nd a checklist to help you make this decision.

Choosing a superclass to extend
If you decide to de�ne your own exception class, it must be a subclass of Throwable . You must decide

which class you will extend.
The two existing subclasses of Throwable are Exception and Error . Given the earlier description

of Error and its subclasses, it is not likely that your exceptions would �t the Error category. (In
concept, errors are reserved for serious hard errors that occur deep within the system.)

Checked or unchecked exception
Therefore, your new class should probably be a subclass of Exception . If you make it a subclass of

RuntimeException , it won't be a checked exception. If you make it a subclass of Exception , but not
a subclass of RuntimeException , it will be a checked exception.

Only you can decide how far down the Exception hierarchy you want to go before creating a new
branch of exception classes that are unique to your application.

Naming conventions
Many Java programmers append the word Exception to the end of all class names that are subclasses

of Exception , and append the word Error to the end of all class names that are subclasses of Error .

152http://java.sun.com/docs/books/tutorial/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

494 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

One more sample program
Let's wrap up this module with one more sample program named Excep16 . We will de�ne our own

exception class in this program. Then we will throw , catch and process an exception object instantiated
from that class.

Discuss in fragments
This program is a little longer than the previous programs, so I will break it down and discuss it in

fragments. A complete listing of the program is shown in Listing 10 (p. 501) .
The class de�nition shown in Listing 6 (p. 498) is used to construct a custom exception object that

encapsulates a message. Note that this class extends Exception . (Therefore, it is a checked exception.)

Listing 6 . The class named MyException .

class MyException extends Exception{

MyException(String message){//constr

super(message);

}//end constructor

}//end MyException class

Table 3.166

The constructor for this class receives an incoming String message parameter and passes it to the
constructor for the superclass. This makes the message available for access by the getMessage method
called in the catch block.

The try block
Listing 7 (p. 498) shows the beginning of the main method, including the entire try block

Listing 7 . The try block.

class Excep16{//controlling class

public static void main(

String[] args){

try{

for(int cnt = 0; cnt < 5; cnt++){

//Throw a custom exception, and

// pass message when cnt == 3

if(cnt == 3) throw

new MyException("3");

//Transfer control before

// processing for cnt == 3

System.out.println(

"Processing data for cnt = "

+ cnt);

}//end for-loop

}//end try block

Table 3.167

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

495

The main method executes a for loop (inside the try block) that guarantees that the variable
named cnt will reach a value of 3 after a couple of iterations.

Once during each iteration, (until the value of cnt reaches 3) a print statement inside the for loop
displays the value of cnt . This results in the output shown in Figure 11 (p. 499) .

Figure 11 . Output from the for loop.

Processing data for cnt = 0

Processing data for cnt = 1

Processing data for cnt = 2

Table 3.168

What happens when cnt equals 3?
However, when the value of cnt equals 3, the throw statement in Listing 7 (p. 498) is executed. This

causes control to transfer immediately to the matching catch block following the try block (see Listing
8 (p. 499)). During this iteration, the print statement following the throw statement is not executed.
Therefore, the output never shows a value for cnt greater than 2, as shown in Figure 11 (p. 499) .

The catch block
Listing 8 (p. 499) shows a catch block whose type matches the type of exception thrown in Listing 7

(p. 498) .

Listing 8 . A matching catch block.

catch(MyException e){

System.out.println(

"In exception handler, "

+ "get the message\n"
+ e.getMessage());

}//end catch block

Table 3.169

When the throw statement is executed in Listing 7 (p. 498) , control is transferred immediately to the
catch block in Listing 8 (p. 499) . No further code is executed within the try block.
A reference to the object instantiated as the argument to the throw keyword in Listing 7 (p. 498) is

passed as a parameter to the catch block. That reference is known locally by the name e inside the
catch block.

Using the incoming parameter
The code in the catch block calls the method named getMessage (inherited from the Throwable

class) on the incoming parameter and displays that message on the screen. This produces the output shown
in Figure 12 (p. 500) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

496 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 12 . Output from the exception handler.

In exception handler, get the message

3

Table 3.170

When the catch block �nishes execution ...
When the code in the catch block has completed execution, control is transferred to the �rst executable

statement following the catch block as shown in Listing 9 (p. 500) .

Listing 9 . Code following the catch block.

System.out.println(

"Out of catch block");

}//end main

}//end class Excep16

Table 3.171

That executable statement is a print statement that produces the output shown in Figure 13 (p. 500) .

Figure 13 . Output from code following the catch block.

Out of catch block

Table 3.172

Complete program listing
A complete listing of the program named Excep16 is shown in Listing 10 (p. 501) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

497

Listing 10 . Complete program listing for Excep16 .

/*File Excep16.java

Copyright 2002, R. G. Baldwin

Illustrates defining, throwing,

catching, and processing a custom

exception object that contains a

message.

Tested using JDK 1.4.0 under Win 2000

The output is:

Processing data for cnt = 0

Processing data for cnt = 1

Processing data for cnt = 2

In exception handler, get the message

3

Out of catch block

**************************************/

//The following class is used to

// construct a customized exception

// object containing a message

class MyException extends Exception{

MyException(String message){//constr

super(message);

}//end constructor

}//end MyException class

//===================================//

class Excep16{//controlling class

public static void main(

String[] args){

try{

for(int cnt = 0; cnt < 5; cnt++){

//Throw a custom exception, and

// pass message when cnt == 3

if(cnt == 3) throw

new MyException("3");

//Transfer control before

// processing for cnt == 3

System.out.println(

"Processing data for cnt = "

+ cnt);

}//end for-loop

}//end try block

catch(MyException e){

System.out.println(

"In exception handler, "

+ "get the message\n"
+ e.getMessage());

}//end catch block

//-------------------------------//

System.out.println(

"Out of catch block");

}//end main

}//end class Excep16

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

498 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.173

3.2.16.5 Summary

This module has covered many of the details having to do with exception handling in Java. By now, you
should know that the use of exception handling is not optional in Java, and you should have a pretty good
idea how to use exception handling in a bene�cial way.

Along the way, the discussion has included the following topics:

• What is an exception?
• How do you throw and catch exceptions?
• What do you do with an exception once you have caught it?
• How do you make use of the exception class hierarchy provided by the Java development environment?

3.2.16.6 What's next?

That concludes the "Essence of OOP" portion of the ITSE 2321 sub-collection. The series is continued in
the ITSE 2317 sub-collection.

3.2.16.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Exception Handling
• File: Java1630.htm
• Published: 09/03/02

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

499

3.3 Multimedia

3.3.1 Java3000: The Guzdial-Ericson Multimedia Class Library
153

Revised: Thu Sep 22 17:09:38 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 154

• Object-Oriented Programming (OOP) with Java 155

3.3.1.1 Table of Contents

• Preface (p. 503)
• Figures and listings (p. 504)

· Figures (p. 504)
· Listings (p. 504)

• Preview (p. 504)
• Discussion (p. 507)
• Two versions of Hello World (p. 508)

· A text version of Hello World (p. 509)
· A graphic version of Hello World (p. 509)

• Miscellaneous (p. 511)

3.3.1.2 Preface

I have published a large number of modules that use a multimedia class library developed and made available
by Mark Guzdial 156 and Barbara Ericson 157 of the Georgia Institute of Technology. The purpose of this
module is to provide the information that you will need to obtain and use a copy of that library.

If you �nd that you don't understand the material in this module, you probably need to review the
material in the following modules:

• Jb0110: Java OOP: Programming Fundamentals, Getting Started 158

• Jb0110r Review 159

• Jb0115: Java OOP: First Program 160

You also need to make absolutely certain that you understand and can replicate the results provided by the
sample programs in the following module before continuing with this module:

• Java 1560: Con�guring Your Computer 161

In addition, you may �nd it useful to search the web for and study a few tutorials on the Windows "command
prompt" as well as a few tutorials on Windows batch �les. Here are a couple of possibilities that I found
with a rudimentary search:

153This content is available online at <http://cnx.org/content/m44148/1.15/>.
154http://cnx.org/contents/dzOvxPFw
155http://cnx.org/contents/-2RmHFs_
156http://www.cc.gatech.edu/∼guzdial/
157http://coweb.cc.gatech.edu/ice-gt/8
158http://cnx.org/contents/920d091d-ea72-478f-986f-eab814c2d992
159http://cnx.org/contents/6d86f0f3-bd1e-4a3d-b339-1c98154dfa64
160http://cnx.org/contents/b2760098-41f2-4b62-bb27-38005881c827
161http://cnx.org/contents/dzOvxPFw:s3zdocvh

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

500 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• Windows Command Prompt in 15 Minutes 162

• Windows Batch Scripting: Getting Started 163

If you are using a di�erent operating system, you will need to �nd similar tutorials that match up with the
operating system that you are using.

3.3.1.3 Figures and listings

3.3.1.3.1 Figures

• Figure 1 (p. 504) . Result of merging two images.
• Figure 2 (p. 505) . Input image #1.
• Figure 3 (p. 506) . Input image #2.
• Figure 4 (p. 508) . Putting the library on the classpath.
• Figure 5 (p. 509) . Batch �le for text version of Hello World.
• Figure 6 (p. 510) . Hello World in graphics.
• Figure 7 (p. 510) . Batch �le for graphic version of Hello World. .

3.3.1.3.2 Listings

• Listing 1 (p. 509) . A text version of Hello World.
• Listing 2 (p. 510) . A graphic version of Hello World.

3.3.1.4 Preview

Among other things, the Guzdial-Ericson multimedia class library makes it practical to write object-oriented
programs for the manipulation of images in an interesting and educational way. For example, the image in
Figure 1 (p. 504) was produced by manipulating and merging the images shown in Figure 2 (p. 505) and
Figure 3 (p. 506) .

Figure 1 - Result of merging two images.

162http://www.cs.princeton.edu/courses/archive/spr05/cos126/cmd-prompt.html
163http://steve-jansen.github.io/guides/windows-batch-scripting/part-1-getting-started.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

501

One of the input images is shown in Figure 2 (p. 505) .
Figure 2 - Input image #1.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

502 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

The other input image is shown in Figure 3 (p. 506) .
Figure 3 - Input image #2.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

503

3.3.1.5 Discussion

The Guzdial-Ericson library was originally published by Guzdial and Ericson in conjunction with their book
Introduction to Computing and Programming with Java: A Multimedia Approach 164 . While the book
isn't free, the library is freely available and is published under a Creative Commons Attribution 3.0 United
States License 165 .

As of July, 2012, the latest version of the library can be downloaded in a zip �le named bookClasses-
3-9-10-with-doc.zip at http://home.cc.gatech.edu/TeaParty/47. 166 Additional information is available
at http://coweb.cc.gatech.edu/mediaComp-plan/101 167 .

Download the library
In order to work with the programs in the modules that use the library, you will need to download a

copy of the latest version of the library from the site listed above. To guard against the possibility of that
link becoming broken at some point in the future, I am depositing a backup copy of the zip �le containing
the library on the cnx.org site and you can download it here 168 .

Prepare the library for use
Once you have downloaded the zip �le, you will need to extract the folder named bookClasses from

the zip �le and store it somewhere on your computer's disk.
Library documentation

164http://www.pearsonhighered.com/educator/academic/product/0,3110,0131496980,00.html
165http://creativecommons.org/licenses/by/3.0/us/
166http://home.cc.gatech.edu/TeaParty/47.
167http://coweb.cc.gatech.edu/mediaComp-plan/101
168http://cnx.org/content/m44148/latest/bookClasses-3-9-10-with-doc.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

504 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

When you examine the contents of the bookClasses folder, you will see that in addition to source code
and compiled class �les for the library, the folder also contains javadoc documentation for the library in
a folder named doc and some other material as well. Go to the doc folder and open the �le named
index.html in your browser to view the documentation.

Put the library on the classpath
You will need to put the path to the bookClasses folder on your classpath in order to incorporate

classes from the library into your programs.

Figure 4 . Putting the library on the classpath.

del *.class

javac -cp .;M:\bookClasses *.java

java -cp .;M:\bookClasses Prob01

Table 3.174

Figure 4 (p. 508) shows three commands that you can execute at a Windows command prompt to

• Delete the class �les from the current folder or current directory � Google current directory if you
don't recognize the term,

• Compile the source-code �les in the current folder , and
• Execute the compiled version of a program named Prob01 in the current folder

The commands shown in Figure 4 (p. 508) assume that the bookClasses folder is in the
root directory on the M-drive. The bookClasses folder will likely be in a di�erent location
on your computer. They also assume that you are compiling and running a program having its
main method in a class named Prob01 in a �le named Prob01.java .

Be sure to include the period and the semicolon shown before the M in Figure 4 (p. 508) . This tells the
Java compiler and the Java Virtual Machine to search �rst in the current folder before searching elsewhere
on the disk for the required �les.

You can also put the three commands in a batch �le and run the batch �le to avoid having to type the
three commands each time you need to compile and run the program. In that case, you should add a pause
command following the other three commands.

Note that this batch �le must be placed in the same folder that contains the �le named
Prob01.java , and that folder must be your "current directory. DO NOT attempt to ex-
ecute the commands shown in Figure 4 (p. 508) from inside the bookClasses folder."

If you are using an IDE such as DrJava, JCreator, or JGrasp, see the instructions for the IDE to learn how
to set the classpath in the IDE.

3.3.1.6 Two versions of Hello World

It is often useful to have the code for a simple program to test your system. This section presents two
versions of the classical Hello World program. The �rst version is a simple text version that doesn't use
Ericson's library. This version can be used to con�rm that the Java Development Kit (JDK) is properly
installed on your computer.

The second version is a graphic version that does require Ericson's library. This version can be used to
con�rm proper installation and use of the library.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

505

3.3.1.6.1 A text version of Hello World

The simple program shown in Listing 1 (p. 509) causes the words Text Hello World to be displayed
on the standard output device when the program is compiled and executed.

Listing 1 . A text version of Hello World.

class TextHelloWorld{

public static void main(String[] args){

System.out.println("Text Hello World");

}//end main

}//end class

Table 3.175

As mentioned above, this program does not require the use of Ericson's library. It can be compiled and
executed using a batch �le containing the commands shown in Figure 5 (p. 509) . You should make certain
that you can compile and execute this program before progressing to the graphic version.

Note that this batch �le must be placed in the same folder that contains the �le named
TextHelloWorld.java , and that folder must be your "current directory."

Also note that the term "-cp . " (note the space followed by a period) is probably super�uous on
most computers. According to PATH and CLASSPATH 169 , "The default value of the classpath
is "." (note the period), meaning that ..."

Therefore, it should not be necessary to specify the classpath as "-cp . " to compile and execute
the program on most computers. However, on 09/10/14, I encountered a student's computer that
did not comply with the default described above and this prevented the student from being able to
compile and execute the program. Including "-cp . " in the javac and java commands doesn't
cause any harm. Therefore, I have updated the batch �le commands shown in Figure 5 (p. 509)
to include it. You can omit it if your computer doesn't need it.

Figure 5 . Batch �le for text version of Hello World.

echo off

del *.class

javac -cp . TextHelloWorld.java

java -cp . TextHelloWorld

pause

Table 3.176

3.3.1.6.2 A graphic version of Hello World

Listing 2 (p. 510) contains the code for a graphic version of Hello World.

169http://docs.oracle.com/javase/tutorial/essential/environment/paths.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

506 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 2 . A graphic version of Hello World.

import java.awt.Color;

class GraphicHelloWorld{

public static void main(String[] args){

Picture pix = new Picture(200,100);

pix.setAllPixelsToAColor(Color.RED);

pix.addMessage("Graphic Hello World",15,50);

pix.show();

}// end main

}//end class

Table 3.177

The program shown in Listing 2 (p. 510) causes the image shown in Figure 6 (p. 510) to be displayed
when the program is compiled and executed.

Figure 6 - Hello World in graphics.

As mentioned above, this program does require the use of Ericson's library. It can be compiled and
executed using a batch �le containing the commands shown in Figure 7 (p. 510) . You should make certain
that you can compile and execute this program before progressing to more complex programs involving
Ericson's library.

Note that this batch �le must be placed in the same folder that contains the �le named
GraphicHelloWorld.java , and that folder must be your "current directory."

Figure 7 . Batch �le for graphic version of Hello World. .

echo off

del *.class

javac -cp .;M:\bookClasses GraphicHelloWorld.java

java -cp .;M:\bookClasses GraphicHelloWorld

pause

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

507

Table 3.178

Once again, the commands shown in Figure 7 (p. 510) assume that the bookClasses folder
is in the root directory on the M-drive. The bookClasses folder will likely be in a di�erent
location on your computer.

3.3.1.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: The Guzdial-Ericson Multimedia Class Library
• File: Java3000.htm
• Published: 07/27/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have misappropriated copies of my modules from cnx.org, con-
verted them to Kindle books, and placed them for sale on Amazon.com showing me as the author.
I receive no compensation for those sales and don't know who does receive compensation. If you
purchase such a book, please be aware that it is a bootleg copy of a module that is freely available
on cnx.org.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

508 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.2 Java3000r Review
170

Revised: Sat Apr 02 10:40:05 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 171

• Object-Oriented Programming (OOP) with Java 172

3.3.2.1 Table of Contents

• Preface (p. 512)
• Questions (p. 512)

· 1 (p. 512) , 2 (p. 512) , 3 (p. 512) , 4 (p. 512) , 5 (p. 513) , 6 (p. 513) , 7 (p. 513) , 8 (p. 513) ,
9 (p. 514) , 10 (p. 514) , 11 (p. 514) , 12 (p. 515)

• Figures (p. 515)
• Listings (p. 515)
• Answers (p. 517)
• Miscellaneous (p. 518)

3.3.2.2 Preface

This module contains review questions and answers keyed to the module titled Java3000: The Guzdial-
Ericson Multimedia Class Library 173 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

3.3.2.3 Questions

3.3.2.3.1 Question 1 .

True or false? The multimedia library used in this course originated at MIT.
Answer 1 (p. 518)

3.3.2.3.2 Question 2

True or false? Among other things, the Guzdial-Ericson multimedia class library makes it practical to write
object-oriented programs for the manipulation of images in an interesting and educational way.

Answer 2 (p. 518)

3.3.2.3.3 Question 3

True or false? The textbook for the course is available at no cost.
Answer 3 (p. 518)

3.3.2.3.4 Question 4

True or false? Once you have downloaded the zip �le containing the library, you will need to extract the
folder named MediaComp from the zip �le and store it somewhere on your computer's disk.

Answer 4 (p. 518)

170This content is available online at <http://cnx.org/content/m45761/1.7/>.
171http://cnx.org/contents/dzOvxPFw
172http://cnx.org/contents/-2RmHFs_
173http://cnx.org/content/m44148

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

509

3.3.2.3.5 Question 5

True or false? The bookClasses folder contains javadoc documentation for the library in a folder
named doc . You can view the documentation by going to the doc folder and opening the �le named
index.html in your browser.

Answer 5 (p. 518)

3.3.2.3.6 Question 6

True or false? You will need to put the path to the bookClasses folder on your path in order to
incorporate classes from the library into your programs.

Answer 6 (p. 518)

3.3.2.3.7 Question 7

True or false? Commands similar to those shown in Listing 1 (p. 513) can be used to put the bookClasses
library on the classpath :

Listing 1 . Question 7.

javac -cp .;M:\bookClasses *.java

java -cp .;M:\bookClasses Prob01

Table 3.179

Answer 7 (p. 517)

3.3.2.3.8 Question 8

True or false? Commands similar to those shown in Listing 2 (p. 513) can be used to:

• delete the class �les from the current folder,
• compile the source-code �les in the current folder, and
• execute the compiled version of a program named Prob01 in the current folder

Listing 2 . Question 8.

del *.class

javac -cp .;M:\bookClasses *.java

java -cp .;M:\bookClasses Prob01

Table 3.180

Answer 8 (p. 517)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

510 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.2.3.9 Question 9

True or false? You can put commands in a batch �le and run the batch �le to avoid having to type the
commands each time you need to perform a speci�c operation from the command line. In that case, you
should add a pause command as the last command in the sequence.

Answer 9 (p. 517)

3.3.2.3.10 Question 10

True or false? The program shown in Listing 3 (p. 514) causes the words Text Hello World to be
displayed on the standard output device when the program is compiled and executed.

Listing 3 . Question 10.

class TextHelloWorld{

public static void main(String[] args){

System.out.println("Text Hello World");

}//end main

}//end class

Table 3.181

Answer 10 (p. 517)

3.3.2.3.11 Question 11

True or false? The code shown in Listing 4 (p. 514) can be compiled and run to produce the graphic output
shown in Figure 1 (p. 514) .

Listing 4 . Question 11.

import java.awt.Color;

class GraphicHelloWorld{

public static void main(String[] args){

PictureExplorer pix = new PictureExplorer(200,100);

pix.setAllPixelsToAColor(Color.RED);

pix.addMessage("Graphic Hello World",15,50);

pix.show();

}// end main

}//end class

Table 3.182

Figure 1 (p. 514) - Question 11.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

511

Answer 11 (p. 517)

3.3.2.3.12 Question 12

True or false? The program shown (incorrectly) in Listing 4 (p. 514) and correctly in Listing 5 (p. 517)
requires the use of Ericson's multimedia library plus a jpg image �le.

Answer 12 (p. 517)

3.3.2.4 Figures

• Figure 1 (p. 514) . Question 11.

3.3.2.5 Listings

• Listing 1 (p. 513) . Question 7.
• Listing 2 (p. 513) . Question 8.
• Listing 3 (p. 514) . Question 10.
• Listing 4 (p. 514) . Question 11.
• Listing 5 (p. 517) . Answer 11.

What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

512 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

513

3.3.2.6 Answers

3.3.2.6.1 Answer 12

False. The program does require the use of Ericson's multimedia library but it does not require a jpg image
�le.

Back to Question 12 (p. 515)

3.3.2.6.2 Answer 11

False. The correct code is shown in Listing 5 (p. 517) .

Listing 5 . Answer 11.

import java.awt.Color;

class GraphicHelloWorld{

public static void main(String[] args){

Picture pix = new Picture(200,100);

pix.setAllPixelsToAColor(Color.RED);

pix.addMessage("Graphic Hello World",15,50);

pix.show();

}// end main

}//end class

Table 3.183

Back to Question 11 (p. 514)

3.3.2.6.3 Answer 10

True
Back to Question 10 (p. 514)

3.3.2.6.4 Answer 9

True.
Back to Question 9 (p. 514)

3.3.2.6.5 Answer 8

True.
Back to Question 8 (p. 513)

3.3.2.6.6 Answer 7

True.
Back to Question 7 (p. 513)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

514 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.2.6.7 Answer 6

False. You will need to put the path to the bookClasses folder on your classpath in order to incorporate
classes from the library into your programs.

Back to Question 6 (p. 513)

3.3.2.6.8 Answer 5

True
Back to Question 5 (p. 513)

3.3.2.6.9 Answer 4

False. Once you have downloaded the zip �le containing the library, you will need to extract the folder
named bookClasses from the zip �le and store it somewhere on your computer's disk.

Back to Question 4 (p. 512)

3.3.2.6.10 Answer 3

False. The Guzdial-Ericson library was originally published by Guzdial and Ericson in conjunction with
their book Introduction to Computing and Programming with Java: A Multimedia Approach 174 . While
the book isn't free, the library is freely available and is published under a Creative Commons Attribution
3.0 United States License 175 .

Back to Question 3 (p. 512)

3.3.2.6.11 Answer 2

True.
Back to Question 2 (p. 512)

3.3.2.6.12 Answer 1

False. The multimedia class library was developed and made available by Mark Guzdial 176 and Barbara
Ericson 177 of the Georgia Institute of Technology.

Back to Question 1 (p. 512)

3.3.2.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java3000r Review: Java3000: The Guzdial-Ericson Multimedia Class Library
• File: Java3000r.htm
• Published: 02/09/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

174http://www.pearsonhighered.com/educator/academic/product/0,3110,0131496980,00.html
175http://creativecommons.org/licenses/by/3.0/us/
176http://www.cc.gatech.edu/∼guzdial/
177http://coweb.cc.gatech.edu/ice-gt/8

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

515

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.3.3 Java3001: An Alternative Graphics Library
178

Revised: Sun Nov 27 12:40:34 CST 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 179

• Object-Oriented Programming (OOP) with Java 180

3.3.3.1 Table of contents

• Table of contents (p. 519)
• An alternative graphics library (p. 519)
• Modi�cations to the classes (p. 520)

· The class named Picture (p. 520)
· The class named PictureExplorer (p. 520)
· The class named PictureFrame (p. 521)
· The class named Pixel (p. 521)
· The class named Turtle (p. 521)
· The class named World (p. 521)

• Miscellaneous (p. 521)

3.3.3.2 An alternative graphics library

Hopefully by now you have studied the lesson titled Java3000: The Guzdial-Ericson Multimedia Class Library
181 and are completely familiar with the use of that library.

The Guzdial-Ericson Multimedia Class Library is an excellent library. However, it contains many classes,
ranging from video to sound, that are not used in this course. This lesson provides a stripped-down alternative
version of the Guzdial-Ericson library that eliminates classes that are not required for the course. This, in
turn, results in a smaller documentation package that is much easier to navigate. In addition, the alternative
library adds some features that are needed for assignments in more advanced courses.

Classes in this alternative graphics library were derived from classes in the multimedia library published
by Barb Ericson at http://home.cc.gatech.edu/TeaParty/47 182 in a downloadable �le named bookClasses-
3-9-10-with-doc.zip . A statement on that page reads as follows: "The source code in bookClasses is
licensed under a Creative Commons Attribution 3.0 United States License."
178This content is available online at <http://cnx.org/content/m63525/1.2/>.
179http://cnx.org/contents/dzOvxPFw
180http://cnx.org/contents/-2RmHFs_
181http://cnx.org/contents/dzOvxPFw:0xo_9JXz
182http://home.cc.gatech.edu/TeaParty/47

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

516 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

You can download a copy of the alternative library by clicking here 183 . As with the Guzdial-Ericson
library, simply extract the folder named _altBookClasses from the zip �le, store it somewhere on your
disk, and point to it with a classpath. Once you have done that, I recommend that you go back to Java3000:
The Guzdial-Ericson Multimedia Class Library 184 and recreate the graphic version of Hello World. Then
compile and run it using the alternative library in place of the original Guzdial-Ericson library.

Once you have stored the folder named _altBookClasses on your disk, open it to �nd a folder named
docs . Open that folder and locate a �le named index.html . Open that �le in your browser and you
will �nd the documentation for about a dozen classes as compared to about �ve dozen classes in the original
Guzdial-Ericson library. The classes in the alternative library are a subset of the classes in the original
Guzdial-Ericson library, some with modi�cations as described below.

3.3.3.3 Modi�cations to the classes

As mentioned above, without changing the original functionality, modi�cations were made to some of the
classes in the alternative library to add features that are useful in more advanced courses. Most of those
modi�cations are described below.

3.3.3.3.1 The class named Picture

The use of the DigitalPicture interface was eliminated. It was only used by the Picture class among
the subset of classes selected for this library and was therefore considered to be super�uous and confusing
to students.

The Picture class and the SimplePicture class were collapsed into a single class named Picture
. While possibly useful in some teaching situations, the use of inheritance in this case was considered to be
super�uous and confusing to students.

The use of the media path was eliminated. While useful in some situations, the confusions and problems
that it created among students developing on one machine and testing on a di�erent machine outweighed
the bene�ts.

The addMessage method was modi�ed to cause it to use a color variable to set the color of the message
to something other than the default white. This also required that a method named setMessageColor
be de�ned to set the color and that a variable named messageColor be de�ned to contain the color.

3.3.3.3.2 The class named PictureExplorer

References to the SoundExplorer class were eliminated. This eliminated the requirement to include the
SoundExplorer class in the alternative library.

As with the Picture class, the use of the DigitalPicture interface was eliminated and for the same
reasons.

As with the Picture class, the use of the media path was eliminated and for the same reasons.
Accessor methods were added to cause the following values to be accessible from outside the object:

• int xIndex
• int yIndex
• String rValue text
• String gValue text
• String bValue text
• double zoomFactor
• JFrame pictureFrame

183http://cnx.org/content/m63525/latest/altBookClasses.zip
184http://cnx.org/contents/dzOvxPFw:0xo_9JXz

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

517

3.3.3.3.3 The class named PictureFrame

As with the Picture class, the use of the DigitalPicture interface was eliminated and for the same
reasons

3.3.3.3.4 The class named Pixel

As with the Picture class, the use of the DigitalPicture interface was eliminated and for the same
reasons.

3.3.3.3.5 The class named Turtle

The use of the ModelDisplay interface was eliminated by replacing ModelDisplay with World .
The interface was only used by the World and Turtle classes among the subset of classes selected for
this library and was therefore considered to be super�uous and confusing to students.

The Turtle class and the SimpleTurtle class were collapsed into a single class named Turtle .
While possibly useful in some teaching situations, the use of inheritance in this case was considered to be
super�uous and confusing to students.

3.3.3.3.6 The class named World

The implementation of the ModelDisplay interface by the World class was eliminated. The interface
was only used by the World and Turtle classes among the subset of classes selected for this library and
was therefore considered to be super�uous and confusing to students.

An accessor method named getFrame was added. The new method returns a reference to the JFrame
object from which the World object is constructed.

The modi�ed version of the World class makes it possible to specify the name of an image �le when
the World object is instantiated. The image is used as the background for the world in place of the default
blank white background.

A call to the setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE) method was added to the
method that initializes the frame to cause the program to terminate when the user clicks the X-button in
the upper-right corner of the frame.

3.3.3.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java3001: An Alternative Graphics Library
• File: Java3001.htm
• Published: 11/26/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

518 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.3.4 Java3002: Creating and Manipulating Turtles and Pictures in a World

Object
185

Revised: Sat Apr 02 13:20:42 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 186

• Object-Oriented Programming (OOP) with Java 187

3.3.4.1 Table of Contents

• Preface (p. 522)

· Viewing tip (p. 523)

* Figures (p. 523)
* Listings (p. 523)

• Preview (p. 523)
• Discussion and sample code (p. 525)
• Run the program (p. 538)
• Summary (p. 538)
• What's next? (p. 538)
• Online video links (p. 538)
• Miscellaneous (p. 539)
• Complete program listing (p. 539)

3.3.4.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

Before embarking on the material in this module, you should have studied and should understand all of
the material in the modules identi�ed as Java1600 through Java1630 in the section of this book titled
Essence of OOP 188 and you should have studied and should understand all of the material in the following
books:

• Programming Fundamentals with Java 189

• Java OOP Self-Assessment 190

The program described in this module requires the use of the Guzdial-Ericson multimedia class library. You
will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 191 .

185This content is available online at <http://cnx.org/content/m44149/1.12/>.
186http://cnx.org/contents/dzOvxPFw
187http://cnx.org/contents/-2RmHFs_
188http://cnx.org/contents/dzOvxPFw:rOlnsVRr
189http://cnx.org/contents/EHRr6hjR
190http://cnx.org/contents/1CVBGBJj
191http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

519

3.3.4.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

3.3.4.2.1.1 Figures

• Figure 1 (p. 523) . Graphic screen output.
• Figure 2 (p. 524) . Command-line output.
• Figure 3 (p. 526) . Commands to compile and execute the application.
• Figure 4 (p. 530) . Constructors for the World class.
• Figure 5 (p. 530) . Constructors for the Turtle class.
• Figure 6 (p. 534) . Constructors for the Picture class.

3.3.4.2.1.2 Listings

• Listing 1 (p. 525) . The driver class.
• Listing 2 (p. 528) . Beginning of the class named Prob01Runner.
• Listing 3 (p. 531) . The constructor for the Prob01Runner class.
• Listing 4 (p. 532) . Three accessor methods.
• Listing 5 (p. 533) . The beginning of the run method.
• Listing 6 (p. 535) . Add text to the image.
• Listing 7 (p. 536) . Manipulate the turtle named joe.
• Listing 8 (p. 537) . Manipulate the turtle named sue.
• Listing 9 (p. 541) . Source code for Prob01.

3.3.4.3 Preview

In this module, I will explain a program that uses Java and Ericson's media library to (see Figure 1 (p.
523)) :

• Add a picture and two turtles to a world.
• Manipulate the turtles, their colors, and their pens.

Stated in more detail, the program will:

• Create a Picture object from an image �le and replace the default white Picture in a World
object with the new Picture object.

• Place two Turtle objects in a World object.
• Apply a series of operations to manipulate the two turtle objects so as to produce a speci�c graphic

output.
• Provide accessor methods to get references to two Turtle objects and the World object.
• Use the references to get information from the World and Turtle objects and display that

information on the command-line screen.
• Display text on a Picture in a World object.

Program output
Figure 1 (p. 523) shows the graphic screen output produced by this program.
Figure 1 (p. 523) - Graphic screen output.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

520 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 2 (p. 524) shows the text output produced by the program on the command line screen.

Figure 2 . Command-line output.

javac 1.6.0_14

java version "1.6.0_14"

Java(TM) SE Runtime Environment (build 1.6.0_14-b08)

Java HotSpot(TM) Client VM (build 14.0-b16, mixed mode,

sharing)

Dick Baldwin.

A 300 by 274 world with 2 turtles in it.

joe turtle at 44, 143 heading -135.0.

sue turtle at 250, 237 heading 0.0.

Table 3.184

Output produced by the system
Figure 2 (p. 524) not only shows the output produced by the program. It also shows information produced

by the Java compiler and the Java virtual machine as a result of executing the following commands at runtime:

javac -version

java -version

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

521

3.3.4.4 Discussion and sample code

Will explain in fragments
I will explain this program in fragments. A complete listing of the program is provided in Listing 9 (p.

541) near the end of the module.
I will begin with the driver class named Prob01 , which is shown in its entirety in Listing 1 (p. 525) .

Listing 1 . The driver class.

import java.awt.Color;

public class Prob01{//Driver class

public static void main(String[] args){

//Instantiate an object and call its method named run.

Prob01Runner obj = new Prob01Runner();

obj.run();

//Get information from the object and display it on

// the command-line screen.

System.out.println(obj.getMars());

System.out.println(obj.getJoe());

System.out.println(obj.getSue());

}//end main

}//end class Prob01

Table 3.185

The import directive
Note the import directive at the very beginning of Listing 1 (p. 525) . This is a directive to the compiler

and the virtual machine notifying them that the class named Color can be found in the package named
java.awt .

What is a package?
Boiled down to its simplest description, a package is nothing more than the speci�cation of a particular

folder on the disk relative to a standard root folder. (Think of it as a disk-path speci�cation with the
periods representing \ characters on a Windows machine and representing / characters on a Unix machine.)

The public class named Prob01
Every Java application (not true for Java applets) must include the de�nition of a class that contains

the de�nition of a method named main with a method signature having the syntax shown in Listing 1 (p.
525) .

The name of the class/application
The name of the class containing the main method is also the name of the application insofar as being

able to compile and execute the application is concerned. In this case, the name of the class, and hence the
name of the application is Prob01 .

Source code �le name
The name of the source code �le containing this class must match the name of the class. In this case,

the source code �le must be named Prob01.java . (Note the .java extension.)
Compiling the application
In its simplest form, this application can be compiled by executing the following command at the com-

mand prompt:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

522 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

javac Prob01.java

Note however that it is often necessary to specify the path to various library �les on the command line when
compiling the application. In that case, the simplest form given above is not su�cient.

Compiler output �le names
When the application is successfully compiled, it will produce one or more output �les with an extension

of .class . In this case, one of those �les will be named Prob01.class .
Execution of the application
The execution of C and C++ programs begins and ends in the main function. The execution of Java

applications begin and end in the method named main .
Once again, in its simplest form, this application can be executed by entering the following command at

the command prompt:

java Prob01

Again, it is often necessary to specify the path to various library �les on the command line when executing
the application. In that case, the simplest form is not su�cient.

Compilation and execution on my machine
This application can be compiled and executed on my machine by entering the two commands shown in

Figure 3 (p. 526) at the command prompt. (Note that arti�cial line breaks were inserted into Figure 3
(p. 526) (p. 526) to force the long commands to �t this narrow format.)

Figure 3 . Commands to compile and execute the application.

javac -cp .;M:\Baldwin\AA-School\Itse2321IntroOOP\
MediaCompBookMaterial\bookClasses Prob01.java

java -cp .;M:\Baldwin\AA-School\Itse2321IntroOOP\
MediaCompBookMaterial\bookClasses Prob01

Table 3.186

The compiler and the virtual machine
The javac portion of the �rst command causes the Java compiler to run.
The java portion of the second command causes the Java virtual machine to run.
The input �les
The Prob01.java and Prob01 at the ends of the two commands specify the �les being operated on

by the compiler and the virtual machine respectively.
A classpath
In both cases, the -cp indicates that a classpath follows.

A classpath consists of one or more path speci�cations separated by semicolon characters.

The purpose of the classpath is to tell the compiler and the virtual machine where to look for previously
compiled class �les that the application needs in order to successfully compile and execute.

The current folder
The period ahead of the semicolon says to search the current folder �rst.
The path to the Ericson library
The material following the semicolon is the absolute path to the folder containing the class �les that

make up Ericson's library on my machine. The location of that folder will probably be di�erent on your
machine.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

523

The main method
Now that we have the preliminaries out of the way, let's go back and examine the body of the main

method in Listing 1 (p. 525) .
The �rst statement in the body of the main method in Listing 1 (p. 525) instantiates a new object of

the class named Prob01Runner .
The statement saves a reference to that object in a reference variable named obj . Note that the type

of the variable is the same as the name of the class in this case. In general, the type of the variable must be:

• The name of the class, or
• The name of a superclass of the class, or
• The name of an interface implemented by the class.

Accessing the object
You must save a reference to an object in order to gain access to the object later. In this case, the

reference is stored in the variable named obj .
Call the method named run
The second statement in the body of the main method in Listing 1 (p. 525) uses that reference to

call the method named run encapsulated in the object. As you will see later, most of the work in this
application is performed in the method named run .

Get and display information about the object
When the run method returns control to the main method, the last three statements in the body

of the main method in Listing 1 (p. 525) use the object's reference to call the following three methods
belonging to the object:

• getMars
• getJoe
• getSue

Accessor methods
These three methods are of a type that is commonly referred to as accessor methods . They access and

return values encapsulated inside an object. In most cases, (using good programming practice) they return
copies of the values. This protects the encapsulated values from being corrupted by code outside the object.

The method named println
In each case in Listing 1 (p. 525) , the value returned by the method is passed to a method named

println . This is a method belonging to a standard system object that represents the standard output
device (usually the command-line screen) . The purpose of the println method is to display material on
the command-line screen.

System.out.println...
Without going into detail about how this works, you should simply memorize the syntax of the last three

statements in the body of the main method in Listing 1 (p. 525) . If you are interested in learning more
on this topic, I explain the concepts involved in some detail here 192 and here 193 .

This code (System.out.println...) provides the mechanism by which you can display material on the
command line screen in a running Java application. The last three statements in the main method in Listing
1 (p. 525) produced the last three lines of text in Figure 2 (p. 524) .

(Note that only the last four lines of text in Figure 2 (p. 524) (p. 524) were produced by the
program. Everything above that was produced by the system during the compilation and initial execution
of the application.)

What do you know so far?
So far, you know the following to be true:

• The program instantiates an object of the class named Prob01Runner .

192http://cnx.org/contents/EHRr6hjR:WAqupWja
193http://cnx.org/contents/EHRr6hjR:kAoiyWcB

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

524 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• The program causes a method named run belonging to that object to be executed.
• When the run method returns, the program calls three accessor methods in succession, causing the

values returned by those methods to be displayed on the command-line screen.
• The fourth line of text from the bottom in Figure 2 (p. 524) (Dick Baldwin) was produced before the

last three lines of text discussed above. Therefore, that line of text must have been produced before
control reached the call to the getMars method in Listing 1 (p. 525) .

The public modi�er
Java uses four access modi�ers to specify the accessibility of various classes and members in a Java

application:

• public
• private
• protected
• package-private

Rather than trying to explain all four at this time, I will explain public here and explain the other three
when we encounter them in code.

The public modi�er is the easiest of the four to explain. As the name implies, it is analogous to a
public telephone. Any code that can �nd a class or class member with a public modi�er can access and use
it. In this case, any code that can �nd the class de�nition for the class named Prob01 can instantiate an
object of that class.

The class named Prob01Runner
There's not a lot more that we can say about the driver class named Prob01 , so it's time to analyze

the class named Prob01Runner . We need to �gure out what it is about that class that causes the
program output to match the material shown in Figure 1 (p. 523) and Figure 2 (p. 524) .

Beginning of the class named Prob01Runner
The de�nition of the class named Prob01Runner begins in Listing 2 (p. 528) .

Listing 2 . Beginning of the class named Prob01Runner.

class Prob01Runner{

//Instantiate the World and Turtle objects.

private World mars = new World(300,274);

private Turtle joe = new Turtle(mars);

private Turtle sue = new Turtle(mars);

Table 3.187

No access modi�er
Note that this class de�nition does not have an access modi�er such as public , private , or

protected . This puts it in package-private access category.

The lack of an access modi�er causes a class to be put in the package-private access category.
A class with package-private access can be accessed by code that is stored in the same package and
cannot be accessed by code stored in other packages.

Three private variables
The last three statements in Listing 2 (p. 528) declare three private variables. Because these variables

are declared private , they can only be accessed by code contained in methods de�ned inside the class.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

525

They are also accessible by code contained in methods de�ned in classes de�ned inside the class,
but that is beyond the scope of this module.

Three private instance variables
These variables are also instance variables as opposed to class variables . (We will discuss class

variables in a future module.)
Because they are instance variables, they belong to an object instantiated from the class. (An object

is an instance of a class.) Even if the variables were public, they could only be accessed by �rst gaining
access to the object to which they belong.

Multiple instances of the class
If you instantiate multiple objects of this same class (create multiple instances which you often do) ,

each object will encapsulate the same set of the three private instance variables shown in Listing 2 (p. 528)
. Instance variables have the same name but may have di�erent values in the di�erent objects.

Three private instance reference variables
The three variables declared in Listing 2 (p. 528) are also reference variables (as opposed to primitive

variables) . This means that they are capable of storing references to objects as opposed to simply being
able to store primitive values of the following eight types:

• char
• byte
• short
• int
• long
• �oat
• double
• boolean

Primitive variables can only store primitive values of the types in the above list.
Classes, classes, and more classes
A Java application consists almost exclusively of objects. Objects are instances of classes. Therefore,

class de�nitions must exist before objects can exist.
The true power of Java
The Java programming language is small and compact. The true power of Java lies in its libraries of

prede�ned classes.
The Java standard edition development kit and runtime engine available from Oracle contains a library

consisting of thousands of prede�ned classes. Other class libraries containing thousands of classes are avail-
able from Oracle in the enterprise edition and the micro edition.

Non-standard class libraries
In some cases, you or your company may create your own class libraries and/or obtain class libraries

from other sources such as the Ericson class library that we are using in this module.
Custom class de�nitions
In almost all cases, you will need to de�ne a few new classes for new applications that you write. We will

de�ne two new classes for this application. The remainder of the classes that we use will come either from
Oracle's standard library or Ericson's library.

Objects of the World class and the Turtle class
Ericson's class library contains a class named World and another class named Turtle . The code in

Listing 2 (p. 528) instantiates one object of the World class and populates that world with two objects of
the Turtle class.

Every class has a constructor
Every class de�nition has one or more method-like members called constructors. (If you don't de�ne a

constructor when you de�ne a class, a default constructor will be automatically de�ned for your class.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

526 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

The name of the constructor must always be the same as the name of the class. Like a method, a
constructor may or may not take arguments. If there are two or more (overloaded) constructors, they must
have di�erent argument lists.

Instantiating an object of a class
To instantiate an object of a class, you apply the new operator (see Listing 2 (p. 528) (p. 528))

to the class' constructor, passing parameters that satisfy the required arguments for the constructor.
Return a reference to the object
Once the object has been instantiated, the constructor returns a reference to the new object.
A new World object
For example, the �rst statement in Listing 2 (p. 528) applies the new operator to Ericson's World class

constructor passing two integer values as parameters. This causes a new World object to be instantiated.
A reference is returned
A reference to the new World object is returned and stored in the reference variable named mars .
Once the reference is stored in the reference variable, it can be used to access the World object later.
Constructors for the World class
Figure 4 (p. 530) shows the overloaded constructors that are available for Ericson's World class. (See

javadocs for the Ericson library.)
Figure 4 (p. 530) - Constructors for the World class.

A new World object
The third constructor in Figure 4 (p. 530) was used to construct a World object in Listing 2 (p. 528)

with a width of 300 pixels and a height of 274 pixels. As explained earlier, this object's reference was saved
in the variable named mars .

Two new Turtle objects
The last two statements in Listing 2 (p. 528) instantiate two objects of the Turtle class and use them

to populate the World object whose reference is stored in the variable named mars .
More complicated than before
This is a little more complicated than the instantiation of the World object. Ericson's javadocs indicate

that the Turtle class provides the four overloaded constructors shown in Figure 5 (p. 530) .
Figure 5 (p. 530) - Constructors for the Turtle class.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

527

A World object as a parameter
If you dig deep enough, and if you study Ericson's textbook, you can determine that the third constructor

in Figure 5 (p. 530) will accept a reference to a World object as a parameter. This is the constructor that
was used in the last two statements in Listing 2 (p. 528) .

ModelDisplay interface The World class implements the ModelDisplay interface. Therefore,
an object of the World class can be treated as it is type ModelDisplay. I explain the relationship
between classes and interfaces here 194 and here 195 .

Displayed in the center of the world
When the two Turtle objects instantiated in Listing 2 (p. 528) come into existence, they will be

displayed in the center of the World object referred to by the contents of the variable named mars .
However, that happens so quickly that you probably won't see it when you run this program.

Eliminating the run method call
If you were to eliminate the call to the run method in Listing 1 (p. 525) , you would see a world

with a white background and a single turtle positioned in the center of the world facing north. There would
actually be two turtles there, but they would be in exactly the same location so only the one closest to you
would be visible.

The constructor for the Prob01Runner class
That's probably enough discussion of the three statements in Listing 2 (p. 528) . The constructor for

the class named Prob01Runner is shown in its entirety in Listing 3 (p. 531) .

Listing 3 . The constructor for the Prob01Runner class.

public Prob01Runner(){//constructor

System.out.println("Dick Baldwin.");

}//end constructor

Table 3.188

194http://cnx.org/contents/dzOvxPFw:LAUK4UwQ
195http://cnx.org/contents/1CVBGBJj:-rp3xlXO

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

528 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

The purpose of constructors
The primary purpose for which constructors exist is to assist in the initialization of the variables belonging

to the object being constructed. However, it is possible to directly initialize the variables as shown in Listing
2 (p. 528) .

Initialization of variables
When an object comes into existence, the variables belonging to that object will have been initialized

by any direct initializers like those shown in Listing 2 (p. 528) as well any initialization produced by code
written into the constructor.

Default initialization
If a variable (exclusive of local variables inside of methods) is not initialized in one of those two ways,

it will receive a default initialization value. The default values are:

• 0 or 0.0 for numeric variables
• false for boolean variables
• null for reference variables

Non-initialization code in constructors
Although it is usually not good programming practice to do so, there is no technical reason that you

can't write code into the constructor that has nothing to do with variable initialization. Such code will be
executed when the object is instantiated.

An object counter
For example, you might need to keep track of the number of objects that are instantiated from a particular

class, such as the total number of asteroid objects in a game program for example You could write the code
to do the counting in the constructor.

Display my name
The code in the constructor in Listing 3 (p. 531) simply causes my name to be displayed on the command-

line screen when the object is instantiated. That is how my name appears ahead of the other lines of output
text in Figure 2 (p. 524) . My name is displayed when the object is instantiated. The remaining three lines
of text in Figure 2 (p. 524) are displayed later by manipulating the object.

Three accessor methods
Listing 4 (p. 532) de�nes three accessor methods that are used to access and return copies of the contents

of the private instance variables named joe , sue , and mars .

Listing 4 . Three accessor methods.

public Turtle getJoe(){return joe;}

public Turtle getSue(){return sue;}

public World getMars(){return mars;}

Table 3.189

Good OOP practice
Good object-oriented programming practice says that most of the instance variables encapsulated in an

object should be declared private. If there is a need to make the contents of those variables available outside
the object, that should be accomplished by de�ning public accessor methods. (Accessor methods are often
referred to as getter methods because the name of the accessor method often includes the word "get".)

Setter methods
If there is a need for code outside the object to store information in the object's private instance variables,

this should be accomplished by writing public setter methods. Code in the setter methods can �lter incoming
data to make certain that the state of the object doesn't become corrupt as a result of outside in�uences.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

529

Pass and return by value
Everything in Java is passed and returned by value , not by reference.
Each of the accessor methods shown in Listing 4 (p. 532) returns a copy of the reference belonging to

either a Turtle object or a World object.
Pass to the println method
As you saw earlier, each of the three references is passed to the println method in Listing 1 (p. 525)

causing information about the objects to be displayed on the command-line screen.
The toString method
Although it isn't obvious in Listing 1 (p. 525) , the code in the println method calls a method named

toString on the incoming object reference and displays the string value returned by that method. I discuss
the toString method in some detail here 196 and here 197 .

An overridden method
The toString method is overridden (not overloaded) in the World and Turtle classes so as to

return a string value describing the object.
The Ericson javadocs
Normally, the javadocs would tell you what information is contained in that string, but that is not the

case in Ericson's javadocs. You would have to get into her source code, (which is readily available), to get
that information. However, you can see the information that is contained in the string values for the two
di�erent types of objects in the last three lines of text in Figure 2 (p. 524) .

The beginning of the run method
This is where thing start to get interesting. Listing 5 (p. 533) shows the beginning of the public

method named run .

Listing 5. The beginning of the run method.

public void run(){

//Replace the default all-white picture with another

// picture.

mars.setPicture(new Picture("Prob01.jpg"));

Table 3.190

Recall that the code in the main method in Listing 1 (p. 525) calls the run method on the object
immediately after it is instantiated.

A turtle on a white background
I told you earlier that if you were to eliminate the call to the run method, you would see a turtle at

the center of the world with a white background.
The background is a Picture object
The background of a World object consists of an object of Ericson's Picture class. (A Picture

object is encapsulated in the World object.)
By default, the Picture object encapsulated in a World object is all white and is exactly the right

size and shape to completely �ll the area inside the world's border (see Figure 1 (p. 523) (p. 523)).
Can be replaced
As you will see shortly, we can replace the default Picture object with a new Picture object of our

own choosing.
What if it doesn't �t?

196http://cnx.org/contents/EHRr6hjR:Fg0-bUk3
197http://cnx.org/contents/dzOvxPFw:ch9iAGEJ

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

530 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

If the new Picture object isn't large enough to completely �ll the area inside the borders of the World
object, it will be placed in the upper-left corner of the World object and the remainder of the World
object will be a light gray color.

If the Picture object is too large, an upper-left rectangular portion of the Picture object, su�cient
to �ll the World object, will be displayed. The remainder of the Picture object will not be visible even
if you manually resize the World object to make it larger.

Constructors for the Picture class
Figure 6 (p. 534) shows the javadocs for the constructors for Ericson's Picture class.
Figure 6 (p. 534) - Constructors for the Picture class.

Replace the default picture object
The right-hand portion of the last statement in Listing 5 (p. 533) uses the last constructor in Figure

6 (p. 534) to instantiate a new Picture object that encapsulates the image contained in the image �le
named Prob01.jpg .

(Click here 198 to download a copy of the �le named Prob01.jpg.)
What about the size of the Picture object?
I was careful to use an image that was a little wider than and exactly as tall as the dimensions of my

World object (300 x 274) . Therefore, the image completely �lled the world as shown in Figure 1 (p.
523) .

Pass the reference to a setter method
The reference belonging to the new Picture object was passed to the setPicture method of the

World object (a setter method) in Listing 5. (p. 533) This caused the new picture containing the penguin
to replace the default all-white picture that forms the background for the World object. (See Figure 1
(p. 523) .)

A subclass of the SimplePicture class
Ericson's Picture class is a subclass of (extends) the class named SimplePicture . Therefore, an

object of the Picture class encapsulates all of the methods de�ned in the Picture class in addition to
all of the methods de�ned in the SimplePicture class.

A subclass of the Object class

198http://cnx.org/content/m44149/latest/Prob01.jpg

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

531

Further, the SimplePicture class is a subclass of (extends) the Object class. Therefore, an object
of the Picture class also encapsulates all of the methods de�ned in the Object class.

The AddMessage method
One of the methods de�ned in the SimplePicture class and inherited into the Picture class is

named AddMessage .
The addMessage method requires three parameters:

• a string and
• two coordinate values of type int .

The addMessage method will draw the string as text characters onto the image at the location speci�ed
by the two coordinate values.

(The origin of the coordinate system is the upper-left corner of the image with positive horizontal values
going to the right and positive vertical values going down.)

Add text to the image
The code in Listing 6 (p. 535) uses two levels of indirection to add my name as a message to the picture

that forms the background of the world as shown in Figure 1 (p. 523) .

Listing 6 . Add text to the image.

mars.getPicture().addMessage(

"Dick Baldwin",10,20);

Table 3.191

Get and access the World object
To begin with, Listing 6 (p. 535) goes to the variable named mars to get a reference to the World

object. This reference is used to access the World object.
Access the Picture object via a getter method
Then the code in Listing 6 (p. 535) calls the getter method named getPicture to gin access to the

Picture object encapsulated in the World object.
Call the addMessage method
Having gained access to the Picture object, Listing 6 (p. 535) calls the addMessage method on that

object passing my name as a String object along with a pair of coordinate values that specify a location
near the upper-left corner of the image. The result is that my name appears in the world as shown in Figure
1 (p. 523) .

Methods encapsulated in the Turtle object
The Turtle class extends the SimpleTurtle class, which in turn extends the Object class.

Therefore, an object of the Turtle class encapsulates all of the methods de�ned in all three classes.
Manipulate the turtle referred to by the variable named joe
A Turtle object encapsulates many methods that can be used to manipulate the turtle in a variety of

di�erent ways. This is illustrated by the series of statements in Listing 7 (p. 536) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

532 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 7 . Manipulate the turtle named joe.

joe.setName("joe");

joe.setBodyColor(Color.RED);

joe.setShellColor(Color.BLUE);

joe.setPenColor(Color.YELLOW);

joe.setPenWidth(3);

joe.forward();

joe.turn(-135);

joe.setPenColor(Color.BLUE);

joe.forward(150);

Table 3.192

Initial (default) state of a Turtle object
When a new Turtle object is instantiated and added to a World object (using the constructor

shown in Listing 2 (p. 528)) , it doesn't have a name property.
The turtle initially appears in the center of the world, facing north with a default color.
Every Turtle object has a pen attached to its belly that can draw a line with a default width of one

pixel in a default color when the turtle moves.
The pen can be raised so that it won't draw a line or lowered so that it will draw a line. Initially it is

down and will draw a line by default.
Set the name property to "joe"
Listing 7 (p. 536) begins by setting the name property of one of the turtles to the string value "joe."

Note that this is completely independent of the fact that a reference to this turtle is stored in
a variable named joe . The name property could have been set to "Tom", "Dick", "Harry", or
any other string value. It is the value of the name property and not the name of the variable that
determines the text output shown in Figure 2 (p. 524) .

Set the turtle's body and shell color
Listing 7 (p. 536) continues by calling two setter methods on the turtle object to set the body color

(head and feet) to red and the color of the shell to blue. You can see the e�ect of this in Figure 1 (p. 523) .
Set the pen color and width
Then Listing 7 (p. 536) calls two setter methods that set the turtle's pen color to yellow and the pen

width to three pixels. You can also see the result of this in Figure 1 (p. 523) .
Make the turtle move forward
After that, Listing 7 (p. 536) calls the forward method (with no parameters) to cause the turtle to

move forward by a default distance of 100 pixels.
Recall that the turtle initially faces north. In this case, the forward method causes the turtle to move

from the center of the world to a location that is 100 pixels due north of the center of the world, drawing a
wide yellow line along the way.

Turn counter clockwise
Then Listing 7 (p. 536) calls the turn method causing the turtle to rotate its body by 135 degrees

counter-clockwise. (A positive parameter causes a clockwise rotation and a negative parameter causes a
counter clockwise rotation.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

533

Change the pen color and move forward again
Finally Listing 7 (p. 536) calls methods to change the pen color to blue and to cause the turtle to move

forward by 150 pixels.
The �nal location
After making the turn, the turtle is facing southwest. Therefore, the forward movement causes a diagonal

blue line to be drawn from the position at the top of the yellow line down toward the southwest. As you can
see in Figure 1 (p. 523) , the turtle comes to rest at the end of that line.

A few words about color
I have published extensively on the concept of color in Java. The best way to �nd that information is

probably to go to Google and search for the keywords:

richard baldwin "color class" site:http://cnx.org/contents/

Google is also probably your best bet for �nding information on other topics that I have published on various
websites. For example, if you go to Google Images 199 and search for the following keywords, you will �nd
a lot of the work that I have published using Ericson's media library.

richard baldwin java ericson

Manipulate the turtle named sue
Listing 8 (p. 537) calls several methods on the object whose reference is stored in the variable named

sue .

Listing 8 . Manipulate the turtle named sue.

sue.setName("sue");

sue.setPenWidth(2);

sue.setPenColor(Color.RED);

sue.moveTo(183,170);

sue.setPenDown(false);

sue.moveTo(216,203);

sue.setPenDown(true);

sue.moveTo(250,237);

}//end run method

}//end class Prob01Runner

Table 3.193

The end result
These method calls result in the turtle named sue facing north in the lower right corner of the window,

having drawn the broken red line shown in Figure 1 (p. 523) in getting there.
The moveTo method
Listing 8 (p. 537) calls the moveTo method to cause the turtle to move to a new location on the basis

of coordinate values instead of on the basis of a distance value.

199https://images.google.com/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

534 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Pen control
Listing 8 (p. 537) also calls the setPenDown method twice passing false and then true as the parameter

to �rst raise and then lower the pen. This produced the gap in the red line shown in Figure 1 (p. 523) .

The Turtle class also provides methods named penUp and penDown that can be used to
raise and lower the pen.

The end of the program
Listing 8 (p. 537) also signals the end of the method named run and the end of the class named

Prob01Runner . As such, Listing 8 (p. 537) signals the end of the program.

3.3.4.5 Run the program

II encourage you to copy the code from Listing 9 (p. 541) , compile it and execute it. Experiment with the
code, making changes, and observing the results of your changes. Make certain that you can explain why
your changes behave as they do.

3.3.4.6 Summary

II explained a program that uses Java and Ericson's media library to:

• Add a picture and two turtles to a world.
• Manipulate the turtles, their color, and their pens.

Stated in more detail, the program:

• Creates a Picture object and replaces the default white Picture in a World object with the
new Picture object.

• Places two Turtle objects in a World object.
• Applies a series of operations to manipulate the two turtle objects so as to produce a speci�c graphic

output.
• Provides accessor methods to get references to two Turtle objects and the World object.
• Gets information from the World and Turtle objects and displays the information on the command-

line screen.
• Displays text on a Picture in a World object.

3.3.4.7 What's next?

In the next module, I will teach you how to invert images and how to display images using Ericson's
PictureExplorer object.

3.3.4.8 Online video links

While not a requirement of the course, you can select the following links to view optional online video lectures
on the material in this module.

• ITSE 2321 Lecture 01 200

· Part01 201

· Part02 202

200http://www.youtube.com/playlist?list=PL26BF7154F10D3854
201http://www.youtube.com/watch?v=7KjSLqTgMec
202http://www.youtube.com/watch?v=Jnra7RfPKOI

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

535

· Part03 203

· Part04 204

· Part05 205

· Part06 206

· Part07 207

· Part08 208

· Part09 209

· Part10 210

3.3.4.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Creating and Manipulating Turtles and Pictures in a World Object

• File: Java3002.htm
• Published: 07/26/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have misappropriated copies of my modules from cnx.org, con-
verted them to Kindle books, and placed them for sale on Amazon.com showing me as the author.
I receive no compensation for those sales and don't know who does receive compensation. If you
purchase such a book, please be aware that it is a bootleg copy of a module that is freely available
on cnx.org.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.3.4.10 Complete program listing

A complete listing of the program discussed in this module is shown in Listing 9 (p. 541) below.

203http://www.youtube.com/watch?v=mJDGp1HPCuE
204http://www.youtube.com/watch?v=mYrGKI16j_4
205http://www.youtube.com/watch?v=UUTlMh3J5Ow
206http://www.youtube.com/watch?v=hmu-l1a7VyE
207http://www.youtube.com/watch?v=tRpS7c-aPd0
208http://www.youtube.com/watch?v=cE_ks6Oq3OY
209http://www.youtube.com/watch?v=4f39g8oEWsY
210http://www.youtube.com/watch?v=yeay7REkLBY

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

536 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

537

Listing 9 . Source code for Prob01 .

/*File Prob01 Copyright 2008 R.G.Baldwin

Command-line output

javac 1.6.0_14

java version "1.6.0_14"

Java(TM) SE Runtime Environment (build 1.6.0_14-b08)

Java HotSpot(TM) Client VM (build 14.0-b16, mixed mode,

sharing)

Dick Baldwin.

A 300 by 274 world with 2 turtles in it.

joe turtle at 44, 143 heading -135.0.

sue turtle at 250, 237 heading 0.0.

***/

import java.awt.Color;

public class Prob01{//Driver class

public static void main(String[] args){

Prob01Runner obj = new Prob01Runner();

obj.run();

System.out.println(obj.getMars());

System.out.println(obj.getJoe());

System.out.println(obj.getSue());

}//end main

}//end class Prob01

//***/

class Prob01Runner{

//Instantiate the World and Turtle objects.

private World mars = new World(300,274);

private Turtle joe = new Turtle(mars);

private Turtle sue = new Turtle(mars);

public Prob01Runner(){//constructor

System.out.println("Dick Baldwin.");

}//end constructor

//--//

//Accessor methods

public Turtle getJoe(){return joe;}

public Turtle getSue(){return sue;}

public World getMars(){return mars;}

//--//

//This method is where the action is.

public void run(){

//Replace the default all-white picture with another

// picture.

mars.setPicture(new Picture("Prob01.jpg"));

mars.getPicture().addMessage(

"Dick Baldwin",10,20);

//Manipulate the turtle named joe.

joe.setName("joe");

joe.setBodyColor(Color.RED);

joe.setShellColor(Color.BLUE);

joe.setPenColor(Color.YELLOW);

joe.setPenWidth(3);

joe.forward();

joe.turn(-135);

joe.setPenColor(Color.BLUE);

joe.forward(150);

//Manipulate the turtle named sue

sue.setName("sue");

sue.setPenWidth(2);

sue.setPenColor(Color.RED);

sue.moveTo(183,170);

sue.setPenDown(false);

sue.moveTo(216,203);

sue.setPenDown(true);

sue.moveTo(250,237);

}//end run method

}//end class Prob01Runner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

538 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.194

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

539

3.3.5 Java3002r Review
211

Revised: Sat Apr 02 14:17:44 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 212

• Object-Oriented Programming (OOP) with Java 213

3.3.5.1 Table of Contents

• Preface (p. 543)
• Questions (p. 543)

· 1 (p. 543) , 2 (p. 544) , 3 (p. 544) , 4 (p. 544) , 5 (p. 544) , 6 (p. 544) , 7 (p. 545) , 8 (p. 545) ,
9 (p. 545) , 10 (p. 545) , 11 (p. 545) , 12 (p. 545) , 13 (p. 546) , 14 (p. 546) , 15 (p. 546) , 16
(p. 546) , 17 (p. 546) , 18 (p. 546) , 19 (p. 546) , 20 (p. 547) , 21 (p. 547) , 22 (p. 547) , 23 (p.
547) , 24 (p. 547) , 25 (p. 547) , 26 (p. 548) , 27 (p. 549) , 28 (p. 549) , 29 (p. 549) , 30 (p. 549)
, 31 (p. 549) , 32 (p. 549) , 33 (p. 550) , 34 (p. 550) , 35 (p. 550) , 36 (p. 550) , 37 (p. 550) , 38
(p. 550) , 39 (p. 550) , 40 (p. 550) , 41 (p. 551) , 42 (p. 551) , 43 (p. 551) , 44 (p. 551) , 45 (p.
551) , 46 (p. 552) , 47 (p. 552) , 48 (p. 552) , 49 (p. 553) , 50 (p. 553)

• Figures (p. 553)
• Listings (p. 553)
• Answers (p. 555)
• Miscellaneous (p. 560)

3.3.5.2 Preface

This module contains review questions and answers keyed to the module titled Java3002: Creating and
Manipulating Turtles and Pictures in a World Object 214 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

3.3.5.3 Questions

3.3.5.3.1 Question 1 .

True or False? The import directive at the very beginning of Listing 1 (p. 544) is a directive to the compiler
and the virtual machine notifying them that the class named Color can be found in the package named
java.awt .

211This content is available online at <http://cnx.org/content/m45762/1.6/>.
212http://cnx.org/contents/dzOvxPFw
213http://cnx.org/contents/-2RmHFs_
214http://cnx.org/content/m44149

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

540 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 1 . Question 1.

import java.awt.Color;

public class Prob01{//Driver class

public static void main(String[] args){

//Instantiate an object and call its method named run.

Prob01Runner obj = new Prob01Runner();

obj.run();

//Get information from the object and display it on

// the command-line screen.

System.out.println(obj.getMars());

System.out.println(obj.getJoe());

System.out.println(obj.getSue());

}//end main

}//end class Prob01

Table 3.195

Answer 1 (p. 560)

3.3.5.3.2 Question 2

True or False? The class named Color imported in Listing 1 (p. 544) is a member of Ericson's multimedia
library.

Answer 2 (p. 560)

3.3.5.3.3 Question 3

True or False? A package is the speci�cation of a particular folder on the disk relative to a standard root
folder.

Answer 3 (p. 560)

3.3.5.3.4 Question 4

True or False? Every Java application and every Java applet must include the de�nition of a class that
contains the de�nition of a method named main .

Answer 4 (p. 560)

3.3.5.3.5 Question 5

True or False? The name of the class containing the main method is also the name of the application
insofar as being able to compile and execute the application is concerned.

Answer 5 (p. 560)

3.3.5.3.6 Question 6

True or False? The name of the application shown in Listing 1 (p. 544) is Proj01 .
Answer 6 (p. 559)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

541

3.3.5.3.7 Question 7

True or False? The name of the source code �le containing the class de�nition shown in Listing 1 (p. 544)
must be Prob01.java in order for the application to compile and run as an application named Prob01 .

Answer 7 (p. 559)

3.3.5.3.8 Question 8

True or False? In its simplest form, an application can be compiled by executing the command shown in
Listing 2 (p. 545) at the command prompt where Prob01.java is the name of the �le containing the
main method.

Listing 2 . Question 8.

javac Prob01

Table 3.196

Answer 8 (p. 559)

3.3.5.3.9 Question 9

True or False? It is often necessary to specify the path to various library �les on the command line when
compiling an application. In that case, the simplest form given in Listing 3 (p. 559) is not su�cient.

Answer 9 (p. 559)

3.3.5.3.10 Question 10

True or False? When a Java application is successfully compiled, it will produce one or more output �les
with an extension of .class .

Answer 10 (p. 559)

3.3.5.3.11 Question 11

True or False? The execution of a Java application begins and ends in the method named main .
Answer 11 (p. 559)

3.3.5.3.12 Question 12

True or False? The two commands shown in Listing 4 (p. 546) can be used to compile and execute a Java
application named Prob01 where:

• The only special class library required is contained in the folder named bookClasses .
• The path from the root to the folder named bookClasses is represented by �\bookClasses.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

542 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 4 . Question 12.

javac -cp .;---\bookClasses Prob01.java

java -cp .;---\bookClasses Prob01

Table 3.197

Answer 12 (p. 559)

3.3.5.3.13 Question 13

True or False? The Java compiler program is named java.exe .
Answer 13 (p. 559)

3.3.5.3.14 Question 14

True or False? The Prob01.java and Prob01 at the ends of the two commands in Listing 4 (p. 546)
specify the �les being operated on by the virtual machine and the compiler respectively.

Answer 14 (p. 559)

3.3.5.3.15 Question 15

True or False? In Listing 4 (p. 546) , the -cp indicates that a classpath follows.
Answer 15 (p. 558)

3.3.5.3.16 Question 16

True or False? A classpath consists of one or more path speci�cations separated by semicolon characters.
Answer 16 (p. 558)

3.3.5.3.17 Question 17

True or False? The purpose of the classpath in Listing 4 (p. 546) is to tell the compiler and the virtual
machine where to look for source code �les that the application needs in order to successfully compile and
execute.

Answer 17 (p. 558)

3.3.5.3.18 Question 18

True or False? The period ahead of the semicolon in Listing 4 (p. 546) says to search the root folder �rst.
Answer 18 (p. 558)

3.3.5.3.19 Question 19

True or False? The �rst statement in the body of the main method in Listing 1 (p. 544) instantiates a
new object of the class named Prob01Runner .

Answer 19 (p. 558)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

543

3.3.5.3.20 Question 20

True or False? The �rst statement in Listing 1 (p. 544) saves a reference to a new object of the class named
Prob01Runner in a reference variable named obj . In general, the type of the variable must be:

• The name of the object, or
• The name of a superclass of the object, or
• The name of an interface implemented by the object.

Answer 20 (p. 558)

3.3.5.3.21 Question 21

True or False? In Java, you must save a reference to a newly instantiated object in order to gain access to
that object later in the program.

Answer 21 (p. 558)

3.3.5.3.22 Question 22

True or False? The second statement in the body of the main method in Listing 1 (p. 544) uses the
reference stored in the variable named obj to call the method named run encapsulated in the object
referred to by the contents of obj .

Answer 22 (p. 558)

3.3.5.3.23 Question 23

True or False? The following three methods that are called in Listing 1 (p. 544) are of a type that is
commonly referred to as accessor methods . They are also sometimes referred to by the slang term getter
methods .

• getMars
• getJoe
• getSue

Answer 23 (p. 558)

3.3.5.3.24 Question 24

True or False? The method named println that is called in Listing 1 (p. 544) is a member of Ericson's
multimedia library. The purpose of the println method is to display text on an image.

Answer 24 (p. 557)

3.3.5.3.25 Question 25

True or False? Java uses four access modi�ers to specify the accessibility of various classes and members in
a Java application:

• public
• private
• protected
• package-private

Answer 25 (p. 557)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

544 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.5.3.26 Question 26

True or False? Listing 5 (p. 549) shows the beginning of a class named Prob01Runner .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

545

Listing 5 . Question 26.

class Prob01Runner{

//Instantiate the World and Turtle objects.

private World mars = new World(300,274);

private Turtle joe = new Turtle(mars);

private Turtle sue = new Turtle(mars);

Table 3.198

Answer 26 (p. 557)

3.3.5.3.27 Question 27

True or False? The class that begins in Listing 5 (p. 549) does not have an access modi�er. This puts it
in package-private access category. A class with package-private access can be accessed by code that is
stored in the same package and cannot be accessed by code stored in other packages.

Answer 27 (p. 557)

3.3.5.3.28 Question 28

True or False? The last three statements in Listing 5 (p. 549) declare three private variables. Because
these variables are declared private, they can be accessed by any method de�ned in any class in the same
package.

Answer 28 (p. 557)

3.3.5.3.29 Question 29

True or False? The three variables declared in Listing 5 (p. 549) are instance variables as opposed to class
variables .

Answer 29 (p. 557)

3.3.5.3.30 Question 30

True or False? Because the three variables declared in Listing 5 (p. 549) are instance variables, they belong
to an object instantiated from the class. Even if the variables were public, they could only be accessed by
�rst gaining access to the object to which they belong.

Answer 30 (p. 557)

3.3.5.3.31 Question 31

True or False? The three variables declared in Listing 5 (p. 549) are reference variables . This means that
they are capable of storing references to objects and are also capable of storing values of the eight primitive
types.

Answer 31 (p. 557)

3.3.5.3.32 Question 32

True or False? Ericson's class library contains a class named World and another class named Turtle .
The code in Listing 5 (p. 549) instantiates one object of the World class and populates that world with
three objects of the Turtle class.

Answer 32 (p. 557)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

546 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.5.3.33 Question 33

True or False? Every class de�nition has one or more method-like members called constructors. (If you
don't de�ne a constructor when you de�ne a class, a default constructor will be automatically de�ned for
your class.)

Answer 33 (p. 556)

3.3.5.3.34 Question 34

True or False? The name of the constructor must always be the same as the name of the class in which
it is de�ned. Like a method, a constructor may or may not take arguments. If there are two or more
(overloaded) constructors, they must have di�erent argument lists.

Answer 34 (p. 556)

3.3.5.3.35 Question 35

True or False? To instantiate an object of a class, you apply the new operator to the class' constructor,
passing parameters that satisfy the required arguments for the constructor.

Answer 35 (p. 556)

3.3.5.3.36 Question 36

True or False? When an object is instantiated, the constructor returns an array containing the values in all
of the instance variables.

Answer 36 (p. 556)

3.3.5.3.37 Question 37

True or False? The last two statements in Listing 5 (p. 549) instantiate two objects of the Turtle class
and use them to populate the World object whose reference is stored in the variable named mars .

Answer 37 (p. 556)

3.3.5.3.38 Question 38

True or False? If a variable (exclusive of local variables inside of methods) is not purposely initialized when
the object in instantiated, it will receive a default initialization value. The default values are:

• 0 or 0.0 for numeric variables
• true for boolean variables
• null for reference variables

Answer 38 (p. 556)

3.3.5.3.39 Question 39

True or False? Code written into a class' constructor is executed when an object of the class is instantiated.
Answer 39 (p. 556)

3.3.5.3.40 Question 40

True or False? Good object-oriented programming practice says that most of the instance variables encap-
sulated in an object should be declared private. If there is a need to make the contents of those variables
available outside the object, that should be accomplished by de�ning protected accessor methods.

Answer 40 (p. 556)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

547

3.3.5.3.41 Question 41

True or False? Everything in Java is passed and returned by reference.
Answer 41 (p. 556)

3.3.5.3.42 Question 42

True or False? Each of the accessor methods shown in Listing 6 (p. 551) returns a copy of the reference
pointing to either a Turtle object or a World object.

Listing 6 . Question 42.

public Turtle getJoe(){return joe;}

public Turtle getSue(){return sue;}

public World getMars(){return mars;}

Table 3.199

Answer 42 (p. 556)

3.3.5.3.43 Question 43

True or False? Code in the println method calls a method named toString on each incoming primitive
value and displays the string value returned by that method.

Answer 43 (p. 555)

3.3.5.3.44 Question 44

True or False? The toString method is overridden (not overloaded) in the World and Turtle classes
so as to return a string value describing the object.

Answer 44 (p. 555)

3.3.5.3.45 Question 45

True or False? The code in Listing 7 (p. 551) replaces the default all-white picture in a World object with
another picture. (Note, the variable named mars contains a reference to an object of the class World
.)

Listing 7 . Question 45.

public void run(){

mars.setPicture(new Picture("Prob01.jpg"));

Table 3.200

Answer 45 (p. 555)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

548 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.5.3.46 Question 46

True or False? The background of a World object consists of an object of Ericson's Picture class. (A
Picture object is encapsulated in the World object.)
Answer 46 (p. 555)

3.3.5.3.47 Question 47

True or False? The code in Listing 8 (p. 552) uses two levels of indirection to add my name to the picture
that forms the background of the world shown in Figure 1 (p. 552) .

Listing 8 . Question 47.

mars.getPicture().toString(

"Dick Baldwin",10,20);

Table 3.201

Figure 1 (p. 552) - Question 47.

Answer 47 (p. 555)

3.3.5.3.48 Question 48

True or False? A Turtle object encapsulates many methods that can be used to manipulate the turtle in
a variety of di�erent ways.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

549

Answer 48 (p. 555)

3.3.5.3.49 Question 49

True or False? A call to the forward method of a turtle object with no parameters causes the turtle to
move forward by a default distance of 100 pixels.

Answer 49 (p. 555)

3.3.5.3.50 Question 50

True or False? A call to the moveTo method of a turtle object with a single parameter value of 150
causes the turtle to move forward by a distance of 150 pixels.

Answer 50 (p. 555)

3.3.5.4 Figures

• Figure 1 (p. 552) . Question 47.

3.3.5.5 Listings

• Listing 1 (p. 544) . Question 1.
• Listing 2 (p. 545) . Question 8.
• Listing 3 (p. 559) . Answer 8.
• Listing 4 (p. 546) . Question 12.
• Listing 5 (p. 549) . Question 26.
• Listing 6 (p. 551) . Question 42.
• Listing 7 (p. 551) . Question 45.
• Listing 8 (p. 552) . Question 47.
• Listing 9. (p. 555) Answer 47.

What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

550 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

551

3.3.5.6 Answers

3.3.5.6.1 Answer 50

False. The moveTo method of the Turtle class cannot be called with a single parameter. Two parameters
are required.

Back to Question 50 (p. 553)

3.3.5.6.2 Answer 49

True.
Back to Question 49 (p. 553)

3.3.5.6.3 Answer 48

True.
Back to Question 48 (p. 552)

3.3.5.6.4 Answer 47

False. The code in Listing 8 (p. 551) won't compile. The toString method does not apply to images. The
correct code is shown in Listing 9 (p. 555) .

Listing 9 . Answer 47.

mars.getPicture().addMessage(

"Dick Baldwin",10,20);

Table 3.202

Back to Question 47 (p. 552)

3.3.5.6.5 Answer 46

True.
Back to Question 46 (p. 552)

3.3.5.6.6 Answer 45

True.
Back to Question 45 (p. 551)

3.3.5.6.7 Answer 44

True.
Back to Question 44 (p. 551)

3.3.5.6.8 Answer 43

False. Code in the println method calls a method named toString on each incoming object reference
and displays the string value returned by that method.

Back to Question 43 (p. 551)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

552 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.5.6.9 Answer 42

True.
Back to Question 42 (p. 551)

3.3.5.6.10 Answer 41

False. Everything in Java is passed and returned by value , not by reference.
Back to Question 41 (p. 551)

3.3.5.6.11 Answer 40

False. If there is a need to make the contents of those variables available outside the object, that should be
accomplished by de�ning public accessor methods.

Back to Question 40 (p. 550)

3.3.5.6.12 Answer 39

True.
Back to Question 39 (p. 550)

3.3.5.6.13 Answer 38

False.
The default values are:

• 0 or 0.0 for numeric variables
• false for boolean variables
• null for reference variables

Back to Question 38 (p. 550)

3.3.5.6.14 Answer 37

True.
Back to Question 37 (p. 550)

3.3.5.6.15 Answer 36

False. When an object is instantiated, the constructor returns a reference to the new object.
Back to Question 36 (p. 550)

3.3.5.6.16 Answer 35

True.
Back to Question 35 (p. 550)

3.3.5.6.17 Answer 34

True.
Back to Question 34 (p. 550)

3.3.5.6.18 Answer 33

True.
Back to Question 33 (p. 550)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

553

3.3.5.6.19 Answer 32

False. The code in Listing 5 (p. 549) instantiates one object of the World class and populates that world
with two objects of the Turtle class.

Back to Question 32 (p. 549)

3.3.5.6.20 Answer 31

False. The three variables declared in Listing 5 (p. 549) are reference variables (as opposed to primitive
variables) . This means that they are capable of storing references to objects as opposed to simply being
able to store values of the eight primitive types. It also means that they are incapable of storing values of
the eight primitive types.

Back to Question 31 (p. 549)

3.3.5.6.21 Answer 30

True.
Back to Question 30 (p. 549)

3.3.5.6.22 Answer 29

True.
Back to Question 29 (p. 549)

3.3.5.6.23 Answer 28

False. Because these variables are declared private , they can only be accessed by code contained in
methods de�ned inside the same class (and in inner classes of the class, which is beyond the scope of this
module) .

Back to Question 28 (p. 549)

3.3.5.6.24 Answer 27

True.
Back to Question 27 (p. 549)

3.3.5.6.25 Answer 26

True.
Back to Question 26 (p. 548)

3.3.5.6.26 Answer 25

True.
Back to Question 25 (p. 547)

3.3.5.6.27 Answer 24

False. The method named println that is called in Listing 1 (p. 544) is a method belonging to a standard
system object that represents the standard output device (usually the command-line screen) . The purpose
of the println method is to display material on the command-line screen.

Back to Question 24 (p. 547)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

554 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.5.6.28 Answer 23

True.
Back to Question 23 (p. 547)

3.3.5.6.29 Answer 22

True.
Back to Question 22 (p. 547)

3.3.5.6.30 Answer 21

True.
Back to Question 21 (p. 547)

3.3.5.6.31 Answer 20

False.
In general, the type of the variable must be:

• The name of the class, or
• The name of a superclass of the class, or
• The name of an interface implemented by the class.

Back to Question 20 (p. 547)

3.3.5.6.32 Answer 19

True.
Back to Question 19 (p. 546)

3.3.5.6.33 Answer 18

False. The period ahead of the semicolon in Listing 4 (p. 546) says to search the current folder �rst.
Back to Question 18 (p. 546)

3.3.5.6.34 Answer 17

False. The purpose of the classpath is to tell the compiler and the virtual machine where to look for previously
compiled class �les that the application needs in order to successfully compile and execute.

Back to Question 17 (p. 546)

3.3.5.6.35 Answer 16

True.
Back to Question 16 (p. 546)

3.3.5.6.36 Answer 15

True
Back to Question 15 (p. 546)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

555

3.3.5.6.37 Answer 14

False. The Prob01.java and Prob01 at the ends of the two commands in Listing 4 (p. 546) specify the
�les being operated on by the compiler and the virtual machine respectively.

Back to Question 14 (p. 546)

3.3.5.6.38 Answer 13

False. The Java compiler program is named javac.exe . The virtual machine is named java.exe .
Back to Question 13 (p. 546)

3.3.5.6.39 Answer 12

True.
Back to Question 12 (p. 545)

3.3.5.6.40 Answer 11

True.
Back to Question 11 (p. 545)

3.3.5.6.41 Answer 10

True.
Back to Question 10 (p. 545)

3.3.5.6.42 Answer 9

True.
Back to Question 9 (p. 545)

3.3.5.6.43 Answer 8

False. The required command is shown in Listing 3 (p. 559) .

Listing 3 . Answer 8.

javac Prob01.java

Table 3.203

Back to Question 8 (p. 545)

3.3.5.6.44 Answer 7

True.
Back to Question 7 (p. 545)

3.3.5.6.45 Answer 6

False. The name of the application shown in Listing 1 (p. 544) is Prob01 .
Back to Question 6 (p. 544)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

556 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.5.6.46 Answer 5

True.
Back to Question 5 (p. 544)

3.3.5.6.47 Answer 4

False. Java applets do not require a method named main .
Back to Question 4 (p. 544)

3.3.5.6.48 Answer 3

True.
Back to Question 3 (p. 544)

3.3.5.6.49 Answer 2

False. java.awt.Color belongs to the Java standard edition class library.
Back to Question 2 (p. 544)

3.3.5.6.50 Answer 1

True.
Back to Question 1 (p. 543)

3.3.5.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java3002r Review: Creating and Manipulating Turtles and Pictures in a World
Object
• File: Java3002r.htm
• Published: 02/10/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

557

3.3.6 Java3003: Drawing Graphs with Turtles and Pixels
215

Revised: Thu Oct 06 11:16:54 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 216

• Object-Oriented Programming (OOP) with Java 217

3.3.6.1 Table of contents

• Table of contents (p. 561)
• Preface (p. 562)

· Viewing tip (p. 562)

* Figures (p. 562)
* Listings (p. 563)

• Preview (p. 563)
• General background information (p. 563)
• Discussion and sample code (p. 565)

· A straight line (p. 566)

* Program output for Line01 (p. 566)
* May need multiple points (p. 566)
* The driver class named Line01 (p. 567)
* Beginning of the class named Line01Runner (p. 568)
* The method named function for Line01 (p. 568)
* Scaling (p. 569)
* Draw the BLUE line (p. 570)
* The method named drawLine (p. 570)
* Repeat the process to draw two more lines (p. 571)

· A parabola (p. 572)

* The method named function for Parabola01 (p. 572)
* Drawing parameters for Parabola01 (p. 573)
* Drawing parameters with zero o�sets (p. 574)
* Changing the o�set values (p. 574)
* Changing the scale factors (p. 575)
* Draw the parabolic function in BLUE (p. 575)

· A cubic (p. 575)
· A circle (p. 576)

* First approach (p. 576)

· The method named function for Circle01 (p. 578)
· Draw half the circle in BLUE (p. 578)
· Draw the other half of the circle in GREEN (p. 579)
· Di�erent line width (p. 579)

* Second approach (p. 579)

· A cosine (p. 581)
· Using a Turtle object without a World object (p. 582)
· Drawing straight lines without a Turtle object (p. 583)

215This content is available online at <http://cnx.org/content/m62037/1.4/>.
216http://cnx.org/contents/dzOvxPFw
217http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

558 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

* What is the "pen width" for the straight lines? (p. 584)

• Run the programs (p. 586)
• Complete program listings (p. 586)
• Miscellaneous (p. 602)

3.3.6.2 Preface

This lesson is one of a series of lessons designed to teach you about Object-Oriented Programming (OOP)
using Java.

Before embarking on the material in this lesson, you should have studied and should understand all of the
material in the lessons identi�ed as Java1600 through Java1630 in the section of this book titled Essence
of OOP 218 . You should have studied and should understand the material in the lesson titled Java3002:
Creating and Manipulating Turtles and Pictures in a World Object 219 . You should also have studied and
should understand all of the material in the following books:

• Programming Fundamentals with Java 220

• Java OOP Self-Assessment 221

The program described in this lesson requires the use of the Guzdial-Ericson multimedia class library. You
will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 222 .

3.3.6.2.1 Viewing tip

I recommend that you open another copy of this lesson in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

3.3.6.2.1.1 Figures

• Figure 1. (p. 563) Two turtles in a World object.
• Figure 2. (p. 565) Graph of a cubic function.
• Figure 3. (p. 566) Program output for Line01.
• Figure 4. (p. 567) Line01 output with di�erent scaling.
• Figure 5. (p. 570) Program output for Line01 for a 400x150 world.
• Figure 6. (p. 572) Graphic output from the program named Parabola01.
• Figure 7. (p. 573) Parabola with zero o�sets.
• Figure 8. (p. 574) A parabola with o�sets.
• Figure 9. (p. 575) Graphic output from the program named Cubic01.
• Figure 10. (p. 577) Graphic output from the program named Circle01.
• Figure 11. (p. 579) Graphic output from the program named Circle02.
• Figure 12. (p. 581) Graphic output from the program named Cosine01.
• Figure 13. (p. 582) Graphic output from the program named Cubic02.
• Figure 14. (p. 583) Graphic output from the program named Line02.
• Figure 15. (p. 585) Zoomed comparison of lines.

218http://cnx.org/contents/dzOvxPFw:rOlnsVRr
219http://cnx.org/contents/dzOvxPFw:WpmhN38H
220http://cnx.org/contents/EHRr6hjR
221http://cnx.org/contents/1CVBGBJj
222http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

559

3.3.6.2.1.2 Listings

• Listing 1 (p. 568) . Beginning of the class named Line01Runner.
• Listing 2 (p. 568) . The method named function for Line01.
• Listing 3 (p. 570) . Draw the BLUE line.
• Listing 4 (p. 570) . The method named drawLine.
• Listing 5 (p. 571) . Repeat the process to draw two more lines.
• Listing 6 (p. 572) . The method named function for Parabola01.
• Listing 7 (p. 573) . Drawing parameters for Parabola01.
• Listing 8 (p. 575) . Draw the parabolic function in BLUE.
• Listing 9 (p. 577) . The variable named rVal.
• Listing 10 (p. 578) . The method named function for Circle01.
• Listing 11 (p. 578) . Draw half the circle in BLUE.
• Listing 12 (p. 580) . Picture and Pixel references.
• Listing 13 (p. 581) . Translate the origin and set the pixel color.
• Listing 14 (p. 582) . The method named function for Cosine01.
• Listing 15 (p. 586) . The program named Line01.
• Listing 16 (p. 588) . The program named Parabola01.
• Listing 17 (p. 590) . The program named Cubic01.
• Listing 18 (p. 591) . The program named Circle01.
• Listing 19 (p. 594) . The program named Circle02.
• Listing 20 (p. 596) . The program named Cosine01.
• Listing 21 (p. 598) . The program named Cubic02.
• Listing 22 (p. 599) . The program named Line02.

3.3.6.3 Preview

In this lesson, I will explain programs that use a Turtle object to graph the following mathematical
functions:

• A straight line
• A parabola
• A cubic
• A circle (two approaches)
• A cosine

I will also show you how to graph a circle and a line without using a Turtle object and compare the two
approaches.

3.3.6.4 General background information

You learned about the World class, the Turtle class, and the Picture class in an earlier lesson
titled Java3002: Creating and Manipulating Turtles and Pictures in a World Object 223 . You learned the
fundamentals of causing the turtle to move and to draw a line with di�erent colors and di�erent line widths
in the process. For review, Figure 1 (p. 563) shows an image that you learned to create in that earlier lesson.

Figure 1. Two turtles in a World object.

223http://cnx.org/contents/dzOvxPFw:WpmhN38H

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

560 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

In comparison, Figure 2 (p. 565) shows the sort of thing that you will learn to do in this lesson.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

561

Figure 2. Graph of a cubic function.

The blue line in Figure 2 (p. 565) shows a graph of the following cubic function in a Cartesian coordinate
system:

y = x*x*x

The red lines in Figure 2 (p. 565) show the x and y axes.
The graph in Figure 2 (p. 565) was created by computing the x and y coordinate values (points) for

a set of x values uniformly spaced along the x axis and causing the Turtle object to move and connect
those points with a blue line. The Turtle object was made invisible.

As a practical matter, computing the coordinate values is relatively simple. The more complex problem
is to get everything scaled properly to produce a visually pleasing graph in the space provided by the World
object.

3.3.6.5 Discussion and sample code

I will explain eight di�erent programs in this lesson. Complete listings of those programs are provided in
Listing 15 (p. 586) through Listing 22 (p. 599) in the section titled Complete program listings (p. 586) .

As is my custom, I will break the programs down and explain them in fragments. However, I will explain
only those portions of the programs that are new to this lesson. I will let the comments in the listings speak
to those portions of the code that you should already understand.

Much of the code repeats from one program to the next. I will explain new code the �rst time that it
appears in a program and won't explain that code in the explanation of programs that follow.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

562 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.6.5.1 A straight line

In this section, I will present and explain a program named Line01 that can be used to draw a straight
line using the standard formula for a straight line given below:

y = slope*x + yIntercept

A complete listing of the program is provided in Listing 15 (p. 586) near the end of the lesson.

3.3.6.5.1.1 Program output for Line01

Before getting into the code, Figure 3 (p. 566) shows the program output.

Figure 3. Program output for Line01.

As you can see, in addition to the red axes, this program graphs three di�erent lines in di�erent colors with
di�erent slopes and di�erent y-intercept values. I will touch on the slopes and the y-intercept values as I
explain the code.

3.3.6.5.1.2 May need multiple points

At this point, I will explain a practical issue before it becomes a concern to you. As we all know, only two
points are required to de�ne a line. However the program that I will explain uses multiple points to de�ne
and draw a line. This requirement results from the behavior of a Turtle object when moving from one
point to another point.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

563

A Turtle object has the ability to connect two points with a straight line if, and only if, both points
are inside the World object. If a point is outside the world and a turtle attempts to move to it, the turtle
will behave like a dog inside a fenced yard running along the fence and barking at someone who is walking
along the sidewalk on the other side of the fence. The turtle will move along the inside boundary of the
world. This is indicated by the black horizontal dotted line segments in the upper left and lower right of
Figure 3 (p. 566) . In this case, the turtle was trying to reach a point somewhere on the extension of the
black line outside the world.

In comparison, Figure 4 (p. 567) shows the same lines as Figure 3 (p. 566) . The horizontal and vertical
scaling were adjusted in Figure 4 (p. 567) to ensure that the end points of all three lines are inside the
boundaries of the world. These lines could be drawn by a Turtle object using only the end points of the
lines and only two points would be needed for each line.

Figure 4. Line01 output with di�erent scaling.

In general, a turtle is incapable of reliably drawing a straight line between two points if either or both the
points are outside the boundaries of the world even though a line between those points would pass through
the world. There are a variety of ways to deal with this issue. The code that I will present below is only one
of those ways.

3.3.6.5.1.3 The driver class named Line01

The driver class named Line01 is shown in Listing 15 (p. 586) . There is nothing new in that code so a
detailed explanation should not be required.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

564 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

The code in the driver class instantiates an object of the class named Line01Runner and calls an
instance method named run belonging to that object. The run method is where the action is in the
program.

3.3.6.5.1.4 Beginning of the class named Line01Runner

Listing 1 (p. 568) shows the beginning of the class named Line01Runner and the beginning of the method
named run .

Listing 1 . Beginning of the class named Line01Runner.

class Line01Runner{

//Instantiate the World and Turtle objects.

private World world = new World(300,300);

private Turtle turtle = new Turtle(0,0,world);

//---//

public void run(){

//Make the turtle invisible

turtle.hide();

//Prepare the pen

turtle.setPenColor(Color.RED);

turtle.setPenWidth(2);

//Draw the axes in RED

turtle.penUp();

turtle.moveTo(world.getWidth()/2,0);

turtle.penDown();

turtle.moveTo(world.getWidth()/2,world.getHeight());

turtle.penUp();

turtle.moveTo(world.getWidth(),world.getHeight()/2);

turtle.penDown();

turtle.moveTo(0,world.getHeight()/2);

turtle.penUp();

turtle.moveTo(0,0);

This code fragment is included here strictly for context. There is nothing in Listing 1 (p. 568) that you
haven't seen in an earlier lesson.

3.3.6.5.1.5 The method named function for Line01

At this point, I am going to put the run method on hold and explain a method named function . This
method is the heart of the program because it evaluates the standard equation of a straight line given by

y = slope*x + yIntercept

I will return to a discussion of the run method later.
The method named function is shown in its entirety in Listing 2 (p. 568) . This method evaluates

and returns the y-value for each incoming x-value to de�ne a line described by the equation given above.

Listing 2 . The method named function for Line01.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

565

double function(double xVar,double slope,double yIntercept){

double yVar = (yIntercept) + (slope*xVar);

return yVar;

}//end function

As you can see, this method is very simple. I decided to break it out as a separate method to clearly
distinguish it from the other code in the run method. This will be the case in all of the programs that I
explain in this lesson.

3.3.6.5.1.6 Scaling

As I mentioned earlier, the more complex problem is to get everything scaled properly to produce a visually
pleasing graph in the space provided by the World object as shown in Figure 3 (p. 566) .

Another issue that increases the complexity is the need sometimes to translate the origin from the default
upper-left corner of the World object to a point at the center of the world.

And if that isn't enough, the problem is further complicated by the need to use mixed-mode arithmetic
involving both int and double data types. Coordinate values in the world must be speci�ed as type int
. However, if an attempt is made to do all of the arithmetic using integer arithmetic, the results will often
be incorrect with no warning. For example, with integer arithmetic, 1 divided by 3 is equal to 0 instead of
0.3333. That fact alone can result in major errors.

The computations in this and the other programs in this lesson will take the following general form
(although some of the steps may be combined in the actual code and may not be easy to isolate) .

Step 1 . Evaluate the y-value using the equation for a straight line at a set of 101 points along
the x-axis ranging from -1.0 through +1.0. Use double-precision arithmetic and return the result as type
double . This produces y values for the following set of x values:

-1.0 -0.98 ... 0.0 ... 0.98 1.0

Step 2 . Scale the x and y values by scale factors that produce a pleasing visual display in the available
space of the world. For the BLUE line shown in Figure 3 (p. 566) with a slope of 1.0 and a y-intercept value
of 0.0 in a 300x300 world, this produces the following x (col) and y (row) values:

-150,-150

-147,-147

...

0,0

...

147,147

150,150

Column numbers less than zero are o� the left side of the world and row numbers less than 0 are o� the top
of the world. The origin of the world is at the upper-left corner by default.

Step 3. Adjust the column number by adding one-half the width of the world and adjust the row
number by adding one-half the height of the world, This translates the origin to the center of the world. Use
these values when telling the turtle to move to a particular location speci�ed by a column number and a row
number.

While this approach may seem overly complicated, it has one major advantage. In particular, the results
are independent of the dimensions of the world. For example, the results shown in Figure 3 (p. 566) are
for a 300x300 world. If I were to change the dimensions of the world to 400x150 near the top of Listing 15
(p. 586) without making any other changes relative to Figure 3 (p. 566) , the output would change to that
shown in Figure 5 (p. 570) , which is still correct.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

566 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 5. Program output for Line01 for a 400x150 world.

3.3.6.5.1.7 Draw the BLUE line

The code in Listing 3 (p. 570) initializes several variables and then calls a method named drawLine to
implement the steps listed above (p. 569) to draw the BLUE line shown in Figure 3 (p. 566) .

Listing 3 . Draw the BLUE line.

double xScale = 1.0*world.getWidth()/2;

double yScale = 1.0*world.getHeight()/2;

//Draw a line in BLUE.

turtle.setPenColor(Color.BLUE);

double slope = 1.0;

double yIntercept = 0.0;

drawLine(xScale,yScale,slope,yIntercept);

3.3.6.5.1.8 The method named drawLine

Once again, I will put the run method on hold while we examine the code that actually draws the line as
shown in Listing 4 (p. 570) .

Listing 4 . The method named drawLine.

void drawLine(double xScale,double yScale,

double slope,double yIntercept){

double yVal = 0;

int row = 0;

int col = 0;

double xVal = -1.0;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

567

for(int cnt=0; cnt<=100;cnt++,xVal += 0.02){

//Get a y-value for a given x-value.

yVal = function(xVal,slope,yIntercept);

//Scale the x and y values to match the plotting surface

col = (int)(xVal*xScale);

row = (int)(yVal*yScale);

//Move to the first point without drawing a line because the

// pen is not down. Translate the origin to the center in the

// process.

turtle.moveTo(col + world.getWidth()/2,

row + world.getHeight()/2);

//Lower the pen in order to draw a line from each point to the

// next point.

turtle.penDown();

}//end for loop

}//end drawLine method

If you examine the code in Listing 4 (p. 570) along with values assigned to the variables in Listing 3 (p.
570) , you should be able to see the correlation between the code and the steps given earlier (p. 569) . In
particular, you should be able to see how this code produces the BLUE line shown in Figure 3 (p. 566) .

Note that the code in Listing 4 (p. 570) calls the method named function (shown in Listing 2 (p.
568)) to get the values that de�ne the line for the given slope and the given y-intercept value.

3.3.6.5.1.9 Repeat the process to draw two more lines

Returning to the run method, the code in Listing 5 (p. 571) repeats the process twice to draw the GREEN
line and the BLACK line shown in Figure 3 (p. 566) for di�erent slope and y-intercept values.

Listing 5 . Repeat the process to draw two more lines.

//Draw another line in GREEN.

turtle.penUp();

turtle.setPenColor(Color.GREEN);

slope = -0.5;

yIntercept = 0.5;

drawLine(xScale,yScale,slope,yIntercept);

//Draw another line in BLACK.

turtle.penUp();

turtle.setPenColor(Color.BLACK);

slope = 2.0;

yIntercept = -0.5;

drawLine(xScale,yScale,slope,yIntercept);

}//end run method

Listing 5 (p. 571) also signals the end of the run method and the end of the program.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

568 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.6.5.2 A parabola

The program named Parabola01 shown in Listing 16 (p. 588) produces the graphic output shown in
Figure 6 (p. 572) .

Figure 6. Graphic output from the program named Parabola01.

3.3.6.5.2.1 The method named function for Parabola01

The method named function for the program named Parabola01 is shown in Listing 6 (p. 572) .
This method evaluates and returns the y-value for each incoming x-value for a parabola with no o�sets

centered at the origin as de�ned by the following equation:

y = x*x

Listing 6 . The method named function for Parabola01.

double function(double xVal){

double yVal = xVal*xVal;

return yVal;

}//end function

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

569

A plot of the output of the method named function would look like the curve shown in Figure 7 (p.
573) with no o�sets if the x and y scaling values were set to one-half the width and height of the world
respectively.

Figure 7. Parabola with zero o�sets.

It will be instructive to see how this program uses o�sets and scaling values to transform the image shown
in Figure 7 (p. 573) into the image shown in Figure 6 (p. 572) .

3.3.6.5.2.2 Drawing parameters for Parabola01

The code fragment shown in Listing 7 (p. 573) shows the drawing parameters that were used to produce the
output shown in Figure 6 (p. 572) .

Listing 7 . Drawing parameters for Parabola01.

double xOff = 0.25;//offset relative to 1.0

double yOff = -0.25;

double xScale = 0.75*world.getWidth()/2;

double yScale = 1.25*world.getHeight()/2;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

570 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.6.5.2.3 Drawing parameters with zero o�sets

The parameters that were used to produce the output shown in Figure 7 (p. 573) are shown below:

double xOff = 0.0;//offset relative to 1.0

double yOff = -0.0;

double xScale = 1.0*world.getWidth()/2;

double yScale = 1.0*world.getHeight()/2;

Note in particular that the o�sets given by xO� and yO� are set to zero and the scale factors given by
xScale and yScale are one-half the width and height of the world respectively.

3.3.6.5.2.4 Changing the o�set values

Increasing the o�sets for xO� and yO� to 0.25 and -0.25 respectively as shown in Figure 7 (p. 573)
and making no other changes produces the output shown in Figure 8 (p. 574)

Figure 8. A parabola with o�sets.

In comparison with Figure 7 (p. 573) , changing the value of xO� to 0.25 caused the peak to move to
the right (positive direction) one-fourth of the way from the center origin to the right edge of the world.
(That change also caused a portion of the curve to fall outside the right boundary of the world.)

Similarly, changing the value of yO� to -0.25 caused the peak to move up (negative direction) one-
fourth of the way from the center origin to the top edge of the world.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

571

3.3.6.5.2.5 Changing the scale factors

Following that, changing the values of xScale and yScale to the values shown in Listing 7 (p. 573)
produces the graphic output shown in Figure 6 (p. 572) . The change in xScale decreased the total width
of the curve and prevented it from exceeding the rightmost boundary of the world. The change in yScale
increased the overall height of the curve causing it to almost touch the lower boundary of the world.

3.3.6.5.2.6 Draw the parabolic function in BLUE

The code in Listing 8 (p. 575) draws the blue parabolic function shown in Figure 6 (p. 572) .

Listing 8 . Draw the parabolic function in BLUE.

double yVal = 0;

int row = 0;

int col = 0;

double xVal = -1;

turtle.setPenColor(Color.BLUE);

for(int cnt=0; cnt<=100;cnt++,xVal += 0.02){

//Get a y-value for the given x-value.

yVal = function(xVal);

//Apply the offsets and scale the results

col = (int)((xOff+xVal)*xScale);

row = (int)((yOff+yVal)*yScale);

//Move to the first point without drawing a line because the

// pen is not down. Translate the origin to the center in the

// process.

turtle.moveTo(col + world.getWidth()/2,

row + world.getHeight()/2);

//Lower the pen in order to draw a line from each point to the

// next point.

turtle.penDown();

}//end for loop

}//end run method

There is nothing new in Listing 8 (p. 575) . You should be able to correlate the code in Listing 8 (p. 575)
and the drawing parameters in Listing 7 (p. 573) with the steps (p. 569) presented earlier to understand
how the program named Parabola01 produces the output image shown in Figure 6 (p. 572) .

3.3.6.5.3 A cubic

The program named Cubic01 shown in Listing 17 (p. 590) produces the graphic output shown in Figure
9 (p. 575)

Figure 9. Graphic output from the program named Cubic01.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

572 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

About the only thing that is di�erent between the program named Parabola01 and the program named
Cubic01 is the method named function . In the program named Parabola01 , the method computes
and returns the square of the incoming x-value. In the program named Cubic01 , the method computes
and returns the cube of the incoming x-value. Just about everything that was said about Parabola01 also
applies to Cubic01 .

3.3.6.5.4 A circle

There are several ways to graph all of the functions discussed in this lesson. The previous sections have
illustrated only one way � using a turtle to graph the function. I will illustrate the following two ways to
graph a circle in this section and will compare some of the advantages and disadvantages of each approach
:

• Using a turtle to graph the function
• Accessing and setting pixel colors

3.3.6.5.4.1 First approach

The �rst approach that I will present and explain uses a turtle to graph a circle. This program is very similar
to the program named Parabola01 , but there are a few di�erences. I will explain those di�erences.

The program named Circle01 shown in Listing 18 (p. 591) produces the graphic output shown in
Figure 10 (p. 577) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

573

Figure 10. Graphic output from the program named Circle01.

The �rst di�erence that is worthy of note is shown by the lines of code involving the variable named rVal
in Listing 9 (p. 577) .

Listing 9 . The variable named rVal.

double rVal = 0.6;//radius relative to 1.0

double yVal = 0;

int row = 0;

int col = 0;

double xVal = -rVal;

double xInc = 2*rVal/100;

turtle.setPenColor(Color.BLUE);

The variable named rVal is used to specify the radius of the circle relative to a value of 1.0 as declared
and initialized in Listing 9 (p. 577) .

In the previous sections, we have evaluated our equation for a set of 101 x values ranging from -1.0 to
+1.0. For the case of the circle, we will evaluate the equation for a set of 101 x values ranging from -rVal
to +rVal . (There is no point in evaluating the equation outside of the circle.)

The code in Listing 9 (p. 577) declares and initializes the variable named rVal . Further down, the
code sets the initial value for xVal to -rVal . Below that, the code sets the x-increment (xInc) to
the diameter of the circle divided by 100. This will cause the equation for the circle to be evaluated at 101
points from left to right across the circle shown in Figure 10 (p. 577) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

574 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.6.5.4.1.1 The method named function for Circle01

The method named function is shown in Listing 10 (p. 578) .
This method evaluates and returns the y-value for each incoming x-value for a circle with no o�set,

centered at the origin. The method evaluates the standard equation for a circle given by

radius*radius = x*x + y*y

Note that unlike the function method for Parabola01 and Cubic01 , this method requires two
incoming parameters: the radius and the current x-value.

The value returned from the Math.sqrt method can be considered to be either positive or negative.
Only the positive value is returned by this method. When the returned value is considered to be positive
and the results are plotted, one-half of a circle is displayed as shown by the BLUE line in Figure 10 (p. 577)
. Similarly, when the returned value is considered to be negative and the results are plotted, the other half
of the circle is displayed as shown by the GREEN line in Figure 10 (p. 577) .

Listing 10 . The method named function for Circle01.

double function(double rVal,double xVal){

double yVal = Math.sqrt(rVal*rVal - xVal*xVal + 0.0000000001);

return yVal;

}//end function

If the expression passed to the sqrt method is negative, the value returned by that method will not be valid.
Because the computations in this program are performed as type double , and because all �oating point
computations are only estimates of the truth, the computed di�erence between the radius squared and the
x-value squared can actually be an extremely small negative value when it should be zero. A small positive
fudge factor was added to prevent that value from going negative due to small �oating point computational
errors. (This sort of thing is often required when doing a lot of �oating point computations. There are
various ways to do it and there may be better ways than the one used here.)

3.3.6.5.4.1.2 Draw half the circle in BLUE

The code in Listing 11 (p. 578) draws the BLUE half of the circle shown in Figure 10 (p. 577) .

Listing 11 . Draw half the circle in BLUE.

for(int cnt=0; cnt<=100;cnt++,xVal += xInc){

//Get a y-value for the given x-value.

yVal = function(rVal,xVal);

//Apply the offsets and scale the results

col = (int)((xOff+xVal)*xScale);

row = (int)((yOff+yVal)*yScale);

//Move to the first point without drawing a line because the

// pen is not down. Translate the origin to the center in the

// process.

turtle.moveTo(col + world.getWidth()/2,

row + world.getHeight()/2);

//Lower the pen in order to draw a line from each point to the

// next point.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

575

turtle.penDown();

}//end for loop

Having initialized xVal and xInc on the basis of the radius in Listing 9 (p. 577) , the code in Listing 11
(p. 578) is essentially the same as the code in the earlier programs in this lesson.

3.3.6.5.4.1.3 Draw the other half of the circle in GREEN

The code that draws the GREEN half of the circle is shown in Listing 18 (p. 591) . It is essentially the
same as the code in Listing 10 (p. 578) except that the sign on yVal is �ipped from positive to negative
as discussed above (p. 578) .

3.3.6.5.4.1.4 Di�erent line width

One other di�erence that I haven't mentioned yet is trivial but interesting. You may have noticed that the
line width in Figure 10 (p. 577) is about twice that in Figure 9 (p. 575) . I purposely did that to illustrate
that one of the useful features of graphing functions with a turtle is that you can control the width of the
line. The importance of that capability will become apparent in the next section.

That concludes the interesting di�erences between this program and the previous programs.

3.3.6.5.4.2 Second approach

The program named Circle02 shown in Listing 19 (p. 594) produces the graphic output shown in Figure
11 (p. 579) .

The bottom half of the circle in Figure 11 (p. 579) was drawn using the second approach (p. 576) :
accessing and setting pixel colors. As you can see, the quality is rather poor in comparison with the upper
half that was drawn by using a turtle to graph the function.

Figure 11. Graphic output from the program named Circle02.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

576 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

For example, if the curve is anything other than a straight line, a considerable programming e�ort is usually
required to cause the line width to be greater than one pixel using this approach. Also, when you use this
approach, if you want to produce a solid line, you must make certain that you don't skip any pixels when
setting the pixel colors to represent the line. You can avoid both of these issues by using a turtle to draw
the lines in your graph.

There are situations, however, where this approach will produce satisfactory results with less programming
e�ort than would be the case using a turtle to draw the lines, so you should not discount this method entirely.

I will explain the programming di�erences involved in using this approach to draw the BLUE half circle
as compared to the approach used in the program named Circle01 .

The code in Listing 12 (p. 580) is new compared to the code for the program named Circle01 .

Listing 12 . Picture and Pixel references.

private Picture pic = world.getPicture();

private Pixel pixel = null;

This code appears near the top of Listing 19 (p. 594) . The �rst statement gets a reference to the white
Picture object that forms a background image in the World object.

The second statement in Listing 12 (p. 580) declares a variable of type Pixel that will be used as a
working variable later.

The code in Listing 13 (p. 581) replaces the code that causes the turtle to move and draw a line segment
in Listing 11 (p. 578) . This code translates the origin to the center and sets the color of a pixel on the
circumference of the half circle to the color BLUE.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

577

Listing 13 . Translate the origin and set the pixel color.

pixel = pic.getPixel(col + world.getWidth()/2,

row + world.getHeight()/2);

pixel.setColor(Color.BLUE);

Note however that pixel colors are only set for the values of col that are computed in Listing 11 (p. 578) .
If there are gaps in the column numbers, there will be gaps in the line as shown in Figure 11 (p. 579) . The
turtle approach, on the other hand, draws the line across such gaps. If the gaps are large, the curve may be
jagged with the turtle approach, but there won't be empty gaps as in Figure 11 (p. 579) .

Figure 11 (p. 579) also illustrates the di�erence between having easy control over the line width and not
having easy control over the line width. As mentioned above, unless the curve is a straight line, it can be
very di�cult to control the line width with this approach.

Once again, however, there are situations where the approach of setting pixel colors will provide satis-
factory results with minimum e�ort, so you should always keep this approach as an option.

That is probably all that needs to be said about the program named Circle02 .

3.3.6.5.5 A cosine

The program named Cosine01 shown in Listing 20 (p. 596) produces the graphic output shown in Figure
12 (p. 581) .

Figure 12. Graphic output from the program named Cosine01.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

578 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

The only signi�cant di�erence between this program and the program named Parabola01 is the method
named function shown in Listing 14 (p. 582) .

Listing 14 . The method named function for Cosine01.

double function(double xVal){

double yVal = Math.cos(2*Math.PI*xVal);

return yVal;

}//end function

This method evaluates and returns the y-value for each incoming x-value for a cosine function with no o�set
centered at the origin.

y = cos(2*pi*x)

Figure 12 (p. 581) shows two cycles of the cosine curve, which is periodic. When viewing Figure 12 (p. 581)
, keep in mind that positive values go down the page. Thus the positive peak of the cosine function at the
origin points down.

As in the previous section, that is probably all that needs to be said about the program named Cosine01
.

3.3.6.5.6 Using a Turtle object without a World object

A Turtle object can be used to draw on a Picture object as shown by the program named Cubic02
in Listing 21 (p. 598) . If you examine this code, you will see that there is no reference to the World class
in this program.

The output from this program is shown in Figure 13 (p. 582) .

Figure 13. Graphic output from the program named Cubic02.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

579

If you compare Figure 13 (p. 582) with Figure 9 (p. 575) , you will see that they display the same image
with the exception of the word that appears in the blue banner at the top of the image.

3.3.6.5.7 Drawing straight lines without a Turtle object

Although a Turtle object provides a very convenient way to draw a straight line with a speci�ed color
and width, that is not the only way to draw a straight line. The program named Line02 shown in Listing
22 (p. 599) draws three parallel straight lines without using a Turtle object. (Listing 22 (p. 599) also
shows how to draw a half circle using a Turtle object without a World object.)

The code in Listing 22 (p. 599) produces the graphic output shown in Figure 14 (p. 583) .

Figure 14. Graphic output from the program named Line02.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

580 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

If you compare Figure 14 (p. 583) with Figure 11 (p. 579) , you will see that the top halves of the two
images are the same except for the word that appears in the banner at the top. However, instead of drawing
a half circle without using a Turtle object as in the bottom half of Figure 11 (p. 579) , the program
named Line02 draws three parallel lines of di�erent colors without using a Turtle object. (The lines
are separated by two pixels in the vertical dimension.)

3.3.6.5.7.1 What is the "pen width" for the straight lines?

On �rst glance, one might conclude that by causing the three straight lines in Figure 14 (p. 583) to be
side-by-side with no white space in between, one could use this approach to create a line with a "pen width"
of three pixels. That is not necessarily the case, however, unless the three lines are either horizontal or
vertical.

Consider what would happen if each individual line in Figure 14 (p. 583) were to be rotated around its
left-most pixel until it becomes vertical. In that case, all three lines would occupy the same vertical column
of pixels and the resulting "line" would be only one pixel wide. Thus, with this approach, the actual width
of the combined lines depends on the angle that the line makes with the horizontal.

That is not the case for a line that is drawn using a Turtle object. Note that the GREEN half circle
drawn by the turtle in the upper half of Figure 14 (p. 583) is the same width no mater what the angle of an
individual line segment is relative to the horizontal.

This approach to drawing straight lines can be used to draw lines with a visually pleasing width but you
need to be careful about using this approach to create a line with a speci�ed width. Normally the speci�ed
width would be measured along an axis that is perpendicular to the line.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

581

For example, consider the three individual lines and the spaces between individual lines taken together
in Figure 14 (p. 583) to represent a LINE. If each of the three individual lines were to be rotated around
its left-most pixel so that they are horizontal, the width of the LINE, measured perpendicular to the LINE
would be seven pixels (three lines and four spaces). As explained above, if each of the three individual lines
were to be rotated so as to become vertical, the width of the LINE would be one pixel.

If the speci�cations were to state that the width of the LINE in Figure 14 (p. 583) must be seven pixels,
and the LINE is not horizontal, some trigonometric computations might be required in the algorithm to
achieve that goal.

For example, if the three individual lines in Figure 14 (p. 583) were to be rotated around their left-most
pixel so as to be at forty-�ve degrees relative to the horizontal, the actual width of the LINE would be (7 *
0.707) or 4.949 pixels. Since it is not possible to address the space between pixels, the actual width would
probably be rounded up to �ve pixels or truncated down to four pixels (depending on the method used to
convert from double to int) . (Recall that the cosine of 45 degrees is 0.707.)

This is illustrated in Figure 15 (p. 585) .

Figure 15. Zoomed comparison of lines.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

582 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 15 (p. 585) shows the three lines rotated to an angle of 45 degrees and connected to a line segment
drawn by a Turtle object with a pen width of seven pixels. (Note that the image was zoomed to make it
possible to see the individual pixels.) As you can see, the width of the line segment drawn by the turtle is
greater than the combined widths of the three individual lines by what appears to be two pixels. This e�ect
becomes more pronounced as the orientation of the three lines approaches the vertical.

Thus, if the width of a line is part of a speci�cation, and the speci�ed width is anything other than one
pixel, you might �nd it easier to use a Turtle object to draw the line.

3.3.6.6 Run the programs

I encourage you to copy the code from Listing 15 (p. 586) through Listing 22 (p. 599) . Execute the code and
con�rm that you get the same results as those shown in in this lesson. Experiment with the code, making
changes, and observing the results of your changes. Make certain that you can explain why your changes
behave as they do.

3.3.6.7 Complete program listings

Complete listings of the programs discussed in this lesson are provided in Listing 15 (p. 586) through Listing
20 (p. 596) below.

Listing 15 . The program named Line01.

/*File Line01 Copyright 2016 R.G.Baldwin

**/

import java.awt.Color;

public class Line01{//Driver class

public static void main(String[] args){

Line01Runner obj = new Line01Runner();

obj.run();

}//end main

}//end class Line01

//===//

class Line01Runner{

//Instantiate the World and Turtle objects.

private World world = new World(300,300);

private Turtle turtle = new Turtle(0,0,world);

//---//

public void run(){

//Make the turtle invisible

turtle.hide();

//Prepare the pen

turtle.setPenColor(Color.RED);

turtle.setPenWidth(2);

//Draw the axes in RED

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

583

turtle.penUp();

turtle.moveTo(world.getWidth()/2,0);

turtle.penDown();

turtle.moveTo(world.getWidth()/2,world.getHeight());

turtle.penUp();

turtle.moveTo(world.getWidth(),world.getHeight()/2);

turtle.penDown();

turtle.moveTo(0,world.getHeight()/2);

turtle.penUp();

turtle.moveTo(0,0);

//Prepare the scale factors

double xScale = 1.0*world.getWidth()/2;

double yScale = 1.0*world.getHeight()/2;

//Draw a line in BLUE.

turtle.setPenColor(Color.BLUE);

double slope = 1.0;

double yIntercept = 0.0;

drawLine(xScale,yScale,slope,yIntercept);

//Draw another line in GREEN.

turtle.penUp();

turtle.setPenColor(Color.GREEN);

slope = -0.5;

yIntercept = 0.5;

drawLine(xScale,yScale,slope,yIntercept);

//Draw another line in BLACK.

turtle.penUp();

turtle.setPenColor(Color.BLACK);

slope = 2.0;

yIntercept = -0.5;

drawLine(xScale,yScale,slope,yIntercept);

}//end run method

//---//

//Method to draw a line given several incoming parameters that

// describe the line and the plotting parameters.

void drawLine(double xScale,double yScale,

double slope,double yIntercept){

double yVal = 0;

int row = 0;

int col = 0;

double xVal = -1.0;

for(int cnt=0; cnt<=100;cnt++,xVal += 0.02){

//Get a y-value for a given x-value.

yVal = function(xVal,slope,yIntercept);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

584 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

//Scale the x and y values to match the plotting surface

col = (int)(xVal*xScale);

row = (int)(yVal*yScale);

//Move to the first point without drawing a line because the

// pen is not down. Translate the origin to the center in the

// process.

turtle.moveTo(col + world.getWidth()/2,

row + world.getHeight()/2);

//Lower the pen in order to draw a line from each point to the

// next point.

turtle.penDown();

}//end for loop

}//end drawLine method

//---//

//This method evaluates and returns the y-value for each x-value

// for a line described by the equation

// y = slope*x + yIntercept

double function(double xVar,double slope,double yIntercept){

double yVar = (yIntercept) + (slope*xVar);

return yVar;

}//end function

//---//

}//end class Line01Runner

Listing 16 . The program named Parabola01.

/*File Parabola01 Copyright 2016 R.G.Baldwin

**/

import java.awt.Color;

public class Parabola01{//Driver class

public static void main(String[] args){

Parabola01Runner obj = new Parabola01Runner();

obj.run();

}//end main

}//end class Parabola01

//==/

class Parabola01Runner{

//Instantiate the World and Turtle objects.

private World world = new World(300,300);

private Turtle turtle = new Turtle(0,0,world);

//---//

public void run(){

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

585

//Make the turtle invisible

turtle.hide();

//Prepare the pen

turtle.setPenColor(Color.RED);

turtle.setPenWidth(2);

//Draw the axes in RED

turtle.penUp();

turtle.moveTo(world.getWidth()/2,0);

turtle.penDown();

turtle.moveTo(world.getWidth()/2,world.getHeight());

turtle.penUp();

turtle.moveTo(world.getWidth(),world.getHeight()/2);

turtle.penDown();

turtle.moveTo(0,world.getHeight()/2);

turtle.penUp();

turtle.moveTo(0,0);

//Prepare the variables

double xOff = 0.25;//offset relative to 1.0

double yOff = -0.25;

double xScale = 0.75*world.getWidth()/2;

double yScale = 1.25*world.getHeight()/2;

double yVal = 0;

int row = 0;

int col = 0;

double xVal = -1;

turtle.setPenColor(Color.BLUE);

//Draw the parabolic function in BLUE.

for(int cnt=0; cnt<=100;cnt++,xVal += 0.02){

//Get a y-value for the given x-value.

yVal = function(xVal);

//Apply the offsets and scale the results

col = (int)((xOff+xVal)*xScale);

row = (int)((yOff+yVal)*yScale);

//Move to the first point without drawing a line because the

// pen is not down. Translate the origin to the center in the

// process.

turtle.moveTo(col + world.getWidth()/2,

row + world.getHeight()/2);

//Lower the pen in order to draw a line from each point to the

// next point.

turtle.penDown();

}//end for loop

}//end run method

//---//

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

586 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

//This method evaluates and returns the y-value for each x-value

// for a parabola with no offset centered at the origin.

// y = x*x

double function(double xVal){

double yVal = xVal*xVal;

return yVal;

}//end function

//---//

}//end class Parabola01Runner

Listing 17 . The program named Cubic01.

/*File Cubic01 Copyright 2016 R.G.Baldwin

**/

import java.awt.Color;

public class Cubic01{//Driver class

public static void main(String[] args){

Cubic01Runner obj = new Cubic01Runner();

obj.run();

}//end main

}//end class Cubic01

//===//

class Cubic01Runner{

//Instantiate the World and Turtle objects.

private World world = new World(300,300);

private Turtle turtle = new Turtle(0,0,world);

//---//

public void run(){

//Make the turtle invisible

turtle.hide();

//Prepare the pen

turtle.setPenColor(Color.RED);

turtle.setPenWidth(2);

//Draw the axes in RED

turtle.penUp();

turtle.moveTo(world.getWidth()/2,0);

turtle.penDown();

turtle.moveTo(world.getWidth()/2,world.getHeight());

turtle.penUp();

turtle.moveTo(world.getWidth(),world.getHeight()/2);

turtle.penDown();

turtle.moveTo(0,world.getHeight()/2);

turtle.penUp();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

587

turtle.moveTo(0,0);

//Prepare the variables

double xOff = -0.5;//Offset relative to 1.0

double yOff = -0.5;

double xScale = 0.6*world.getWidth()/2;

double yScale = 0.6*world.getHeight()/2;

double yVal = 0;

int row = 0;

int col = 0;

double xVal = -1;

turtle.setPenColor(Color.BLUE);

//Draw the cubic function in BLUE

for(int cnt=0; cnt<=100;cnt++,xVal += 0.02){

//Get a y-value for a given x-value.

yVal = function(xVal);

//Apply the offsets and scale the results

col = (int)((xOff+xVal)*xScale);

row = (int)((yOff+yVal)*yScale);

//Move to the first point without drawing a line because the

// pen is up. Translate the origin to the center in the

// process.

turtle.moveTo(col + world.getWidth()/2,

row + world.getHeight()/2);

//Lower the pen in order to draw a line from each point to the

// next point.

turtle.penDown();

}//end for loop

}//end run method

//--//

//This method evaluates and returns the y-value for each x-value

// for a cubic function with no offset centered at the origin.

// y = x*x*x

double function(double xVal){

double yVal = xVal*xVal*xVal;

return yVal;

}//end function

//---//

}//end class Cubic01Runner

Listing 18 . The program named Circle01.

/*File Circle01 Copyright 2016 R.G.Baldwin

**/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

588 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

import java.awt.Color;

public class Circle01{//Driver class

public static void main(String[] args){

Circle01Runner obj = new Circle01Runner();

obj.run();

}//end main

}//end class Circle01

//===//

class Circle01Runner{

//Instantiate the World and Turtle objects.

private World world = new World(300,300);

private Turtle turtle = new Turtle(0,0,world);

//--//

public void run(){

//Make the turtle invisible

turtle.hide();

//Prepare the pen

turtle.setPenColor(Color.RED);

turtle.setPenWidth(4);

//Draw the axes in RED

turtle.penUp();

turtle.moveTo(world.getWidth()/2,0);

turtle.penDown();

turtle.moveTo(world.getWidth()/2,world.getHeight());

turtle.penUp();

turtle.moveTo(world.getWidth(),world.getHeight()/2);

turtle.penDown();

turtle.moveTo(0,world.getHeight()/2);

turtle.penUp();

turtle.moveTo(0,0);

//Prepare the variables

double xOff = -0.2;//offset relative to 1.0

double yOff = -0.2;

double xScale = 1.0*world.getWidth()/2;

double yScale = 1.0*world.getHeight()/2;

double rVal = 0.6;//radius relative to 1.0

double yVal = 0;

int row = 0;

int col = 0;

double xVal = -rVal;

double xInc = 2*rVal/100;

turtle.setPenColor(Color.BLUE);

//Draw half the circle in BLUE.

for(int cnt=0; cnt<=100;cnt++,xVal += xInc){

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

589

//Get a y-value for the given x-value.

yVal = function(rVal,xVal);

//Apply the offsets and scale the results

col = (int)((xOff+xVal)*xScale);

row = (int)((yOff+yVal)*yScale);

//Move to the first point without drawing a line because the

// pen is not down. Translate the origin to the center in the

// process.

turtle.moveTo(col + world.getWidth()/2,

row + world.getHeight()/2);

//Lower the pen in order to draw a line from each point to the

// next point.

turtle.penDown();

}//end for loop

//Draw other half of the circle in green

turtle.setPenColor(Color.GREEN);

turtle.penUp();

xVal = -rVal;

for(int cnt=0; cnt<=100;cnt++,xVal += xInc){

//Get a y-value for the given x-value.

yVal = function(rVal,xVal);

//Apply the offsets and scale the results. Note the application

// of a negative sign to yVal.

col = (int)((xOff+xVal)*xScale);

row = (int)((yOff-yVal)*yScale);

//Move to the first point without drawing a line because the

// pen is not down. Translate the origin to the center in the

// process.

turtle.moveTo(col + world.getWidth()/2,

row + world.getHeight()/2);

//Lower the pen in order to draw a line from each point to the

// next point.

turtle.penDown();

}//end for loop

}//end run method

//---//

//This method evaluates and returns the y-value for each x-value

// for a circle with no offset centered at the origin.

// radius*radius = x*x + y*y

//Note that the value returned from the sqrt method can be

// considered to be either positive or negative. Only the positive

// value is returned.

double function(double rVal,double xVal){

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

590 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

//Add a small positive fudge factor to prevent the value inside

// the radical from going negative due to small computational

// errors when the radius and the xVal should be equal.

double yVal = Math.sqrt(rVal*rVal - xVal*xVal + 0.0000000001);

return yVal;

}//end function

//---//

}//end class Circle01Runner

Listing 19 . The program named Circle02.

/*File Circle02 Copyright 2016 R.G.Baldwin

**/

import java.awt.Color;

public class Circle02{//Driver class

public static void main(String[] args){

Circle02Runner obj = new Circle02Runner();

obj.run();

}//end main

}//end class Circle02

//===//

class Circle02Runner{

//Instantiate the World and Turtle objects.

private World world = new World(300,300);

private Turtle turtle = new Turtle(0,0,world);

//The following is new relative to Circle01

private Picture pic = world.getPicture();

private Pixel pixel = null;

//--//

public void run(){

//Make the turtle invisible

turtle.hide();

//Prepare the pen

turtle.setPenColor(Color.RED);

turtle.setPenWidth(4);

//Draw the axes in RED

turtle.penUp();

turtle.moveTo(world.getWidth()/2,0);

turtle.penDown();

turtle.moveTo(world.getWidth()/2,world.getHeight());

turtle.penUp();

turtle.moveTo(world.getWidth(),world.getHeight()/2);

turtle.penDown();

turtle.moveTo(0,world.getHeight()/2);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

591

turtle.penUp();

turtle.moveTo(0,0);

//Prepare the variables

double xOff = -0.2;//offset relative to 1.0

double yOff = -0.2;

double xScale = 1.0*world.getWidth()/2;

double yScale = 1.0*world.getHeight()/2;

double rVal = 0.6;//radius relative to 1.0

double yVal = 0;

int row = 0;

int col = 0;

double xVal = -rVal;

double xInc = 2*rVal/100;

turtle.setPenColor(Color.BLUE);

//Draw the bottom half of the circle in BLUE.

for(int cnt=0; cnt<=100;cnt++,xVal += xInc){

//Get a y-value for the given x-value.

yVal = function(rVal,xVal);

//Apply the offsets and scale the results

col = (int)((xOff+xVal)*xScale);

row = (int)((yOff+yVal)*yScale);

//The following is new relative to Circle01. Translate the

// origin to the center and set the colors of specified

// pixels relative to the new origin.

pixel = pic.getPixel(col + world.getWidth()/2,

row + world.getHeight()/2);

pixel.setColor(Color.BLUE);

}//end for loop

//Draw other half of the circle in green

turtle.setPenColor(Color.GREEN);

turtle.penUp();

xVal = -rVal;

for(int cnt=0; cnt<=100;cnt++,xVal += xInc){

//Get a y-value for the given x-value.

yVal = function(rVal,xVal);

//Apply the offsets and scale the results. Note the application

// of a negative sign to yVal.

col = (int)((xOff+xVal)*xScale);

row = (int)((yOff-yVal)*yScale);

//Move to the first point without drawing a line because the

// pen is not down. Translate the origin to the center in the

// process.

turtle.moveTo(col + world.getWidth()/2,

row + world.getHeight()/2);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

592 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

//Lower the pen in order to draw a line from each point to the

// next point.

turtle.penDown();

}//end for loop

}//end run method

//---//

//This method evaluates and returns the y-value for each x-value

// for a circle with no offset centered at the origin.

// radius*radius = x*x + y*y

//Note that the value returned from the sqrt method can be

// considered to be either positive or negative. Only the positive

// value is returned.

double function(double rVal,double xVal){

//Add a small positive fudge factor to prevent the value inside

// the radical from going negative due to small computational

// errors when the radius and the xVal should be equal.

double yVal = Math.sqrt(rVal*rVal - xVal*xVal + 0.0000000001);

return yVal;

}//end function

//---//

}//end class Circle02Runner

Listing 20 . The program named Cosine01.

/*File Cosine01 Copyright 2016 R.G.Baldwin

**/

import java.awt.Color;

public class Cosine01{//Driver class

public static void main(String[] args){

Cosine01Runner obj = new Cosine01Runner();

obj.run();

}//end main

}//end class Cosine01

//==/

class Cosine01Runner{

//Instantiate the World and Turtle objects.

private World world = new World(300,300);

private Turtle turtle = new Turtle(0,0,world);

//---//

public void run(){

//Make the turtle invisible

turtle.hide();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

593

//Prepare the pen

turtle.setPenColor(Color.RED);

turtle.setPenWidth(2);

//Draw the axes in RED

turtle.penUp();

turtle.moveTo(world.getWidth()/2,0);

turtle.penDown();

turtle.moveTo(world.getWidth()/2,world.getHeight());

turtle.penUp();

turtle.moveTo(world.getWidth(),world.getHeight()/2);

turtle.penDown();

turtle.moveTo(0,world.getHeight()/2);

turtle.penUp();

turtle.moveTo(0,0);

//Prepare the variables

double xOff = 0.0;//offset relative to 1.0

double yOff = -0.0;

double xScale = 1.0*world.getWidth()/2;

double yScale = 0.9*world.getHeight()/2;

double yVal = 0;

int row = 0;

int col = 0;

double xVal = -1;

turtle.setPenColor(Color.BLUE);

//Draw the cosine function in BLUE.

for(int cnt=0; cnt<=100;cnt++,xVal += 0.02){

//Get a y-value for the given x-value.

yVal = function(xVal);

//Apply the offsets and scale the results

col = (int)((xOff+xVal)*xScale);

row = (int)((yOff+yVal)*yScale);

//Move to the first point without drawing a line because the

// pen is not down. Translate the origin to the center in the

// process.

turtle.moveTo(col + world.getWidth()/2,

row + world.getHeight()/2);

//Lower the pen in order to draw a line from each point to the

// next point.

turtle.penDown();

}//end for loop

}//end run method

//---//

//This method evaluates and returns the y-value for each x-value

// for a cosine function with no offset centered at the origin.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

594 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

// y = cos(2*pi*x)

double function(double xVal){

double yVal = Math.cos(2*Math.PI*xVal);

return yVal;

}//end function

//---//

}//end class Cosine01Runner

Listing 21 . The program named Cubic02.

/*File Cubic02 Copyright 2016 R.G.Baldwin

**/

import java.awt.Color;

public class Cubic02{//Driver class

public static void main(String[] args){

Cubic02Runner obj = new Cubic02Runner();

obj.run();

}//end main

}//end class Cubic02

//===//

class Cubic02Runner{

//Instantiate the Picture and Turtle objects.

private Picture pix = new Picture(300,300);

private Turtle turtle = new Turtle(0,0,pix);

//---//

public void run(){

//Make the turtle invisible

turtle.hide();

//Prepare the pen

turtle.setPenColor(Color.RED);

turtle.setPenWidth(2);

//Draw the axes in RED

turtle.penUp();

turtle.moveTo(pix.getWidth()/2,0);

turtle.penDown();

turtle.moveTo(pix.getWidth()/2,pix.getHeight());

turtle.penUp();

turtle.moveTo(pix.getWidth(),pix.getHeight()/2);

turtle.penDown();

turtle.moveTo(0,pix.getHeight()/2);

turtle.penUp();

turtle.moveTo(0,0);

//Prepare the variables

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

595

double xOff = -0.5;//Offset relative to 1.0

double yOff = -0.5;

double xScale = 0.6*pix.getWidth()/2;

double yScale = 0.6*pix.getHeight()/2;

double yVal = 0;

int row = 0;

int col = 0;

double xVal = -1;

turtle.setPenColor(Color.BLUE);

//Draw the cubic function in BLUE

for(int cnt=0; cnt<=100;cnt++,xVal += 0.02){

//Get a y-value for a given x-value.

yVal = function(xVal);

//Apply the offsets and scale the results

col = (int)((xOff+xVal)*xScale);

row = (int)((yOff+yVal)*yScale);

//Move to the first point without drawing a line because the

// pen is up. Translate the origin to the center in the

// process.

turtle.moveTo(col + pix.getWidth()/2,

row + pix.getHeight()/2);

//Lower the pen in order to draw a line from each point to the

// next point.

turtle.penDown();

}//end for loop

pix.show();

}//end run method

//---//

//This method evaluates and returns the y-value for each x-value

// for a cubic function with no offset centered at the origin.

// y = x*x*x

double function(double xVal){

double yVal = xVal*xVal*xVal;

return yVal;

}//end function

//---//

}//end class Cubic02Runner

Listing 22 . The program named Line02.

/*File Line02 Copyright 2016 R.G.Baldwin

**/

import java.awt.Color;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

596 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

public class Line02{//Driver class

public static void main(String[] args){

Line02Runner obj = new Line02Runner();

obj.run();

}//end main

}//end class Line02

//===//

class Line02Runner{

//Instantiate the Picture and Turtle objects.

private Picture pix = new Picture(300,300);

private Turtle turtle = new Turtle(0,0,pix);

private Pixel pixel = null;

//--//

public void run(){

//Make the turtle invisible

turtle.hide();

//Prepare the pen

turtle.setPenColor(Color.RED);

turtle.setPenWidth(4);

//Draw the axes in RED

turtle.penUp();

turtle.moveTo(pix.getWidth()/2,0);

turtle.penDown();

turtle.moveTo(pix.getWidth()/2,pix.getHeight());

turtle.penUp();

turtle.moveTo(pix.getWidth(),pix.getHeight()/2);

turtle.penDown();

turtle.moveTo(0,pix.getHeight()/2);

turtle.penUp();

turtle.moveTo(0,0);

//Prepare some variables

double xOff = -0.1;//offset relative to 1.0

double yOff = -0.1;

double xScale = 1.0*pix.getWidth()/2;

double yScale = 1.0*pix.getHeight()/2;

double rVal = 0.6;//radius relative to 1.0

double yVal = 0;

int row = 0;

int col = 0;

double xVal = -rVal;

double xInc = rVal/100;

turtle.setPenColor(Color.BLUE);

double slope = 0.6;

double yIntercept = 0.4;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

597

//Draw the lines in BLUE and RED

for(int cnt=0; cnt<=200;cnt++,xVal += xInc){

//Get a y-value for the given x-value.

yVal = lineFunction(xVal,slope,yIntercept);

//Apply the offsets and scale the results

col = (int)((xOff+xVal)*xScale);

row = (int)((yOff+yVal)*yScale);

//Translate the origin to the center and set the colors of

// specified pixels relative to the new origin.

//Draw three parallel lines, one BLUE, one RED, and one BLUE.

pixel = pix.getPixel(col + pix.getWidth()/2,

row + pix.getHeight()/2);

pixel.setColor(Color.BLUE);

pixel = pix.getPixel(col + pix.getWidth()/2,

row+3 + pix.getHeight()/2);

pixel.setColor(Color.RED);

pixel = pix.getPixel(col + pix.getWidth()/2,

row+6 + pix.getHeight()/2);

pixel.setColor(Color.BLUE);

}//end for loop

//Draw a half circle in green

turtle.setPenColor(Color.GREEN);

turtle.penUp();

xVal = -rVal;

for(int cnt=0; cnt<=200;cnt++,xVal += xInc){

//Get a y-value for the given x-value.

yVal = circleFunction(rVal,xVal);

//Apply the offsets and scale the results. Note the application

// of a negative sign to yVal.

col = (int)((xOff+xVal)*xScale);

row = (int)((yOff-yVal)*yScale);

//Move to the first point without drawing a line because the

// pen is not down. Translate the origin to the center in the

// process.

turtle.moveTo(col + pix.getWidth()/2,

row + pix.getHeight()/2);

//Lower the pen in order to draw a line from each point to the

// next point.

turtle.penDown();

}//end for loop

pix.show();

}//end run method

//---//

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

598 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

//This method evaluates and returns the y-value for each x-value

// for a circle with no offset centered at the origin.

// radius*radius = x*x + y*y

//Note that the value returned from the sqrt method can be

// considered to be either positive or negative. Only the positive

// value is returned.

double circleFunction(double rVal,double xVal){

//Add a small positive fudge factor to prevent the value inside

// the radical from going negative due to small computational

// errors when the radius and the xVal should be equal.

double yVal = Math.sqrt(rVal*rVal - xVal*xVal + 0.0000000001);

return yVal;

}//end circleFunction

//---//

//This method evaluates and returns the y-value for each x-value

// for a line with no offset located at the origin.

double lineFunction(double xVal,double slope,double yIntercept){

double yVal = xVal*slope + yIntercept;

return yVal;

}//end lineFunction

//---//

}//end class Line02Runner

3.3.6.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java3003: Drawing Graphs with Turtles and Pixels
• File: Java3003.htm
• Published: 06/29/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

599

-end-

3.3.7 Java3004: Image Processing Algorithms, Image Inversion, and PictureEx-

plorer Objects
224

Revised: Sat Apr 02 15:08:04 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 225

• Object-Oriented Programming (OOP) with Java 226

3.3.7.1 Table of Contents

• Preface (p. 603)

· Viewing tip (p. 603)

* Figures (p. 603)
* Listings (p. 604)

• Preview (p. 604)
• Discussion and sample code (p. 617)
• Run the program (p. 622)
• Summary (p. 622)
• What's next? (p. 622)
• Online video links (p. 622)
• Miscellaneous (p. 622)
• Complete program listing (p. 623)

3.3.7.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 227 .

3.3.7.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

3.3.7.2.1.1 Figures

• Figure 1 (p. 610) . The raw image.
• Figure 2 (p. 616) . The modi�ed image.
• Figure 3 (p. 616) . Output text on the command line screen.
• Figure 4 (p. 619) . javadocs description of the explore method.
• Figure 5 (p. 620) . javadocs description of the getPixels method.
• Figure 6 (p. 620) . javadocs description of the Pixel class.

224This content is available online at <http://cnx.org/content/m44203/1.11/>.
225http://cnx.org/contents/dzOvxPFw
226http://cnx.org/contents/-2RmHFs_
227http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

600 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.7.2.1.2 Listings

• Listing 1 (p. 617) . The driver class.
• Listing 2 (p. 618) . Beginning of the class named Prob02Runner.
• Listing 3 (p. 618) . The beginning of the run method.
• Listing 4 (p. 619) . Implementing the algorithm.
• Listing 5 (p. 621) . Display again and terminate.
• Listing 6 (p. 624) . Complete program listing.

3.3.7.3 Preview

The program that I will explain in this module is designed to be used as a test of the student's understanding
of programming using Java and Ericson's media library.

The student is provided an image �le named Prob02.jpg along with a pair of PictureExplorer
windows containing the raw image and a modi�ed version of the image. (See Figure 1 (p. 610) and Figure
2 (p. 616) .)

Deduce the algorithm
The �rst part of the test is to determine if the student can examine the raw image shown in the

PictureExplorer window in Figure 1 (p. 610) and deduce the algorithm required to produce the output
shown in the PictureExplorer window in Figure 2 (p. 616) .

Implement the algorithm
The second part of the test is to determine if the student can implement the algorithm once it is established

and also satisfy some requirements for text output on the command line screen. Among other things, this
requires that the student be able to:

• Create a Picture object from an image �le.
• Write an accessor method to return a reference to the Picture object.
• Modify the pixels in the picture according to the algorithm.
• Display the raw picture and the modi�ed picture in PictureExplorer objects by calling the explore

method on the Picture object before and after it is modi�ed.

Program output
The raw image is displayed in the PictureExplorer window shown in Figure 1 (p. 610) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

601

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

602 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

603

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

604 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

605

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

606 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 1. The raw image .

Table 3.204

The modi�ed image is shown in the PictureExplorer window in Figure 2 (p. 616) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

607

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

608 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

609

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

610 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

611

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

612 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 2. The modi�ed image .

Table 3.205

The required output on the command-line screen is shown by the last two lines of text in Figure 3 (p.
616) . The other text in Figure 3 (p. 616) was produced by the system during the compilation and execution
process.

Figure 3 . Output text on the command line screen.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

613

java version "1.6.0_14"

Java(TM) SE Runtime Environment (build 1.6.0_14-b08)

Java HotSpot(TM) Client VM (build 14.0-b16, mixed mode,

sharing)

javac 1.6.0_14

Dick Baldwin

Picture, filename Prob02.jpg height 274 width 365

Table 3.206

The algorithm
The algorithm required to transform the image from Figure 1 (p. 610) to Figure 2 (p. 616) is:

• Set the blue color value for every pixel to zero.
• Invert the red and green color values for every pixel.

A color value is inverted by subtracting the value from 255 and using the di�erence as the new
color value.

Obvious that the blue color value is reduced to zero
It should be obvious to the student when comparing the two images in the PictureExplorer objects

that the blue pixel value has been set to zero for every pixel in the modi�ed image.
Color inversion is not quite so obvious
Deducing that the red and green colors in the output pixels are the inverse of the red and green colors

in the input image isn't quite as straightforward. However, using algebra to compare several corresponding
pixels in the two images should make it obvious fairly quickly to the curious student.

The implementation of the algorithm will be explained below.

3.3.7.4 Discussion and sample code

Will explain in fragments
I will explain this program in fragments. A complete listing is provided in Listing 6 (p. 624) near the

end of the module.
I will begin with the driver class named Prob02 , which is shown in its entirety in Listing 1 (p. 617) .

Listing 1 . The driver class.

public class Prob02{//the driver class

public static void main(String[] args){

Prob02Runner obj = new Prob02Runner();

obj.run();

System.out.println(obj.getPicture());

}//end main

}//end class Prob02

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

614 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.207

You should already be familiar with everything in Listing 1 (p. 617) . The most important aspect of
Listing 1 (p. 617) for purposes of this discussion is the call to the run method belonging to the object
instantiated from the Prob02Runner class. I will explain the run method shortly.

Beginning of the class named Prob02Runner
The class de�nition for the class named Prob02Runner begins in Listing 2 (p. 618) .

Listing 2 . Beginning of the class named Prob02Runner.

class Prob02Runner{

private Picture pic = new Picture("Prob02.jpg");

public Prob02Runner(){//constructor

System.out.println("Dick Baldwin");

}//end constructor

//--//

//Accessor method

public Picture getPicture(){return pic;}

Table 3.208

Again, you should be familiar with everything in Listing 2 (p. 618) . I will simply highlight the instan-
tiation of a new Picture object using an image �le as input and the saving of a reference to that object
in the private instance variable named pic .

The beginning of the run method
The run method begins in Listing 3 (p. 618) . This is where the action is, so to speak.

Listing 3 . The beginning of the run method.

public void run(){

pic.addMessage("Dick Baldwin",10,20);

pic.explore();

Table 3.209

You are already familiar with the call to the addMessage method to add my name as text to the
image encapsulated in the Picture object. (See Figure 1 (p. 610) .)

The explore method
The call to the explore method is new to this module.
The explore method is de�ned in the SimplePicture class, which is the superclass of the Picture

class. The method is inherited into the Picture class.
javadocs description of the explore method
The javadocs description of this method is shown in Figure 4 (p. 619) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

615

Figure 4 . javadocs description of the explore method.

Method to open a picture explorer on a copy of this simple picture.

Table 3.210

Result of calling the explore method
The result of calling the explore method in Listing 3 (p. 618) is to create and display the Picture-

Explorer object shown in Figure 1 (p. 610) .
Very important capability
The availability of the explore method and the PictureExplorer class is very important in at least

two respects:

• The explore method makes it easy to display copies of an image at various stages during the
processing of the image. Once the PictureExplorer object is created and displayed, it won't be
e�ected by subsequent changes to the image.

• The availability of a PictureExplorer object makes it easy to manually analyze the colors of the
individual pixels in an image encapsulated in that object.

Implementing the algorithm
The code in Listing 4 (p. 619) implements the algorithm required to modify the original image to make

it look like the image shown in Figure 2 (p. 616) .

Listing 4 . Implementing the algorithm.

Pixel[] pixelArray = pic.getPixels();

for(Pixel pixel:pixelArray){

pixel.setRed(255 - pixel.getRed());

pixel.setGreen(255 - pixel.getGreen());

pixel.setBlue(0);

}//end for loop

Table 3.211

In particular, the code in Listing 4 (p. 619) sets the blue color components to 0 and inverts the red and
green color components for every pixel in the picture.

One of several approaches
There are several ways to do this, and this is only one of those ways. This approach makes use of a

method named getPixels that is de�ned in the SimplePicture class and inherited into the Picture
class.

Very useful when...
This approach is particularly useful when you want to perform the same action on every pixel in an

image. The advantage is that you don't have to worry about horizontal and vertical coordinates with this
approach. Access to all of the pixels is provided in a one-dimensional array.

javadocs description of the getPixels method
The javadocs description of this method is shown in Figure 5 (p. 620) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

616 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 5 . javadocs description of the getPixels method.

Method to get a one-dimensional array of

Pixels for this simple picture.

Returns: a one-dimensional array of Pixel

objects starting with y=0 to y=height-1

and x=0 to x=width-1.

Table 3.212

What is a Pixel object?
An object of Ericson's Pixel class encapsulates an individual pixel from an image. Figure 6 (p. 620)

shows the javadocs description of the Pixel class.

Figure 6 . javadocs description of the Pixel class.

Class that references a pixel in a picture.

A pixel has an x and y location in a picture.

A pixel knows how to get and set the red, green,

blue, and alpha values in the picture.

A pixel also knows how to get and set the color

using a Color object.

Table 3.213

Many methods available
The Pixel class de�nes a large number of methods. Once you have a reference to a Pixel object, you

can manipulate the underlying pixel encapsulated in that object in a variety of ways.
Get the pixels in the image
Recall that a reference to the Picture object that encapsulates our image is stored in the variable

named pic . (See Listing 2 (p. 618) .)
Listing 4 (p. 619) begins by calling the getPixels method on that reference.
All of the pixels in the image are returned in a one-dimensional array.
A reference to the array is stored in a local reference variable of type Pixel[] named pixelArray .
A for-each loop
A special kind of for loop (often called a for-each loop) is used to access and process each pixel in the

array. You can learn more about the for-each loop here 228 . (A conventional for loop could also be used
here.)

During each iteration of the loop...
The three statements inside the loop modify the red, green, and blue color values of a single pixel.
The �rst two statements invert the red and green color values by subtracting the values from 255.

228http://docs.oracle.com/javase/1.5.0/docs/guide/language/foreach.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

617

The third statement in the loop sets the blue color value to zero.
Every pixel in the image will have been modi�ed as described above when the loop terminates.
Not a reversible process
Because the blue color values were set to zero, the image has now been modi�ed in an irreversible manner.
A reversible process
However, if the blue color values had also been inverted, the process would be reversible.
All that would be necessary to recover the original image would be to invert all of the pixels again.
An important process
Color inversion is a very important process in many areas of computing that involve images. The process

is:

• Computationally cheap
• Very fast
• Usually visually obvious
• Totally reversible

Often used to highlight selected images
For example, many software program invert all of the colors in an image when it is selected for some

purpose, such as copying to the clipboard. Then the colors are restored to their original values when the
image is deselected.

Next to redeye correction, color inversion is probably the most commonly used color modi�cation algo-
rithm in use in modern image processing.

Display again and terminate
The variable named pic still contains a reference to the original Picture object. However, the image

that is encapsulated in that object has been signi�cantly modi�ed.
Listing 5 (p. 621) calls the explore method again, creating and displaying another PictureExplorer

object that encapsulates a copy of the Picture object with the modi�ed image.

Listing 5 . Display again and terminate.

pic.explore();

}//end run method

}//end class Prob02Runner

Table 3.214

The result is shown in Figure 2 (p. 616) .
The end of the run method
Listing 5 (p. 621) also signals the end of the run method and the end of the Prob02Runner class.
Return control to main
The run method terminates and returns control to the main method in Listing 1 (p. 617) .
The code in the main method calls a getter method to get a reference to the Picture object.
The reference is passed to the println method, which displays the information about the Picture

object in the last line of Figure 3 (p. 616) .
The program terminates
Then the main method terminates, at which time the program terminates and returns control to the

operating system.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

618 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.7.4.1 Run the program

I encourage you to copy the code from Listing 6 (p. 624) , compile it and execute it. Experiment with the
code, making changes, and observing the results of your changes. Make certain that you can explain why
your changes behave as they do.

You can download a copy of the raw image �le here 229 .

3.3.7.5 Summary

In this module, you learned how to invert images and how to display images in PictureExplorer objects.

3.3.7.6 What's next?

You will learn how to implement a space-wise linear color-modi�cation algorithm in the next module.

3.3.7.7 Online video links

While not a requirement of the course, you can select the following links to view optional online video lectures
on the material in this module.

• ITSE 2321 Lecture 02 230

· Part01 231

· Part02 232

· Part03 233

· Part04 234

3.3.7.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Image Processing Algorithms, Image Inversion, and PictureExplorer
Objects
• File: Java3004.htm
• Published: 07/29/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such

229http://cnx.org/content/m44203/latest/Prob02.jpg
230http://www.youtube.com/playlist?list=PL713DB9A1FF4B92DF
231http://www.youtube.com/watch?v=SVq_IN4TsTs
232http://www.youtube.com/watch?v=vcVLr8Z1mo4
233http://www.youtube.com/watch?v=M1Nns7vYTiM
234http://www.youtube.com/watch?v=Qw-yzEGuFJU

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

619

a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.3.7.9 Complete program listing

A complete listing of the program discussed in this module is shown in Listing 6 (p. 624) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

620 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 6 . Complete program listing.

/*File Prob02 Copyright 2008 R.G.Baldwin

***/

public class Prob02{//the driver class

public static void main(String[] args){

Prob02Runner obj = new Prob02Runner();

obj.run();

System.out.println(obj.getPicture());

}//end main

}//end class Prob02

//==//

class Prob02Runner{

private Picture pic = new Picture("Prob02.jpg");

public Prob02Runner(){//constructor

System.out.println("Dick Baldwin");

}//end constructor

//--//

//Accessor method

public Picture getPicture(){return pic;}

//--//

//This method is where the action is.

public void run(){

//Display the raw picture.

pic.addMessage("Dick Baldwin",10,20);

pic.explore();

//Set the blue color components to 0 and invert the

// red and green color components for every pixel in

// the picture.

Pixel[] pixelArray = pic.getPixels();

for(Pixel pixel:pixelArray){

pixel.setRed(255 - pixel.getRed());

pixel.setGreen(255 - pixel.getGreen());

pixel.setBlue(0);

}//end for loop

//Display the modified picture

pic.explore();

}//end run method

}//end class Prob02Runner

Table 3.215

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

621

3.3.8 Java3004r Review
235

Revised: Sat Apr 02 15:35:59 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 236

• Object-Oriented Programming (OOP) with Java 237

3.3.8.1 Table of Contents

• Preface (p. 625)
• Questions (p. 625)

· 1 (p. 625) , 2 (p. 625) , 3 (p. 626) , 4 (p. 627) , 5 (p. 627) , 6 (p. 629) , 7 (p. 629) , 8 (p. 629) ,
9 (p. 629) , 10 (p. 629) , 11 (p. 629)

• Figures (p. 629)
• Listings (p. 629)
• Answers (p. 631)
• Miscellaneous (p. 632)

3.3.8.2 Preface

This module contains review questions and answers keyed to the module titled Image Java3004: Processing
Algorithms, Image Inversion, and PictureExplorer Objects 238 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

3.3.8.3 Questions

3.3.8.3.1 Question 1 .

True or False? A color value is inverted by subtracting the value from 256.
Answer 1 (p. 632)

3.3.8.3.2 Question 2

True or False? The code in Listing 1 (p. 626) instantiates a new object of the PictureExplorer class.

235This content is available online at <http://cnx.org/content/m45763/1.13/>.
236http://cnx.org/contents/dzOvxPFw
237http://cnx.org/contents/-2RmHFs_
238http://cnx.org/content/m44203

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

622 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 1 . Question 2.

class Prob02Runner{

private Picture pic = new Picture("Prob02.jpg");

public Prob02Runner(){//constructor

System.out.println("Dick Baldwin");

}//end constructor

//--//

//Accessor method

public Picture getPicture(){return pic;}

Table 3.216

Answer 2 (p. 632)

3.3.8.3.3 Question 3

True or False? The code in Listing 2 (p. 626) causes an image to be displayed in the format shown in Figure
1 (p. 626) .

Listing 2 . Question 3.

public void run(){

pic.addMessage("Dick Baldwin",10,20);

pic.explore();

Table 3.217

Figure 1 (p. 626) - Question 3.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

623

Answer 3 (p. 631)

3.3.8.3.4 Question 4

True or False? The availability of the explore method and the PictureExplorer class is very important
in at least two respects:

• The explore method makes it easy to display copies of an image at various stages during the
processing of the image. Once the PictureExplorer object is created and displayed, it won't be
e�ected by subsequent changes to the image.

• The availability of a PictureExplorer object makes it easy to manually analyze the colors of the
individual pixels in an image encapsulated in that object.

Answer 4 (p. 631)

3.3.8.3.5 Question 5

True or False? The algorithm shown in Listing 3 (p. 628) can be used to cause the image shown in Figure
2 (p. 631) to be transformed into the image shown in Figure 3 (p. 628) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

624 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 3 . Question 5.

Pixel[] pixelArray = pic.getPixels();

for(Pixel pixel:pixelArray){

pixel.setRed(255 - pixel.getRed());

pixel.setGreen(255 - pixel.getGreen());

pixel.setBlue(0);

}//end for loop

Table 3.218

Figure 3 (p. 628) - Question 5.

Answer 5 (p. 631)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

625

3.3.8.3.6 Question 6

True or False? An object of Ericson's Pixel class encapsulates an individual pixel from an image.
Answer 6 (p. 631)

3.3.8.3.7 Question 7

True or False? The Pixel class de�nes a single method that can be called to invert the color of the pixel.
Answer 7 (p. 631)

3.3.8.3.8 Question 8

True or False? The getPixels method belonging to a Picture object returns references to all of the
Pixel objects encapsulated in the picture in a two-dimensional array where the dimensions of the array
represent the horizontal and vertical coordinates of each pixel.

Answer 8 (p. 631)

3.3.8.3.9 Question 9

True or False? The for loop shown in Listing 3 (p. 628) is of a type that is often referred to as a for-each
loop.

Answer 9 (p. 631)

3.3.8.3.10 Question 10

True or False? The three statements inside the loop in Listing 3 (p. 628) modify the color values of a single
pixel.

Answer 10 (p. 631)

3.3.8.3.11 Question 11

True or False? If the colors of all the pixels in an image are inverted, the process is completely reversible.
All that is necessary to recover the original image is to invert all of the pixels again.

Answer 11 (p. 631)

3.3.8.4 Figures

• Figure 1 (p. 626) . Question 3.
• Figure 2 (p. 631) . Answer 3.
• Figure 3 (p. 628) . Question 5.

3.3.8.5 Listings

• Listing 1 (p. 626) . Question 2.
• Listing 2 (p. 626) . Question 3.
• Listing 3 (p. 628) . Question 5.

What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

626 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

627

3.3.8.6 Answers

3.3.8.6.1 Answer 11

True.
Back to Question 11 (p. 629)

3.3.8.6.2 Answer 10

True.
Back to Question 10 (p. 629)

3.3.8.6.3 Answer 9

True.
Back to Question 9 (p. 629)

3.3.8.6.4 Answer 8

False. The getPixels method belonging to a Picture object returns references to all of the Pixel
objects encapsulated in the picture in a one-dimensional array.

Back to Question 8 (p. 629)

3.3.8.6.5 Answer 7

False. The Pixel class de�nes a large number of methods. Once you have a reference to a Pixel object,
you can manipulate the underlying pixel encapsulated in that object in a variety of ways.

Back to Question 7 (p. 629)

3.3.8.6.6 Answer 6

True.
Back to Question 6 (p. 629)

3.3.8.6.7 Answer 5

True.
Back to Question 5 (p. 627)

3.3.8.6.8 Answer 4

True.
Back to Question 4 (p. 627)

3.3.8.6.9 Answer 3

False. The code in Listing 2 (p. 626) causes an image to be displayed in the format shown in Figure 2 (p.
631) .

Figure 2 (p. 631) - Answer 3.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

628 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Back to Question 3 (p. 626)

3.3.8.6.10 Answer 2

False. The code in Listing 1 (p. 626) instantiates a new object of the Picture class.
Back to Question 2 (p. 625)

3.3.8.6.11 Answer 1

False. A color value is inverted by subtracting the value from 255 .
Back to Question 1 (p. 625)

3.3.8.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

629

• Module name: Java3004r Review: Image Processing Algorithms, Image Inversion, and Pic-
tureExplorer Objects
• File: Java3004r.htm
• Published: 02/10/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.3.9 Java3006: Implementing a space-wise linear color-modi�cation algorithm.
239

Revised: Sat Apr 02 16:43:04 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 240

• Object-Oriented Programming (OOP) with Java 241

3.3.9.1 Table of Contents

• Preface (p. 634)

· Viewing tip (p. 634)

* Figures (p. 634)
* Listings (p. 634)

• Preview (p. 634)
• Discussion and sample code (p. 637)
• Run the program (p. 641)
• Summary (p. 641)
• What's next? (p. 641)
• Online video links (p. 641)
• Miscellaneous (p. 641)
• Complete program listing (p. 642)

239This content is available online at <http://cnx.org/content/m44204/1.11/>.
240http://cnx.org/contents/dzOvxPFw
241http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

630 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.9.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 242 .

3.3.9.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

3.3.9.2.1.1 Figures

• Figure 1 (p. 635) . The raw image.
• Figure 2 (p. 635) . The modi�ed image.
• Figure 3 (p. 636) . Text output on the command-line screen.

3.3.9.2.1.2 Listings

• Listing 1 (p. 637) . The driver class named Prob03.
• Listing 2 (p. 637) . Beginning of the class named Prob03Runner.
• Listing 3 (p. 638) . The beginning of the run method.
• Listing 4 (p. 639) . Beginning of the for loop.
• Listing 5 (p. 639) . Compute the column number and scale factors.
• Listing 6 (p. 640) . Apply the scale factors.
• Listing 7 (p. 640) . Display the modi�ed image.
• Listing 8 (p. 643) . Complete program listing.

3.3.9.3 Preview

The program that I will explain in this module is designed to be used as a test of the student's understanding
of programming using Java and Ericson's media library.

The student is provided an image �le named Prob03.jpg along with a written speci�cation of a
space-wise linear image modi�cation algorithm.

Implement the algorithm
The primary purpose of the test is to determine if the student can implement the algorithm and also

satisfy some requirements for text output on the command line screen. Among other things, this requires
that the student be able to:

• Create a Picture object from an image �le.
• Write an accessor method to return a reference to the Picture object.
• Modify the pixels in the picture according to the speci�ed algorithm.
• Display the raw picture and the modi�ed picture in PictureExplorer objects by calling the explore

method on the Picture object before and after it is modi�ed.

The algorithm
Scale the blue and green color components by a scale factor that is less than or equal to 1.0. The green

scale factor:

242http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

631

• Is equal to 1.0 on the left side of the image
• Is equal to 0.0 on the right side of the image
• Decreases linearly with distance going from left to right across the image.

The blue scale factor

• Is 0.0 on the left side of the image
• Is 1.0 on the right side of the image
• Increases linearly with distance going from left to right across the image.

Do not scale the red color component.
The program output
The program produces the images shown in Figure 1 (p. 635) and Figure 2 (p. 635) and produces the

output text shown in Figure 3 (p. 636) on the command line screen.
Figure 1 (p. 635) - The raw image.

Figure 2 (p. 635) - The modi�ed image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

632 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 3 . Text output on the command-line screen.

java version "1.6.0_14"

Java(TM) SE Runtime Environment (build 1.6.0_14-b08)

Java HotSpot(TM) Client VM (build 14.0-b16,

mixed mode, sharing)

javac 1.6.0_14

Dick Baldwin

Picture, filename Prob03.jpg height 274 width 365

Table 3.219

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

633

The required output on the command-line screen is shown by the last two lines of text in Figure 3 (p.
636) . The remaining text in Figure 3 (p. 636) was produced by the system during the compilation and
execution process.

3.3.9.4 Discussion and sample code

Will explain in fragments
I will explain this program in fragments. A complete listing is provided in Listing 8 (p. 643) near the

end of the module.
I will begin with the driver class named Prob03 , which is shown in its entirety in Listing 1 (p. 637) .

Listing 1 . The driver class named Prob03.

public class Prob03{

public static void main(String[] args){

Prob03Runner obj = new Prob03Runner();

obj.run();

System.out.println(obj.getPicture());

}//end main

}//end class Prob03

Table 3.220

There is nothing in Listing 1 (p. 637) that I haven't explained in earlier modules. Therefore, no expla-
nation of the code in Listing 1 (p. 637) should be required.

Beginning of the class named Prob03Runner
The class de�nition for the class named Prob03Runner begins in Listing 2 (p. 637) .

Listing 2 . Beginning of the class named Prob03Runner.

class Prob03Runner{

//Instantiate the Picture object.

private Picture pic = new Picture("Prob03.jpg");

public Prob03Runner(){//constructor

System.out.println("Dick Baldwin");

}//end constructor

//--//

//Accessor method

public Picture getPicture(){return pic;}

Table 3.221

Once again, there is nothing in Listing 2 (p. 637) that I haven't explained before. I included it here
simply for the sake of continuity.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

634 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

The beginning of the run method
The run method begins in Listing 3 (p. 638) . The run method is where most of the interesting

action takes place.

Listing 3 . The beginning of the run method.

public void run(){

pic.addMessage("Dick Baldwin",10,20);

//Display a PictureExplorer object.

pic.explore();

//Get an array of Pixel objects.

Pixel[] pixels = pic.getPixels();

//Declare working variables

Pixel pixel = null;

int green = 0;

int blue = 0;

int width = pic.getWidth();

double greenScale = 0;

double blueScale = 0;

Table 3.222

Much of what you see in Listing 3 (p. 638) has been explained in earlier modules. However, Listing 3 (p.
638) does deserve a few comments.

Display the raw image
The call to the explore method produces the output shown in Figure 1 (p. 635) .
Get an array of Pixel data
The call to the getPixels method in Listing 3 (p. 638) returns a reference to a one-dimensional array

object. The elements in the array are references to Pixel objects, where each Pixel object represents a
single pixel in the image. I will explain the organization of the pixel data later 243 .

Get the width of the image
The call to the getWidth method in Listing 3 (p. 638) returns an int value that speci�es the width

of the image in pixels. This value will be used later to compute the column to which each pixel belongs.
Local variables
Listing 3 (p. 638) declares six local variables. The purpose of these variables should become clear during

the explanation of the code that implements the algorithm.
Implementation of the algorithm
The algorithm 244 is implemented by the code in a conventional for loop, which begins in Listing 4 (p.

639) .

Listing 4 . Beginning of the for loop.

continued on next page

243http://cnx.org/content/m44204/latest/Java3006old.htm#Organization_of_the_pixel_data
244http://cnx.org/content/m44204/latest/Java3006old.htm#The_algorithm

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

635

for(int cnt = 0;cnt < pixels.length;cnt++){

pixel = pixels[cnt];

green = pixel.getGreen();

blue = pixel.getBlue();

Table 3.223

The loop iterates through the array of Pixel data, modifying the colors in one pixel during each
iteration.

The length property of the array object
Every array object in Java contains a length property that contains the number of elements in the

array. The value of this property is used in the conditional clause in the for loop in Listing 4 (p. 639) to
establish when the end of the array has been reached in order to terminate the loop.

Get reference to the next Pixel object
The �rst statement inside the for loop in Listing 4 (p. 639) gets a reference to a Pixel object from

the next array element. That reference is stored in the local variable of type Pixel named pixel that
was declared in Listing 3 (p. 638) .

Get the red and green color values for the current pixel
Having gotten a reference to the Pixel object, the next statement calls the getGreen method on

that reference to get and save the value of the green color component in the current pixel.
Similarly, the statement following that one gets and saves the value of the blue color component in the

current pixel.
Both values are returned as type int , and can range in value from 0 up to and including 255.
Objective is to scale the green and blue color values
Recall that the objective is to scale the green and blue color values on a column by column basis, going

from left to right across the image shown in Figure 1 (p. 635) in order to produce the output image shown
in Figure 2 (p. 635) .

Organization of the pixel data
The pixel data is stored in the array on a row by row basis. In other words, the �rst width elements

contain references to pixels in the �rst row of pixels going from left to right across the screen. The next
width elements contain references to pixels in the second row of pixels, etc.

Compute the column number and scale factors
Listing 5 (p. 639) uses the modulus operator to compute the column number for each Pixel object.

Listing 5 . Compute the column number and scale factors.

//Compute the column number and use it to compute

// the scale factor.

int col = cnt%width;

greenScale = (double)(width - col)/width;

blueScale = (double)(col)/width;

Table 3.224

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

636 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

An exercise for the student
Knowing the column number in which the pixel is located, the next step is to compute the green and

blue scale factors necessary to satisfy the algorithm.
I will leave it as an exercise for the student to think about how the expressions contained in the last two

statements in Listing 5 (p. 639) cause the two scale factors to vary linearly from left to right across the
image in accordance with the requirements of the algorithm. (Think about the equation of a straight line
from your high school math classes.)

Apply the scale factors
The Pixel class contains methods named setRed , setGreen , and setBlue that can be called

to set the color values for the pixel represented by a Pixel object.
Listing 6 (p. 640) computes new values for the red and green components based on the existing color

values for the pixel and the scale factors computed in Listing 5 (p. 639) .

Listing 6 . Apply the scale factors.

pixel.setGreen((int)(green * greenScale));

pixel.setBlue((int)(blue * blueScale));

}//end for loop

Table 3.225

Then Listing 6 (p. 640) calls the setGreen and setBlue methods on the Pixel object to set the
green and blue color values to the newly computed values.

The end of the for loop
Listing 6 (p. 640) also signals the end of the for loop that began in Listing 4 (p. 639) .
Display the modi�ed image
Finally, Listing 7 (p. 640) calls the explore method again to display the image shown in Figure 2 (p.

635) .

Listing 7 . Display the modi�ed image.

pic.explore();

}//end run method

}//end class Prob03Runner

Table 3.226

The end of the run method
Listing 7 (p. 640) also signals the end of the run method and the end of the Prob03Runner class.
Return control to main
The run method terminates and returns control to the main method shown in Listing 1 (p. 637) .
The code in the main method calls a getter method to get a reference to the Picture object.
The reference is passed to the println method, which displays the information about the Picture

object in the last line of Figure 3 (p. 636) .
The program terminates
Then the main method terminates, at which time the program terminates and returns control to the

operating system.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

637

3.3.9.4.1 Run the program

I encourage you to copy the code from Listing 8 (p. 643) , compile it and execute it. Experiment with the
code, making changes, and observing the results of your changes. Make certain that you can explain why
your changes behave as they do.

You can download a copy of the required input image �le here 245 .

3.3.9.5 Summary

In this module, I showed you how to implement an algorithm that causes the green and blue color values in
an image to change in a linear fashion going from left to right across the image.

3.3.9.6 What's next?

You will learn more about abstract methods, abstract classes, and overridden methods in the next lesson.
Very importantly, you will learn more about overriding the toString method.

3.3.9.7 Online video links

While not a requirement of the course, you can select the following links to view optional online video lectures
on the material in this module.

• ITSE 2321 Lecture 03 246

· Part01 247

· Part02 248

· Part03 249

3.3.9.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Implementing a space-wise linear color-modi�cation algorithm
• File: Java3006.htm
• Published: 07/30/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such

245http://cnx.org/content/m44204/latest/Prob03.jpg
246http://www.youtube.com/playlist?list=PL43014B9ED4419642
247http://www.youtube.com/watch?v=pdqKvAuzkhg
248http://www.youtube.com/watch?v=aXoSD7oauLQ
249http://www.youtube.com/watch?v=1iRiXhTPmMU

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

638 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.3.9.9 Complete program listing

A complete listing of the program discussed in this module is shown in Listing 8 (p. 643) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

639

Listing 8 . Complete program listing.

/*File Prob03 Copyright 2008 R.G.Baldwin

***/

public class Prob03{

public static void main(String[] args){

Prob03Runner obj = new Prob03Runner();

obj.run();

System.out.println(obj.getPicture());

}//end main

}//end class Prob03

//==//

class Prob03Runner{

//Instantiate the Picture object.

private Picture pic = new Picture("Prob03.jpg");

public Prob03Runner(){//constructor

System.out.println("Dick Baldwin");

}//end constructor

//--//

//Accessor method

public Picture getPicture(){return pic;}

//--//

//This method is where the action is.

public void run(){

pic.addMessage("Dick Baldwin",10,20);

//Display a PictureExplorer object.

pic.explore();

//Get an array of Pixel objects.

Pixel[] pixels = pic.getPixels();

//Declare working variables

Pixel pixel = null;

int green = 0;

int blue = 0;

int width = pic.getWidth();

double greenScale = 0;

double blueScale = 0;

//Scale the blue and green color components according

// to the algorithm given above.

//Do not scale the red component.

for(int cnt = 0;cnt < pixels.length;cnt++){

//Get blue and green values for current pixel.

pixel = pixels[cnt];

green = pixel.getGreen();

blue = pixel.getBlue();

//Compute the column number and use it to compute

// the scale factor.

int col = cnt%width;

greenScale = (double)(width - col)/width;

blueScale = (double)(col)/width;

//Apply the scale factor.

pixel.setGreen((int)(green * greenScale));

pixel.setBlue((int)(blue * blueScale));

}//end for loop

//Display a PictureExplorer object.

pic.explore();

}//end run method

}//end class Prob03Runner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

640 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.227

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

641

3.3.10 Java3006r Review
250

Revised: Sat Apr 02 20:06:54 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 251

• Object-Oriented Programming (OOP) with Java 252

3.3.10.1 Table of Contents

• Preface (p. 645)
• Questions (p. 645)

· 1 (p. 645) , 2 (p. 648) , 3 (p. 648) , 4 (p. 648) , 5 (p. 649) , 6 (p. 649) , 7 (p. 649)

• Figures (p. 649)
• Listings (p. 649)
• Answers (p. 651)
• Miscellaneous (p. 651)

3.3.10.2 Preface

This module contains review questions and answers keyed to the module titled Java3006: Implementing a
space-wise linear color-modi�cation algorithm 253 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

3.3.10.3 Questions

3.3.10.3.1 Question 1 .

True or False? The program shown in Listing 1 (p. 646) will transform the image shown in Figure 1 (p.
647) into the image shown in Figure 2 (p. 647) (or to an image that looks very similar to the image shown
in Figure 2 (p. 647) (p. 647)).

250This content is available online at <http://cnx.org/content/m45768/1.6/>.
251http://cnx.org/contents/dzOvxPFw
252http://cnx.org/contents/-2RmHFs_
253http://cnx.org/content/m44204

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

642 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 1 . Source code for Java3006r.

/*File Java3006r Copyright 2013 R.G.Baldwin

***/

public class Java3006r{

public static void main(String[] args){

Java3006rRunner obj = new Java3006rRunner();

obj.run();

System.out.println(obj.getPicture());

}//end main

}//end class Java3006r

//==//

class Java3006rRunner{

//Instantiate the Picture object.

private Picture pic = new Picture("Java3006r.jpg");

public Java3006rRunner(){//constructor

System.out.println("Dick Baldwin");

}//end constructor

//--//

//Accessor method

public Picture getPicture(){return pic;}

//--//

//This method is where the action is.

public void run(){

pic.addMessage("Dick Baldwin",10,20);

//Display a PictureExplorer object.

pic.explore();

//Get an array of Pixel objects.

Pixel[] pixels = pic.getPixels();

//Declare working variables

Pixel pixel = null;

int green = 0;

int blue = 0;

int width = pic.getWidth();

double greenScale = 0;

double blueScale = 0;

//Scale the blue and green color components according

// to the algorithm given above.

//Do not scale the red component.

for(int cnt = 0;cnt < pixels.length;cnt++){

//Get blue and green values for current pixel.

pixel = pixels[cnt];

green = pixel.getGreen();

blue = pixel.getBlue();

//Compute the column number and use it to compute

// the scale factor.

int col = cnt%width;

greenScale = (double)(width - col)/width;

blueScale = (double)(col)/width;

//Apply the scale factor.

pixel.setGreen((int)(green * greenScale));

pixel.setBlue((int)(blue * blueScale));

}//end for loop

//Display a PictureExplorer object.

pic.explore();

}//end run method

}//end class Java3006rRunner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

643

Table 3.228

Figure 1 (p. 647) - The image from Java3006r.jpg.

Figure 2 (p. 647) - Possible output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

644 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Answer 1 (p. 651)

3.3.10.3.2 Question 2

True or False? The output shown in Figure 2 (p. 647) was produced by calling the show method of
Ericson's Picture class.

Answer 2 (p. 651)

3.3.10.3.3 Question 3

True or False? A call to Ericson's getPixels method returns a reference to a one-dimensional array object.
The elements in the array are references to Pixel objects, where each Pixel object represents a single
pixel in an image.

Answer 3 (p. 651)

3.3.10.3.4 Question 4

True or False? A call to the getWidth method of Ericson's Picture class returns a double value that
speci�es the width of the image in inches.

Answer 4 (p. 651)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

645

3.3.10.3.5 Question 5

True or False? Every array object in Java contains a length property that contains the number of elements
in the array.

Answer 5 (p. 651)

3.3.10.3.6 Question 6

True or False? Having gotten a reference to a Pixel object, the getGreen method can be called on that
reference to get the value of the red color component in the current pixel.

Answer 6 (p. 651)

3.3.10.3.7 Question 7

True or False? Red, green, and blue color values range from 0 to 256.
Answer 7 (p. 651)

3.3.10.4 Figures

• Figure 1 (p. 647) . The image from Java3006r.jpg.
• Figure 2 (p. 647) . Possible output image.

3.3.10.5 Listings

• Listing 1 (p. 646) . Source code for Java3006r.

What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

646 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

647

3.3.10.6 Answers

3.3.10.6.1 Answer 7

False. Red, green, and blue color values range from 0 to 255 .
Back to Question 7 (p. 649)

3.3.10.6.2 Answer 6

False. Having gotten a reference to a Pixel object, the getGreen method can be called on that reference
to get the value of the green color component in the current pixel.

Back to Question 6 (p. 649)

3.3.10.6.3 Answer 5

True.
Back to Question 5 (p. 649)

3.3.10.6.4 Answer 4

False. A call to the getWidth method of Ericson's Picture class returns an int value that speci�es
the width of the image in pixels.

Back to Question 4 (p. 648)

3.3.10.6.5 Answer 3

True.
Back to Question 3 (p. 648)

3.3.10.6.6 Answer 2

False. The output shown in Figure 2 (p. 647) was produced by calling the explore method of Ericson's
Picture class.

Back to Question 2 (p. 648)

3.3.10.6.7 Answer 1

True.
Back to Question 1 (p. 645)

3.3.10.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java3006r Review: Implementing a space-wise linear color-modi�cation algo-
rithm
• File: Java3006r.htm
• Published: 02/12/13

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

648 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.3.11 Java3008: Abstract Methods, Abstract Classes, and Overridden

Methods
254

Revised: Sat Apr 02 20:33:36 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 255

• Object-Oriented Programming (OOP) with Java 256

3.3.11.1 Table of Contents

• Preface (p. 652)

· Viewing tip (p. 653)

* Figures (p. 653)
* Listings (p. 653)

• Preview (p. 653)
• Discussion and sample code (p. 654)
• Run the program (p. 659)
• Summary (p. 659)
• What's next? (p. 659)
• Online video links (p. 659)
• Miscellaneous (p. 659)
• Complete program listings (p. 660)

3.3.11.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

254This content is available online at <http://cnx.org/content/m44205/1.10/>.
255http://cnx.org/contents/dzOvxPFw
256http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

649

3.3.11.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

3.3.11.2.1.1 Figures

• Figure 1 (p. 653) . Program output on the command line screen.
• Figure 2 (p. 657) . Default behavior of the toString method.
• Figure 3 (p. 657) . More on the default behavior of the toString method.

3.3.11.2.1.2 Listings

• Listing 1 (p. 654) . Source code for class Prob04.
• Listing 2 (p. 656) . Beginning of the class named Prob04MyClass.
• Listing 3 (p. 656) . Override the abstract getData method.
• Listing 4 (p. 657) . Override the toString method.
• Listing 5 (p. 661) . Complete program listing.

3.3.11.3 Preview

The program that I will explain in this module produces no graphics and does not require the use of Ericson's
media library.

OOP concepts
The program illustrates the following OOP concepts:

• Extending an abstract class.
• Parameterized constructor.
• De�ning an abstract method in the superclass and overriding it in a subclass.
• Overridden toString method.

Program speci�cations
Write a program named Prob04 that uses the class de�nition shown in Listing 1 (p. 654) to produce

the output on the command-line screen shown in Figure 1 (p. 653) .

Figure 1 . Program output on the command line screen.

Prob04

Dick

Baldwin

95

95

Table 3.229

Pseudo random data
Because the program generates and uses a pseudo random data value each time it is run, the actual

values displayed in the last two lines of Figure 1 (p. 653) will di�er from one run to the next. However, in
all cases, the two values must match.

New classes
You may de�ne new classes as necessary to cause your program to behave as required, but you may not

modify the class de�nition for the class named Prob04 given below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

650 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.11.4 Discussion and sample code

Will explain in fragments
I will explain this program in fragments. A complete listing is provided in Listing 5 (p. 661) near the

end of the module.
I will begin with the driver class named Prob04 , which is shown in its entirety in Listing 1 (p. 654) .

Listing 1 . Source code for class Prob04.

import java.util.*;

abstract class Prob04{

public static void main(String[] args){

Random generator = new Random(new Date().getTime());

int randomNumber = (byte)generator.nextInt();

Prob04 objRef = new Prob04MyClass(randomNumber);

System.out.println(objRef);

System.out.println(objRef.getData());

System.out.println(randomNumber);

}//end main

//Declare the signature of an abstract class.

public abstract int getData();

}//end class Prob04

Table 3.230

The import directive
The import directive at the beginning of Listing 1 (p. 654) is required because the program requires

access to the Random class and the Date class, both of which are de�ned in the java.util package.
Lazy programming practice
It would be better programming practice to provide two explicit import directives, one for the Random

class and the other for the Date class. However, if you are lazy like I apparently was when I wrote this
program, you can use the wildcard character (*) to import all of the classes in a package.

An abstract method
I'm going to begin by skipping down to the second line from the bottom in Listing 1 (p. 654) and explain

the declaration of the abstract method named getData .
Purpose of an abstract method
The purpose of an abstract method declaration is to establish the signature of a method that must be

overridden in every (non-abstract) subclass of the class in which the abstract method is declared.
An incomplete method
As you can see the abstract method has no body. Therefore, it is incomplete, has no behavior, and cannot

be executed.
An abstract method must be overridden in a subclass in order to be useful.
Override in di�erent ways
The same abstract method can be overridden in di�erent ways in di�erent subclasses. In other words, the

behavior of the overridden version can be tailored to (appropriate for) the class in which it is overridden.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

651

A guarantee
The existence of an abstract method in a superclass guarantees that every (non-abstract) subclass of

that superclass will have a concrete (executable) version of a method having that same signature.
An abstract class
The class named Prob04 is declared abstract in Listing 1 (p. 654) .
Any class can be declared abstract. The consequence of declaring a class abstract is that it is not possible

to instantiate an object of the class.
Must be declared abstract...
More importantly, a class must be declared abstract if it contains one or more abstract method decla-

rations. The idea here is that it must not be possible to instantiate objects containing incomplete (non-
executable) methods.

The main method
As you have seen in previous modules, the driver class for every Java application must contain a method

named main with a signature matching that shown in Listing 1 (p. 654) .
A pseudo-random number generator
I will leave it as an exercise for the student to go to the javadocs and read up on the class named

Random , along with the class named Date and the method named getTime .
Why pseudo-random?
I refer to this as a pseudo-random number generator because the sequence will probably repeat after an

extremely large number of values has been generated.
An object of the class Random
Brie�y, however, the �rst statement in the main method in Listing 1 (p. 654) instantiates an object

that will return a pseudo-random number each time certain methods are called on the object.
Seeding the generator
The value passed as a parameter to the Random constructor represents the current time and guarantees

that the series of pseudo-random values returned by the methods will be di�erent each time the program is
run. This is commonly known as seeding the generator.

Get and save a pseudo random value
The next statement in Listing 1 (p. 654) 1 calls the nextInt method on the generator object to get

and save the next value of type int in the pseudo-random sequence.
Cast to type byte
This value is cast to type byte , which discards all but the eight least signi�cant bits of the int value.

When it is stored in the variable named randomNumber of type int , the sign is extended through
the most signi�cant 24 bits and it becomes a value of type int that is guaranteed to be of relatively small
magnitude.

Why cast to byte?
I cast the random value to type byte simply to cause the values that are displayed to be smaller and

easier to compare visually.
Instantiate an object of type Prob04MyClass
The next statement in Listing 1 (p. 654) instantiates an object of the class named Prob04MyClass ,

passing the random value as a parameter to the constructor. At this point, I will put the explanation of the
class named Prob04 on temporary hold and explain the class named Prob04MyClass , which begins
in Listing 2 (p. 656) .

Listing 2 . Beginning of the class named Prob04MyClass.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

652 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

class Prob04MyClass extends Prob04{

private int data;

public Prob04MyClass(int inData){//constructor

System.out.println("Prob04");

System.out.println("Dick");

data = inData;

}//end constructor

Table 3.231

Extends the abstract class named Prob04
First note that the class named Prob04MyClass extends the abstract class named Prob04 .
Among other things, this means that either this class must override the abstract method named getData

that was declared in the superclass, or this class must also be declared abstract.
Does it override getData?
Seeing that this class isn't declared abstract, we can surmise at this point that it does override the

abstract method named getData . We will see more about this later.
Beginning of the class named Prob04MyClass
The class de�nition in Listing 2 (p. 656) begins by declaring a private instance variable of type int

named data . Note that it does not initialize the variable. Therefore, the value is automatically initialized
to an int value of zero.

The constructor
Then Listing 2 (p. 656) de�nes the constructor for the class. The �rst two statements in the constructor

cause the �rst two lines of text shown in Figure 1 (p. 653) to be displayed on the command line screen.
Save the incoming parameter value
The last line in the constructor saves the incoming value in the instance variable named data ,

overwriting the default value of zero that it �nds there.
This statement is more in keeping with the intended usage of a constructor than the �rst two statements.

The primary purpose of a constructor is to assist in the initialization of the state of an object , which
depends on the values stored in its variables.

Override the abstract getData method
Listing 3 (p. 656) overrides the abstract getData method declared in the abstract superclass named

Prob04 and inherited into the subclass named Prob04MyClass .

Listing 3 . Override the abstract getData method.

public int getData(){//overridden abstract method

return data;

}//end getData()

Table 3.232

Very simple behavior
Although the overridden version of the method simply returns a copy of the value stored in the private

instance variable named data , it is concrete (p. 655) and can be executed. We will see later that it is
called in the main method of the driver class named Prob04 in Listing 1 (p. 654) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

653

Override the toString method
The ultimate superclass of every class is the prede�ned system class named Object . The Object

class de�nes eleven methods with default behavior, including the method named toString .
Listing 4 (p. 657) overrides the inherited toString method, overriding the default behavior of the

method insofar as objects of the class named Prob04MyClass are concerned.

Listing 4 . Override the toString method.

public String toString(){//overridden method

return "Baldwin";

}//end overloaded toString()

}//end class Prob04MyClass

Table 3.233

Default behavior of the toString method
If the toString method had not been overridden in the Prob04MyClass class, calling the toString

method on an object of the class would return a string similar to that shown in Figure 2 (p. 657) .

Figure 2 . Default behavior of the toString method .

Prob04MyClass@42e816

Table 3.234

Figure 2 (p. 657) shows the default behavior of the toString method as de�ned in the Object class.
For this program, only the six hexadecimal digits at the end would change from one run to the next.

More on the default behavior of the toString method
Furthermore, if the toString method had not been overridden in the Prob04MyClass class, the

output produced by the program on the command line screen would be similar to that shown in Figure 3
(p. 657) instead of that shown in Figure 1 (p. 653) .

Figure 3 . More on the default behavior of the toString method.

Prob04

Dick

Prob04MyClass@42e816

-34

-34

Table 3.235

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

654 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Compare to see the di�erence
If you compare Figure 3 (p. 657) with Figure 1 (p. 653) , you will see that the di�erence results from

the fact that the overridden version of the toString method in Listing 4 (p. 657) returns "Baldwin" as
a string rather than returning the default string shown in Figure 2 (p. 657) .

The end of the class named Prob04MyClass
Listing 4 (p. 657) signals the end of the class de�nition for the class named Prob04MyClass .

Therefore, it is time to return to the explanation of the driver class shown in Listing 1 (p. 654) .
Display information about the object
When the Prob04MyClass constructor returns, Listing 1 (p. 654) calls the println method passing

a reference to the new object as a parameter.
Many overloaded (not overridden) versions of println
There are many overloaded versions of the println method, each of which requires a di�erent type of

incoming parameter or parameters.
For example, di�erent overloaded versions of the method know how to receive incoming parameters of

each of the di�erent primitive types, convert them to characters, and display the characters on the screen.
An incoming parameter of type Object
There is also an overloaded version of the println method that requires an incoming parameter of type

Object . That is the version of the method that is executed when the reference to this object is passed to
the method in Listing 1 (p. 654) .

One object, several types
Recall that the reference to this object can be treated as its true type, or as the type of any superclass.

Therefore, the reference can be treated as any of the following types:

• Prob04MyClass
• Prob04
• Object

Will satisfy type requirement...
Because it can be treated as type Object , it will satisfy the type requirement for the overloaded

version of the println method that requires an incoming parameter of type Object .
Call the toString method
The �rst thing that this version of the println method does is to call the toString method on the

incoming reference. Then it displays the string value returned by the toString method on the screen.
In this case, the overridden toString method returns the string "Baldwin" , which is what you see

displayed in Figure 1 (p. 653) .
Runtime polymorphism
This is a clear example of an OOP concept known as runtime polymorphism .
Runtime polymorphism is much too complicated to explain in this module. However, I explain it in detail

here 257 and here 258 . I strongly recommend that you study it there until you thoroughly understand it.
A critical concept
It is critical that you understand runtime polymorphism if you expect to go further in Java OOP.
It is almost impossible to write a useful Java application without making heavy use of runtime poly-

morphism. That is the foundation of the event driven Java graphical user interface system as well as the
collections framework.

Call the overridden getData method
The next statement in Listing 1 (p. 654) calls the overridden getData method and displays the return

value.
As you saw earlier, this method returns a copy of the random value that was received and saved by the

constructor for the Prob04MyClass class in Listing 2 (p. 656) .
Display the original random value

257http://cnx.org/contents/dzOvxPFw:rOlnsVRr
258http://cnx.org/contents/1CVBGBJj

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

655

Finally, the last statement in the main method in Listing 1 (p. 654) displays the contents of the
instance variable named randomNumber . This variable contains the random value that was passed to
the constructor for the Prob04MyClass earlier in Listing 1 (p. 654) .

The two values must match
Therefore, the �nal two statements in the main method in Listing 1 (p. 654) display the same random

value. This is shown in the command line screen output in Figure 1 (p. 653) .
The program terminates
After displaying this value, the main method terminates causing the program to terminate.

3.3.11.5 Run the program

I encourage you to copy the code from Listing 5 (p. 661) , compile it and execute it. Experiment with the
code, making changes, and observing the results of your changes. Make certain that you can explain why
your changes behave as they do.

3.3.11.6 Summary

You have learned about abstract methods, abstract classes, and overridden methods in this module. Very
importantly, you have learned about overriding the toString method.

3.3.11.7 What's next?

You will learn more about indirection, array objects, and casting in the next module.

3.3.11.8 Online video links

While not a requirement of the course, you can select the following links to view optional online video lectures
on the material in this module.

• ITSE 2321 Lecture 04 259

· Part01 260

· Part02 261

· Part03 262

· Part04 263

3.3.11.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Abstract Methods, Abstract Classes, and Overridden Methods
• File: Java3008.htm
• Published: 08/02/12

259http://www.youtube.com/playlist?list=PL6C202D624F8C5972
260http://www.youtube.com/watch?v=wReb-ZdxgwQ
261http://www.youtube.com/watch?v=AMe_hVVZ7CA
262http://www.youtube.com/watch?v=DveltVjYqhQ
263http://www.youtube.com/watch?v=EPwoHu3O1ww

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

656 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.3.11.10 Complete program listings

A complete listing of the program discussed in this module is shown in Listing 5 (p. 661) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

657

Listing 5 . Complete program listing.

/*File Prob04 Copyright 2001, R.G.Baldwin

Rev 12/16/08

***/

import java.util.*;

abstract class Prob04{

public static void main(String[] args){

Random generator = new Random(new Date().getTime());

int randomNumber = (byte)generator.nextInt();

Prob04 objRef = new Prob04MyClass(randomNumber);

System.out.println(objRef);

System.out.println(objRef.getData());

System.out.println(randomNumber);

}//end main

//Declare the signature of an abstract class.

public abstract int getData();

}//end class Prob04

//==//

class Prob04MyClass extends Prob04{

private int data;

public Prob04MyClass(int inData){//constructor

System.out.println("Prob04");

System.out.println("Dick");

data = inData;

}//end constructor

public int getData(){//overridden abstract method

return data;

}//end getData()

public String toString(){//overridden method

return "Baldwin";

}//end overloaded toString()

}//end class Prob04MyClass

Table 3.236

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

658 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.12 Java3008r Review
264

Revised: Sat Apr 02 20:52:01 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 265

• Object-Oriented Programming (OOP) with Java 266

3.3.12.1 Table of Contents

• Preface (p. 662)
• Questions (p. 662)

· 1 (p. 662) , 2 (p. 664) , 3 (p. 664) , 4 (p. 664) , 5 (p. 664) , 6 (p. 664) , 7 (p. 664) , 8 (p. 664) ,
9 (p. 665) , 10 (p. 665) , 11 (p. 665) , 12 (p. 665)

• Figures (p. 665)
• Listings (p. 665)
• Answers (p. 667)
• Miscellaneous (p. 668)

3.3.12.2 Preface

This module contains review questions and answers keyed to the module titled Java3008: Abstract Methods,
Abstract Classes, and Overridden Methods 267 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

3.3.12.3 Questions

3.3.12.3.1 Question 1 .

True or False? The code in Listing 1 (p. 663) produces the output shown in Figure 1 (p. 664) where the
two numeric values shown are random but must always match.

264This content is available online at <http://cnx.org/content/m45773/1.4/>.
265http://cnx.org/contents/dzOvxPFw
266http://cnx.org/contents/-2RmHFs_
267http://cnx.org/content/m44205

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

659

Listing 1 . Source code for Java3008r.java.

/*File Java3008r Copyright 2013, R.G.Baldwin

Rev 02/12/13

***/

import java.util.*;

abstract class Java3008r{

public static void main(String[] args){

Random generator = new Random(new Date().getTime());

int randomNumber = (byte)generator.nextInt();

Java3008r objRef = new Java3008rMyClass(randomNumber);

System.out.println(objRef);

System.out.println(objRef.getData());

System.out.println(randomNumber);

}//end main

//Declare the signature of an abstract class.

public abstract int getData();

}//end class Java3008r

//==//

class Java3008rMyClass extends Java3008r{

private int data;

public Java3008rMyClass(int inData){//constructor

System.out.println("Java3008r");

System.out.println("Dick");

data = inData;

}//end constructor

public int getData(){//overridden abstract method

return data;

}//end getData()

}//end class Java3008rMyClass

Table 3.237

.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

660 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 1 . Possible output from the code in Listing 1 (p. 663) .

Java3008r

Dick

Baldwin

-80

-80

Table 3.238

Answer 1 (p. 668)

3.3.12.3.2 Question 2

True or False? The purpose of an abstract method declaration is to establish the signature of a method that
must be overridden in a (non-abstract) subclass of the class in which the abstract method is declared.

Answer 2 (p. 668)

3.3.12.3.3 Question 3

True or False? When an abstract method is executed, it always exhibits default behavior de�ned in the class
in which it is declared.

Answer 3 (p. 667)

3.3.12.3.4 Question 4

True or False? An abstract method must be overridden in a subclass in order to be executed.
Answer 4 (p. 667)

3.3.12.3.5 Question 5

True or False? An abstract method can be overridden once and once only and it must be overridden in the
immediate subclass of the class in which it is declared.

Answer 5 (p. 667)

3.3.12.3.6 Question 6

True or False? The existence of an abstract method in a superclass guarantees that objects instantiated
from every (non-abstract) subclass of that superclass will have a concrete (executable) version of a
method having that same signature.

Answer 6 (p. 667)

3.3.12.3.7 Question 7

True or False? Any class can be declared abstract. The consequence of declaring a class abstract is that it
is not possible to instantiate an object of the class.

Answer 7 (p. 667)

3.3.12.3.8 Question 8

True or False? A class must be declared abstract if it contains two or more abstract method declarations.
Answer 8 (p. 667)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

661

3.3.12.3.9 Question 9

True or False? If a class inherits an abstract method, either the subclass must be declared abstract, or it
must provide a concrete overridden version of the inherited abstract method.

Answer 9 (p. 667)

3.3.12.3.10 Question 10

True or False? The primary purpose of a constructor is to assist in the initialization of the state of an object
, which depends on the values stored in its variables.

Answer 10 (p. 667)

3.3.12.3.11 Question 11

True or False? The default version of the toString method is de�ned in the class named Class .
Answer 11 (p. 667)

3.3.12.3.12 Question 12

True or False? There is an overloaded version of the println method that requires an incoming parameter
of type Object . When that version of the method is called, it calls the toString method on the
incoming object reference and displays the string that is returned by the toString method. If the
toString method belonging to the object has not been overridden, the default version of the toString
method will be executed and the string that will be displayed is the string returned by that default version.
The toString method can be overridden to cause the string that is displayed to be more appropriate for
the object. The toString method can be overridden only once in the class hierarchy.

Answer 12 (p. 667)

3.3.12.4 Figures

• Figure 1 (p. 664) . Possible output from the code in Listing 1 (p. 663) .
• Figure 2 (p. 668) . Output from code in Listing 1 (p. 663) .

3.3.12.5 Listings

• Listing 1 (p. 663) . Source code for Java3008r.java.

What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

662 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

663

3.3.12.6 Answers

3.3.12.6.1 Answer 12

False. The toString method can be overridden by every class that inherits it.
Back to Question 12 (p. 665)

3.3.12.6.2 Answer 11

False. The default version of the toString method is de�ned in the class named Object .
Back to Question 11 (p. 665)

3.3.12.6.3 Answer 10

True.
Back to Question 10 (p. 665)

3.3.12.6.4 Answer 9

True.
Back to Question 9 (p. 665)

3.3.12.6.5 Answer 8

False. A class must be declared abstract if it contains one or more abstract method declarations.
Back to Question 8 (p. 664)

3.3.12.6.6 Answer 7

True.
Back to Question 7 (p. 664)

3.3.12.6.7 Answer 6

True.
Back to Question 6 (p. 664)

3.3.12.6.8 Answer 5

False. The same abstract method can be overridden in di�erent ways in di�erent subclasses. In other words,
the behavior of the overridden version can be tailored to (be appropriate for) the class in which it is
overridden.

Back to Question 5 (p. 664)

3.3.12.6.9 Answer 4

True.
Back to Question 4 (p. 664)

3.3.12.6.10 Answer 3

False. An abstract method has no body. Therefore, it is incomplete, has no behavior, and cannot be
executed.

Back to Question 3 (p. 664)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

664 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.12.6.11 Answer 2

True.
Back to Question 2 (p. 664)

3.3.12.6.12 Answer 1

False. Listing 1 (p. 663) produces the output shown in Figure 2 (p. 668) except that the numeric values
may vary from one run to the next. Note that the toString method is not overridden in Listing 1 (p. 663)
.

Figure 2 . Output from code in Listing 1 (p. 663) .

Java3008r

Dick

Java3008rMyClass@4f1d0d

27

27

Table 3.239

Back to Question 1 (p. 662)

3.3.12.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java3008r Review
• File: Java3008r.htm
• Published: 02/12/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

665

3.3.13 Java3010: Indirection, Array Objects, and Casting
268

Revised: Sun Apr 03 09:25:24 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 269

• Object-Oriented Programming (OOP) with Java 270

3.3.13.1 Table of Contents

• Preface (p. 669)

· Viewing tip (p. 669)

* Figures (p. 669)
* Listings (p. 669)

• Preview (p. 670)
• Discussion and sample code (p. 670)
• Run the program (p. 675)
• Summary (p. 675)
• What's next? (p. 675)
• Online video links (p. 675)
• Miscellaneous (p. 676)
• Complete program listings (p. 676)

3.3.13.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

3.3.13.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

3.3.13.2.1.1 Figures

• Figure 1 (p. 670) . Program output on command line screen.

3.3.13.2.1.2 Listings

• Listing 1 (p. 670) . Beginning of the Prob05 class.
• Listing 2 (p. 672) . The class named Prob05MyClassA.
• Listing 3 (p. 673) . The next statement in the main method.
• Listing 4 (p. 674) . The class named Prob05MyClassB.
• Listing 5 (p. 675) . The end of the main method.
• Listing 6 (p. 677) . Complete program listing.

268This content is available online at <http://cnx.org/content/m44206/1.9/>.
269http://cnx.org/contents/dzOvxPFw
270http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

666 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.13.3 Preview

The program that I will explain in this module produces no graphics and does not require the use of Ericson's
media library.

OOP concepts
The program illustrates the following OOP concepts among others:

• Multiple levels of indirection
• A one-element array of type Object
• Storing a reference to an object in an array element as type Object
• An anonymous object
• Passing a reference to a subclass object as type Object
• Downcasting an incoming object reference to access a method

Program speci�cations
Write a program named Prob05 that uses the class de�nition shown in Listing 1 (p. 670) to produce

an output similar to that shown in Figure 1 (p. 670) on the command-line screen.

Figure 1 . Program output on command line screen.

Prob05

Dick

Baldwin

-28

-28

Table 3.240

A random value
Because the program generates and uses a random data value, the actual values displayed will di�er from

one run to the next. However, in all cases, the two values shown in Figure 1 (p. 670) must match.
New classes
You may de�ne new classes as necessary to cause your program to behave as required, but you may not

modify the class de�nition for the class named Prob05 which begins in Listing 1 (p. 670) .

3.3.13.4 Discussion and sample code

Will explain in fragments
I will explain this program in fragments. A complete listing is provided in Listing 6 (p. 677) near the

end of the module.
I will begin with the driver class named Prob05 , which begins in Listing 1 (p. 670) .

Listing 1 . Beginning of the Prob05 class.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

667

import java.util.*;

class Prob05{

public static void main(String[] args){

Random generator = new Random(new Date().getTime());

int randomNumber = (byte)generator.nextInt();

Object[] objRef = {new Prob05MyClassA(randomNumber)};

Table 3.241

Everything in Listing 1 (p. 670) should be familiar to you with the possible exception of the last statement,
which I will explain shortly.

Characteristics of arrays in Java
Before explaining that statement, however, I will discuss some of the important characteristics of array

objects in Java. A list of such characteristics follows in no particular order:

• All arrays in Java are one-dimensional arrays. (Multidimensional arrays are created by creating tree
structures of one-dimensional arrays.)

• Each array in Java is encapsulated in a special type of object that I will refer to as an array object .
• As with all objects, an array object must be accessed using a reference to the array object.
• When the declared type of an array is one of the eight primitive types, the actual values are stored in

the array elements in the array object.
• When the declared type of an array is the type of an object (array object or ordinary object), references

to the objects are stored in the array elements and the objects actually exist elsewhere in memory.
• As with instance variables, the elements in an array are typically initialized with the standard default

values for the types involved (zero, false, or null) . That is not the case in this program however.
• The array that is encapsulated in an array object may have none, one, or more elements. (Yes, it is

possible for a Java array to have no elements, but that normally occurs only in special circumstances.)

• The length or size of the array is established when the array object is instantiated and cannot be
changed thereafter.

• Every array object contains a special property named length that contains the number of elements
in an array. It is always possible to determine the number of elements in an array object at runtime
by accessing the value of the length property for the array object.

A special instantiation syntax
There is a special syntax that allows for the instantiation of an array object and the initialization of the

array elements in a single statement. (I explain this here 271 , here 272 , and here 273 so you should already
know all about it.) The last statement in Listing 1 (p. 670) is an example of this syntax.

Brie�y, the syntax consists of a comma separated list of element values (expressions) inside a pair of
matching curly braces. The length of the array is determined by the number of values in the list. The
type of the array is determined by the types of the elements in the list.

This syntax instantiates an array object of the correct length and populates the elements with the
speci�ed values.

A reference is returned
271http://cnx.org/contents/1CVBGBJj:Fj8xxCSh
272http://cnx.org/contents/dzOvxPFw:XQBfo3b_
273http://cnx.org/contents/EHRr6hjR:LYyIoCvP

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

668 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

A reference to the array object is returned in much the same way that a constructor for an ordinary
object returns a reference to the object.

As is always the case, if the reference is stored in a variable, the type of the reference must be assignment
compatible with the type of the variable.

What is assignment compatible?
If you have forgotten what this term means, I recommend that you go to Google and search for the

following keywords to learn more about it:

site:http://cnx.org/contents/ "assignment compatible" java

A one-element array
The last statement in Listing 1 (p. 670) instantiates an array object containing a one-element array. The

array element is initialized with a reference to a new object of type Prob05MyClassA , which exists
somewhere else in memory.

The value of a random number that was generated earlier in the main method is passed as a parameter
to the constructor for the object of type Prob05MyClassA .

Save the reference to the array object
The reference to the array object is stored in the local reference variable named objRef of type Object

. We know that the reference is assignment compatible with this reference variable because the Object
type is completely generic. All non-primitive types are assignment compatible with type Object .

The class named Prob05MyClassA
At this point, I am going to put the explanation of the class named Prob05 temporarily on hold and

explain the class named Prob05MyClassA , which is shown in its entirety in Listing 2 (p. 672) .

Listing 2 . The class named Prob05MyClassA.

class Prob05MyClassA extends Prob05{

private int data;

public Prob05MyClassA(int inData){

System.out.println("Prob05");

System.out.println("Dick");

data = inData;

}//end constructor

public int getData(){

return data;

}//end getData()

}//end class Prob05MyClassA

Table 3.242

Note that the class named Prob05MyClassA extends the class named Prob05 , which is partially
shown in Listing 1 (p. 670) .

Familiar code
All of the code in Listing 2 (p. 672) should be familiar to you because it is very similar to the code in

the previous module. Therefore, no explanation of Listing 2 (p. 672) is warranted.
Save the incoming value

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

669

In summary, when the object of type Prob05MyClassA is instantiated, it saves the value of an
incoming constructor parameter in a private instance variable.

Return the saved value
When the method named getData is called on a reference to the object, it returns a copy of that value.
A review
To review what I have already said, the array object that was instantiated in Listing 1 (p. 670) contains

a reference to this object of type Prob05MyClassA in the only element of the one-element array.
The reference to the array object is stored in the reference variable named objRef .
Indirection at work
At this point, objRef contains a reference to an array object, one element of which contains a reference

to an ordinary object, which is located somewhere else in memory. This is indirection.
The next statement in the main method
Returning now to the main method that began in Listing 1 (p. 670) , Listing 3 (p. 673) shows the

next statement in the main method following the last statement in Listing 1 (p. 670) .

Listing 3 . The next statement in the main method.

System.out.println(

new Prob05MyClassB().getDataFromObj(objRef[0]));

Table 3.243

What is an anonymous object?
An anonymous object is an object whose reference is not saved in a named reference variable.
Instantiate an anonymous object
Consider the parameter list of the println method shown in Listing 3 (p. 673) . A new object of the

Prob05MyClassB class is instantiated in the parameter list. However, the reference to that object is not
saved in a named reference variable. Instead, that reference is used to immediately call the method named
getDataFromObj that belongs to the anonymous object.

The parameter that is passed...
Now consider the parameter that is passed to the method named getDataFromObj . The expression

inside that parameter list extracts the contents of the zeroth element in the array object that is referred to
by the contents of the variable named objRef .

And those contents are...
That element contains a reference to an object of the class Prob05MyClassA (see Listing 1 (p. 670)

) .
Therefore, a reference to an object of type Prob05MyClassA is passed as a parameter to the method

named getDataFromObj .
The class named Prob05MyClassB
It is time to take a look at the class in which the getDataFromObj method is de�ned.
The class named Prob05MyClassB is shown in its entirety in Listing 4 (p. 674) .

Listing 4 . The class named Prob05MyClassB.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

670 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

class Prob05MyClassB{

Prob05MyClassB(){

System.out.println("Baldwin");

}//end constructor

public int getDataFromObj(Object refToObj){

return ((Prob05MyClassA)refToObj).getData();

}//end getDataFromObj()

}//end class Prob05MyClassB

Table 3.244

Extends the Object class
Note that this class does not extend the class named Prob05 . In fact, it doesn't explicitly extend any

class. This means that it extends the class named Object by default because every class is a subclass of
the class named Object .

The constructor
The constructor for this class is inconsequential. It simply displays my last name when the object is

instantiated, producing part of the output text shown in Figure 1 (p. 670) .
The getDataFromObj method
The interesting part of Listing 4 (p. 674) is the de�nition of the method named getDataFromObj .
As we saw before, this method receives a reference to an object of type Prob05MyClassA (see Listing

3 (p. 673)) . However, this reference is not received as the true type of the object. Instead, it is received
as type Object , which is the ultimate superclass of the class named Prob05MyClassA .

The objective of the method
The objective is to call the method named getData on the incoming reference. However, the Object

class doesn't know anything about a method named getData because the Object class neither de�nes
nor inherits a method having that signature. Instead, the getData method is de�ned in the class named
Prob05MyClassA , which is the true type of the object.

A cast is required
Therefore, it is necessary to convert the type of the reference back to its true type using a cast operator

before that reference can be used to call the method named getData . (The cast operator is shown in
Listing 4 (p. 674) .)

The returned value
The getData method returns a copy of the value that was passed as a constructor parameter when the

object was instantiated. (See Listing 2 (p. 672) .) Recall that the value was the original random value.
(See Listing 1 (p. 670) .)

Referring back to Listing 4 (p. 674) , that is the value that is returned from the call to the getDataFro-
mObj method in Listing 3 (p. 673) , which cause the value to be displayed as the �rst numeric value in
Figure 1 (p. 670) .

The end of the main method
Returning once more to the main method and picking up where we left o� in Listing 3 (p. 673) ,

Listing 5 (p. 675) shows the �nal statement in the main method.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

671

Listing 5 . The end of the main method.

System.out.println(randomNumber);

}//end main

}//end class Prob05

Table 3.245

This statement simply displays the original random value that was passed to the constructor for the
Prob05MyClassA in Listing 1 (p. 670) . This statement displays the second numeric value shown as the
last line of text in Figure 1 (p. 670) .

The end of the program
At this point, the main method terminates causing the program to terminate.

3.3.13.5 Run the program

I encourage you to copy the code from Listing 6 (p. 677) , compile it and execute it. Experiment with the
code, making changes, and observing the results of your changes. Make certain that you can explain why
your changes behave as they do.

3.3.13.6 Summary

You learned about the following OOP concepts, among others in this module.

• Multiple levels of indirection
• A one-element array of type Object
• Storing a reference to an object in an array element as type Object
• An anonymous object
• Passing a reference to a subclass object as type Object
• Downcasting an incoming object reference to access a method

3.3.13.7 What's next?

You will learn how to use nested loops to process pixels on a row and column basis in the next module.

3.3.13.8 Online video links

While not a requirement of the course, you can select the following links to view optional online video lectures
on the material in this module.

• ITSE 2321 Lecture 05 274

· Part01 275

· Part02 276

· Part03 277

274http://www.youtube.com/playlist?list=PL13622F7BA83F110C
275http://www.youtube.com/watch?v=Ow_XzlSrmsw
276http://www.youtube.com/watch?v=UiT_ZYtNqWo
277http://www.youtube.com/watch?v=fCiMM4ps3o4

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

672 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.13.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Indirection, Array Objects, and Casting
• File: Java3010.htm
• Published: 08/02/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.3.13.10 Complete program listings

A complete listing of the program discussed in this module is shown in Listing 6 (p. 677) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

673

Listing 6 . Complete program listing.

/*File Prob05 Copyright 2001, R.G.Baldwin

Rev 12/16/08

***/

import java.util.*;

class Prob05{

public static void main(String[] args){

Random generator = new Random(new Date().getTime());

int randomNumber = (byte)generator.nextInt();

Object[] objRef = {new Prob05MyClassA(randomNumber)};

System.out.println(

new Prob05MyClassB().getDataFromObj(objRef[0]));

System.out.println(randomNumber);

}//end main

}//end class Prob05

//==//

class Prob05MyClassA extends Prob05{

private int data;

public Prob05MyClassA(int inData){

System.out.println("Prob05");

System.out.println("Dick");

data = inData;

}//end constructor

public int getData(){

return data;

}//end getData()

}//end class Prob05MyClassA

//==//

class Prob05MyClassB{

Prob05MyClassB(){

System.out.println("Baldwin");

}//end constructor

public int getDataFromObj(Object refToObj){

return ((Prob05MyClassA)refToObj).getData();

}//end getDataFromObj()

}//end class Prob05MyClassB

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

674 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.246

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

675

3.3.14 Java3010r Review
278

Revised: Sun Apr 03 10:26:37 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 279

• Object-Oriented Programming (OOP) with Java 280

3.3.14.1 Table of Contents

• Preface (p. 679)
• Questions (p. 679)

· 1 (p. 679) , 2 (p. 681) , 3 (p. 681) , 4 (p. 681) , 5 (p. 681) , 6 (p. 681) , 7 (p. 681) , 8 (p. 682) ,
9 (p. 682) , 10 (p. 682) , 11 (p. 682) , 12 (p. 682) , 13 (p. 682)

• Figures (p. 684)
• Listings (p. 684)
• Answers (p. 686)
• Miscellaneous (p. 688)

3.3.14.2 Preface

This module contains review questions and answers keyed to the module titled Java3010: Indirection, Array
Objects, and Casting 281 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

3.3.14.3 Questions

3.3.14.3.1 Question 1 .

True or False? The code shown in Listing 1 (p. 680) produces the output shown in Figure 1 (p. 681) where
the numeric values are random and vary from one run to the next.

278This content is available online at <http://cnx.org/content/m45774/1.6/>.
279http://cnx.org/contents/dzOvxPFw
280http://cnx.org/contents/-2RmHFs_
281http://cnx.org/content/m44206

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

676 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 1 . Question 1.

/*File Java3010ra Copyright 2013, R.G.Baldwin

Rev 02/14/13

***/

import java.util.*;

class Java3010ra{

public static void main(String[] args){

Random generator = new Random(new Date().getTime());

int randomNumber = (byte)generator.nextInt();

Object[] objRef = [new Java3010raMyClassA(randomNumber)];

System.out.println(

new Java3010raMyClassB().getDataFromObj(objRef[0]));

System.out.println(randomNumber);

}//end main

}//end class Java3010ra

//==//

class Java3010raMyClassA extends Java3010ra{

private int data;

public Java3010raMyClassA(int inData){

System.out.println("Java3010ra");

System.out.println("Dick");

data = inData;

}//end constructor

public int getData(){

return data;

}//end getData()

}//end class Java3010raMyClassA

//==//

class Java3010raMyClassB{

Java3010raMyClassB(){

System.out.println("Baldwin");

}//end constructor

public int getDataFromObj(Object refToObj){

return ((Java3010raMyClassA)refToObj).getData();

}//end getDataFromObj()

}//end class Java3010raMyClassB

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

677

Table 3.247

Figure 1 . Question 1.

Java3010ra

Dick

Baldwin

-37

-37

Table 3.248

Answer 1 (p. 687)

3.3.14.3.2 Question 2

True or False? All array objects in Java contain one-dimensional array structures.
Answer 2 (p. 687)

3.3.14.3.3 Question 3

True or False? Each array in Java is encapsulated in an array object. An array object must be accessed
using a reference to the array object.

Answer 3 (p. 687)

3.3.14.3.4 Question 4

True or False? When the declared type of an array is one of the eight primitive types, the actual values are
stored in the array elements in the array object.

Answer 4 (p. 687)

3.3.14.3.5 Question 5

True or False? When the declared type of an array is the type of an object (array object or ordinary object)
, those objects are stored in the array elements.

Answer 5 (p. 687)

3.3.14.3.6 Question 6

True or False? Unless code is written to do otherwise, the elements in a new array object are initialized with
the standard default values for the types involved (zero, true, or null) .

Answer 6 (p. 687)

3.3.14.3.7 Question 7

True or False? The array structure that is encapsulated in an array object must have one, or more elements.
Answer 7 (p. 687)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

678 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.14.3.8 Question 8

True or False? The length or size of the array is established when the array object is instantiated and
cannot be changed thereafter.

Answer 8 (p. 687)

3.3.14.3.9 Question 9

True or False? Every array object contains a special property named size that contains the number of
elements in an array. It is always possible to determine the number of elements in an array object at runtime
by accessing the value of the size property for the array object.

Answer 9 (p. 687)

3.3.14.3.10 Question 10

True or False? There is a special syntax that allows for the instantiation of an array object and the
initialization of the array elements in a single statement.

Answer 10 (p. 686)

3.3.14.3.11 Question 11

True or False? An anonymous class is an object whose reference is not saved in a named reference variable.
Answer 11 (p. 686)

3.3.14.3.12 Question 12

True or False? Every class that doesn't explicitly extend another class automatically extends the class named
Class .
Answer 12 (p. 686)

3.3.14.3.13 Question 13

True or False? The code shown in Listing 3 (p. 683) produces the output shown in Figure 3 (p. 684) where
the numeric values are random and vary from one run to the next.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

679

Listing 3 . Question 13.

/*File Java3010rb Copyright 2013, R.G.Baldwin

Rev 02/14/13

***/

import java.util.*;

class Java3010rb{

public static void main(String[] args){

Random generator = new Random(new Date().getTime());

int randomNumber = (byte)generator.nextInt();

Object[] objRef = {new Java3010rbMyClassA(randomNumber)};

System.out.println(

new Java3010rbMyClassB().getDataFromObj(objRef[0]));

System.out.println(randomNumber);

}//end main

}//end class Java3010rb

//==//

class Java3010rbMyClassA extends Java3010rb{

private int data;

public Java3010rbMyClassA(int inData){

System.out.println("Java3010rb");

System.out.println("Dick");

data = inData;

}//end constructor

public int getData(){

return data;

}//end getData()

}//end class Java3010rbMyClassA

//==//

class Java3010rbMyClassB{

Java3010rbMyClassB(){

System.out.println("Baldwin");

}//end constructor

public int getDataFromObj(Object refToObj){

return refToObj.getData();

}//end getDataFromObj()

}//end class Java3010rbMyClassB

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

680 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.249

Figure 3 . Question 13.

Java3010rb

Dick

Baldwin

120

120

Table 3.250

Answer 13 (p. 686)

3.3.14.4 Figures

• Figure 1 (p. 681) . Question 1.
• Figure 2 (p. 688) . Answer 1.
• Figure 3 (p. 684) . Question 13.
• Figure 4 (p. 686) . Answer 13.

3.3.14.5 Listings

• Listing 1 (p. 680) . Question 1.
• Listing 2 (p. 686) . Answer 10.
• Listing 3 (p. 683) . Question 13.

What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

681

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

682 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.14.6 Answers

3.3.14.6.1 Answer 13

False: The code shown in Listing 3 (p. 683) produces the compiler error shown in Figure 4 (p. 686) . A cast
is required to �x the problem.

Figure 4 . Answer 13.

Java3010rb.java:47: error: cannot find symbol

return (refToObj).getData();

^

symbol: method getData()

location: variable refToObj of type Object

1 error

Table 3.251

Back to Question 13 (p. 682)

3.3.14.6.2 Answer 12

False. Every class that doesn't explicitly extend another class automatically extends the class named Object
.

Back to Question 12 (p. 682)

3.3.14.6.3 Answer 11

False. An anonymous object is an object whose reference is not saved in a named reference variable. An
anonymous class is something entirely di�erent.

Back to Question 11 (p. 682)

3.3.14.6.4 Answer 10

True. Listing 2 (p. 686) shows an example of this syntax. (Note the use of the curly brackets in Listing 2
(p. 686) as opposed to the use of square brackets in Listing 1 (p. 680) .)

Listing 2 . Answer 10.

Object[] objRef = {new Java3010raMyClassA(randomNumber)};

Table 3.252

Back to Question 10 (p. 682)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

683

3.3.14.6.5 Answer 9

False. Every array object contains a special property named length that contains the number of elements
in an array. It is always possible to determine the number of elements in an array object at runtime by
accessing the value of the length property for the array object.

Back to Question 9 (p. 682)

3.3.14.6.6 Answer 8

True.
Back to Question 8 (p. 682)

3.3.14.6.7 Answer 7

False. The array structure that is encapsulated in an array object may have none, one, or more elements.
Back to Question 7 (p. 681)

3.3.14.6.8 Answer 6

False. Unless code is written to do otherwise, the elements in a new array object are initialized with the
standard default values for the types involved (zero, false , or null) .

Back to Question 6 (p. 681)

3.3.14.6.9 Answer 5

False. When the declared type of an array is the type of an object (array object or ordinary object),
references to the objects are stored in the array elements and the objects actually exist elsewhere in memory.

Back to Question 5 (p. 681)

3.3.14.6.10 Answer 4

True.
Back to Question 4 (p. 681)

3.3.14.6.11 Answer 3

True.
Back to Question 3 (p. 681)

3.3.14.6.12 Answer 2

True. Multidimensional arrays are created by creating tree structures of one-dimensional array objects.
Back to Question 2 (p. 681)

3.3.14.6.13 Answer 1

False. The program produces the compiler error shown in Figure 2 (p. 688) .

Figure 2 . Answer 1.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

684 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Java3010ra.java:12: error: illegal start of expression

Object[] objRef = [new Java3010raMyClassA(randomNumber)];

^

Java3010ra.java:12: error: ';' expected

Object[] objRef = [new Java3010raMyClassA(randomNumber)];

Table 3.253

Back to Question 1 (p. 679)

3.3.14.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java3010r Review
• File: Java3010.htm
• Published: 02/14/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.3.15 Java3012: Using Nested Loops to Process Pixels
282

Revised: Sun Apr 03 10:54:26 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 283

• Object-Oriented Programming (OOP) with Java 284

282This content is available online at <http://cnx.org/content/m44207/1.11/>.
283http://cnx.org/contents/dzOvxPFw
284http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

685

3.3.15.1 Table of Contents

• Preface (p. 689)

· Viewing tip (p. 689)

* Figures (p. 689)
* Listings (p. 689)

• Preview (p. 690)
• General background information (p. 691)
• Discussion and sample code (p. 692)
• Run the program (p. 696)
• Summary (p. 696)
• What's next? (p. 696)
• Online video links (p. 697)
• Miscellaneous (p. 697)
• Complete program listing (p. 697)

3.3.15.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 285 .

3.3.15.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

3.3.15.2.1.1 Figures

• Figure 1 (p. 690) . Raw image.
• Figure 2 (p. 690) . Modi�ed image.
• Figure 3 (p. 691) . Required text output.

3.3.15.2.1.2 Listings

• Listing 1 (p. 692) . The driver class named Prob01.
• Listing 2 (p. 692) . The constructor for the class named Prob01Runner.
• Listing 3 (p. 693) . Beginning of the method named run.
• Listing 4 (p. 693) . Beginning of the mirrorUpperQuads method.
• Listing 5 (p. 694) . Mirror pixel colors around the midpoint.
• Listing 6 (p. 695) . Remainder of the run method.
• Listing 7 (p. 696) . The method named mirrorHoriz.
• Listing 8 (p. 699) . Complete program listing..

285http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

686 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.15.3 Preview

In this module, you will learn how to use nested for loops to process pixels on a row and column basis.
Program speci�cations
Write a program named Prob01 that uses the class de�nition shown in Listing 1 (p. 692) along with

Ericson's media library and the image �le named Prob01.jpg to produce the graphic output images shown
in Figure 1 (p. 690) and Figure 2 (p. 690) .

Figure 1 (p. 690) - Raw image.

Figure 2 (p. 690) - Modi�ed image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

687

De�ne new classes
You may de�ne new classes as necessary to cause your program to behave as required, but you may not

modify the class de�nition for the class named Prob01 given in Listing 1 (p. 692) .
Required text output
In addition to the two output images mentioned above, your program must display your name and the

other line of text shown in Figure 3 (p. 691) on the command-line screen.

Figure 3 . Required text output.

Display your name here.

Picture, filename Prob01.jpg height 240 width 320

Table 3.254

3.3.15.3.1 General background information

This program mirrors an image in such a way that the image in each quadrant is a mirror image of the image
in the two adjacent quadrants as shown in Figure 2 (p. 690) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

688 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

The top left quadrant is mirrored into the top right quadrant, and then the top half is mirrored into the
bottom half.

Major evaluation areas
In order to successfully write this program, the student must be able to:

• Examine the input and output images and determine how the input image has been modi�ed to produce
the output image.

• Manipulate the individual pixels in the image to perform the required modi�cations.

3.3.15.4 Discussion and sample code

Will discuss in fragments
I will discuss this program in fragments. A complete listing of the program is provided in Listing 8 (p.

699) near the end of the module.
The driver class named Prob01
The driver class containing the main method is shown in Listing 1 (p. 692) .

Listing 1 . The driver class named Prob01.

public class Prob01{

public static void main(String[] args){

Picture pic = new Prob01Runner().run();

System.out.println(pic);

}//end main method

}//end class Prob01

Table 3.255

There is nothing in Listing 1 (p. 692) that I haven't explained in earlier modules.
The println statement in Listing 1 (p. 692) causes the second line of text to be displayed in Figure 3

(p. 691) .
The constructor for the class named Prob01Runner
The constructor for the class named Prob01Runner is shown in Listing 2 (p. 692) .

Listing 2 . The constructor for the class named Prob01Runner .

class Prob01Runner{

public Prob01Runner(){

System.out.println("Display your name here.");

}//end constructor

Table 3.256

The code in Listing 2 (p. 692) simply causes the �rst line of text in Figure 3 (p. 691) to be displayed on
the command line screen.

Beginning of the method named run

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

689

The code in the driver class in Listing 1 (p. 692) instantiates a new object of the Prob01Runner class
and immediately calls the run method belonging to that object. The run method begins in Listing 3
(p. 693) .

Listing 3 . Beginning of the method named run.

public Picture run(){

Picture pix = new Picture("Prob01.jpg");

//Display the input picture.

pix.explore();

//Call the mirrorUpperQuads method to modify the top

// half of the picture.

pix = mirrorUpperQuads(pix);

Table 3.257

A new Picture object
Listing 3 (p. 693) instantiates a new Picture object from an image �le and saves a reference to that

object in the local variable named pix .
Display the Picture object
Then Listing 3 (p. 693) calls the explore method on the reference producing the output image shown

in Figure 1 (p. 690) .
Modify top half of the picture
Finally, Listing 3 (p. 693) calls the method named mirrorUpperQuads to mirror the upper-left

quadrant of the picture into the upper-right quadrant. A copy of a reference to the picture object is passed
to the method and the value returned by the method is saved in the variable named pix . (I will have
more to say about this later.)

Put the explanation of the run method on hold
I will put the explanation of the run method on hold temporarily and explain the method named

mirrorUpperQuads .
Beginning of the mirrorUpperQuads method
The beginning of the mirrorUpperQuads method is shown in Listing 4 (p. 693) .

Listing 4 . Beginning of the mirrorUpperQuads method.

private Picture mirrorUpperQuads(Picture pix){

Pixel leftPixel = null;

Pixel rightPixel = null;

int midpoint = pix.getWidth()/2;

int width = pix.getWidth();

Table 3.258

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

690 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Note that the method receives a copy of a reference to the picture.
Declare working variables
The code in Listing 4 (p. 693) begins by declaring a pair of local working variables of type Pixel .

These variables will be used to hold information about individual pixels.
Compute width and midpoint of the image
Then Listing 4 (p. 693) computes and saves the width and the horizontal midpoint of the image.
Mirror pixel colors around the midpoint
Listing 5 (p. 694) uses a pair of nested for loops to copy the pixel colors on the left of the midpoint to

corresponding mirror-image pixels on the right side of the midpoint.

Listing 5 . Mirror pixel colors around the midpoint.

for(int row = 0;row < pix.getHeight()/2;row++){

for(int col = 0;col < midpoint;col++){

leftPixel = pix.getPixel(col,row);

rightPixel = pix.getPixel(width-1-col,row);

rightPixel.setColor(leftPixel.getColor());

}//end inner loop

}//end outer loop

return pix;

}//end mirrorUpperQuads

Table 3.259

Iterate on rows and columns
The outer loop in Listing 5 (p. 694) iterates down through each of the rows in the top half of the image.
The inner loop iterates across the left half of each row, copying the color of the pixels from the left half

to the corresponding mirror-image pixels on the right half.

Note that the getPixel method that is called in Listing 5 (p. 694) is di�erent from the getPixels
method that was explained in several earlier pages in this book. You can easily �nd those references
by entering the term getPixels in the search box at the top of this page that reads "Search
this book." I will leave it as an exercise for the student to go to the documentation and learn the
di�erence between these two methods.

Return a reference to the modi�ed object
Finally, Listing 5 (p. 694) returns a reference to the modi�ed Picture object. The reference is assigned

to the variable named pix in Listing 3 (p. 693) .
Super�uous but self-documenting code
Returning and storing a reference to the modi�ed picture is super�uous and unnecessary. The code in

Listing 3 (p. 693) already has a reference to the picture and that reference doesn't change just because the
object to which it refers is modi�ed.

However, I prefer this programming style because I consider it to be more self-documenting.
Remainder of the run method
Returning now to the run method, Listing 6 (p. 695) calls the method named mirrorHoriz to mirror

the top half of the image into the bottom half. (I will explain the mirrorHoriz method shortly.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

691

Listing 6 . Remainder of the run method.

//Mirror the top half into the bottom half.

pix = mirrorHoriz(pix);

//Add your name and display the output picture.

pix.addMessage("Display your name here.",10,20);

pix.explore();

return pix;

}//end run

Table 3.260

Display text on the image
Then Listing 6 (p. 695) calls the addMessage method on the reference to the picture to place the text

near the upper-left corner as shown in Figure 2 (p. 690) .
Display the modi�ed image
After that, Listing 6 (p. 695) calls the explore method to display the modi�ed image as shown in

Figure 2 (p. 690) .
Return a reference to the modi�ed picture
Finally, Listing 6 (p. 695) returns the reference to the modi�ed picture, which is saved in the variable

named pic in Listing 1 (p. 692) .
As mentioned earlier, the variable named pic is passed to the println method in Listing 1 (p. 692) ,

causing the second line of text shown in Figure 3 (p. 691) to be displayed on the command line screen.
The method named mirrorHoriz
Listing 7 (p. 696) shows the method named mirrorHoriz in its entirety. This method mirrors the top

half of the picture into the bottom half.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

692 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 7 . The method named mirrorHoriz.

private Picture mirrorHoriz(Picture pix){

Pixel topPixel = null;

Pixel bottomPixel = null;

int midpoint = pix.getHeight()/2;

int height = pix.getHeight();

for(int col = 0;col < pix.getWidth();col++){

for(int row = 0;row < midpoint;row++){

topPixel = pix.getPixel(col,row);

bottomPixel =

pix.getPixel(col,height-1-row);

bottomPixel.setColor(topPixel.getColor());

}//end inner loop

}//end outer loop

return pix;

}//end mirrorHoriz

//--//

}//end class Prob01Runner

Table 3.261

Very similar to an earlier method
This method is very similar to the method named mirrorUpperQuads that I explained in Listing

4 (p. 693) and Listing 5 (p. 694) . If you understood that explanation, you should have no di�culty
understanding the code in Listing 7 (p. 696) without further explanation.

End of Prob01Runner class
Listing 7 (p. 696) also signals the end of the class named Prob01Runner .

3.3.15.4.1 Run the program

I encourage you to copy the code from Listing 8 (p. 699) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

Click here 286 to download the required input image �le.

3.3.15.5 Summary

In this module, you learned how to use nested for loops to process pixels on a row and column basis.

3.3.15.6 What's next?

You will learn to crop, �ip, and combine pictures in the next module.

286http://cnx.org/content/m44207/latest/Prob01.jpg

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

693

3.3.15.7 Online video links

While not a requirement of the course, you can select the following links to view optional online video lectures
on the material in this module.

• ITSE 2321 Lecture 06 287

· Part01 288

· Part02 289

3.3.15.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Using Nested Loops to Process Pixels
• File: Java3012.htm
• Published: 07/31/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.3.15.9 Complete program listing

A complete listing of the program discussed in this module is shown in Listing 8 (p. 699) below.

287http://www.youtube.com/playlist?list=PLB8C60363CB918BAA
288http://www.youtube.com/watch?v=JOhc503IPj8
289http://www.youtube.com/watch?v=vQBdVdqAxq4

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

694 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

695

Listing 8 . Complete program listing.

/*File Prob01 Copyright 2008 R.G.Baldwin

Revised 12/16/08

***/

public class Prob01{

public static void main(String[] args){

Picture pic = new Prob01Runner().run();

System.out.println(pic);

}//end main method

}//end class Prob01

//==//

class Prob01Runner{

public Prob01Runner(){

System.out.println("Display your name here.");

}//end constructor

//--//

public Picture run(){

Picture pix = new Picture("Prob01.jpg");

//Display the input picture.

pix.explore();

//Call the mirrorUpperQuads method to modify the top

// half of the picture.

pix = mirrorUpperQuads(pix);

//Mirror the top half into the bottom half.

pix = mirrorHoriz(pix);

//Add your name and display the output picture.

pix.addMessage("Display your name here.",10,20);

pix.explore();

return pix;

}//end run

//--//

//This method mirrors the upper-left quadrant of a

// picture into the upper-right quadrant.

private Picture mirrorUpperQuads(Picture pix){

Pixel leftPixel = null;

Pixel rightPixel = null;

int midpoint = pix.getWidth()/2;

int width = pix.getWidth();

for(int row = 0;row < pix.getHeight()/2;row++){

for(int col = 0;col < midpoint;col++){

leftPixel = pix.getPixel(col,row);

rightPixel =

pix.getPixel(width-1-col,row);

rightPixel.setColor(leftPixel.getColor());

}//end inner loop

}//end outer loop

return pix;

}//end mirrorUpperQuads

//--//

//This method mirrors the top half of a picture into

// the bottom half.

private Picture mirrorHoriz(Picture pix){

Pixel topPixel = null;

Pixel bottomPixel = null;

int midpoint = pix.getHeight()/2;

int height = pix.getHeight();

for(int col = 0;col < pix.getWidth();col++){

for(int row = 0;row < midpoint;row++){

topPixel = pix.getPixel(col,row);

bottomPixel =

pix.getPixel(col,height-1-row);

bottomPixel.setColor(topPixel.getColor());

}//end inner loop

}//end outer loop

return pix;

}//end mirrorHoriz

//--//

}//end class Prob01Runner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

696 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.262

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

697

3.3.16 Java3012r Review
290

Revised: Sun Apr 03 11:21:18 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 291

• Object-Oriented Programming (OOP) with Java 292

3.3.16.1 Table of Contents

• Preface (p. 701)
• Questions (p. 701)

· 1 (p. 701) , 2 (p. 704) , 3 (p. 705) , 4 (p. 705)

• Figures (p. 705)
• Listings (p. 705)
• Answers (p. 707)
• Miscellaneous (p. 707)

3.3.16.2 Preface

This module contains review questions and answers keyed to the module titled Java3012: Using Nested
Loops to Process Pixels 293 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

3.3.16.3 Questions

3.3.16.3.1 Question 1 .

True or False? The code shown in Listing 1 (p. 702) will transform the image shown in Figure 1 (p. 703)
into the image shown in Figure 2 (p. 703) .

290This content is available online at <http://cnx.org/content/m45775/1.5/>.
291http://cnx.org/contents/dzOvxPFw
292http://cnx.org/contents/-2RmHFs_
293http://cnx.org/content/m44207

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

698 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 1 . Question 1.

/*File Java3012ra Copyright 2008 R.G.Baldwin

Revised 02/14/13

***/

public class Java3012ra{

public static void main(String[] args){

new Java3012raRunner().run();

}//end main method

}//end class Java3012ra

//==//

class Java3012raRunner{

public Java3012raRunner(){

System.out.println("Display your name here.");

}//end constructor

//--//

public void run(){

Picture pix = new Picture("Java3012ra.jpg");

//Call the mirrorUpperQuads method to modify the top

// half of the picture.

pix = mirrorUpperQuads(pix);

//Mirror the top half into the bottom half.

pix = mirrorHoriz(pix);

//Add your name and display the output picture.

pix.addMessage("Display your name here.",10,20);

pix.explore();

}//end run

//--//

//This method mirrors the upper-left quadrant of a

// picture into the upper-right quadrant.

private Picture mirrorUpperQuads(Picture pix){

Pixel leftPixel = null;

Pixel rightPixel = null;

int midpoint = pix.getWidth()/2;

int width = pix.getWidth();

for(int row = 0;row < pix.getHeight()/2;row++){

for(int col = 0;col < midpoint;col++){

leftPixel = pix.getPixel(col,row);

rightPixel =

pix.getPixel(width-1-col,row);

rightPixel.setColor(leftPixel.getColor());

}//end inner loop

}//end outer loop

return pix;

}//end mirrorUpperQuads

//--//

//This method mirrors the top half of a picture into

// the bottom half.

private Picture mirrorHoriz(Picture pix){

Pixel topPixel = null;

Pixel bottomPixel = null;

int midpoint = pix.getHeight()/2;

int height = pix.getHeight();

for(int col = 0;col < pix.getWidth();col++){

for(int row = 0;row < midpoint;row++){

topPixel = pix.getPixel(col,row);

bottomPixel =

pix.getPixel(col,height-1-row);

bottomPixel.setColor(topPixel.getColor());

}//end inner loop

}//end outer loop

return pix;

}//end mirrorHoriz

//--//

}//end class Java3012raRunner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

699

Table 3.263

Figure 1 (p. 703) - Image from the �le named Java3012ra.jpg.

Figure 2 (p. 703) - Possible output produced by the program in Listing 1 (p. 702) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

700 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Answer 1 (p. 707)

3.3.16.3.2 Question 2

True or False? The code in Listing 2 (p. 704) instantiates an object of an anonymous class.

Listing 2 . Question 2.

new Java3012raRunner().run();

Table 3.264

Answer 2 (p. 707)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

701

3.3.16.3.3 Question 3

True or False? The code in Listing 2 (p. 704) instantiates an anonymous object..
Answer 3 (p. 707)

3.3.16.3.4 Question 4

True or False? The statement shown in Listing 3 (p. 705) will return a reference to a Pixel object that
represents a physical pixel located at a horizontal coordinate of col and a vertical coordinate of row .

Listing 3 . Question 4.

leftPixel = pix.getPixels(col,row);

Table 3.265

Answer 4 (p. 707)

3.3.16.4 Figures

• Figure 1 (p. 703) . Image from the �le named Java3012ra.jpg.
• Figure 2 (p. 703) . Possible output produced by the program in Listing 1 (p. 702) .

3.3.16.5 Listings

• Listing 1 (p. 702) . Question 1.
• Listing 2 (p. 704) . Question 2.
• Listing 3 (p. 705) . Question 4.
• Listing 4 (p. 707) . Answer 4.

What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

702 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

703

3.3.16.6 Answers

3.3.16.6.1 Answer 4

False. The code in Listing 3 (p. 705) has the wrong spelling for the method that returns the Pixel object.
The correct spelling is shown in Listing 4 (p. 707) . You learned about the spelling (with no parameters)
shown in Listing 3 (p. 705) in an earlier module.

Listing 4 . Answer 4.

leftPixel = pix.getPixel(col,row);

Table 3.266

Back to Question 4 (p. 705)

3.3.16.6.2 Answer 3

True. The object instantiated from the class named Java3012raRunner is an anonymous object because
its reference is not saved in a named reference variable in the current scope. Anonymous classes and
anonymous objects are entirely di�erent topics.

Back to Question 3 (p. 705)

3.3.16.6.3 Answer 2

False. A discussion of anonymous classes would be a somewhat advanced topic. That topic is not explained
in the module named Java3012: Using Nested Loops to Process Pixels 294 .

Back to Question 2 (p. 704)

3.3.16.6.4 Answer 1

True.
Back to Question 1 (p. 701)

3.3.16.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java3012r Review
• File: Java3012r.htm
• Published: 02/14/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

294http://cnx.org/content/m44207

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

704 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.3.17 Java3014: Cropping, Flipping, and Combining Pictures
295

Revised: Sun Apr 03 11:56:24 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 296

• Object-Oriented Programming (OOP) with Java 297

3.3.17.1 Table of Contents

• Preface (p. 708)

· Viewing tip (p. 709)

* Figures (p. 709)
* Listings (p. 709)

• Preview (p. 709)
• General background information (p. 713)
• Discussion and sample code (p. 713)
• Run the program (p. 720)
• Summary (p. 721)
• What's next? (p. 721)
• Online video links (p. 721)
• Miscellaneous (p. 721)
• Complete program listing (p. 722)

3.3.17.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 298 .

295This content is available online at <http://cnx.org/content/m44238/1.12/>.
296http://cnx.org/contents/dzOvxPFw
297http://cnx.org/contents/-2RmHFs_
298http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

705

3.3.17.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

3.3.17.2.1.1 Figures

• Figure 1 (p. 709) . Raw butter�y image.
• Figure 2 (p. 710) . Beach scene with student's name added.
• Figure 3 (p. 711) . Composite image.
• Figure 4 (p. 712) . Required text output.
• Figure 5 (p. 716) . Cropped and �ipped version of the butter�y image.
• Figure 6 (p. 719) . Partially complete version of the output picture.

3.3.17.2.1.2 Listings

• Listing 1 (p. 713) . The driver class named Prob02.
• Listing 2 (p. 714) . Beginning of the Prob02Runner class.
• Listing 3 (p. 714) . Beginning of the run method.
• Listing 4 (p. 715) . Beginning of the cropAndFlip method.
• Listing 5 (p. 715) . Process using nested loops.
• Listing 6 (p. 716) . Call the copyPictureWithCrop method from the run method..
• Listing 7 (p. 717) . Beginning of the method named copyPictureWithCrop.
• Listing 8 (p. 718) . Process using nested loops.
• Listing 9 (p. 720) . The remainder of the run method.
• Listing 10 (p. 723) . Complete program listing.

3.3.17.3 Preview

In this module, you will learn how to:

• Work directly with individual pixels and keep track of coordinate values.
• Copy a portion of one picture into a speci�c location in another picture.
• Crop and �ip a picture.

Program speci�cations
Write a program named Prob02 that uses the class de�nition shown in Listing 1 (p. 713) and Ericson's

media library along with the image �les named Prob02a.jpg and Prob02b.jpg to produce the three
graphic output images shown in Figure 1 (p. 709) , Figure 2 (p. 710) , and Figure 3 (p. 711) .

Figure 1 (p. 709) - Raw butter�y image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

706 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 2 (p. 710) - Beach scene with student's name added.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

707

Figure 3 (p. 711) - Composite image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

708 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

May de�ne new classes
You may de�ne new classes as necessary to cause your program to behave as required, but you may not

modify the class de�nition for the class named Prob02 given in Listing 1 (p. 713) .
The facing butter�y images
The two facing images of the butter�ies in the �nal output picture are separated by two pixels and those

two images as a pair are centered in the picture of the beach.
Required text output
In addition to the three output images mentioned above, your program must display your name and the

other three lines of text shown in Figure 4 (p. 712) on the command-line screen:

Figure 4 . Required text output.

Display your name here.

Picture, filename Prob02a.jpg height 118 width 100

Picture, filename Prob02b.jpg height 240 width 320

Picture, filename None height 101 width 77

Table 3.267

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

709

3.3.17.4 General background information

This program copies a rectangular portion of a picture of a butter�y into a speci�c location in a picture of
a beach.

The program also crops the butter�y picture to the same size as the portion that was copied into the
beach picture and �ips the cropped version to cause the butter�y to face left instead of facing right.

Then it copies the cropped and �ipped image to a location two pixels to the right of the original copy of
the butter�y in the beach image.

The two resulting images of the butter�y within the beach image are separated by two pixels, face one
another, and are centered in the picture of the beach as shown in Figure 3 (p. 711) .

Major evaluation areas
In order to successfully write this program, the student must, as a minimum be able to:

• Work directly with individual pixels and keep track of coordinate values.
• Copy a portion of one picture into a speci�c location in another picture.
• Crop and �ip a picture.

3.3.17.5 Discussion and sample code

Will discuss in fragments
I will discuss this program in fragments. A complete listing of the program is provided in Listing 10 (p.

723) near the end of the module.
The driver class named Prob02
The driver class containing the main method is shown in Listing 1 (p. 713) .

Listing 1 . The driver class named Prob02.

import java.awt.Color;

public class Prob02{

public static void main(String[] args){

Picture[] pictures = new Prob02Runner().run();

System.out.println(pictures[0]);

System.out.println(pictures[1]);

System.out.println(pictures[2]);

}//end main method

}//end class Prob02

Table 3.268

A reference to an array object
The call to the run method in Listing 1 (p. 713) may be new to you. This call expects to receive a

reference to an array object of type Picture[] as a return value.
Save return value in variable named pictures
The return value from the run method is stored in the local reference variable named pictures .
Extract and print references to Picture objects
Then the reference variable is used to extract references to the individual Picture objects encapsulated

in the array. Those references are passed to the println method causing the last three lines of text shown
in Figure 4 (p. 712) to be displayed on the command line screen.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

710 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Beginning of the Prob02Runner class
The class named Prob02Runner begins in Listing 2 (p. 714) , which shows the constructor for the

class.

Listing 2 . Beginning of the Prob02Runner class.

class Prob02Runner{

public Prob02Runner(){//constructor

System.out.println("Display your name here.");

}//end constructor

Table 3.269

The constructor simply causes the student's name to be displayed on the command line screen, producing
the �rst line of output text shown in Figure 4 (p. 712) .

Beginning of the run method
The run method, that was called in Listing 1 (p. 713) begins in Listing 3 (p. 714) .

Listing 3 . Beginning of the run method.

public Picture[] run(){

Picture picA = new Picture("Prob02a.jpg");

picA.explore();

Picture picB = new Picture("Prob02b.jpg");

picB.addMessage("Display your name here.",10,20);

picB.explore();

Picture picC = cropAndFlip(picA,4,5,80,105);

Table 3.270

Listing 3 (p. 714) instantiates two Picture objects from image �les and displays them by calling the
explore method on each Picture object. In addition, the student's name is added near the upper-left
corner of the beach image. This code results in the images shown in Figure 1 (p. 709) and Figure 2 (p. 710)
.

Call the cropAndFlip method
Then Listing 3 (p. 714) calls the cropAndFlip method passing the reference to the butter�y image of

Figure 1 (p. 709) , along with some other information as parameters. The return value is stored in a new
local reference variable of type Picture named picC .

Put discussion of the run method on hold
I will put the discussion of the run method on temporary hold at this point and explain the method

named cropAndFlip , which begins in Listing 4 (p. 715) .
Beginning of the cropAndFlip method
The cropAndFlip method crops a picture to the speci�ed coordinate values and �ips it around a

vertical line at its center.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

711

Listing 4 . Beginning of the cropAndFlip method.

private Picture cropAndFlip(Picture pic,

int x1,int y1,

int x2,int y2){

Picture output = new Picture(x2-x1+1,y2-y1+1);

int width = output.getWidth();

Pixel pixel = null;

Color color = null;

Table 3.271

Incoming parameters
In addition to a reference to the picture to be processed, the method receives four incoming integer values

as parameters. The parameters named x1 and y1 specify the coordinates of the upper-left corner of a
rectangular area of the picture that is to be retained in the output.

The parameters named x2 and y2 specify the coordinates of the lower-right corner of the rectangular
area of the picture that is to be retained in the output.

An empty Picture object
Listing 4 (p. 715) begins by creating an empty Picture object of the correct size to hold the cropped

image. A reference to the empty picture is saved in the local reference variable named output .
Then Listing 4 (p. 715) gets and saves the width of the output picture.
Following this, Listing 4 (p. 715) declares two local working variables named pixel (of type Pixel)

and color (of type Color) .
Process using nested loops
Listing 5 (p. 715) uses a pair of nested for loops to cause the output picture to be a cropped version

of the picture received as an incoming parameter. The cropped image is �ipped around its center.

Listing 5 . Process using nested loops.

for(int col = x1;col < (x2+1);col++){

for(int row = y1;row < (y2+1);row++){

color = pic.getPixel(col,row).getColor();

pixel = output.getPixel(width-col+x1-1,row-y1);

pixel.setColor(color);

}//end inner loop

}//end outer loop

return output;

}//end cropAndFlip method

Table 3.272

The code in Listing 5 (p. 715) copies the pixel colors of the selected pixels of the incoming image to the
pixels of the output image, �ipping the image around its center line in the process.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

712 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Cropped and �ipped version of the butter�y image
If you display the picture referred to by output in Listing 5 (p. 715) , you will get the image shown

in Figure 5 (p. 716) .
Figure 5 (p. 716) - Cropped and �ipped version of the butter�y image.

Compare with the original butter�y picture
If you compare Figure 5 (p. 716) with Figure 1 (p. 709) , you will see that pixels on the outer edges of

Figure 1 (p. 709) have been discarded and the resulting image has been �ipped around its centerline.
End of the cropAndFlip method
Figure 5 (p. 716) returns a reference to the new image and ends the method named cropAndFlip .

The returned value is stored in the variable named picC in Listing 3 (p. 714) .
Original image not modi�ed
Note that the code in the cropAndFlip method does not modify the original image of the butter�y.

Instead, it extracts pixel data from the original image to produce a new image. When control returns to the
run method in Listing 3 (p. 714) , a reference to the new image is stored in the variable named picC .

Call the copyPictureWithCrop method from the run method
Control has now returned to the run method, picking up where Listing 3 (p. 714) left o�. The next

statement in the run method is shown in Listing 6 (p. 716) .

Listing 6 . Call the copyPictureWithCrop method from the run method.

copyPictureWithCrop(picA,picB,82,70,4,5,77,101);

Table 3.273

Put the run method on hold again
Once again, I will put the run method on hold while I explain the method named copyPictureWith-

Crop , which begins in Listing 7 (p. 717) .
Beginning of the method named copyPictureWithCrop

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

713

The �rst two incoming parameters named source and dest are references to a source picture and a
destination picture.

When the method is called in Listing 6 (p. 716) , the source picture is the original butter�y picture
shown in Figure 1 (p. 709) and the destination picture is the beach picture shown in Figure 2 (p. 710) .

Listing 7 . Beginning of the method named copyPictureWithCrop.

private void copyPictureWithCrop(

Picture source,

Picture dest,

int xOff,

int yOff,

int xCoor,

int yCoor,

int width,

int height){

//Confirm that source will fit in destination

if(((width+xOff) <= dest.getWidth()) &&

((height+yOff) <= dest.getHeight())){

Pixel pixel = null;

Color color = null;

Table 3.274

Copy source to destination
The method named copyPictureWithCrop copies part of the source picture into the destination

picture with an o�set on both axes after �rst con�rming that the part will �t. The method does nothing if
the part won't �t.

The copy process causes selected pixel colors in the destination picture to be replaced by pixel colors
from the source picture.

The o�set values
The next two parameters named xO� and yO� in Listing 7 (p. 717) specify the location in the

destination picture where the upper-left corner of the cropped source picture is to be located.
The statement in Listing 6 (p. 716) passes the values (82,70) for these two values. This is the location

of the upper left corner of the left-most butter�y image in Figure 3 (p. 711) .

Not really cropped For clarity, I will refer to this as a cropped source picture even though
the program doesn't actually save a cropped version of the picture as was the case with the
cropAndFlip method.

The program simply copies a rectangular portion of the source picture into the destination picture.

Upper-left cropping corner
The parameters named xCoor and yCoor in Listing 7 (p. 717) specify the upper-left corner of the

rectangular area of pixels that is to be preserved when the source image is cropped.
Coordinate values of (4,5) are passed for these two values when the method is called in Listing 6 (p. 716)

.
Same values as Listing 3 (p. 714)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

714 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Note that these are the same two values that were passed for this purpose when the cropAndFlip
method was called in Listing 3 (p. 714) .

Two ways to specify a rectangle
There are two commonly used ways to specify a rectangular area in programming. One way is to specify

the coordinates of the upper-left and bottom right corners. This is the approach used in the cropAndFlip
method in Listing 4 (p. 715) .

The other way is to specify the coordinates of the upper-left corner and then to specify the width and
the height. This is the approach used in the copyPictureWithCrop method in Listing 7 (p. 717) .

The width and height parameters
The parameters named width and height in Listing 7 (p. 717) specify the width and height of the

rectangular area of pixels that is to be preserved when the source picture is cropped.
If you compare the width and height parameter values passed in Listing 6 (p. 716) with the coordinate

values passed in Listing 3 (p. 714) , you will see that the same rectangular area of the butter�y image is
being preserved after cropping in both cases.

Con�rm that the cropped image will �t
Listing 7 (p. 717) begins by con�rming that the cropped rectangular area of the source picture will �t

within the destination picture when placed at the speci�ed location. If the conditional clause of the if
statement returns true, then the code in the body of the statement will be executed. If not, control bypasses
the body of the if statement and the source picture will not be copied into the destination picture.

Process using nested for loops
As was the case in Listing 4 (p. 715) , Listing 7 (p. 717) declares two working variables named pixel

and color .
The variables named pixel and color are used along with various parameter values in the pair of

nested for loops shown in Listing 8 (p. 718) to crop the source picture and to copy the cropped source
picture into the destination picture at the speci�ed location.

Listing 8 . Process using nested loops.

for(int col = 0;col < width;col++){

for(int row = 0;row < height;row++){

color = source.getPixel(

col + xCoor,row + yCoor).getColor();

pixel = dest.getPixel(col+xOff,row+yOff);

pixel.setColor(color);

}//end inner loop

}//end outer loop

}//end if

}//end copyPictureWithCrop method

}//end class Prob02Runner

Table 3.275

Not as complicated as it looks
Although the arithmetic operations involved in Listing 8 (p. 718) can be daunting, the code in Listing 8

(p. 718) is doing nothing more than replacing selected pixel colors in the destination picture with selected
pixel colors from the source picture.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

715

Partially complete version of the output picture.
If you were to display the destination picture before returning control back to the run method in Listing

8 (p. 718) , you would see the image shown in Figure 6 (p. 719) .
Figure 6 (p. 719) - Partially complete version of the output picture.

At this point, only one cropped version of the butter�y image has been copied into the beach image.
Return control to the run method
The copyPictureWithCrop method terminates in Listing 8 (p. 718) and returns control to the run

method, picking up where Listing 6 (p. 716) left o�.
The remainder of the run method
The remainder of the run method is shown in Listing 9 (p. 720) .

Listing 9 . The remainder of the run method.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

716 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

copyPictureWithCrop(picC,picB,161,70,0,0,77,101);

picB.explore();

Picture[] output = {picA,picB,picC};

return output;

}//end run

Table 3.276

Call the copyPictureWithCrop method again
Listing 9 (p. 720) begins by calling the copyPictureWithCrop method again. This time, however,

the picture shown in Figure 5 (p. 716) is passed as the source image with the same picture as before being
passed as the destination image.

The o�set coordinates
In this case, the o�set coordinate values specify the upper-left corner of the right-most butter�y image

in Figure 3 (p. 711) .
The cropping parameters
The �nal four parameters that are passed in Listing 9 (p. 720) specify that the entire source picture is

to be copied into the destination picture.
Display the destination picture
When the copyPictureWithCrop method returns, Listing 9 (p. 720) calls the explore method to

display the current state of the destination picture. The result is shown in Figure 3 (p. 711) .
A new array object
Finally, Listing 9 (p. 720) instantiates a new array object, populates it with references to three Picture

objects, and returns control to the main method code in Listing 1 (p. 713) returning a reference to the
array object in the process.

The code in Listing 1 (p. 713) saves the reference to the array object in the variable named pictures .
Pass Picture object references to println method
Then Listing 1 (p. 713) extracts and passes each of the three Picture object references to the println

method causing the last three lines of text shown in Figure 4 (p. 712) to be displayed on the command-line
screen.

The second line of output text (picA) describes the raw butter�y image shown in Figure 1 (p. 709) .
The third line of output text for (picB) describes the beach scene shown in Figure 2 (p. 710) and

Figure 3 (p. 711) .
The last line of output text (picC) describes the cropped and �ipped version of the butter�y image

shown in Figure 5 (p. 716) .

3.3.17.6 Run the program

I encourage you to copy the code from Listing 10 (p. 723) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

Click here 299 and here 300 to download the two required input image �les.

299http://cnx.org/content/m44238/latest/Prob02a.jpg
300http://cnx.org/content/m44238/latest/Prob02b.jpg

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

717

3.3.17.7 Summary

In this module, you learned how to:

• Work directly with individual pixels and keep track of coordinate values.
• Copy a portion of one picture into a speci�c location in another picture.
• Crop and �ip a picture.

3.3.17.8 What's next?

You will learn to write a program to do green-screen processing in the next module.

3.3.17.9 Online video links

While not a requirement of the course, you can select the following links to view optional online video lectures
on the material in this module.

• ITSE 2321 Lecture 07 301

· Part01 302

· Part02 303

· Part03 304

3.3.17.10 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Cropping, Flipping, and Combining Pictures
• File: Java3014.htm
• Published: 08/01/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

301http://www.youtube.com/playlist?list=PL3D7CCC0D884E2EF4
302http://www.youtube.com/watch?v=AY1oMeuFWwY
303http://www.youtube.com/watch?v=IWNm1xWA7wQ
304http://www.youtube.com/watch?v=P0thqN0Fofs

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

718 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.17.11 Complete program listing

A complete listing of the program discussed in this module is shown in Listing 10 (p. 723) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

719

Listing 10 . Complete program listing.

/*File Prob02 Copyright 2008 R.G.Baldwin

Revised 12/16/08

***/

import java.awt.Color;

public class Prob02{

public static void main(String[] args){

Picture[] pictures = new Prob02Runner().run();

System.out.println(pictures[0]);

System.out.println(pictures[1]);

System.out.println(pictures[2]);

}//end main method

}//end class Prob02

//==//

class Prob02Runner{

public Prob02Runner(){//constructor

System.out.println("Display your name here.");

}//end constructor

//--//

public Picture[] run(){

Picture picA = new Picture("Prob02a.jpg");

picA.explore();

Picture picB = new Picture("Prob02b.jpg");

picB.addMessage("Display your name here.",10,20);

picB.explore();

Picture picC = cropAndFlip(picA,4,5,80,105);

copyPictureWithCrop(picA,picB,82,70,4,5,77,101);

copyPictureWithCrop(picC,picB,161,70,0,0,77,101);

picB.explore();

Picture[] output = {picA,picB,picC};

return output;

}//end run

//--//

//Crops a picture to the specified coordinate values and

// flips it around a vertical line at its center.

private Picture cropAndFlip(Picture pic,int x1,int y1,

int x2,int y2){

Picture output = new Picture(x2-x1+1,y2-y1+1);

int width = output.getWidth();

Pixel pixel = null;

Color color = null;

for(int col = x1;col < (x2+1);col++){

for(int row = y1;row < (y2+1);row++){

color = pic.getPixel(col,row).getColor();

pixel = output.getPixel(width-col+x1-1,row-y1);

pixel.setColor(color);

}//end inner loop

}//end outer loop

return output;

}//end crop and flip

//--//

//Copies part of the source picture into the destination

// picture with an offset on both axes after first

// confirming that the part will fit. Does nothing if it

// won't fit.

private void copyPictureWithCrop(

Picture source,Picture dest,int xOff,

int yOff,

int xCoor,

int yCoor,

int width,

int height){

//Confirm that source will fit in destination

if(((width+xOff) <= dest.getWidth()) &&

((height+yOff) <= dest.getHeight())){

Pixel pixel = null;

Color color = null;

for(int col = 0;col < width;col++){

for(int row = 0;row < height;row++){

color = source.getPixel(

col + xCoor,row + yCoor).getColor();

pixel = dest.getPixel(col+xOff,row+yOff);

pixel.setColor(color);

}//end inner loop

}//end outer loop

}//end if

}//end copyPictureWithCrop method

}//end class Prob02Runner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

720 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.277

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

721

3.3.18 Java3014r Review
305

Revised: Sun Apr 03 12:08:03 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 306

• Object-Oriented Programming (OOP) with Java 307

3.3.18.1 Table of Contents

• Preface (p. 725)
• Questions (p. 725)

· 1 (p. 725) , 2 (p. 728)

• Figures (p. 729)
• Listings (p. 729)
• Answers (p. 730)
• Miscellaneous (p. 731)

3.3.18.2 Preface

This module contains review questions and answers keyed to the module titled Java3014: Cropping, Flipping,
and Combining Pictures 308 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

3.3.18.3 Questions

3.3.18.3.1 Question 1 .

True or False? The code in Listing 1 (p. 726) combined with the images in Figure 1 (p. 727) and Figure 2
(p. 727) produces the output shown in Figure 3 (p. 727) .

305This content is available online at <http://cnx.org/content/m45778/1.5/>.
306http://cnx.org/contents/dzOvxPFw
307http://cnx.org/contents/-2RmHFs_
308http://cnx.org/content/m44238

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

722 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 1 . Question 1 .

/*File Java3014ra Copyright 2013 R.G.Baldwin

Revised 02/15/13

***/

import java.awt.Color;

public class Java3014ra{

public static void main(String[] args){

Picture[] pictures = new Java3014raRunner().run();

}//end main method

}//end class Java3014ra

//==//

class Java3014raRunner{

public Picture[] run(){

Picture picA = new Picture("Prob02a.jpg");

Picture picB = new Picture("Prob02b.jpg");

Picture picC = cropAndFlip(picA,4,5,80,105);

copyPictureWithCrop(picA,picB,130,10,4,5,77,101);

copyPictureWithCrop(picC,picB,130,120,0,0,77,101);

picB.explore();

Picture[] output = {picA,picB,picC};

return output;

}//end run

//--//

//Crops a picture to the specified coordinate values and

// flips it around a vertical line at its center.

private Picture cropAndFlip(Picture pic,int x1,int y1,

int x2,int y2){

Picture output = new Picture(x2-x1+1,y2-y1+1);

int width = output.getWidth();

Pixel pixel = null;

Color color = null;

for(int col = x1;col < (x2+1);col++){

for(int row = y1;row < (y2+1);row++){

color = pic.getPixel(col,row).getColor();

pixel = output.getPixel(width-col+x1-1,row-y1);

pixel.setColor(color);

}//end inner loop

}//end outer loop

return output;

}//end crop and flip

//--//

//Copies part of the source picture into the destination

// picture with an offset on both axes after first

// confirming that the part will fit. Does nothing if it

// won't fit.

private void copyPictureWithCrop(

Picture source,Picture dest,int xOff,

int yOff,

int xCoor,

int yCoor,

int width,

int height){

//Confirm that source will fit in destination

if(((width+xOff) <= dest.getWidth()) &&

((height+yOff) <= dest.getHeight())){

Pixel pixel = null;

Color color = null;

for(int col = 0;col < width;col++){

for(int row = 0;row < height;row++){

color = source.getPixel(

col + xCoor,row + yCoor).getColor();

pixel = dest.getPixel(col+xOff,row+yOff);

pixel.setColor(color);

}//end inner loop

}//end outer loop

}//end if

}//end copyPictureWithCrop method

}//end class Java3014raRunner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

723

Table 3.278

Figure 1 (p. 727) - Prob02a.jpg.

Figure 2 (p. 727) - Prob02b.jpg.

Figure 3 (p. 727) - Possible output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

724 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Answer 1 (p. 730)

3.3.18.3.2 Question 2

True or False? The call to the run method in Listing 2 (p. 728) returns a reference to an object of the class
Picture .

Listing 2 . Question 2.

Picture[] pictures = new Java3014raRunner().run();

Table 3.279

Answer 2 (p. 730)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

725

3.3.18.4 Figures

• Figure 1 (p. 727) . Prob02a.jpg.
• Figure 2 (p. 727) . Prob02b.jpg.
• Figure 3 (p. 727) . Possible output image.
• Figure 4 (p. 730) . Answer 1.

3.3.18.5 Listings

• Listing 1 (p. 726) . Question 1.
• Listing 2 (p. 728) . Question 2.

What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

726 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.18.6 Answers

3.3.18.6.1 Answer 2

False. The call to the run method in Listing 2 (p. 728) returns a reference to an array object whose elements
may or may not contain references to objects of the class Picture (or some subclass of the class Picture
) . However, since array objects in Java may have a length of 0, without seeing the source code for the
run method, it is impossible to know what is contained in the array object.

Back to Question 2 (p. 728)

3.3.18.6.2 Answer 1

False. The code in Listing 1 (p. 726) combined with the images in Figure 1 (p. 727) and Figure 2 (p. 727)
produces the output shown in Figure 4 (p. 730) .

Figure 4 (p. 730) - Answer 1.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

727

Back to Question 1 (p. 725)

3.3.18.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java3014r Review
• File: Java3014r.htm
• Published: 02/15/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

728 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.3.19 Java3016: Green-Screen Processing
309

Revised: Sun Apr 03 13:48:44 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 310

• Object-Oriented Programming (OOP) with Java 311

3.3.19.1 Table of Contents

• Preface (p. 732)

· Viewing tip (p. 732)

* Figures (p. 733)
* Listings (p. 733)

• Preview (p. 733)
• General background information (p. 739)
• Discussion and sample code (p. 739)
• Run the program (p. 745)
• Summary (p. 745)
• What's next? (p. 746)
• Online video links (p. 746)
• Miscellaneous (p. 746)
• Complete program listing (p. 746)

3.3.19.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 312 .

3.3.19.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

309This content is available online at <http://cnx.org/content/m44210/1.11/>.
310http://cnx.org/contents/dzOvxPFw
311http://cnx.org/contents/-2RmHFs_
312http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

729

3.3.19.2.1.1 Figures

• Figure 1 (p. 733) . Input image �le Prob03a.bmp.
• Figure 2 (p. 734) . Input image �le Prob03b.bmp.
• Figure 3 (p. 735) . Input image �le Prob03c.bmp.
• Figure 4 (p. 736) . Input image �le Prob03d.jpg.
• Figure 5 (p. 737) . Output picture.
• Figure 6 (p. 738) . Required output text.
• Figure 7 (p. 741) . Front view of the skater after cropping.

3.3.19.2.1.2 Listings

• Listing 1 (p. 739) . The driver class named Prob03.
• Listing 2 (p. 740) . Beginning of the class named Prob03Runner.
• Listing 3 (p. 740) . Beginning of the run method.
• Listing 4 (p. 743) . Remainder of the run method.
• Listing 5 (p. 744) . The greenScreenDraw method.
• Listing 6 (p. 746) . Complete program listing.

3.3.19.3 Preview

n this lesson, you will learn how to write a program to do green-screen processing to superimpose a
source image onto a destination image while making the green background of the source image appear to be
transparent.

Program speci�cations
Write a program named Prob03 that uses the class de�nition shown in Listing 1 (p. 739) and Ericson's

media library along with the image �les in the following list to produce the �ve graphic output images shown
in Figure 1 (p. 733) through Figure 5 (p. 737) .

• Prob03a.bmp
• Prob03b.bmp
• Prob03c.bmp
• Prob03d.jpg

Figure 1 (p. 733) - Input image �le Prob03a.bmp.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

730 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 2 (p. 734) - Input image �le Prob03b.bmp.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

731

Figure 3 (p. 735) - Input image �le Prob03c.bmp.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

732 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 4 (p. 736) - Input image �le Prob03d.jpg.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

733

Figure 5 (p. 737) - Output picture.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

734 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

New classes
You may de�ne new classes as necessary to cause your program to behave as required, but you may not

modify the class de�nition for the class named Prob03 given in Listing 1 (p. 739) .
Required output text
In addition to the output images mentioned above, your program must display your name and one other

line of text on the command-line screen as shown in Figure 6 (p. 738) .

Figure 6 . Required output text.

Display your name here.

Picture, filename None height 256 width 344

Table 3.280

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

735

3.3.19.4 General background information

This program receives three views of an ice skater in bmp �les with a pure green background along with
a jpg �le containing a snow scene.

All four �les show the Alice 313 runtime panel with the words World Running... and several
associated buttons. (See Figure 1 (p. 733) .)

Program behavior
The program performs the following actions:

• Crops the snow scene to remove the Alice runtime panel.
• Crops the three views of the skater to remove the Alice runtime panel along with excess blank green

background.
• Scales two of the views of the skater to smaller sizes.
• Does green-screen processing to place the three views of the skater at di�erent locations in the snow

scene.
• Uses position along with size to create an optical illusion of a 3D scene of three ice skaters and a

penguin standing at di�erent locations on a frozen lake (see Figure 5 (p. 737)) .

Programming skills required
In order to write this program, the student must be able to, as a minimum, write a green-screen processing

method.

3.3.19.5 Discussion and sample code

Will discuss in fragments
I will discuss this program in fragments. A complete listing of the program is provided in Listing 6 (p.

746) near the end of the lesson.
The driver class named Prob03
The driver class containing the main method is shown in Listing 1 (p. 739) .

Listing 1 . The driver class named Prob03.

import java.awt.Color;

public class Prob03{

public static void main(String[] args){

Prob03Runner obj = new Prob03Runner();

obj.run();

}//end main

}//end class Prob03

Table 3.281

The main method in Listing 1 (p. 739) instantiates a new object of the class named Prob03Runner
and calls the method named run that belongs to that object.

When the run method returns, the program terminates.
Beginning of the class named Prob03Runner
The beginning of the class named Prob03Runner , and its constructor, is shown in Listing 2 (p. 740)

.

313http://www.alice.org/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

736 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 2 . Beginning of the class named Prob03Runner.

class Prob03Runner{

public Prob03Runner(){//constructor

System.out.println("Display your name here.");

}//end constructor

Table 3.282

The constructor simply displays the student's name on the command line screen producing the �rst line
of text shown in Figure 6 (p. 738) .

Beginning of the run method
The beginning of the run method that is called in Listing 1 (p. 739) is shown in Listing 3 (p. 740) .

Listing 3 . Beginning of the run method.

public void run(){

//A view facing the front of the skater.

Picture front = new Picture("Prob03a.bmp");

front.explore();

front = crop(front,123,59,110,256);

//A view showing the right side of the skater.

Picture right = new Picture("Prob03b.bmp");

right.explore();

right = crop(right,123,59,110,256);

//A view showing the left side of the skater.

Picture left = new Picture("Prob03c.bmp");

left.explore();

left = crop(left,123,59,110,256);

//This will be the background for the new picture.

Picture snowScene = new Picture("Prob03d.jpg");

snowScene.explore();

snowScene = crop(snowScene,6,59,344,256);

Table 3.283

The code in Listing 3 (p. 740) instantiates, displays, and crops the four input images.
All four images must be cropped to remove the Alice runtime window. In addition, the three skater

images are also cropped to remove excess blank green background material.
Image formats: bmp versus jpg
Note that the three views of the skater are extracted from bmp image �les instead of jpg image �les.

This is necessary in order to preserve the pure green background color. Storing the images as jpg �les

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

737

would corrupt the background color in the low order bits making it more di�cult to achieve the green-screen
processing required by this program.

The method named crop
Listing 3 (p. 740) calls the crop method four times in succession, once for each of the four Picture

objects instantiated from the image �les.
I explained image cropping in an earlier module. The crop method used in this program is very similar

to the methods that I explained in the earlier module, so I won't explain it again in this module. You can
view the crop method in detail in Listing 6 (p. 746) near the end of the module.

Five incoming parameters
The crop method requires �ve incoming parameters. The �rst parameter is a reference to the Picture

object that is to be cropped. The remaining four integer parameters specify the rectangular area that is to
be preserved after the picture is cropped.

The rectangular area to be preserved
The �rst two integers specify the column and row coordinates for the upper-left corner of the rectangular

area that is to be preserved. The last two integers specify the width and the height of the rectangle that is
to be preserved.

Note that in all four cases, the height of the rectangular area that is to be preserved is 256 pixels. This
will be important later on with respect to scaling two of the images.

Returns a reference to a cropped picture
The crop method returns a reference to a Picture object that is a cropped version of the picture

whose reference is passed to the method. In each case, the code in Listing 3 (p. 740) replaces the reference
to the original Picture object with the reference to the cropped Picture object.

Front view of the skater after cropping
If you were to display the Picture object referred to by the variable front after cropping, you would

see the image shown in Figure 7 (p. 741) .
Figure 7 (p. 741) - Front view of the skater after cropping.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

738 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Transparent pixels
This is the image that appears as the center ice skater in Figure 5 (p. 737) after green-screen processing.

Note that all of the green pixels in Figure 7 (p. 741) appear to be transparent in Figure 5 (p. 737) .
Remainder of the run method
Continuing with the run method, Listing 4 (p. 743) calls the method named greenScreenDraw three

times in succession to draw the three skater images at speci�c locations on the snow scene with green-screen
processing.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

739

Listing 4 . Remainder of the run method.

//Draw the front view of the skater on the snowScene

// at full size.

greenScreenDraw(front,snowScene,117,0);

//Draw the left side view of the skater on the

// snowScene at half size.

left = left.getPictureWithHeight(256/2);

greenScreenDraw(left,snowScene,55,64);

//Draw the right side view of the skater on the

// snowScene at one-third size.

right = right.getPictureWithHeight(256/3);

greenScreenDraw(right,snowScene,260,96);

//Display students name on the final output and

// display it.

snowScene.addMessage("Display your name here.",10,15);

snowScene.explore();

System.out.println(snowScene);

}//end run method

Table 3.284

Two skater images are scaled
In two cases in Listing 4 (p. 743) , the method named getPictureWithHeight is called before calling

the greenScreenDraw method. The getPictureWithHeight method is used to scale two of the
images to a smaller size as shown in Figure 5 (p. 737) .

The getPictureWithHeight method
The getPictureWithHeight method is de�ned in Ericson's SimplePicture class and inherited into

Ericson's Picture class.
The method requires a single integer input parameter, which speci�es the height in pixels of a scaled

output version of the picture object on which the method is called.
According to the documentation, the method can be used to create a new picture with the speci�ed

height. The aspect ratio of the width and height will stay the same.
Original height is 256 pixels
Referring back to the parameters that were passed to the crop method in Listing 3 (p. 740) , you can

see the height of all three cropped images is 256 pixels.
Scale by 1/2 and 1/3
Referring to the two calls to the getPictureWithHeight method in Listing 4 (p. 743) , you can see

that one of the cropped images was replaced with an image having a height of 256/ 2 or 128 pixels. The
other cropped image was replaced with an image having a height of 256/3 or 85 pixels. You can see the
e�ect of this scaling in Figure 5 (p. 737) .

The height of one of the images was not changed, which you can also see in Figure 5 (p. 737) .
Put the run method on hold
I will put the explanation of the run method on temporary hold at this point and explain the method

named greenScreenDraw , which is shown in Listing 5 (p. 744) .
Behavior of the greenScreenDraw method
The greenScreenDraw method requires four incoming parameters:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

740 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• A reference to a source image.
• A reference to a destination image
• The horizontal coordinate on the destination image where the upper-left corner of the source image

will be drawn.
• The vertical coordinate on the destination image where the upper-left corner of the source image will

be drawn.

Pure green pixels are required for transparency
The method draws the source image onto the destination image at the speci�cation location. However,

pixels having a pure green color are not drawn on the destination image. The e�ect is to make it appear
that those portions of the source image with pure green pixels become totally transparent allowing the pixels
belonging to the destination image to show through.

jpg image �les are not satisfactory for this program
Picture objects created from jpg image �les typically won't have a pure green background even if they

had a pure green background before being compressed into the jpg format �le. However, the bmp �le format
does not corrupt the pixel colors. Therefore, bmp images work well for this type of processing.

The greenScreenDraw method
The greenScreenDraw method is shown in its entirety in Listing 5 (p. 744) .

Listing 5 . The greenScreenDraw method.

private void greenScreenDraw(

Picture source,

Picture dest,

//Place the upper-left corner

// of the source image at the

// following location in the

// destination image.

int destX,

int destY){

int width = source.getWidth();

int height = source.getHeight();

Pixel pixel = null;

Color color = null;

for(int row = 0;row < height;row++){

for(int col = 0;col < width;col++){

color = source.getPixel(col,row).getColor();

if(!(color.equals(Color.GREEN))){

pixel = dest.getPixel(destX + col,destY + row);

pixel.setColor(color);

}//end if

}//end inner loop

}//end outer loop

}//end greenScreenDraw

Table 3.285

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

741

Very similar to earlier methods
This method is very similar to other methods that I have explained in earlier modules that use nested

for loops to draw one image onto another image.
The one new thing...
The only thing that is really new in Listing 5 (p. 744) is the if statement that tests the color of source

image pixels for a value of exactly Color.GREEN . If the color of the source pixel does not match that
color exactly, it is drawn on the destination image replacing the pixel color previously at that location on
the destination image.

If the source pixel color does exactly match that color, it is not drawn on the destination image thereby
leaving the color of the corresponding destination pixel unchanged.

Listing 5 (p. 744) signals the end of the greenScreenDraw method.
The weather forecast on television
This is roughly how the TV stations superimpose a human weather forecaster onto a giant animated

weather map. The forecaster is photographed with a video camera standing in front of a green or blue
screen. At the same time, an animated video of the weather map is also created.

Then each video frame of the forecaster is superimposed onto a video frame of the weather map. The
green or blue pixels in the forecaster frame are not copied onto the weather map frame. This allows the
weather map pixels to show with the exception of those that are replaced by the pixels that comprise the
human forecaster. (The forecaster must be careful to avoid wearing clothing that matches the color of the
green or blue screen.)

Returning to the run method
When the third call to the greenScreenDraw method returns in Listing 4 (p. 743) , the run method:

• Adds the student's name to the snow scene picture.
• Displays the snow scene picture (see Figure 5 (p. 737)).
• Displays information about the snow scene picture on the command line screen.

The end of the program
Then the run method in Listing 4 (p. 743) returns control to the main method in Listing 1 (p. 739)

causing the program to terminate.

3.3.19.6 Run the program

I encourage you to copy the code from Listing 6 (p. 746) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

Click the following links to download the required input images:

1. Prob03a.bmp 314

2. Prob03b.bmp 315

3. Prob03c.bmp 316

4. Prob03d.jpg 317

3.3.19.7 Summary

In this module, you learned how to write a program to do green-screen processing to superimpose a
source image onto a destination image while making the green background of the source image appear to be
transparent.

314http://cnx.org/content/m44210/latest/Prob03a.bmp
315http://cnx.org/content/m44210/latest/Prob03b.bmp
316http://cnx.org/content/m44210/latest/Prob03c.bmp
317http://cnx.org/content/m44210/latest/Prob03d.jpg

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

742 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.19.8 What's next?

You will learn how to darken, brighten, and tint the colors in a Picture object in the next module.

3.3.19.9 Online video links

While not a requirement of the course, you can select the following links to view optional online video lectures
on the material in this module.

• ITSE 2321 Lecture 08 318

· Part01 319

· Part02 320

· Part03 321

3.3.19.10 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Green-Screen Processing
• File: Java3016.htm
• Published: 08/01/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.3.19.11 Complete program listing

A complete listing of the program discussed in this module is shown in Listing 6 (p. 746) below.

Listing 6 . Complete program listing.

continued on next page

318http://www.youtube.com/playlist?list=PLF12CDA1C72ACC167
319http://www.youtube.com/watch?v=EW6ZEDGJi2w
320http://www.youtube.com/watch?v=JqK_42UnXoI
321http://www.youtube.com/watch?v=4bM6qElbxpc

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

743

/*File Prob03 Copyright 2008 R.G.Baldwin

Revised 12/17/08

***/

import java.awt.Color;

public class Prob03{

public static void main(String[] args){

Prob03Runner obj = new Prob03Runner();

obj.run();

}//end main

}//end class Prob03

//==//

class Prob03Runner{

public Prob03Runner(){//constructor

System.out.println("Display your name here.");

}//end constructor

//--//

public void run(){

//Instantiate, display and crop the four input

// images. They must be cropped to remove the Alice

// runtime window material. The three skater images

// are also cropped to remove excess blank green

// background.

//Note that the three views of the skater are bmp

// images instead of jpg images in order to preserve

// the pure green background color. Storing the

// images as jpg files would corrupt the background

// color in the low order bits.

//A view facing the front of the skater.

Picture front = new Picture("Prob03a.bmp");

front.explore();

front = crop(front,123,59,110,256);

//A view showing the right side of the skater.

Picture right = new Picture("Prob03b.bmp");

right.explore();

right = crop(right,123,59,110,256);

//A view showing the left side of the skater.

Picture left = new Picture("Prob03c.bmp");

left.explore();

left = crop(left,123,59,110,256);

//This will be the background for the new picture.

Picture snowScene = new Picture("Prob03d.jpg");

snowScene.explore();

snowScene = crop(snowScene,6,59,344,256);

//Draw the front view of the skater on the snowScene

// at full size.

greenScreenDraw(front,snowScene,117,0);

//Draw the left side view of the skater on the

// snowScene at half size.

left = left.getPictureWithHeight(256/2);

greenScreenDraw(left,snowScene,55,64);

//Draw the right side view of the skater on the

// snowScene at one-third size.

right = right.getPictureWithHeight(256/3);

greenScreenDraw(right,snowScene,260,96);

//Display students name on the final output and

// display it.

snowScene.addMessage("Display your name here.",10,15);

snowScene.explore();

System.out.println(snowScene);

}//end run method

//--//

//Assumes a source image with a pure green background.

// Copies all non-green pixels from the source image to

// the destination image at the location explained

// below. Note that jpg images typically won't have

// a pure green background even if they had a pure

// green background before being compressed into the

// jpg format. bmp images work well for this.

private void greenScreenDraw(

Picture source,

Picture dest,

//Place the upper-left corner

// of the source image at the

// following location in the

// destination image.

int destX,

int destY){

int width = source.getWidth();

int height = source.getHeight();

Pixel pixel = null;

Color color = null;

for(int row = 0;row < height;row++){

for(int col = 0;col < width;col++){

color = source.getPixel(col,row).getColor();

if(!(color.equals(Color.GREEN))){

pixel = dest.getPixel(destX + col,destY + row);

pixel.setColor(color);

}//end if

}//end inner loop

}//end outer loop

}//end greenScreenDraw

//--//

//Crops a Picture object to the given width and height

// with the upper-left corner located at startCol and

// startRow.

private Picture crop(Picture pic,int startCol,

int startRow,

int width,

int height){

Picture output = new Picture(width,height);

int colOut = 0;

int rowOut = 0;

int col = 0;

int row = 0;

Pixel pixel = null;

Color color = null;

for(col = startCol;col < startCol+width;col++){

for(row = startRow;row < startRow+height;row++){

color = pic.getPixel(col,row).getColor();

pixel = output.getPixel(colOut,rowOut);

pixel.setColor(color);

rowOut++;

}//end inner loop

rowOut = 0;

colOut++;

}//end outer loop

return output;

}//end crop

}//end class Prob03Runner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

744 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.286

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

745

3.3.20 Java3016r Review
322

Revised: Sun Apr 03 14:07:48 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 323

• Object-Oriented Programming (OOP) with Java 324

3.3.20.1 Table of Contents

• Preface (p. 749)
• Questions (p. 749)

· 1 (p. 749)

• Figures (p. 756)
• Listings (p. 756)
• Answers (p. 758)
• Miscellaneous (p. 758)

3.3.20.2 Preface

This module contains review questions and answers keyed to the module titled Java3016: Green-Screen
Processing 325 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

3.3.20.3 Questions

3.3.20.3.1 Question 1 .

Given Figure 1 (p. 751) , Figure 2 (p. 751) , Figure 3 (p. 752) , and Figure 4 (p. 753) , which of the
following output images is produced by the code in Listing 1 (p. 750) ?

A. Figure 5 (p. 754)
B. Figure 6 (p. 755)

322This content is available online at <http://cnx.org/content/m45781/1.5/>.
323http://cnx.org/contents/dzOvxPFw
324http://cnx.org/contents/-2RmHFs_
325http://cnx.org/content/m44210

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

746 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 1 . Question 1.

/*File Java3016ra Copyright 2013 R.G.Baldwin

Revised 02/15/13

***/

import java.awt.Color;

public class Java3016ra{

public static void main(String[] args){

new Java3016raRunner().run();

}//end main

}//end class Java3016ra

//==//

class Java3016raRunner{

public void run(){

Picture snowScene = crop(

new Picture("Prob03d.jpg"),6,59,344,256);

greenScreenDraw(crop(new Picture("Prob03a.bmp"),

123,59,110,256),snowScene,117,0);

greenScreenDraw(

crop(new Picture("Prob03c.bmp"),123,59,110,256).

getPictureWithHeight(256/2),snowScene,55,64);

greenScreenDraw(

crop(new Picture("Prob03b.bmp"),123,59,110,256).

getPictureWithHeight(256/3),snowScene,260,96);

snowScene.explore();

}//end run method

//--//

private void greenScreenDraw(Picture source,

Picture dest,

int destX,

int destY){

Pixel pixel = null;

Color color = null;

for(int row = 0;row < source.getHeight();row++){

for(int col = 0;col < source.getWidth();col++){

color = source.getPixel(col,row).getColor();

if((!(color.equals(Color.GREEN)))&&

(!(color.getRed() < 40))){

dest.getPixel(destX + col,destY + row).

setColor(color);

}//end if

}//end inner loop

}//end outer loop

}//end greenScreenDraw

//--//

private Picture crop(Picture pic,int startCol,

int startRow,

int width,

int height){

Picture output = new Picture(width,height);

int colOut = 0,rowOut=0,col=0,row=0;

Pixel pixel = null;

Color color = null;

for(col = startCol;

col < startCol+width;

col++,colOut++){

for(row = startRow;

row < startRow+height;

row++,rowOut++){

output.getPixel(colOut,rowOut).

setColor(pic.getPixel(col,row).getColor());

}//end inner loop

rowOut = 0;

}//end outer loop

return output;

}//end crop

//--//

}//end class Java3016raRunner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

747

Table 3.287

Figure 1 (p. 751) - Prob03a.bmp.

Figure 2 (p. 751) - Prob03b.bmp.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

748 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 3 (p. 752) - Prob03c.bmp.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

749

Figure 4 (p. 753) - Prob03d.jpg.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

750 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 5 (p. 754) - Possible output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

751

Figure 6 (p. 755) - Possible output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

752 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Answer 1 (p. 758)

3.3.20.4 Figures

• Figure 1 (p. 751) . Prob03a.bmp.
• Figure 2 (p. 751) . Prob03b.bmp.
• Figure 3 (p. 752) . Prob03c.bmp.
• Figure 4 (p. 753) . Prob03d.jpg.
• Figure 5 (p. 754) . Possible output image.
• Figure 6 (p. 755) . Possible output image.

3.3.20.5 Listings

• Listing 1 (p. 750) . Question 1.

What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

753

The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-
Oriented Programming.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

754 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.20.6 Answers

3.3.20.6.1 Answer 1

The code in Listing 1 (p. 750) produces the output image shown in Figure 6 (p. 755) .
Back to Question 1 (p. 749)

3.3.20.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java3016r Review
• File: Java3016r.htm
• Published: 02/17/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

755

compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.3.21 Java3018: Darkening, Brightening, and Tinting the Colors in a Picture
326

Revised: Sun Apr 03 14:24:32 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 327

• Object-Oriented Programming (OOP) with Java 328

3.3.21.1 Table of Contents

• Preface (p. 759)

· Viewing tip (p. 759)

* Figures (p. 760)
* Listings (p. 760)

• Preview (p. 760)
• General background information (p. 765)
• Discussion and sample code (p. 765)
• Run the program (p. 773)
• Summary (p. 773)
• What's next? (p. 774)
• Online video links (p. 774)
• Miscellaneous (p. 774)
• Complete program listing (p. 774)

3.3.21.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 329 .

3.3.21.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

326This content is available online at <http://cnx.org/content/m44234/1.10/>.
327http://cnx.org/contents/dzOvxPFw
328http://cnx.org/contents/-2RmHFs_
329http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

756 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.21.2.1.1 Figures

• Figure 1 (p. 760) . Input �le Prob04a.bmp.
• Figure 2 (p. 761) . Input �le Prob04b.bmp.
• Figure 3 (p. 762) . Input �le Prob04c.jpg.
• Figure 4 (p. 763) . Required output image.
• Figure 5 (p. 764) . Required text output.
• Figure 6 (p. 767) . Cropped version of the snow scene image.
• Figure 7 (p. 771) . The skater with a red tint applied.

3.3.21.2.1.2 Listings

• Listing 1 (p. 765) . The driver class named Prob04.
• Listing 2 (p. 766) . Beginning of the class named Prob04Runne.
• Listing 3 (p. 766) . Beginning of the run method.
• Listing 4 (p. 768) . Darken the background of the snow scene.
• Listing 5 (p. 768) . Beginning of the darkenBackground method.
• Listing 6 (p. 769) . Beginning of the processing loop.
• Listing 7 (p. 770) . The else clause in the processing loop.
• Listing 8 (p. 771) . Apply a red tint to the skater.
• Listing 9 (p. 773) . The remainder of the run method.
• Listing 10 (p. 776) . Complete program listing.

3.3.21.3 Preview

In this module, you will learn how to darken, brighten, and tint the colors in a Picture object.
Program speci�cations
Write a program named Prob04 that uses the class de�nition shown in Listing 1 (p. 765) and Ericson's

media library along with the image �les in the following list to produce the four graphic output images shown
in Figure 1 (p. 760) through Figure 4 (p. 763) .

• Prob04a.bmp
• Prob04b.bmp
• Prob04c.jpg

Figure 1 (p. 760) - Input �le Prob04a.bmp.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

757

Figure 2 (p. 761) - Input �le Prob04b.bmp.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

758 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 3 (p. 762) - Input �le Prob04c.jpg.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

759

Figure 4 (p. 763) - Required output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

760 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

New classes
You may de�ne new classes as necessary to cause your program to behave as required, but you may not

modify the class de�nition for the class named Prob04 shown in Listing 1 (p. 765) .
Required text output
In addition to the four output images mentioned above, your program must display your name and the

other line of text shown in Figure 5 (p. 764) on the command-line screen.

Figure 5 - Required text output.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

761

Display your name here.

Picture, filename None height 293 width 392

Table 3.288

3.3.21.4 General background information

This program uses a black ellipse on a green background (see Figure 2 (p. 761)) as a pattern to cause
the pixels in a snow scene (see Figure 3 (p. 762)) at the location of the ellipse to be given a red tint and
causes all other pixels in the snow scene to be darkened (see Figure 4 (p. 763)) .

The program also causes a red skater in a green background (see Figure 1 (p. 760)) to be given a
red tint and then drawn on the snow scene at the location of the red-tinted ellipse. The e�ect is that of a
spotlight with a red tint shining on the skater (see Figure 4 (p. 763)) .

3.3.21.5 Discussion and sample code

Will discuss in fragments
I will discuss this program in fragments. A complete listing of the program is provided in Listing 10 (p.

776) near the end of the module.
The driver class named Prob04
The driver class containing the main method is shown in Listing 1 (p. 765) .

Listing 1 - The driver class named Prob04.

import java.awt.Color;

public class Prob04{

public static void main(String[] args){

Prob04Runner obj = new Prob04Runner();

obj.run();

}//end main

}//end class Prob04

Table 3.289

As has been the case in several earlier modules, the code in the main method instantiates an object of
the class named Prob04Runner and calls the run method on that object.

When the run method returns, the main method terminates causing the program to terminate.
Beginning of the class named Prob04Runner
The class named Prob04Runner begins in Listing 2 (p. 766) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

762 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 2 - Beginning of the class named Prob04Runner.

class Prob04Runner{

public Prob04Runner(){//constructor

System.out.println("Display your name here.");

}//end constructor

Table 3.290

Listing 2 (p. 766) shows the constructor for the class, which simply displays the student's name on the
command line screen as shown in Figure 5 (p. 764) .

Beginning of the run method
The beginning of the run method, which is called in Listing 1 (p. 765) , is shown in Listing 3 (p. 766) .

Listing 3 - Beginning of the run method.

public void run(){

Picture skater = new Picture("Prob04a.bmp");

skater.explore();

skater = crop(skater,6,59,392,293);

Picture hole = new Picture("Prob04b.bmp");

hole.explore();

hole = crop(hole,6,59,392,293);

Picture snowScene = new Picture("Prob04c.jpg");

snowScene.explore();

snowScene = crop(snowScene,6,59,392,293);

Table 3.291

Instantiate and display three Picture objects
The code in Listing 3 (p. 766) instantiates Picture objects from the three image �les and displays

those pictures in Figure 1 (p. 760) , Figure 2 (p. 761) , and Figure 3 (p. 762) .
Crop the pictures
Note that the images in those three pictures contain the Alice 330 runtime window controls as a banner

that reads World Running... and a line of buttons.
The method named crop
Listing 3 (p. 766) calls a method named crop on all three Picture objects to eliminate the Alice

runtime controls. Note that the same rectangular area is preserved for all three images. Thus, all three
images are the same size after cropping.

The cropped snow scene image

330http://www.alice.org/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

763

If you were to display the picture whose reference is stored in the variable named snowScene after
the crop method returns, you would see the image shown in Figure 6 (p. 767) with the Alice runtime
controls no longer visible.

Figure 6 (p. 767) - Cropped version of the snow scene image.

The crop method
The method named crop that was used to crop the three pictures is essentially the same as the cropping

methods that I explained in earlier modules. Therefore, I won't repeat that explanation here. You can view
the crop method in its entirety in Listing 10 (p. 776) near the end of the module.

Darken the background of the snow scene
Listing 4 (p. 768) calls the method named darkenBackground to make all of the pixels darker in the

snow scene except for those in the location of the ellipse as shown in Figure 4 (p. 763) . The pixels at the
location of the ellipse are given a red tint.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

764 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 4 - Darken the background of the snow scene.

darkenBackground(hole,snowScene);

Table 3.292

Put the run method on temporary hold
I will put the explanation of the run method on hold at this point and explain the method named

darkenBackground .
The method named darkenBackground
The method named darkenBackground receives references to two Picture objects as parameters. It

uses the �rst picture as a pattern from which it determines which pixels in the second picture (destination)
should be darkened.

The pattern and destination images
In this case, a cropped version of the image of the black ellipse shown in Figure 2 (p. 761) is the pattern.

The cropped image of the snow scene shown in Figure 6 (p. 767) is the destination image whose pixels will
be darkened.

Assumptions
The darkenBackground method assumes that the pattern image has a pure green background as

shown in Figure 2 (p. 761) . It also assumes that the pattern and the destination have the same dimensions.
Behavior of the method
The darkenBackground method darkens every pixel in the destination that is at the location of a

green pixel in the pattern.
The method applies a red tint to every pixel in the destination that is at the location of a non-green pixel

in the pattern
Beginning of the darkenBackground method
The darkenBackground method begins in Listing 5 (p. 768) .

Listing 5 - Beginning of the darkenBackground method.

private void darkenBackground(Picture pattern,

Picture dest){

Pixel[] patternPixels = pattern.getPixels();

Pixel[] destPixels = dest.getPixels();

Color color = null;

int red = 0;

int green = 0;

int blue = 0;

Table 3.293

Get two arrays of pixel data
The darkenBackground method begins by calling the getPixels method on each of the picture

objects to create a pair of array objects containing pixel data.
You learned how to use the getPixels method in an earlier module. Recall that this approach is useful

when you don't need to be concerned about the locations of the pixels in an x-y coordinate system.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

765

Arrays have the same length
Because the two pictures have the same dimensions, the two arrays have the same length.
A given array index speci�es pixel data from the same location in both pictures.
Beginning of the processing loop
The method uses a for loop to traverse the two arrays of pixel data in parallel, using information from

the pattern picture to make the color changes to the destination picture described above. The for loop
begins in Listing 6 (p. 769) .

Listing 6 - Beginning of the processing loop.

for(int cnt = 0;cnt < patternPixels.length;cnt++){

color = patternPixels[cnt].getColor();

if(color.equals(Color.GREEN)){

//Darken corresponding pixel in the destination.

color = destPixels[cnt].getColor();

destPixels[cnt].setColor(color.darker());

Table 3.294

Behavior of the processing loop
The loop begins by getting the color value of the next pixel in the pattern array. If the color of the

pattern pixel is green, the code in Listing 6 (p. 769) :

• Gets the color from the corresponding pixel in the destination array.
• Calls the method named darker , which is a method of the Color class in the standard Sun library,

to produce a darker version of the pixel color.
• Replaces the pixel color in the destination array with the darker version of the color.

Compare images to see the results
If you compare Figure 4 (p. 763) with Figure 3 (p. 762) , you will see that (ignoring the skater and the

ellipse) , all of the pixels in Figure 4 (p. 763) are darker versions of the colors in Figure 3 (p. 762) .
The brighter method
The Color class also provides a method named brighter which has the opposite e�ect. In particular,

it can be used to brighten the color of a pixel.
These two methods are very useful for making a pixel darker or brighter without having to know anything

about the actual color of the pixel.
The else clause in the processing loop
If the color of the pattern pixel (tested in Listing 6 (p. 769)) is not green, the code in the else clause

in Listing 7 (p. 770) is executed.

Listing 7 - The else clause in the processing loop.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

766 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

}else{

//Apply a red tint to the corresponding pixel in

// the destination.

color = destPixels[cnt].getColor();

red = color.getRed();

if(red*1.25 < 255){

red = (int)(red * 1.25);

}else{

red = 255;

}//end else

green = (int)(color.getGreen() * 0.8);

blue = (int)(color.getBlue() * 0.8);

destPixels[cnt].setColor(new Color(red,green,blue));

}//end else

}//end for loop

}//end darkenBackground

Table 3.295

The snow scene and the ellipse only...
At this point, only the images from Figure 2 (p. 761) (the ellipse) and Figure 3 (p. 762) (the snow

scene) are being processed. The image of the skater in Figure 1 (p. 760) hasn't entered the picture yet.
Application of the ellipse pattern
The code in Listing 7 (p. 770) is executed only if the pixel from the destination picture is at a location

that matches one of the non-green (black) pixels in the ellipse in Figure 2 (p. 761) .
(The fact that the pixel is black is of no consequence. The only thing that matters is that it is not

green.)
The objective of the else clause
The objective is to modify the pixel color in the destination picture at this location to give it a red tint

as shown in Figure 4 (p. 763) .
Get, save, and modify the red color value
Listing 7 (p. 770) begins by getting the color of the pixel from the current location in the destination

picture. It extracts and saves the red color value of the pixel. Then, depending on the current value of the
red color value, it either:

• Multiplies the red color value by a factor of 1.25, or
• Sets the red color value to the maximum allowable value of 255.

Decrease the color values for blue and green
Following this, it gets the green and blue color values and multiplies each of them by 0.8.
Replace the old pixel color with the new color
Finally, it replaces the pixel color with a new color using the modi�ed values of red, green, and blue.
The texture is preserved
As you can see in Listing 4 (p. 768) , this process causes the pixels in locations that match the ellipse

to take on a red tint, but the texture of the image is not destroyed as it would be if the pixels had simply
been replaced by pixels that all have the same color of pink.

The end of the darkenBackground method
Listing 7 (p. 770) signals the end of the processing loop and the end of the darkenBackground

method.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

767

Apply a red tint to the skater
Returning to where we left o� in the run method in Listing 4 (p. 768) , the code in Listing 8 (p. 771)

calls a method named redTint , passing a reference to the picture that contains a cropped image of the
skater. The method applies a red tint to the skater.

Listing 8 - Apply a red tint to the skater.

redTint(skater);

Table 3.296

The redTint method assumes that the image being processed has a pure green background like that
shown in Figure 1 (p. 760) . The method applies an algorithm very similar to that shown in Listing 7 (p.
770) to apply a red tint to every pixel that is not pure green.

Because of the similarity of the code in the redTint method and the code in Listing 7 (p. 770) ,
a detailed explanation of the redTint method should not be required. You can view the method in its
entirety in Listing 10 (p. 776) near the end of the module.

The skater with the red tint applied
If you were to display the picture referred to by skater immediately after the redTint method returns

in Listing 8 (p. 771) , you would see the image shown in Figure 7 (p. 771) .
Figure 7 (p. 771) - The skater with a red tint applied.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

768 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Compare Figure 7 (p. 771) with Figure 1 (p. 760)
You can see the e�ect of applying the red tint process to the skater by comparing Figure 7 (p. 771) with

Figure 1 (p. 760) . Note that the process does not change the color of the green pixels.
The remainder of the run method
Continuing with the run method, Listing 9 (p. 773) calls a method named greenScreenDraw to

draw the cropped, red-tinted skater on the snow scene as shown in Figure 4 (p. 763) .

Listing 9 - The remainder of the run method.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

769

//Draw the skater on the snowScene.

greenScreenDraw(skater,snowScene,0,0);

//Display students name on the final output and

// display it.

snowScene.addMessage("Display your name here.",10,15);

snowScene.explore();

System.out.println(snowScene);

}//end run method

Table 3.297

Behavior of the method
The greenScreenDraw method copies all non-green pixels from a source image to a destination image

at a speci�ed location. This method is very similar to methods that I have explained in earlier modules.
Therefore, an explanation of the method in this module should not be needed.

You can view the greenScreenDraw method in its entirety in Listing 10 (p. 776) near the end of the
module.

Add text and display the �nal output image
When the greenScreenDraw method returns, Listing 9 (p. 773) calls the addMessage method to

display the student's name on the snow scene and then calls the explore method to produce the output
image shown in Figure 4 (p. 763) . None of that should be new to you at this point.

Display text and return
Finally, Listing 9 (p. 773) displays some information on the command line screen as shown in Figure 5

(p. 764) and returns control to the main method in Listing 1 (p. 765) .
Terminate the program
Having nothing more to do, the main method terminates, causing the program to terminate and return

control to the operating system.

3.3.21.6 Run the program

I encourage you to copy the code from Listing 10 (p. 776) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

Click the following links to download the required input �les:

• Prob04a.bmp 331

• Prob04b.bmp 332

• Prob04c.jpg 333

3.3.21.7 Summary

In this module, you learned how to darken, brighten, and tint the colors in a Picture object.

331http://cnx.org/content/m44234/latest/Prob04a.bmp
332http://cnx.org/content/m44234/latest/Prob04b.bmp
333http://cnx.org/content/m44234/latest/Prob04c.jpg

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

770 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.21.8 What's next?

You will probably learn more than you already know about interfaces, arrays of type Object, etc., in the
next module.

3.3.21.9 Online video links

While not a requirement of the course, you can select the following links to view optional online video lectures
on the material in this module.

• ITSE 2321 Lecture 09 334

· Part01 335

· Part02 336

· Part03 337

3.3.21.10 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Darkening, Brightening, and Tinting the Colors in a Picture
• File: Java3018.htm
• Published: 08/01/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.3.21.11 Complete program listing

A complete listing of the program discussed in this module is shown in Listing 10 (p. 776) below.

Listing 10 . Complete program listing.

continued on next page

334http://www.youtube.com/playlist?list=PL11F9AC688AC89E56
335http://www.youtube.com/watch?v=T-pcmz5XmQY
336http://www.youtube.com/watch?v=T16JMwpBIUI
337http://www.youtube.com/watch?v=aXLKqYA_0Ng

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

771

/*File Prob04 Copyright 2008 R.G.Baldwin

***/

import java.awt.Color;

public class Prob04{

public static void main(String[] args){

Prob04Runner obj = new Prob04Runner();

obj.run();

}//end main

}//end class Prob04

//==//

class Prob04Runner{

public Prob04Runner(){//constructor

System.out.println("Display your name here.");

}//end constructor

//--//

public void run(){

Picture skater = new Picture("Prob04a.bmp");

skater.explore();

skater = crop(skater,6,59,392,293);

Picture hole = new Picture("Prob04b.bmp");

hole.explore();

hole = crop(hole,6,59,392,293);

Picture snowScene = new Picture("Prob04c.jpg");

snowScene.explore();

snowScene = crop(snowScene,6,59,392,293);

//Make all the pixels darker in the snow scene except

// for those in the location of the hole. Make them

// brighter.

darkenBackground(hole,snowScene);

//Apply a red tint to the skater

redTint(skater);

//Draw the skater on the snowScene.

greenScreenDraw(skater,snowScene,0,0);

//Display students name on the final output and

// display it.

snowScene.addMessage("Display your name here.",10,15);

snowScene.explore();

System.out.println(snowScene);

}//end run method

//--//

//Assumes the source has a pure green background.

// Applies a red tint to every pixel that is not pure

// green.

private void redTint(Picture pic){

Pixel[] pixels = pic.getPixels();

Color color = null;

int red = 0;

int green = 0;

int blue = 0;

for(int cnt = 0;cnt < pixels.length;cnt++){

color = pixels[cnt].getColor();

//Apply a red tint to all non-green pixels

if(!(color.equals(Color.GREEN))){

//Increase the value of the red component

red = color.getRed();

if(red*1.25 < 255){

red = (int)(red * 1.25);

}else{

red = 255;

}//end else

//Decrease the value of blue and green

green = (int)(color.getGreen()*0.8);

blue = (int)(color.getBlue()*0.8);

//Apply the new color to the pixel.

pixels[cnt].setColor(new Color(red,green,blue));

}//end if

}//end for loop

}//end redTint

//--//

//Assumes the pattern image has a pure green background.

// Assumes that the pattern and the destination have the

// same dimensions. Darkens every pixel in the

// destination that is at the location of a green pixel

// in the pattern. Applies a red tint to every pixel

// in the destination that is at the location of a

// non-green pixel in the pattern

private void darkenBackground(

Picture pattern,

Picture dest){

Pixel[] patternPixels = pattern.getPixels();

Pixel[] destPixels = dest.getPixels();

Color color = null;

int red = 0;

int green = 0;

int blue = 0;

for(int cnt = 0;cnt < patternPixels.length;cnt++){

color = patternPixels[cnt].getColor();

if(color.equals(Color.GREEN)){

//Darken corresponding pixel in the destination.

color = destPixels[cnt].getColor();

destPixels[cnt].setColor(color.darker());

}else{

//Apply a red tint to the corresponding pixel in

// the destination.

color = destPixels[cnt].getColor();

red = color.getRed();

if(red*1.25 < 255){

red = (int)(red * 1.25);

}else{

red = 255;

}//end else

green = (int)(color.getGreen() * 0.8);

blue = (int)(color.getBlue() * 0.8);

destPixels[cnt].setColor(new Color(red,green,blue));

}//end else

}//end for loop

}//end darkenBackground

//--//

//Assumes a source image with a pure green background.

// Copies all non-green pixels from the source image to

// the destination image at the location explained

// below. Note that JPEG images typically won't have

// a pure green background even if they had a pure

// green background before being compressed into the

// JPEG format. BMP images work well for this.

private void greenScreenDraw(

Picture source,

Picture dest,

//Place the upper-left corner

// of the source image at the

// following location in the

// destination image.

int destX,

int destY){

int width = source.getWidth();

int height = source.getHeight();

Pixel pixel = null;

Color color = null;

for(int row = 0;row < height;row++){

for(int col = 0;col < width;col++){

color = source.getPixel(col,row).getColor();

if(!(color.equals(Color.GREEN))){

pixel = dest.getPixel(destX + col,destY + row);

pixel.setColor(color);

}//end if

}//end inner loop

}//end outer loop

}//end greenScreenDraw

//--//

//Crops a Picture object to the given width and height

// with the upper-left corner located at startCol and

// startRow.

private Picture crop(Picture pic,int startCol,

int startRow,

int width,

int height){

Picture output = new Picture(width,height);

int colOut = 0;

int rowOut = 0;

int col = 0;

int row = 0;

Pixel pixel = null;

Color color = null;

for(col = startCol;col < startCol+width;col++){

for(row = startRow;row < startRow+height;row++){

color = pic.getPixel(col,row).getColor();

pixel = output.getPixel(colOut,rowOut);

pixel.setColor(color);

rowOut++;

}//end inner loop

rowOut = 0;

colOut++;

}//end outer loop

return output;

}//end crop

}//end class Prob04Runner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

772 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.298

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

773

3.3.22 Java3018r Review
338

Revised: Sun Apr 03 17:16:35 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 339

• Object-Oriented Programming (OOP) with Java 340

3.3.22.1 Table of Contents

• Preface (p. 778)
• Questions (p. 778)

· 1 (p. 778)

• Figures (p. 784)
• Listings (p. 784)
• Answers (p. 786)
• Miscellaneous (p. 786)

3.3.22.2 Preface

This module contains review questions and answers keyed to the module titled Java3018: Darkening, Bright-
ening, and Tinting the Colors in a Picture 341 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

3.3.22.3 Questions

3.3.22.3.1 Question 1 .

Given Figure 1 (p. 780) , Figure 2 (p. 780) , and Figure 3 (p. 781) , which of the following output images
is produced by the code in Listing 1 (p. 779) ?

A. Figure 4 (p. 782)
B. Figure 5 (p. 783)

338This content is available online at <http://cnx.org/content/m45782/1.5/>.
339http://cnx.org/contents/dzOvxPFw
340http://cnx.org/contents/-2RmHFs_
341http://cnx.org/content/m44234

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

774 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 1 . Question 1.

/*File Java3018ra Copyright 2013 R.G.Baldwin

***/

import java.awt.Color;

public class Java3018ra{

public static void main(String[] args){

new Java3018raRunner().run();

}//end main

}//end class Java3018ra

//==//

class Java3018raRunner{

public Java3018raRunner(){//constructor

System.out.println("Display your name here.");

}//end constructor

//--//

public void run(){

Picture skater = crop(new Picture("Prob04a.bmp"),6,59,392,293);

Picture hole = crop(new Picture("Prob04b.bmp"),6,59,392,293);

Picture snowScene = crop(new Picture("Prob04c.jpg"),6,59,392,293);

processBackground(hole,snowScene);

redTint(skater);

greenScreenDraw(skater,snowScene,0,0);

snowScene.explore();

}//end run method

//--//

private void redTint(Picture pic){

Pixel[] pixels = pic.getPixels();

Color color = null;

int red = 0;

int green = 0;

int blue = 0;

for(int cnt = 0;cnt < pixels.length;cnt++){

color = pixels[cnt].getColor();

//Apply a red tint to all non-green pixels

if(!(color.equals(Color.GREEN))){

//Increase the value of the red component

red = color.getRed();

if(red*1.25 < 255){

red = (int)(red * 1.25);

}else{

red = 255;

}//end else

//Decrease the value of blue and green

green = (int)(color.getGreen()*0.8);

blue = (int)(color.getBlue()*0.8);

//Apply the new color to the pixel.

pixels[cnt].setColor(new Color(red,green,blue));

}//end if

}//end for loop

}//end redTint

//--//

private void processBackground(

Picture pattern,

Picture dest){

Pixel[] patternPixels = pattern.getPixels();

Pixel[] destPixels = dest.getPixels();

Color color = null;

int red = 0;

int green = 0;

int blue = 0;

for(int cnt = 0;cnt < patternPixels.length;cnt++){

color = patternPixels[cnt].getColor();

if(color.equals(Color.GREEN)){

//Darken corresponding pixel in the destination.

color = destPixels[cnt].getColor();

int avg = (int)(color.getRed()*0.299+

color.getGreen()*0.587+

color.getBlue()*0.114);

destPixels[cnt].setColor(new Color(avg,avg,avg));

}else{

//Apply a red tint to the corresponding pixel in

// the destination.

color = destPixels[cnt].getColor();

red = color.getRed();

if(red*1.25 < 255){

red = (int)(red * 1.25);

}else{

red = 255;

}//end else

green = (int)(color.getGreen() * 0.8);

blue = (int)(color.getBlue() * 0.8);

destPixels[cnt].setColor(new Color(red,green,blue));

}//end else

}//end for loop

}//end processBackground

//--//

private void greenScreenDraw(

Picture source,

Picture dest,

//Place the upper-left corner

// of the source image at the

// following location in the

// destination image.

int destX,

int destY){

int width = source.getWidth();

int height = source.getHeight();

Pixel pixel = null;

Color color = null;

for(int row = 0;row < height;row++){

for(int col = 0;col < width;col++){

color = source.getPixel(col,row).getColor();

if(!(color.equals(Color.GREEN))){

pixel = dest.getPixel(destX + col,destY + row);

pixel.setColor(color);

}//end if

}//end inner loop

}//end outer loop

}//end greenScreenDraw

//--//

private Picture crop(Picture pic,int startCol,

int startRow,

int width,

int height){

Picture output = new Picture(width,height);

int colOut = 0;

int rowOut = 0;

int col = 0;

int row = 0;

Pixel pixel = null;

Color color = null;

for(col = startCol;col < startCol+width;col++){

for(row = startRow;row < startRow+height;row++){

color = pic.getPixel(col,row).getColor();

pixel = output.getPixel(colOut,rowOut);

pixel.setColor(color);

rowOut++;

}//end inner loop

rowOut = 0;

colOut++;

}//end outer loop

return output;

}//end crop

}//end class Java3018raRunner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

775

Table 3.299

Figure 1 - Prob04a.bmp.

Figure 2 - Prob04b.bmp.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

776 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 3 - Prob04c.jpg.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

777

Figure 4 - Possible output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

778 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 5 - Possible output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

779

Answer 1 (p. 786)

3.3.22.4 Figures

• Figure 1 (p. 780) . Prob04a.bmp.
• Figure 2 (p. 780) . Prob04b.bmp.
• Figure 3 (p. 781) . Prob04c.jpg.
• Figure 4 (p. 782) . Possible output image.
• Figure 5 (p. 783) . Possible output image.

3.3.22.5 Listings

• Listing 1 (p. 779) . Question 1.

What is the meaning of the following two images?

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

780 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

This image was inserted here simply to insert some space between the questions and the answers to keep
them from being visible on the screen at the same time.

The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-
Oriented Programming.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

781

3.3.22.6 Answers

3.3.22.6.1 Answer 1

The code in Listing 1 (p. 779) produces the output image shown in Figure 4 (p. 782) .
Back to Question 1 (p. 778)

3.3.22.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java3018r Review
• File: Java3018r.htm
• Published: 02/17/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

782 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.3.23 Java3020: Interfaces, Object Arrays, etc.
342

Revised: Sun Apr 03 17:27:47 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 343

• Object-Oriented Programming (OOP) with Java 344

3.3.23.1 Table of Contents

• Preface (p. 787)

· Viewing tip (p. 787)

* Figures (p. 787)
* Listings (p. 788)

• Preview (p. 788)
• General background information (p. 789)
• Discussion and sample code (p. 789)
• Run the program (p. 799)
• Summary (p. 799)
• What's next? (p. 799)
• Online video links (p. 799)
• Miscellaneous (p. 800)
• Complete program listing (p. 800)

3.3.23.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

3.3.23.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

3.3.23.2.1.1 Figures

• Figure 1 (p. 788) . Command line output for Prob05.

342This content is available online at <http://cnx.org/content/m44214/1.10/>.
343http://cnx.org/contents/dzOvxPFw
344http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

783

3.3.23.2.1.2 Listings

• Listing 1 (p. 789) . Beginning of driver class for Prob05.
• Listing 2 (p. 790) . The interface named Prob05X.
• Listing 3 (p. 791) . Beginning of the class named Prob05MyClassA.
• Listing 4 (p. 793) . The method named getModi�edData.
• Listing 5 (p. 793) . The method named getData.
• Listing 6 (p. 794) . Overridden toString method.
• Listing 7 (p. 794) . Beginning of the class named Prob05MyClassB.
• Listing 8 (p. 795) . The method named getModi�edData.
• Listing 9 (p. 795) . The getData and toString methods.
• Listing 10 (p. 796) . Print three items of information.
• Listing 11 (p. 797) . Three more print statements.
• Listing 12 (p. 798) . Print the references to the two objects.
• Listing 13 (p. 801) . Complete program listing

3.3.23.3 Preview

In this module, you will learn about :

• Interface de�nitions
• Implementing an interface in a class de�nition
• De�ning interface methods in a class de�nition
• Storing references to new objects in elements of an array of type Object
• Casting elements to an interface type in order to call interface methods
• Parameterized constructors
• Overridden toString method

Program speci�cations
Write a program named Prob05 that uses the class de�nition shown in Listing 1 (p. 789) to produce

the output shown in Figure 1 (p. 788) on the command line screen.

Figure 1 . Command line output for Prob05.

Prob05

Put your first name here

Put your last name here

-18 -17 -16

-17 -17 -17

-12 -12 -12

Table 3.300

No graphic output images required
There are no graphic output images required by this program. Therefore, it can be compiled and executed

without a requirement to have Ericson's media library on the classpath.
Required text output
The output, which appears on the command line screen, consists of the six lines of text shown in Figure

1 (p. 788) .
Because the program generates random data for testing, the actual values will di�er from one run to the

next. However, in all cases:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

784 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• The values in the �rst row of numbers will be a sequence of consecutive integers in increasing algebraic
order from left to right.

• All three values in the second row of numbers will match the value of the center number in the �rst
row of numbers.

• All three values in the third row of numbers will be algebraically �ve greater than the values in the
second row of numbers.

New classes
You may de�ne new classes as necessary to cause your program to behave as required, but you may not

modify the class de�nition for the class named Prob05 shown in Listing 1 (p. 789) .

3.3.23.4 General background information

Among other things, this program illustrates:

• Interface de�nitions
• Implementing an interface in a class de�nition
• De�ning interface methods in a class de�nition
• Storing references to new objects in elements of an array of type Object
• Casting elements to an interface type in order to call interface methods
• Parameterized constructors
• Overridden toString method

3.3.23.5 Discussion and sample code

Will explain in fragments
I will explain this program in fragments. A complete listing of the program is provided in Listing 13 (p.

801) near the end of the module.
Beginning of driver class for Prob05
The driver class for Prob05 begins in Listing 1 (p. 789) .

Listing 1 . Beginning of driver class for Prob05.

import java.util.*;

class Prob05{

public static void main(String[] args){

Random generator = new Random(new Date().getTime());

int randomData = (byte)generator.nextInt();

Object[] var1 = new Object[2];

var1[0] = new Prob05MyClassA(randomData);

var1[1] = new Prob05MyClassB(randomData);

Table 3.301

Behavior of the code in Listing 1 (p. 789)
Listing 1 (p. 789) does the following:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

785

• Gets and saves a random value of type int .
• Instantiates a new two-element array object of type Object . (A reference to any object of any

class or interface type can be stored in an array element of type Object .)
• Populates the array object with references to objects of the classes:

· Prob05MyClassA
· Prob05MyClassB

The same random value is passed to the constructor for both objects when they are instantiated.
Put the driver class on temporary hold
At this point, I am going to put the driver class named Prob05 on temporary hold and explain the

class named Prob05MyClassA .
The interface named Prob05X
Having glanced ahead, I know that the class named Prob05MyClassA implements the interface

named Prob05X so I will explain that interface �rst.
The interface named Prob05X is shown in its entirety in Listing 2 (p. 790) .

Listing 2 . The interface named Prob05X.

interface Prob05X{

public int getModifiedData();

public int getData();

}//end interface

Table 3.302

An interface de�nition
An interface de�nition can contain only two kinds of members:

• Constants
• Method declarations

By now, you should have studied interfaces in my online tutorials. Therefore, this explanation will be very
brief.

Method declarations
Listing 2 (p. 790) contains two method declarations.
A method declaration does not have a body. Its purpose is to establish the programming interface for

that method in any class that implements the interface (return type, name, arguments, etc.) .
A method declaration provides no information about the behavior of the method.
A method declaration in an interface is implicitly abstract.
A concrete de�nition is required
Any class that implements an interface:

• Must provide a concrete version of every method that is declared in the interface, or
• The class must be declared abstract . (In this case, abstract essentially means incomplete.)

The class named Prob05MyClassA
The class named Prob05MyClassA , which implements the interface named Prob05X , must

provide concrete versions of the methods named:

• public int getModi�edData()

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

786 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• public int getData()

Beginning of the class named Prob05MyClassA
The class named Prob05MyClassA begins in Listing 3 (p. 791) .

Listing 3 . Beginning of the class named Prob05MyClassA.

class Prob05MyClassA implements Prob05X{

private int data;//instance variable

Prob05MyClassA(int inData){//constructor

System.out.println("Prob05");

System.out.println("Put your first name here");

data = inData;

}//end constructor

Table 3.303

This class implements the interface named Prob05X .
A private instance variable
Listing 3 (p. 791) begins by declaring a private instance variable of type int named data . As a

private instance variable, it is accessible by any method or constructor de�ned within the class but is not
accessible to methods from outside the class.

The constructor
The constructor for the class is shown in its entirety in Listing 3 (p. 791) .
The constructor begins by displaying the problem number and the student's �rst name on the command

line screen.
Then it assigns the value of the incoming parameter named inData to the variable named data .

This makes that value available to the methods that are de�ned within the class.
The method named getModi�edData
We learned earlier 345 that the class named Prob05MyClassA

• must provide a concrete de�nition of the method named getModi�edData ,
• because that method is declared in the interface named Prob05X ,
• which is implemented by the class.

With the exception of some very subtle di�erences (that are beyond the scope of this course) , that concrete
de�nition must match the signature of the declared method.

Code for the method named getModi�edData
The method named getModi�edData is shown in its entirety in Listing 4 (p. 793) .
When this method is called, it

• subtracts a value of 1 from the value stored in the instance variable named data , and
• returns that modi�ed value.

345http://cnx.org/content/m44214/latest/Java3020old.htm#concrete

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

787

Listing 4 . The method named getModi�edData.

public int getModifiedData(){

return data - 1;

}//end getModifiedData()

Table 3.304

The method named getData
We also learned earlier that the class named Prob05MyClassA

• must provide a concrete de�nition of the method named getData,
• which is also declared in the interface named Prob05X .

Code for the method named getData
The method named getData is shown in its entirety in Listing 5 (p. 793) .
This method returns a copy of the value stored in the variable named data .

Listing 5 . The method named getData.

public int getData(){

return data;

}//end getData()

Table 3.305

A round trip
When the code in Listing 1 (p. 789) instantiates an object of the Prob05MyClassA class, it passes

a random value as a parameter to the constructor.
The constructor shown in Listing 3 (p. 791) stores that random value in the instance variable named

data .
When the method named getModi�edData is called, it returns a value that is the original random

value less 1.
When the method named getData is called, it returns a copy of the original random value.
The toString method
The class named Prob05MyClassA extends the class named Object by default. It inherits a method

named toString from the class named Object . The inherited method has very speci�c behavior.
Overridden toString method
The code in Listing 6 (p. 794) overrides the inherited method to provide a di�erent behavior when the

method is executed in conjunction with an object of the Prob05MyClassA class.
The new behavior is to construct and return a string version of the value obtained by adding 5 to the

value stored in data , which is the original random value.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

788 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 6 . Overridden toString method.

public String toString(){

return "" + (data + 5);

}//end toString()

}//end class Prob05MyClassA

Table 3.306

The end of the class named Prob05MyClassA
Listing 6 (p. 794) also signals the end of the class de�nition for the class named Prob05MyClassA .
The class named Prob05MyClassB
Referring back to the code in the driver class in Listing 1 (p. 789) , we see that the driver also instantiates

an object of the class named Prob05MyClassB , passing the same random value to the constructor for
the class.

The reference to the object is stored in the second element of the array object of type Object referred
to by the reference variable named var1 .

Beginning of the class named Prob05MyClassB
The beginning of the class named Prob05MyClassB is shown in Listing 7 (p. 794) .

Listing 7 . Beginning of the class named Prob05MyClassB.

class Prob05MyClassB implements Prob05X{

private int data;

Prob05MyClassB(int inData){

System.out.println("Put your last name here");

data = inData;

}//end constructor

Table 3.307

Implements Prob05X
The �rst thing we notice is that this class also implements the interface named Prob05X . This requires

that the class provide concrete de�nitions of the two methods declared in that interface.
Save the incoming parameter value
The constructor for the Prob05MyClassB class, which is shown in Listing 7 (p. 794) , saves the

incoming parameter value in a private instance variable named data .
Unrelated to the variable named data from before
It is important to note that this variable named data is completely unrelated to the private instance

variable named data that is declared in Listing 3 (p. 791) , even though they are the same type and they
have the same name.

They belong to two di�erent objects. Objects do not share instance variables.
The two objects are related
However, even though the two objects instantiated in Listing 1 (p. 789) are instantiated from di�erent

classes, they are related in the sense that they have two ancestors in common. They both extend the class

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

789

named Object by default and they both explicitly implement the interface named Prob05X . That
means that they can both be treated as either type Object or type Prob05X .

Related through the interface by design
Because all classes are direct or indirect subclasses of the class named Object , all objects instantiated

for any class are related at the Object level. However, the objects in this program are related through the
Prob05X interface only because I designed the program that way.

The method named getModi�edData
The method named getModi�edData is shown in Listing 8 (p. 795) .

Listing 8 . The method named getModi�edData.

public int getModifiedData(){

return data + 1;

}//end getModifiedData()

Table 3.308

Same behavior is not required
A comparison of Listing 8 (p. 795) with Listing 4 (p. 793) exposes a very important aspect of interface

implementation.
If two di�erent classes implement the same interface, they each must provide concrete de�nitions of all

the method declared in the interface. When providing such concrete de�nitions, both classes must match
the method signatures of the declared methods.

However, the behavior of a method as de�ned in one class is not required to be the same as the behavior
of the method having the same signature in the other class.

The behavior is di�erent
For example, the code in Listing 4 (p. 793) subtracts 1 from the value of data and returns that

modi�ed value.
The code in Listing 8 (p. 795) adds 1 to the value of data and returns that modi�ed value.
Therefore, the behavior of the method named getModi�edData in an object instantiated from the

class named Prob05MyClassB is completely di�erent from the behavior of the method having the same
signature in an object of the class named Prob05MyClassA .

The getData and toString methods
Listing 9 (p. 795) shows the getData and toString methods as de�ned in the class named

Prob05MyClassB .

Listing 9 . The getData and toString methods.

public int getData(){

return data;

}//end getData()

public String toString(){

return "" + (data + 5);

}//end toString()

}//end class Prob05MyClassB

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

790 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.309

The behavior is the same
If you compare Listing 9 (p. 795) with Listing 5 (p. 793) and Listing 6 (p. 794) , you will see that these

two methods are de�ned the same in both classes. Therefore, these two methods have the same behavior
regardless of which of the two objects instantiated in Listing 1 (p. 789) they are called on.

Back to the driver class named Prob05
Returning now to the driver class named Prob05 where we left o� in Listing 1 (p. 789) , Listing 10

(p. 796) contains three statements that print information on the command line screen.

Listing 10 . Print three items of information.

System.out.print(

((Prob05X)var1[0]).getModifiedData() + " ");

System.out.print(randomData + " ");

System.out.println(

((Prob05X)var1[1]).getModifiedData());

Table 3.310

Three print statements
The �rst two statements in Listing 10 (p. 796) call the print method and the last statement calls the

println method.
When the println method is called, the onscreen cursor advances to the left side of the next line after

the material has been printed.
However, when the print method is called, the cursor remains at the right end of the printed material.
Therefore, calling print print println in succession will cause three items of information to be printed

on the same line.
A cast is required
Recall that the reference to each object instantiated in Listing 1 (p. 789) is stored in an array element

as type Object .
A reference to any object can be stored in a reference of type Object because the Object class is

the superclass of all classes. (References to array objects can also be stored as type Object but that fact
is not germane to this program.)

Only eleven methods can be called on type Object
However, once an object's reference is stored as type Object , the only methods that can be called

on that object (without casting) are the eleven methods that are de�ned in the Object class. That
group of eleven methods includes the method named toString but it does not include the methods named
getData and getModi�edData .

Must change the type of the reference
Therefore, the �rst statement in Listing 10 (p. 796) requires that a cast to be used to change the type

of the reference back to a type on which the method can be called. There are a couple of choices in this
regard.

Could cast to the class type
First, it is always possible to cast the reference back to the class from which the object was instanti-

ated. Therefore, it would work to cast the reference from array element 0 in Listing 10 (p. 796) to type
Prob05MyClassA and to cast the reference from array element 1 to type Prob05MyClassB .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

791

Cast to the interface type
In this program, there is another choice. Because both classes implement the interface named Prob05X

, and the method named getModi�edData is declared in that interface, it also works to cast both
references to the common interface type Prob05X .

That is what was done in Listing 10 (p. 796) . Both references were cast to the interface type Prob05X
.

The printed values
The �rst statement in Listing 10 (p. 796) calls the method named getModi�edData as de�ned in

Listing 4 (p. 793) . This causes the original random value less 1 to be printed.
The second statement in Listing 10 (p. 796) simply prints the original random value that was saved in

the variable named randomData in Listing 1 (p. 789) .
The third statement in Listing 10 (p. 796) calls the method named getModi�edData as de�ned in

Listing 8 (p. 795) . This causes the original random value plus 1 to be printed.
Because this is a call to the println method, the onscreen cursor advances to the left side of the next

line after the value is printed.
The three statements in Listing 10 (p. 796) cause the �rst three values shown in Figure 1 (p. 788) to be

printed on the command line screen.
Three more print statements
Continuing with the driver class named Prob05 , Listing 11 (p. 797) shows three more print statements.

Listing 11 . Three more print statements.

System.out.print(((Prob05X)var1[0]).getData() + " ");

System.out.print(randomData + " ");

System.out.println(((Prob05X)var1[1]).getData());

Table 3.311

A cast is required
In this case, the getData method belonging to each of the objects is called in the �rst and third

statements. (Once again a cast is required.)
Behavior of the getData methods is the same
Recall that the behavior of the getData method is the same in both objects. It simply returns a copy

of the original random value that was passed to the constructor when each of the objects was instantiated.
The three statements in Listing 11 (p. 797) produce the second set of three matching values shown in

Figure 1 (p. 788) .
These three values match because all three print statements are printing essentially the same value. The

original random value is printed in the middle statement in Listing 11 (p. 797) . A copy of the original
random value is printed in the �rst and third statements.

Print the references to the two objects
Things get a little bit more complicated in Listing 12 (p. 798) .

Listing 12 . Print the references to the two objects.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

792 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

System.out.print(((Prob05X)var1[0]) + " ");

System.out.print(randomData + 5 + " ");

System.out.println(((Prob05X)var1[1]));

}//end main

}//end class Prob05

Table 3.312

An automatic call to the toString method
Whenever an object's reference is passed to either the print method or the println method, the �rst

thing that happens is that the toString method is called on the reference. The toString method always
returns a reference to an object of the String class, and it is that string that is printed.

Inherited default behavior of the toString method
As I mentioned earlier, the toString method is de�ned with default behavior in the Object class.

Since every class is a subclass of the Object class, every class inherits that method.
If the toString method is not overridden in a class or in any of the superclasses of a given class and the

toString method is called on an object of the given class, the default behavior of the toString method
will occur.

Can override to change the behavior
However, any class can override the toString method to produce di�erent behavior and can pass that

behavior down the inheritance hierarchy to subclasses of the class that overrides the method.
The toString method is overridden
In this program, the toString method is overridden in exactly the same way in both the

Prob05MyClassB class and the Prob05MyClassB class. (See Listing 6 (p. 794) and Listing 9
(p. 795) .) Therefore, when the toString method is called on an object of either class, it will return a
string representation of the value stored in the variable named data plus 5.

Pass object references to the print and println methods
The �rst statement in Listing 12 (p. 798) passes the reference to the object stored in the �rst element

of the array to the print method and the third statement passes the reference to the object stored in the
second element of the array to the println method.

Execute overridden toString methods and print the returned values
The print and println methods cause the code in Listing 6 (p. 794) and Listing 9 (p. 795) to be

executed. In both cases, this code returns a string that represents the original random value plus 5. This is
the value that is displayed.

Print the random value plus 5
The second statement in Listing 12 (p. 798) adds �ve to the original random number and prints the

result. These three statements produce the third line of text in Figure 1 (p. 788) where all three values are
the algebraic sum of the original random number plus 5.

Important - The cast is not required
Even though the references extracted from the array in the �rst and third statements in Listing 12 (p.

798) are cast to the interface type Prob05X , that cast is unnecessary.
Because the original de�nition of the toString method appears in the class named Object , the

toString method can be called on those objects even while they are being treated as though they are of
type Object .

Runtime polymorphism
Furthermore, a very powerful capability of OOP known as runtime polymorphism would cause the over-

ridden versions of the methods de�ned in Listing 6 (p. 794) and Listing 9 (p. 795) to be executed instead
of the default version of the method de�ned in the Object class.

The end of the main method

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

793

Listing 12 (p. 798) signals the end of the main method and the end of the class named Prob05 .
When the main method has nothing further to do, it terminates causing the program to terminate and
return control to the operating system.

3.3.23.6 Run the program

I encourage you to copy the code from Listing 13 (p. 801) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

3.3.23.7 Summary

In this module, you learned about :

• Interface de�nitions
• Implementing an interface in a class de�nition
• De�ning interface methods in a class de�nition
• Storing references to new objects in elements of an array of type Object
• Casting elements to an interface type in order to call interface methods
• Parameterized constructors
• Overridden toString method

3.3.23.8 What's next?

You will learn how to scale images and how to rotate and translate images using the A�neTransform class
in the next module.

3.3.23.9 Online video links

While not a requirement of the course, you can select the following links to view optional online video lectures
on the material in this module.

• ITSE 2321 Lecture 10 346

· Part01 347

· Part02 348

· Part03 349

· Part04 350

3.3.23.10 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Interfaces, Object Arrays, etc.
• File: Java3020.htm
• Published: 08/02/12

346http://www.youtube.com/playlist?list=PL3DB0B7840C943C4C
347http://www.youtube.com/watch?v=10R_Xgo9QEo
348http://www.youtube.com/watch?v=vNPd6Sd7Wk8
349http://www.youtube.com/watch?v=_JFcPromgGk
350http://www.youtube.com/watch?v=A3bgpy5dCtQ

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

794 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.3.23.11 Complete program listing

A complete listing of the program discussed in this module is shown in Listing 13 (p. 801) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

795

Listing 13 . Complete program listing.

/*File Prob05 Copyright 2008 R.G.Baldwin

***/

import java.util.*;

class Prob05{

public static void main(String[] args){

Random generator = new Random(new Date().getTime());

int randomData = (byte)generator.nextInt();

Object[] var1 = new Object[2];

var1[0] = new Prob05MyClassA(randomData);

var1[1] = new Prob05MyClassB(randomData);

System.out.print(

((Prob05X)var1[0]).getModifiedData() + " ");

System.out.print(randomData + " ");

System.out.println(

((Prob05X)var1[1]).getModifiedData());

System.out.print(((Prob05X)var1[0]).getData() + " ");

System.out.print(randomData + " ");

System.out.println(((Prob05X)var1[1]).getData());

System.out.print(((Prob05X)var1[0]) + " ");

System.out.print(randomData + 5 + " ");

System.out.println(((Prob05X)var1[1]));

}//end main

}//end class Prob05

//==//

interface Prob05X{

public int getModifiedData();

public int getData();

}//end interface

//==//

class Prob05MyClassA implements Prob05X{

private int data;

Prob05MyClassA(int inData){

System.out.println("Prob05");

System.out.println("Put your first name here");

data = inData;

}//end constructor

//--//

public int getModifiedData(){

return data - 1;

}//end getModifiedData()

//--//

public int getData(){

return data;

}//end getData()

//--//

public String toString(){

return "" + (data + 5);

}//end toString()

}//end class Prob05MyClassA

//==//

class Prob05MyClassB implements Prob05X{

private int data;

Prob05MyClassB(int inData){

System.out.println("Put your last name here");

data = inData;

}//end constructor

public int getModifiedData(){

return data + 1;

}//end getModifiedData()

public int getData(){

return data;

}//end getData()

public String toString(){

return "" + (data + 5);

}//end toString()

}//end class Prob05MyClassB

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

796 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.313

-end-

3.3.24 Java3022: Scaling, Rotating, and Translating Images using A�ne

Transforms
351

Revised: Mon Apr 04 09:24:13 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 352

• Object-Oriented Programming (OOP) with Java 353

3.3.24.1 Table of Contents

• Preface (p. 802)

· Viewing tip (p. 802)

* Figures (p. 802)
* Listings (p. 803)

• Preview (p. 803)
• General background information (p. 807)
• Discussion and sample code (p. 807)
• Run the program (p. 814)
• Summary (p. 814)
• What's next? (p. 814)
• Online video link (p. 814)
• Miscellaneous (p. 814)
• Complete program listing (p. 815)

3.3.24.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 354 .

3.3.24.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

3.3.24.2.1.1 Figures

• Figure 1 (p. 803) . Input �le named Prob01.jpg.
• Figure 2 (p. 803) . First output image.
• Figure 3 (p. 804) . Second output image.
• Figure 4 (p. 807) . Required output text.

351This content is available online at <http://cnx.org/content/m44223/1.12/>.
352http://cnx.org/contents/dzOvxPFw
353http://cnx.org/contents/-2RmHFs_
354http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

797

3.3.24.2.1.2 Listings

• Listing 1 (p. 807) . The driver class named Prob01.
• Listing 2 (p. 808) . Beginning of the class named Prob01Runner.
• Listing 3 (p. 808) . The run method.
• Listing 4 (p. 809) . Beginning of the method named rotatePicture.
• Listing 5 (p. 811) . Compute the dimensions of the new Picture object.
• Listing 6 (p. 811) . Prepare the translation transform.
• Listing 7 (p. 812) . Concatenate the transforms.
• Listing 8 (p. 812) . Instantiate the new Picture object .
• Listing 9 (p. 813) . Perform the concatenated transform.
• Listing 10 (p. 816) . Complete program listing.

3.3.24.3 Preview

In this module, you will learn how to scale images and how to rotate and translate images using the
A�neTransform class.

Program speci�cations
Write a program named Prob01 that uses the class de�nition shown in Listing 1 (p. 807) and Ericson's

media library along with the image �le named Prob01.jpg (see Figure 1 (p. 803)) to produce the output
images shown in Figure 2 (p. 803) and Figure 3 (p. 804) .

Figure 1 - Input �le named Prob01.jpg.

Figure 2 - First output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

798 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 3 - Second output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

799

Scale and rotate
The image from the �le named Prob01.jpg must be scaled and then rotated 30 degrees clockwise. A

scale factor of 0.95 must be applied to the horizontal and a scale factor of 0.9 must be applied to the vertical.
New classes
You may de�ne new classes as necessary to cause your program to behave as required, but you may not

modify the class de�nition for the class named Prob01 shown in Listing 1 (p. 807) .
Required output text
In addition to the two output images mentioned above, your program must display your name and the

other line of text shown in Figure 4 (p. 807) on the command-line screen.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

800 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

801

Figure 4 - Required output text.

Display your name here.

Picture, filename None height 360 width 394

Table 3.314

3.3.24.4 General background information

Writing the code from scratch to rotate an image can be a daunting task. However, the task is made much
easier through the use of the standard A�neTransform class, which is included in the standard Java
library.

The A�neTransform class can also be used to scale, �ip, rotate, shear, and translate images.

3.3.24.5 Discussion and sample code

Will discuss in fragments
I will discuss and explain this program in fragments. A complete listing of the program is provided in

Listing 10 (p. 816) near the end of the module.
The driver class named Prob01
The driver class containing the main method is shown in Listing 1 (p. 807) .

Listing 1 - The driver class named Prob01.

import java.awt.Graphics2D;

import java.awt.geom.AffineTransform;

import java.awt.geom.Rectangle2D;

import java.awt.Graphics;

public class Prob01{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

new Prob01Runner().run();

}//end main method

}//end class Prob01

Table 3.315

Instantiate a new object and call its run method
As has been the case in several earlier modules, the code in the main method instantiates a new object

of the class named Prob01Runner and calls the run method on that object.
When the run method returns, the main method terminates causing the program to terminate.
Beginning of the class named Prob01Runner
The class named Prob01Runner begins in Listing 2 (p. 808) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

802 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 2 - Beginning of the class named Prob01Runner.

class Prob01Runner{

public Prob01Runner(){

System.out.println("Display your name here.");

}//end constructor

Table 3.316

Listing 2 (p. 808) shows the constructor for the class, which simply displays the student's name on the
command line screen as shown in Figure 4 (p. 807) .

The run method
The run method, which is called in Listing 1 (p. 807) , is shown in its entirety in Listing 3 (p. 808) .

Listing 3 - The run method.

public void run(){

Picture pic = new Picture("Prob01.jpg");

//Add your name and display the picture.

pic.addMessage("Display your name here.",10,20);

pic.explore();

pic = pic.scale(0.95,0.9);

pic = rotatePicture(pic,30);

pic.explore();

System.out.println(pic);

}//end run

Table 3.317

Mostly familiar code
You are already familiar with all of the code in Listing 3 (p. 808) except for the call to the scale method

and the call to the rotatePicture method.
The scale method
The scale method is part of Ericson's library. However, it is not included in the library on the CD in

the back of my copy of her textbook. It is included in the zip �les containing later versions, which can be
downloaded from Ericson's website. (See Java OOP: The Guzdial-Ericson Multimedia Class Library 355

.)
The scale method is straightforward
When the scale method is called on a Picture object, it creates and returns a reference to a new

Picture object that is a scaled version of the original.
Parameters
The scale method requires two parameters of type double . The �rst parameter is the scale factor

that is applied to the horizontal dimension of the picture. The second parameter is the scale factor that is
applied to the vertical dimension of the picture.

355http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

803

Replace original picture with scaled picture
The reference to the new Picture object returned by the scale method in Listing 3 (p. 808) is stored

in the variable named pic overwriting the reference to the original Picture object. From this point
forward, all operations are performed on the scaled version of the original picture.

Beginning of the method named rotatePicture
The method named rotatePicture begins in Listing 4 (p. 809) .

Listing 4 - Beginning of the method named rotatePicture.

private Picture rotatePicture(Picture pic,double angle){

//Prepare the rotation transform

AffineTransform rotateTransform =

new AffineTransform();

rotateTransform.rotate(Math.toRadians(angle),

pic.getWidth()/2,

pic.getHeight()/2);

Table 3.318

Rotate and translate
The rotatePicture method accepts a reference to a Picture object along with a rotation angle in

degrees.
It creates and returns a new Picture object that is of the correct size, containing the rotated version

of the image as shown in Figure 3 (p. 804) .
The incoming image is rotated around its center by the speci�ed rotation angle. Then it is translated to

and drawn in the center of the new Picture object.
A�ne transforms
The rotatePicture method uses a�ne transforms to rotate and translate the image. A�ne transforms

can also be used to scale images, but it is easier to scale images using Ericson's scale method.
However, the lack of complexity of the scale method is easily made up for by the complexity of a�ne

transforms.
Google me
I have published several tutorials discussing and explaining the use of the A�neTransform class in

Java. You can locate those modules by going to Google and searching for the following keywords:
richard baldwin a�ne transform
The A�neTransform class
The A�neTransform class is part of the standard Java library. Here is part of what the documentation

356 has to say about the class:
"The A�neTransform class represents a 2D a�ne transform that performs a linear mapping from 2D

coordinates to other 2D coordinates that preserves the "straightness" and "parallelness" of lines. A�ne
transformations can be constructed using sequences of translations, scales, �ips, rotations, and shears."

The ideas behind a�ne transforms
One of the ideas behind a�ne transforms is that you can create an a�ne transform object and apply it

to an unlimited number of other objects. This might be useful in a game program, for example, where a
large number of enemy ships need to be rotated, translated, and scaled in unison.

Concatenated a�ne transform objects

356http://java.sun.com/javase/6/docs/api/java/awt/geom/A�neTransform.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

804 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Another idea is that you can create two or more a�ne transform objects, concatenate them, and apply
the concatenated transform object to an unlimited number of other objects.

Application of concatenated transform objects
Applying a concatenated transform to an object is equivalent to applying one of the transform objects to

the original object and then applying the other transform objects to the transformed objects in sequential
fashion. Concatenation of transform objects can result in considerable computational savings in certain
situations.

A larger Picture object is required
Looking back at Figure 2 (p. 803) and Figure 3 (p. 804) , you can see that the Picture object required

to contain the rotated image must be larger than the Picture object required to contain the original image.
You will learn how to compute the dimensions of the larger Picture object later in this module.

Behavior of the rotatePicture method
The rotatePicture method performs the following operations:

• Prepare an A�neTransform object that can be used to rotate the incoming image around its center
by the speci�ed angle.

• Get the dimensions of a rectangle of su�cient size to contain the rotated image.
• Prepare an A�neTransform object that will translate the rotated image to the center of a new,

larger Picture object having the dimensions computed above.
• Concatenate the rotation transform object with the translation transform object.
• Create a new Picture object with the dimensions computed above.
• Apply the concatenated transform to the incoming image and draw the transformed image in the new

Picture object.
• Return a reference to the new Picture object containing the rotated and translated image.

Prepare the rotation transform
Listing 4 (p. 809) begins by instantiating a new object of the A�neTransform class and saving the

object's reference in the local reference variable named rotateTransform .
Call an overloaded rotate method
Then Listing 4 (p. 809) calls one of four overloaded rotate methods on the rotation transform object.
Three parameters are required
This version of the rotate method requires three parameters:

• theta - the angle of rotation measured in radians
• anchorx - the X coordinate of the rotation anchor point
• anchory - the Y coordinate of the rotation anchor point

To make a long story short...
The rotate method prepares the transform object to rotate an image around the point speci�ed by the

last two parameters.
The angle of rotation must be speci�ed in radians.
Convert from degrees to radians
Listing 4 (p. 809) calls the static toRadians method of the Math class to convert the rotation

angle from degrees to radians. The angle in radians is passed as the �rst parameter (theta) to the rotate
method.

Compute the anchor point
Then the code in Listing 4 (p. 809) computes the coordinates of the center of the image and passes those

coordinates to the rotate method as anchorx and anchory .
The dimensions of the new Picture object
How would you compute the dimensions of the new Picture object required to barely contain the

rotated image shown in Figure 3 (p. 804) ?
The computation of those dimensions is not rocket science, but would certainly require you to know quite

a lot about dealing with angles and triangles.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

805

Fortunately, we don't have to perform that computation
Ericson provides a method named getTransformEnclosingRect that will perform that computation

for us, returning the required dimensions in the form of a reference to a standard Java Rectangle2D
object.

Compute the dimensions of the new Picture object
The code in Listing 5 (p. 811) calls the getTransformEnclosingRect method on the previously

scaled Picture object passing a reference to the rotation transform object to get the required dimensions
for a Picture object that will contain the rotated image.

Listing 5 - Compute the dimensions of the new Picture object.

Rectangle2D rectangle2D =

pic.getTransformEnclosingRect(rotateTransform);

int resultWidth = (int)(rectangle2D.getWidth());

int resultHeight = (int)(rectangle2D.getHeight());

Table 3.319

The dimensions of the rectangle
After getting a reference to the rectangle, Listing 5 (p. 811) gets and saves the width and height of

the rectangle. These values will be used later to instantiate a new Picture object of the same size as the
rectangle.

Prepare the translation transform
Listing 6 (p. 811) prepares a translation transform that can be used to translate the rotated image to

the center of the new Picture object.

Listing 6 - Prepare the translation transform.

AffineTransform translateTransform =

new AffineTransform();

translateTransform.translate(

(resultWidth - pic.getWidth())/2,

(resultHeight - pic.getHeight())/2);

Table 3.320

A new A�neTransform object
Listing 6 (p. 811) begins by instantiating a new object of the A�neTransform class and saving the

object's reference in the local reference variable named translateTransform .
Call the translate method on the transform object
Then Listing 6 (p. 811) calls the translate method on the A�neTransform object.
According to the documentation 357 , the required parameters of the translate method are:

• tx - the distance by which coordinates are translated in the X axis direction

357http://java.sun.com/javase/6/docs/api/java/awt/geom/A�neTransform.html#translate%28double,%20double%29

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

806 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• ty - the distance by which coordinates are translated in the Y axis direction

Compute the translation distance components
Listing 6 (p. 811) computes the distance from the center of the image to the center of the new Picture

object and passes the X and Y components of this distance to the translate method.
Two A�neTransform objects
At this point, we have two di�erent A�neTransform objects. One is capable of rotating the image

by a speci�ed angle. The other is capable of translating the image by a speci�ed amount.
We could apply the two transforms sequentially to the image being careful to rotate before we translate.

(The order of rotation and translation makes a huge di�erence.)
A more computationally economical approach
The preferred approach is to concatenate the two transform objects and apply only the concatenated

transform object to the image. This is particularly important if the transforms are going to be applied to a
large number of images such as in a game program for example.

Concatenate the transforms
Listing 7 (p. 812) calls the concatenate method on the translation transform passing a reference to

the rotation transform as a parameter. This modi�es the translation transform in such a way that it can
be used to rotate the image around its center point and then translate it to the center of the new Picture
object.

Listing 7 - Concatenate the transforms.

translateTransform.concatenate(rotateTransform);

Table 3.321

Instantiate the new Picture object
Listing 8 (p. 812) instantiates a new Picture object with the dimensions computed in Listing 5 (p.

811) . This Picture object will be used to contain and return the rotated image.

Listing 8 - Instantiate the new Picture object .

Picture result = new Picture(

resultWidth,resultHeight);

Table 3.322

Perform the concatenated transform
Listing 9 (p. 813) performs the rotation and translation, draws the modi�ed image in the new Picture

object, and returns a reference to the new Picture object.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

807

Listing 9 - Perform the concatenated transform .

Graphics2D g2 = (Graphics2D)result.getGraphics();

g2.drawImage(pic.getImage(),translateTransform,null);

return result;

}//end rotatePicture

}//end class Prob01Runner

Table 3.323

Call the getGraphics method
Listing 9 (p. 813) begins by calling Ericson's getGraphics method on the new Picture object and

casting the returned value to the standard type Graphics2D .
A cast is required
Ericson's getGraphics method returns a reference to the graphics context of the Picture object as

type Graphics . That reference must be cast to type Graphics2D before the drawImage method
can be called on the reference.

Call the drawImage method
Then Listing 9 (p. 813) calls the standard drawImage method on the reference to the graphics context

passing three parameters to the method. This is one of two overloaded versions of the drawImage method
de�ned in the standard Graphics2D class.

The �rst parameter
The �rst required parameter for this version of the drawImage method is a reference to an object of

type Image containing the image that is to be drawn. In this case, Ericson's getImage method is called
on the Picture object to get the image and pass it as the �rst parameter.

The second parameter
The second required parameter is a reference to an A�neTransform object that is to be applied to

the image before it is drawn. Our concatenated transform object is passed as the second parameter.
The third parameter
The third required parameter is a reference to an object of the standard type ImageObserver or null

. If you would like to know more about the use of an ImageObserver object, go to Google and search
for the following keywords:

richard baldwin java imageobserver
We don't need an image observer in this case so Listing 9 (p. 813) passes null for the third parameter.
When the drawImage method returns
When the drawImage method returns, the image will have been rotated, translated, and drawn in the

center of the new Picture object as shown in Figure 3 (p. 804) .
Return a Picture and terminate the method
Listing 9 (p. 813) returns a reference to the Picture object, (which now contains the rotated image)

and terminates, returning control to the run method in Listing 3 (p. 808) .
Return to the run method
Returning to the run method in Listing 3 (p. 808) , we see that the remaining code in the run

method:

• Calls Ericson's explore method on the returned Picture object producing the screen output shown
in Figure 3 (p. 804) .

• Passes the returned Picture object to the println method producing the last line of text output
shown in Figure 4 (p. 807) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

808 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• Returns control the main method in Listing 1 (p. 807) , causing the program to terminate as soon
as the user dismisses both images from the screen.

3.3.24.6 Run the program

I encourage you to copy the code from Listing 10 (p. 816) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. For example, try reversing the
order of translation and rotation beginning with Listing 7 (p. 812) . Make certain that you can explain why
your changes behave as they do.

Click Prob01.jpg 358 to download the required input image �le.

3.3.24.7 Summary

You learned how to scale images and how to rotate and translate images using the A�neTransform class.

3.3.24.8 What's next?

In the next module, you will learn how to mirror images both horizontally and vertically.

3.3.24.9 Online video link

While not a requirement of the course, you can select the following link to view an optional online video
lecture on the material in this module.

• ITSE 2321 Lecture 11 359

3.3.24.10 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Scaling, Rotating, and Translating Images using A�ne Transforms

• File: Java3022.htm
• Published: 08/02/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

358http://cnx.org/content/m44223/latest/Prob01.jpg
359http://vimeo.com/channels/itse2321/21211960

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

809

3.3.24.11 Complete program listing

A complete listing of the program discussed in this module is shown in Listing 10 (p. 816) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

810 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 10 . Complete program listing.

/*File Prob01 Copyright 2008 R.G.Baldwin

Revised 12/17/08

***/

import java.awt.Graphics2D;

import java.awt.geom.AffineTransform;

import java.awt.geom.Rectangle2D;

import java.awt.Graphics;

public class Prob01{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

new Prob01Runner().run();

}//end main method

}//end class Prob01

//==//

class Prob01Runner{

public Prob01Runner(){

System.out.println("Display your name here.");

}//end constructor

//--//

public void run(){

Picture pic = new Picture("Prob01.jpg");

//Add your name and display the picture.

pic.addMessage("Display your name here.",10,20);

pic.explore();

pic = pic.scale(0.95,0.9);

pic = rotatePicture(pic,30);

pic.explore();

System.out.println(pic);

}//end run

//--//

//This method accepts a reference to a Picture object

// along with a rotation angle in degrees. It creates

// and returns a new Picture object that is of the

// correct size to contain and display the incoming

// picture after it has been rotated around its center

// by the specified rotation angle and translated to the

// center of the new Picture object.

private Picture rotatePicture(Picture pic,double angle){

//Set up the rotation transform

AffineTransform rotateTransform =

new AffineTransform();

rotateTransform.rotate(Math.toRadians(angle),

pic.getWidth()/2,

pic.getHeight()/2);

//Get the required dimensions of a rectangle that will

// contain the rotated image.

Rectangle2D rectangle2D =

pic.getTransformEnclosingRect(rotateTransform);

int resultWidth = (int)(rectangle2D.getWidth());

int resultHeight = (int)(rectangle2D.getHeight());

//Set up the translation transform that will translate

// the rotated image to the center of the new Picture

// object.

AffineTransform translateTransform =

new AffineTransform();

translateTransform.translate(

(resultWidth - pic.getWidth())/2,

(resultHeight - pic.getHeight())/2);

//Concatenate the two transforms so that the image

// will first be rotated around its center and then

// translated to the center of the new Picture object.

translateTransform.concatenate(rotateTransform);

//Create a new Picture object to contain the results

// of the transformation.

Picture result = new Picture(

resultWidth,resultHeight);

//Get the graphics context of the new Picture object,

// apply the transform to the incoming picture and

// draw the transformed picture on the new Picture

// object.

Graphics2D g2 = (Graphics2D)result.getGraphics();

g2.drawImage(pic.getImage(),translateTransform,null);

return result;

}//end rotatePicture

//--//

}//end class Prob01Runner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

811

Table 3.324

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

812 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.25 Java3022r Review
360

Revised: Mon Apr 04 09:07:14 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 361

• Object-Oriented Programming (OOP) with Java 362

3.3.25.1 Table of Contents

• Preface (p. 818)
• Questions (p. 818)

· 1 (p. 818)

• Figures (p. 822)
• Listings (p. 822)
• Answers (p. 824)
• Miscellaneous (p. 824)

3.3.25.2 Preface

This module contains review questions and answers keyed to the module titled Java3022: Scaling, Rotating,
and Translating Images using A�ne Transforms 363 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

3.3.25.3 Questions

3.3.25.3.1 Question 1 .

Given the input image in Figure 1 (p. 820) , which of the following output images is produced by the code
in Listing 1 (p. 819) ?

A. Figure 2 (p. 820)
B. Figure 3 (p. 821)

360This content is available online at <http://cnx.org/content/m45783/1.4/>.
361http://cnx.org/contents/dzOvxPFw
362http://cnx.org/contents/-2RmHFs_
363http://cnx.org/content/m44223

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

813

Listing 1 - Question 1.

/*File Java3022ra Copyright 2013 R.G.Baldwin

Revised 02/17/13

***/

import java.awt.Graphics2D;

import java.awt.geom.AffineTransform;

import java.awt.geom.Rectangle2D;

import java.awt.Graphics;

public class Java3022ra{

public static void main(String[] args){

new Java3022raRunner().run();

}//end main method

}//end class Java3022ra

//==//

class Java3022raRunner{

public void run(){

procPix(new Picture("Prob01.jpg").scale(0.7,0.7),-30);

}//end run

//--//

private void procPix(Picture pic,double angle){

AffineTransform xformA = new AffineTransform();

xformA.rotate(Math.toRadians(angle),pic.getWidth()/2,

pic.getHeight()/2);

Rectangle2D rectangle2D =

pic.getTransformEnclosingRect(xformA);

int resultWidth = (int)(rectangle2D.getWidth());

int resultHeight = (int)(rectangle2D.getHeight());

AffineTransform xformB = new AffineTransform();

xformB.translate((resultWidth - pic.getWidth())/2,

(resultHeight - pic.getHeight())/2);

xformB.concatenate(xformA);

Picture result = new Picture(

resultWidth,resultHeight);

Graphics2D g2 = (Graphics2D)result.getGraphics();

g2.drawImage(pic.getImage(),xformB,null);

result.explore();

}//end

//--//

}//end class Java3022raRunner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

814 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.325

Figure 1 - Prob01.jpg.

Figure 2 - Possible output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

815

Figure 3 - Possible output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

816 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Answer 1 (p. 824)

3.3.25.4 Figures

• Figure 1 (p. 820) . Prob01.jpg.
• Figure 2 (p. 820) . Possible output image.
• Figure 3 (p. 821) . Possible output image.

3.3.25.5 Listings

• Listing 1 (p. 819) . Question 1.

What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

817

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

818 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.25.6 Answers

3.3.25.6.1 Answer 1

The code in Listing 1 (p. 819) produces the output image shown in Figure 3 (p. 821) .
Back to Question 1 (p. 818)

3.3.25.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java3022r Review
• File: Java3022r.htm
• Published: 02/17/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.3.26 Java3024: Mirroring Images
364

Revised: Mon Apr 04 09:40:51 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 365

• Object-Oriented Programming (OOP) with Java 366

3.3.26.1 Table of Contents

• Preface (p. 825)

· Viewing tip (p. 825)

* Figures (p. 825)
* Listings (p. 825)

• Preview (p. 825)

364This content is available online at <http://cnx.org/content/m44228/1.11/>.
365http://cnx.org/contents/dzOvxPFw
366http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

819

• Discussion and sample code (p. 830)
• Run the program (p. 835)
• Summary (p. 836)
• What's next? (p. 836)
• Online video link (p. 836)
• Miscellaneous (p. 836)
• Complete program listing (p. 836)

3.3.26.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 367 .

3.3.26.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

3.3.26.2.1.1 Figures

• Figure 1 (p. 825) . Input �le named Prob02a.jpg.
• Figure 2 (p. 826) . First output image.
• Figure 3 (p. 827) . Second output image.
• Figure 4 (p. 828) . Third output image.
• Figure 5 (p. 830) . Required output text.
• Figure 6 (p. 833) . Picture output from the mirrorUpperQuads method.

3.3.26.2.1.2 Listings

• Listing 1 (p. 830) . The driver class named Prob02.
• Listing 2 (p. 830) . Beginning of the class named Prob02Runner.
• Listing 3 (p. 831) . The run method.
• Listing 4 (p. 833) . The method named mirrorUpperQuads.
• Listing 5 (p. 835) . The method named mirrorHoriz.
• Listing 6 (p. 838) . Complete program listing.

3.3.26.3 Preview

In this module, you will learn how to mirror images, both horizontally and vertically.
Program speci�cations
Write a program named Prob02 that uses the class de�nition shown in Listing 1 (p. 830) and Ericson's

media library along with the image �le named Prob02a.jpg (shown in Figure 1 (p. 825) (p. 825)) to
produce the three graphic output images shown in Figure 2 (p. 826) , Figure 3 (p. 827) , and Figure 4 (p.
828) .

Figure 1 - Input �le named Prob02a.jpg.

367http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

820 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 2 - First output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

821

Figure 3 - Second output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

822 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 4 - Third output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

823

New classes
You may de�ne new classes as necessary to cause your program to behave as required, but you may not

modify the class de�nition for the class named Prob02 shown in Listing 1 (p. 830) .
Rotate and mirror
The image from the �le named Prob02a.jpg is rotated by 35 degrees. It is not scaled. Then the top-left

quadrant of the picture containing the rotated image is mirrored into the top-right quadrant. Following this,
the top half of the picture is mirrored into the bottom half.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

824 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Required output text
In addition to the three output images mentioned above, your program must display your name and the

other line of text shown in Figure 5 (p. 830) on the command-line screen

Figure 5 - Required output text.

Display your name here.

Picture, filename None height 404 width 425

Table 3.326

3.3.26.4 Discussion and sample code

Will discuss in fragments
I will discuss and explain this program in fragments. A complete listing of the program is provided in

Listing 6 (p. 838) near the end of the module.
The driver class named Prob02
The driver class containing the main method is shown in Listing 1 (p. 830) .

Listing 1 - The driver class named Prob02.

public class Prob02{

public static void main(String[] args){

new Prob02Runner().run();

}//end main method

}//end class Prob02

Table 3.327

Instantiate a new object and call its run method
The code in the main method instantiates a new object of the class named Prob02Runner and

calls the run method on that object.
When the run method returns, the main method terminates causing the program to terminate.
Beginning of the class named Prob02Runner
The beginning of the class named Prob02Runner , including the constructor, is shown in Listing 2

(p. 830) .

Listing 2 - Beginning of the class named Prob02Runner.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

825

class Prob02Runner{

public Prob02Runner(){

System.out.println("Display your name here.");

}//end constructor

Table 3.328

The constructor displays the student's name, producing the �rst line of output text shown in Figure 5
(p. 830) .

The run method
The run method that is called in Listing 1 (p. 830) is shown in its entirety in Listing 3 (p. 831) .

Listing 3 - The run method.

public void run(){

Picture pix = new Picture("Prob02a.jpg");

//Add your name and display the output picture.

pix.addMessage("Display your name here.",10,20);

//Display the input picture.

pix.explore();

pix = rotatePicture(pix,35);

pix.explore();

pix = mirrorUpperQuads(pix);

pix = mirrorHoriz(pix);

pix.explore();

System.out.println(pix);

}//end run

Table 3.329

Very familiar code
Except for the calls to the methods named mirrorUpperQuads and mirrorHoriz in Listing 3 (p.

831) , you should already be familiar with all of the code in Listing 3 (p. 831) .
The rotatePicture method
For example, the call to the method named rotatePicture is essentially the same as code that I

explained in an earlier module. Therefore, I won't explain that method again in this module. You will �nd
the code for the method named rotatePicture in Listing 6 (p. 838) near the end of the module.

Operate on the picture with the rotated image
The original picture is replaced by a picture containing the rotated image shown in Figure 3 (p. 827) .

From this point forward, all operations are performed on the Picture object containing the rotated image.
The method named mirrorUpperQuads
The method named mirrorUpperQuads that is called in the run method in Listing 3 (p. 831) is

shown in Listing 4 (p. 833) .
Behavior of the method named mirrorUpperQuads
This method mirrors the upper-left quadrant of a picture into the upper-right quadrant as shown in

Figure 6 (p. 833) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

826 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

827

Listing 4 - The method named mirrorUpperQuads.

private Picture mirrorUpperQuads(Picture pix){

Pixel leftPixel = null;

Pixel rightPixel = null;

int midpoint = pix.getWidth()/2;

int width = pix.getWidth();

for(int row = 0;row < pix.getHeight()/2;row++){

for(int col = 0;col < midpoint;col++){

leftPixel = pix.getPixel(col,row);

rightPixel =

pix.getPixel(width-1-col,row);

rightPixel.setColor(leftPixel.getColor());

}//end inner loop

}//end outer loop

return pix;

}//end mirrorUpperQuads

Table 3.330

Declare four working variables
Listing 4 (p. 833) begins by declaring and initializing four working variables. The purpose of these

variables should be obvious on the basis of their names and their initialization expressions.
Copy the pixel colors
Then Listing 4 (p. 833) uses a double nested for loop to copy the colors from the pixels in the upper-left

quadrant into the pixels in the upper-right quadrant. This is done in such a way as to form a mirror image
about the center point as shown in Figure 6 (p. 833) .

The outer loop
The outer loop iterates on the rows of pixels in the top half of the image. Only the top half of the image

is processed in this method because the top half will be mirrored into the bottom half later on.
The inner loop
The inner loop iterates on the columns in the left half of the image, copying pixel colors from the left

half into the pixels in the right half.
Destruction of pixel colors
The colors in the pixels in the upper-right quadrant are overwritten by this method.
In e�ect, this method and the one following it destroys all of the pixel colors originally in the right half

of the picture of the rotated image and all of the pixel colors originally in the bottom half of the picture.
The �nal picture shown in Listing 4 (p. 833) contains only pixel from the upper-left quadrant of the

picture with the rotated image.
Return a modi�ed Picture object
Finally, the code in Listing 4 (p. 833) returns the modi�ed Picture object to the run method in

Listing 3 (p. 831) .
At this point, the picture with the rotated image is replaced by the version of the picture returned by

the mirrorUpperQuads method.
Picture output from the mirrorUpperQuads method
If you were to display the picture at that point, you would see the image shown in Figure 6 (p. 833) .
Figure 6 - Picture output from the mirrorUpperQuads method.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

828 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

The upper-left quadrant has been mirrored
As you can see from Figure 6 (p. 833) , at this point in the process, the upper-left quadrant has been

mirrored into the upper-right quadrant, but the bottom half of the picture is undisturbed. It's time to do
something about that.

Call the mirrorHoriz method
The next statement in the run method in Listing 3 (p. 831) is a call to the mirrorHoriz method

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

829

passing the picture shown in Figure 6 (p. 833) as a parameter.
The method named mirrorHoriz
The method named mirrorHoriz is shown in Listing 5 (p. 835) . This method mirrors the top half of

a picture into the bottom half of the same picture. It will be used to mirror the top half of the picture in
Figure 6 (p. 833) into the bottom half.

Listing 5 - The method named mirrorHoriz.

private Picture mirrorHoriz(Picture pix){

Pixel topPixel = null;

Pixel bottomPixel = null;

int midpoint = pix.getHeight()/2;

int height = pix.getHeight();

for(int col = 0;col < pix.getWidth();col++){

for(int row = 0;row < midpoint;row++){

topPixel = pix.getPixel(col,row);

bottomPixel =

pix.getPixel(col,height-1-row);

bottomPixel.setColor(topPixel.getColor());

}//end inner loop

}//end outer loop

return pix;

}//end mirrorHoriz method

}//end class Prob02Runner

Table 3.331

Very similar to the mirrorUpperQuads method
This method is very similar to the previous method named mirrorUpperQuads .
Four working variables and a nested for loop
As before, Listing 5 (p. 835) declares and initializes four working variables. These variables are used in

a nested for loop to copy pixel colors from the top half of the picture into the pixels in the bottom half.
The outer and inner loops
In this case, the outer loop iterates on all of the columns going from left to right.
The inner loop iterates on rows, from the top row to the vertical midpoint, copying the colors from the

pixels from the top half into the pixels in the bottom half.
The end of the class
Listing 5 (p. 835) also signals the end of the class named Prob02Runner and the end of the program.

3.3.26.5 Run the program

I encourage you to copy the code from Listing 6 (p. 838) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

Click Prob02a.jpg 368 to download the required input image �le for this program.

368http://cnx.org/content/m44228/latest/Prob02a.jpg

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

830 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.26.6 Summary

You learned how to mirror images both horizontally and vertically.

3.3.26.7 What's next?

In the next module, you will learn to use a variety of Java2D classes including GradientPaint.

3.3.26.8 Online video link

While not a requirement of the course, you can select the following link to view an optional online video
lecture on the material in this module.

• ITSE 2321 Lecture 12 369

3.3.26.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Mirroring Images
• File: Java3024.htm
• Published: 08/04/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.3.26.10 Complete program listing

A complete listing of the program discussed in this module is shown in Listing 6 (p. 838) below.

Listing 6 . Complete program listing.

continued on next page

369http://vimeo.com/channels/itse2321/21217708

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

831

/*File Prob02 Copyright 2008 R.G.Baldwin

***/

import java.awt.Graphics2D;

import java.awt.geom.AffineTransform;

import java.awt.geom.Rectangle2D;

import java.awt.Graphics;

public class Prob02{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

new Prob02Runner().run();

}//end main method

}//end class Prob02

//==//

class Prob02Runner{

public Prob02Runner(){

System.out.println("Display your name here.");

}//end constructor

//--//

public void run(){

Picture pix = new Picture("Prob02a.jpg");

//Add your name and display the output picture.

pix.addMessage("Display your name here.",10,20);

//Display the input picture.

pix.explore();

pix = rotatePicture(pix,35);

pix.explore();

pix = mirrorUpperQuads(pix);

pix = mirrorHoriz(pix);

pix.explore();

System.out.println(pix);

}//end run

//--//

private Picture rotatePicture(Picture pix,

double angle){

//Set up the rotation transform

AffineTransform rotateTransform =

new AffineTransform();

rotateTransform.rotate(Math.toRadians(angle),

pix.getWidth()/2,

pix.getHeight()/2);

//Get the required dimensions of a rectangle that will

// contain the rotated image.

Rectangle2D rectangle2D =

pix.getTransformEnclosingRect(rotateTransform);

int resultWidth = (int)(rectangle2D.getWidth());

int resultHeight = (int)(rectangle2D.getHeight());

//Set up the translation transform that will translate

// the rotated image to the center of the new Picture

// object.

AffineTransform translateTransform =

new AffineTransform();

translateTransform.translate(

(resultWidth - pix.getWidth())/2,

(resultHeight - pix.getHeight())/2);

//Concatenate the two transforms so that the image

// will first be rotated around its center and then

// translated to the center of the new Picture object.

translateTransform.concatenate(rotateTransform);

//Create a new Picture object to contain the results

// of the transformation.

Picture result = new Picture(

resultWidth,resultHeight);

//Get the graphics context of the new Picture object,

// apply the transform to the incoming picture and

// draw the transformed picture on the new Picture

// object.

Graphics2D g2 = (Graphics2D)result.getGraphics();

g2.drawImage(pix.getImage(),translateTransform,null);

return result;

}//end rotatePicture

//--//

//This method mirrors the upper-left quadrant of a

// picture into the upper-right quadrant.

private Picture mirrorUpperQuads(Picture pix){

Pixel leftPixel = null;

Pixel rightPixel = null;

int midpoint = pix.getWidth()/2;

int width = pix.getWidth();

for(int row = 0;row < pix.getHeight()/2;row++){

for(int col = 0;col < midpoint;col++){

leftPixel = pix.getPixel(col,row);

rightPixel =

pix.getPixel(width-1-col,row);

rightPixel.setColor(leftPixel.getColor());

}//end inner loop

}//end outer loop

return pix;

}//end mirrorUpperQuads

//--//

//This method mirrors the top half of a picture into

// the bottom half.

private Picture mirrorHoriz(Picture pix){

Pixel topPixel = null;

Pixel bottomPixel = null;

int midpoint = pix.getHeight()/2;

int height = pix.getHeight();

for(int col = 0;col < pix.getWidth();col++){

for(int row = 0;row < midpoint;row++){

topPixel = pix.getPixel(col,row);

bottomPixel =

pix.getPixel(col,height-1-row);

bottomPixel.setColor(topPixel.getColor());

}//end inner loop

}//end outer loop

return pix;

}//end mirrorHoriz

//--//

}//end class Prob02Runner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

832 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.332

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

833

3.3.27 Java3024r Review
370

Revised: Mon Apr 04 09:53:24 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 371

• Object-Oriented Programming (OOP) with Java 372

3.3.27.1 Table of Contents

• Preface (p. 840)
• Questions (p. 840)

· 1 (p. 840)

• Figures (p. 844)
• Listings (p. 845)
• Answers (p. 846)
• Miscellaneous (p. 846)

3.3.27.2 Preface

This module contains review questions and answers keyed to the module titled Java3024: Mirroring Images
373 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

3.3.27.3 Questions

3.3.27.3.1 Question 1 .

Given the input image shown in Figure 1 (p. 842) , which of the following output images is produced by the
code in Listing 1 (p. 841) ?

A. Figure 2 (p. 842)
B. Figure 3 (p. 843)

370This content is available online at <http://cnx.org/content/m45784/1.5/>.
371http://cnx.org/contents/dzOvxPFw
372http://cnx.org/contents/-2RmHFs_
373http://cnx.org/content/m44228

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

834 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 1 . Question 1.

/*File Java3024ra Copyright 2013 R.G.Baldwin

***/

import java.awt.Graphics2D;

import java.awt.geom.AffineTransform;

import java.awt.geom.Rectangle2D;

import java.awt.Graphics;

public class Java3024ra{

public static void main(String[] args){

new Java3024raRunner().run();

}//end main method

}//end class Java3024ra

//==//

class Java3024raRunner{

public void run(){

Picture pix = new Picture("Prob02a.jpg");

pix = rotatePicture(pix,35);

pix = mirrorUpperQuads(pix);

pix = mirrorHoriz(pix);

pix.explore();

System.out.println(pix);

}//end run

//--//

private Picture rotatePicture(Picture pix,

double angle){

AffineTransform rotateTransform =

new AffineTransform();

rotateTransform.rotate(Math.toRadians(angle),

pix.getWidth()/2,

pix.getHeight()/2);

Rectangle2D rectangle2D =

pix.getTransformEnclosingRect(rotateTransform);

int resultWidth = (int)(rectangle2D.getWidth());

int resultHeight = (int)(rectangle2D.getHeight());

AffineTransform translateTransform =

new AffineTransform();

translateTransform.translate(

(resultWidth - pix.getWidth())/2,

(resultHeight - pix.getHeight())/2);

translateTransform.concatenate(rotateTransform);

Picture result = new Picture(

resultWidth,resultHeight);

Graphics2D g2 = (Graphics2D)result.getGraphics();

g2.drawImage(pix.getImage(),translateTransform,null);

return result;

}//end rotatePicture

//--//

private Picture mirrorUpperQuads(Picture pix){

Pixel leftPixel = null;

Pixel rightPixel = null;

int midpoint = pix.getWidth()/2;

int width = pix.getWidth();

for(int row = 0;row < pix.getHeight()/2;row++){

for(int col = 0;col < midpoint;col++){

leftPixel = pix.getPixel(col,row);

rightPixel = pix.getPixel(width-1-col,row);

rightPixel.setColor(leftPixel.getColor());

}//end inner loop

}//end outer loop

return pix;

}//end mirrorUpperQuads

//--//

private Picture mirrorHoriz(Picture pix){

Pixel topPixel = null;

Pixel bottomPixel = null;

int midpoint = pix.getHeight()/2;

int height = pix.getHeight();

for(int col = 0;col < pix.getWidth();col++){

for(int row = 0;row < midpoint;row++){

topPixel = pix.getPixel(col,row);

bottomPixel = pix.getPixel(col,height-1-row);

bottomPixel.setColor(topPixel.getColor());

}//end inner loop

}//end outer loop

return pix;

}//end mirrorHoriz

//--//

}//end class Java3024raRunner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

835

Table 3.333

Figure 1 - Prob02a.jpg.

Figure 2 - Possible output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

836 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 3 - Possible output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

837

Answer 1 (p. 846)

3.3.27.4 Figures

• Figure 1 (p. 842) . Prob02a.jpg.
• Figure 2 (p. 842) . Possible output image.
• Figure 3 (p. 843) . Possible output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

838 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.27.5 Listings

• Listing 1 (p. 841) . Question 1.

What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

839

3.3.27.6 Answers

3.3.27.6.1 Answer 1

The code in Listing 1 (p. 841) produces the output image shown in Figure 2 (p. 842) .
Back to Question 1 (p. 840)

3.3.27.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java3024r Review
• File: Java3024r.htm
• Published: 02/18/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

840 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.3.28 Java3026: GradientPaint and other Java2D Classes
374

Revised: Mon Apr 04 10:05:32 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 375

• Object-Oriented Programming (OOP) with Java 376

3.3.28.1 Table of Contents

• Preface (p. 847)

· Viewing tip (p. 847)

* Figures (p. 848)
* Listings (p. 848)

• Preview (p. 848)
• Discussion and sample code (p. 850)
• Run the program (p. 860)
• Summary (p. 860)
• What's next? (p. 860)
• Online video link (p. 860)
• Miscellaneous (p. 860)
• Complete program listing (p. 861)

3.3.28.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 377 .

3.3.28.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

374This content is available online at <http://cnx.org/content/m44242/1.11/>.
375http://cnx.org/contents/dzOvxPFw
376http://cnx.org/contents/-2RmHFs_
377http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

841

3.3.28.2.1.1 Figures

• Figure 1 (p. 848) . Required graphic output.
• Figure 2 (p. 850) . Required text output.
• Figure 3 (p. 853) . A drawing of an ellipse.

3.3.28.2.1.2 Listings

• Listing 1 (p. 850) . The driver class named Prob03.
• Listing 2 (p. 851) . Beginning of the class named Prob03Runner.
• Listing 3 (p. 851) . Beginning of the method named process.
• Listing 4 (p. 852) . Translate the origin to the center of the image.
• Listing 5 (p. 852) . Draw the black horizontal and vertical axes.
• Listing 6 (p. 855) . Draw the solid green �lled ellipse in the upper-left quadrant.
• Listing 7 (p. 856) . Draw a circle with a gradient �ll in the upper-right quadrant.
• Listing 8 (p. 859) . Code for the remaining two quadrants..
• Listing 9 (p. 862) . Complete program listing.

3.3.28.3 Preview

In this module you will learn to use the GradientPaint class along with a variety of other Java2D classes.
Program speci�cations
Write a program named Prob03 that uses the class de�nition shown in Listing 1 (p. 850) and Ericson's

media library along with the image �le named Prob03.jpg to produce the graphic output image shown in
Figure 1 (p. 848) . (Note that the image in the �le named Prob03.jpg is a blank white image. You could
also create this blank image using one of the constructors for the Picture class.)

Figure 1 - Required graphic output.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

842 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Circles with gradient paint
The program draws four circles in the quadrants of a Cartesian coordinate system. One is �lled with

solid green. The other three are �lled with cyclic gradient paint from green to blue.
The number of cycles varies in each circle, as do the axes along which the gradient occurs.
The background is set to Color.RED.
New classes
You may de�ne new classes as necessary to cause your program to behave as required, but you may not

modify the class de�nition for the class named Prob03 shown in Listing 1 (p. 850) .
Required text output
In addition to the output image mentioned above, your program must display your name and the other

line of text shown in Figure 2 (p. 850) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

843

Figure 2 - Required text output.

Display your name here.

Picture, filename Prob03.jpg height 300 width 300

Table 3.334

3.3.28.4 Discussion and sample code

Will discuss in fragments
I will discuss and explain this program in fragments. A complete listing of the program is provided in

Listing 9 (p. 862) near the end of the module.
The driver class named Prob03
The driver class containing the main method is shown in Listing 1 (p. 850) .

Listing 1 - The driver class named Prob03.

public class Prob03{

public static void main(String[] args){

new Prob03Runner().run();

}//end main method

}//end class Prob03

Table 3.335

If you have been studying the earlier modules in this series, no explanation of Listing 1 (p. 850) should
be required.

Beginning of the class named Prob03Runner
The class named Prob03Runner begins in Listing 2 (p. 851) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

844 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 2 - Beginning of the class named Prob03Runner.

class Prob03Runner{

public Prob03Runner(){

System.out.println("Display your name here.");

}//end constructor

//--//

public void run(){

Picture pic = new Picture("Prob03.jpg");

// Picture pic = new Picture(300,300);

pic.setAllPixelsToAColor(Color.RED);

process(pic);

//Add your name and display the output picture.

pic.addMessage("Display your name here.",10,20);

pic.explore();

System.out.println(pic);

}//end run

Table 3.336

Avoiding use of a blank input image �le
This program was originally written using an early version of Ericson's class library that didn't support

the second statement in the run method. (That statement was disabled by turning it into a comment
in Listing 2 (p. 851) (p. 851)) As a result, with that library, it was necessary to read an image �le
containing a blank white image to create a Picture object with a blank white image.

No longer a problem
That problem was recti�ed with an update to her library and the disabled statement can be substituted

for the statement immediately above it. If you do that, you won't need the input image �le.
Except for that, and the call to the method named process , you should already understand all of the

code in Listing 2 (p. 851) .
Beginning of the method named process
The method named process begins in Listing 3 (p. 851) .

Listing 3 - Beginning of the method named process.

private void process(Picture pic){

Graphics2D g2 = (Graphics2D)(pic.getGraphics());

int width = pic.getWidth();

int height = pic.getHeight();

Table 3.337

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

845

Java2D graphics
This is basically a module on the use of classes from the Java2D section of the standard class library.

(See my lessons 300 through 324 on Java2D graphics here 378 .) Classes from Ericson's library are used
mainly to support the display aspects of the program.

What are Java2D graphics?
Although the capabilities provided by Java2D graphics are wide and varied, in one way or another, they

generally have to do with the creation of images by drawing.
A graphics context is required
In order to use the methods that will be using, it is necessary to gain access to the graphics context of

an object as type Graphics2D . The �rst statement in Listing 3 (p. 851) calls Ericson's getGraphics
method to gain access to the graphics context of a Picture object.

A cast to type Graphics2D is required
However, the getGraphics method returns a reference to the graphics context as type Graphics .

In order for us to use it to do what we want to do, we must cast it to type Graphics2D . This gives us
access to many more methods that would be the case without the cast.

Save as type Graphics2D in a variable named g2
The graphics context for the Picture object is saved in Listing 3 (p. 851) as type Graphics2D .

The reference is saved in the reference variable named g2 .
Save the width and height of the Picture object
The last two statements in Listing 3 (p. 851) get and save the width and the height of the image

encapsulated in the Picture object.
Translate the origin to the center of the image
By default, the origin (with coordinates of 0,0) is in the upper-left corner of the image. However, we

would like to be able to work with a coordinate system in which the origin is at the center.
Listing 4 (p. 852) calls the translate method to move the origin to the center of the image.

Listing 4 - Translate the origin to the center of the image.

g2.translate(width/2,height/2);

Table 3.338

(Fortunately, you already understand a�ne transforms. Otherwise, you might not be able to understand
the documentation for the translate method.)

From this point forward...
From this point forward, we can think of the coordinates of the pixel at the very center of the object as

having values of 0,0. Locations to the left of center have negative X coordinates and locations above the
center have negative Y coordinates.

Draw the black horizontal and vertical axes
The next thing we want to do is to draw the black horizontal and vertical axes that you see in the center

of the image in Figure 1 (p. 848) . This is accomplished by the code in Listing 5 (p. 852) .

Listing 5 - Draw the black horizontal and vertical axes.

continued on next page

378http://www.dickbaldwin.com/tocadv.htm

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

846 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

//Set the drawing color to black

g2.setColor(Color.BLACK);

//Draw x-axis

g2.draw(new Line2D.Double(-width/2, 0.0,

width/2, 0.0));

//Draw y-axis

g2.draw(new Line2D.Double(0.0, -width/2,

0.0, height/2));

Table 3.339

Set the drawing color to black
Listing 5 (p. 852) begins by calling the setColor method to set the drawing color to Color.BLACK.
(BLACK is a static constant in the Color class that represents the color black.)
A new Line2D.Double object
The fourth line of code in Listing 5 (p. 852) instantiates a new object of the Line2D.Double class. This

object represents a line extending between two points speci�ed by coordinate values passed as parameters
to the constructor.

A black horizontal line
The �rst pair of coordinate values speci�es the left end of the black horizontal line in Figure 1 (p. 848) .

The second pair of coordinate values speci�es the right end of the black horizontal line in Figure 1 (p. 848) .
(See my Lesson Number 300 379 for an explanation of the somewhat unusual name of a class consisting

of two words separated by a period: Line2D.Double .)
Pass the line object to the Draw method
The new object's reference is passed to the draw method, which is responsible for causing the line to

be drawn on the graphics context.
A black vertical axis
The last statement in Listing 5 (p. 852) draws the black vertical line shown in Figure 1 (p. 848) .
Coordinates relative to the origin at the center
Note that in both cases, the end points of the line are speci�ed using coordinate values that are relative

to the origin, which is positioned at the center of the drawing context.
Draw the solid green �lled ellipse in the upper-left quadrant
In case you are unfamiliar with the term, an ellipse is the 2D shape shown in the upper-left quadrant

of Figure 3 (p. 853) . A circle is an ellipse with the major and minor axes having the same lengths.
Figure 3 - A drawing of an ellipse.

379http://www.dickbaldwin.com/java/Java300.htm

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

847

There is no circle class
Java does not provide a Circle2D.Double class but it does provide an Ellipse2D.Double class,

which you can use to draw circles.
(The Graphics class also provides a drawOval method that can be used to draw circles but those

circles won't su�ce for what we will be doing in this module.)
Four constructor parameters
The constructor for the Ellipse2D.Double class requires four parameters of type double . The �rst

two parameters are the X and Y coordinates of the upper-left corner of an imaginary rectangle.
The next two parameters are the width and the height of the imaginary rectangle.
The sides of the imaginary rectangle are parallel to the X and Y axes, but can be rotated using a�ne

transforms.
An ellipse inside an imaginary rectangle
The ellipse is constructed inside the imaginary rectangle such that it is symmetrical about its horizontal

and vertical axes and it touches all four sides of the rectangle. (The documentation refers to the rectangle
as a framing rectangle.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

848 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

How do you construct a circle?
If the rectangle is actually a square, then the ellipse becomes a circle.
Construct an ellipse inside an imaginary square
The �rst statement in Listing 6 (p. 855) constructs an object of type Ellipse2D.Double inside a

128x128 square that just �ts in the upper left quadrant of our Cartesian coordinate system shown in Figure
1 (p. 848) . The circle object's reference is saved in the reference variable named circle1 .

Listing 6 - Draw the solid green �lled ellipse in the upper-left quadrant.

//Upper left quadrant

Ellipse2D.Double circle1 =

new Ellipse2D.Double(-128,-128,128,128);

//Solid GREEN fill

g2.setPaint(Color.GREEN);

g2.fill(circle1);

g2.draw(circle1);

Table 3.340

Set the painting color
The statement near the middle of Listing 6 (p. 855) sets the painting color to Color.GREEN .
(Note that Listing 6 (p. 855) (p. 855) calls setPaint whereas Listing 5 (p. 852) calls

setColor . I will leave it as an exercise for the student to study the documentation in order to understand
the di�erence between setColor and setPaint .)

Fill the circle referred to by circle1
The second statement from the bottom in Listing 6 (p. 855) calls the �ll method of the Graphics2D

class passing the circle object's reference as a parameter. Although this can get quite complex, in this simple
case, it causes the circle object to be �lled with the paint color (green) .

Draw the �lled circle object
Finally, the last statement in Listing 6 (p. 855) calls the draw method of the Graphics2D class

to cause the �lled circle to be drawn inside the framing rectangle that was speci�ed when the circle was
constructed. This results in the �lled green circle in the upper-left quadrant in Figure 1 (p. 848) .

Draw a circle with a gradient �ll in the upper-right quadrant
This is where things tend to get a little complicated.
If you compare the circles in the upper-left and upper-right quadrants in Figure 1 (p. 848) , you will see

that they look considerably di�erent.
Di�erence caused by parameter to the setPaint method
If you compare the code in Listing 6 (p. 855) with the code in Listing 7 (p. 856) , you will see that

except for the coordinate values that position the circle, the only di�erence is the parameter that is passed
to the setPaint method.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

849

Listing 7 - Draw a circle with a gradient �ll in the upper-right quadrant.

//Upper right quadrant

//Gradient GREEN to BLUE, cyclic along horizontal

// axis.

Ellipse2D.Double circle2 =

new Ellipse2D.Double(0.0,-128,128,128);

g2.setPaint(new GradientPaint(

64,0,Color.GREEN,

64,-32,Color.BLUE,true));

g2.fill(circle2);

g2.draw(circle2);

Table 3.341

A simple color paint versus a gradient paint
Listing 6 (p. 855) passes an object of the simple Color class representing the color green to the

setPaint method.
Listing 7 (p. 856) passes an object of the GradientPaint class to the setPaint method.
Therefore, we need to understand the behavior of an object of the GradientPaint class.
Constructor parameters
There are four overloaded constructors for the GradientPaint class. The constructor used in Listing

7 (p. 856) is one of the most complicated. It requires the following parameters:

• x1 - x coordinate of the �rst speci�ed Point in user space
• y1 - y coordinate of the �rst speci�ed Point in user space
• color1 - Color at the �rst speci�ed Point
• x2 - x coordinate of the second speci�ed Point in user space
• y2 - y coordinate of the second speci�ed Point in user space
• color2 - Color at the second speci�ed Point
• cyclic - true if the gradient pattern should cycle repeatedly between the two colors; false otherwise

Two points and two colors
Basically, the class allows you to specify two points and two colors (plus one additional boolean param-

eter) when you construct an object of the class.
One of the colors is associated with each point.
An imaginary line segment
Think of the two points as being at the ends of an imaginary line segment, which can be at any angle

relative to the horizontal.
Colors at the ends of the line segment
When a shape is drawn using a gradient �ll, one of the colors will appear at one end of the line segment

and the other color will appear at the other end of the line segment.
The color will change
The color will change gradually from one color to the other along the imaginary line segment connecting

the two points.
Perpendicular color bands on the sides
The colors extend out to the sides of the imaginary line segment in bands that are perpendicular to the

line segment.
The cyclic parameter

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

850 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

If the last (cyclic) parameter is set to false, the color will only change along the imaginary line segment.
Areas beyond each end of the line segment will be the colors that are speci�ed for the points at the ends of
the line segment.

(This parameter was not set to false for any of the circles in Figure 1 (p. 848) .)
If the cyclic parameter is true...
The pattern of color change that occurs along the line segment will extend in a cyclic fashion beyond the

ends of the line segment all the way to in�nity.
Compare constructor parameters with upper-right quadrant
Now consider the parameter values used in Listing 7 (p. 856) and compare them with the image in the

upper-right quadrant in
A simple color paint versus a gradient paint
Listing 6 (p. 855) passes an object of the simple Color class representing the color green to the

setPaint method.
Listing 7 (p. 856) passes an object of the GradientPaint class to the setPaint method.
Therefore, we need to understand the behavior of an object of the GradientPaint class.
Constructor parameters
There are four overloaded constructors for the GradientPaint class. The constructor highlighted in

yellow in Listing 7 (p. 856) is one of the most complicated. It requires the following parameters:

• x1 - x coordinate of the �rst speci�ed Point in user space
• y1 - y coordinate of the �rst speci�ed Point in user space
• color1 - Color at the �rst speci�ed Point
• x2 - x coordinate of the second speci�ed Point in user space
• y2 - y coordinate of the second speci�ed Point in user space
• color2 - Color at the second speci�ed Point
• cyclic - true if the gradient pattern should cycle repeatedly between the two colors; false otherwise

Two points and two colors
Basically, the class allows you to specify two points and two colors (plus one additional boolean param-

eter) when you construct an object of the class.
One of the colors is associated with each point.
An imaginary line segment
Think of the two points as being at the ends of an imaginary line segment, which can be at any angle

relative to the horizontal.
Colors at the ends of the line segment
When a shape is drawn using a gradient �ll, one of the colors will appear at one end of the line segment

and the other color will appear at the other end of the line segment.
The color will change
The color will change from one color to the other along the imaginary line segment connecting the two

points.
Perpendicular color bands on the sides
The colors extend out to the sides of the imaginary line segment in bands that are perpendicular to the

line segment.
The cyclic parameter
If the last (cyclic) parameter is set to false, the color will only change along the imaginary line segment.

Areas beyond each end of the line segment will be the colors that are speci�ed for the points at the ends of
the line segment.

(This parameter was not set to false for any of the circles in Figure 1 (p. 848) .)
If the cyclic parameter is true...
The pattern of color change that occurs along the line segment will extend in a cyclic fashion beyond the

ends of the line segment all the way to in�nity.
Compare constructor parameters with upper-right quadrant

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

851

Now consider the parameter values used in Listing 7 (p. 856) and compare them with the image in the
upper-right quadrant in Figure 1 (p. 848) .

The location of the �rst point
The diameter of each circle in Figure 1 (p. 848) is 128 pixels. The �rst point for the upper-right quadrant

in Figure 1 (p. 848) is on the X axis at the point where the circle touches the X axis. This point is speci�ed
to have a color of green.

The location of the second point
The second point is 32 pixels directly above the �rst point. Therefore, the imaginary line segment is

perpendicular to the X axis. It extends from the X axis one-fourth of the way to the top of the circle. The
second point is speci�ed to have a color of blue.

The color change
As a result, the color changes from green to blue along the 32-pixel line segment. Color bands extend to

the right and left, perpendicular to the line segment.
The cyclic parameter
The cyclic parameter is set to true, so the pattern repeats along the remaining vertical dimension of the

circle. The color changes from blue back to green along the next 32-pixel vertical distance causing the circle
to be green at the center.

The pattern repeats again resulting in a blue band three-fourths of the way from the bottom to the top
of the circle and a green band at the top of the circle.

That's all there is to it
Now that you know the scheme, you should be able to examine the code in Listing 8 (p. 859) for the

remaining two quadrants and understand how the constructor parameters resulted in the color patterns that
you see in Figure 1 (p. 848) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

852 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 8 - Code for the remaining two quadrants.

//Lower left quadrant

//Gradient GREEN to BLUE, cyclic along vertical axis.

//horizontal axis

Ellipse2D.Double circle3 =

new Ellipse2D.Double(-128,0.0,128,128);

g2.setPaint(

new GradientPaint(

-128,-64,Color.GREEN,

-107,-64,Color.BLUE,true));

g2.fill(circle3);

g2.draw(circle3);

//Lower right quadrant

//Gradient GREEN to BLUE, cyclic along

// 45 degree angle

Ellipse2D.Double circle4 =

new Ellipse2D.Double(0,0,128,128);

g2.setPaint(

new GradientPaint(

19,19,Color.GREEN,

64,64,Color.BLUE,true));

g2.fill(circle4);

g2.draw(circle4);

}//end process

}//end class Prob03Runner

Table 3.342

An interesting anomaly
I will point out one interesting anomaly, however. Even though we shifted the origin to the center, we

did not change the direction that represents positive values on the Y axis.
Coordinates above the center are negative and coordinates below the center are positive.
Where is the line segment?
If you examine the constructor parameters for the lower-left quadrant in Listing 8 (p. 859) , you will see

that the imaginary line segment isn't in the lower-left quadrant.
The line segment is 21 pixels in length, parallel to the horizontal axis. However, it is 64 pixels above the

horizontal axis. That is not in the lower-left quadrant.
The e�ect is...
The e�ect is as though the color gradient �lls the universe, and is based on a line segment placed anywhere

in the universe.
However, we only see the color gradient through the shape that we specify as a parameter to the �ll

method. In other words, that shape is a window through which we can see a background consisting of
gradient color changes.

Our window is in the lower-left quadrant

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

853

In this case, that shape is the circle in the lower-left quadrant, so we see the gradient color e�ect in the
lower-left quadrant.

How about the bottom-right quadrant
I stated earlier that the imaginary line segment can be at any angle relative to the horizontal axis.
For the bottom right quadrant, the line segment is 64 pixels in length. It lies along a line that goes

through the origin and is at 45 degrees clockwise relative to the horizontal.
Where is the line segment positioned?
One end of the line segment is at the center of the circle. The other end of the line segment is at the

point where the 45-degree line intersects the edge of the circle closest to the origin.
You can take it from there
You should be able to take it from there and explain the color gradient in the circle in the lower-right

quadrant. Recall that the diameter of the circle is 128 pixels. The length of the line segment is 64 pixels or
one-half the diameter.

The end of the class
Listing 8 (p. 859) signals the end of the class named Prob03Runner and the end of the program.

3.3.28.5 Run the program

I encourage you to copy the code from Listing 9 (p. 862) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. For example, try setting the cyclic
constructor parameter to false and observe the e�ect. Make certain that you can explain why your changes
behave as they do.

Click Prob03.jpg 380 to download the input image �le if you elect to use it.

3.3.28.6 Summary

In this module, you learned to use the GradientPaint class along with a variety of other Java2D classes.

3.3.28.7 What's next?

In the next module, you will Learn how to use shapes to clip images during the drawing process.

3.3.28.8 Online video link

While not a requirement of the course, you can select the following link to view an optional online video
lecture on the material in this module.

• ITSE 2321 Lecture 13 381

3.3.28.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: GradientPaint and other Java2D Classes
• File: Java3026.htm
• Published: 08/04/12

380http://cnx.org/content/m44242/latest/Prob03.jpg
381http://vimeo.com/channels/itse2321/21220418

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

854 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.3.28.10 Complete program listing

A complete listing of the program discussed in this module is provided in Listing 9 (p. 862) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

855

Listing 9 . Complete program listing .

/*File Prob03 Copyright 2008 R.G.Baldwin

***/

import java.awt.geom.Line2D;

import java.awt.geom.Ellipse2D;

import java.awt.Color;

import java.awt.Graphics;

import java.awt.Graphics2D;

import java.awt.GradientPaint;

public class Prob03{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

new Prob03Runner().run();

}//end main method

}//end class Prob03

//==//

class Prob03Runner{

public Prob03Runner(){

System.out.println("Display your name here.");

}//end constructor

//--//

public void run(){

Picture pic = new Picture("Prob03.jpg");

pic.setAllPixelsToAColor(Color.RED);

process(pic);

//Add your name and display the output picture.

pic.addMessage("Display your name here.",10,20);

pic.explore();

System.out.println(pic);

}//end run

//--//

private void process(Picture pic){

Graphics2D g2 = (Graphics2D)(pic.getGraphics());

int width = pic.getWidth();

int height = pic.getHeight();

//Translate origin to center of Frame

g2.translate(width/2,height/2);

g2.setColor(Color.BLACK);

//Draw x-axis

g2.draw(new Line2D.Double(-width/2,0.0,width/2,0.0));

//Draw y-axis

g2.draw(new Line2D.Double(0.0,-width/2,0.0,height/2));

//Upper left quadrant, Solid GREEN fill

Ellipse2D.Double circle1 =

new Ellipse2D.Double(-128,-128,128,128);

g2.setPaint(Color.GREEN);

g2.fill(circle1);

g2.draw(circle1);

//Upper right quadrant

//Gradient GREEN to BLUE, cyclic along horizontal

// axis.

Ellipse2D.Double circle2 =

new Ellipse2D.Double(0.0,-128,128,128);

g2.setPaint(new GradientPaint(

64,0,Color.GREEN,

64,-32,Color.BLUE,true));

g2.fill(circle2);

g2.draw(circle2);

//Lower left quadrant

//Gradient GREEN to BLUE, cyclic along vertical axis.

//horizontal axis

Ellipse2D.Double circle3 =

new Ellipse2D.Double(-128,0.0,128,128);

g2.setPaint(

new GradientPaint(

-128,-64,Color.GREEN,

-107,-64,Color.BLUE,true));

g2.fill(circle3);

g2.draw(circle3);

//Lower right quadrant

//Gradient GREEN to BLUE, cyclic along

// 45 degree angle

Ellipse2D.Double circle4 =

new Ellipse2D.Double(0,0,128,128);

g2.setPaint(

new GradientPaint(

19,19,Color.GREEN,

64,64,Color.BLUE,true));

g2.fill(circle4);

g2.draw(circle4);

}//end process

}//end class Prob03Runner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

856 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.343

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

857

3.3.29 Java3026r Review
382

Revised: Mon Apr 04 10:22:57 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 383

• Object-Oriented Programming (OOP) with Java 384

3.3.29.1 Table of Contents

• Preface (p. 864)
• Questions (p. 864)

· 1 (p. 864)

• Figures (p. 867)
• Listings (p. 867)
• Answers (p. 869)
• Miscellaneous (p. 869)

3.3.29.2 Preface

This module contains review questions and answers keyed to the module titled Java3026: GradientPaint and
other Java2D Classes 385 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

3.3.29.3 Questions

3.3.29.3.1 Question 1 .

Which of the following output images is produced by the program shown in Listing 1 (p. 865) ?
A. Figure 1 (p. 866)
B. Figure 2 (p. 866)

382This content is available online at <http://cnx.org/content/m45785/1.5/>.
383http://cnx.org/contents/dzOvxPFw
384http://cnx.org/contents/-2RmHFs_
385http://cnx.org/content/m44242

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

858 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 1 . Question 1 .

/*File Java3026ra Copyright 2013 R.G.Baldwin

***/

import java.awt.geom.Line2D;

import java.awt.geom.Ellipse2D;

import java.awt.Color;

import java.awt.Graphics;

import java.awt.Graphics2D;

import java.awt.GradientPaint;

public class Java3026ra{

public static void main(String[] args){

new Java3026raRunner().run();

}//end main method

}//end class Java3026ra

//==//

class Java3026raRunner{

public void run(){

Picture pic = new Picture(300,300);

pic.setAllPixelsToAColor(Color.RED);

process(pic);

pic.explore();

}//end run

//--//

private void process(Picture pic){

Graphics2D g2 = (Graphics2D)(pic.getGraphics());

int width = pic.getWidth();

int height = pic.getHeight();

g2.translate(width/2,height/2);

g2.setColor(Color.BLACK);

g2.draw(new Line2D.Double(-width/2,0.0,width/2,0.0));

g2.draw(new Line2D.Double(0.0,-width/2,0.0,height/2));

Ellipse2D.Double circle1 =

new Ellipse2D.Double(-128,-128,128,128);

g2.setPaint(new GradientPaint(-64,-64,Color.BLUE,

-32,-32,Color.GREEN,true));

g2.fill(circle1);

g2.draw(circle1);

Ellipse2D.Double circle2 =

new Ellipse2D.Double(0.0,-128,128,128);

g2.fill(circle2);

g2.draw(circle2);

Ellipse2D.Double circle3 =

new Ellipse2D.Double(-128,0.0,128,128);

g2.fill(circle3);

g2.draw(circle3);

Ellipse2D.Double circle4 =

new Ellipse2D.Double(0,0,128,128);

g2.fill(circle4);

g2.draw(circle4);

}//end process

}//end class Java3026raRunner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

859

Table 3.344

Figure 1 - Possible output image.

Figure 2 - Possible output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

860 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Answer 1 (p. 869)

3.3.29.4 Figures

• Figure 1 (p. 866) . Possible output image.
• Figure 2 (p. 866) . Possible output image.

3.3.29.5 Listings

• Listing 1 (p. 865) . Question 1.

What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

861

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

862 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.29.6 Answers

3.3.29.6.1 Answer 1

The code in Listing 1 (p. 865) produces the output image shown in Figure 1 (p. 866) .
Back to Question 1 (p. 864)

3.3.29.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java3026r Review
• File: Java3026r.htm
• Published: 02/18/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.3.30 Java3028: Clipping Images
386

Revised: Mon Apr 04 10:32:52 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 387

• Object-Oriented Programming (OOP) with Java 388

3.3.30.1 Table of Contents

• Preface (p. 870)

· Viewing tip (p. 870)

* Figures (p. 870)
* Listings (p. 870)

• Preview (p. 870)

386This content is available online at <http://cnx.org/content/m44246/1.11/>.
387http://cnx.org/contents/dzOvxPFw
388http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

863

• Discussion and sample code (p. 874)
• Run the program (p. 877)
• Summary (p. 877)
• What's next? (p. 877)
• Online video link (p. 877)
• Miscellaneous (p. 878)
• Complete program listing (p. 878)

3.3.30.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 389 .

3.3.30.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

3.3.30.2.1.1 Figures

• Figure 1 (p. 870) . Input �le named Prob04a.jpg.
• Figure 2 (p. 871) . First output image.
• Figure 3 (p. 872) . Second output image.
• Figure 4 (p. 874) . Required text output.

3.3.30.2.1.2 Listings

• Listing 1 (p. 874) . The driver class named Prob04.
• Listing 2 (p. 875) . Beginning of the class named Prob04Runner.
• Listing 3 (p. 875) . Clip the picture and display your name.
• Listing 4 (p. 876) . The method named clipToEllipse.
• Listing 5 (p. 879) . Complete program listing.

3.3.30.3 Preview

In this module, you will learn how to use shapes to clip images during the drawing process.
Program speci�cations
Write a program named Prob04 that uses the class de�nition shown in Listing 1 (p. 874) and Ericson's

media library along with the image �le named Prob04a.jpg (see Figure 1 (p. 870)) to produce the
graphic output images shown in Figure 2 (p. 871) and Figure 3 (p. 872) . Don't forget to display your name
in the output image as shown.

Figure 1 - Input �le named Prob04a.jpg.

389http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

864 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 2 - First output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

865

Figure 3 - Second output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

866 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

New classes
You may de�ne new classes as necessary to cause your program to behave as required, but you may not

modify the class de�nition for the class named Prob04 shown in Listing 1 (p. 874) .
Rotate, mirror, and clip
The program rotates a Picture object by 35 degrees with no scaling. Then it does a four-way mirror

on the rotated picture. Finally, it clips the image to an elliptical format as shown in Figure 3 (p. 872) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

867

Required output text
In addition to the two output images shown above, your program must display your name and the other

line of text shown in Figure 4 (p. 874) .

Figure 4 - Required text output.

Display your name here.

Picture, filename None height 404 width 425

Table 3.345

3.3.30.4 Discussion and sample code

Will discuss in fragments
I will discuss and explain this program in fragments. A complete listing of the program is provided in

Listing 5 (p. 879) near the end of the module.
The driver class named Prob04
The driver class containing the main method is shown in Listing 1 (p. 874) .

Listing 1 - The driver class named Prob04.

public class Prob04{

public static void main(String[] args){

new Prob04Runner().run();

}//end main method

}//end class Prob04

Table 3.346

If you have been studying the earlier modules in this collection, no explanation of Listing 1 (p. 874)
should be required.

Beginning of the class named Prob04Runner
The class named Prob04Runner begins in Listing 2 (p. 875) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

868 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 2 - Beginning of the class named Prob04Runner.

class Prob04Runner{

public Prob04Runner(){

System.out.println("Display your name here.");

}//end constructor

//--//

public void run(){

Picture pix = new Picture("Prob04a.jpg");

//Rotate and mirror the picture.

pix = rotatePicture(pix,35);

pix = mirrorUpperQuads(pix);

pix = mirrorHoriz(pix);

pix.explore();

Table 3.347

Nothing new here
There is nothing new in Listing 2 (p. 875) .
After instantiating a new Picture object from the given image �le, Listing 2 (p. 875) calls three

methods to rotate, mirror, and display the picture, producing the graphic output shown in Figure 2 (p. 871)
.

All of the code to accomplish this is essentially the same as code that I have explained in earlier modules.
Clip the picture and display your name
Then Listing 3 (p. 875) calls the clipToEllipse method to clip the picture to an ellipse on a red

background as shown in Figure 3 (p. 872) . The clipToEllipse method is new to this module, so I will
explain it shortly.

Listing 3 - Clip the picture and display your name.

pix = clipToEllipse(pix);

//Add your name and display the output picture.

pix.addMessage("Display your name here.",10,20);

pix.explore();

System.out.println(pix);

}//end run

Table 3.348

The remaining code in Listing 3 (p. 875) is a repeat of code that I have explained in earlier modules, so
I won't have anything further to say about it.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

869

The method named clipToEllipse
The method named clipToEllipse is shown in its entirety in Listing 4 (p. 876) .

Listing 4 - The method named clipToEllipse.

private Picture clipToEllipse(Picture pix){

Picture result =

new Picture(pix.getWidth(),pix.getHeight());

result.setAllPixelsToAColor(Color.RED);

//Get the graphics2D object

Graphics2D g2 = (Graphics2D)(result.getGraphics());

//Create an ellipse for clipping

Ellipse2D.Double ellipse =

new Ellipse2D.Double(28,64,366,275);

//Use the ellipse for clipping

g2.setClip(ellipse);

//Draw the image

g2.drawImage(pix.getImage(),0,0,pix.getWidth(),

pix.getHeight(),

null);

return result;

}//end clipToEllipse

Table 3.349

Behavior of the clipToEllipse method
The clipToEllipse method receives an incoming parameter that is a reference to an object of the

Picture class. Basically, here is what the method does:

• Instantiate a Picture object with an all white background that is the same size as the incoming
Picture object.

• Call Ericson's setAllPixelsToAColor method to convert the white background into a red back-
ground.

• Call Ericson's getGraphics method to get the Graphics object encapsulated in the red Picture
object.

• Cast the Graphics object's reference to type Graphics2D .
• Construct a new Ellipse2D.Double object with the position, width, and height speci�ed by the

constructor parameters.
• Call Sun's setClip method to set the clipping area on the red Picture object to match the position

and shape of the ellipse.
• Call Ericson's getImage method to get the Image object encapsulated in the incoming Picture

object.
• Call Sun's drawImage method to draw that portion of the incoming picture that �ts inside the

ellipse on the red Picture object.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

870 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

The new code
The only code in Listing 4 (p. 876) that is new to this module is the call to the setClip method.
The setClip method is de�ned in the Graphics class and inherited into the Graphics2D class.
(Among other things, that means that it wasn't necessary for me to cast the Graphics object to type

Graphics2D in Listing 4 (p. 876) .)
The setClip method
There are a couple of overloaded versions of the setClip method. The one used in Listing 4 (p. 876)

requires an incoming parameter of the interface type Shape .
The Shape interface
Brie�y, Sun tells us that the Shape interface "provides de�nitions for objects that represent some

form of geometric shape."
There are several dozen classes that implement the Shape interface, one of which is the class named

Ellipse2D.Double . Therefore, the object of that type that is instantiated in Listing 4 (p. 876) satis�es
the type requirement for being passed to the setClip method.

Behavior of the setClip method
With regard to the behavior of the setClip method, Sun tells us that the method
"Sets the current clipping area to an arbitrary clip shape."
What is the signi�cance of the clipping area?
The closest answer that I can �nd for that question is the following statement in Sun's description of the

Graphics class:
"All rendering operations modify only pixels which lie within the area bounded by the current clip, which

is speci�ed by a Shape in user space and is controlled by the program using the Graphics object."
In other words...
The clipping area is analogous to the current clip . In this case, the position and shape of the current

clip is the position and shape of the ellipse.
When the image is later drawn on the red Picture object, only those pixels within the ellipse are

modi�ed to show the image. The remaining pixels retain their original color, which was set to red early in
Listing 4 (p. 876) .

End of discussion
That concludes my explanation of this program. You will �nd the methods that I didn't discuss in Listing

5 (p. 879) near the end of the module.

3.3.30.5 Run the program

I encourage you to copy the code from Listing 5 (p. 879) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

Click Prob04a.jpg 390 to download the required input image �le.

3.3.30.6 Summary

In this module, you learned how to use shapes to clip images during the drawing process.

3.3.30.7 What's next?

In the next module, you will learn how to merge pictures.

3.3.30.8 Online video link

While not a requirement of the course, you can select the following link to view an optional online video
lecture on the material in this module.

390http://cnx.org/content/m44246/latest/Prob04a.jpg

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

871

• ITSE 2321 Lecture 14 391

3.3.30.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Clipping Images
• File: Java3028.htm
• Published: 08/06/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.3.30.10 Complete program listing

A complete listing of the program discussed in this module is provided in Listing 5 (p. 879) below.

391http://vimeo.com/channels/itse2321/21221510

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

872 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 5 . Complete program listing.

/*File Prob04 Copyright 2008 R.G.Baldwin

***/

import java.awt.Graphics2D;

import java.awt.geom.AffineTransform;

import java.awt.geom.Rectangle2D;

import java.awt.Graphics;

import java.awt.geom.Ellipse2D;

import java.awt.Color;

public class Prob04{

public static void main(String[] args){

new Prob04Runner().run();

}//end main method

}//end class Prob04

//==//

class Prob04Runner{

public Prob04Runner(){

System.out.println("Display your name here.");

}//end constructor

//--//

public void run(){

Picture pix = new Picture("Prob04a.jpg");

//Rotate and mirror the picture.

pix = rotatePicture(pix,35);

pix = mirrorUpperQuads(pix);

pix = mirrorHoriz(pix);

pix.explore();

//Clip the picture to an ellipse on a red background.

pix = clipToEllipse(pix);

//Add your name and display the output picture.

pix.addMessage("Display your name here.",10,20);

pix.explore();

System.out.println(pix);

}//end run

//--//

private Picture clipToEllipse(Picture pix){

Picture result =

new Picture(pix.getWidth(),pix.getHeight());

result.setAllPixelsToAColor(Color.RED);

//Get the graphics2D object

Graphics2D g2 = (Graphics2D)(result.getGraphics());

//Create an ellipse for clipping

Ellipse2D.Double ellipse =

new Ellipse2D.Double(28,64,366,275);

//Use the ellipse for clipping

g2.setClip(ellipse);

//Draw the image

g2.drawImage(pix.getImage(),0,0,pix.getWidth(),

pix.getHeight(),

null);

return result;

}//end clipToEllipse

//--//

private Picture rotatePicture(Picture pix,

double angle){

//Set up the rotation transform

AffineTransform rotateTransform =

new AffineTransform();

rotateTransform.rotate(Math.toRadians(angle),

pix.getWidth()/2,

pix.getHeight()/2);

//Get the required dimensions of a rectangle that will

// contain the rotated image.

Rectangle2D rectangle2D =

pix.getTransformEnclosingRect(rotateTransform);

int resultWidth = (int)(rectangle2D.getWidth());

int resultHeight = (int)(rectangle2D.getHeight());

//Set up the translation transform that will translate

// the rotated image to the center of the new Picture

// object.

AffineTransform translateTransform =

new AffineTransform();

translateTransform.translate(

(resultWidth - pix.getWidth())/2,

(resultHeight - pix.getHeight())/2);

//Concatenate the two transforms so that the image

// will first be rotated around its center and then

// translated to the center of the new Picture object.

translateTransform.concatenate(rotateTransform);

//Create a new Picture object to contain the results

// of the transformation.

Picture result = new Picture(

resultWidth,resultHeight);

//Get the graphics context of the new Picture object,

// apply the transform to the incoming picture and

// draw the transformed picture on the new Picture

// object.

Graphics2D g2 = (Graphics2D)result.getGraphics();

g2.drawImage(pix.getImage(),translateTransform,null);

return result;

}//end rotatePicture

//--//

//This method mirrors the upper-left quadrant of a

// picture into the upper-right quadrant.

private Picture mirrorUpperQuads(Picture pix){

Pixel leftPixel = null;

Pixel rightPixel = null;

int midpoint = pix.getWidth()/2;

int width = pix.getWidth();

for(int row = 0;row < pix.getHeight()/2;row++){

for(int col = 0;col < midpoint;col++){

leftPixel = pix.getPixel(col,row);

rightPixel =

pix.getPixel(width-1-col,row);

rightPixel.setColor(leftPixel.getColor());

}//end inner loop

}//end outer loop

return pix;

}//end mirrorUpperQuads

//--//

//This method mirrors the top half of a picture into

// the bottom half.

private Picture mirrorHoriz(Picture pix){

Pixel topPixel = null;

Pixel bottomPixel = null;

int midpoint = pix.getHeight()/2;

int height = pix.getHeight();

for(int col = 0;col < pix.getWidth();col++){

for(int row = 0;row < midpoint;row++){

topPixel = pix.getPixel(col,row);

bottomPixel =

pix.getPixel(col,height-1-row);

bottomPixel.setColor(topPixel.getColor());

}//end inner loop

}//end outer loop

return pix;

}//end mirrorHoriz

//--//

}//end class Prob04Runner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

873

Table 3.350

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

874 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.31 Java3028r Review
392

Revised: Mon Apr 04 10:44:15 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 393

• Object-Oriented Programming (OOP) with Java 394

3.3.31.1 Table of Contents

• Preface (p. 881)
• Questions (p. 881)

· 1 (p. 881)

• Figures (p. 885)
• Listings (p. 886)
• Answers (p. 887)
• Miscellaneous (p. 887)

3.3.31.2 Preface

This module contains review questions and answers keyed to the module titled Java3028: Clipping Images
395 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

3.3.31.3 Questions

3.3.31.3.1 Question 1 .

Given the input image shown in Figure 1 (p. 883) , which of the following output images is produced by the
code in Listing 1 (p. 882) ?

A. Figure 2 (p. 883)
B. Figure 3 (p. 884)

392This content is available online at <http://cnx.org/content/m45786/1.5/>.
393http://cnx.org/contents/dzOvxPFw
394http://cnx.org/contents/-2RmHFs_
395http://cnx.org/content/m44246

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

875

Listing 1 . Question 1.

/*File Java3028ra Copyright 2013 R.G.Baldwin

***/

import java.awt.Graphics2D;

import java.awt.geom.AffineTransform;

import java.awt.geom.Rectangle2D;

import java.awt.Graphics;

import java.awt.geom.Ellipse2D;

import java.awt.Color;

public class Java3028ra{

public static void main(String[] args){

new Java3028raRunner().run();

}//end main method

}//end class Java3028ra

//==//

class Java3028raRunner{

public void run(){

Picture pix = new Picture("Prob04a.jpg");

pix = rotatePicture(pix,35);

pix = mirrorUpperQuads(pix);

pix = mirrorHoriz(pix);

pix = clipToEllipse(pix);

pix.explore();

}//end run

//--//

private Picture clipToEllipse(Picture pix){

Picture result =

new Picture(pix.getWidth(),pix.getHeight());

result.setAllPixelsToAColor(Color.RED);

Graphics2D g2 = (Graphics2D)(result.getGraphics());

Ellipse2D.Double ellipse =

new Ellipse2D.Double(28,64,366,275);

g2.setClip(ellipse);

g2.drawImage(pix.getImage(),0,0,pix.getWidth(),

pix.getHeight(),

null);

return result;

}//end clipToEllipse

//--//

private Picture rotatePicture(Picture pix,

double angle){

AffineTransform rotateTransform =

new AffineTransform();

rotateTransform.rotate(Math.toRadians(angle),

pix.getWidth()/2,

pix.getHeight()/2);

Rectangle2D rectangle2D =

pix.getTransformEnclosingRect(rotateTransform);

int resultWidth = (int)(rectangle2D.getWidth());

int resultHeight = (int)(rectangle2D.getHeight());

AffineTransform translateTransform =

new AffineTransform();

translateTransform.translate(

(resultWidth - pix.getWidth())/2,

(resultHeight - pix.getHeight())/2);

translateTransform.concatenate(rotateTransform);

Picture result = new Picture(

resultWidth,resultHeight);

Graphics2D g2 = (Graphics2D)result.getGraphics();

g2.drawImage(pix.getImage(),translateTransform,null);

return result;

}//end rotatePicture

//--//

private Picture mirrorUpperQuads(Picture pix){

Pixel leftPixel = null;

Pixel rightPixel = null;

int midpoint = pix.getWidth()/2;

int width = pix.getWidth();

for(int row = 0;row < pix.getHeight()/2;row++){

for(int col = 0;col < midpoint;col++){

leftPixel = pix.getPixel(col,row);

rightPixel = pix.getPixel(width-1-col,row);

rightPixel.setColor(leftPixel.getColor());

}//end inner loop

}//end outer loop

return pix;

}//end mirrorUpperQuads

//--//

private Picture mirrorHoriz(Picture pix){

Pixel topPixel = null;

Pixel bottomPixel = null;

int midpoint = pix.getHeight()/2;

int height = pix.getHeight();

for(int col = 0;col < pix.getWidth();col++){

for(int row = 0;row < midpoint;row++){

topPixel = pix.getPixel(col,row);

bottomPixel = pix.getPixel(col,height-1-row);

bottomPixel.setColor(topPixel.getColor());

}//end inner loop

}//end outer loop

return pix;

}//end mirrorHoriz

//--//

}//end class Java3028raRunner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

876 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.351

Figure 1 - Prob04a.jpg

Figure 2 - Possible output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

877

Figure 3 - Possible output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

878 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Answer 1 (p. 887)

3.3.31.4 Figures

• Figure 1 (p. 883) . Prob04a.jpg
• Figure 2 (p. 883) . Possible output image.
• Figure 3 (p. 884) . Possible output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

879

3.3.31.5 Listings

• Listing 1 (p. 882) . Question 1.

What is the meaning of the following two images?
This image was inserted here simply to insert some space between the questions and the answers to keep

them from being visible on the screen at the same time.
The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-

Oriented Programming.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

880 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.31.6 Answers

3.3.31.6.1 Answer 1

The code in Listing 1 (p. 882) produces the output image shown in Figure 3 (p. 884) .
Back to Question 1 (p. 881)

3.3.31.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java3028r Review
• File: Java3028r.htm
• Published: 02/18/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

881

compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.3.32 Java3030: Merging Pictures
396

Revised: Mon Apr 04 10:55:29 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 397

• Object-Oriented Programming (OOP) with Java 398

3.3.32.1 Table of Contents

• Preface (p. 888)

· Viewing tip (p. 888)

* Figures (p. 889)
* Listings (p. 889)

• Preview (p. 889)
• Discussion and sample code (p. 891)
• Run the program (p. 895)
• Summary (p. 895)
• Online video link (p. 895)
• Miscellaneous (p. 895)
• Complete program listing (p. 895)

3.3.32.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 399 .

3.3.32.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the Figures and Listings while you are reading about them.

396This content is available online at <http://cnx.org/content/m44247/1.11/>.
397http://cnx.org/contents/dzOvxPFw
398http://cnx.org/contents/-2RmHFs_
399http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

882 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.32.2.1.1 Figures

• Figure 1 (p. 889) . Input �le named Prob05a.jpg.
• Figure 2 (p. 890) . Input �le named Prob05b.jpg.
• Figure 3 (p. 890) . Required graphic output image.
• Figure 4 (p. 891) . Required output text.

3.3.32.2.1.2 Listings

• Listing 1 (p. 892) . The driver class named Prob05.
• Listing 2 (p. 892) . Beginning of the class named Prob05Runner.
• Listing 3 (p. 892) . The run method of the Prob05Runner class.
• Listing 4 (p. 893) . Beginning of the merge method.
• Listing 5 (p. 894) . Do the merge.
• Listing 6 (p. 896) . Complete program listing.

3.3.32.3 Preview

In this module, you will learn how to do a linear merge on two pictures based on the distance of each pixel
from the left side of the picture.

Program speci�cations
Write a program named Prob05 that uses the class de�nition shown in Listing 1 (p. 892) and Ericson's

media library along with the image �les named Prob05a.jpg and Prob05b.jpg (see Figure 1 (p. 889)
and Figure 2 (p. 890)) to produce the graphic output image shown in Figure 3 (p. 890) .

Figure 1 - Input �le named Prob05a.jpg.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

883

Figure 2 - Input �le named Prob05b.jpg.

Figure 3 - Required graphic output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

884 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Required output text
In addition to the output image mentioned above, your program must display your name and the other

line of text shown in Figure 4 (p. 891) on the command-line screen.

Figure 4 - Required output text.

Display your name here.

Picture, filename None height 252 width 330

Table 3.352

3.3.32.4 Discussion and sample code

This program does a linear merge on two pictures based on the distance of each pixel from the left side of
the picture. The program also adds a sun with a gradient and the student's name to the picture.

Will discuss in fragments
I will discuss and explain this program in fragments. A complete listing of the program is provided in

Listing 6 (p. 896) near the end of the module.
The driver class named Prob05
The driver class containing the main method is shown in Listing 1 (p. 892) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

885

Listing 1 - The driver class named Prob05.

public class Prob05{

public static void main(String[] args){

new Prob05Runner().run();

}//end main method

}//end class Prob05

Table 3.353

The code in Listing 1 (p. 892) shouldn't require an explanation at this stage in the course.
Beginning of the class named Prob05Runner
The class named Prob05Runner begins in Listing 2 (p. 892) .

Listing 2 - Beginning of the class named Prob05Runner.

class Prob05Runner{

public Prob05Runner(){

System.out.println("Display your name here.");

}//end constructor

Table 3.354

As with Listing 1 (p. 892) , the code in Listing 2 (p. 892) shouldn't require an explanation.
The run method of the Prob05Runner class
Listing 1 (p. 892) calls the run method on an object of the Prob05Runner class. The run method

is shown in its entirety in Listing 3 (p. 892) .

Listing 3 - The run method of the Prob05Runner class.

public void run(){

Picture penguin = new Picture("Prob05a.jpg");

Picture hare = new Picture("Prob05b.jpg");

merge(hare,penguin);

hare = crop(hare,6,58,330,252);

hare.addMessage("Display your name here.",10,20);

drawSun(hare);

hare.show();

System.out.println(hare);

}//end run

Table 3.355

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

886 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

The only thing in Listing 3 (p. 892) that I haven't explained in earlier modules is the call to the merge
method, so I will limit my discussion to that method.

The merge method
The merge method is used to merge the image in Figure 1 (p. 889) with the image in Figure 2 (p.

890) to produce the image shown in Figure 3 (p. 890) .
(Note, however, that the merged image was cropped to eliminate the buttons at the top of Figure 1 (p.

889) and Figure 2 (p. 890) before displaying it in Figure 3 (p. 890) .)
A linear merge
The merge method does a linear merge on two pictures based on the distance of each pixel from the

left side of the picture.
The method assumes that both pictures have the same dimensions.
Beginning of the merge method
The merge method begins in Listing 4 (p. 893) .

Listing 4 - Beginning of the merge method.

private void merge(Picture left,Picture right){

int width = left.getWidth();

int height = left.getHeight();

double scaleL = 0;

double scaleR = 0;

int redL = 0;

int greenL = 0;

int blueL = 0;

int redR = 0;

int greenR = 0;

int blueR = 0;

Pixel pixelL = null;

Pixel pixelR = null;

Table 3.356

The code in Listing 4 (p. 893) simply declares and initializes a large number of working variables.
Do the merge
The merge is accomplished in the nested for loop in Listing 5 (p. 894) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

887

Listing 5 - Do the merge.

for(int row = 0;row < height;row++){

for(int col = 0;col < width;col++){

scaleR = (double)col/width;

scaleL = 1.0 - scaleR;

pixelL = left.getPixel(col,row);

pixelR = right.getPixel(col,row);

redL = pixelL.getColor().getRed();

greenL = pixelL.getColor().getGreen();

blueL = pixelL.getColor().getBlue();

redR = pixelR.getColor().getRed();

greenR = pixelR.getColor().getGreen();

blueR = pixelR.getColor().getBlue();

redL = (int)(redL*scaleL + redR*scaleR);

greenL = (int)(greenL*scaleL + greenR*scaleR);

blueL = (int)(blueL*scaleL + blueR*scaleR);

pixelL.setColor(new Color(redL,greenL,blueL));

}//end inner loop

}//end outer loop

}//end merge

Table 3.357

Di�cult to explain
Although the code in Listing 5 (p. 894) is long, tedious, and ugly, it isn't complicated However, it is

somewhat di�cult to explain in words.
Two scale factors
The body of the for loop begins by computing a pair of scale factors named scaleR and scaleL .

The factor named scaleR has a maximum value of 1.0 and is directly proportional to the distance of the
current pixel from the left edge of the picture.

The factor named scaleL also has a maximum value of 1.0 and is inversely proportional to the distance
of the pixel from the left edge.

Get and save color components
The red, green, and blue values for the same pixel location in each of the pictures are obtained and saved.
Compute a new set of color values
A new set of red, green, and blue color values are computed as the sum of scaled versions of the pixel

colors from the rabbit image pixel and the penguin image pixel.
The nature of the scaling
The scaling is such that the pixel colors from the rabbit image contribute most heavily to output pixels

to the left of center and pixel colors from the penguin image contribute most heavily to output pixels to the
right of center.

You can see the e�ect of this scaling algorithm in Figure 3 (p. 890) .
The pixels in the horizontal center
The pixels along a vertical line at the center of the output image contain equal contributions of colors

from both images.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

888 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

End of discussion
That concludes the explanation of the code in this program.
You can view the drawSun and crop methods in Listing 6 (p. 896) near the end of the module.

3.3.32.5 Run the program

I encourage you to copy the code from Listing 6 (p. 896) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

Click Prob05a.jpg 400 and Prob05b.jpg 401 to download the required input image �les.

3.3.32.6 Summary

In this module, you learned how to merge two pictures.

3.3.32.7 Online video link

While not a requirement of the course, you can select the following link to view an optional online video
lecture on the material in this module.

• ITSE 2321 Lecture 15 402

3.3.32.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Merging Pictures
• File: Java3030.htm
• Published: 08/07/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

3.3.32.9 Complete program listing

A complete listing of the program discussed in this module is provided in Listing 6 (p. 896) below.

400http://cnx.org/content/m44247/latest/Prob05a.jpg
401http://cnx.org/content/m44247/latest/Prob05b.jpg
402http://vimeo.com/channels/itse2321/21222484

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

889

Listing 6 . Complete program listing.

/*File Prob05 Copyright 2008 R.G.Baldwin

***/

import java.awt.Color;

import java.awt.Graphics2D;

import java.awt.Graphics;

import java.awt.GradientPaint;

import java.awt.geom.Ellipse2D;

public class Prob05{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

new Prob05Runner().run();

}//end main method

}//end class Prob05

//==//

class Prob05Runner{

public Prob05Runner(){

System.out.println("Display your name here.");

}//end constructor

//--//

public void run(){

Picture penguin = new Picture("Prob05a.jpg");

Picture hare = new Picture("Prob05b.jpg");

merge(hare,penguin);

hare = crop(hare,6,58,330,252);

hare.addMessage("Display your name here.",10,20);

drawSun(hare);

hare.show();

System.out.println(hare);

}//end run

//--//

private void drawSun(Picture pic){

Graphics2D g2d = (Graphics2D)(pic.getGraphics());

int width = 75;

int height = 50;

int center = pic.getWidth()/2;

int xCoor = center - width/2;

int yCoor = 75;

//Create the gradient for painting from yellow to red

// with yellow at the left of the sun and red at the

// right.

GradientPaint gPaint = new GradientPaint(

xCoor, yCoor+height/2,

Color.YELLOW,

xCoor+width,yCoor+height/2,

Color.ORANGE);

//Set the gradient and draw the ellipse

g2d.setPaint(gPaint);

g2d.fill(new Ellipse2D.Double(

xCoor,yCoor,width,height));

}//end drawSun

//--//

//Assumes both pictures have the same dimensions.

// Does a linear merge on two pictures based on the

// distance of each pixel from the left side of the

// picture.

private void merge(Picture left,Picture right){

int width = left.getWidth();

int height = left.getHeight();

double scaleL = 0;

double scaleR = 0;

int redL = 0;

int greenL = 0;

int blueL = 0;

int redR = 0;

int greenR = 0;

int blueR = 0;

Pixel pixelL = null;

Pixel pixelR = null;

for(int row = 0;row < height;row++){

for(int col = 0;col < width;col++){

scaleR = (double)col/width;

scaleL = 1.0 - scaleR;

pixelL = left.getPixel(col,row);

pixelR = right.getPixel(col,row);

redL = pixelL.getColor().getRed();

greenL = pixelL.getColor().getGreen();

blueL = pixelL.getColor().getBlue();

redR = pixelR.getColor().getRed();

greenR = pixelR.getColor().getGreen();

blueR = pixelR.getColor().getBlue();

redL = (int)(redL*scaleL + redR*scaleR);

greenL = (int)(greenL*scaleL + greenR*scaleR);

blueL = (int)(blueL*scaleL + blueR*scaleR);

pixelL.setColor(new Color(redL,greenL,blueL));

}//end inner loop

}//end outer loop

}//end merge

//--//

//Crops a Picture object to the given width and height

// with the upper-left corner located at startCol and

// startRow.

private Picture crop(Picture pic,int startCol,

int startRow,

int width,

int height){

Picture output = new Picture(width,height);

int colOut = 0;

int rowOut = 0;

int col = 0;

int row = 0;

Pixel pixel = null;

Color color = null;

for(col = startCol;col < startCol+width;col++){

for(row = startRow;row < startRow+height;row++){

color = pic.getPixel(col,row).getColor();

pixel = output.getPixel(colOut,rowOut);

pixel.setColor(color);

rowOut++;

}//end inner loop

rowOut = 0;

colOut++;

}//end outer loop

return output;

}//end crop

}//end class Prob05Runner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

890 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.358

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

891

3.3.33 Java3030r Review
403

Revised: Mon Apr 04 11:10:04 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 404

• Object-Oriented Programming (OOP) with Java 405

3.3.33.1 Table of Contents

• Preface (p. 898)
• Questions (p. 898)

· 1 (p. 898)

• Figures (p. 903)
• Listings (p. 903)
• Answers (p. 905)
• Miscellaneous (p. 905)

3.3.33.2 Preface

This module contains review questions and answers keyed to the module titled Java3030: Merging Pictures
406 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

3.3.33.3 Questions

3.3.33.3.1 Question 1 .

Given the two input images shown in Figure 1 (p. 900) and Figure 2 (p. 900) , which of the following two
output images is produced by the code in Listing 1 (p. 899) ? Note that the di�erences in the two possible
output images are subtle. Also note the RGB color values shown at the same cursor location in all four
images.

A. Figure 3 (p. 901)
B. Figure 4 (p. 902)

403This content is available online at <http://cnx.org/content/m45787/1.6/>.
404http://cnx.org/contents/dzOvxPFw
405http://cnx.org/contents/-2RmHFs_
406http://cnx.org/content/m44247

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

892 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 1 . Question 1.

/*File Java3030ra Copyright 2013 R.G.Baldwin

***/

import java.awt.Color;

import java.awt.Graphics2D;

import java.awt.Graphics;

import java.awt.GradientPaint;

import java.awt.geom.Ellipse2D;

public class Java3030ra{

public static void main(String[] args){

new Java3030raRunner().run();

}//end main method

}//end class Java3030ra

//==//

class Java3030raRunner{

public void run(){

Picture penguin = new Picture("Prob05a.jpg");

penguin.explore();

Picture hare = new Picture("Prob05b.jpg");

hare.explore();

merge(hare,penguin);

hare.explore();

}//end run

//--//

private void merge(Picture left,Picture right){

int width = left.getWidth();

int height = left.getHeight();

double scaleL = 0;

double scaleR = 0;

int redL = 0;

int greenL = 0;

int blueL = 0;

int redR = 0;

int greenR = 0;

int blueR = 0;

Pixel pixelL = null;

Pixel pixelR = null;

for(int row = 0;row < height;row++){

for(int col = 0;col < width;col++){

scaleR = (double)col/width;

scaleR *= scaleR;

scaleL = 1.0 - scaleR;

pixelL = left.getPixel(col,row);

pixelR = right.getPixel(col,row);

redL = pixelL.getColor().getRed();

greenL = pixelL.getColor().getGreen();

blueL = pixelL.getColor().getBlue();

redR = pixelR.getColor().getRed();

greenR = pixelR.getColor().getGreen();

blueR = pixelR.getColor().getBlue();

redL = (int)(redL*scaleL + redR*scaleR);

greenL = (int)(greenL*scaleL + greenR*scaleR);

blueL = (int)(blueL*scaleL + blueR*scaleR);

pixelL.setColor(new Color(redL,greenL,blueL));

}//end inner loop

}//end outer loop

}//end merge

//--//

}//end class Java3030raRunner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

893

Table 3.359

Figure 1 - One of two input images.

Figure 2 - The second of two input images.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

894 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 3 - Possible output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

895

Figure 4 - Possible output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

896 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Answer 1 (p. 905)

3.3.33.4 Figures

• Figure 1 (p. 900) . One of two input images.
• Figure 2 (p. 900) . The second of two input images.
• Figure 3 (p. 901) . Possible output image.
• Figure 4 (p. 902) . Possible output image.

3.3.33.5 Listings

• Listing 1 (p. 899) . Question 1.

What is the meaning of the following two images?

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

897

This image was inserted here simply to insert some space between the questions and the answers to keep
them from being visible on the screen at the same time.

The image is also an example of the kinds of things that we do in my course titled ITSE 2321, Object-
Oriented Programming.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

898 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.3.33.6 Answers

3.3.33.6.1 Answer 1

The code in Listing 1 (p. 899) produces the output image shown in Figure 3 (p. 901) .
Back to Question 1 (p. 898)

3.3.33.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java3030r Review
• File: Java3030r.htm
• Published: 02/18/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

899

compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.4 The Java Collections Framework

3.4.1 Java4010: Getting Started with Java Collections
407

Revised: Tue Apr 05 13:19:04 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 408

• Object-Oriented Programming (OOP) with Java 409

3.4.1.1 Table of Contents

• Preface (p. 907)

· Viewing tip (p. 907)

* Listings (p. 907)

• Preview (p. 908)
• Generics (p. 908)
• Introduction (p. 908)

· A quiz (p. 908)
· Elements of the Framework are easy to use (p. 908)
· Don't reinvent the wheel (p. 908)
· Collections Framework encourages reuse (p. 909)

• Sample program (p. 909)
• Interesting code fragments (p. 909)

· An object of the TreeSet class (p. 909)
· Collection is an interface (p. 909)
· What is a TreeSet object? (p. 909)

* What does ascending element order mean? (p. 909)
* What does log(n) time cost mean? (p. 910)
* A TreeSet object is a Set (p. 910)
* A TreeSet object is a SortedSet (p. 910)
* A TreeSet object is a Collection (p. 910)

· Populate the Collection (p. 910)

* Don't know, don't care (p. 911)
* Polymorphism in action (p. 911)
* Add �ve elements with some duplicates (p. 911)
* Filter out the duplicates (p. 911)

407This content is available online at <http://cnx.org/content/m46135/1.6/>.
408http://cnx.org/contents/dzOvxPFw
409http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

900 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

* Noti�cation of duplicates (p. 911)
* Sort the elements (p. 912)
* The TreeSet object is now populated (p. 912)

· Get an Iterator object (p. 912)

* Again, don't know, don't care (p. 912)
* An Iterator object acts as a doorkeeper (p. 912)
* Traverse the collection (p. 913)
* Four elements with no duplicates (p. 913)

· An editorial opinion (p. 913)

* What kind of knowledge is needed? (p. 913)
* The same concept applies to software design (p. 913)
* An analogy (p. 914)
* Its time to reinvent the CS2 curriculum (p. 914)

• Run the program (p. 914)
• Summary (p. 914)
• What's next? (p. 915)
• Miscellaneous (p. 915)
• Complete program listing (p. 916)

3.4.1.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming in
general and the Java Collections framework in particular.

The purpose of this module is to introduce you to the Java Collections Framework. Once you learn how
to use the framework, it is unlikely that you will need to reinvent common data structures, search algorithms,
or sorting algorithms again, because those capabilities are neatly packaged within the framework.

In addition to studying these modules, I strongly recommend that you study the Collections Trail 410 in
Oracle's Java Tutorials 411 . The modules in this collection are intended to supplement and not to replace
those tutorials.

3.4.1.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the listings while you are reading about them.

3.4.1.2.1.1 Listings

• Listing 1 (p. 909) . A new object of the TreeSet class.
• Listing 2 (p. 910) . Populate the collection.
• Listing 3 (p. 910) . The Populator class.
• Listing 4 (p. 912) . Get an Iterator object.
• Listing 5 (p. 913) . Traverse the collection.
• Listing 6 (p. 916) . Complete program listing

410http://docs.oracle.com/javase/tutorial/collections/index.html
411http://docs.oracle.com/javase/tutorial/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

901

3.4.1.3 Preview

This module provides a brief introduction to the use of the Java Collections Framework . The framework
is designed to encourage you to reuse rather than to reinvent collections and maps.

A collection represents a group of objects, known as its elements. Some collections allow duplicate
elements while others do not. Some collections are ordered and others are not. (Maps will be discussed in
future modules.)

The Collections Framework is de�ned by a set of interfaces and associated contracts, and provides
concrete implementations of the interfaces for the most common data structures. In addition, the framework
also provides several abstract implementations, which are designed to make it easier for you to create new
and di�erent implementations while still maintaining the structural polymorphic integrity of the framework.

3.4.1.4 Generics

The code in this series of modules is written with no thought given to Generics 412 . As a result, if you copy
and compile the code, you will probably get warnings about unchecked or unsafe operations .

While you will ultimately need to understand how to use Generics, that is a very complex topic. An
understanding of Generics is beyond the scope of this course. Therefore, for purposes of this course, you can
simply ignore those warnings.

3.4.1.5 Introduction

3.4.1.5.1 A quiz

Let's begin with a little quiz to establish your baseline knowledge of the Collections Framework. Take a
look at the program in Listing 6 (p. 916) near the end of this module. Which of the following is the output
produced by that program?

• A. Compiler Error
• B. Runtime Error
• C. 44321
• D. 12344
• E. 1234
• F. None of the above.

If your answer was 1234 (and it wasn't a guess) then you may already know quite a lot about the use of
the Collections Framework. If not, keep reading to begin learning about the framework.

3.4.1.5.2 Elements of the Framework are easy to use

This simple introductory program is not intended to do anything useful. Instead, it was designed to illustrate
several important features of the framework, including the ease with which elements of the framework can
be reused in your programs.

3.4.1.5.3 Don't reinvent the wheel

As many of you already know, I am a college professor. I specialize in teaching OOP using Java. In the past,
many college courses in Data Structures (often referred to as CS2 courses) have emphasized the concept of
reinventing the wheel . Students were required to learn how to reinvent a variety of complex data structures
in order to successfully complete the course.

Hopefully, with the conversion of these CS2 courses to Java OOP, the emphasis will change to reuse
instead of reinvent .

412http://docs.oracle.com/javase/tutorial/java/generics/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

902 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.1.5.4 Collections Framework encourages reuse

The Java Collections Framework is designed to encourage programmers to reuse existing interfaces and
classes instead of inventing new ones. In the event that it is necessary to invent a new class or interface, the
programmer is encouraged to integrate it into the framework in a polymorphic manner.

3.4.1.6 Sample program

I am going to provide a brief discussion of the sample program (shown in Listing 6 (p. 916)) in this
module. Later, I will provide more detailed discussions of many of the features used in that program.

3.4.1.7 Interesting code fragments

I will break this program down and discuss it in fragments.

3.4.1.7.1 An object of the TreeSet class

The code fragment in Listing 1 (p. 909) instantiates an object of the TreeSet class and stores the object's
reference in a reference variable of type Collection named ref .

Listing 1 . A new object of the TreeSet class.

class Worker{

public void doIt(){

Collection ref = new TreeSet();

Table 3.360

3.4.1.7.2 Collection is an interface

The TreeSet class implements the SortedSet interface, which extends the Set interface, which in turn
extends the Collection interface. Thus, a TreeSet object is a Collection . Therefore, a reference
to a TreeSet object can be stored in a reference variable of type Collection , and can be treated as the
generic type Collection .

3.4.1.7.3 What is a TreeSet object?

Among other things, in CS2 courses, we worry about the time and memory cost of a collection. According
to Sun, the TreeSet class guarantees that the sorted set will be in ascending element order, and provides
guaranteed log(n) time cost for the basic operations (add , remove and contains).

3.4.1.7.3.1 What does ascending element order mean?

Again, according to Sun, the elements will be sorted according to the natural order of the elements (see
the Comparable 413 interface) or by a comparator (see the Comparator 414 interface) provided at the time
the set is created. This depends on which overloaded constructor is used. I will have more to say about
these alternatives in a future module.

413http://cnx.org/contents/L3qgZmWm
414http://cnx.org/contents/5_Rd_R2l

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

903

3.4.1.7.3.2 What does log(n) time cost mean?

I'm not going to try to explain the details of log(n) time cost here. Su�ce it to say that the add , remove
, and contains methods execute very fast. (I will have more to say about this is a future module.)

3.4.1.7.3.3 A TreeSet object is a Set

An object of the TreeSet class also is a Set . One of the characteristics of a Java Set (an object
that implements the Set interface) is that it can contain no duplicate elements. Therefore, a TreeSet
object can contain no duplicate elements. If the add method of a TreeSet object is called in an attempt
to add a duplicate element, the element will not be added.

3.4.1.7.3.4 A TreeSet object is a SortedSet

The TreeSet class also implements the SortedSet interface. This guarantees that the contents of a
TreeSet object will be in ascending element order, regardless of the order in which the elements are added.
(In a future module, I will discuss how comparisons are made to enforce the ordering of the elements.)

3.4.1.7.3.5 A TreeSet object is a Collection

Because an object of the TreeSet class is a Collection , a reference to such an object can be passed to
any method that requires an incoming parameter of type Collection . The receiving method can call any
method on that reference that is declared in the Collection interface . (I will discuss such methods in
detail in future modules.)

3.4.1.7.4 Populate the Collection

The statement in Listing 2 (p. 910) passes the TreeSet object's reference to a method named �llIt ,
which is a static method of the Populator class. (The Populator class is a class of my own design whose
only purpose is to illustrate the polymorphic behavior achieved using the Collections Framework.) The
behavior of this method is to add elements to the incoming Collection object without regard for the
actual type of the object (the class from which the object was instantiated).

Listing 2 . Populate the collection.

Populator.fillIt(ref);

Table 3.361

At this point, I am going to discuss the �llIt method of the Populator class called in Listing 2 (p.
910) . The entire class de�nition of the Populator class, including the �llit method, is shown in Listing
3 (p. 910) .

Listing 3 . The Populator class.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

904 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

class Populator{

public static void fillIt(Collection ref){

ref.add(new Integer(4));

ref.add(new Integer(4));

ref.add(new Integer(3));

ref.add(new Integer(2));

ref.add(new Integer(1));

}//end fillIt()

}//end class populator

Table 3.362

3.4.1.7.4.1 Don't know, don't care

As you can see in the above fragment, the �llIt method receives the reference to the TreeSet object as
type Collection . This method doesn't know, and doesn't care, what the actual type of the object is. All
it cares about is that the object is a Collection object. (Otherwise, the object's reference couldn't be
passed in as a parameter. A type mismatch would occur.)

Because the incoming parameter is a reference to a Collection object, the �llIt method can call the
add method on the object with con�dence that the behavior of the add method will be appropriate for
the speci�c type of object involved. (For example, the behavior of the add method for an object of the
TreeSet class will probably be di�erent from the behavior of the add method for an object of some other
class that implements the Collection interface.)

3.4.1.7.4.2 Polymorphism in action

The great thing about polymorphic behavior is that the author of the �llIt method doesn't need to be
concerned about the implementation details of the add method.

3.4.1.7.4.3 Add �ve elements with some duplicates

The code in the �llIt method adds �ve elements to the object. Each element is a reference to a new object
of type Integer . Two of the objects encapsulate the int value 4, and thus are duplicates.

The int values encapsulated in the Integer objects are not in ascending order. Rather, they are
added to the object in descending order. (They could be added in any order and the end result would be
the same.)

3.4.1.7.4.4 Filter out the duplicates

The add method for the TreeSet object �lters out the duplicate element in order to satisfy the contract
of the Collection interface.

3.4.1.7.4.5 Noti�cation of duplicates

In this case, the author didn't care what happens in the case of duplicate elements. If the author of the �llIt
method does care what happens in the case of duplicates, she can �nd out when an object is a duplicate.

According to the contract of the Collection interface, the add method must return true if the call
to the method modi�es the contents of the object and must return false if the collection does not permit
duplicates and the collection already contains the speci�ed element.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

905

3.4.1.7.4.6 Sort the elements

Even though the elements are passed to the add method in descending order (or could be passed in any
other order), they are stored and maintained in the TreeSet object in such a way that they can later be
accessed in ascending order.

3.4.1.7.4.7 The TreeSet object is now populated

When the �llIt method returns, the TreeSet object contains four (not �ve) elements with no duplicates.
Each element is a reference to an object of type Integer . Those references are maintained in such a way as
to make them accessible in ascending order, based on the int values encapsulated in each of the Integer
objects.

3.4.1.7.5 Get an Iterator object

Returning now to the doIt method in the Worker class that was called in Listing 1 (p. 909) , the
statement in Listing 4 (p. 912) calls the iterator method on the TreeSet object's reference that is
stored in the reference variable of type Collection .

Listing 4 . Get an Iterator object.

Iterator iter = ref.iterator();

Table 3.363

The call to the iterator method on any Collection object returns an instance of a class that
implements the Iterator interface. The Iterator object can be used to traverse the collection, gaining
access to each element in order. (The concept of in order means di�erent things for di�erent kinds of
collections. For a collection instantiated from the TreeSet class, in order means in ascending order.)

3.4.1.7.5.1 Again, don't know, don't care

Again, the author of the method that uses the Collection object doesn't need to know or care about the
internal implementation of the collection, or the implementation of the methods of the Iterator object.
They simply do what they do, and can be used for their intended purpose.

3.4.1.7.5.2 An Iterator object acts as a doorkeeper

The Iterator interface declares three methods:

• hasNext()
• next()
• remove()

You might say that an Iterator object acts as a doorkeeper for the collection object that it represents,
providing access to the contents of the collection in a very speci�c manner.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

906 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.1.7.5.3 Traverse the collection

The code fragment in Listing 5 (p. 913) below shows how the �rst two of the above methods can be used to

• Traverse the collection, accessing each of the object's elements in succession.
• Display the value encapsulated in the object referred to by each element.

As mentioned earlier, when the collection is an object instantiated from the TreeSet class, access to the
elements is provided in ascending order.

Listing 5 . Traverse the collection.

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

Table 3.364

3.4.1.7.5.4 Four elements with no duplicates

At this point, the TreeSet object contains four elements, with no duplicates. Each of the elements is a
reference to an object of type Integer . The code in the loop in Listing 5 (p. 913) causes each of those
elements to be accessed and displayed in ascending order. This causes the following text to appear on the
screen:

1234

3.4.1.7.6 An editorial opinion

In my opinion, this is the kind of knowledge that a computer science student in a modern data structures
course should be learning. This is a far departure from courses of the past where CS2 students were required
to memorize the intricate details of how to implement various data structures.

3.4.1.7.6.1 What kind of knowledge is needed?

Does an architect need to understand the detailed inner workings of an air conditioning compressor to design
a cooling system into a building? Of course not!

However, the architect does need to know the tradeo�s among the available cooling systems in terms of
initial cost, operating cost, size, e�ciency, etc.

Does an audio technician need to understand the detailed inner workings of an electronic audio equalizer
in order to construct an integrated audio system? Absolutely not! If that were a requirement, there would
likely be very few audio systems in existence.

However, the audio technician does need to understand the tradeo�s among the various available audio
equalizers.

3.4.1.7.6.2 The same concept applies to software design

Does an OOP software designer need to know the detailed inner workings of the various kinds of collection
objects in order to use them e�ectively? No!

However, the software designer does need to know the tradeo�s among the various types of collection
objects in terms of their operational behavior.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

907

Modern CS2 students should be learning about the performance and operational di�erences among the
di�erent types of collections, and how to use available frameworks to create and use those collections. They
should not be wasting their time learning how to reinvent them. They have more important ways to spend
their time, and they have more important things to learn.

3.4.1.7.6.3 An analogy

Frankly, I don't care how the programmers at Sun implemented the TreeSet class, so long as the behavior
of objects instantiated from that class meets the published speci�cations.

As an analogy, I also don't care how they implemented the Random class, so long as objects instantiated
from the Random class provide the pseudo random values that I need in my programs.

I see no conceptual di�erences between the TreeSet class and the Random class from a software
reuse viewpoint.

• I can instantiate an object of the Random class to produce pseudo random values, without caring
how those values are actually generated. However, if I am working in cryptography, I might need to
know how many such values can be generated before the sequence repeats.

• I can use any of the thirty or so methods of the Math class to produce a variety of complex
mathematical values without caring about how those values are actually produced. However, since
many of those values are approximations, I might need to know something about the quality of the
approximation.

• I can instantiate an object of the TreeSet class to create a collection object that guarantees that
the sorted set will be in ascending element order, and provide log(n) time cost for the basic operations
of add , remove , and contains . As long as I know that, I have very little need to know exactly
how the collection object is implemented.

3.4.1.7.6.4 Its time to reinvent the CS2 curriculum

Having worked for 32 years in high-tech industry before becoming a college professor, I'm con�dent that the
future employers of most students share my opinion on this. I don't know of any employer who wants their
programmers to spend time and dollars reinventing the classical data structures. What those employers are
looking for is a sta� of programmers who understand the tradeo�s among the data structures, and when it
is appropriate to use each of the di�erent structures.

It is time to reinvent the curriculum in CS2 courses by

• Encouraging the understanding of techniques for software reuse.
• Teaching when, why, and how each of the di�erent structures should be used.
• Discouraging the reinvention of those structures.

3.4.1.8 Run the program

Okay, I will step down from my soapbox. I encourage you to copy the code from Listing 6 (p. 916) and
paste it into your text editor. Then compile and execute it.

Run the program and observe the results. Experiment with the code. Make changes, run the program
again, and observe the results of your changes. Make certain that you can explain why your changes behave
as they do.

3.4.1.9 Summary

In this module, I have provided a brief introduction to the use of the Java Collections Framework . The
framework is designed to encourage you to reuse rather than to reinvent collections and maps (I will have
more to say about maps in a future module).

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

908 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

A collection represents a group of objects, known as its elements.
While some collections allow duplicate elements, others do not. Some collections are ordered and others

are not ordered.
The Collections Framework is de�ned by a set of interfaces and associated contracts. The framework

provides concrete implementations of the interfaces (classes) for the most common data structures. In
addition, the framework also provides several abstract implementations, which are designed to make it easier
for you to create new and di�erent concrete implementations.

The TreeSet class is a concrete implementation of the SortedSet interface. The SortedSet
interface extends Set , which extends Collection . Thus, a TreeSet object is a SortedSet . Also
it is a Set , and it is a Collection .

The TreeSet class guarantees that the sorted set will be in ascending element order, and provides
guaranteed log(n) time cost for the basic operations (add , remove and contains).

TreeSet objects can be treated as the generic type Collection . Methods declared in the Collection
interface can be called on a Collection object without regard for the actual class from which the object
was instantiated. (This is polymorphic behavior.)

When such methods are called, the author of the program can have con�dence that the behavior of the
method will be appropriate for an object of the class from which the object was instantiated. In my opinion,
this is the true essence of object-oriented behavior.

3.4.1.10 What's next ?

This is the �rst module in a miniseries on the Collection Framework . Subsequent modules will teach you
how to use the framework for creating and using various types of collections and maps.

Once you learn how to use the framework, it is unlikely that you will need to reinvent classical data
structures, search algorithms, or sorting algorithms, because those capabilities are neatly packaged within
the framework.

3.4.1.11 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java0410: Getting Started with Java Collections
• File: Java0410.htm
• Published: 04/18/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

909

3.4.1.12 Complete program listing

A complete listing of the program is provided in Listing 6 (p. 916) below.

Listing 6 . Complete program listing.

import java.util.TreeSet;

import java.util.Collection;

import java.util.Iterator;

public class AP400{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class AP400

class Worker{

public void doIt(){

Collection ref = new TreeSet();

Populator.fillIt(ref);

Iterator iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(

Collection ref){

ref.add(new Integer(4));

ref.add(new Integer(4));

ref.add(new Integer(3));

ref.add(new Integer(2));

ref.add(new Integer(1));

}//end fillIt()

}//end class populator

Table 3.365

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

910 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.2 Java4010r Review
415

Revised: Tue Apr 05 13:42:12 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 416

• Object-Oriented Programming (OOP) with Java 417

3.4.2.1 Table of Contents

• Preface (p. 917)
• Questions (p. 917)

· 1 (p. 917) , 2 (p. 917) , 3 (p. 917) , 4 (p. 918) , 5 (p. 918) , 6 (p. 919) , 7 (p. 919) , 8 (p. 919) ,
9 (p. 919) , 10 (p. 919) , 11 (p. 919) , 12 (p. 919) , 13 (p. 919) , 14 (p. 919) , 15 (p. 920) , 16
(p. 920) , 17 (p. 920) , 18 (p. 920) , 19 (p. 920) , 20 (p. 920) , 21 (p. 920) , 22 (p. 920) , 23 (p.
921) , 24 (p. 921) , 25 (p. 921)

• Listings (p. 921)
• Answers (p. 922)
• Miscellaneous (p. 925)

3.4.2.2 Preface

This module is one in a collection of modules on Java Collections designed for teaching ITSE2321 - Object-
Oriented Programming (Java) at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4010: Getting Started
with Java Collections 418 .

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

3.4.2.3 Questions

3.4.2.3.1 Question 1 .

True or False? The Collections framework is designed to encourage to reinvent collections and maps.
Answer 1 (p. 925)

3.4.2.3.2 Question 2

True or False? Some collections allow duplicate elements while others do not.
Answer 2 (p. 925)

3.4.2.3.3 Question 3

True or False? All collections are ordered.
Answer 3 (p. 925)

415This content is available online at <http://cnx.org/content/m48040/1.6/>.
416http://cnx.org/contents/dzOvxPFw
417http://cnx.org/contents/-2RmHFs_
418http://cnx.org/contents/BaPSYll8

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

911

3.4.2.3.4 Question 4

True or False? The Collections Framework is de�ned by a set of interfaces and associated contracts, and
provides concrete implementations of the interfaces for the most common data structures.

Answer 4 (p. 924)

3.4.2.3.5 Question 5

Several questions in this module will be based on Listing 1 (p. 918) below.

Listing 1 . Used with several di�erent questions.

import java.util.TreeSet;

import java.util.Collection;

import java.util.Iterator;

public class AP400{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class AP400

class Worker{

public void doIt(){

Collection ref = new TreeSet();

Populator.fillIt(ref);

Iterator iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(

Collection ref){

ref.add(new Integer(4));

ref.add(new Integer(4));

ref.add(new Integer(3));

ref.add(new Integer(2));

ref.add(new Integer(1));

}//end fillIt()

}//end class populator

Table 3.366

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

912 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

True or False? Listing 1 (p. 918) instantiates an object of the TreeSet class and stores the object's
reference in a reference variable of type Object named ref .

Answer 5 (p. 924)

3.4.2.3.6 Question 6

True or False? The TreeSet class implements the SortedSet interface, which extends the Set interface,
which in turn extends the Collection interface.

Answer 6 (p. 924)

3.4.2.3.7 Question 7

True or False? A reference to a TreeSet object cannot be stored in a reference variable of type Collection
.

Answer 7 (p. 924)

3.4.2.3.8 Question 8

True or False? The TreeSet class guarantees that the sorted set will be in ascending element order
Answer 8 (p. 924)

3.4.2.3.9 Question 9

True or False? The TreeSet class provides guaranteed log(n) time cost for the basic operations (add ,
remove and contains).

Answer 9 (p. 924)

3.4.2.3.10 Question 10

True or False? A TreeSet object can contain duplicate elements.
Answer 10 (p. 924)

3.4.2.3.11 Question 11

True or False? A TreeSet object is not a SortedSet.
Answer 11 (p. 924)

3.4.2.3.12 Question 12

True or False? A TreeSet object is a Collection.
Answer 12 (p. 924)

3.4.2.3.13 Question 13

True or False? Because an object of the TreeSet class is a Collection , a reference to such an object
can be passed to any method that requires an incoming parameter of type Collection . The receiving
method can call any method on that reference that is declared in the Collection interface .

Answer 13 (p. 924)

3.4.2.3.14 Question 14

True or False? The behavior of the �llIt method in Listing 1 (p. 918) is to add elements to the incoming
Collection object without regard for the actual type of the object (the class from which the object was
instantiated).

Answer 14 (p. 923)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

913

3.4.2.3.15 Question 15

True or False? In Listing 1 (p. 918) , a reference to an object of type Button (see the Java documentation)
could be passed as a parameter to the �llIt method.

Answer 15 (p. 923)

3.4.2.3.16 Question 16

True or False? In Listing 1 (p. 918) , the �llIt method can call the add method on the incoming object
with con�dence that the behavior of the add method will be appropriate for the speci�c type of object
involved.

Answer 16 (p. 923)

3.4.2.3.17 Question 17

True or False? In Listing 1 (p. 918) , when the �llIt method returns, the TreeSet object contains �ve
elements.

Answer 17 (p. 923)

3.4.2.3.18 Question 18

True or False? In Listing 1 (p. 918) , when the �llIt method returns, the TreeSet object contains four
(not �ve) elements with no duplicates. Each element is a reference to an object of type Integer . Those
references are maintained in such a way as to make them accessible in descending order, based on the int
values encapsulated in each of the Integer objects.

Answer 18 (p. 923)

3.4.2.3.19 Question 19

True or False? The call to the iterator method on any Collection object returns an instance of a class
that implements the Iterator interface.

Answer 19 (p. 923)

3.4.2.3.20 Question 20

True or False? An Iterator object can be used to traverse a Collection object, gaining access to each
element in order .

Answer 20 (p. 923)

3.4.2.3.21 Question 21

True or False? The concept of in order means the same thing for all Collection objects.
Answer 21 (p. 923)

3.4.2.3.22 Question 22

True or False?
The Iterator interface declares three methods:

• hasNext()
• next()
• remove()

Answer 22 (p. 922)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

914 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.2.3.23 Question 23

True or False? The Iterator object associated with a particular Collection object provides access to
the contents of the collection in a very speci�c way.

Answer 23 (p. 922)

3.4.2.3.24 Question 24

True or False? The while loop in the Worker class in Listing 1 (p. 918) traverses the collection

• accessing each of the object's elements in succession, and
• displaying the value encapsulated in the object referred to by each element.

Answer 24 (p. 922)

3.4.2.3.25 Question 25

True or False? Listing 1 (p. 918) causes the following text to appear on the screen:
44321
Answer 25 (p. 922)

3.4.2.4 Listings

• Listing 1 (p. 918) . Used with several di�erent questions.

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

915

3.4.2.5 Answers

3.4.2.5.1 Answer 25

False. Listing 1 (p. 918) causes the following text to appear on the screen:
1234
Back to Question 25 (p. 921)

3.4.2.5.2 Answer 24

True.
Back to Question 24 (p. 921)

3.4.2.5.3 Answer 23

True.
Back to Question 23 (p. 921)

3.4.2.5.4 Answer 22

True.
Back to Question 22 (p. 920)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

916 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.2.5.5 Answer 21

False. The concept of in order means di�erent things for di�erent Collection objects. For a collection
instantiated from the TreeSet class, for example, in order means in ascending order. However, that may
not be the case for a di�erent object instantiated from a class that implements the Collection interface.

Back to Question 21 (p. 920)

3.4.2.5.6 Answer 20

True.
Back to Question 20 (p. 920)

3.4.2.5.7 Answer 19

True.
Back to Question 19 (p. 920)

3.4.2.5.8 Answer 18

False. In Listing 1 (p. 918) , when the �llIt method returns, the TreeSet object contains four (not �ve)
elements with no duplicates. Each element is a reference to an object of type Integer . Those references
are maintained in such a way as to make them accessible in ascending order, based on the int values
encapsulated in each of the Integer objects.

Back to Question 18 (p. 920)

3.4.2.5.9 Answer 17

False. In Listing 1 (p. 918) , when the �llIt method returns, the TreeSet object contains four (not
�ve) elements with no duplicates.

Back to Question 17 (p. 920)

3.4.2.5.10 Answer 16

True. For example, the behavior of the add method for an object of the TreeSet class will probably be
di�erent from the behavior of the add method for an object of some other class that implements the
Collection interface.

Back to Question 16 (p. 920)

3.4.2.5.11 Answer 15

False. The �llIt method receives the reference as type Collection . This method doesn't know, and
doesn't care, what the actual type of the object is. All it cares about is that the object is a Collection
object. (Otherwise, the object's reference couldn't be passed in as a parameter. A type mismatch would
occur.) A TreeSet object is a Collection because the TreeSet class implements the Collection
interface. A Button object is not a Collection because the Button class does not implement the
Collection interface.

Back to Question 15 (p. 920)

3.4.2.5.12 Answer 14

True.
Back to Question 14 (p. 919)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

917

3.4.2.5.13 Answer 13

True.
Back to Question 13 (p. 919)

3.4.2.5.14 Answer 12

True.
Back to Question 12 (p. 919)

3.4.2.5.15 Answer 11

False. The TreeSet class implements the SortedSet interface. This guarantees that the contents of a
TreeSet object will be in ascending element order, regardless of the order in which the elements are added.

Back to Question 11 (p. 919)

3.4.2.5.16 Answer 10

False. An object of the TreeSet class also is a Set . One of the characteristics of a Java Set
(an object that implements the Set interface) is that it can contain no duplicate elements. Therefore, a
TreeSet object can contain no duplicate elements.

Back to Question 10 (p. 919)

3.4.2.5.17 Answer 9

True.
Back to Question 9 (p. 919)

3.4.2.5.18 Answer 8

True.
Back to Question 8 (p. 919)

3.4.2.5.19 Answer 7

False. a TreeSet object is a Collection . Therefore, a reference to a TreeSet object can be stored
in a reference variable of type Collection , and can be treated as the generic type Collection .

Back to Question 7 (p. 919)

3.4.2.5.20 Answer 6

True.
Back to Question 6 (p. 919)

3.4.2.5.21 Answer 5

False. Listing 1 (p. 918) instantiates an object of the TreeSet class and stores the object's reference in a
reference variable of type Collection named ref .

Back to Question 5 (p. 918)

3.4.2.5.22 Answer 4

True.
Back to Question 4 (p. 918)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

918 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.2.5.23 Answer 3

False. Some collections are ordered and others are not.
Back to Question 3 (p. 917)

3.4.2.5.24 Answer 2

True.
Back to Question 2 (p. 917)

3.4.2.5.25 Answer 1

False. The framework is designed to encourage you to reuse rather than to reinvent collections and maps.
Back to Question 1 (p. 917)

3.4.2.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4010r Review: Java4010: Getting Started with Java Collections
• File: Java4010r.htm
• Published: 11/24/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.4.3 Java4020: What is a Collection
419

Revised: Tue Apr 05 14:25:01 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 420

• Object-Oriented Programming (OOP) with Java 421

419This content is available online at <http://cnx.org/content/m46136/1.4/>.
420http://cnx.org/contents/dzOvxPFw
421http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

919

3.4.3.1 Table of Contents

• Preface (p. 926)
• Preview (p. 926)
• Generics (p. 926)
• Discussion (p. 927)

· What is a collection? (p. 927)
· Slightly di�erent terminology (p. 927)
· Store references rather than objects (p. 927)
· Stored as type Object (p. 927)
· Moving data among methods (p. 927)
· Polymorphic behavior (p. 928)
· Core collection interfaces (p. 928)
· Concrete implementations (p. 928)
· Iterator is not a class (p. 929)
· What about Attributes and RenderingHints? (p. 929)
· What is a Collections Framework? (p. 929)

• Summary (p. 929)
• Miscellaneous (p. 930)

3.4.3.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
in general and the Java Collections framework in particular.

The purpose of this module is to explain some of the details surrounding the use of a Java collection for
creating data structures. The module also discusses the interfaces and some of the concrete implementations
in the Java Collections Framework.

In addition to studying these modules, I strongly recommend that you study the Collections Trail 422 in
Oracle's Java Tutorials 423 . The modules in this collection are intended to supplement and not to replace
those tutorials.

3.4.3.3 Preview

Collection is not only the name of a Java interface, it is also the term given to an object that groups
multiple elements into a single unit.

I will discuss the advantages of passing collections between methods as type Collection .
I will summarize the core interfaces in the Collections Framework and show you how they are related.
I will very brie�y discuss some of the concrete implementations of the interfaces that are provided by the

framework.
And �nally, I will introduce you to the three kinds of things that are part of a collections framework.

3.4.3.4 Generics

The code in this series of modules is written with no thought given to Generics 424 . As a result, if you copy
and compile the code, you will probably get warnings about unchecked or unsafe operations .

While you will ultimately need to understand how to use Generics, that is a very complex topic. An
understanding of Generics is beyond the scope of this course. Therefore, for purposes of this course, you can
simply ignore those warnings.

422http://docs.oracle.com/javase/tutorial/collections/index.html
423http://docs.oracle.com/javase/tutorial/index.html
424http://docs.oracle.com/javase/tutorial/java/generics/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

920 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.3.5 Discussion

3.4.3.5.1 What is a collection?

Just to see if you are awake today, let's start with a little quiz.
What is a collection insofar as Java programming is concerned?

• A. Something they gather in plates at church.
• B. An object that groups multiple elements into a single unit.
• C. The name of a Java interface.
• D. None of the above.

If you answered A, you are probably reading an article on the wrong website by mistake. If you answered
Both B and C , then you are o� to a good start on this module.

Collection is the name of a Java interface. This interface is an integral part of the Java Collections
Framework . Collection is one of two top-level interfaces in the framework. The other top-level interface
in the framework is named Map .

According to The Java Tutorial from Oracle, a collection (sometimes called a container) is also an object
that groups multiple elements into a single unit.

Typical collection objects might contain information about employees in the company telephone book, all
the purchase orders issued during the past year, or the transactions occurring in a person's checking account.

3.4.3.5.2 Slightly di�erent terminology

Note that this terminology may be somewhat di�erent from what you are accustomed to. For example, if you
speak of your coin collection, you are probably speaking about the actual coins rather than the container
that holds the coins.

This is an important distinction. The usage of the term collection in the Collections Framework usually
refers to the container and not to the contents of the container. In the framework, the contents are usually
referred to as the elements .

3.4.3.5.3 Store references rather than objects

The collections in the framework always store references to objects, rather than storing the objects them-
selves. One consequence of this is that primitive values cannot be stored in a collection without �rst
encapsulating them in an object. (Standard wrapper classes are provided for encapsulating all primitive
types.)

3.4.3.5.4 Stored as type Object

Furthermore, the references are always stored as type Object . Prior to Java version 1.5, when you
retrieved an element from a collection, you frequently needed to downcast it before you could gain access to
the members of the object to which the reference refers. Version 1.5 introduced Generics 425 into the Java
programming environment, which eliminated that requirement, (provided that you use the more complex
syntax required by Generics) .

3.4.3.5.5 Moving data among methods

In addition to their use for storing, retrieving, and manipulating data, collections are also used to move data
among methods.

One of the primary advantages of the Collections Framework is the ability to pass a collection to a method
as the generic interface type Collection . The receiving method doesn't need to know the actual type of
the object referred to by the incoming reference in order to call its methods.

425http://docs.oracle.com/javase/tutorial/java/generics/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

921

3.4.3.5.6 Polymorphic behavior

The receiving method can call (on the reference to the Collection object) any of the methods declared
in the Collection interface, with con�dence that the behavior of the method will be appropriate for the
actual type of Collection object involved. (That is polymorphic behavior.)

3.4.3.5.7 Core collection interfaces

If you have been working with the framework, you might be inclined to think that all of the interfaces in the
following list are members of the core collection interfaces.

• Collection
• Set
• List
• Queue
• Deque
• SortedSet
• Map
• SortedMap
• Iterator

However, that is not the case.
While the Iterator interface is heavily used in conjunction with collections, according to The Java

Tutorial from Oracle, it is not one of the core collection interfaces.
The core collection interfaces identi�ed by the Oracle book are shown below, with indentation showing

the parent-child relationships among the interfaces.

• Collection

· Set

* SortedSet

· List
· Queue
· Deque

• Map

· SortedMap

As you can see, as mentioned earlier, Collection and Map are the two top-level interfaces.
You should probably commit the above list of interfaces and their relationships to memory. You might

�nd that helpful when navigating the Oracle documentation.

3.4.3.5.8 Concrete implementations

In addition to interfaces, the framework provides several concrete implementations of the interfaces de�ned
in the framework. (A concrete implementation is a class that implements one or more of the interfaces.)

Are you still awake? If so, see if you can answer the following question.
True or False? Each of the following classes provides an implementation of one of the interfaces that

make up the Java Collections Framework. If False, which items don't belong in the list.

• AbstractSet
• AbstractList
• AbstractMap
• HashSet

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

922 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• TreeSet
• LinkedList
• Vector
• ArrayList
• HashMap
• Hashtable
• WeakHashMap
• TreeMap
• Iterator
• Attributes
• RenderingHints

Hopefully your answer was False, but even so, that isn't the complete answer.

3.4.3.5.9 Iterator is not a class

To begin with, Iterator is not a class. I told you that a couple of paragraphs back. It is an interface.
Therefore, it has no place in the above list of classes.

3.4.3.5.10 What about Attributes and RenderingHints?

You may also have wondered if the classes named Attributes and RenderingHints belong on the
list. Note that I didn't restrict the above list to only those classes that might be considered part of the
framework, so this was sort of a trick question. (Of course you could have looked them up in the Oracle
documentation just like I did.)

While these two classes are not really a part of the core Java Collections Framework, they do implement
interfaces that are part of the framework.

The RenderingHints class implements the Map interface, and is used in conjunction with the
Graphics2D class. The Attributes class also implements the Map interface,

3.4.3.5.11 What is a Collections Framework?

According to The Java Tutorial from Oracle, "A collections framework is a uni�ed architecture for repre-
senting and manipulating collections. All collections frameworks contain three things."

Those three things are:

• Interfaces
• Implementations
• Algorithms

This is probably a good place to close o� the discussion for this module. The next module will pick up at
this point and provide a more in-depth discussion of the interfaces, implementations, and algorithms that
make up the framework.

3.4.3.6 Summary

I started out by telling you that a collection is not only the name of a Java interface (Collection) but is
also an object that groups multiple elements into a single unit.

Java Collection objects don't store objects or primitive values directly. Rather, they store references
to objects. Further, all such references are stored as the type Object . However, the use of the Generics
syntax can eliminate the need to downcast the reference in order to gain access to the members of the object
to which it refers. (Generics also provide other useful properties as well.)

If you need to store primitive values in a collection, you will �rst need to wrap those values in appropriate
objects. Standard wrapper classes are provided for all the primitive types.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

923

Collections are not only useful for storing and retrieving data, they are also useful for moving data among
methods.

Because a collection can be passed to a method as type Collection , all of the methods declared in
the Collection interface can be called on the incoming reference in a polymorphic manner.

In addition to the interfaces de�ned in the Collections Framework, the framework also provides various
concrete implementations of the interfaces for many of the commonly-used data structures. This makes
it possible for you to conveniently use the framework without the requirement to de�ne new Collection
classes.

There are eight core interfaces in the Collections Framework. Although the Iterator interface is often
used with collections, it is not one of the core interfaces.

I ended the module by telling you that there are basically three things in a collections framework:
interfaces , implementations , and algorithms . I will have more to say about this in a future module.

3.4.3.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4020: What is a Collection
• File: Java4020.htm
• Published: 04/18/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

924 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.4 Java4020r Review
426

Revised: Tue Apr 05 14:35:53 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 427

• Object-Oriented Programming (OOP) with Java 428

3.4.4.1 Table of Contents

• Preface (p. 931)
• Questions (p. 931)

· 1 (p. 931) , 2 (p. 931) , 3 (p. 932) , 4 (p. 932) , 5 (p. 932) , 6 (p. 932) , 7 (p. 932) , 8 (p. 932) ,
9 (p. 932) , 10 (p. 932) , 11 (p. 932) , 12 (p. 933) , 13 (p. 933)

• Answers (p. 935)
• Miscellaneous (p. 936)

3.4.4.2 Preface

This module is one in a collection of modules on Java Collections designed for teaching ITSE2321 - Object-
Oriented Programming (Java) at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4020: What is a
Collection 429 .

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

3.4.4.3 Questions

3.4.4.3.1 Question 1 .

True or False? Collection is the name of a Java interface. It is also the term given to an object that
groups multiple elements into a single unit. (A collection of rabbits for example.)

Answer 1 (p. 936)

3.4.4.3.2 Question 2

What is a collection insofar as Java programming is concerned?

• A. Something they gather in plates at church.
• B. An object that groups multiple elements into a single unit.
• C. The name of a Java interface.
• D. None of the above.

Answer 2 (p. 936)

426This content is available online at <http://cnx.org/content/m48041/1.4/>.
427http://cnx.org/contents/dzOvxPFw
428http://cnx.org/contents/-2RmHFs_
429http://cnx.org/contents/AInf3OoG

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

925

3.4.4.3.3 Question 3

True or False? Collection is the name of a Java interface. This interface is an integral part of the Java
Collections Framework .

Answer 3 (p. 936)

3.4.4.3.4 Question 4

True or False? Collection is one of three top-level interfaces in the framework. The other top-level
interfaces in the framework are named Map and ArrayList .

Answer 4 (p. 935)

3.4.4.3.5 Question 5

True or False? The usage of the term collection in the Collection Framework usually refers to the container
and not to the contents of the container. In the framework, the contents are usually referred to as elements
.

Answer 5 (p. 935)

3.4.4.3.6 Question 6

True or False? The collections in the framework always store objects as opposed to the object's references.
Answer 6 (p. 935)

3.4.4.3.7 Question 7

True or False? Values of all types, including primitive values, can be stored in a collection.
Answer 7 (p. 935)

3.4.4.3.8 Question 8

True or False? Object's references are always stored in a collection as type Collection .
Answer 8 (p. 935)

3.4.4.3.9 Question 9

True or False? When a method receives an incoming parameter as type Collection, the method can call
(on the reference to the Collection object) any of the methods declared in the Collection interface, with
con�dence that the behavior of the method will be appropriate for the actual type of Collection object
involved. (That is polymorphic behavior.)

Answer 9 (p. 935)

3.4.4.3.10 Question 10

True or False? The Iterator interface is one of the core collection interfaces.
Answer 10 (p. 935)

3.4.4.3.11 Question 11

True or False? The core collection interfaces are shown below, with indentation showing the superinterface-
subinterface relationships among the interfaces.

• Collection

· Set

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

926 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

* SortedSet

· List
· Queue
· Deque

• Map

· SortedMap

Answer 11 (p. 935)

3.4.4.3.12 Question 12

True or False? Each of the following classes provides an implementation of one of the interfaces that make
up the Java Collections Framework. (See the Java documentation.)

• AbstractSet
• AbstractList
• AbstractMap
• HashSet
• TreeSet
• LinkedList
• Vector
• ArrayList
• HashMap
• Hashtable
• WeakHashMap
• TreeMap
• Iterator
• Attributes
• RenderingHints

Answer 12 (p. 935)

3.4.4.3.13 Question 13

True or False?
A collections framework is a uni�ed architecture for representing and manipulating collections. All

collections frameworks contain three things. Those three things are:

• Interfaces
• Implementations
• Algorithms

Answer 13 (p. 935)
What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

927

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

928 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.4.4 Answers

3.4.4.4.1 Answer 13

True according to The Java Tutorial from Oracle
Back to Question 13 (p. 933)

3.4.4.4.2 Answer 12

False. Iterator is not a class. It is an interface. Therefore, it has no place in the given list of classes.
Back to Question 12 (p. 933)

3.4.4.4.3 Answer 11

True. With respect to an earlier question, Collection and Map are the two top-level interfaces.
Back to Question 11 (p. 932)

3.4.4.4.4 Answer 10

False. While the Iterator interface is heavily used in conjunction with collections, according to The Java
Tutorial from Oracle, it is not one of the core collection interfaces.

Back to Question 10 (p. 932)

3.4.4.4.5 Answer 9

True.
Back to Question 9 (p. 932)

3.4.4.4.6 Answer 8

False. Object's references are always stored as type Object .
Back to Question 8 (p. 932)

3.4.4.4.7 Answer 7

False. Primitive values cannot be stored in a collection without �rst encapsulating them in an object.
(Standard wrapper classes are provided for encapsulating all primitive types.)

Back to Question 7 (p. 932)

3.4.4.4.8 Answer 6

False. The collections in the framework always store references to objects, rather than storing the objects
themselves.

Back to Question 6 (p. 932)

3.4.4.4.9 Answer 5

True.
Back to Question 5 (p. 932)

3.4.4.4.10 Answer 4

False. Collection is one of two top-level interfaces in the framework. The other top-level interface in the
framework is named Map .

Back to Question 4 (p. 932)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

929

3.4.4.4.11 Answer 3

True.
Back to Question 3 (p. 932)

3.4.4.4.12 Answer 2

If you answered A, you are probably reading an article on the wrong website by mistake. If you answered
both B and C , then you are o� to a good start on this module.

Back to Question 2 (p. 931)

3.4.4.4.13 Answer 1

True.
Back to Question 1 (p. 931)

3.4.4.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java20r Review
• File: Java20r.htm
• Published: 11/24/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.4.5 Java4030: Purpose of Framework Interfaces
430

Revised: Tue Apr 05 15:03:17 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 431

• Object-Oriented Programming (OOP) with Java 432

430This content is available online at <http://cnx.org/content/m46140/1.5/>.
431http://cnx.org/contents/dzOvxPFw
432http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

930 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.5.1 Table of Contents

• Preface (p. 937)
• Preview (p. 937)
• Generics (p. 938)
• Discussion (p. 938)

· Purpose of framework interfaces (p. 938)
· What is a data type? (p. 938)
· Interface is a type (p. 938)
· Collection interface declares several methods (p. 938)
· An extra step (p. 939)
· The add method in Collection (p. 939)
· The add method in Set (p. 939)
· How do the contracts di�er? (p. 939)
· What about the List interface? (p. 940)
· A major di�erence (p. 940)
· Designing a framework (p. 940)
· Concrete implementations (p. 940)

• Summary (p. 941)
• Miscellaneous (p. 941)

3.4.5.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
in general and the Java Collections framework in particular.

There are eight core interfaces in the Collections Framework . Each interface declares several methods
and provides a contract that applies to each declared method. The method declarations and their associated
contracts specify the general behavior of matching methods in the classes that implement the interfaces.

The purpose of this module is to provide a brief explanation of those interfaces.
In addition to studying these modules, I strongly recommend that you study the Collections Trail 433 in

Oracle's Java Tutorials 434 . The modules in this collection are intended to supplement and not to replace
those tutorials.

3.4.5.3 Preview

At least three things are included in a collections framework:

• interfaces
• implementations
• algorithms

This module will discuss the purpose of the interfaces in the Collections Framework. Future modules will
discuss implementations and algorithms.

3.4.5.4 Introduction

In an earlier module, we learned that the Collections Framework contains eight core interfaces with the
parent-child relationships shown below :

• Collection
433http://docs.oracle.com/javase/tutorial/collections/index.html
434http://docs.oracle.com/javase/tutorial/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

931

· Set

* SortedSet

· List
· Queue
· Deque

• Map

· SortedMap

3.4.5.5 Generics

The code in this series of modules is written with no thought given to Generics 435 . As a result, if you copy
and compile the code, you will probably get warnings about unchecked or unsafe operations .

While you will ultimately need to understand how to use Generics, that is a very complex topic. An
understanding of Generics is beyond the scope of this course. Therefore, for purposes of this course, you can
simply ignore those warnings.

3.4.5.6 Discussion

3.4.5.6.1 Purpose of framework interfaces

A collection is an object of some type, and that type is de�ned in a generic sense by one or more interfaces
that make up the Collections Framework.

3.4.5.6.2 What is a data type?

All data types specify the operations that can be performed on an entity of that type. (Data types also
specify the kinds of data that can be stored in an entity of that type, but that is not germane to this
discussion.)

3.4.5.6.3 Interface is a type

An object in Java can often be considered to be of several di�erent types. One of those types is determined
by any interfaces implemented by the class from which the object was instantiated. Framework collection
objects in Java are instantiated from classes that implement the core interfaces of the Collections Framework.

Thus, a Java interface in the Collections Framework speci�es the type of such an object, and provides a
generic representation of the operations that apply across di�erent implementations of the interface.

3.4.5.6.4 Collection interface declares several methods

The Collection interface declares several methods. This is not unusual. From a technical standpoint, all
interfaces declare none, one, or more methods. Most interfaces declare multiple methods. (Interfaces can
also declare constants, but that is not germane to this discussion.)

In general, there is no technical requirement for a speci�cation of the behavior of the interface methods
when implemented in a class. In fact, because a method that is declared in an interface is abstract, it
speci�cally refrains from de�ning the behavior of the method. The interface de�nition simply declares the
interfaces for all the methods that it declares.

We have now arrived at one of the di�erences that distinguish the Collections Framework from "just a
bunch of interfaces." That di�erence is contracts .

435http://docs.oracle.com/javase/tutorial/java/generics/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

932 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.5.6.5 An extra step

The Oracle documentation for the Collection interface goes a step beyond the minimum technical require-
ments for an interface. The documentation describes the general behavior that must be exhibited by each
of the methods belonging to an object instantiated from a class that implements the Collection interface.
This is sometimes referred to as a contract .

Therefore, if you de�ne a class that implements the Collection interface in a manner consistent with
the Collections Framework , it is important that you make certain that each of your methods behaves as
described in the Oracle documentation. In other words, you must be careful to comply with the contract
de�ned for those methods. If you don't do that, a user can't rely on objects instantiated from your class to
exhibit proper behavior.

3.4.5.6.6 The add method in Collection

For example, the Collection interface declares a method named add that receives an incoming reference
of a generic type (see Generics 436) and returns a boolean .. Here is some text from the Oracle
documentation describing the required behavior (contract) of the add method for any class that implements
the Collection interface.

"Ensures that this collection contains the speci�ed element (optional operation). Returns true if this
collection changed as a result of the call. (Returns false if this collection does not permit duplicates and
already contains the speci�ed element.)

Collections that support this operation may place limitations on what elements may be added to this
collection. In particular, some collections will refuse to add null elements, and others will impose restrictions
on the type of elements that may be added.

Collection classes should clearly specify in their documentation any restrictions on what elements may be
added. If a collection refuses to add a particular element for any reason other than that it already contains
the element, it must throw an exception (rather than returning false). This preserves the invariant that a
collection always contains the speci�ed element after this call returns."

As you can see, the behavior is de�ned in a very general way. There is no indication as to how that
behavior is to be achieved.

3.4.5.6.7 The add method in Set

As you can see from the list above (p. 937) , the Set interface extends the Collection interface. In
keeping with the general form of object-oriented design, Set is more specialized than Collection .
Therefore, Set makes the contract for the add method more speci�c for objects of type Set . Here
is some text from the Oracle documentation describing the contract of the add method for any class that
implements the Set interface.

"Adds the speci�ed element to this set if it is not already present (optional operation). More formally,
adds the speci�ed element e to this set if the set contains no element e2 such that (e==null ? e2==null :
e.equals(e2)).

If this set already contains the element, the call leaves the set unchanged and returns false. In combination
with the restriction on constructors, this ensures that sets never contain duplicate elements.

The stipulation above does not imply that sets must accept all elements; sets may refuse to add any
particular element, including null, and throw an exception, as described in the speci�cation for Collection.add.
Individual set implementations should clearly document any restrictions on the elements that they may
contain."

3.4.5.6.8 How do the contracts di�er?

The contract for the add method, as declared in the Collection interface, does not prohibit duplicate
elements, but does make the provision for interfaces that extend Collection to prohibit duplicate elements.

436http://docs.oracle.com/javase/tutorial/java/generics/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

933

The contract for the add method in the Set interface does prohibit duplicate elements.

3.4.5.6.9 What about the List interface?

Here is some text from the Oracle documentation describing the contract of the add method for any class
that implements the List interface.

"Appends the speci�ed element to the end of this list (optional operation).
Lists that support this operation may place limitations on what elements may be added to this list.

In particular, some lists will refuse to add null elements, and others will impose restrictions on the type of
elements that may be added. List classes should clearly specify in their documentation any restrictions on
what elements may be added."

As you can see, the contract for the add method declared in the List interface, (which extends
Collection) , does not prohibit duplicate elements. However, it does have some other requirements that
don't apply to Set objects. For example, it must add new elements at the end of the list.

3.4.5.6.10 A major di�erence

This is one of the major di�erences between lists and sets in the Java Collection Framework. Both List
objects and Set objects are collections, because both of the interfaces extend the Collection interface.
However, the Set interface contract prohibits duplicate elements while the List interface contract does
not prohibit duplicate elements.

3.4.5.6.11 Designing a framework

In theory, it should be possible (but perhaps not very practical) to de�ne a framework consisting solely of
interface de�nitions and associated contracts for methods and algorithms. Then each user could implement
the interfaces however they see �t, provided that they comply with the contracts. (This might not be very
practical, however, because every user of the framework would then be required to implement the interfaces,
which would entail a lot of work.)

3.4.5.6.12 Concrete implementations

Fortunately, Oracle didn't stop work after de�ning the interfaces and contracts for the Java Collections
Framework. Rather, they also provided us with several useful classes that implement the interfaces in
the framework. Thus, we can instantiate and use objects of those classes immediately without having to
de�ne them ourselves. Here is a list of some of the concrete implementation classes in the Java Collections
Framework:

• HashSet
• TreeSet
• LinkedList
• Vector
• ArrayList
• HashMap
• Hashtable
• WeakHashMap
• TreeMap

In addition, Oracle provided us with several partial implementation classes including AbstractSet ,
AbstractList , and AbstractMap , which are intended to serve a starting point for new implementations
that we choose to de�ne. According to Oracle, these classes provide a skeletal implementation of the Set,
List, and Map interfaces to minimize the e�ort required to implement those interfaces.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

934 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.5.7 Summary

There are eight core interfaces in the Collections Framework.
As is always the case, each of the core interfaces de�nes a data type. Each interface declares several

methods. In addition, each interface provides a contract that applies to each declared method. The contracts
become more speci�c as we traverse down the interface inheritance hierarchy.

Objects instantiated from classes that implement the interfaces can be considered to be of the interface
type or any ancestor interface in the interface's hierarchical family tree.

The method declarations and their associated contracts in the interfaces specify the general behavior of
matching methods in the classes that implement the interfaces.

The framework provides several concrete implementations of the interfaces that we can use to instantiate
new objects to use as data structures or data containers.

The framework also provides several abstract implementations that we can use as a starting point for
de�ning our own implementations.

3.4.5.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4030: Purpose of Framework Interfaces
• File: Java4030.htm
• Published: 04/18/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

935

3.4.6 Java4030r Review
437

Revised: Tue Apr 05 15:10:31 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 438

• Object-Oriented Programming (OOP) with Java 439

3.4.6.1 Table of Contents

• Preface (p. 942)
• Questions (p. 942)

· 1 (p. 942) , 2 (p. 942) , 3 (p. 942) , 4 (p. 943) , 5 (p. 943) , 6 (p. 943) , 7 (p. 943) , 8 (p. 943) ,
9 (p. 943) , 10 (p. 943) , 11 (p. 943) , 12 (p. 944) , 13 (p. 944) , 14 (p. 944) , 15 (p. 944) , 16
(p. 944) , 17 (p. 944) , 18 (p. 944) , 19 (p. 944) , 20 (p. 945)

• Answers (p. 946)
• Miscellaneous (p. 948)

3.4.6.2 Preface

This module is one in a collection of modules on Java Collections designed for teaching ITSE2321 - Object-
Oriented Programming (Java) at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4030: Purpose of
Framework Interfaces 440 .

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

3.4.6.3 Questions

3.4.6.3.1 Question 1 .

True or False? There are eight core interfaces in the Collections Framework .
Answer 1 (p. 948)

3.4.6.3.2 Question 2

True or False? Each of the core interfaces in the Collections Framework declares several methods and
provides a contract that applies to each declared method.

Answer 2 (p. 948)

3.4.6.3.3 Question 3

True or False? The method declarations in the core interfaces in the Collections Framework specify the
general behavior of matching methods in the classes that implement the interfaces without regard for the
contracts associated with those methods.

Answer 3 (p. 948)

437This content is available online at <http://cnx.org/content/m48043/1.3/>.
438http://cnx.org/contents/dzOvxPFw
439http://cnx.org/contents/-2RmHFs_
440http://cnx.org/contents/x6-bttOz

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

936 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.6.3.4 Question 4

True or False? At least four things are included in a collections framework:

• interfaces
• implementations
• algorithms
• variables

Answer 4 (p. 948)

3.4.6.3.5 Question 5

True or False? In Java, a collection is an object of some type, and that type is de�ned in a generic sense
by one or more interfaces that make up the Collections Framework.

Answer 5 (p. 948)

3.4.6.3.6 Question 6

True or False? All data types specify the operations that can be performed on an entity of that type as well
as the kinds of data that can be stored in an entity of that type.

Answer 6 (p. 948)

3.4.6.3.7 Question 7

True or False? An object in Java can often be considered to be of several di�erent types.
Answer 7 (p. 948)

3.4.6.3.8 Question 8

True or False? While a class in Java represents a data type, the same is not true for a Java interface.
Answer 8 (p. 947)

3.4.6.3.9 Question 9

True or False? Framework collection objects in Java are instantiated from classes that implement the core
interfaces of the Collections Framework.

Answer 9 (p. 947)

3.4.6.3.10 Question 10

True or False? A Java interface in the Collections Framework speci�es the type of an object instantiated
from a class that implements the interface. The interface also provides a generic representation of the
operations that apply across di�erent implementations of the interface.

Answer 10 (p. 947)

3.4.6.3.11 Question 11

True or False? Methods declared in an interface specify the behavior of the corresponding methods when
de�ned in classes that implement the interface.

Answer 11 (p. 947)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

937

3.4.6.3.12 Question 12

True or False? One of the things that distinguishes the Collections Framework from "just a bunch of
interfaces" is the existence of contracts associated with the framework.

Answer 12 (p. 947)

3.4.6.3.13 Question 13

True or False? The Java documentation describes the general behavior that must be exhibited by each of
the methods belonging to an object instantiated from a class that implements the Collection interface.
This is sometimes referred to as a contract .

Answer 13 (p. 947)

3.4.6.3.14 Question 14

True or False? If you de�ne a class that implements the Collection interface in a manner consistent with
the Collections Framework , you need not make certain that each of your methods behaves as described in
the Oracle documentation.

Answer 14 (p. 947)

3.4.6.3.15 Question 15

True or False? A contract in the Collections Framework de�nes the behavior of declared methods in a
very general way. There is no indication as to how that behavior is to be achieved.

Answer 15 (p. 947)

3.4.6.3.16 Question 16

True or False? According to a contract of the Set interface, objects that implement the Set interface are
allowed to contain duplicate elements.

Answer 16 (p. 947)

3.4.6.3.17 Question 17

True or False? According to a contract of the Collection interface, objects that implement the Collection
are never allowed to contain duplicate elements.

Answer 17 (p. 946)

3.4.6.3.18 Question 18

True or False? The contract for the add method declared in the List interface, (which extends Collection)
, does not prohibit duplicate elements.

Answer 18 (p. 946)

3.4.6.3.19 Question 19

True or False? The List interface contract prohibits duplicate elements while the Set interface contract
does not prohibit duplicate elements.

Answer 19 (p. 946)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

938 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.6.3.20 Question 20

True or False? The classes in the following list are concrete implementation classes in the Java Collections
Framework:

• HashSet
• TreeSet
• LinkedList
• Vector
• ArrayList
• HashMap
• Hashtable
• WeakHashMap
• TreeMap

Answer 20 (p. 946)
What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

939

3.4.6.4 Answers

3.4.6.4.1 Answer 20

True.
Back to Question 20 (p. 945)

3.4.6.4.2 Answer 19

False. The Set interface contract prohibits duplicate elements while the List interface contract does not
prohibit duplicate elements.

Back to Question 19 (p. 944)

3.4.6.4.3 Answer 18

True.
Back to Question 18 (p. 944)

3.4.6.4.4 Answer 17

False. The contract for the add method, as declared in the Collection interface, does not prohibit
duplicate elements, but does make the provision for interfaces that extend Collection to prohibit duplicate
elements. The contract for the add method in the Set interface does prohibit duplicate elements.

Back to Question 17 (p. 944)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

940 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.6.4.5 Answer 16

False. According to a contract of the Set interface, objects that implement the Set interface never
contain duplicate elements.

Back to Question 16 (p. 944)

3.4.6.4.6 Answer 15

True.
Back to Question 15 (p. 944)

3.4.6.4.7 Answer 14

False. If you de�ne a class that implements the Collection interface in a manner consistent with the
Collections Framework , you must make certain that each of your methods behaves as described in the
Oracle documentation. In other words, you must be careful to comply with the contract de�ned for those
methods. If you don't do that, a user can't rely on objects instantiated from your class to exhibit proper
behavior.

Back to Question 14 (p. 944)

3.4.6.4.8 Answer 13

True.
Back to Question 13 (p. 944)

3.4.6.4.9 Answer 12

True.
Back to Question 12 (p. 944)

3.4.6.4.10 Answer 11

False. there is no technical requirement for a speci�cation of the behavior of the interface methods when
implemented in a class. In fact, because a method that is declared in an interface is abstract, it speci�cally
refrains from de�ning the behavior of the method. The interface de�nition simply declares the interfaces for
all the methods that it declares.

Back to Question 11 (p. 943)

3.4.6.4.11 Answer 10

True.
Back to Question 10 (p. 943)

3.4.6.4.12 Answer 9

True.
Back to Question 9 (p. 943)

3.4.6.4.13 Answer 8

False. An object in Java can often be considered to be of several di�erent types. One of those types is
determined by any interfaces implemented by the class from which the object was instantiated.

Back to Question 8 (p. 943)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

941

3.4.6.4.14 Answer 7

True.
Back to Question 7 (p. 943)

3.4.6.4.15 Answer 6

True.
Back to Question 6 (p. 943)

3.4.6.4.16 Answer 5

True.
Back to Question 5 (p. 943)

3.4.6.4.17 Answer 4

False.
At least three things are included in a collections framework:

• interfaces
• implementations
• algorithms

Variables are not necessarily one of those things.
Back to Question 4 (p. 943)

3.4.6.4.18 Answer 3

False.
Back to Question 3 (p. 942)

3.4.6.4.19 Answer 2

True.
Back to Question 2 (p. 942)

3.4.6.4.20 Answer 1

True.
Back to Question 1 (p. 942)

3.4.6.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4030r Review
• File: Java4030r.htm
• Published: 11/24/13

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

942 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.4.7 Java4040: Purpose of Framework Implementations and Algorithms
441

Revised: Tue Apr 05 15:35:41 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 442

• Object-Oriented Programming (OOP) with Java 443

3.4.7.1 Table of Contents

• Preface (p. 950)

· Viewing tip (p. 950)

* Listings (p. 950)

• Preview (p. 950)
• Generics (p. 951)
• Introduction (p. 951)
• Discussion and sample code (p. 951)

· Purpose of implementations (p. 951)

* Available for immediate use (p. 951)
* Vector and Hashtable classes (p. 951)
* Abstract implementations (p. 952)

· Purpose of algorithms (p. 952)

* The contains method
* Di�erent classes, di�erent implementations (p. 952)

· A sample program (p. 952)

* Instantiate and populate a TreeSet object (p. 954)
* Instantiate and populate an ArrayList object (p. 954)
* Identify a target element (p. 954)
* Search for the test value in each collection (p. 955)
* Program output (p. 956)

441This content is available online at <http://cnx.org/content/m46137/1.8/>.
442http://cnx.org/contents/dzOvxPFw
443http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

943

* Time required to search the ArrayList collection (p. 956)
* Time required to search the TreeSet collection (p. 956)
* Di�erent implementations (p. 956)
* Polymorphic behavior applies (p. 956)

· Sorting algorithms (p. 956)
· Now for a little quiz (p. 957)

* And the answer is ... (p. 957)
* Drive home the point (p. 957)

· Bene�ts of using the Collections Framework (p. 957)

• Run the program (p. 958)
• Summary (p. 958)
• Miscellaneous (p. 959)

3.4.7.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
in general and the Java Collections Framework in particular.

This module explains how the core collection interfaces in the Java Collections Framework allow collec-
tions to be manipulated without regard for how they are implemented. The framework provides nine or more
concrete implementations of the interfaces. The framework also provides various algorithms for manipulating
the data in the collections.

In addition to studying these modules, I strongly recommend that you study the Collections Trail 444 in
Oracle's Java Tutorials 445 . The modules in this collection are intended to supplement and not to replace
those tutorials.

3.4.7.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the listings while you are reading about them.

3.4.7.2.1.1 Listings

• Listing 1 (p. 952) . SpeedTest01.
• Listing 2 (p. 954) . Beginning of the doIt method.
• Listing 3 (p. 954) . Instantiate and populate an ArrayList object.
• Listing 4 (p. 955) . Identify a target element.
• Listing 5 (p. 955) . Search for the test value in each collection.

3.4.7.3 Preview

At least three things are included in the Java Collections Framework:

• interfaces
• implementations
• algorithms

The previous module discussed the purpose of the interfaces. This module will discuss the purpose of the
implementations and the algorithms in the Collections Framework.

444http://docs.oracle.com/javase/tutorial/collections/index.html
445http://docs.oracle.com/javase/tutorial/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

944 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.7.4 Generics

The code in this series of modules is written with no thought given to Generics 446 . As a result, if you copy
and compile the code, you will probably get warnings about unchecked or unsafe operations .

While you will ultimately need to understand how to use Generics, that is a very complex topic. An
understanding of Generics is beyond the scope of this course. Therefore, for purposes of this course, you can
simply ignore those warnings.

3.4.7.5 Introduction

We learned in an earlier module that the framework provides at least nine concrete implementations of the
interfaces in the framework. These nine implementation classes are available for immediate instantiation to
produce objects to satisfy your collection needs.

We also learned that the framework provides at least three incomplete implementations. These classes are
available for you to use as a starting point in de�ning your own implementations. Default implementations
of many of the interface methods are provided in the incomplete implementations.

3.4.7.6 Discussion and sample code

3.4.7.6.1 Purpose of implementations

The implementations in the Java Collections Framework are the concrete de�nitions of the classes that
implement the core collection interfaces . For example, concrete implementations in the Java Collections
Framework are provided by at least the following nine classes.

• HashSet
• TreeSet
• LinkedList
• ArrayList
• Vector
• HashMap
• WeakHashMap
• TreeMap
• Hashtable

3.4.7.6.1.1 Available for immediate use

These classes are available for immediate use to instantiate collection objects.
As you can see, there are two classes that obviously fall into the Set category, two that obviously fall

into the List category, and three that obviously fall into the Map category. You can learn more about the
detailed characteristics of those classes in the standard Java documentation and in The Java Tutorials 447 .

This leaves two additional classes whose names don't readily divulge the category to which they belong.

3.4.7.6.1.2 Vector and Hashtable classes

The classes Vector and Hashtable were part of Java even before the Java Collections Framework became
available. The Vector class can be used to instantiate objects that fall in the general List category.

The Hashtable class can be used to instantiate objects that fall in the Map category.
These two classes have been upgraded to make them compatible with the Collections Framework.

446http://docs.oracle.com/javase/tutorial/java/generics/index.html
447http://docs.oracle.com/javase/tutorial/collections/interfaces/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

945

3.4.7.6.1.3 Abstract implementations

In addition to the concrete implementations listed above, the following three classes partially implement
the interfaces, but are not intended for instantiation. Rather, they are intended to be extended into new
concrete classes that you de�ne.

• AbstractSet
• AbstractList
• AbstractMap

Therefore, by either using one of the three classes listed above as a starting point, or by starting from
scratch and fully implementing one or more of the interfaces, you can provide new concrete implementations
to augment the framework to include collections that meet your special needs. If you do that, be sure to
satisfy the contract requirements of the Collections Framework in addition to the technical requirements
imposed by implementing interfaces.

3.4.7.6.2 Purpose of algorithms

Algorithms are methods (not necessarily exposed) that provide useful capabilities, such as searching and
sorting. For example, the Collection interface declares an exposed method named contains .

3.4.7.6.2.1 The contains method

The contract for the contains method requires that the method:

• receives an incoming reference of type Object as a parameter
• searches the collection looking for an element that matches the incoming reference
• returns true if the collection on which the method is called contains the speci�ed element and returns

false otherwise.

3.4.7.6.2.2 Di�erent classes, di�erent implementations

You can safely call the contains method on any object instantiated from a class that properly implements
the Collection interface, even if you don't know the actual type of the collection object.

The manner in which the search will be performed will probably di�er from one concrete implementation
of the interface to the next. For example, a TreeSet object will perform the search very rapidly with a
time cost of only log(n) where n is the number of elements. On the other hand, for the same number of
elements, because of a di�erent underlying data structure, a search on an ArrayList object will probably
require more time than a search on a TreeSet object. As the number of elements increases, the di�erence
in time cost between the two will also increase.

3.4.7.6.3 A sample program

Consider the sample program shown in Listing 1 (p. 952) . This program compares the search speed of the
ArrayList class and the TreeSet class. A detailed discussion of the program follows Listing 1 (p. 952) .

Listing 1 . SpeedTest01.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

946 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

/*File SpeedTest01

Copyright 2001 R.G.Baldwin

**************************************/

import java.util.*;

public class SpeedTest01{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class SpeedTest01

class Worker{

public void doIt(){

int size = 2000000;

//Create a TreeSet object

Collection aTree = new TreeSet();

//Populate the TreeSet object with

// random values. The add() method

// for a set rejects duplicates.

Random rnGen = new Random();

for(int ct = 0; ct < size; ct++){

aTree.add(new Double(rnGen.nextDouble()));

}//end for loop

//Create and populate an ArrayList

// object with the same random

// values

Collection aList = new ArrayList(aTree);

//Extract a value near the center

// of the ArrayList object to use

// as a test case.

Object testVal = ((List)aList).get(size/2);

//Search for the test value in each

// of the collection objects.

// Measure and display the time

// required to perform the search

// in each case.

long start = new Date().getTime();

boolean found = aList.contains(testVal);

long stop = new Date().getTime();

System.out.println(found + " " + (stop - start));

start = new Date().getTime();

for(int x = 0; x < 100000; x++){

found = aTree.contains(testVal);

}//end for loop

stop = new Date().getTime();

System.out.println(found + " " + (stop - start)/100000.0);

}//end doIt()

}// end class Worker

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

947

Table 3.367

3.4.7.6.3.1 Instantiate and populate a TreeSet object

The program begins by instantiating a TreeSet object and populating it with approximately 2,000,000
elements as shown in Listing 2 (p. 954) . The values encapsulated in the objects referred to by the elements
in the collection are produced by a random number generator.

Recall that the add method of a Set object rejects duplicate elements, so there may be fewer than
2,000,000 elements in the object after it is populated, depending on how many of the random values are
duplicates.

Listing 2 . Beginning of the doIt method.

public void doIt(){

int size = 2000000;

Collection aTree = new TreeSet();

Random rnGen = new Random();

for(int ct = 0; ct < size; ct++){

aTree.add(new Double(rnGen.nextDouble()));

}//end for loop

Table 3.368

3.4.7.6.3.2 Instantiate and populate an ArrayList object

One of the capabilities of the Collection Framework is to create a new Collection object and populate it
with the contents of an existing Collection object of a di�erent (or the same) actual type.

The code in Listing 3 (p. 954) instantiates an ArrayList object and populates it with the contents
of the existing TreeSet object. As a result, we then have two di�erent Collection objects of di�erent
actual types containing the same elements.

Listing 3 . Instantiate and populate an ArrayList object.

Collection aList = new ArrayList(aTree);

Table 3.369

3.4.7.6.3.3 Identify a target element

The objective of this program is to compare the times required to search for and to �nd an element in each
of the collections. Thus, we need a target element to search for.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

948 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

The code in Listing 4 (p. 955) extracts a value near the center of the ArrayList object using an index
to �nd and extract the value. This is a very fast operation on a List object. This value is saved in testVal
to be used later for test purposes.

Note that the reference to the ArrayList object was saved as type Collection (and not as type
ArrayList) in Listing 3 (p. 954) above.

Note also that it was necessary to cast that reference to type List in Listing 4 (p. 955) in order to call
the get method on the reference. This is because the Collection interface does not declare a method
named get . Rather, the get method is added to the List interface to de�ne a more specialized form
of collection.

(Author's note: This program was originally written before the introduction of Generics. The
above requirement may not be true if the program were to be rewritten making proper use of
Generics.)

Listing 4 . Identify a target element.

Object testVal = ((List)aList).get(size/2);

Table 3.370

3.4.7.6.3.4 Search for the test value in each collection

The code in Listing 5 (p. 955) calls the contains method to search for the test value in each of the
collections. It uses the system clock to measure the time required to �nd the element in each case. (I will
assume that you understand how to use the Date class for this purpose, and won't provide a detailed
explanation.)

Listing 5 . Search for the test value in each collection.

long start = new Date().getTime();

boolean found = aList.contains(testVal);

long stop = new Date().getTime();

System.out.println(found + " " + (stop - start));

start = new Date().getTime();

for(int x = 0; x < 100000; x++){

found = aTree.contains(testVal);

}//end for loop

stop = new Date().getTime();

System.out.println(found + " " + (stop - start)/100000.0);

}//end doIt()

Table 3.371

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

949

3.4.7.6.3.5 Program output

Running the program several times produced the following range of output values:

• First output value ranged from "true 93" to "true 109"
• Second output value ranged from "true 0.00031" to "true 0.00046"

The �rst output value applies to the ArrayList object, and the second output value applies to the
TreeSet object.

As we would expect, the test value was successfully found in both cases; hence the display of true in both
cases.

3.4.7.6.3.6 Time required to search the ArrayList collection

The output indicates that approximately 100 milliseconds were required to �nd the test value in the Ar-
rayList object.

3.4.7.6.3.7 Time required to search the TreeSet collection

The time required to �nd the test value in the TreeSet object was so small that it wasn't even measurable
within the granularity of the system clock (other experiments have caused me to believe that the granularity
of the system clock on this machine is at least sixteen milliseconds) . Hence, the original reported time
required to �nd the test value in the TreeSet object was zero.

In order to get a measurable time value to search the TreeSet object, I had to wrap the invocation
of the contains method in a for-loop and search for the same value 100,000 times in succession. Thus,
the time required to �nd the test value in the TreeSet object was approximately 0.00030 milliseconds as
compared to 100 milliseconds for the ArrayList object.

(I'll let you do the arithmetic to see if this makes sense in terms of the expected time cost to
search the two di�erent types of collections. Don't forget the extra overhead of the for-loop.)

3.4.7.6.3.8 Di�erent implementations

This is a graphic demonstration that even though both objects can be treated as type Collection , and
the contains method can be called on either object in a polymorphic manner, the actual implementations
of the two objects and the implementations of the contains methods in those two objects are di�erent.

Each type of collection has advantages and disadvantages, depending on your needs.

3.4.7.6.3.9 Polymorphic behavior applies

The important point is that if you receive a reference to the collection object as type Collection , you can
call the contains method on that reference without regard to the underlying structure of the collection
object. This is because polymorphic behavior applies.

Very brie�y, polymorphic behavior means that the actual method that is executed is the appropriate
method for that type of object regardless of the actual type (class) of the reference to the object. This is
one of the great advantages of using the Java Collections Framework and passing collection objects among
methods as interface types.

3.4.7.6.4 Sorting algorithms

Some of the implementations of the Java Collection Framework maintain their elements in a random order,
and other implementations maintain their elements in a sorted order. Thus, the framework also provides
sorting algorithms. However, the sorting algorithms used to maintain the order of the collections are not

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

950 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

exposed in the way that the search algorithm is exposed (via the contains method). Rather, the sorting
algorithms are implicit in those implementations that need them, and are absent from those implementations
that don't need them.

3.4.7.6.5 Now for a little quiz

Let's see if you are still awake. Select the words in one pair of parentheses in the following statement that
causes the statement to be true.

The interfaces in the Collections Framework make it possible to manipulate the contents of
collections in a manner that is (dependent on) (independent of) the underlying implementation
of each collection.

3.4.7.6.5.1 And the answer is ...

The interfaces in the Collections Framework make it possible to manipulate the contents of collections in a
manner that is independent of the underlying implementation of each collection. That is the beauty of
basing the framework on interfaces that declare polymorphic methods.

3.4.7.6.5.2 Drive home the point

I placed this question here to drive home the point that the methods declared in the Collection interface
can be called on collection objects in a polymorphic manner.

That is to say, as a user of an object instantiated from a class that properly implements the Collection
interface (according to the contracts of the Collections Framework) , you can call the methods declared
in that interface on a reference to the object and be con�dent that the actual method that is called will be
the version that is appropriate for the class from which the object was instantiated. This is polymorphic
behavior.

In the event that you need to call a method that is not declared in the Collection interface (such as
the get() method in Listing 4 (p. 955) above), you can pass the reference as one of the more specialized
sub-interfaces of Collection , such as Set .

(Author's note: Once again, this document was originally written before the release of Generics.
The use of the more specialized sub-interfaces described above may not be required if the program
is re-written making proper use of Generics.)

3.4.7.6.6 Bene�ts of using the Collections Framework

The Java Tutorial 448 from Oracle lists and explains the bene�ts of using the Java Collections Framework,
including the following.

• It reduces programming e�ort
• It increases program speed and quality
• It allows interoperability among unrelated APIs
• It reduces the e�ort to learn and use new APIs
• It reduces e�ort to design new APIs
• It fosters software reuse

For a detailed explanation of these bene�ts, I am simply going to refer you directly to The Java Tutorial 449

.

448http://docs.oracle.com/javase/tutorial/collections/interfaces/index.html
449http://docs.oracle.com/javase/tutorial/collections/interfaces/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

951

3.4.7.7 Run the program

I encourage you to copy the code from Listing 1 (p. 952) and paste it into a Java source code �le. Then
compile and execute it.

Run the program and observe the results. Experiment with the code. Make changes, run the program
again, and observe the results of your changes. Make certain that you can explain why your changes behave
as they do.

3.4.7.8 Summary

Let's recap some of what we have learned in this and the previous modules.
The core collection interfaces in the Collections Framework are shown below.

• Collection

· Set

* SortedSet

· List
· Queue
· Deque

• Map

· SortedMap

The basic purpose of the core collection interfaces in the Java Collections Framework is to allow collections
to be manipulated without regard for how the collections are implemented, provided of course that the
implementations comply with the contracts.

The framework provides at least the following nine concrete implementations (classes) of the interfaces
shown above:

• HashSet
• TreeSet
• LinkedList
• ArrayList
• Vector
• HashMap
• WeakHashMap
• TreeMap
• Hashtable

For example, the classes TreeSet and ArrayList are concrete implementations of the Collection
interface as shown in the above list.

(Actually, they are concrete implementations of sub-interfaces of Collection. The Collections
Framework doesn't provide any direct implementations of the Collection interface.)

A collection object instantiated from the class TreeSet and a collection object instantiated from the class
ArrayList can each be viewed as being of the interface type Collection .
Methods having the same signatures can be used to manipulate either collection with con�dence that the

behavior of the method will be appropriate for the actual type of collection involved.
The framework also provides the following incomplete implementations of the core interfaces:

• AbstractSet
• AbstractList
• AbstractMap

The purpose of these implementations is to provide you with a starting point for de�ning your own concrete
implementations for more specialized collections.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

952 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.7.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4040: Purpose of Framework Implementations and Algorithms
• File: Java0440.htm
• Published: 04/18/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

953

3.4.8 Java4040r Review
450

Revised: Tue Apr 05 15:46:03 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 451

• Object-Oriented Programming (OOP) with Java 452

3.4.8.1 Table of Contents

• Preface (p. 960)
• Questions (p. 960)

· 1 (p. 960) , 2 (p. 960) , 3 (p. 961) , 4 (p. 961) , 5 (p. 961) , 6 (p. 961) , 7 (p. 961) , 8 (p. 961) ,
9 (p. 962) , 10 (p. 964) , 11 (p. 964) , 12 (p. 964) , 13 (p. 964) , 14 (p. 964) , 15 (p. 964) , 16
(p. 964) , 17 (p. 964) , 18 (p. 965) , 19 (p. 965) , 20 (p. 965)

• Listings (p. 965)
• Answers (p. 966)
• Miscellaneous (p. 969)

3.4.8.2 Preface

This module is one in a collection of modules on Java Collections designed for teaching ITSE2321 - Object-
Oriented Programming (Java) at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4040: Purpose of
Framework Implementations and Algorithms 453 .

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

3.4.8.3 Questions

3.4.8.3.1 Question 1 .

True or False? At least three things are included in the Java Collections Framework:

• interfaces
• implementations
• algorithms

Answer 1 (p. 968)

3.4.8.3.2 Question 2

True or False? The Collections Framework provides at least nine concrete implementations of the interfaces
in the framework.

Answer 2 (p. 968)

450This content is available online at <http://cnx.org/content/m48044/1.5/>.
451http://cnx.org/contents/dzOvxPFw
452http://cnx.org/contents/-2RmHFs_
453http://cnx.org/contents/cgDrgOzC

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

954 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.8.3.3 Question 3

True or False? The implementations in the Java Collections Framework are the concrete de�nitions of the
classes that implement the core collection interfaces .

Answer 3 (p. 968)

3.4.8.3.4 Question 4

True or False? Concrete implementations in the Java Collections Framework are provided by at least the
following classes.

• HashSet
• TreeSet
• LinkedList
• ArrayList
• Vector
• HashMap
• WeakHashMap
• TreeMap
• Hashtable
• Iterator

Answer 4 (p. 968)

3.4.8.3.5 Question 5

True or False? Algorithms are methods (not necessarily exposed) that provide useful capabilities, such as
searching and sorting.

Answer 5 (p. 968)

3.4.8.3.6 Question 6

True or False? The contract for the contains method requires that the method:

• receives an incoming reference of type Object as a parameter
• searches the collection looking for an element that matches the incoming reference
• returns false if the collection on which the method is called contains the speci�ed element and

returns true otherwise.

Answer 6 (p. 968)

3.4.8.3.7 Question 7

True or False? You can safely call the contains method on any object instantiated from a class that
properly implements the Collection interface, even if you don't know the actual type of the collection
object.

Answer 7 (p. 968)

3.4.8.3.8 Question 8

True or False? When you call the contains method on a Collection object, the manner in which the
search will be performed will be the same regardless of the class from which the object was instantiated.

Answer 8 (p. 968)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

955

3.4.8.3.9 Question 9

The program shown in Listing 1 (p. 963) will be used for several di�erent questions.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

956 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 1 . Used for several questions.

/*File SpeedTest01

Copyright 2001 R.G.Baldwin

**************************************/

import java.util.*;

public class SpeedTest01{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class SpeedTest01

class Worker{

public void doIt(){

int size = 2000000;

//Create a TreeSet object

Collection aTree = new TreeSet();

//Populate the TreeSet object with

// random values. The add() method

// for a set rejects duplicates.

Random rnGen = new Random();

for(int ct = 0; ct < size; ct++){

aTree.add(new Double(rnGen.nextDouble()));

}//end for loop

//Create and populate an ArrayList

// object with the same random

// values

Collection aList = new ArrayList(aTree);

//Extract a value near the center

// of the ArrayList object to use

// as a test case.

Object testVal = ((List)aList).get(size/2);

//Search for the test value in each

// of the collection objects.

// Measure and display the time

// required to perform the search

// in each case.

long start = new Date().getTime();

boolean found = aList.contains(testVal);

long stop = new Date().getTime();

System.out.println(found + " " + (stop - start));

start = new Date().getTime();

for(int x = 0; x < 100000; x++){

found = aTree.contains(testVal);

}//end for loop

stop = new Date().getTime();

System.out.println(found + " " + (stop - start)/100000.0);

}//end doIt()

}// end class Worker

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

957

Table 3.372

True or False? The program shown in Listing 1 (p. 963) compares the search speed of the ArrayList
class and the TreeSet class.

Answer 9 (p. 967)

3.4.8.3.10 Question 10

True or False? The program shown in Listing 1 (p. 963) instantiates a TreeSet object and populates it
with approximately 10,000,000 elements.

Answer 10 (p. 967)

3.4.8.3.11 Question 11

True or False? Because the add method of a Set object rejects duplicate elements, there may be fewer
than 2,000,000 elements in the TreeSet object in Listing 1 (p. 963) after it is populated, depending on
how many of the random values are duplicates.

Answer 11 (p. 967)

3.4.8.3.12 Question 12

True or False? One of the capabilities of the Collection Framework is to create a new Collection object
and populate it with the contents of an existing Collection object of a di�erent (or the same) actual
type.

Answer 12 (p. 967)

3.4.8.3.13 Question 13

True or False? The code in Listing 1 (p. 963) instantiates an ArrayList object and populates it with
exactly 2,000,000 random values that are di�erent from the random values contained in the TreeSet object.

Answer 13 (p. 967)

3.4.8.3.14 Question 14

True or False? The ArrayList object in Listing 1 (p. 963) may contain duplicate values.
Answer 14 (p. 967)

3.4.8.3.15 Question 15

True or False? Listing 1 (p. 963) calls the get method on the ArrayList object. The ArrayList class
implements the List interface. The get method of the List interface is inherited from the Collection
interface.

Answer 15 (p. 967)

3.4.8.3.16 Question 16

True or False? In general, the time required for the contains method to �nd a value in a TreeSet object
is less than the time required for the contains method to �nd a value in an ArrayList object.

Answer 16 (p. 967)

3.4.8.3.17 Question 17

True or False? The very fast searching speed of a TreeSet object results from the implementation of the
Set interface.

Answer 17 (p. 966)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

958 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.8.3.18 Question 18

True or False? Polymorphic behavior means that the actual method that is executed on a Collection object
is the appropriate method for that type of object regardless of the actual type (class) of the reference to
the object.

Answer 18 (p. 966)

3.4.8.3.19 Question 19

True or False? Some of the implementations of the Java Collections Framework maintain their elements in a
random order, and other implementations maintain their elements in a sorted order. The sorting algorithms
used to maintain the order of the collections in the Collections Framework are exposed in the same way that
the search algorithm is exposed (via the contains method).

Answer 19 (p. 966)

3.4.8.3.20 Question 20

True or False? The interfaces in the Collections Framework make it possible to manipulate the contents of
collections in a manner that is independent of the underlying implementation of each collection.

Answer 20 (p. 966)

3.4.8.4 Listings

• Listing 1 (p. 963) . Used for several questions.

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

959

This image was also inserted for the purpose of inserting space between the questions and the answers.

3.4.8.5 Answers

3.4.8.5.1 Answer 20

True.
Back to Question 20 (p. 965)

3.4.8.5.2 Answer 19

False. The sorting algorithms used to maintain the order of the collections in the Collections Framework
are not exposed in the way that the search algorithm is exposed (via the contains method). Rather,
the sorting algorithms are implicit in those implementations that need them, and are absent from those
implementations that don't need them.

Back to Question 19 (p. 965)

3.4.8.5.3 Answer 18

True.
Back to Question 18 (p. 965)

3.4.8.5.4 Answer 17

False. While implementation of the Set interface may have some minor impact on the searching speed of
a TreeSet object, the primary reason for the fast searching speed is the fact that the implementation uses
a tree structure.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

960 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Back to Question 17 (p. 964)

3.4.8.5.5 Answer 16

True. A TreeSet object will perform the search very rapidly with a time cost of only log(n) where n is the
number of elements. On the other hand, for the same number of elements, because of a di�erent underlying
data structure, a search on an ArrayList object will probably require more time than a search on a
TreeSet object. As the number of elements increases, the di�erence in time cost between the two will also
increase.

Back to Question 16 (p. 964)

3.4.8.5.6 Answer 15

False. The Collection interface does not declare a method named get . Rather, the get method is
added to the List interface to de�ne a more specialized form of collection.

Back to Question 15 (p. 964)

3.4.8.5.7 Answer 14

False. While an ArrayList object may contain duplicate values, the ArrayList object in Listing 1
(p. 963) was populated with the values contained in the TreeSet object, which does not allow duplicate
values. Therefore, in this case, the ArrayList object may not contain duplicate values.

Back to Question 14 (p. 964)

3.4.8.5.8 Answer 13

False. The code in Listing 1 (p. 963) instantiates an ArrayList object and populates it with the contents
of the existing TreeSet object. As a result, we then have two di�erent Collection objects of di�erent
actual types containing the same elements.

Back to Question 13 (p. 964)

3.4.8.5.9 Answer 12

True.
Back to Question 12 (p. 964)

3.4.8.5.10 Answer 11

True.
Back to Question 11 (p. 964)

3.4.8.5.11 Answer 10

False. The program shown in Listing 1 (p. 963) instantiates a TreeSet object and populates it with
approximately 2,000,000 elements.

Back to Question 10 (p. 964)

3.4.8.5.12 Answer 9

True.
Back to Question 9 (p. 962)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

961

3.4.8.5.13 Answer 8

False. The manner in which the search will be performed will probably di�er from one concrete implementa-
tion of the interface to the next. For example, a TreeSet object will perform the search very rapidly with
a time cost of only log(n) where n is the number of elements. On the other hand, for the same number of
elements, because of a di�erent underlying data structure, a search on an ArrayList object will probably
require more time than a search on a TreeSet object. As the number of elements increases, the di�erence
in time cost between the two will also increase.

Back to Question 8 (p. 961)

3.4.8.5.14 Answer 7

True.
Back to Question 7 (p. 961)

3.4.8.5.15 Answer 6

False.
The contract for the contains method requires that the method:

• receives an incoming reference of type Object as a parameter
• searches the collection looking for an element that matches the incoming reference
• returns true if the collection on which the method is called contains the speci�ed element and

returns false otherwise.

Back to Question 6 (p. 961)

3.4.8.5.16 Answer 5

True.
Back to Question 5 (p. 961)

3.4.8.5.17 Answer 4

False. Iterator is not one of the concrete implementations.
Back to Question 4 (p. 961)

3.4.8.5.18 Answer 3

True.
Back to Question 3 (p. 961)

3.4.8.5.19 Answer 2

True.
Back to Question 2 (p. 960)

3.4.8.5.20 Answer 1

True.
Back to Question 1 (p. 960)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

962 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.8.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4040r Review
• File: Java4040r.htm
• Published: 11/25/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.4.9 Java4050: Core Collection Interfaces
454

Revised: Wed Apr 06 08:39:26 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 455

• Object-Oriented Programming (OOP) with Java 456

3.4.9.1 Table of Contents

• Preface (p. 970)
• Viewing tip (p. 970)
• Listings (p. 970)
• Preview (p. 971)
• Generics (p. 971)
• Discussion and sample code (p. 971)

· Illustration of core collection interfaces (p. 971)

* Multiple list implementations (p. 973)
* TreeSet and ArrayList (p. 973)
* Behavior is di�erent but appropriate (p. 973)

· The �llIt method (p. 973)

454This content is available online at <http://cnx.org/content/m46138/1.5/>.
455http://cnx.org/contents/dzOvxPFw
456http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

963

· Create and populate a TreeSet object (p. 973)

* Display the collection's contents (p. 974)
* TreeSet object is type SortedSet (p. 974)

· Create and populate an ArrayList object (p. 974)

* Display the collection's contents (p. 975)

· The important point (p. 975)

* No duplicate elements in ascending order (p. 975)
* Duplicates allowed with no sorting (p. 975)

· Structure of the core interfaces (p. 975)
· A Map is not a true Collection (p. 976)
· Some operations are optional (p. 976)

* Support for optional operations (p. 976)
* Optional Collection operations (p. 976)
* Optional Map operations (p. 976)
* Many methods are not optional (p. 976)

• Run the program (p. 977)
• Summary (p. 977)
• What's next? (p. 977)
• Miscellaneous (p. 977)

3.4.9.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
in general and the Java Collections framework in particular.

The Java Collections Framework de�nes eight core interfaces, in two distinct trees. You will learn about
the inheritance structure and the purpose of those interfaces. You will also learn how the interfaces declare
polymorphic methods that apply to implementations of the interfaces, and you will learn about the optional
methods of the Collection and Map interfaces.

In addition to studying these modules, I strongly recommend that you study the Collections Trail 457 in
Oracle's Java Tutorials 458 . The modules in this collection are intended to supplement and not to replace
those tutorials.

3.4.9.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the listings while you are reading about them.

3.4.9.2.1.1 Listings

• Listing 1 (p. 972) . The program named Ap401.
• Listing 2 (p. 973) . The Populator class.
• Listing 3 (p. 974) . Create and populate a TreeSet object.
• Listing 4 (p. 974) . Create and populate an ArrayList object.

457http://docs.oracle.com/javase/tutorial/collections/index.html
458http://docs.oracle.com/javase/tutorial/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

964 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.9.3 Preview

In earlier modules, you learned that at least three things are included in a collections framework:

• interfaces
• implementations
• algorithms

Earlier modules provided a general discussion of the purpose of the interfaces, implementations, and algo-
rithms in the Collections Framework . This module takes that discussion further and illustrates the use of
the core collection interfaces.

The Java Collections Framework de�nes eight core interfaces, in two distinct trees. You will learn the
names and the inheritance structure of those interfaces. You will also learn about the purpose of some of
those interfaces. You will see how the interfaces declare polymorphic methods that apply to implementations
of the interfaces, and you will learn about the optional methods of the Collection interface.

3.4.9.4 Generics

The code in this series of modules is written with no thought given to Generics 459 . As a result, if you copy
and compile the code, you will probably get warnings about unchecked or unsafe operations .

While you will ultimately need to understand how to use Generics, that is a very complex topic. An
understanding of Generics is beyond the scope of this course. Therefore, for purposes of this course, you can
simply ignore those warnings.

3.4.9.5 Discussion and sample code

3.4.9.5.1 Illustration of core collection interfaces

We will begin this module with a little quiz. Take a look at the program shown in Listing 1 (p. 972) and
see if you can answer the following question.

What output does the program in Listing 1 (p. 972) produce?

• A. Compiler Error
• B. Runtime Error
• C. 44321 44321
• D. 12344 12344
• E. 1234 44321
• F. 1234 4321
• D. None of the above.

459http://docs.oracle.com/javase/tutorial/java/generics/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

965

Listing 1 . The program named Ap401.

import java.util.TreeSet;

import java.util.ArrayList;

import java.util.Collection;

import java.util.Iterator;

public class Ap401{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Ap401

class Worker{

public void doIt(){

Collection ref = new TreeSet();

Populator.fillIt(ref);

Iterator iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

System.out.print(" ");

ref = new ArrayList();

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add(new Integer(4));

ref.add(new Integer(4));

ref.add(new Integer(3));

ref.add(new Integer(2));

ref.add(new Integer(1));

}//end fillIt()

}//end class populator

Table 3.373

If you selected the following answer, then you are correct.
E. 1234 44321
The program in Listing 1 (p. 972) illustrates the basic purpose of the core collection interfaces in the

Java Collections Framework. That purpose is to allow collections to be manipulated without regard for how
the collections are implemented.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

966 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.9.5.1.1 Multiple list implementations

For example, there is more than one way to implement a list. Two common ways involve arrays and
linked structures. If two lists are implemented in di�erent ways, but both satisfy the requirements of the
core collection interfaces, they can each be manipulated the same way regardless of the details of their
implementation.

3.4.9.5.1.2 TreeSet and ArrayList

A collection of type TreeSet and a collection of type ArrayList are instantiated in the program in
Listing 1 (p. 972) . Each of the collections is viewed as being of the interface type Collection . A method
named add is used to populate each collection with the same values in the same order.

3.4.9.5.1.3 Behavior is di�erent but appropriate

The behavior of the add method is appropriate, and di�erent in each of the two cases, with the �nal
contents of each collection being determined by the respective behavior of the add method for that type
of collection.

3.4.9.5.2 The �llIt method

The code in the fragment shown in Listing 2 (p. 973) de�nes a static method named �llIt of the class
named Populator . This is a class of my own design intended solely to illustrate the primary point of this
program.

The method named �llIt receives an incoming reference to a collection object as type Collection .
The method calls the add method on the incoming reference �ve times in succession to add �ve elements
to the collection. These elements are added without regard for the actual type or underlying implementation
of the collection. (As written, the �llIt method has no way of knowing the underlying implementation.)

Listing 2 . The Populator class.

class Populator{

public static void fillIt(Collection ref){

ref.add(new Integer(4));

ref.add(new Integer(4));

ref.add(new Integer(3));

ref.add(new Integer(2));

ref.add(new Integer(1));

}//end fillIt()

}//end class populator

Table 3.374

The �llIt method will be used to populate two collections of di�erent types with the same data values
in the same order.

3.4.9.5.3 Create and populate a TreeSet object

Consider the code fragment shown in Listing 3 (p. 974) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

967

Listing 3 . Create and populate a TreeSet object.

Collection ref = new TreeSet();

Populator.fillIt(ref);

Iterator iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

Table 3.375

The code in Listing 3 (p. 974) instantiates an object of type TreeSet , and passes that object's reference
to the �llIt method as type Collection . As described above, the �llIt method adds �ve elements to
the collection, in random order with two of the elements being duplicates.

"Note that this program does not use the syntax for Generics. Therefore, if you copy and compile
this program, you will probably see a warning regarding unchecked or unsafe operations"

3.4.9.5.3.1 Display the collection's contents

Then the code in Listing 3 (p. 974) gets an Iterator object on the collection and uses the iterator to
display the contents of the collection.

3.4.9.5.3.2 TreeSet object is type SortedSet

The TreeSet class implements one of the core collection interfaces named SortedSet . SortedSet
extends (is a child (p. 975) of) Set . One of the characteristics of a Set object is that it doesn't
allow duplicate elements. One of the characteristics of a SortedSet object is that, by default, it maintains
its elements in ascending natural order. Since the TreeSet class implements both of these interfaces, it is
both a Set and a SortedSet , and exhibits the characteristics of both interfaces.

Because the underlying structure of the TreeSet class doesn't allow duplicates, and the underlying
structure maintains its elements in ascending order, the code in Listing 3 (p. 974) produces the following
text on the screen:

1234

3.4.9.5.4 Create and populate an ArrayList object

Now consider the code fragment shown in Listing 4 (p. 974) .

Listing 4 . Create and populate an ArrayList object.

ref = new ArrayList();

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

968 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.376

The code in Listing 4 (p. 974) instantiates a new collection of type ArrayList , and passes that object's
reference to the same �llIt method, once again as type Collection .

The code in the �llIt method adds �ve elements having the same values as before to the collection and
adds them in the same order as before. The added elements are references to Integer objects encapsulating
the same values as were earlier added to the TreeSet collection. Although they are physically di�erent
objects, the result is that essentially the same data is added to both collections.

3.4.9.5.4.1 Display the collection's contents

Then, as before, the code in Listing 4 (p. 974) gets an iterator and uses it to access and display the contents
of the ArrayList collection.

The ArrayList class implements the List interface, which does not prohibit duplicate elements, and
does not maintain its elements in sorted order. Therefore, in this case, the following text was displayed:

44321
All �ve element values are displayed, including the duplicate, in the order in which they were added to

the list.

3.4.9.5.5 The important point

The important point is that although the �llIt method calls the same method name (add) on each of
the collection objects, the behavior of that method is di�erent in each case. In both cases, the behavior is
appropriate for the underlying data structure. Furthermore, the underlying data structure isn't even known
to the �llIt method.

3.4.9.5.5.1 No duplicate elements in ascending order

In the �rst case, where the underlying data structure was a TreeSet object (type SortedSet), the
duplicate element was eliminated, and the elements were stored so as to be accessible in ascending order.

3.4.9.5.5.2 Duplicates allowed with no sorting

In the second case, where the underlying data structure was an ArrayList object (type List), all �ve
elements, including the duplicate element were stored in the collection. Furthermore, they were stored and
later retrieved in the same order in which they were added.

3.4.9.5.6 Structure of the core interfaces

The core collection interfaces in the Java Collections Framework do not all extend from a common root
interface.

Rather, the inheritance structure of the core interfaces is shown below. Indentation is used to indicate
the parent-child relationships among the interfaces.

• Collection

· Set

* SortedSet

· List
· Queue
· Deque

• Map

· SortedMap

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

969

3.4.9.5.7 A Map is not a true Collection

As you can see, that there is no common root interface. Rather, there are two distinct trees, one rooted by
Collection and the other rooted by Map . According to The Java Tutorial from Oracle, "a Map is not
a true Collection." I will have more to say about this in a future module.

3.4.9.5.8 Some operations are optional

Every class that implements an interface in the tree rooted in Collection is not required to support all of
the methods (operations) declared in the Collection interface.

Rather, some of the methods in the Collection interface are designated as "optional operation" in the
documentation. (See the list of optional methods for the Collection interface below.)

According to the contract for the Collections Framework, if a given implementation doesn't support a spe-
ci�c method, it must throw an UnsupportedOperationException . The author of the implementation
is responsible for providing documentation that identi�es the optional operations that the implementation
does and does not support.

3.4.9.5.8.1 Support for optional operations

This should not be an issue unless you are either de�ning your own implementation, or using an implementa-
tion de�ned by someone other than the programmers at Oracle. All of the general-purpose implementations
from Oracle appear to support all of the optional operations.

3.4.9.5.8.2 Optional Collection operations

The following list shows the optional operations in the Collection interface. Each of these methods has
the ability to modify the contents of the collection.

• add()
• addAll()
• clear()
• remove()
• removeAll()
• retainAll()

3.4.9.5.8.3 Optional Map operations

The following list shows the optional operations in the Map interface. Each of these methods also has the
ability to modify the contents of the map.

• clear()
• put()
• putAll()
• remove()

3.4.9.5.8.4 Many methods are not optional

In both cases, the interface declares numerous other methods that are not optional. Generally, the non-
optional methods don't have the ability to modify the collection. For example, the get method of the
Map interface is not optional. Although the get method receives an incoming key and returns the
value to which the key maps, the method doesn't have the ability to modify the contents of the collection.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

970 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.9.6 Run the program

I encourage you to copy the code from Listing 1 (p. 972) and paste it into your Java editor. Then compile
and execute it.

Run the program and observe the results. Experiment with the code. Make changes, run the program
again, and observe the results of your changes. Make certain that you can explain why your changes behave
as they do.

3.4.9.7 Summary

A collections framework contains at least the following items:

• interfaces
• implementations
• algorithms

The Java Collections Framework de�nes eight core interfaces, in two distinct trees. One tree is rooted in
Collection and the other is rooted in Map .

The basic purpose of the core interfaces is to make it possible for collections to be manipulated without
regard for how they are implemented, so long as the implementation satis�es the contracts of the interfaces.

When the same method name (and signature) is called on references to collections of di�erent types,
the behavior of the method is likely to be di�erent for each collection. However, in each case, that behavior
will be appropriate for the type of collection object on which the method is called. This is polymorphic
behavior.

Six of the methods declared in the Collection interface are optional insofar as being supported by
implementing classes is concerned. The optional methods all have the ability to modify the contents of the
collection. Those implementing classes that don't support an optional method must throw an Unsupport-
edOperationException if that method is called on an object of the class. Similarly four of the methods
declared in the Map interface are optional.

Many methods declared in the Collection interface are not optional. Generally, the non-optional
methods don't have the ability to modify the collection.

3.4.9.8 What's next?

In the next module, I will discuss and illustrate some of the details of the core interfaces and the general-
purpose implementations in the Java Collections Framework. For example, I will discuss the di�erence
between a set and a list . I will also discuss the di�erence between ordered and sorted . I will discuss
the fact that additional stipulations are applied as you progress down the framework interface hierarchy. In
order to help you learn and retain the material, I will provide a couple of short quizzes.

3.4.9.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4050: Core Collection Interfaces
• File: Java4050.htm
• Published: 04/18/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

971

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

972 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.10 Java4050r: Review
460

Revised: Wed Apr 06 08:58:40 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 461

• Object-Oriented Programming (OOP) with Java 462

3.4.10.1 Table of Contents

• Preface (p. 979)
• Questions (p. 979)

· 1 (p. 979) , 2 (p. 981) , 3 (p. 981) , 4 (p. 981) , 5 (p. 981) , 6 (p. 981) , 7 (p. 981) , 8 (p. 981) ,
9 (p. 981) , 10 (p. 982) , 11 (p. 982) , 12 (p. 982) , 13 (p. 982) , 14 (p. 982) , 15 (p. 982)

• Listings (p. 983)
• Answers (p. 984)
• Miscellaneous (p. 986)

3.4.10.2 Preface

This module contains review questions and answers keyed to the module titled Java4050: Core Collection
Interfaces 463 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

3.4.10.3 Questions

3.4.10.3.1 Question 1 .

The program in Listing 1 (p. 980) may be referred to by several di�erent questions.

460This content is available online at <http://cnx.org/content/m48114/1.4/>.
461http://cnx.org/contents/dzOvxPFw
462http://cnx.org/contents/-2RmHFs_
463http://cnx.org/contents/XBt6jdjZ

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

973

Listing 1 . Program named Ap401.

import java.util.TreeSet;

import java.util.ArrayList;

import java.util.Collection;

import java.util.Iterator;

public class Ap401{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Ap401

class Worker{

public void doIt(){

Collection ref = new TreeSet();

Populator.fillIt(ref);

Iterator iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

System.out.print(" ");

ref = new ArrayList();

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add(new Integer(4));

ref.add(new Integer(4));

ref.add(new Integer(3));

ref.add(new Integer(2));

ref.add(new Integer(1));

}//end fillIt()

}//end class populator

Table 3.377

Which of the following does Listing 1 (p. 980) produce as an output?

• 44321 44321
• 12344 12344
• 1234 44321

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

974 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• 1234 4321

Answer 1 (p. 986)

3.4.10.3.2 Question 2

True or False? The basic purpose of the core collection interfaces in the Java Collections Framework is to
allow collections to be manipulated without regard for how the collections are implemented.

Answer 2 (p. 986)

3.4.10.3.3 Question 3

True or False? There is only one way to implement a list.
Answer 3 (p. 986)

3.4.10.3.4 Question 4

True or False? If two lists are implemented in di�erent ways, but both satisfy the requirements of the
core collection interfaces, they can each be manipulated the same way regardless of the details of their
implementation.

Answer 4 (p. 986)

3.4.10.3.5 Question 5

True or False? A collection of type TreeSet and a collection of type ArrayList are instantiated in the
program in Listing 1 (p. 980) . Each of the collections is viewed as being of the interface type Collection
.

Answer 5 (p. 985)

3.4.10.3.6 Question 6

True or False? Given the TreeSet and ArrayList classes, only the TreeSet class implements the
Collection interface. (See the Java documentation.)

Answer 6 (p. 985)

3.4.10.3.7 Question 7

True or False? Both the TreeSet class and the ArrayList class inherit an abstract method named add
from the Collection interface.

Answer 7 (p. 985)

3.4.10.3.8 Question 8

True or False? Given that both the TreeSet class and the ArrayList class inherit an abstract method
named add from the Collection interface, each class is required to de�ne a concrete version of the add
method with the same behavior.

Answer 8 (p. 985)

3.4.10.3.9 Question 9

True or False? In Listing 1 (p. 980) , a method named add is called to populate the TreeSet collection
and the ArrayList collection with the same values in the same order.

Answer 9 (p. 985)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

975

3.4.10.3.10 Question 10

True or False? Given that in Listing 1 (p. 980) , a method named add is called to populate the TreeSet
collection and the ArrayList collection with the same values in the same order, the two collections end
up containing the same values

Answer 10 (p. 985)

3.4.10.3.11 Question 11

True or False? Given that in Listing 1 (p. 980) , the TreeSet object �lters out duplicate values, the
TreeSet object and the ArrayList object end up containing all of the other values in the same order.

Answer 11 (p. 985)

3.4.10.3.12 Question 12

True or False? In Listing 1 (p. 980) , the �llIt method receives an incoming parameter that is a reference
to a collection object. The �llIt method calls the add method on the incoming reference several times
in succession to add elements to the collection, being careful to satisfy the special requirements of the type
of collection object.

Answer 12 (p. 985)

3.4.10.3.13 Question 13

True or False? In Listing 1 (p. 980) , the �llIt method calls the same method name (add) on each
of the collection objects. (They are physically di�erent methods with the same name.) . The behavior of
one add method is di�erent from the behavior of the other add method. In both cases, the behavior is
appropriate for the underlying data structure. The actual type of the underlying data structure isn't known
to the �llIt method.

Answer 13 (p. 984)

3.4.10.3.14 Question 14

True or False? The inheritance structure of the core collection interfaces in the Java Collections Framework
is shown below. Indentation is used to indicate the parent-child relationships among the interfaces.

• Collection

· Set

* SortedSet

· List
· Queue
· Deque

• Map

· SortedMap

Answer 14 (p. 984)

3.4.10.3.15 Question 15

True or False? Every class that implements an interface in the tree rooted in Collection is required to
support all of the methods (operations) declared in the Collection interface.

Answer 15 (p. 984)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

976 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.10.4 Listings

• Listing 1 (p. 980) . Program named Ap401.

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

977

3.4.10.5 Answers

3.4.10.5.1 Answer 15

False. Every class that implements an interface in the tree rooted in Collection is not required to
support all of the methods (operations) declared in the Collection interface.

Rather, some of the methods in the Collection interface are designated as "optional operation" in the
documentation.

If a given implementation doesn't support a speci�c method, it must throw an UnsupportedOper-
ationException . The author of the implementation is responsible for providing documentation that
identi�es the optional operations that the implementation does and does not support.

Back to Question 15 (p. 982)

3.4.10.5.2 Answer 14

True.
Back to Question 14 (p. 982)

3.4.10.5.3 Answer 13

True.
Back to Question 13 (p. 982)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

978 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.10.5.4 Answer 12

False. In Listing 1 (p. 980) , the �llIt method receives an incoming parameter that is a reference to a
collection object. The �llIt method calls the add method on the incoming reference several times in
succession to add elements to the collection, without regard for the actual type or underlying implementation
of the collection object. (As written, the �llIt method has no way of knowing the actual type or underlying
implementation of the collection object.)

Back to Question 12 (p. 982)

3.4.10.5.5 Answer 11

False. By implementing the SortedSet interface, the TreeSet object is required to present its contents to
an iterator in ascending natural order. The ArrayList object is not subject to such a contract. Therefore,
the TreeSet object presents its contents to the iterator as 1234 (with no duplicate elements) while the
ArrayList object presents its contents to the iterator as 44321, which is the same order that the values
were added to the object.

Back to Question 11 (p. 982)

3.4.10.5.6 Answer 10

False. The TreeSet class implements the SortedSet interface. SortedSet is a sub interface of Set
. One of the characteristics of a Set object is that it doesn't allow duplicate elements. The ArrayList
class is not subject to such a contract. Therefore, the ArrayList object ends up containing duplicate
copies of the value 4 while the TreeSet object ends up with no duplicates.

Back to Question 10 (p. 982)

3.4.10.5.7 Answer 9

True.
Back to Question 9 (p. 981)

3.4.10.5.8 Answer 8

False. Given that both the TreeSet class and the ArrayList class inherit an abstract method named
add from the Collection interface, each class is required to de�ne a concrete version of the add method
but those two methods are not required to exhibit the same behavior. The behavior of the add method
for each class should be appropriate for the type of object instantiated from the class.

Back to Question 8 (p. 981)

3.4.10.5.9 Answer 7

True.
Back to Question 7 (p. 981)

3.4.10.5.10 Answer 6

False. Both the TreeSet class and the ArrayList class implement the Collection interface.
Back to Question 6 (p. 981)

3.4.10.5.11 Answer 5

True.
Back to Question 5 (p. 981)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

979

3.4.10.5.12 Answer 4

True.
Back to Question 4 (p. 981)

3.4.10.5.13 Answer 3

False. There is more than one way to implement a list. Two common ways involve arrays and linked
structures.

Back to Question 3 (p. 981)

3.4.10.5.14 Answer 2

True.
Back to Question 2 (p. 981)

3.4.10.5.15 Answer 1

1234 44321
Back to Question 1 (p. 979)

3.4.10.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4050r: Review
• File: Java4050r.htm
• Published: 11/30/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

980 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.11 Java4060: Duplicate Elements, Ordered Collections, Sorted Collections,

and Interface Specialization
464

Revised: Wed Apr 06 09:47:48 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 465

• Object-Oriented Programming (OOP) with Java 466

3.4.11.1 Table of Contents

• Preface (p. 987)
• Preview (p. 988)
• Generics (p. 988)
• Discussion (p. 988)

· We will start with a quiz (p. 988)
· The root of the Collection hierarchy (p. 989)

* What does Oracle say about this? (p. 989)

· What about duplicate elements? (p. 989)
· What is a set? (p. 989)
· What is a list? (p. 989)
· Ordered is not the same as sorted (p. 989)
· Is ascending sort order always required? (p. 990)

* Does case matter in String objects? (p. 990)

· Sub-interfaces have more stipulations (p. 990)

* Stipulations on set (p. 990)
* Stipulations on SortedSet (p. 991)

· We will end with a quiz (p. 991)

* Question 1 (p. 991)
* Question 2 (p. 991)
* Question 3 (p. 991)
* Question 4 (p. 992)

• Summary (p. 992)
• What's next? (p. 992)
• Miscellaneous (p. 992)

3.4.11.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
in general and the Java Collections framework in particular.

In addition to studying these modules, I strongly recommend that you study the Collections Trail 467 in
Oracle's Java Tutorials 468 . The modules in this collection are intended to supplement and not to replace
those tutorials.

464This content is available online at <http://cnx.org/content/m46141/1.5/>.
465http://cnx.org/contents/dzOvxPFw
466http://cnx.org/contents/-2RmHFs_
467http://docs.oracle.com/javase/tutorial/collections/index.html
468http://docs.oracle.com/javase/tutorial/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

981

3.4.11.3 Preview

You learned in earlier modules that the Java Collections Framework de�nes eight core interfaces, in two
distinct trees. One of the trees, which consists of six interfaces, is rooted in the interface named Collection
. The other tree, which consists of two interfaces, is rooted in the interface named Map .

You learned the names and the inheritance structure of those interfaces. You also learned about their
purpose. You saw how the interfaces declare polymorphic methods that apply to implementations of the
interfaces, and you learned about the optional methods of the Collection interface and the Map interface.

In this module you will learn that all of the implementations of the interfaces on the Collection side
of the Java Collections Framework (the Collection hierarchy) implement one of the sub-interfaces of the
Collection interface. (A similar discussion regarding the Map side of the Java Collections framework
will be deferred until a future module.)

You will learn that a Set object cannot contain duplicate elements, but a List object can contain
duplicate elements.

You will learn about the di�erence between ordered collections and sorted collections. You will also
learn about ascending order and the natural ordering of objects.

In addition, you will learn how more specialized stipulations are placed on interfaces as you progress
down the interface inheritance hierarchy of the Java Collections Framework.

3.4.11.4 Generics

The code in this series of modules is written with no thought given to Generics 469 . As a result, if you copy
and compile the code, you will probably get warnings about unchecked or unsafe operations .

While you will ultimately need to understand how to use Generics, that is a very complex topic. An
understanding of Generics is beyond the scope of this course. Therefore, for purposes of this course, you can
simply ignore those warnings.

3.4.11.5 Discussion

3.4.11.5.1 We will start with a quiz

I am going to begin this module with a quiz just to make sure that you are still awake. Is the following
statement True or False?

The TreeSet class is a direct implementation of the Collection interface.

The answer is False.
The TreeSet class is not a direct implementation of the Collection interface. Rather, the TreeSet

class is a direct implementation of the SortedSet interface. The SortedSet interface extends the Set
interface, and the Set interface extends the Collection interface.

The interface hierarchy for the Java Collections Framework is shown below:

• Collection

· Set

* SortedSet

· List
· Queue
· Deque

• Map

· SortedMap

As you learned in an earlier module, the Java Collections Framework doesn't have a single root. As shown
above, there are two distinct trees in the framework � The Collection hierarchy and the Map hierarchy.

469http://docs.oracle.com/javase/tutorial/java/generics/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

982 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.11.5.2 The root of the Collection hierarchy

The Collection interface is the root of the collection hierarchy. The Java Collections Framework doesn't
provide any direct implementations of the Collection interface. All of the implementations of the interfaces
in the Collection hierarchy implement one of the sub-interfaces of the Collection interface.

3.4.11.5.2.1 What does Oracle say about this?

Here is what the Oracle documentation has to say on the topic of the Collection interface:
"The SDK does not provide any direct implementations of this interface: it provides implementations of

more speci�c sub-interfaces like Set and List . This interface is typically used to pass collections around
and manipulate them where maximum generality is desired."

The Oracle documentation also states:
"Bags or multisets (unordered collections that may contain duplicate elements) should implement this

interface directly."

3.4.11.5.3 What about duplicate elements?

Some implementations of Collection allow duplicate elements, and others do not. Implementations of the
List interface (such as ArrayList) allow duplicate elements. Implements of Set and SortedSet
(such as TreeSet) do not allow duplicate elements. This was illustrated in an earlier module.

A sample program in that earlier module created two collection objects and applied the polymorphic add
method to add the same elements to each collection. One of the collection objects was of type ArrayList ,
and the other collection object was of type TreeSet . The elements added to each collection contained one
pair of duplicate elements. The duplicate element was automatically excluded from the TreeSet object,
but was retained in the ArrayList object.

3.4.11.5.4 What is a set?

According to Oracle, a Set is a "collection that contains no duplicate elements ... this interface models
the mathematical set abstraction."

An object of type Set is typically used to model collections such as Social Security numbers, where
duplicates are not allowed.

3.4.11.5.5 What is a list?

Also according to Oracle, a List is "An ordered collection (also known as a sequence). The user of this
interface has precise control over where in the list each element is inserted. The user can access elements by
their integer index (position in the list), and search for elements in the list."

3.4.11.5.6 Ordered is not the same as sorted

Note that an ordered collection is not the same as a sorted collection.
The fact that the collection is ordered derives from the fact that each element in the collection has a

speci�c position speci�ed by an index.
In a sorted collection, the position of each element is determined by its value relative to the values of its

predecessors and successors.
Oracle goes on to say, "Unlike sets, lists typically allow duplicate elements. More formally, lists typically

allow pairs of elements e1 and e2 such that e1.equals(e2), and they typically allow multiple null elements if
they allow null elements at all."

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

983

3.4.11.5.7 Is ascending sort order always required?

Not all implementations of the Collection interface maintain the elements in ascending sort order. Some
may, and others do not. For example, as discussed above, implementations of the List interface (such
as ArrayList) do not maintain their elements in sorted order at all. In other words, the position of an
element in an ArrayList does not depend on the value of the element.

On the other hand, implementations of the interface named SortedSet (such as TreeSet) and
the interface named SortedMap do maintain their elements in sorted order. However, that order is not
necessarily ascending.

When an object is instantiated from a class that implements the SortedSet interface, the sorting order
for that object can be established by providing an object instantiated from a class that implements the
Comparator 470 interface. In that case, the author of the class that implements the Comparator interface
determines the order imposed on the elements in the collection.

3.4.11.5.7.1 Does case matter in String objects?

For example, if your SortedSet object contains references to String objects, the natural ascending sort
would take the di�erence between upper case and lower case characters into account.

However, you might prefer that case be ignored when establishing the sorted order. You can accomplish
this by providing an object of a class that implements the Comparator interface and which de�nes
the compare method and the equals method in such a way as to eliminate case considerations for
comparisons of String objects.

3.4.11.5.8 Sub-interfaces have more stipulations

As you progress down the inheritance hierarchy, you �nd that additional stipulations apply at each level of
inheritance. As an example, according to Oracle, "The Set interface places additional stipulations, beyond
those inherited from the Collection interface, on the contracts of all constructors and on the contracts of the
add , equals and hashCode methods."
The important point is that speci�c sub-interfaces of the Collection interface can de�ne requirements

that do not apply to all sub-interfaces of the Collection interface.

3.4.11.5.8.1 Stipulations on set

For example, the add method of the Set interface stipulates the following:

"Adds the speci�ed element to this set if it is not already present."

On the other hand, the add method of the Collection interface simply states:

"Ensures that this collection contains the speci�ed element."

Thus, the contract for the add method of an object of a class that implements the Set interface is more
specialized than the contract for the add method of an object of a class that implements the Collection
interface.

An additional stipulation on the constructor for a Set object is that all constructors must create a set
that contains no duplicate elements.

470http://cnx.org/contents/5_Rd_R2l

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

984 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.11.5.8.2 Stipulations on SortedSet

The SortedSet interface extends the Set interface. The SortedSet interface contains the following
stipulation that makes it more specialized than a Set .

"A set that further guarantees that its iterator will traverse the set in ascending element order, sorted
according to the natural ordering of its elements (see Comparable 471), or by a Comparator provided at
sorted set creation time."

3.4.11.5.9 We will end with a quiz

I'm going to �nish this module with several questions in the form of a quiz. To ensure that this is a learning
experience, I will provide an explanation in addition to the answer for each question.

3.4.11.5.9.1 Question 1

True or False? A collection that implements the List interface maintains its elements in ascending
alphanumeric order.

The answer to question 1 is False. Unlike collections that implement the SortedSet interface, the order
of the elements in a collection that implements the List interface is not based on the values of the objects
referred to by the elements in the list.

3.4.11.5.9.2 Question 2

True or False? A collection that implements the List interface is an unordered collection.
The answer to question 2 is also False. A collection that implements the List interface is an ordered

collection (also known as a sequence) . According to Oracle, "The user of the interface has precise control
over where in the list each element is inserted." Elements can be inserted and retrieved on the basis of their
integer index (position in the list) using the following methods:

• add(int index, Object element)
• get(int index)

Valid index values are positive integers that begin with zero. When the add method is used to insert
an element at a speci�c position in the sequence, the element currently at that position (if any) and any
subsequent elements are shifted toward higher index values to make room for the new element.

Another version of the add method takes a reference to an object as an incoming parameter and
appends the speci�ed element to the end of the collection.

The get method simply returns the element at the speci�ed position in the collection.
The List interface also declares various other methods that can be used to manipulate the contents of

the collection.

3.4.11.5.9.3 Question 3

True or False? A collection that implements the List interface is allowed to contain duplicate values.
The answer to question 3 is True. Unlike a collection that implements the Set interface, a collection that

implements the List interface is typically allowed to contain duplicate values. More formally, according to
Oracle, "lists typically allow pairs of elements e1 and e2 such that e1.equals(e2), and they typically allow
multiple null elements if they allow null elements at all."

471http://cnx.org/contents/L3qgZmWm

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

985

3.4.11.5.9.4 Question 4

True or False? The contracts of the methods in the List interface are the same as the contracts of the
methods inherited from the Collection interface.

The answer to question 4 is False. According to Oracle, "The List interface places additional stipu-
lations, beyond those speci�ed in the Collection interface, on the contracts of the iterator , add ,
remove , equals , and hashCode methods."

For example, the iterator method (for both the List and Collection interfaces) returns an iterator
over the elements in the collection. For the Collection interface, there are no guarantees concerning the
order in which the elements are returned by the methods of the Iterator object.

On the other hand, the iterator method for the List interface returns an iterator over the elements
in the collection in proper sequence, where the sequence is determined by the numeric index. In other words,
when you call the methods of the Iterator object on a List , the elements will be returned in the proper
sequence as determined by a numeric index.

Similarly, according to Oracle, the SortedSet interface "guarantees that its iterator will traverse the
set in ascending element order, sorted according to the natural ordering of its elements (see Comparable
), or by a Comparator provided at sorted set creation time."

3.4.11.6 Summary

In this module you learned that all of the implementations of the interfaces in the Collection hierarchy
implement one of the sub-interfaces of the Collection interface. You learned that a Set object cannot
contain duplicate elements, but a List object can contain duplicate elements.

You learned about the di�erence between ordered collections and sorted collections. You also learned
about ascending order and the natural ordering of objects. In addition, you learned how more specialized
stipulations are placed on interfaces as you progress down the interface inheritance hierarchy of the Java
Collections Framework.

3.4.11.7 What's next?

The SortedSet interface "guarantees that its iterator will traverse the set in ascending element order,
sorted according to the natural ordering of its elements (see Comparable), or by a Comparator
provided at sorted set creation time." In the next module, I will show you how to use the Comparator
interface to control the sorted order of your collections.

3.4.11.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4060: Duplicate Elements, Ordered Collections, Sorted Collections, and
Interface Specialization
• File: Java4060.htm
• Published: 04/18/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

986 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

987

3.4.12 Java4060r: Review
472

Revised: Wed Apr 06 12:34:49 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 473

• Object-Oriented Programming (OOP) with Java 474

3.4.12.1 Table of Contents

• Preface (p. 994)
• Questions (p. 994)

· 1 (p. 994) , 2 (p. 994) , 3 (p. 994) , 4 (p. 995) , 5 (p. 995) , 6 (p. 995) , 7 (p. 995) , 8 (p. 995) ,
9 (p. 995) , 10 (p. 995) , 11 (p. 996) , 12 (p. 996) , 13 (p. 996) , 14 (p. 996) , 15 (p. 996) , 16 (p.
996) , 17 (p. 996) , 18 (p. 996) , 19 (p. 996) , 20 (p. 997) , 21 (p. 997) , 22 (p. 997) , 23 (p. 997)

• Answers (p. 998)
• Miscellaneous (p. 1001)

3.4.12.2 Preface

This module is one in a collection of modules on Java Collections designed for teaching ITSE2321 - Object-
Oriented Programming (Java) at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4060: Duplicate
Elements, Ordered Collections, Sorted Collections, and Interface Specialization 475 .

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

3.4.12.3 Questions

3.4.12.3.1 Question 1 .

True or False? The Java Collections Framework de�nes eight core interfaces, in two distinct trees.
Answer 1 (p. 1001)

3.4.12.3.2 Question 2

True or False? All eight of the core interfaces are rooted in the interface named Collection .
Answer 2 (p. 1001)

3.4.12.3.3 Question 3

True or False? A Set object can contain duplicate elements, but a List object cannot contain duplicate
elements.

Answer 3 (p. 1001)

472This content is available online at <http://cnx.org/content/m48121/1.4/>.
473http://cnx.org/contents/dzOvxPFw
474http://cnx.org/contents/-2RmHFs_
475http://cnx.org/contents/TAVNBSqr

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

988 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.12.3.4 Question 4

True or False? The TreeSet class is a direct implementation of the Collection interface. (See the Java
documentation.)

Answer 4 (p. 1001)

3.4.12.3.5 Question 5

True or False? The interface hierarchy for the Java Collections Framework is shown below with indentation
used to show a parent-child relationship:

• Collection

· Set

* SortedSet

· List
· Queue
· Deque

• Map

· SortedMap

Answer 5 (p. 1001)

3.4.12.3.6 Question 6

True or False? The ArrayList class is a direct implementation of the Collection interface. (See the Java
documentation.)

Answer 6 (p. 1000)

3.4.12.3.7 Question 7

True or False? In Java, a Set is a collection that contains no duplicate elements. The Set interface
models the mathematical set abstraction.

Answer 7 (p. 1000)

3.4.12.3.8 Question 8

True or False? In Java, a List is an ordered collection (also known as a sequence) . The user of the List
interface has precise control over where in the list each element is inserted. The user can access elements by
their integer index (position in the list) , and search for elements in the list.

Answer 8 (p. 1000)

3.4.12.3.9 Question 9

True or False? The term ordered is a synonym for sorted .
Answer 9 (p. 1000)

3.4.12.3.10 Question 10

True or False? An ordered collection is one in which the position of each element is determined by its value
relative to the values of its predecessors and successors.

Answer 10 (p. 1000)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

989

3.4.12.3.11 Question 11

True or False? A sorted collection is one in which the position of each element is determined by its value
relative to the values of its predecessors and successors.

Answer 11 (p. 1000)

3.4.12.3.12 Question 12

True or False? Ascending sort order is always required for a Java collection.
Answer 12 (p. 1000)

3.4.12.3.13 Question 13

True or False? Ascending sort order is always required for a Java collection that implements the SortedSet
interface.

Answer 13 (p. 1000)

3.4.12.3.14 Question 14

True or False? If a SortedSet object contains references to String objects, the natural ascending sort
would take the di�erence between upper case and lower case characters into account.

Answer 14 (p. 999)

3.4.12.3.15 Question 15

True or False? A SortedSet object containing references to String objects will always take the di�erence
between upper case and lower case characters into account when establishing the sort order.

Answer 15 (p. 999)

3.4.12.3.16 Question 16

True or False? Speci�c sub-interfaces of the Collection interface can de�ne requirements that do not
apply to all sub-interfaces of the Collection interface.

Answer 16 (p. 999)

3.4.12.3.17 Question 17

True or False? A collection that implements the List interface maintains its elements in ascending
alphanumeric order.

Answer 17 (p. 999)

3.4.12.3.18 Question 18

True or False? A collection that implements the List interface is an unordered collection.
Answer 18 (p. 999)

3.4.12.3.19 Question 19

True or False? A collection that implements the List interface is allowed to contain duplicate values.
Answer 19 (p. 999)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

990 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.12.3.20 Question 20

True or False? The contracts of the methods in the List interface are the same as the contracts of the
methods inherited from the Collection interface.

Answer 20 (p. 998)

3.4.12.3.21 Question 21

True or False? The iterator method for the Collection interface returns an iterator over the elements
in the collection in proper sequence, where the sequence is determined by the numeric index.

Answer 21 (p. 998)

3.4.12.3.22 Question 22

True or False? The iterator method for the List interface returns an iterator over the elements in the
collection in proper sequence, where the sequence is determined by the numeric index.

Answer 22 (p. 998)

3.4.12.3.23 Question 23

True or False? The SortedSet interface "guarantees that its iterator will traverse the set in ascending
element order, sorted according to the natural ordering of its elements (see Comparable), or by a
Comparator provided at sorted set creation time."

Answer 23 (p. 998)
What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

991

3.4.12.4 Answers

3.4.12.4.1 Answer 23

True.
Back to Question 23 (p. 997)

3.4.12.4.2 Answer 22

True.
Back to Question 22 (p. 997)

3.4.12.4.3 Answer 21

False. The iterator method for the Collection interface returns an iterator over the elements in the
collection where there are no guarantees concerning the order in which the elements are returned by the
methods of the Iterator object.

Back to Question 21 (p. 997)

3.4.12.4.4 Answer 20

False. According to Oracle, "The List interface places additional stipulations, beyond those speci�ed
in the Collection interface, on the contracts of the iterator , add , remove , equals , and
hashCode methods."

Back to Question 20 (p. 997)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

992 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.12.4.5 Answer 19

True. Unlike a collection that implements the Set interface, a collection that implements the List interface
is typically allowed to contain duplicate values.

Back to Question 19 (p. 996)

3.4.12.4.6 Answer 18

False. A collection that implements the List interface is an ordered collection (also known as a sequence)
. According to Oracle, "The user of the interface has precise control over where in the list each element is
inserted." Elements can be inserted and retrieved on the basis of their integer index (position in the list)
using the following methods:

• add(int index, Object element)
• get(int index)

Valid index values are positive integers that begin with zero.
Another version of the add method takes a reference to an object as an incoming parameter and

appends the speci�ed element to the end of the collection.
Back to Question 18 (p. 996)

3.4.12.4.7 Answer 17

False. Unlike collections that implement the SortedSet interface, the order of the elements in a collection
that implements the List interface is not based on the values of the objects referred to by the elements in
the list.

Back to Question 17 (p. 996)

3.4.12.4.8 Answer 16

True. For example, the add method of the Set interface stipulates the following:

"Adds the speci�ed element to this set if it is not already present."

On the other hand, the add method of the Collection interface simply states:

"Ensures that this collection contains the speci�ed element."

Thus, the contract for the add method of an object of a class that implements the Set interface is more
specialized than the contract for the add method of an object of a class that implements the Collection
interface.

Back to Question 16 (p. 996)

3.4.12.4.9 Answer 15

False. You can cause the sort order to ignore case by providing an object of a class that implements the
Comparator interface, and which de�nes the compare method and the equals method in such a
way as to eliminate case considerations for comparisons of String objects.

Back to Question 15 (p. 996)

3.4.12.4.10 Answer 14

True.
Back to Question 14 (p. 996)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

993

3.4.12.4.11 Answer 13

False. Implementations of the interface named SortedSet do maintain their elements in sorted order.
However, that order is not necessarily ascending. When an object is instantiated from a class that implements
the SortedSet interface, the sorting order for that object can be established by providing an object
instantiated from a class that implements the Comparator interface. In that case, the author of the
class that implements the Comparator interface determines the order imposed on the elements in the
collection.

Back to Question 13 (p. 996)

3.4.12.4.12 Answer 12

False. Not all implementations of the Collection interface maintain the elements in ascending sort order.
Some may, and others do not. For example, implementations of the List interface (such as ArrayList
) do not maintain their elements in sorted order at all. In other words, the position of an element in an
ArrayList does not depend on the value of the element.

Back to Question 12 (p. 996)

3.4.12.4.13 Answer 11

True.
Back to Question 11 (p. 996)

3.4.12.4.14 Answer 10

False. An ordered collection is one in which each element in the collection has a speci�c position speci�ed
by an index.

Back to Question 10 (p. 995)

3.4.12.4.15 Answer 9

False. An ordered collection is not the same as a sorted collection.
Back to Question 9 (p. 995)

3.4.12.4.16 Answer 8

True, according to Oracle.
Back to Question 8 (p. 995)

3.4.12.4.17 Answer 7

True, according to Oracle.
Back to Question 7 (p. 995)

3.4.12.4.18 Answer 6

False.

ArrayList class:

public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, Serializable

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

994 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

The Java Collections Framework doesn't provide any direct implementations of the Collection interface.
All of the implementations of the interfaces in the Collection hierarchy implement one of the sub-interfaces
of the Collection interface. In the case of the ArrayList class, that sub-interface is the List interface,
which extends the Collection interface.

Back to Question 6 (p. 995)

3.4.12.4.19 Answer 5

True.
Back to Question 5 (p. 995)

3.4.12.4.20 Answer 4

False. The TreeSet class is not a direct implementation of the Collection interface. Rather, the
TreeSet class is a direct implementation of the SortedSet interface. The SortedSet interface extends
the Set interface, and the Set interface extends the Collection interface.

Back to Question 4 (p. 995)

3.4.12.4.21 Answer 3

False. A Set object cannot contain duplicate elements, but a List object can contain duplicate elements.
Back to Question 3 (p. 994)

3.4.12.4.22 Answer 2

False. One of the trees, which consists of six interfaces, is rooted in the interface named Collection . The
other tree, which consists of two interfaces, is rooted in the interface named Map .

Back to Question 2 (p. 994)

3.4.12.4.23 Answer 1

True.
Back to Question 1 (p. 994)

3.4.12.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4060r: Review
• File: Java4060r.htm
• Published: 11/30/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

995

a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.4.13 Java4070: The Comparable Interface, Part 1
476

Revised: Wed Apr 06 13:05:35 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 477

• Object-Oriented Programming (OOP) with Java 478

3.4.13.1 Table of Contents

• Preface (p. 1003)

· Viewing tip (p. 1003)

* Listings (p. 1003)

• Preview (p. 1003)

· Generics (p. 1003)
· Specialization (p. 1004)
· To cast, or not to cast (p. 1004)
· Comparable interface not required for a List (p. 1004)

• Discussion and sample code (p. 1004)

· We will begin with a quiz (p. 1004)

* What caused the compiler error? (p. 1006)
* Implements Collection and List (p. 1006)
* Specialization (p. 1006)

· Modi�ed program (p. 1006)

* The corrected code (p. 1009)
* Casting to type List (p. 1009)

· The List contract for the add method (p. 1009)

* Controlling the locations of the elements (p. 1009)
* Add method actually does an insert (p. 1010)

· The Vector class (p. 1010)
· More on the List contract (p. 1010)

* Duplicates are allowed in a List (p. 1010)

· One more sample program (p. 1011)

* No need to cast to type List (p. 1013)

· What happened to the Comparable interface? (p. 1013)

* Comparable interface is not required for a List (p. 1013)
* No requirement to compare (p. 1014)
* Comparison is required for a SortedSet (p. 1014)

476This content is available online at <http://cnx.org/content/m46142/1.6/>.
477http://cnx.org/contents/dzOvxPFw
478http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

996 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• Run the program (p. 1014)
• Summary (p. 1014)
• What's next? (p. 1014)
• Miscellaneous (p. 1014)

3.4.13.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
in general and the Java Collections Framework in particular.

This is also the �rst module in a sub-collection on the Comparable interface. The purpose of the
modules in this sub-collection is to teach you about the interactions between the Comparable interface
and the Collections Framework, particularly with respect to the Set , SortedSet , and SortedMap
interfaces of the Collections Framework.

This module also explains the (lack of) interaction between the Comparable interface and the Java
Collections Framework with respect to collections of type List .

In addition to studying these modules, I strongly recommend that you study the Collections Trail 479 in
Oracle's Java Tutorials 480 . The modules in this collection are intended to supplement and not to replace
those tutorials.

3.4.13.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the listings while you are reading about them.

3.4.13.2.1.1 Listings

• Listing 1 (p. 1005) . The program named Comparable01.
• Listing 2 (p. 1006) . The code with the problem.
• Listing 3 (p. 1008) . The program named Comparable02.
• Listing 4 (p. 1009) . The corrected code.
• Listing 5 (p. 1010) . Display using an iterator.
• Listing 6 (p. 1012) . The program named Comparable03.
• Listing 7 (p. 1013) . No need to cast to type List.

3.4.13.3 Preview

In this module, I will begin discussing the interaction between the Comparable interface and the Collec-
tions Framework.

3.4.13.3.1 Generics

The code in this module is written with no thought given to Generics 481 . As a result, if you copy and
compile this code, you will probably get a warning about unchecked or unsafe operations .

While you will ultimately need to understand how to use Generics, that is a very complex topic. An
understanding of Generics is beyond the scope of this course. Therefore, for purposes of this course, you can
simply ignore those warnings.

479http://docs.oracle.com/javase/tutorial/collections/index.html
480http://docs.oracle.com/javase/tutorial/index.html
481http://docs.oracle.com/javase/tutorial/java/generics/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

997

3.4.13.3.2 Specialization

I will provide a concrete example of the specialization that occurs while moving down the interface hierarchy
from Collection to List . I will show an example of using two di�erent overloaded versions of the
add method to add new elements to an ArrayList object. One version is declared in the Collection
interface and both versions are declared in the List interface.

3.4.13.3.3 To cast, or not to cast

I will illustrate the use of a cast to change the type of a reference from Collection to List , in order
to call a version of the add method that is declared only in the List interface.

This version of the program, (in which the add method actually does an insert) makes it possible for
the user to control the location of each individual element added to a List . The fact that the location of
each element can be controlled in a List is what causes a List to be an ordered collection.

I will illustrate that a cast is not required on a reference being treated as type Collection in order to
call the version of the add method that is declared in the Collection interface. This version of the add
method supports the addition of new elements only at the end of the List .

3.4.13.3.4 Comparable interface not required for a List

Finally, I will show that it is not necessary for objects to implement the Comparable interface to make
them eligible for inclusion in a List . I will tell you that it is necessary for objects to implement the
Comparable interface to make them eligible for inclusion in a SortedSet , although I won't demonstrate
that in this module.

3.4.13.4 Discussion and sample code

3.4.13.4.1 We will begin with a quiz

Let's begin with a quiz to test your prior knowledge of the Collections Framework.
What output is produced by the program shown in Listing 1 (p. 1005) ?

• A. Compiler Error
• B. Runtime Error
• C. 44321
• D. 4321
• E. 1234
• F. 12344
• G. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

998 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 1 . The program named Comparable01.

//File Comparable01.java

import java.util.*;

public class Comparable01{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparable01

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

ref = new ArrayList();

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add(0,new MyClass(4));

ref.add(1,new MyClass(4));

ref.add(2,new MyClass(3));

ref.add(3,new MyClass(2));

ref.add(4,new MyClass(1));

}//end fillIt()

}//end class Populator

class MyClass{

int data;

MyClass(){

data = 0;

}//end noarg constructor

MyClass(int data){

this.data = data;

}//end parameterized constructor

public String toString(){

return "" + data;

}//end overridden toString()

}//end MyClass
Available for free at Connexions <http://cnx.org/content/col11441/1.206>

999

Table 3.378

If your answer was A. Compiler Error , you were correct.

3.4.13.4.1.1 What caused the compiler error?

The compiler error was caused by the code shown in Listing 2 (p. 1006) .

Listing 2 . The code with the problem.

public static void fillIt(Collection ref){

ref.add(0,new MyClass(4));

Table 3.379

The problem here is that the method named �llIt receives a reference to an object of the ArrayList
class as the interface type Collection , and attempts to call the following overloaded method on that
reference:

add(int index, Object element)
However, the Collection interface knows nothing about a method having that signature.

3.4.13.4.1.2 Implements Collection and List

The ArrayList class implements both the Collection interface and the List interface. As you may
recall from earlier modules in this series, List is a sub-interface of Collection . The List interface
declares the following overloaded versions of the add method:

• add(Object o)
• add(int index, Object element)

The second of these two methods, which is called in Listing 2 (p. 1006) , is unknown to the Collection
interface. The Collection interface declares only the �rst version of the add method shown above.

3.4.13.4.1.3 Specialization

This is the result of specialization. A List object is a more-specialized collection than a Collection
object.

Therefore, the version of the add method that requires two parameter cannot be called on a reference
to an ArrayList object when that object is treated as the generic type Collection .

3.4.13.4.2 Modi�ed program

Now, take a look at the modi�ed version of the program as shown in Listing 3 (p. 1008) .
What output is produced by the program shown in Listing 3 (p. 1008) ?

• A. Compiler Error
• B. Runtime Error
• C. 44321
• D. 4321
• E. 1234
• F. 12344

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1000 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• G. 443521
• H. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1001

Listing 3 . The program named Comparable02.

//File Comparable02.java

import java.util.*;

public class Comparable02{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparable02

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

ref = new ArrayList();

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

((List)ref).add(0,new MyClass(4));

((List)ref).add(1,new MyClass(4));

((List)ref).add(2,new MyClass(3));

((List)ref).add(3,new MyClass(2));

((List)ref).add(4,new MyClass(1));

((List)ref).add(3,new MyClass(5));

}//end fillIt()

}//end class populator

class MyClass{

int data;

MyClass(){

data = 0;

}//end noarg constructor

MyClass(int data){

this.data = data;

}//end parameterized constructor

public String toString(){

return "" + data;

}//end overridden toString()

}//end MyClass

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1002 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.380

If your answer was G. 443521 , you are correct.

3.4.13.4.2.1 The corrected code

This version of the program illustrates a mechanism for correcting the problem in the earlier program shown
in Listing 1 (p. 1005) . The updated code that corrected the problem is shown in Listing 4 (p. 1009) .

Listing 4 . The corrected code.

class Populator{

public static void fillIt(Collection ref){

((List)ref).add(0,new MyClass(4));

((List)ref).add(1,new MyClass(4));

((List)ref).add(2,new MyClass(3));

((List)ref).add(3,new MyClass(2));

((List)ref).add(4,new MyClass(1));

((List)ref).add(3,new MyClass(5));

}//end fillIt()

}//end class populator

Table 3.381

The incoming parameter to the �llIt method in Listing 4 (p. 1009) is a reference to an object instantiated
from the ArrayList class. That reference is passed to the �llIt method as type Collection , which is
legal because the ArrayList class implements both the Collection interface and the List interface.

3.4.13.4.2.2 Casting to type List

The code in Listing 4 (p. 1009) uses a cast to temporarily convert the incoming reference from type
Collection to type List . Because the version of the add method that is used in Listing 4 (p. 1009) is
declared in the List interface, and because the ArrayList class correctly implements the List interface,
that version of the add method can be called on the reference to the ArrayList object when it is treated
as the interface type List . Hopefully this is review material for you at this point. If not, you may need
to go back and study some of my earlier modules.

3.4.13.4.3 The List contract for the add method

Listing 4 (p. 1009) also illustrates part of the contract for this version of the add method in the List
interface. This version of the add method makes it possible to specify the position of each element added
to the ArrayList object.

(A List is an ordered collection because the user has control over the location of each element
in the collection relative to the other elements in the collection.)

3.4.13.4.3.1 Controlling the locations of the elements

In Listing 4 (p. 1009) , the elements are added to the ArrayList object in increasing element order during
the �rst �ve invocations of the add method. However, the sixth invocation of the add method adds a
new element at index position 3.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1003

3.4.13.4.3.2 Add method actually does an insert

A portion of the contract for this version of the add method in the List interface is as follows:

"Inserts the speci�ed element at the speci�ed position in this list (optional operation). Shifts
the element currently at that position (if any) and any subsequent elements to the right (adds
one to their indices)."

Thus, the new element is inserted at that position, and the other elements are pushed up, as required, toward
higher index values to make room for the new element.

3.4.13.4.4 The Vector class

Here is an interesting side note. The Java Vector class has been around longer than the Collections
Framework. Somewhere along the way, the Vector class was upgraded to cause it to become a concrete
implementation of the Collection interface and the List interface.

As a result of the upgrade, the Vector class now provides an implementation of the add method
described above. Except for the order of the parameters, that add method appears to have the same
behavior as the older method named:

insertElementAt(Object elem, int index)
You can insert elements into a Vector object by calling the add method on that object while treating

it as type List . However, since the older insertElementAt method is not declared in the List
interface, you cannot insert an element into the Vector object by calling the insertElementAt method
while treating it as a List . In order to call that method, you must treat it as type Vector .

3.4.13.4.5 More on the List contract

Another portion of the contract for a List object is that the iterator method

"Returns an iterator over the elements in this list in proper sequence."

As a result, the code shown in Listing 5 (p. 1010) , along with the overridden toString method of the
MyClass class causes the program to display the elements in the following order:

443521 .

Listing 5 . Display using an iterator.

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

Table 3.382

3.4.13.4.6 Duplicates are allowed in a List

One �nal thing that is worthy of note in this program is that a List objects allows duplicates. Hence, the
populated collection contains references to two separate objects that are equal to one another in the sense
that they both contain the same values in their instance variables.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1004 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.13.4.7 One more sample program

Let's take a look at one more sample program. What output is produced by the program shown in Listing
6 (p. 1012) ?

• A. Compiler Error
• B. Runtime Error
• C. 44321
• D. 4321
• E. 1234
• F. 12344
• G. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1005

Listing 6 . The program named Comparable03.

//File Comparable03.java

import java.util.*;

public class Comparable03{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparable03

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

ref = new ArrayList();

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add(new MyClass(4));

ref.add(new MyClass(4));

ref.add(new MyClass(3));

ref.add(new MyClass(2));

ref.add(new MyClass(1));

}//end fillIt()

}//end class populator

class MyClass{

int data;

MyClass(){

data = 0;

}//end noarg constructor

MyClass(int data){

this.data = data;

}//end parameterized constructor

public String toString(){

return "" + data;

}//end overridden toString()

}//end MyClass
Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1006 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.383

If you selected C. 44321 , you are correct.

3.4.13.4.7.1 No need to cast to type List

As shown in Listing 7 (p. 1013) , this program takes a di�erent approach to solving the problem originally
exposed in the program shown in Listing 1 (p. 1005) .

Listing 7 . No need to cast to type List.

class Populator{

public static void fillIt(

Collection ref){

ref.add(new MyClass(4));

ref.add(new MyClass(4));

ref.add(new MyClass(3));

ref.add(new MyClass(2));

ref.add(new MyClass(1));

}//end fillIt()

}//end class populator

Table 3.384

This program does not change the type of the incoming reference to the ArrayList object in the �llIt
method. Rather, it continues to treat the incoming reference as type Collection , and calls the version of
the add method that is declared in the Collection interface. This avoids the requirement to cast the
incoming reference to type List .

The contract for this version of the add method in the List interface is

"Appends the speci�ed element to the end of this list (optional operation)."

As a result, the new elements are added to the collection in increasing index order. Since an iterator on a
List returns the elements in increasing index order, this program displays the elements in the same order
that they are added.

3.4.13.4.8 What happened to the Comparable interface?

By now, you are probably wondering what all of this has to do with the Comparable interface, because
I haven't mentioned that interface since the introductory comments at the beginning of the module.

3.4.13.4.8.1 Comparable interface is not required for a List

Actually, the purpose of this module is to illustrate the lack of any requirement to make use of the
Comparable interface with List objects. In particular, the purpose is to illustrate that this is one of the
features that di�erentiates between a List object and a Set or SortedSet object.

A List can be used as a container for other objects regardless of whether or not those objects implement
the Comparable interface. However, in the next module, we will see that objects must implement the
Comparable interface in order to be eligible for inclusion in collections that implement the SortedSet
interface.

This and the next several modules are intended to provide you with an understanding of the interaction
between the Comparable interface, the Comparator interface, and the Collections Framework.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1007

3.4.13.4.8.2 No requirement to compare

Because a List makes no attempt to eliminate duplicate elements, or to sort the elements on the basis of
their values, there is no requirement to compare objects when placing them in a List . Therefore, objects
whose references are stored in a List are not required to implement the Comparable interface (but
they may implement the Comparable interface without causing any harm) .

3.4.13.4.8.3 Comparison is required for a SortedSet

Because a SortedSet does eliminate duplicates and does sort the elements on the basis of their values,
there is a requirement to compare each new element with the existing elements in a SortedSet whenever
a new element is added to the collection. Therefore, objects whose references are stored in a SortedSet
are required to implement the Comparable interface.

3.4.13.5 Run the program

I encourage you to copy the code from Listing 1 (p. 1005) , Listing 3 (p. 1008) , and Listing 6 (p. 1012) .
Paste the code into your Java editor. Then compile and execute it.

Run the program and observe the results. Experiment with the code. Make changes, run the program
again, and observe the results of your changes. Make certain that you can explain why your changes behave
as they do.

3.4.13.6 Summary

In this module, I began discussing the interaction between the Comparable interface and the Collections
Framework.

I provided a concrete example of the specialization that occurs when moving down the interface hierarchy
from Collection to List . I showed an example of using two di�erent overloaded versions of the add
method to add new elements to an ArrayList object. One version is declared in the Collection interface
and both versions are declared in the List interface.

I illustrated the use of a cast to change the type of a reference from Collection to List , in order
to call a version of the add method that is declared only in the List interface. This version makes it
possible for the user to control the location of each individual element added to a List .

I illustrated that a cast is not required on a reference being treated as type Collection in order to call
the version of the add method that is declared in the Collection interface. This version of the add
method supports the addition of new elements only at the end of the List .

Finally, I explained that it is not necessary for objects to implement the Comparable interface to
make them eligible for inclusion in a List .

Although I didn't demonstrate it, I told you that it is necessary for objects to implement the Compa-
rable interface to make them eligible for inclusion in a SortedSet .

3.4.13.7 What's next?

The next module will begin exploring the interaction between the Comparable interface and the Sort-
edSet interface of the Collections Framework.

3.4.13.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4070: The Comparable Interface, Part 1
• File: Java4070.htm

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1008 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• Published: 04/19/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1009

3.4.14 Java4070r: Review
482

Revised: Wed Apr 06 21:57:52 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 483

• Object-Oriented Programming (OOP) with Java 484

3.4.14.1 Table of Contents

• Preface (p. 1016)
• Questions (p. 1016)

· 1 (p. 1016) , 2 (p. 1016) , 3 (p. 1016) , 4 (p. 1017) , 5 (p. 1017) , 6 (p. 1017) , 7 (p. 1017) , 8
(p. 1017) , 9 (p. 1017) , 10 (p. 1018) , 11 (p. 1018) , 12 (p. 1018)

• Listings (p. 1018)
• Answers (p. 1020)
• Complete program listings (p. 1022)
• Miscellaneous (p. 1027)

3.4.14.2 Preface

This module is one in a collection of modules on Java Collections designed for teaching ITSE2321 - Object-
Oriented Programming (Java) at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4070: The Comparable
Interface, Part 1 485 .

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

3.4.14.3 Questions

3.4.14.3.1 Question 1 .

True or False? The fact that the location of each element can be controlled in a List is what causes a
List to be an unordered collection.

Answer 1 (p. 1021)

3.4.14.3.2 Question 2

True or False? It is not necessary for objects to implement the Comparable interface to make them
eligible for inclusion in a List .

Answer 2 (p. 1021)

3.4.14.3.3 Question 3

True or False? It is not necessary for objects to implement the Comparable interface to make them
eligible for inclusion in a SortedSet .

Answer 3 (p. 1021)

482This content is available online at <http://cnx.org/content/m48122/1.6/>.
483http://cnx.org/contents/dzOvxPFw
484http://cnx.org/contents/-2RmHFs_
485http://cnx.org/contents/L3qgZmWm

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1010 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.14.3.4 Question 4

What output is produced by the program shown in Listing 1 (p. 1022) ?

• Compiler Error
• 44321
• 4321
• 1234
• 12344

Answer 4 (p. 1020)

3.4.14.3.5 Question 5

True or False? The Collection interface declares the following overloaded versions of the add method.
(See the Java documentation.)

• add(Object o)
• add(int index, Object element)

Answer 5 (p. 1020)

3.4.14.3.6 Question 6

True or False? A List object is a more-specialized collection than a Collection object.
Answer 6 (p. 1020)

3.4.14.3.7 Question 7

True or False? The version of the add method that requires two parameters cannot be called on a reference
to an ArrayList object when that object is treated as the generic type Collection . (See the Java
documentation.)

Answer 7 (p. 1020)

3.4.14.3.8 Question 8

What output is produced by the program shown in Listing 2 (p. 1024) ?

• Compiler Error
• 44321
• 4321
• 1234
• 12344
• 443521

Answer 8 (p. 1020)

3.4.14.3.9 Question 9

True or False? A List is an ordered collection because the user has control over the location of each element
in the collection relative to the other elements in the collection.

Answer 9 (p. 1020)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1011

3.4.14.3.10 Question 10

What output is produced by the program shown in Listing 3 (p. 1026) ?

• Compiler Error
• Runtime Error
• 44321
• 4321
• 1234
• 12344

Answer 10 (p. 1020)

3.4.14.3.11 Question 11

True or False? Because a List makes no attempt to eliminate duplicate elements, or to sort the elements
on the basis of their values, there is no requirement to compare objects when placing them in a List .
Therefore, objects whose references are stored in a List are not required to implement the Comparable
interface (but they may implement the Comparable interface without causing any harm) .

Answer 11 (p. 1020)

3.4.14.3.12 Question 12

True or False? Because a SortedSet does eliminate duplicates and does sort the elements on the basis
of their values, there is a requirement to compare each new element with the existing elements in a
SortedSet whenever a new element is added to the collection. Therefore, objects whose references are
stored in a SortedSet are required to implement the Comparable interface.

Answer 12 (p. 1020)

3.4.14.4 Listings

• Listing 1 (p. 1022) . Comparable01.java.
• Listing 2 (p. 1024) . Comparable02.java.
• Listing 3 (p. 1026) . Comparable03.java.

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1012 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1013

3.4.14.5 Answers

3.4.14.5.1 Answer 12

True.
Back to Question 12 (p. 1018)

3.4.14.5.2 Answer 11

True.
Back to Question 11 (p. 1018)

3.4.14.5.3 Answer 10

44321
Back to Question 10 (p. 1018)

3.4.14.5.4 Answer 9

True.
Back to Question 9 (p. 1017)

3.4.14.5.5 Answer 8

443521
Back to Question 8 (p. 1017)

3.4.14.5.6 Answer 7

True.
Back to Question 7 (p. 1017)

3.4.14.5.7 Answer 6

True
Back to Question 6 (p. 1017)

3.4.14.5.8 Answer 5

False. The List interface declares the following overloaded versions of the add method but the Collection
interface declares only the �rst one of the two.

• add(Object o)
• add(int index, Object element)

Back to Question 5 (p. 1017)

3.4.14.5.9 Answer 4

Compiler Error. The method named �llIt receives a reference to an object of the ArrayList class as
the interface type Collection , and attempts to call the following overloaded method on that reference:

add(int index, Object element)
However, the Collection interface knows nothing about a method having that signature.
Back to Question 4 (p. 1017)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1014 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.14.5.10 Answer 3

False. It is necessary for objects to implement the Comparable interface to make them eligible for
inclusion in a SortedSet .

Back to Question 3 (p. 1016)

3.4.14.5.11 Answer 2

True.
Back to Question 2 (p. 1016)

3.4.14.5.12 Answer 1

False. The fact that the location of each element can be controlled in a List is what causes a List to be
an ordered collection.

Back to Question 1 (p. 1016)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1015

3.4.14.6 Complete program listings

Listing 1 . Comparable01.java.

//File Comparable01.java

import java.util.*;

public class Comparable01{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparable01

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

ref = new ArrayList();

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add(0,new MyClass(4));

ref.add(1,new MyClass(4));

ref.add(2,new MyClass(3));

ref.add(3,new MyClass(2));

ref.add(4,new MyClass(1));

}//end fillIt()

}//end class Populator

class MyClass{

int data;

MyClass(){

data = 0;

}//end noarg constructor

MyClass(int data){

this.data = data;

}//end parameterized constructor

public String toString(){

return "" + data;

}//end overridden toString()

}//end MyClass

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1016 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.385

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1017

Listing 2 . Comparable02.java.

//File Comparable02.java

import java.util.*;

public class Comparable02{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparable02

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

ref = new ArrayList();

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

((List)ref).add(0,new MyClass(4));

((List)ref).add(1,new MyClass(4));

((List)ref).add(2,new MyClass(3));

((List)ref).add(3,new MyClass(2));

((List)ref).add(4,new MyClass(1));

((List)ref).add(3,new MyClass(5));

}//end fillIt()

}//end class populator

class MyClass{

int data;

MyClass(){

data = 0;

}//end noarg constructor

MyClass(int data){

this.data = data;

}//end parameterized constructor

public String toString(){

return "" + data;

}//end overridden toString()

}//end MyClass

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1018 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.386

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1019

Listing 3 . Comparable03.java.

//File Comparable03.java

import java.util.*;

public class Comparable03{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparable03

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

ref = new ArrayList();

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add(new MyClass(4));

ref.add(new MyClass(4));

ref.add(new MyClass(3));

ref.add(new MyClass(2));

ref.add(new MyClass(1));

}//end fillIt()

}//end class populator

class MyClass{

int data;

MyClass(){

data = 0;

}//end noarg constructor

MyClass(int data){

this.data = data;

}//end parameterized constructor

public String toString(){

return "" + data;

}//end overridden toString()

}//end MyClass
Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1020 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.387

3.4.14.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4070r: Review
• File: Java4070r.htm

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.4.15 Java4080: The Comparable Interface, Part 2
486

Revised: Wed Apr 06 22:21:03 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 487

• Object-Oriented Programming (OOP) with Java 488

3.4.15.1 Table of Contents

• Preface (p. 1028)

· Viewing tip (p. 1028)

* Listings (p. 1028)

• Preview (p. 1029)
• Discussion and sample code (p. 1029)

· Generics (p. 1029)
· Begin with a quiz (p. 1029)

* What caused the runtime error? (p. 1031)
* Why did this code produce a runtime error? (p. 1031)

486This content is available online at <http://cnx.org/content/m46143/1.4/>.
487http://cnx.org/contents/dzOvxPFw
488http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1021

* What does this mean? (p. 1031)
* The compareTo method (p. 1031)
* A possible exception (p. 1032)
* The SortedSet interface (p. 1032)
* Natural ordering of the elements (p. 1032)
* Conclusion regarding traversal (p. 1032)
* The bottom line (p. 1032)

· The solution (p. 1033)

* The corrected code (p. 1035)
* The compareTo method (p. 1035)
* Consistent with equals (p. 1036)
* Meeting the consistent with equals requirement (p. 1036)
* The program output (p. 1037)

• Run the program (p. 1037)
• Summary (p. 1037)
• What's next? (p. 1037)
• Miscellaneous (p. 1037)

3.4.15.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
in general and the Java Collections framework in particular.

This module explains why the elements stored in a TreeSet collection must be references to objects
instantiated from a class that implements the Comparable interface. The module also brie�y discusses
an alternative approach using the Comparator interface.

The module shows you how to implement the Comparable interface for a new class de�nition, explains
the "natural ordering of the elements" for a class, and discusses the "consistent with equals" requirement.
Finally, the module shows you how to de�ne a new class whose objects are eligible for inclusion in a TreeSet
collection.

In addition to studying these modules, I strongly recommend that you study the Collections Trail 489 in
Oracle's Java Tutorials 490 . The modules in this collection are intended to supplement and not to replace
those tutorials.

3.4.15.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the listings while you are reading about them.

3.4.15.2.1.1 Listings

• Listing 1 (p. 1030) . The program named Comparable04.
• Listing 2 (p. 1031) . The code with the problem.
• Listing 3 (p. 1034) . The program named Comparable05.
• Listing 4 (p. 1035) . Beginning of the class named MyClass.
• Listing 5 (p. 1036) . The compareTo method.
• Listing 6 (p. 1036) . The overridden equals method.

489http://docs.oracle.com/javase/tutorial/collections/index.html
490http://docs.oracle.com/javase/tutorial/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1022 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.15.3 Preview

In this module, I will teach you why the elements stored in a TreeSet collection must be references to
objects instantiated from a class that implements the Comparable interface. (In a subsequent module,
I will teach you about an alternative approach that makes use of the Comparator interface.)

I will provide an example of implementing the Comparable interface for a new class de�nition, and
will teach you about the natural ordering of the elements for a class.

I will teach you the meaning of the consistent with equals requirement and show you how to satisfy
that requirement for a new class de�nition.

Finally, I will show you how to de�ne a new class whose objects are eligible for inclusion in a TreeSet
collection.

3.4.15.4 Discussion and sample code

3.4.15.4.1 Generics

The code in this module is written with no thought given to Generics 491 . As a result, if you copy and
compile this code, you will probably get a warning about unchecked or unsafe operations .

While you will ultimately need to understand how to use Generics, that is a very complex topic. An
understanding of Generics is beyond the scope of this course. Therefore, for purposes of this course, you can
simply ignore those warnings.

3.4.15.4.2 Begin with a quiz

Let's begin with a quiz to test your prior knowledge of the Collections Framework.
What output is produced by the program shown in Listing 1 (p. 1030) ?

• A. Compiler Error
• B. Runtime Error
• C. 44321
• D. 4321
• E. 1234
• F. 12344
• G. None of the above.

491http://docs.oracle.com/javase/tutorial/java/generics/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1023

Listing 1 . The program named Comparable04.

//File Comparable04.java

import java.util.*;

public class Comparable04{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparable04

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

ref = new TreeSet();

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add(new MyClass(4));

ref.add(new MyClass(4));

ref.add(new MyClass(3));

ref.add(new MyClass(2));

ref.add(new MyClass(1));

}//end fillIt()

}//end class Populator

class MyClass{

int data;

MyClass(){

data = 0;

}//end noarg constructor

MyClass(int data){

this.data = data;

}//end parameterized constructor

public String toString(){

return "" + data;

}//end overridden toString()

}//end MyClass

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1024 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.388

If your answer was B. Runtime Error , you were correct.

3.4.15.4.2.1 What caused the runtime error?

The runtime error was caused by the code shown in Listing 2 (p. 1031) .

Listing 2 . The code with the problem.

class Populator{

public static void fillIt(Collection ref){

ref.add(new MyClass(4));

Table 3.389

3.4.15.4.2.2 Why did this code produce a runtime error?

This code produced a runtime error for the following reasons.
The incoming parameter of the �llIt method is a reference to an object of type TreeSet but it is

received as type Collection . The TreeSet class implements the Collection , Set , and SortedSet
interfaces. (In this module, we will be primarily interested in the Set and SortedSet interfaces.)

The contract for the add method of the Set interface reads partially as follows:

"Adds the speci�ed element to this set if it is not already present ... If this set already contains
the speci�ed element, the call leaves this set unchanged and returns false. ... this ensures that
sets never contain duplicate elements."

3.4.15.4.2.3 What does this mean?

This means that whenever the add method is called on a Set object, the add method must have a way
of determining if the element being added is a duplicate of an element that already exists in the collection.
This means that it must be possible for the add method to compare the new element with all of the
existing elements to determine if the new element is a duplicate of any of the existing elements.

3.4.15.4.2.4 The compareTo method

The documentation for the TreeSet class states the following:

"... the Set interface is de�ned in terms of the equals operation, but a TreeSet instance
performs all key comparisons using its compareTo (or compare) method ..."

What this means is that insofar as the handling of duplicate elements is concerned, (with the possible
exception given below involving a Comparator), in order for a reference to an object to be included in
a TreeSet collection, the class from which that object is instantiated must implement the Comparable
interface.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1025

3.4.15.4.2.5 A possible exception

Note that one of the constructors for the TreeSet class makes it possible to instantiate a new object by
passing a parameter that is a reference to an object that implements the Comparator interface.

The Comparator interface declares a method named compare , which compares its two arguments for
order. The text in the above excerpt from the Oracle documentation suggests that when this parameterized
constructor is used, it may not be necessary for the objects included in the TreeSet collection to implement
the Comparable interface.

I won't discuss that possibility in this module, but I will discuss it in a future module that discusses the
use of the Comparator interface. For purposes of this module, I will concentrate on the use of a TreeSet
collection that does not receive a reference to a Comparator object when it is instantiated.

3.4.15.4.2.6 The SortedSet interface

The TreeSet class also implements the SortedSet interface. The documentation for the SortedSet
interface states the following:

"A set that further guarantees that its iterator will traverse the set in ascending element or-
der, sorted according to the natural ordering of its elements (see Comparable), or by a
Comparator provided at sorted set creation time."

3.4.15.4.2.7 Natural ordering of the elements

The key term to note in the above quotation is the term natural ordering of its elements . This takes us
back to the Comparable interface, for which the documentation states:

"This interface imposes a total ordering on the objects of each class that implements it. This
ordering is referred to as the class's natural ordering, and the class's compareTo method is
referred to as its natural comparison method."

3.4.15.4.2.8 Conclusion regarding traversal

The conclusion is, in order for the iterator to be able to traverse the set according to the natural ordering
of its elements, the elements stored in an object that implements the SortedSet interface must be
instantiated from a class that implements the Comparable interface (unless a Comparator is provided
when the SortedSet object is instantiated.)

3.4.15.4.2.9 The bottom line

The bottom line is, because the class named MyClass in Listing 1 (p. 1030) does not implement the
Comparable interface, objects of that class are not eligible for use with a TreeSet collection (unless a
Comparator is provided when the TreeSet object is instantiated).

A Comparator was not provided when the TreeSet object was instantiated in Listing 1 (p. 1030)
. Therefore, the attempt in Listing 2 (p. 1031) , to add a MyClass object to the TreeSet collection
resulted in a ClassCastException being thrown at runtime. The runtime error reads partially as follows:

"Exception ... java.lang.ClassCastException: MyClass cannot be cast to java.lang.Comparable"

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1026 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.15.4.3 The solution

To solve this problem, we must modify the de�nition of the class named MyClass to make it implement
the Comparable interface (assuming that we don't provide a Comparator when the TreeSet object
is instantiated).

This is accomplished in the modi�ed version of the program shown in Listing 3 (p. 1034) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1027

Listing 3 . The program named Comparable05.

//File Comparable05.java

import java.util.*;

public class Comparable05{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparable05

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

ref = new TreeSet();

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add(new MyClass(4));

ref.add(new MyClass(4));

ref.add(new MyClass(3));

ref.add(new MyClass(2));

ref.add(new MyClass(1));

}//end fillIt()

}//end class Populator

class MyClass implements Comparable{

int data;

MyClass(){

data = 0;

}//end noarg constructor

MyClass(int data){

this.data = data;

}//end parameterized constructor

public String toString(){

return "" + data;

}//end overridden toString()

public int compareTo(Object o){

if(!(o instanceof MyClass))

throw new ClassCastException();

if(((MyClass)o).data < data)

return 1;

if(((MyClass)o).data > data)

return -1;

else return 0;

}//end compareTo()

public boolean equals(Object o){

if(!(o instanceof MyClass))

return false;

if(((MyClass)o).data == data)

return true;

else return false;

}//end overridden equals()

}//end MyClass

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1028 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.390

3.4.15.4.3.1 The corrected code

The important code to note in this modi�ed version of the program is the new de�nition of the class named
MyClass . The other code in the program is essentially the same as in the previous version of the program.

The beginning portion of the new de�nition for MyClass is shown in Listing 4 (p. 1035) .

Listing 4 . Beginning of the class named MyClass.

class MyClass implements Comparable{

int data;

MyClass(){

data = 0;

}//end noarg constructor

MyClass(int data){

this.data = data;

}//end parameterized constructor

public String toString(){

return "" + data;

}//end overridden toString()

Table 3.391

The code shown in Listing 4 (p. 1035) is identical to the code in the previous version with one major
exception. This version of the class de�nition implements the Comparable interface. That means that
this class must provide a concrete de�nition for the following method, which is the only method declared in
the Comparable interface:

public int compareTo(Object o)

3.4.15.4.3.2 The compareTo method

The description of the compareTo method in the Oracle documentation begins as follows:

"Compares this object with the speci�ed object for order. Returns a negative integer, zero, or
a positive integer as this object is less than, equal to, or greater than the speci�ed object."

Beyond this, there are a number of additional stipulations that I won't repeat here. You can view them in
the Oracle documentation if you are interested in that level of detail.

Listing 5 (p. 1036) shows my implementation of the compareTo method. Although this implementation
satis�es the general description given above, I haven't taken the time to test it fully to con�rm that it meets
all of the additional stipulations provided by Oracle.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1029

Listing 5 . The compareTo method.

public int compareTo(Object o){

if(!(o instanceof MyClass))

throw new ClassCastException();

if(((MyClass)o).data < data)

return 1;

if(((MyClass)o).data > data)

return -1;

else return 0;

}//end compareTo()

Table 3.392

3.4.15.4.3.3 Consistent with equals

The Oracle documentation strongly emphasizes the need to make certain that a class' natural ordering is
consistent with equals, and provides the rules for meeting that requirement.

Further, the documentation for the TreeSet class reads partially as follows:

"Note that the ordering maintained by a set (whether or not an explicit comparator is provided)
must be consistent with equals if it is to correctly implement the Set interface. ..."

3.4.15.4.3.4 Meeting the consistent with equals requirement

In order to satisfy the rules and to cause the natural ordering of the MyClass class to be consistent
with equals , it was necessary to override the equals method inherited from the Object class. My
overridden version of the equals method is shown in Listing 6 (p. 1036) .

Listing 6 . The overridden equals method.

public boolean equals(Object o){

if(!(o instanceof MyClass))

return false;

if(((MyClass)o).data == data)

return true;

else return false;

}//end overridden equals()

}//end MyClass

Table 3.393

As was the case in de�ning the compareTo method, there are also a large number of stipulations
involved in properly overriding the equals method. I will simply refer you to the Oracle documentation if
you are interested in reading about those stipulations.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1030 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.15.4.3.5 The program output

Given all of the above, this program compiles and executes correctly, producing the following output.
1234
Note that duplicate elements were eliminated, and the iterator traversed the set in ascending element

order, sorted according to the natural ordering of the elements, as required for a SortedSet collection.

3.4.15.5 Run the program

I encourage you to copy the code from Listing 1 (p. 1030) and Listing 3 (p. 1034) . Paste the code into your
Java editor. Then compile and execute it.

Run the program and observe the results. Experiment with the code. Make changes, run the program
again, and observe the results of your changes. Make certain that you can explain why your changes behave
as they do.

3.4.15.6 Summary

I explained why the elements stored in a TreeSet collection must be references to objects instantiated
from a class that implements the Comparable interface. (In a future module, I will teach you about an
alternative approach that makes use of the Comparator interface.)

I provided an example of implementing the Comparable interface for a new class de�nition, and I
taught you about the natural ordering of the elements for a class.

I taught you the meaning of the consistent with equals requirement and showed you how to satisfy that
requirement for a new class de�nition.

I showed you how to de�ne a new class whose objects are eligible for inclusion in a TreeSet collection.

3.4.15.7 What's next?

In the next module, I will discuss the use of the Comparator interface in order to achieve a sorting order
that is di�erent from the natural ordering of the elements in a sorted collection.

3.4.15.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4080: The Comparable Interface, Part 2
• File: Java4080.htm
• Published: 04/19/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1031

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1032 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.16 Java4080r: Review
492

Revised: Wed Apr 06 22:35:48 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 493

• Object-Oriented Programming (OOP) with Java 494

3.4.16.1 Table of Contents

• Preface (p. 1039)
• Questions (p. 1039)

· 1 (p. 1039) , 2 (p. 1039) , 3 (p. 1040) , 4 (p. 1040) , 5 (p. 1040)

• Listings (p. 1040)
• Answers (p. 1042)
• Complete program listings (p. 1043)
• Miscellaneous (p. 1046)

3.4.16.2 Preface

This module is one in a collection of modules on Java Collections designed for teaching ITSE2321 - Object-
Oriented Programming (Java) at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4080: The Comparable
Interface, Part 2 495 .

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

3.4.16.3 Questions

3.4.16.3.1 Question 1 .

True or False? The elements stored in a TreeSet collection must be references to objects instantiated from
a class that implements the Comparable interface or makes use of an alternative approach involving the
Comparator interface.
Answer 1 (p. 1042)

3.4.16.3.2 Question 2

What output is produced by the program shown in Listing 1 (p. 1043) ?

• Compiler Error
• Runtime Error
• 44321
• 4321
• 1234
• 12344
• None of the above.

Answer 2 (p. 1042)

492This content is available online at <http://cnx.org/content/m48130/1.5/>.
493http://cnx.org/contents/dzOvxPFw
494http://cnx.org/contents/-2RmHFs_
495http://cnx.org/contents/wuZ3M�I

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1033

3.4.16.3.3 Question 3

True or False? The program in Listing 1 (p. 1043) throws a runtime error because the class named MyClass
fails to implement the CompareTo interface.

Answer 3 (p. 1042)

3.4.16.3.4 Question 4

What output is produced by the program shown in Listing 2 (p. 1045) ?

• Compiler Error
• Runtime Error
• 44321
• 4321
• 1234
• 12344
• None of the above.

Answer 4 (p. 1042)

3.4.16.3.5 Question 5

True or False? A class that implements the Comparable interface must provide a concrete de�nition of
the compareTo method.

Answer 5 (p. 1042)

3.4.16.4 Listings

• Listing 1 (p. 1043) . Comparable04.java.
• Listing 2 (p. 1045) . Comparable05.java.

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1034 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1035

3.4.16.5 Answers

3.4.16.5.1 Answer 5

True.
Back to Question 5 (p. 1040)

3.4.16.5.2 Answer 4

1234
Back to Question 4 (p. 1040)

3.4.16.5.3 Answer 3

False. The program in Listing 1 (p. 1043) throws a runtime error because the class named MyClass fails
to implement the Comparable interface.

Back to Question 3 (p. 1040)

3.4.16.5.4 Answer 2

Runtime Error
Back to Question 2 (p. 1039)

3.4.16.5.5 Answer 1

True.
Back to Question 1 (p. 1039)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1036 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.16.6 Complete program listings

Listing 1 . Comparable04.java.

//File Comparable04.java

import java.util.*;

public class Comparable04{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparable04

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

ref = new TreeSet();

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add(new MyClass(4));

ref.add(new MyClass(4));

ref.add(new MyClass(3));

ref.add(new MyClass(2));

ref.add(new MyClass(1));

}//end fillIt()

}//end class Populator

class MyClass{

int data;

MyClass(){

data = 0;

}//end noarg constructor

MyClass(int data){

this.data = data;

}//end parameterized constructor

public String toString(){

return "" + data;

}//end overridden toString()

}//end MyClass

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1037

Table 3.394

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1038 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 2 . Comparable05.java.

//File Comparable05.java

import java.util.*;

public class Comparable05{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparable05

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

ref = new TreeSet();

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add(new MyClass(4));

ref.add(new MyClass(4));

ref.add(new MyClass(3));

ref.add(new MyClass(2));

ref.add(new MyClass(1));

}//end fillIt()

}//end class Populator

class MyClass implements Comparable{

int data;

MyClass(){

data = 0;

}//end noarg constructor

MyClass(int data){

this.data = data;

}//end parameterized constructor

public String toString(){

return "" + data;

}//end overridden toString()

public int compareTo(Object o){

if(!(o instanceof MyClass))

throw new ClassCastException();

if(((MyClass)o).data < data)

return 1;

if(((MyClass)o).data > data)

return -1;

else return 0;

}//end compareTo()

public boolean equals(Object o){

if(!(o instanceof MyClass))

return false;

if(((MyClass)o).data == data)

return true;

else return false;

}//end overridden equals()

}//end MyClass

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1039

Table 3.395

3.4.16.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4080r: Review
• File: Java4080r.htm
• Published: 12/01/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.4.17 Java4090: The Comparator Interface, Part 1
496

Revised: Wed Apr 06 23:01:46 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 497

• Object-Oriented Programming (OOP) with Java 498

3.4.17.1 Table of Contents

• Preface (p. 1047)

· Viewing tip (p. 1047)

* Listings (p. 1048)

• Preview (p. 1048)
• Discussion and sample code (p. 1048)

· Generics (p. 1048)
· The Comparable interface (p. 1048)
· The Comparator interface (p. 1048)

496This content is available online at <http://cnx.org/content/m46189/1.4/>.
497http://cnx.org/contents/dzOvxPFw
498http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1040 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

· Beginning with a quiz (p. 1049)
· Eligibility for inclusion in a TreeSet (p. 1051)

* Using a Comparator object (p. 1051)
* Passing Comparator to TreeSet constructor (p. 1051)
* Passing the TreeSet to a Populator method (p. 1051)
* Similar to previous program (p. 1052)
* MyClass does not implement Comparable (p. 1052)
* Comparator eliminates requirement for Comparable (p. 1052)

· The class named TheComparator (p. 1053)

* Implementing the Comparator interface (p. 1053)
* Implementing the Serializable interface (p. 1053)
* Methods of the Comparator interface (p. 1054)
* The compare method (p. 1054)

· Specialization is required (p. 1054)

* Must gain access to instance variables (p. 1054)
* Specialized for type MyClass (p. 1054)
* General behavior of compare method (p. 1055)
* Implementation of required behavior (p. 1055)
* Other stipulations (p. 1055)

· The equals method (p. 1055)

* Overridden equals method (p. 1056)

· The program output (p. 1056)

• Run the program (p. 1057)
• Summary (p. 1057)
• What's next? (p. 1057)
• Miscellaneous (p. 1057)

3.4.17.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
in general and the Java Collections framework in particular.

This module discusses and illustrates the use of the Comparator interface. The sorting order estab-
lished by a Comparator may be di�erent or may be the same as the natural order. A Comparator
can be used to establish a sorting order for objects that don't have a natural ordering. The use of a
Comparator is an alternative to the implementation of the Comparable interface.

This module is also the �rst of several modules on the Comparator interface. The purpose of the
modules in this group is to teach you about the interactions between the Comparator interface and the
Collections Framework , particularly with respect to the Set , SortedSet , and SortedMap interfaces
of the Collections Framework. This module discusses Set and SortedSet . A discussion of SortedMap
will be deferred to a future module.

In addition to studying these modules, I strongly recommend that you study the Collections Trail 499 in
Oracle's Java Tutorials 500 . The modules in this collection are intended to supplement and not to replace
those tutorials.

3.4.17.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the listings while you are reading about them.

499http://docs.oracle.com/javase/tutorial/collections/index.html
500http://docs.oracle.com/javase/tutorial/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1041

3.4.17.2.1.1 Listings

• Listing 1 (p. 1050) . The program named Comparator02.
• Listing 2 (p. 1051) . Passing Comparator to TreeSet constructor.
• Listing 3 (p. 1052) . The �llIt method.
• Listing 4 (p. 1053) . The class named MyClass.
• Listing 5 (p. 1053) . Beginning of the class named TheComparator.
• Listing 6 (p. 1054) . Beginning of the compare method.
• Listing 7 (p. 1055) . Implementation of required behavior.
• Listing 8 (p. 1056) . The overridden equals method.
• Listing 9 (p. 1056) . Display the contents of the TreeSet object.

3.4.17.3 Preview

Previous modules have discussed the use of the Comparable interface. This module discusses and
illustrates the use of the Comparator interface.

The Comparable interface establishes natural ordering. The sorting order established by a
Comparator may be di�erent or may be the same as the natural order.

A Comparator can be used to establish a sorting order for objects that don't have a natural ordering
.

The use of a Comparator is an alternative to the implementation of the Comparable interface.
For example, a TreeSet object instantiated with the bene�t of a Comparator object doesn't require
the objects in its collection to implement Comparable .

3.4.17.4 Discussion and sample code

3.4.17.4.1 Generics

The code in this module is written with no thought given to Generics 501 . As a result, if you copy and
compile this code, you will probably get a warning about unchecked or unsafe operations .

While you will ultimately need to understand how to use Generics, that is a very complex topic. An
understanding of Generics is beyond the scope of this course. Therefore, for purposes of this course, you can
simply ignore those warnings.

3.4.17.4.2 The Comparable interface

Previous modules have discussed the use of the Comparable interface to establish the natural ordering
of elements in a sorted set. Although the name of the Comparable interface is similar to the name of the
Comparator interface, they are di�erent interfaces. Don't be confused by the similarity of the names.

3.4.17.4.3 The Comparator interface

This module will begin the discussion of an alternative approach to sorting, using the Comparator interface
to establish sorting order. The discussion will be continued in future modules.

The sorting order established by a Comparator may be di�erent from the natural ordering . The
Comparator interface can also be used to establish sorting order for objects that do not implement the
Comparable interface and therefore do not have a natural ordering .

501http://docs.oracle.com/javase/tutorial/java/generics/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1042 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.17.4.4 Beginning with a quiz

Let's begin with a little quiz to test your prior knowledge of the Collections Framework.
What output is produced by the program shown in Listing 1 (p. 1050) ?

• A. Compiler Error
• B. Runtime Error
• C. 44321
• D. 4321
• E. 1234
• F. 12344
• G. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1043

Listing 1 . The program named Comparator02.

//File Comparator02.java

//Copyright 2001, R.G.Baldwin

import java.util.*;

import java.io.Serializable;

public class Comparator02{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparator02

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

ref = new TreeSet(new TheComparator());

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add(new MyClass(4));

ref.add(new MyClass(4));

ref.add(new MyClass(3));

ref.add(new MyClass(2));

ref.add(new MyClass(1));

}//end fillIt()

}//end class Populator

class MyClass{

int data;

MyClass(){

data = 0;

}//end noarg constructor

MyClass(int data){

this.data = data;

}//end parameterized constructor

public String toString(){

return "" + data;

}//end overridden toString()

}//end MyClass

class TheComparator

implements Comparator,Serializable{

public int compare(Object o1,Object o2){

if(!(o1 instanceof MyClass))

throw new ClassCastException();

if(!(o2 instanceof MyClass))

throw new ClassCastException();

if(((MyClass)o1).data

< ((MyClass)o2).data)

return -1;

if(((MyClass)o1).data

> ((MyClass)o2).data)

return 1;

else return 0;

}//end compare()

public boolean equals(Object o){

if(!(o instanceof TheComparator))

return false;

else return true;

}//end overridden equals()

}//end class TheComparator

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1044 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.396

If your answer was E. 1234 , then you are correct.

3.4.17.4.5 Eligibility for inclusion in a TreeSet

The TreeSet class implements the SortedSet interface.
In an earlier module, I told you that in order to be eligible for inclusion in a TreeSet collection, an

object must be instantiated from a class that implements the Comparable interface.
At that time, I also told you that it is possible to instantiate a new TreeSet object using a constructor

that receives an incoming reference to a Comparator object, in which case it is not necessary for the
objects in the collection to implement the Comparable interface.

3.4.17.4.5.1 Using a Comparator object

The program in Listing 1 (p. 1050) takes this latter approach. The main purpose of this program is to
illustrate the use of a Comparator object as an alternative to implementation of the Comparable
interface.

3.4.17.4.5.2 Passing Comparator to TreeSet constructor

The code fragment in Listing 2 (p. 1051) shows the instantiation of a new TreeSet object, passing an
anonymous object of type TheComparator as a parameter to the constructor for TreeSet . Shortly,
we will see that the class named TheComparator implements the Comparator interface. Therefore,
an object instantiated from that class is a Comparator object.

Listing 2 . Passing Comparator to TreeSet constructor.

Collection ref;

ref = new TreeSet(new TheComparator());

Populator.fillIt(ref);

Table 3.397

3.4.17.4.5.3 Passing the TreeSet to a Populator method

The code fragment in Listing 2 (p. 1051) also shows the reference to the TreeSet object being stored in
a reference variable of the interface type Collection . The reference to the TreeSet object is passed as
type Collection to a method named �llIt .

The purpose of the �llIt method is to instantiate some objects of type MyClass , and to store those
object references in the TreeSet collection.

3.4.17.4.5.4 The �llIt method

The code fragment in Listing 3 (p. 1052) shows the entire method named �llIt . This method instantiates
�ve objects from the class named MyClass and adds those object's references to the TreeSet collection.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1045

Listing 3 . The �llIt method.

class Populator{

public static void fillIt(Collection ref){

ref.add(new MyClass(4));

ref.add(new MyClass(4));

ref.add(new MyClass(3));

ref.add(new MyClass(2));

ref.add(new MyClass(1));

}//end fillIt()

}//end class Populator

Table 3.398

3.4.17.4.5.5 Similar to previous program

This is essentially the same code that we saw in a sample program in a previous module. In that module,
we saw that it was necessary for the class named MyClass to implement the Comparable interface.
Otherwise, the add method would throw a runtime exception.

3.4.17.4.5.6 MyClass does not implement Comparable

In that program, however, the TreeSet object was instantiated without bene�t of a Comparator object.
As you can see in the code fragment in Listing 4 (p. 1053) , the class named MyClass in this program

does not implement the Comparable interface.

3.4.17.4.5.7 Comparator eliminates requirement for Comparable

Furthermore, the add method in Listing 3 (p. 1052) does not throw a runtime exception. That is because
the TreeSet object was instantiated with the bene�t of a Comparator object.

The use of a Comparator object in the instantiation of the TreeSet object eliminates the requirement
for objects stored in the TreeSet collection to implement the Comparable interface.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1046 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 4 . The class named MyClass.

class MyClass{

int data;

MyClass(){

data = 0;

}//end noarg constructor

MyClass(int data){

this.data = data;

}//end parameterized constructor

public String toString(){

return "" + data;

}//end overridden toString()

}//end MyClass

Table 3.399

3.4.17.4.6 The class named TheComparator

That brings us to the class named TheComparator from which the Comparator object was instantiated
and passed to the constructor for the TreeSet object in Listing 2 (p. 1051) . The declaration for the class
named TheComparator is shown in Listing 5 (p. 1053) .

Listing 5 . Beginning of the class named TheComparator.

class TheComparator

implements Comparator,Serializable{

Table 3.400

As you can see, the class named TheComparator implements both the Comparator interface and
the Serializable interface.

3.4.17.4.6.1 Implementing the Comparator interface

By implementing the Comparator interface, an object instantiated from the class is eligible to be passed
to the constructor for a TreeSet object, which requires an incoming parameter of type Comparator .

3.4.17.4.6.2 Implementing the Serializable interface

Here is what Oracle has to say about implementing the Serializable interface:

"Note: It is generally a good idea for comparators to implement java.io.Serializable, as they may
be used as ordering methods in serializable data structures (like TreeSet, TreeMap). In order
for the data structure to serialize successfully, the comparator (if provided) must implement
Serializable."

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1047

Since the Serializable interface doesn't declare any methods, implementing the interface simply requires
a declaration that the interface is being implemented.

3.4.17.4.6.3 Methods of the Comparator interface

The Comparator interface declares the two methods listed below:

• public int compare (Object o1, Object o2)
• public boolean equals (Object obj)

As is always the case when implementing interfaces, a class that implements the Comparator interface
must provide concrete de�nitions for both of these methods.

3.4.17.4.6.4 The compare method

The beginning of the compare method is shown in Listing 6 (p. 1054) .

Listing 6 . Beginning of the compare method.

public int compare(Object o1,Object o2){

if(!(o1 instanceof MyClass))

throw new ClassCastException();

if(!(o2 instanceof MyClass))

throw new ClassCastException();

Table 3.401

The purpose of a Comparator is to compare the values stored in the instance variables of two objects
and to return a value indicating which object is greater .

3.4.17.4.7 Specialization is required

Generally speaking, therefore, a Comparator object must be specialized to deal with a particular type of
object. That type could be

• A speci�c class from which the object is instantiated,
• A speci�c interface implemented by the class from which the object is instantiated, or perhaps
• A speci�c superclass of the class from which the object is instantiated.

The code in Listing 6 (p. 1054) con�rms that both of the objects to be compared are of the correct type,
which in this case is type MyClass .

3.4.17.4.7.1 Must gain access to instance variables

Regardless of how the type is established, the code in the compare method of the Comparator object
must gain access to the instance variables of the two objects passed to the compare method as type
Object . This normally requires that a downcast be performed on the incoming object references.

3.4.17.4.7.2 Specialized for type MyClass

This Comparator is specialized to compare two objects of the class named MyClass . The �rst two
statements in Listing 6 (p. 1054) above con�rm that both of the incoming objects are of type MyClass .
If either object is not of that type, an exception is thrown.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1048 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.17.4.7.3 General behavior of compare method

The general description of the behavior of the compare method as provided by Oracle is shown below:

"Compares its two arguments for order. Returns a negative integer, zero, or a positive integer
as the �rst argument is less than, equal to, or greater than the second."

3.4.17.4.7.4 Implementation of required behavior

This behavior is accomplished by the code shown in Listing 7 (p. 1055) . In this case, the comparison is
based solely on the values of the instance variable named data in each of the two objects.

Depending on which object contains the larger value in its instance variable, a value of 1 or -1 is returned.
If the two values are equal, a value of 0 is returned.

(Note that it is up to the author of the compare method to decide what constitutes larger. This
gives the author of the method a great deal of control over the results of a sorting operation.)

Listing 7 . Implementation of required behavior.

if(((MyClass)o1).data < ((MyClass)o2).data)

return -1;

if(((MyClass)o1).data > ((MyClass)o2).data)

return 1;

else return 0;

}//end compare()

Table 3.402

3.4.17.4.7.5 Other stipulations

The documentation for the compare method contains several other stipulations regarding the behavior of
the method. While I believe that this version of the compare method meets all of those stipulations, I
haven't taken the time to test it fully. Therefore, it is possible that it may not meet all of the stipulations
in terms of its behavior.

3.4.17.4.8 The equals method

Every new class inherits a default version of the equals method from the class named Object. Therefore,
a new class that implements the Comparator interface already has such a method. The new class is free
to override the inherited version, or to simply make use of the inherited version. Here is what Oracle has to
say on the subject:

"Note that it is always safe not to override Object.equals(Object). However, overriding this
method may, in some cases, improve performance by allowing programs to determine that two
distinct Comparators impose the same order."

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1049

3.4.17.4.8.1 Overridden equals method

I decided, for purposes of illustration, to go ahead and override the equals method. However, my overridden
version, as shown in Listing 8 (p. 1056) isn't very signi�cant. It simply con�rms that an object being
compared for equality to a Comparator object is instantiated from the same class.

Since the Comparator object doesn't contain any instance variables, there isn't much more to be
tested for equality.

Listing 8 . The overridden equals method.

public boolean equals(Object o){

if(!(o instanceof TheComparator))

return false;

else return true;

}//end overridden equals()

}//end class TheComparator

Table 3.403

3.4.17.4.9 The program output

Finally, the code shown in Listing 9 (p. 1056) uses an Iterator to display the contents of the populated
TreeSet object.

Listing 9 . Display the contents of the TreeSet object.

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

Table 3.404

The output produced by this code fragment is shown below.
1234
As you can see, the duplicate elements having the value 4 were eliminated as would be expected for a

Set object. In addition, the Comparator was used to accomplish the following contract of a SortedSet
object:

"A set that further guarantees that its iterator will traverse the set in ascending element or-
der, sorted according to the natural ordering of its elements (see Comparable), or by a
Comparator provided at sorted set creation time."

In this case, the sorted order was controlled by the Comparator object, and not by the natural ordering
of the elements. The natural ordering is controlled by implementation of the Comparable interface,
and the elements in this collection did not implement the Comparable interface. Therefore, objects of
the class named MyClass do not have a natural order in this program.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1050 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

However, the code in this version of the Comparator produced an output order that matches the
ascending natural order that one might expect for objects of type MyClass . Future modules will show
you how to design the Comparator object to produce di�erent output orders, such as descending order
for example.

3.4.17.5 Run the program

I encourage you to copy the code Listing 2 (p. 1051) and paste it into your Java editor. Then compile and
execute it.

Run the program and observe the results. Experiment with the code. Make changes, run the program
again, and observe the results of your changes. Make certain that you can explain why your changes behave
as they do.

3.4.17.6 Summary

This module has discussed and illustrated the use of the Comparator interface.
The sorting order established by a Comparator may be di�erent or may be the same as the natural

ordering for a collection of objects .
A Comparator can be used to establish a sorting order for objects that don't have a natural ordering

.
The use of a Comparator is an alternative to the implementation of the Comparable interface.
A TreeSet object instantiated with the bene�t of a Comparator object doesn't require the objects

in its collection to implement Comparable .

3.4.17.7 What's next?

In the next module, I will illustrate the use of a Comparator to eliminate the e�ect of case when sorting
String objects.

3.4.17.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4090: The Comparator Interface, Part 1
• File: Java4090.htm
• Published: 05/07/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1051

3.4.18 Java4090r: Review
502

Revised: Wed Apr 06 23:12:11 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 503

• Object-Oriented Programming (OOP) with Java 504

3.4.18.1 Table of Contents

• Preface (p. 1058)
• Questions (p. 1058)

· 1 (p. 1058) , 2 (p. 1058) , 3 (p. 1058) , 4 (p. 1059) , 5 (p. 1059) , 6 (p. 1059) , 7 (p. 1059) , 8
(p. 1059) , 9 (p. 1059) , 10 (p. 1059) , 11 (p. 1060)

• Listings (p. 1060)
• Answers (p. 1061)
• Complete program listing (p. 1063)
• Miscellaneous (p. 1064)

3.4.18.2 Preface

This module is one in a collection of modules on Java Collections designed for teaching ITSE2321 - Object-
Oriented Programming (Java) at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4090: The Comparator
Interface, Part 1 505 .

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

3.4.18.3 Questions

3.4.18.3.1 Question 1 .

True or False? The sorting order established by a Comparator must be the same as the natural order.
Answer 1 (p. 1062)

3.4.18.3.2 Question 2

True or False? A Comparator can be used to establish a sorting order for objects that don't have a
natural ordering.

Answer 2 (p. 1062)

3.4.18.3.3 Question 3

True or False? The use of a Comparator is an alternative to the implementation of the Comparable
interface.

Answer 3 (p. 1062)

502This content is available online at <http://cnx.org/content/m48132/1.4/>.
503http://cnx.org/contents/dzOvxPFw
504http://cnx.org/contents/-2RmHFs_
505http://cnx.org/contents/5_Rd_R2l

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1052 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.18.3.4 Question 4

True or False? Comparable and Comparator are two di�erent names for the same interface.
Answer 4 (p. 1062)

3.4.18.3.5 Question 5

What output is produced by the program shown in Listing 1 (p. 1063) ?

• Compiler Error
• Runtime Error
• 44321
• 4321
• 1234
• 12344

Answer 5 (p. 1062)

3.4.18.3.6 Question 6

True or False? It is possible to instantiate a new TreeSet object using a constructor that receives an
incoming reference to a Comparable object, in which case it is not necessary for the objects in the
collection to implement the Comparator interface.

Answer 6 (p. 1062)

3.4.18.3.7 Question 7

True or False? In Listing 1 (p. 1063) , the constructor that is called to instantiate a new TreeSet object
receives an incoming parameter of type Comparable .

Answer 7 (p. 1062)

3.4.18.3.8 Question 8

True or False? When the �llIt method shown in Listing 1 (p. 1063) returns, the collection object referred
to by ref will contain references to �ve objects of type MyClass with those objects encapsulating the
values 4, 4, 3, 2, and 1.

Answer 8 (p. 1061)

3.4.18.3.9 Question 9

True or False? When the �llIt method shown in Listing 1 (p. 1063) returns, the collection object referred
to by ref will contain references to four objects of type MyClass with those objects encapsulating the
values 1, 2, 3, and 4 sorted into the order shown.

Answer 9 (p. 1061)

3.4.18.3.10 Question 10

True or False? Given: the Comparator interface declares the two methods listed below:

• public int compare(Object o1, Object o2)
• public boolean equals(Object obj)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1053

(Note that the Java documentation would replace the type Object with the generic type T. However, generics
are beyond the scope of this course.)

A class that implements the Comparator interface must provide a concrete de�nition for the compare
method but providing a concrete de�nition for the equals method is optional.

Answer 10 (p. 1061)

3.4.18.3.11 Question 11

True or False? The general behavior of the compare method of a Comparator object compares its two
arguments for order and returns a negative integer, zero, or a positive integer as the �rst argument is less
than, equal to, or greater than the second.

Answer 11 (p. 1061)

3.4.18.4 Listings

• Listing 1 (p. 1063) . Comparator02.java.

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1054 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.18.5 Answers

3.4.18.5.1 Answer 11

True.
Back to Question 11 (p. 1060)

3.4.18.5.2 Answer 10

True. Every new class inherits a default version of the equals method from the class named Object.
Therefore, a new class that implements the Comparator interface already has such a method. The new
class is free to override the inherited version, or to simply make use of the inherited version.

Back to Question 10 (p. 1059)

3.4.18.5.3 Answer 9

True.
Back to Question 9 (p. 1059)

3.4.18.5.4 Answer 8

False. When the �llIt method shown in Listing 1 (p. 1063) returns, the collection object referred to by
ref will contain references to four objects of type MyClass with those objects encapsulating the values
4, 3, 2, and 1 with no duplicates.

Back to Question 8 (p. 1059)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1055

3.4.18.5.5 Answer 7

False. In Listing 1 (p. 1063) , the constructor that is called to instantiate a new TreeSet object receives an
incoming parameter of type Comparator . Once again, don't confuse the two interfaces simply because
they have similar names.

Back to Question 7 (p. 1059)

3.4.18.5.6 Answer 6

False. It is possible to instantiate a new TreeSet object using a constructor that receives an incoming
reference to a Comparator object, in which case it is not necessary for the objects in the collection to
implement the Comparable interface. Don't confuse the two interfaces.

Back to Question 6 (p. 1059)

3.4.18.5.7 Answer 5

1234
Back to Question 5 (p. 1059)

3.4.18.5.8 Answer 4

False. Although the name of the Comparable interface is similar to the name of the Comparator
interface, they are di�erent interfaces. Don't be confused by the similarity of the names.

Back to Question 4 (p. 1059)

3.4.18.5.9 Answer 3

True.
Back to Question 3 (p. 1058)

3.4.18.5.10 Answer 2

True.
Back to Question 2 (p. 1058)

3.4.18.5.11 Answer 1

False. The sorting order established by a Comparator may be di�erent or may be the same as the natural
order.

Back to Question 1 (p. 1058)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1056 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.18.6 Complete program listing

Listing 1 . Comparator02.java.

//File Comparator02.java

//Copyright 2001, R.G.Baldwin

import java.util.*;

import java.io.Serializable;

public class Comparator02{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparator02

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

ref = new TreeSet(new TheComparator());

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next());

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add(new MyClass(4));

ref.add(new MyClass(4));

ref.add(new MyClass(3));

ref.add(new MyClass(2));

ref.add(new MyClass(1));

}//end fillIt()

}//end class Populator

class MyClass{

int data;

MyClass(){

data = 0;

}//end noarg constructor

MyClass(int data){

this.data = data;

}//end parameterized constructor

public String toString(){

return "" + data;

}//end overridden toString()

}//end MyClass

class TheComparator

implements Comparator,Serializable{

public int compare(Object o1,Object o2){

if(!(o1 instanceof MyClass))

throw new ClassCastException();

if(!(o2 instanceof MyClass))

throw new ClassCastException();

if(((MyClass)o1).data

< ((MyClass)o2).data)

return -1;

if(((MyClass)o1).data

> ((MyClass)o2).data)

return 1;

else return 0;

}//end compare()

public boolean equals(Object o){

if(!(o instanceof TheComparator))

return false;

else return true;

}//end overridden equals()

}//end class TheComparator

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1057

Table 3.405

3.4.18.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4090r: Review
• File: Java4090r.htm
• Published: 12/01/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.4.19 Java4100: The Comparator Interface, Part 2
506

Revised: Thu Apr 07 10:44:22 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 507

• Object-Oriented Programming (OOP) with Java 508

3.4.19.1 Table of Contents

• Preface (p. 1065)

· Viewing tip (p. 1065)

* Listings (p. 1065)

• Preview (p. 1066)
• Discussion and sample code (p. 1066)

· Generics (p. 1066)
· Beginning with a quiz (p. 1066)

* The program output (p. 1068)

506This content is available online at <http://cnx.org/content/m46190/1.4/>.
507http://cnx.org/contents/dzOvxPFw
508http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1058 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

* From the previous module (p. 1068)
* Doing more with a Comparator (p. 1068)

· Two steps in the program (p. 1068)

* The �rst step (p. 1068)
* The second step (p. 1069)
* Duplicate names eliminated from the set (p. 1069)
* Does Joe equal JOE? (p. 1069)

· Let's see some code (p. 1069)

* The Populator code (p. 1070)
* Populating the collection with String objects (p. 1071)
* Populating the TreeSet collection (p. 1072)
* Beginning of the Comparator class (p. 1072)
* The interesting code (p. 1073)
* Convert to upper-case (p. 1073)
* Making the comparison (p. 1073)
* Just what I was looking for (p. 1073)
* The results (p. 1074)

• Run the program (p. 1074)
• Summary (p. 1074)
• What's next? (p. 1074)
• Miscellaneous (p. 1074)

3.4.19.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
in general and the Java Collections framework in particular.

This module shows you how to use a Comparator object to achieve natural (ascending) order on a
set of names added as String objects to a TreeSet collection while ignoring the case used to write the
names.

In addition to studying these modules, I strongly recommend that you study the Collections Trail 509 in
Oracle's Java Tutorials 510 . The modules in this collection are intended to supplement and not to replace
those tutorials.

3.4.19.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the listings while you are reading about them.

3.4.19.2.1.1 Listings

• Listing 1 (p. 1067) . The program named Comparator03
• Listing 2 (p. 1069) . Create, populate, and display a TreeSet collection.
• Listing 3 (p. 1071) . The class named Populator.
• Listing 4 (p. 1071) . A TreeSet with a Comparator.
• Listing 5 (p. 1072) . Populating the TreeSet collection.
• Listing 6 (p. 1072) . Beginning of the Comparator class.
• Listing 7 (p. 1073) . The interesting code in the compare method.

509http://docs.oracle.com/javase/tutorial/collections/index.html
510http://docs.oracle.com/javase/tutorial/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1059

3.4.19.3 Preview

In this module, I will show you how to use a Comparator object to achieve a natural ordering of a set
of names (String objects) added to a TreeSet collection while ignoring the case used to write the
names. (The natural ordering for String objects is ascending.)

3.4.19.4 Discussion and sample code

3.4.19.4.1 Generics

The code in this module is written with no thought given to Generics 511 . As a result, if you copy and
compile this code, you will probably get a warning about unchecked or unsafe operations .

While you will ultimately need to understand how to use Generics, that is a very complex topic. An
understanding of Generics is beyond the scope of this course. Therefore, for purposes of this course, you can
simply ignore those warnings.

3.4.19.4.2 Beginning with a quiz

Let's begin with a quiz to test your prior knowledge of the Java Collections Framework.
What output is produced by the program shown in Listing 1 (p. 1067) ?

• A. Compiler Error
• B. Runtime Error
• C. Joe Bill Tom JOE BILL TOM
• D. Tom TOM Joe JOE Bill BILL
• E. Joe Bill Tom
• F. None of the above.

511http://docs.oracle.com/javase/tutorial/java/generics/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1060 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 1 . The program named Comparator03.

//File Comparator03.java

//Copyright 2001 R.G.Baldwin

import java.util.*;

import java.io.Serializable;

public class Comparator03{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparator03

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

System.out.println("Natural ordering");

ref = new TreeSet();

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

System.out.println();

System.out.println("Comparator in use");

ref = new TreeSet(new TheComparator());

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add("Joe");

ref.add("Bill");

ref.add("Tom");

ref.add("JOE");

ref.add("BILL");

ref.add("TOM");

}//end fillIt()

}//end class Populator

class TheComparator

implements Comparator,Serializable{

public int compare(Object o1,Object o2){

if(!(o1 instanceof String))

throw new ClassCastException();

if(!(o2 instanceof String))

throw new ClassCastException();

//Do an upper-case comparison

int result =

((String)o1).toUpperCase().

compareTo(((String)o2).

toUpperCase());

return result;

}//end compare()

public boolean equals(Object o){

if(!(o instanceof TheComparator))

return false;

else return true;

}//end overridden equals()

}//end class TheComparator

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1061

Table 3.406

If your answer was None of the above , you are correct.

3.4.19.4.2.1 The program output

The output produced by the program shown in Listing 1 (p. 1067) is four lines long as shown below. (Note
that the bullets shown below do not appear in the actual program output.)

• Natural ordering
• BILL Bill JOE Joe TOM Tom
• Comparator in use
• Bill Joe Tom

3.4.19.4.2.2 From the previous module

In the previous module, I introduced you to the essentials of de�ning and using a Comparator for
controlling the sort order of the elements contained in a TreeSet collection.

In that module, I explained the di�erence between natural ordering and the sort ordering produced
through the use of a Comparator object.

However, what I showed you generally replicated the natural ordering , and therefore, wasn't too
exciting.

3.4.19.4.2.3 Doing more with a Comparator

In this and several subsequent modules, I am going to show you some of the things that you can do with a
Comparator object. By using a Comparator object, you can achieve comparisons and sort orders that
are di�erent from the natural ordering for a given element type.

3.4.19.4.3 Two steps in the program

The program shown in Listing 1 (p. 1067) goes through two major steps.

3.4.19.4.3.1 The �rst step

First it populates a TreeSet collection with the names of six people without using a Comparator . Then
it displays the contents of that collection using an iterator. That produces the following output (without
the bullets) :

• Natural ordering
• BILL Bill JOE Joe TOM Tom

As you will see later, the names were added to the collection in a di�erent order than the output order shown
above.

In this step, each of the six names that were added to the collection were displayed after they were
arranged into their natural ordering .

In case you are unfamiliar with this aspect of character encoding, upper-case characters appear before
lower-case characters in the natural ordering of characters in the Unicode character set. Therefore, the
names consisting of all upper-case characters appear in the output ahead of the same names consisting of a
mixture of upper-case and lower-case characters.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1062 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.19.4.3.2 The second step

Then the program shown in Listing 1 (p. 1067) instantiates a new TreeSet object, providing a Com-
parator for use in comparing and managing the sort order of the elements.

The program populates the new TreeSet collection with the same set of six names in the same order as
before. After the collection is populated, its contents are displayed producing the following output (without
the bullets) :

• Comparator in use
• Bill Joe Tom

3.4.19.4.3.3 Duplicate names eliminated from the set

Three of the names appear in the output in the same order as the natural ordering shown earlier. However,
the duplicate names were eliminated and only three names appear.

This is because a Comparator was used by the TreeSet object to compare the elements as they were
added. The Comparator was designed to eliminate the distinction between upper-case and lower-case
characters.

3.4.19.4.3.4 Does Joe equal JOE?

For the earlier case that didn't use a Comparator , the names Joe and JOE were considered to be
di�erent elements. Therefore, after population, both names appeared in the collection.

When the Comparator was used to eliminate the distinction between upper-case and lower-case
characters, the names Joe and JOE were considered to be duplicates. As a result, only the �rst of the
two was allowed into the collection and the second of the two was rejected.

3.4.19.4.4 Let's see some code

The code shown in Listing 2 (p. 1069) is the code that was used

• To instantiate a TreeSet object without a Comparator ,
• To populate the collection, and
• To display the contents of the collection after it was populated.

Listing 2 . Create, populate, and display a TreeSet collection.

ref = new TreeSet();

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

Table 3.407

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1063

3.4.19.4.4.1 The Populator code

The code in Listing 3 (p. 1071) was used to populate the collection in both cases, both with, and without a
Comparator (to be discussed later).

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1064 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 3 . The class named Populator.

class Populator{

public static void fillIt(Collection ref){

ref.add("Joe");

ref.add("Bill");

ref.add("Tom");

ref.add("JOE");

ref.add("BILL");

ref.add("TOM");

}//end fillIt()

}//end class Populator

Table 3.408

3.4.19.4.4.2 Populating the collection with String objects

Note that in Listing 3 (p. 1071) , unlike earlier modules, I did not use a class of my own design from which to
instantiate the objects used to populate the collection. Rather, I used the String class from the standard
library.

The String class implements the Comparable interface. Therefore, objects instantiated from the
String class have a natural ordering when placed in a collection.

Because the compareTo method of the String class, (which implements the Comparable interface)
considers upper-case and lower-case characters to be di�erent, there were no duplicate elements added to
the collection when only the compareTo method was used to compare elements. The six String objects
were simply arranged so that the iterator would return references to those objects in sorted order. This
produced the output shown below:

BILL Bill JOE Joe TOM Tom

3.4.19.4.4.3 A TreeSet with a Comparator

The code shown in Listing 4 (p. 1071) was used to instantiate a new TreeSet object. A Comparator
object's reference was passed to the TreeSet constructor. The Comparator object (instead of the
compareTo method) was subsequently used for comparing and controlling the sorting order of the elements
in the TreeSet collection.

Listing 4 . A TreeSet with a Comparator.

ref = new TreeSet(new TheComparator());

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1065

Table 3.409

The code in Listing 4 (p. 1071) was also used to populate the collection, and to display the contents of
the collection after it was populated.

3.4.19.4.4.4 Populating the TreeSet collection

As before, the �llIt method shown in Listing 5 (p. 1072) was used to populate the collection. The same six
names as before were added to the TreeSet collection. However, the result of adding those six names was
determined by the behavior of the compare method in the Comparator object used by the TreeSet
object for managing the collection. (Three of the names were rejected as duplicates.)

Listing 5 . Populating the TreeSet collection.

public static void fillIt(Collection ref){

ref.add("Joe");

ref.add("Bill");

ref.add("Tom");

ref.add("JOE");

ref.add("BILL");

ref.add("TOM");

}//end fillIt()

Table 3.410

3.4.19.4.4.5 Beginning of the Comparator class

The code in Listing 6 (p. 1072) shows the beginning of the class from which the Comparator object was
instantiated. Note that this class implements the Comparator interface, and therefore de�nes a concrete
version of the method named compare .

Listing 6 . Beginning of the Comparator class.

class TheComparator

implements Comparator,Serializable{

public int compare(Object o1,Object o2){

if(!(o1 instanceof String))

throw new ClassCastException();

if(!(o2 instanceof String))

throw new ClassCastException();

Table 3.411

Listing 6 (p. 1072) doesn't contain the interesting part of this class. The code in Listing 6 (p. 1072)
simply throws an exception if the compare method receives any incoming parameters of types other than
String .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1066 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.19.4.4.6 The interesting code

The interesting code in the method named compare is shown in Listing 7 (p. 1073) .

Listing 7 . The interesting code in the compare method.

int result =

((String)o1).toUpperCase().

compareTo(((String)o2).

toUpperCase());

return result;

}//end compare()

Table 3.412

The code in Listing 7 (p. 1073) makes use of two methods of the String class to compare the two
incoming objects.

3.4.19.4.4.7 Convert to upper-case

The method named toUpperCase is used to produce a version of each of the incoming strings that consists
of upper-case characters only. In other words, lower-case characters in each of the two strings are replaced
by the corresponding upper-case characters. This conversion occurs before the strings are compared.

For example, the string Joe is temporarily converted to JOE inside the compare method, before
the actual comparison is made. This results in the two strings containing Joe and JOE being considered
to be duplicates. If one of them is already in the collection when an attempt is made to add the other, the
second will be rejected as a duplicate.

3.4.19.4.4.8 Making the comparison

Then the compareTo method of the String class is used to make the actual comparison. (Note that
this is the same method that is used to make the comparison in the absence of a Comparator object.
However, in the case of the Comparator object, the case of the strings is modi�ed before they are passed
to the compareTo method.)

This code calls the compareTo method on the upper-case version of the string represented by o1 ,
passing the upper-case version of the string represented by o2 as a parameter. Here is part of what Oracle
has to say about the behavior of the compareTo method.

"Returns: the value 0 if the argument is a string lexicographically equal to this string; a value
less than 0 if the argument is a string lexicographically greater than this string; and a value
greater than 0 if the argument is a string lexicographically less than this string."

3.4.19.4.4.9 Just what I was looking for

That is exactly the behavior that I was looking for, so all that I needed to do after calling the compareTo
method on the upper-case versions of the two strings was to return the value that was returned by the
compareTo method.

(Note, while writing this module and explaining the behavior of this program, I discovered that I could
have used a method of the String class named compareToIgnoreCase to accomplish the same thing
with a little less work.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1067

3.4.19.4.4.10 The results

When the TreeSet object used the Comparator object to compare and arrange the elements in the
collection, the three duplicate names were eliminated and the iterator delivered references to the remaining
three names in the following order:

Bill Joe Tom

3.4.19.5 Run the program

I encourage you to copy the code from Listing 1 (p. 1067) and paste it into your Java editor. Then compile
and execute it.

Run the program and observe the results. Experiment with the code. Make changes, run the program
again, and observe the results of your changes. Make certain that you can explain why your changes behave
as they do.

3.4.19.6 Summary

In this module, I showed you how to use a Comparator object to achieve a natural ordering of a set
of names (String objects) added to a TreeSet collection while ignoring the case used to write the
names. (Natural ordering for String objects is ascending.)

3.4.19.7 What's next?

In the next module, I will show you how to use a Comparator to cause a TreeSet collection containing
references to String objects to be sorted in descending order while preserving di�erences in case.

3.4.19.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4100: The Comparator Interface, Part 2
• File: Java4100.htm
• Published: 05/07/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1068 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.20 Java4100r: Review
512

Revised: Thu Apr 07 11:03:31 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 513

• Object-Oriented Programming (OOP) with Java 514

3.4.20.1 Table of Contents

• Preface (p. 1075)
• Questions (p. 1075)

· 1 (p. 1075) , 2 (p. 1075) , 3 (p. 1076) , 4 (p. 1076) , 5 (p. 1076)

• Listings (p. 1076)
• Answers (p. 1078)
• Complete program listing (p. 1078)
• Miscellaneous (p. 1080)

3.4.20.2 Preface

This module is one in a collection of modules on Java Collections designed for teaching ITSE2321 - Object-
Oriented Programming (Java) at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4100: The Comparator
Interface, Part 2 515 .

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

3.4.20.3 Questions

3.4.20.3.1 Question 1 .

What output is produced by the program shown in Listing 1 (p. 1079) ?

• Compiler Error
• Runtime Error
• Joe Bill Tom JOE BILL TOM
• Tom TOM Joe JOE Bill BILL
• Joe Bill Tom
• None of the above.

Answer 1 (p. 1078)

3.4.20.3.2 Question 2

True or False? By using a Comparator object, you can achieve comparisons and sort orders that are
di�erent from the natural ordering for a given element type.

Answer 2 (p. 1078)

512This content is available online at <http://cnx.org/content/m48124/1.4/>.
513http://cnx.org/contents/dzOvxPFw
514http://cnx.org/contents/-2RmHFs_
515http://cnx.org/contents/WXdj2vxV

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1069

3.4.20.3.3 Question 3

True or False? The �rst time the �llIt method is called in Listing 1 (p. 1079) , the TreeSet collection
referred to by the incoming parameter named ref is populated with the following names in the following
order:

Joe Bill Tom JOE BILL TOM
Answer 3 (p. 1078)

3.4.20.3.4 Question 4

True or False? The second time the �llIt method is called in Listing 1 (p. 1079) , the TreeSet collection
referred to by the incoming parameter named ref is populated with the following names in the following
order:

Bill Bill Joe Joe Tom Tom
Answer 4 (p. 1078)

3.4.20.3.5 Question 5

Explain why the second time the �llIt method is called in Listing 1 (p. 1079) , the TreeSet collection
referred to by the incoming parameter named ref is populated with the following names in the following
order:

Bill Joe Tom
Answer 5 (p. 1078)

3.4.20.4 Listings

• Listing 1 (p. 1079) . Comparator03.java.

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1070 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1071

3.4.20.5 Answers

3.4.20.5.1 Answer 5

A Comparator object's reference is passed to the TreeSet constructor when the second TreeSet
object is instantiated. The Comparator is designed to eliminate the distinction between upper-case and
lower-case characters when each new element is compared with the existing elements. This causes the last
three names to be treated as duplicates of the �rst three names so they are not added to the collection. As
a result, the collection ends up containing only the �rst three names that are added.

Back to Question 5 (p. 1076)

3.4.20.5.2 Answer 4

False. The second time the �llIt method is called in Listing 1 (p. 1079) , the TreeSet collection referred
to by the incoming parameter named ref is populated with the following names in the following order with
duplicate elements eliminated:

Bill Joe Tom
Back to Question 4 (p. 1076)

3.4.20.5.3 Answer 3

False. The �rst time the �llIt method is called in Listing 1 (p. 1079) , the TreeSet collection referred
to by the incoming parameter named ref is populated with the following names in the following natural
order for String objects. The String class implements the Comparable interface, and that is what
determines the sorted order in this case.

BILL Bill JOE Joe TOM Tom
Back to Question 3 (p. 1076)

3.4.20.5.4 Answer 2

True.
Back to Question 2 (p. 1075)

3.4.20.5.5 Answer 1

None of the above.
The output produced by the program shown in Listing 1 (p. 1079) is four lines long as shown below.

(Note that the bullets shown below do not appear in the actual program output.)

• Natural ordering
• BILL Bill JOE Joe TOM Tom
• Comparator in use
• Bill Joe Tom

Back to Question 1 (p. 1075)

3.4.20.6 Complete program listing

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1072 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 1 . Comparator03.java .

//File Comparator03.java

//Copyright 2001 R.G.Baldwin

import java.util.*;

import java.io.Serializable;

public class Comparator03{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparator03

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

System.out.println("Natural ordering");

ref = new TreeSet();

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

System.out.println();

System.out.println("Comparator in use");

ref = new TreeSet(new TheComparator());

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add("Joe");

ref.add("Bill");

ref.add("Tom");

ref.add("JOE");

ref.add("BILL");

ref.add("TOM");

}//end fillIt()

}//end class Populator

class TheComparator

implements Comparator,Serializable{

public int compare(Object o1,Object o2){

if(!(o1 instanceof String))

throw new ClassCastException();

if(!(o2 instanceof String))

throw new ClassCastException();

//Do an upper-case comparison

int result =

((String)o1).toUpperCase().

compareTo(((String)o2).

toUpperCase());

return result;

}//end compare()

public boolean equals(Object o){

if(!(o instanceof TheComparator))

return false;

else return true;

}//end overridden equals()

}//end class TheComparator

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1073

Table 3.413

3.4.20.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4100r: Review
• File: Java4100r.htm
• Published: 12/01/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.4.21 Java4110: The Comparator Interface, Part 3
516

Revised: Thu Apr 07 11:52:29 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 517

• Object-Oriented Programming (OOP) with Java 518

3.4.21.1 Table of Contents

• Preface (p. 1081)

· Viewing tip (p. 1081)

* Listings (p. 1081)

• Preview (p. 1081)
• Generics (p. 1081)
• Discussion and sample code (p. 1082)

· Beginning with a quiz (p. 1082)

* Similar to previous programs (p. 1084)

516This content is available online at <http://cnx.org/content/m46191/1.4/>.
517http://cnx.org/contents/dzOvxPFw
518http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1074 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

* A new TreeSet object with a Comparator (p. 1084)
* Populating the TreeSet collection (p. 1084)
* Display the contents of the TreeSet collection (p. 1084)

· Analyzing the contents of the TreeSet collection (p. 1084)

* Method used to populate the collection (p. 1085)
* Implementing the Comparator interface (p. 1085)
* The interesting code (p. 1086)
* Converting to reverse natural order (p. 1086)

• Run the program (p. 1086)
• Summary (p. 1086)
• What's next? (p. 1086)
• Miscellaneous (p. 1087)

3.4.21.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
in general and the Java Collections framework in particular.

The module shows you how to use a Comparator to cause a TreeSet collection to be sorted in
descending order while preserving the impact of di�erences in case.

In addition to studying these modules, I strongly recommend that you study the Collections Trail 519 in
Oracle's Java Tutorials 520 . The modules in this collection are intended to supplement and not to replace
those tutorials.

3.4.21.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the listings while you are reading about them.

3.4.21.2.1.1 Listings

• Listing 1 (p. 1083) . The program named Comparator04.
• Listing 2 (p. 1084) . A new TreeSet object with a Comparator.
• Listing 3 (p. 1085) . The �llIt method.
• Listing 4 (p. 1085) . Beginning of the class named TheComparator.
• Listing 5 (p. 1086) . The most interesting code.

3.4.21.3 Preview

In this module, I will teach you how to use a Comparator to cause a TreeSet collection to be sorted
in descending order while preserving the impact of di�erences in case. We might refer to this as reverse
natural order. In other words, the sorting order is the same as the natural order except that the order is
descending instead of ascending.

3.4.21.4 Generics

The code in this series of modules is written with no thought given to Generics 521 . As a result, if you copy
and compile the code, you will probably get warnings about unchecked or unsafe operations .

519http://docs.oracle.com/javase/tutorial/collections/index.html
520http://docs.oracle.com/javase/tutorial/index.html
521http://docs.oracle.com/javase/tutorial/java/generics/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1075

While you will ultimately need to understand how to use Generics, that is a very complex topic. An
understanding of Generics is beyond the scope of this course. Therefore, for purposes of this course, you can
simply ignore those warnings.

3.4.21.5 Discussion and sample code

3.4.21.5.1 Beginning with a quiz

Let's begin with a quiz to test your prior knowledge of the Collections Framework.
What output is produced by the program shown in Listing 1 (p. 1083) ?

• A. Compiler Error
• B. Runtime Error
• C. BILL Bill JOE Joe TOM Tom
• D. Tom TOM Joe JOE Bill BILL
• E. Joe Bill Tom
• F. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1076 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 1 . The program named Comparator04.

//File Comparator04.java

//Copyright 2001, R.G.Baldwin

import java.util.*;

import java.io.Serializable;

public class Comparator04{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparator04

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

ref = new TreeSet(new TheComparator());

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add("Joe");

ref.add("Bill");

ref.add("Tom");

ref.add("JOE");

ref.add("BILL");

ref.add("TOM");

}//end fillIt()

}//end class Populator

class TheComparator implements Comparator,Serializable{

public int compare(Object o1,Object o2){

if(!(o1 instanceof String))

throw new ClassCastException();

if(!(o2 instanceof String))

throw new ClassCastException();

int result = ((String)o1).compareTo(((String)o2));

return result*(-1);

}//end compare()

public boolean equals(Object o){

if(!(o instanceof TheComparator))

return false;

else return true;

}//end overridden equals()

}//end class TheComparator

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1077

Table 3.414

If you selected the following, you are correct:
D. Tom TOM Joe JOE Bill BILL

3.4.21.5.1.1 Similar to previous programs

The overall structure of this program is very similar to programs that I have discussed in previous modules.
Therefore, I will concentrate on those aspects of this program that di�erentiate it from the programs in
previous modules.

3.4.21.5.1.2 A new TreeSet object with a Comparator

The code in Listing 2 (p. 1084) instantiates a new TreeSet object, by providing a reference to an
anonymous object that implements the Comparator interface. That object is instantiated from the class
named TheComparator . It is the Comparator object that will be of most interest to us in this
module.

Listing 2 . A new TreeSet object with a Comparator.

Collection ref;

ref = new TreeSet(new TheComparator());

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

Table 3.415

3.4.21.5.1.3 Populating the TreeSet collection

After the TreeSet object is instantiated, it is passed to a method named �llIt where the TreeSet
collection is populated with the names of several people.

3.4.21.5.1.4 Display the contents of the TreeSet collection

As shown by the code in Listing 2 (p. 1084) , after the TreeSet collection is populated, an Iterator is
obtained for that collection and used to display the contents of the collection. The output produced by the
program is shown below :

Tom TOM Joe JOE Bill BILL

3.4.21.5.2 Analyzing the contents of the TreeSet collection

We will need to compare this output with the names used to populate the collection to appreciate the true
signi�cance of the use of the Comparator object.

At this point, it is worth pointing out that the six names contained in the collection are returned by the
iterator in descending order , taking the signi�cance of upper and lower case into account. In other words,

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1078 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

names beginning with letters that are high in the alphabet occur before names beginning with letters that
are lower in the alphabet. In addition, names containing lower case characters appear before the same names
containing only upper case characters.

3.4.21.5.2.1 Method used to populate the collection

Listing 3 (p. 1085) shows the method named �llIt that was used to populate the collection with references
to six String objects. As you can see, the names weren't added in any particular order.

As you can also see by comparing Listing 3 (p. 1085) with the output shown above (p. 1084) , all six
names that were added to the collection were displayed in the output, but in a di�erent order from the order
in which they were added. (Names with the same spelling but di�erent case were not considered to be
duplicates insofar as the contract for the set was concerned.)

Listing 3 . The �llIt method.

public static void fillIt(Collection ref){

ref.add("Joe");

ref.add("Bill");

ref.add("Tom");

ref.add("JOE");

ref.add("BILL");

ref.add("TOM");

}//end fillIt()

Table 3.416

3.4.21.5.2.2 Implementing the Comparator interface

That brings us to the class from which the Comparator object was instantiated. The beginning portion
of that class is shown in Listing 4 (p. 1085) .

Listing 4 . Beginning of the class named TheComparator.

class TheComparator implements Comparator,Serializable{

public int compare(Object o1,Object o2){

if(!(o1 instanceof String))

throw new ClassCastException();

if(!(o2 instanceof String))

throw new ClassCastException();

Table 3.417

The code in Listing 4 (p. 1085) isn't particularly interesting. That code simply throws an exception if
either of the references passed to the compare method refer to an object of some type other than String
.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1079

3.4.21.5.2.3 The interesting code

The most interesting code is shown in Listing 5 (p. 1086) . The �rst statement in Listing 5 (p. 1086) uses
the compareTo method of the String class to compare the two objects in an ascending natural
ordering sense. The behavior of this method is more formally described as follows:

"Returns: the value 0 if the argument is a string lexicographically equal to this string; a value
less than 0 if the argument is a string lexicographically greater than this string; and a value
greater than 0 if the argument is a string lexicographically less than this string."

Listing 5 . The most interesting code.

int result = ((String)o1).compareTo(((String)o2));

return result*(-1);

Table 3.418

3.4.21.5.2.4 Converting to reverse natural order

The most interesting line of code in this entire program is the return statement shown in Listing 5 (p.
1086) . This line of code changes the sign on the value returned by the compareTo method before
returning it as the return value for the compare method.

The e�ect of changing the sign is to return a value that causes the TreeSet collection to arrange the
elements in reverse natural order instead of the normal ascending natural order.

As a result, the use of an iterator to access and display the contents of the collection produces the
following output:

Tom TOM Joe JOE Bill BILL
For comparison, if the names were arranged in ascending natural order, the output would be as

shown below:
BILL Bill JOE Joe TOM Tom

3.4.21.6 Run the program

I encourage you to copy the code from Listing 1 (p. 1083) and paste it into your Java text editor. Then
compile and execute it.

Run the program and observe the results. Experiment with the code. Make changes, run the program
again, and observe the results of your changes. Make certain that you can explain why your changes behave
as they do.

3.4.21.7 Summary

In this module, I taught you how to use a Comparator to cause a TreeSet collection to be sorted in
reverse natural order. In other words, the sorting order is the same as the natural order except that the
order is descending instead of ascending.

3.4.21.8 What's next?

In the next module, I will show you how to use a Comparator object to sort the contents of an array.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1080 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.21.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name:Java4110: The Comparator Interface, Part 3
• File: Java4110.htm
• Published: 05/07/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1081

3.4.22 Java4110r: Review
522

Revised: Thu Apr 07 12:07:06 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 523

• Object-Oriented Programming (OOP) with Java 524

3.4.22.1 Table of Contents

• Preface (p. 1088)
• Questions (p. 1088)

· 1 (p. 1088) , 2 (p. 1088) , 3 (p. 1089) , 4 (p. 1089) , 5 (p. 1089) , 6 (p. 1089)

• Listings (p. 1089)
• Answers (p. 1091)
• Complete program listing (p. 1092)
• Miscellaneous (p. 1093)

3.4.22.2 Preface

This module is one in a collection of modules on Java Collections designed for teaching ITSE2321 - Object-
Oriented Programming (Java) at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4110: The Comparator
Interface, Part 3 525 .

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

3.4.22.3 Questions

3.4.22.3.1 Question 1 .

What output is produced by the program shown in Listing 1 (p. 1092) ?

• Compiler Error
• Runtime Error
• BILL Bill JOE Joe TOM Tom
• Tom TOM Joe JOE Bill BILL
• Joe Bill Tom
• None of the above.

Answer 1 (p. 1091)

3.4.22.3.2 Question 2

True or False? The �llIt method in Listing 1 (p. 1092) populates the TreeSet object referred by the
incoming parameter with the following names in the following order:

Joe Bill Tom JOE BILL TOM
Answer 2 (p. 1091)

522This content is available online at <http://cnx.org/content/m48138/1.4/>.
523http://cnx.org/contents/dzOvxPFw
524http://cnx.org/contents/-2RmHFs_
525http://cnx.org/contents/9ld4lfFr

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1082 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.22.3.3 Question 3

True or False? When the �llIt method in Listing 1 (p. 1092) returns, the TreeSet object is populated
with six names in descending order taking case into account.

Answer 3 (p. 1091)

3.4.22.3.4 Question 4

True or False? In the output from Listing 1 (p. 1092) , descending order means that names beginning with
letters that are low in the alphabet occur before names beginning with letters that are higher in the alphabet.
In addition, names containing lower case characters appear before the same names containing only upper
case characters.

Answer 4 (p. 1091)

3.4.22.3.5 Question 5

True or False? In Listing 1 (p. 1092) , names with the same spelling but di�erent case were considered to
be duplicates and therefore were excluded from the collection

Answer 5 (p. 1091)

3.4.22.3.6 Question 6

True or False? Given: Listing 1 (p. 1092) contains the following statement:
return result*(-1);
If you were to change the value in parentheses from -1 to -2, the program output would be:
BILL Bill JOE Joe TOM Tom
Answer 6 (p. 1091)

3.4.22.4 Listings

• Listing 1 (p. 1092) . Comparator04.java.

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1083

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1084 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.22.5 Answers

3.4.22.5.1 Answer 6

False. If you were to change the value in parentheses from -1 to -2, the program output would still be:
Tom TOM Joe JOE Bill BILL
It is the sign of the result and not the value of the result that determines the sorting order of the output

in Listing 1 (p. 1092) . You would need to multiply by a positive value to cause the output to be
BILL Bill JOE Joe TOM Tom
Back to Question 6 (p. 1089)

3.4.22.5.2 Answer 5

False. In Listing 1 (p. 1092) , names with the same spelling but di�erent case were not considered to be
duplicates insofar as the contract for the set was concerned.

Back to Question 5 (p. 1089)

3.4.22.5.3 Answer 4

False. In the output from Listing 1 (p. 1092) , descending order means that names beginning with letters
that are high in the alphabet occur before names beginning with letters that are lower in the alphabet. In
addition, names containing lower case characters appear before the same names containing only upper case
characters.

Back to Question 4 (p. 1089)

3.4.22.5.4 Answer 3

True.
Back to Question 3 (p. 1089)

3.4.22.5.5 Answer 2

False. Even without the use of a Comparator object, the order would be incorrect. A TreeSet object
requires its elements to be in either ascending natural order or in an order speci�ed by a Comparator
object. This program uses a Comparator object but it doesn't result in the order shown in the question.

Back to Question 2 (p. 1088)

3.4.22.5.6 Answer 1

Tom TOM Joe JOE Bill BILL
Back to Question 1 (p. 1088)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1085

3.4.22.6 Complete program listing

Listing 1 . Comparator04.java.

//File Comparator04.java

//Copyright 2001, R.G.Baldwin

import java.util.*;

import java.io.Serializable;

public class Comparator04{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparator04

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

ref = new TreeSet(new TheComparator());

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add("Joe");

ref.add("Bill");

ref.add("Tom");

ref.add("JOE");

ref.add("BILL");

ref.add("TOM");

}//end fillIt()

}//end class Populator

class TheComparator implements Comparator,Serializable{

public int compare(Object o1,Object o2){

if(!(o1 instanceof String))

throw new ClassCastException();

if(!(o2 instanceof String))

throw new ClassCastException();

int result = ((String)o1).compareTo(((String)o2));

return result*(-1);

}//end compare()

public boolean equals(Object o){

if(!(o instanceof TheComparator))

return false;

else return true;

}//end overridden equals()

}//end class TheComparator

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1086 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.419

3.4.22.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4110r: Review
• File: Java4110r.htm
• Published: 12/02/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.4.23 Java4120: The Comparator Interface, Part 4
526

Revised: Thu Apr 07 12:34:58 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 527

• Object-Oriented Programming (OOP) with Java 528

3.4.23.1 Table of Contents

• Preface (p. 1094)

· Viewing tip (p. 1094)

* Listings (p. 1094)

• Preview (p. 1095)

· An array is a container (p. 1095)
· An opportune time (p. 1095)

• Generics (p. 1095)
• Discussion and sample code (p. 1095)

526This content is available online at <http://cnx.org/content/m46192/1.4/>.
527http://cnx.org/contents/dzOvxPFw
528http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1087

· Beginning with a quiz (p. 1095)

* Similar to previous programs (p. 1097)
* A new Vector object (p. 1097)
* A Vector is a List (p. 1097)
* The �llIt method (p. 1098)
* Iteration on a Vector (p. 1098)
* The output (p. 1099)

· The toArray method (p. 1099)

* The contract (p. 1099)
* Elements are returned in ascending index order (p. 1100)
* A "safe" array (p. 1100)
* Display the contents of the array (p. 1100)

· Sorting the array into natural order (p. 1100)

* The Comparable interface and polymorphic behavior (p. 1101)
* Display the sorted array data (p. 1101)
* The natural order for String objects (p. 1102)

· Sort the array with a Comparator (p. 1102)

* What does Oracle have to say about this? (p. 1102)
* The class named TheComparator (p. 1102)
* Display the array contents again (p. 1103)
* Could have sorted di�erently (p. 1103)

· Display the collection data again (p. 1103)
· The bottom line (p. 1104)

• Run the program (p. 1104)
• Summary (p. 1104)
• What's next? (p. 1104)
• Miscellaneous (p. 1104)

3.4.23.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
in general and the Java Collections framework in particular.

This module shows you how to extract the contents of a collection into an array, and how to use a
Comparator object to sort the contents of the array into reverse natural order. The module also shows
you how to sort the contents of the array into natural order without the use of a Comparator object.

In addition to studying these modules, I strongly recommend that you study the Collections Trail 529 in
Oracle's Java Tutorials 530 . The modules in this collection are intended to supplement and not to replace
those tutorials.

3.4.23.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the listings while you are reading about them.

3.4.23.2.1.1 Listings

• Listing 1 (p. 1096) . The program named Comparator 05.
• Listing 2 (p. 1097) . A new Vector object.

529http://docs.oracle.com/javase/tutorial/collections/index.html
530http://docs.oracle.com/javase/tutorial/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1088 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• Listing 3 (p. 1098) . Call the �llIt method.
• Listing 4 (p. 1098) . The �llIt method.
• Listing 5 (p. 1099) . Iteration on a Vector.
• Listing 6 (p. 1099) . Call the toArray method.
• Listing 7 (p. 1100) . Display the contents of the array.
• Listing 8 (p. 1101) . Sorting the array into natural order.
• Listing 9 (p. 1101) . Display the sorted array data.
• Listing 10 (p. 1102) . Sort the array with a Comparator.
• Listing 11 (p. 1102) . The class named TheComparator.
• Listing 12 (p. 1103) . Display the contents again.
• Listing 13 (p. 1103) . Display the collection data again.

3.4.23.3 Preview

The primary purpose of recent modules in this series was to teach you about the interactions between the
Comparator interface and the Collections Framework.

This module departs somewhat from that primary purpose and teaches you how to use a Comparator
object to sort the contents of an array containing references to objects. Technically speaking, an array is not
part of the core Collections Framework. However, it is de�nitely a �rst cousin to the Framework.

3.4.23.3.1 An array is a container

As you should already know, an array is a container that can be used to store a collection of primitive values
or a collection of references to objects.

The Collection interface declares a method named toArray , which can be called on a Collection
object to "return an array containing all of the elements in this collection whose runtime type is that of the
speci�ed array" .

3.4.23.3.2 An opportune time

Since you are studying this sub-series of modules to learn about the uses of the Comparator interface,
this seems like an opportune time to teach you how to get an array from a collection, and how to use the
Comparator interface to sort the contents of the array. (While I'm at it, I will also teach you how to sort
the elements in an array of object references into natural order without the use of a Comparator object.)

3.4.23.4 Generics

The code in this series of modules is written with no thought given to Generics 531 . As a result, if you copy
and compile the code, you will probably get warnings about unchecked or unsafe operations .

While you will ultimately need to understand how to use Generics, that is a very complex topic. An
understanding of Generics is beyond the scope of this course. Therefore, for purposes of this course, you can
simply ignore those warnings.

3.4.23.5 Discussion and sample code

3.4.23.5.1 Beginning with a quiz

See if you can write down the output produced by the program shown in Listing 1 (p. 1096) .

531http://docs.oracle.com/javase/tutorial/java/generics/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1089

Listing 1 . The program named Comparator 05 .

//File Comparator05.java

//Copyright 2001, R.G.Baldwin

import java.util.*;

import java.io.Serializable;

public class Comparator05{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparator05

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

Object[] array;

ref = new Vector();

Populator.fillIt(ref);

iter = ref.iterator();

System.out.println("Collection data");

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

System.out.println();

array = ref.toArray();

System.out.println("Raw array data");

display(array);

//Sort the array into natural order

// and display it.

Arrays.sort(array);

System.out.println("Natural order sorted " +

"array data");

display(array);

//Sort the array into custom order

// and display it.

Arrays.sort(array, new TheComparator());

System.out.println("Custom order sorted " +

"array data");

display(array);

iter = ref.iterator();

System.out.println("Collection data");

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

System.out.println();

}//end doIt()

static void display(Object[] array){

for(int i = 0; i < array.length;i++){

System.out.print(array[i] + " ");

}//end for loop

System.out.println();

}//end display()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add("Joe");

ref.add("Bill");

ref.add("Tom");

ref.add("JOE");

ref.add("BILL");

ref.add("TOM");

}//end fillIt()

}//end class Populator

class TheComparator implements Comparator,Serializable{

public int compare(Object o1,Object o2){

if(!(o1 instanceof String))

throw new ClassCastException();

if(!(o2 instanceof String))

throw new ClassCastException();

int result = ((String)o1).compareTo(((String)o2));

return result*(-1);

}//end compare()

}//end class TheComparator

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1090 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.420

If you wrote down the following for the program output, you already understand most of the material
covered in this module and you can probably skip this module and move on to the next module.

Collection data

Joe Bill Tom JOE BILL TOM

Raw array data

Joe Bill Tom JOE BILL TOM

Natural order sorted array data

BILL Bill JOE Joe TOM Tom

Custom order sorted array data

Tom TOM Joe JOE Bill BILL

Collection data

Joe Bill Tom JOE BILL TOM

If you didn't write down the correct output for the program in Listing 1 (p. 1096) , you should probably
continue with your study of this module.

3.4.23.5.1.1 Similar to previous programs

Although this program is somewhat more complex, the overall structure of this program is similar to programs
that I have discussed in previous modules. Therefore, I will concentrate on those aspects of this program
that di�erentiate it from the programs in previous modules.

3.4.23.5.1.2 A new Vector object

The code in Listing 2 (p. 1097) instantiates a new object of the Vector class and stores a reference to
that object in the variable named ref .

Listing 2 . A new Vector object.

ref = new Vector();

Table 3.421

The Vector class was part of Java long before the Collections Framework was released. However, with
the release of the Collections Framework, the Vector class was upgraded to implement the Collection
interface and the List interface.

3.4.23.5.1.3 A Vector is a List

Therefore, a Vector is a List , and adheres to the various contracts of the List interface. For example,
since it is not a Set , it doesn't prohibit duplicate elements. Because it is a List , it is an ordered
collection. The position of each element in the collection is determined by a numeric index associated with
the element and is independent of the value of the element.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1091

3.4.23.5.1.4 The �llIt method

As has been the case in several of the programs in previous modules, the code in Listing 3 (p. 1098) passes
the Vector object's reference to a method named �llIt where the Vector is populated with the names
of several people.

Listing 3 . Call the �llIt method.

Populator.fillIt(ref);

Table 3.422

The code for the �llIt method is shown in Listing 4 (p. 1098) . As you can see, the names were added
to the collection in no particular order relative to their values. (The add method for the Vector class simply
adds each new element to the end of the list.)

Listing 4 . The �llIt method.

class Populator{

public static void fillIt(

Collection ref){

ref.add("Joe");

ref.add("Bill");

ref.add("Tom");

ref.add("JOE");

ref.add("BILL");

ref.add("TOM");

}//end fillIt()

}//end class Populator

Table 3.423

3.4.23.5.1.5 Iteration on a Vector

When an iterator is used to traverse the elements in a Vector collection, the elements are delivered by the
iterator in ascending index order, beginning with the element stored at index 0.

The code in Listing 5 (p. 1099) gets and uses an iterator to display the contents of the populated
collection.

Listing 5 . Iteration on a Vector.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1092 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

iter = ref.iterator();

System.out.println("Collection data");

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

Table 3.424

3.4.23.5.1.6 The output

The code in Listing 5 (p. 1099) produces the following output:

Collection data

Joe Bill Tom JOE BILL TOM

As you can see, this is the same order in which the names were added to the collection by the �llIt method
in Listing 4 (p. 1098) .

3.4.23.5.2 The toArray method

The code in Listing 6 (p. 1099) is new to this module. This code calls the toArray method on the Vector
object to extract the contents of the collection and store the elements in an array object of type Object .

Listing 6 . Call the toArray method.

array = ref.toArray();

Table 3.425

(Recall that the variable named array was declared as a reference to an array object of type
Object in Listing 1 (p. 1096) (p. 1096) .)

3.4.23.5.2.1 The contract

According to the documentation for the Vector class, this version of the toArray method:

"Returns an array containing all of the elements in this Vector in the correct order."

The documentation for the toArray method of the Collection interface is a little more verbose, reading
partially as follows:

"Returns an array containing all of the elements in this collection. If the collection makes any
guarantees as to what order its elements are returned by its iterator, this method must return
the elements in the same order.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1093

3.4.23.5.2.2 Elements are returned in ascending index order

By default, the iterator for a Vector returns its elements in ascending index order. Therefore, the toArray
method for a Vector object must return the elements in the same order.

3.4.23.5.2.3 A "safe" array

Also, according to Oracle:

"The returned array will be "safe" in that no references to it are maintained by this collection.
... The caller is thus free to modify the returned array."

In the code in Listing 6 (p. 1099) above, the returned reference to an array object is assigned to a reference
variable that previously contained null. Following the execution of the toArray method, that reference
variable refers to an array object of type Object containing the same elements as the Vector collection,
in ascending index order.

(Regarding the concept of a "safe" array, it is easy to demonstrate that the elements in the array
refer to the same objects referred to by the elements in the Vector. Thus, using the references
stored in the array to modify the objects to which they refer also modi�es the objects referred to
by the elements stored in the Vector. In other words, the elements in the array are copies of the
elements in the Vector. The elements in the array refer to the original objects, and do not refer
to copies (or clones) of those objects. As usual when dealing with multiple references to objects,
care should be taken to avoid inadvertently corrupting those objects.)

3.4.23.5.2.4 Display the contents of the array

The code in Listing 7 (p. 1100) passes the array object's reference to a method named display that
displays the contents of the array in ascending index order.

Listing 7 . Display the contents of the array.

System.out.println("Raw array data");

display(array);

Table 3.426

The output produced by the code in Listing 7 (p. 1100) is as shown below:

Raw array data

Joe Bill Tom JOE BILL TOM

As you can see, this is the same data, in the same order, as the contents of the collection displayed earlier.

(The method named display is a simple utility method that I won't discuss here because of
its simplicity. You can view the display method in its entirety in Listing 1 (p. 1096) .)

3.4.23.5.3 Sorting the array into natural order

The code in Listing 8 (p. 1101) is also new to this module. This code uses one of the overloaded sort
methods of the Arrays class to sort the contents of the array into natural order .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1094 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 8 . Sorting the array into natural order.

Arrays.sort(array);

Table 3.427

Here is part of what Oracle has to say about the Arrays class:

"This class contains various methods for manipulating arrays (such as sorting and searching)."

The class contains many overloaded versions of the sort method. Here is part of what Oracle has to say
about the version of the sort method used in Listing 8 (p. 1101) above:

"Sorts the speci�ed array of objects into ascending order, according to the natural ordering of
its elements. All elements in the array must implement the Comparable interface."

3.4.23.5.3.1 The Comparable interface and polymorphic behavior

Although the declared type of the array is Object , the array actually contains references to String
objects.

The String class implements the Comparable interface. It is not necessary to cast the array to type
String before passing it to the Sort method. (The Sort method declares the incoming parameter as
type Object .)

The sort method treats the array elements as type Comparable and uses the compareTo method
declared in that interface to perform any necessary comparisons required to carry out the sorting operation.

This is another example of the usefulness of polymorphism as implemented through the use of the Java
interface. (The Comparable interface and the compareTo method declared in that interface were
discussed in detail in an earlier module.)

3.4.23.5.3.2 Display the sorted array data

The code in Listing 9 (p. 1101) displays the contents of the array after those contents are sorted into natural
order by the sort method in Listing 8 (p. 1101) above.

Listing 9 . Display the sorted array data.

System.out.println("Natural order sorted " +

"array data");

display(array);

Table 3.428

The output produced by Listing 9 (p. 1101) above is:

Natural order sorted array data

BILL Bill JOE Joe TOM Tom

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1095

3.4.23.5.3.3 The natural order for String objects

I discussed the concept of natural ordering in a previous module with particular emphasis of the natural
order for strings. You will recognize that the strings shown in the above output have been sorted into
natural order according to the de�nition of the compareTo method of the String class.

3.4.23.5.4 Sort the array with a Comparator

The code in Listing 10 (p. 1102) is also new to this module. This code uses a di�erent version of the
overloaded sort method of the Arrays class to sort the array using the rules de�ned in the compare
method of a Comparator object (passed as a parameter to the sort method).

Listing 10 . Sort the array with a Comparator.

Arrays.sort(array, new TheComparator());

Table 3.429

3.4.23.5.4.1 What does Oracle have to say about this?

Here is part of what Oracle has to say about this version of the sort method of the Arrays class:

"Sorts the speci�ed array of objects according to the order induced by the speci�ed comparator.
All elements in the array must be mutually comparable by the speci�ed comparator (that is,
c.compare(e1, e2) must not throw a ClassCastException for any elements e1 and e2 in the array)."

3.4.23.5.4.2 The class named TheComparator

Listing 11 (p. 1102) shows the class from which the Comparator object was instantiated.
This is essentially the same class that was used to instantiate a Comparator object in an earlier

module. I discussed the compare method in detail in that module and won't repeat that discussion here.

Listing 11 . The class named TheComparator.

class TheComparator implements Comparator,Serializable{

public int compare(Object o1,Object o2){

if(!(o1 instanceof String))

throw new ClassCastException();

if(!(o2 instanceof String))

throw new ClassCastException();

int result = ((String)o1).compareTo(((String)o2));

return result*(-1);

}//end compare()

}//end class TheComparator

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1096 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.430

Su�ce it to say at this point that this Comparator object causes the elements in the array to be
sorted into reverse natural order . That term was also explained in the previous module, so I won't discuss
it further here.

3.4.23.5.4.3 Display the array contents again

The code in Listing 12 (p. 1103) was used to display the newly-sorted contents of the array.

Listing 12 . Display the contents again.

System.out.println("Custom order sorted " +

"array data");

display(array);

Table 3.431

The output produced by this code is:

Custom order sorted array data

Tom TOM Joe JOE Bill BILL

You will recognize this as reverse natural order for the elements contained in the array.

3.4.23.5.4.4 Could have sorted di�erently

It is important to note that I could have caused the sorting order to be di�erent from reverse natural order
simply by de�ning the rules used for comparison in the compare method shown in Listing 11 (p. 1102)
above. This makes it possible for you to sort array data into any order that you choose as long as you can
write the sorting rules into the compare method of a class that implements the Comparator interface.

3.4.23.5.5 Display the collection data again

Finally, in order to show that none of this has disturbed the contents of the original collection, the code in
Listing 13 (p. 1103) gets and uses an iterator to display the contents of the Vector collection.

Listing 13 . Display the collection data again.

iter = ref.iterator();

System.out.println("Collection data");

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1097

Table 3.432

The output produced by the code in Listing 13 (p. 1103) is:

Collection data

Joe Bill Tom JOE BILL TOM

If you compare this with the output produced by the code at the beginning of the program, you will see
that the iterator still returns the elements in the Vector in the same order that they were added. Thus,
modi�cations to the array did not disturb the contents of the Vector collection.

3.4.23.5.6 The bottom line

The toArray method of the Collection interface makes it possible to extract a copy of the elements in a
collection into an array and to manipulate those elements in whatever way you wish. As mentioned earlier,
however, care should be exercised to make certain that the copies of the references to the original objects
are not used to corrupt the objects.

The various versions of the sort method in the Arrays class make it possible to sort the contents of
arrays in a variety of di�erent ways.

3.4.23.6 Run the program

I encourage you to copy the code from Listing 1 (p. 1096) . Paste the code into your Java editor. Then
compile and execute it.

Run the program and observe the results. Experiment with the code. Make changes, run the program
again, and observe the results of your changes. Make certain that you can explain why your changes behave
as they do.

3.4.23.7 Summary

In this module, I taught you how to extract the contents of a collection into an array and how to use a
Comparator to sort the contents of the array into reverse natural order .

Although I elected to use reverse natural order for purposes of illustration, I could have sorted the
array into some other order simply by de�ning the comparison rules in the compare method of the
Comparator class di�erently.

In order to further expand your knowledge of array sorting, I also sorted the array into natural order
without the use of a Comparator .

Sorting the contents of the array did not disturb the contents of the Vector collection from which the
contents of the array were derived.

3.4.23.8 What's next?

In the next module, I will show you how to use the sort method of the Collections class along with a
Comparator object to sort the contents of a List .

3.4.23.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4120: The Comparator Interface, Part 4

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1098 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• File: Java4120.htm
• Published: 05/07/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1099

3.4.24 Java4120r: Review
532

Revised: Thu Apr 07 13:19:31 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 533

• Object-Oriented Programming (OOP) with Java 534

3.4.24.1 Table of Contents

• Preface (p. 1106)
• Questions (p. 1106)

· 1 (p. 1106) , 2 (p. 1106) , 3 (p. 1107) , 4 (p. 1107) , 5 (p. 1107) , 6 (p. 1107) , 7 (p. 1107) , 8
(p. 1107) , 9 (p. 1107) , 10 (p. 1107) , 11 (p. 1107) , 12 (p. 1108) , 13 (p. 1108) , 14 (p. 1108) ,
15 (p. 1108) , 16 (p. 1108)

• Listings (p. 1108)
• Answers (p. 1110)
• Complete program listing (p. 1111)
• Miscellaneous (p. 1113)

3.4.24.2 Preface

This module is one in a collection of modules on Java Collections designed for teaching ITSE2321 - Object-
Oriented Programming (Java) at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4120: The Comparator
Interface, Part 4 535 .

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

3.4.24.3 Questions

3.4.24.3.1 Question 1 .

True or False? The Collection interface declares a method named convertToArray , which can be
called on a Collection object to "return an array containing all of the elements in this collection whose
runtime type is that of the speci�ed array" .

Answer 1 (p. 1111)

3.4.24.3.2 Question 2

True or False? A Comparator object can be used to sort the contents of an array containing references
to objects.

Answer 2 (p. 1111)

532This content is available online at <http://cnx.org/content/m48137/1.4/>.
533http://cnx.org/contents/dzOvxPFw
534http://cnx.org/contents/-2RmHFs_
535http://cnx.org/contents/pyUa-nTz

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1100 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.24.3.3 Question 3

True or False? An array is a container that can be used to store a collection of primitive values or a collection
of references to objects.

Answer 3 (p. 1111)

3.4.24.3.4 Question 4

Write down the output produced by the program shown in Listing 1 (p. 1112) . Hint: There are ten lines of
output.

Answer 4 (p. 1111)

3.4.24.3.5 Question 5

True or False? A Vector object is a Set object.
Answer 5 (p. 1111)

3.4.24.3.6 Question 6

True or False? Because a Vector object is a List object, it is not allowed to contain duplicate elements.
Answer 6 (p. 1111)

3.4.24.3.7 Question 7

True or False? Because a Vector is a List , it is an ordered collection.
Answer 7 (p. 1111)

3.4.24.3.8 Question 8

True or False? The position of each element in an ordered collection is determined by i (p. 1110) ts value
relative to the values of its neighbors.

Answer 8 (p. 1110)

3.4.24.3.9 Question 9

True or False? The add method for the Vector class simply adds each new element to the end of the
list.

Answer 9 (p. 1110)

3.4.24.3.10 Question 10

True or False? When an iterator is used to traverse the elements in a Vector collection, the elements are
delivered by the iterator in ascending index order, beginning with the element stored at index 0.

Answer 10 (p. 1110)

3.4.24.3.11 Question 11

True or False? The �rst time the iterator is applied to the Vector object in Listing 1 (p. 1112) , the
output is in ascending natural order as shown below:

BILL Bill JOE Joe TOM Tom
Answer 11 (p. 1110)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1101

3.4.24.3.12 Question 12

True or False? The toArray method can be called on a Vector object to return a reference to an array
object containing all of the elements in the Vector in ascending index order.

Answer 12 (p. 1110)

3.4.24.3.13 Question 13

True or False? The documentation for the toArray method of the Collection interface reads partially
as follows:

"Returns an array containing all of the elements in this collection. If the collection makes any
guarantees as to what order its elements are returned by its iterator, this method must return
the elements in the same order.

Answer 13 (p. 1110)

3.4.24.3.14 Question 14

True or False? There is a class named Arrays that contains various methods for manipulating arrays
(such as sorting and searching) . The Arrays class contains many overloaded versions of the sort
method. As usual, each overloaded version of the sort method requires a di�erent argument list.

Answer 14 (p. 1110)

3.4.24.3.15 Question 15

Given: Listing 1 (p. 1112) makes two calls to overloaded sort methods of the Arrays class using the
following overloaded methods. (Note that I omitted generics syntax from the signatures because generics
is beyond the scope of this course .)

• sort(Object[] a)
• sort(Object[] a, Comparator c)

True or False? In Listing 1 (p. 1112) , the call to the �rst sort method in the above list (p. 1108) produces
the following output:

Tom TOM Joe JOE Bill BILL
Answer 15 (p. 1110)

3.4.24.3.16 Question 16

True or False? In Listing 1 (p. 1112) , the call to the second sort method in the above list (p. 1108) produces
the following output:

Tom TOM Joe JOE Bill BILL
Answer 16 (p. 1110)

3.4.24.4 Listings

• Listing 1 (p. 1112) . Comparator05.java.

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1102 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1103

3.4.24.5 Answers

3.4.24.5.1 Answer 16

True.
Back to Question 16 (p. 1108)

3.4.24.5.2 Answer 15

False. Here is what the documentation has to say about this overloaded version of the Arrays.sort method:
Sorts the speci�ed array of objects into ascending order, according to the natural ordering of its elements.

All elements in the array must implement the Comparable interface.
According to that speci�cation, the output would be:
BILL Bill JOE Joe TOM Tom
Back to Question 15 (p. 1108)

3.4.24.5.3 Answer 14

True.
Back to Question 14 (p. 1108)

3.4.24.5.4 Answer 13

True.
Back to Question 13 (p. 1108)

3.4.24.5.5 Answer 12

True.
Back to Question 12 (p. 1108)

3.4.24.5.6 Answer 11

False. By default, a Vector object does not sort the elements. Therefore, the output order is the same as
the input order shown in the �llIt method.

Joe Bill Tom JOE BILL TOM
Back to Question 11 (p. 1107)

3.4.24.5.7 Answer 10

True.
Back to Question 10 (p. 1107)

3.4.24.5.8 Answer 9

True.
Back to Question 9 (p. 1107)

3.4.24.5.9 Answer 8

False. The position of each element in an ordered collection is determined by a numeric index associated
with the element and is independent of the value of the element.

Back to Question 8 (p. 1107)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1104 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.24.5.10 Answer 7

True.
Back to Question 7 (p. 1107)

3.4.24.5.11 Answer 6

False. Because a Vector object is a List object, (and not a Set object) it is allowed to contain
duplicate elements.

Back to Question 6 (p. 1107)

3.4.24.5.12 Answer 5

False. A Vector object is a List object. The Vector class implements the Collection interface and
the List interface but not the Set interface.

Back to Question 5 (p. 1107)

3.4.24.5.13 Answer 4

Collection data
Joe Bill Tom JOE BILL TOM
Raw array data
Joe Bill Tom JOE BILL TOM
Natural order sorted array data
BILL Bill JOE Joe TOM Tom
Custom order sorted array data
Tom TOM Joe JOE Bill BILL
Collection data
Joe Bill Tom JOE BILL TOM
Back to Question 4 (p. 1107)

3.4.24.5.14 Answer 3

True.
Back to Question 3 (p. 1107)

3.4.24.5.15 Answer 2

True.
Back to Question 2 (p. 1106)

3.4.24.5.16 Answer 1

False. The Collection interface declares a method named toArray , which can be called on a Collection
object to "return an array containing all of the elements in this collection whose runtime type is that of the
speci�ed array" .

Back to Question 1 (p. 1106)

3.4.24.6 Complete program listing

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1105

Listing 1 . Comparator05.java.

//File Comparator05.java

//Copyright 2001, R.G.Baldwin

import java.util.*;

import java.io.Serializable;

public class Comparator05{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparator05

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

Object[] array;

ref = new Vector();

Populator.fillIt(ref);

iter = ref.iterator();

System.out.println("Collection data");

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

System.out.println();

array = ref.toArray();

System.out.println("Raw array data");

display(array);

//Sort the array into natural order

// and display it.

Arrays.sort(array);

System.out.println("Natural order sorted " +

"array data");

display(array);

//Sort the array into custom order

// and display it.

Arrays.sort(array, new TheComparator());

System.out.println("Custom order sorted " +

"array data");

display(array);

iter = ref.iterator();

System.out.println("Collection data");

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

System.out.println();

}//end doIt()

static void display(Object[] array){

for(int i = 0; i < array.length;i++){

System.out.print(array[i] + " ");

}//end for loop

System.out.println();

}//end display()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add("Joe");

ref.add("Bill");

ref.add("Tom");

ref.add("JOE");

ref.add("BILL");

ref.add("TOM");

}//end fillIt()

}//end class Populator

class TheComparator implements Comparator,Serializable{

public int compare(Object o1,Object o2){

if(!(o1 instanceof String))

throw new ClassCastException();

if(!(o2 instanceof String))

throw new ClassCastException();

int result = ((String)o1).compareTo(((String)o2));

return result*(-1);

}//end compare()

}//end class TheComparator

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1106 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.433

3.4.24.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4120r: Review
• File: Java4120r.htm
• Published: 12/03/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.4.25 Java4130: The Comparator Interface, Part 5
536

Revised: Fri Apr 08 10:52:12 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 537

• Object-Oriented Programming (OOP) with Java 538

3.4.25.1 Table of Contents

• Preface (p. 1114)

· Viewing tip (p. 1114)

* Listings (p. 1114)

• Preview (p. 1114)
• Generics (p. 1115)
• Discussion and sample code (p. 1115)

· Beginning with a quiz (p. 1115)

* Similar to previous programs (p. 1117)

536This content is available online at <http://cnx.org/content/m46193/1.5/>.
537http://cnx.org/contents/dzOvxPFw
538http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1107

* A new LinkedList object (p. 1117)
* Populating the List (p. 1117)
* Displaying the list (p. 1118)
* Sort the list (p. 1118)
* A very important point (p. 1118)

· The Collections class (p. 1119)

* The sort method (p. 1119)
* Also uses an array (p. 1119)
* A �exible approach to sorting (p. 1119)

· The Comparator (p. 1119)
· Display the sorted list (p. 1120)

• Run the program (p. 1120)
• Summary (p. 1121)
• What's next? (p. 1121)
• Miscellaneous (p. 1121)

3.4.25.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
in general and the Java Collections framework in particular.

This module shows you how to use the sort method of the Collections class along with a Com-
parator object to sort the contents of a List into reverse natural order.

In addition to studying these modules, I strongly recommend that you study the Collections Trail 539 in
Oracle's Java Tutorials 540 . The modules in this collection are intended to supplement and not to replace
those tutorials.

3.4.25.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the listings while you are reading about them.

3.4.25.2.1.1 Listings

• Listing 1 (p. 1116) . The program named Comparator06.
• Listing 2 (p. 1117) . A new LinkedList object.
• Listing 3 (p. 1118) . The �llIt method.
• Listing 4 (p. 1118) . Sort the list.
• Listing 5 (p. 1120) . The Comparator.
• Listing 6 (p. 1120) . Display the sorted list.

3.4.25.3 Preview

In this module, I will teach you how to use the sort method of the Collections class along with a
Comparator object to sort the contents of a List into reverse natural order .

The methodology that I will teach you is completely general, and can be used to sort a list in a wide
variety of ways, depending on how you de�ne the compare method of a Comparator object.

Furthermore, the same sort method and the same Comparator object can be used to sort any
implementation of a list, so long as the list properly implements the List interface.

539http://docs.oracle.com/javase/tutorial/collections/index.html
540http://docs.oracle.com/javase/tutorial/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1108 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.25.4 Generics

The code in this series of modules is written with no thought given to Generics 541 . As a result, if you copy
and compile the code, you will probably get warnings about unchecked or unsafe operations .

While you will ultimately need to understand how to use Generics, that is a very complex topic. An
understanding of Generics is beyond the scope of this course. Therefore, for purposes of this course, you can
simply ignore those warnings.

3.4.25.5 Discussion and sample code

3.4.25.5.1 Beginning with a quiz

Let's begin with a quiz to test your prior knowledge of the Collections Framework.
What output is produced by the program shown in Listing 1 (p. 1116) ?

• A. Compiler Error
• B. Runtime Error
• C. BILL Bill JOE Joe TOM Tom
• D. Tom TOM Joe JOE Bill BILL
• E. Joe Bill Tom
• F. None of the above.

541http://docs.oracle.com/javase/tutorial/java/generics/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1109

Listing 1 . The program named Comparator06 .

//File Comparator06.java

//Copyright 2001, R.G.Baldwin

import java.util.*;

import java.io.Serializable;

public class Comparator06{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparator06

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

ref = new LinkedList();

Populator.fillIt(ref);

Collections.sort((List)ref, new TheComparator());

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add("Joe");

ref.add("Bill");

ref.add("Tom");

ref.add("JOE");

ref.add("BILL");

ref.add("TOM");

}//end fillIt()

}//end class Populator

class TheComparator implements Comparator,Serializable{

public int compare(Object o1,Object o2){

if(!(o1 instanceof String))

throw new ClassCastException();

if(!(o2 instanceof String))

throw new ClassCastException();

//Do a comparison

int result = ((String)o1).compareTo(((String)o2));

return result*(-1);

}//end compare()

}//end class TheComparator

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1110 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.434

The output produced by this program is shown below:
Tom TOM Joe JOE Bill BILL
If that was your answer, you probably already understand most of the material covered in this module.

In that case, you might consider skipping this module and moving on to the next module. If that wasn't
your answer, you should probably continue with your study of this module.

3.4.25.5.1.1 Similar to previous programs

The overall structure of the program in Listing 1 (p. 1116) is similar to programs that I have discussed in
previous modules. Therefore, I will concentrate on those aspects of this program that di�erentiate it from
the programs in previous modules.

3.4.25.5.1.2 A new LinkedList object

The code in Listing 2 (p. 1117) instantiates a new LinkedList object and passes that object's reference
to a method named �llIt where it is populated with the names of several people.

Listing 2 . A new LinkedList object.

ref = new LinkedList();

Populator.fillIt(ref);

Table 3.435

The LinkedList class is one of the concrete implementation classes of the Collections Framework. This
class implements the Collection interface and the List interface. Here is part of what Oracle has to say
about the LinkedList class:

"Linked list implementation of the List interface. Implements all optional list operations,
and permits all elements (including null). In addition to implementing the List interface, the
LinkedList class provides uniformly named methods to get, remove and insert an element at the
beginning and end of the list. These operations allow linked lists to be used as a stack, queue,
or double-ended queue (deque)."

3.4.25.5.1.3 Populating the List

The code in Listing 3 (p. 1118) shows the �llIt method that is used to populate the list with references
to six di�erent String objects.

The add method is used to add each new element to the end of the list. As you can see, the elements
are added to the list in no particular order with respect to their values.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1111

Listing 3 . The �llIt method.

class Populator{

public static void fillIt(Collection ref){

ref.add("Joe");

ref.add("Bill");

ref.add("Tom");

ref.add("JOE");

ref.add("BILL");

ref.add("TOM");

}//end fillIt()

}//end class Populator

Table 3.436

3.4.25.5.1.4 Displaying the list

Although I didn't bother to do so in this program, if an iterator were to be used to access and display the
elements in the list following the invocation of the �llIt method, the result would be as shown below:

Joe Bill Tom JOE BILL TOM
As you can see, this is the same as the order in which the elements are added to the list. The �rst element

is added to the list at index value 0 and the sixth element is added to the list at index value 5.

3.4.25.5.1.5 Sort the list

The code shown in Listing 4 (p. 1118) is new to this module. This code uses the sort method of the
Collections class, along with a Comparator object to sort the contents of the list.

Listing 4 . Sort the list.

Collections.sort((List)ref, new TheComparator());

Table 3.437

The sort method expects to receive an incoming parameter of type List . Therefore, it was
necessary to cast the reference from type Collection to type List .

3.4.25.5.1.6 A very important point

Unlike the programs in previous modules that simply extracted the contents of the collection into an array
and sorted the array, this code actually rearranges the contents of the list according to the sorting rules.

(The programs in previous modules that sorted the array did not rearrange the contents of the
list. Only the contents of the array were rearranged.)

Thus, the relationship between an element in the list and the index associated with that element can change
as a result of the sorting operation shown in Listing 4 (p. 1118) .

Following the sort, when an iterator is used to access the elements, the elements will be returned by the
iterator in the newly-sorted order.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1112 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.25.5.2 The Collections class

Despite the similarity of the names, the Collections class is di�erent from the Collection interface.
Here is part of what Oracle has to say about the Collections class:

"This class consists exclusively of static methods that operate on or return collections. It contains
polymorphic algorithms that operate on collections, "wrappers", which return a new collection
backed by a speci�ed collection, and a few other odds and ends."

3.4.25.5.2.1 The sort method

The Collections class provides a large number of very interesting and useful methods, such as binary-
Search , copy , reverse , and reverseOrder . (The reverseOrder method will be examined in the
next module.)

One of the static methods of the Collections class is the sort method. One overloaded version of
the sort method can be used to sort a list into the natural ordering of its elements. Another overloaded
version sorts a list according to the order induced by a Comparator .

Here is part of what Oracle has to say about this second version of the sort method that uses a
Comparator :

public static void sort(List list, Comparator c) "Sorts the speci�ed list according to the
order induced by the speci�ed comparator. All elements in the list must be mutually comparable
using the speci�ed comparator ...

The speci�ed list must be modi�able, but need not be resizable. This implementation dumps
the speci�ed list into an array, sorts the array, and iterates over the list resetting each element
from the corresponding position in the array. This avoids the n2 log(n) performance that would
result from attempting to sort a linked list in place."

3.4.25.5.2.2 Also uses an array

I �nd it interesting that the sort method uses an array as an intermediary in the sorting process. However,
the di�erence between this approach and the approach involving arrays shown in previous modules is given
by the following excerpt from the above quotation:

"iterates over the list resetting each element from the corresponding position in the array"

In other words, after sorting the array, the sort method uses the sorted results in the array to rearrange
the positions of the elements in the list, resulting in a sorted list.

3.4.25.5.2.3 A �exible approach to sorting

Thus, the sort method of the Collections class can be used to sort the elements in a list using whatever
set of comparison rules you program into the compare method of the Comparator object. Furthermore,
it doesn't matter how the list is actually implemented so long as it properly implements the List interface.

3.4.25.5.3 The Comparator

The code in Listing 5 (p. 1120) shows the class from which the Comparator object was instantiated.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1113

Listing 5 . The Comparator.

class TheComparator implements Comparator,Serializable{

public int compare(Object o1,Object o2){

if(!(o1 instanceof String))

throw new ClassCastException();

if(!(o2 instanceof String))

throw new ClassCastException();

int result = ((String)o1).compareTo(((String)o2));

return result*(-1);

}//end compare()

}//end class TheComparator

Table 3.438

I have presented and explained this class in previous modules, so I won't discuss it in detail again here.
Su�ce it for now to say that an object instantiated from this class will induce the list to be sorted into
reverse natural order .

3.4.25.5.4 Display the sorted list

The code in Listing 6 (p. 1120) gets and uses an iterator to display the contents of the sorted list.

Listing 6 . Display the sorted list.

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

Table 3.439

The output produced by the code in Listing 6 (p. 1120) is shown below:
Tom TOM Joe JOE Bill BILL
As you can see, this is reverse natural order as induced by the Comparator object.

3.4.25.6 Run the program

I encourage you to copy the code from Listing 1 (p. 1116) . Paste the code into your Java editor. Then
compile and execute it.

Run the program and observe the results. Experiment with the code. Make changes, run the program
again, and observe the results of your changes. Make certain that you can explain why your changes behave
as they do.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1114 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.25.7 Summary

In this module, I taught you how to use the sort method of the Collections class along with a Comparator
object to sort the contents of a list.

By using this approach, you can sort the contents of list according to any set of comparison rules that
you can program into the compare method of the Comparator object.

Furthermore, the ability to sort the list is independent of the actual implementation of the list, so long
as the list properly implements the List interface. For example, the same Comparator object (and
the same code) can be used to sort an ArrayList , a LinkedList , or a Vector , producing the same
results regardless of which class the list object is instantiated from.

3.4.25.8 What's next?

In the next module, I will show you how to use a Comparator created by the reverseOrder method
of the Collections class to sort a list into reverse natural order . I will also show you how to use the
reverse method of the Collections class to reverse the order of the elements in a list.

3.4.25.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4130: The Comparator Interface, Part 5
• File: Java4130.htm
• Published: 05/07/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1115

3.4.26 Java4130r: Review
542

Revised: Fri Apr 08 10:56:41 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 543

• Object-Oriented Programming (OOP) with Java 544

3.4.26.1 Table of Contents

• Preface (p. 1122)
• Questions (p. 1122)

· 1 (p. 1122) , 2 (p. 1122) , 3 (p. 1123) , 4 (p. 1123) , 5 (p. 1123) , 6 (p. 1123) , 7 (p. 1123) , 8
(p. 1123) , 9 (p. 1123) , 10 (p. 1123)

• Listings (p. 1123)
• Answers (p. 1125)
• Complete program listing (p. 1126)
• Miscellaneous (p. 1128)

3.4.26.2 Preface

This module is one in a collection of modules on Java Collections designed for teaching ITSE2321 - Object-
Oriented Programming (Java) at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4130: The Comparator
Interface, Part 5 545 .

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

3.4.26.3 Questions

3.4.26.3.1 Question 1 .

What output is produced by the program shown in Listing 1 (p. 1127) ?

• Compiler Error
• Runtime Error
• BILL Bill JOE Joe TOM Tom
• Tom TOM Joe JOE Bill BILL
• Joe Bill Tom
• None of the above.

Answer 1 (p. 1126)

3.4.26.3.2 Question 2

True or False? The LinkedList class implements the Collection interface and the List interface.
Answer 2 (p. 1125)

542This content is available online at <http://cnx.org/content/m48140/1.4/>.
543http://cnx.org/contents/dzOvxPFw
544http://cnx.org/contents/-2RmHFs_
545http://cnx.org/contents/wOmbgl7X

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1116 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.26.3.3 Question 3

True or False? Collections is an interface and Collection is a class.
Answer 3 (p. 1125)

3.4.26.3.4 Question 4

True or False? The Collections class consists exclusively of static methods that operate on or return
collections.

Answer 4 (p. 1125)

3.4.26.3.5 Question 5

True or False? The sort method of the Collections class, along with a Comparator object can be
used to sort the contents of a list according to the rules programmed into the Comparator object.

Answer 5 (p. 1125)

3.4.26.3.6 Question 6

True or False? The Collections class provides a large number of very interesting and useful methods,
such as sort , ternarySearch , copy , reverse , and reverseOrder .

Answer 6 (p. 1125)

3.4.26.3.7 Question 7

True or False? The sort method of the Collections class is an instance (non-static) method.
Answer 7 (p. 1125)

3.4.26.3.8 Question 8

True or False? The sort method of the Collections class can be used without a Comparator object
to sort a list into descending order according to the natural ordering of its elements.

Answer 8 (p. 1125)

3.4.26.3.9 Question 9

True or False? The sort method of the Collections class uses an array as an intermediary in the sorting
process.

Answer 9 (p. 1125)

3.4.26.3.10 Question 10

True or False? The rules programmed into the compare method of the class named TheComparator
in Listing 1 (p. 1127) produces a sort order of ascending natural order when used with the sort method
of the Collections class to sort the contents of a list.

Answer 10 (p. 1125)

3.4.26.4 Listings

• Listing 1 (p. 1127) . Comparator06.java.

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1117

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1118 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.26.5 Answers

3.4.26.5.1 Answer 10

False. The rules programmed into the compare method of the class named TheComparator in Listing
1 (p. 1127) produces a sort order of descending natural order when used with the sort method of the
Collections class to sort the contents of a list.

Back to Question 10 (p. 1123)

3.4.26.5.2 Answer 9

True.
Back to Question 9 (p. 1123)

3.4.26.5.3 Answer 8

False. The sort method of the Collections class can be used without a Comparator object to sort
a list into ascending order according to the natural ordering of its elements.

Back to Question 8 (p. 1123)

3.4.26.5.4 Answer 7

False. The sort method of the Collections class is a static method.
Back to Question 7 (p. 1123)

3.4.26.5.5 Answer 6

False. The Collections class provides a large number of very interesting and useful methods, such as
sort , binarySearch , copy , reverse , and reverseOrder . The Collections class does not
provide a method named ternarySearch .

Back to Question 6 (p. 1123)

3.4.26.5.6 Answer 5

True.
Back to Question 5 (p. 1123)

3.4.26.5.7 Answer 4

True.
Back to Question 4 (p. 1123)

3.4.26.5.8 Answer 3

False. Collection is an interface and Collections is a class.
Back to Question 3 (p. 1123)

3.4.26.5.9 Answer 2

True.
Back to Question 2 (p. 1122)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1119

3.4.26.5.10 Answer 1

Tom TOM Joe JOE Bill BILL
Back to Question 1 (p. 1122)

3.4.26.6 Complete program listing

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1120 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 1 . Comparator06.java .

//File Comparator06.java

//Copyright 2001, R.G.Baldwin

import java.util.*;

import java.io.Serializable;

public class Comparator06{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparator06

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

ref = new LinkedList();

Populator.fillIt(ref);

Collections.sort((List)ref, new TheComparator());

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add("Joe");

ref.add("Bill");

ref.add("Tom");

ref.add("JOE");

ref.add("BILL");

ref.add("TOM");

}//end fillIt()

}//end class Populator

class TheComparator implements Comparator,Serializable{

public int compare(Object o1,Object o2){

if(!(o1 instanceof String))

throw new ClassCastException();

if(!(o2 instanceof String))

throw new ClassCastException();

//Do an upper-case comparison

int result = ((String)o1).compareTo(((String)o2));

return result*(-1);

}//end compare()

}//end class TheComparator

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1121

Table 3.440

3.4.26.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4130r: Review
• File: Java4130r.htm
• Published: 12/03/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.4.27 Java4140: The Comparator Interface, Part 6
546

Revised: Fri Apr 08 11:08:24 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 547

• Object-Oriented Programming (OOP) with Java 548

3.4.27.1 Table of Contents

• Preface (p. 1129)

· Viewing tip (p. 1129)

* Listings (p. 1129)

• Preview (p. 1130)
• Generics (p. 1130)
• Discussion and sample code (p. 1130)

· Beginning with a quiz (p. 1130)

* And the answer is ... (p. 1132)

546This content is available online at <http://cnx.org/content/m46194/1.4/>.
547http://cnx.org/contents/dzOvxPFw
548http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1122 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

* Similar to previous programs (p. 1132)
* A new ArrayList object (p. 1132)
* Displays the list contents (p. 1132)
* The ArrayList class (p. 1133)
* The reverse method of the Collections class (p. 1133)

· The Collections class (p. 1134)

* The reverse method (p. 1134)
* Contents of the list (p. 1134)
* The reverseOrder method (p. 1134)
* What does Oracle have to say about this? (p. 1134)
* Reverse natural order (p. 1135)

· A type-independent Comparator (p. 1135)

* The wonderful world of the Java interface (p. 1135)
* Sorting the list (p. 1135)
* Source of Comparator object is new (p. 1135)
* Don't know, don't care (p. 1135)
* The output (p. 1136)

• Run the program (p. 1136)
• Summary (p. 1136)
• What's next? (p. 1136)
• Miscellaneous (p. 1136)

3.4.27.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
in general and the Java Collections framework in particular.

This module shows you how to use a Comparator created by the reverseOrder method of the
Collections class to sort a list into reverse natural order. The module also shows you how to use the
reverse method of the Collections class to reverse the order of the elements in a list.

In addition to studying these modules, I strongly recommend that you study the Collections Trail 549 in
Oracle's Java Tutorials 550 . The modules in this collection are intended to supplement and not to replace
those tutorials.

3.4.27.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the listings while you are reading about them.

3.4.27.2.1.1 Listings

• Listing 1 (p. 1131) . The program named Comparator07.
• Listing 2 (p. 1132) . A new ArrayList object.
• Listing 3 (p. 1133) . The �llIt method.
• Listing 4 (p. 1133) . The reverse method of the Collections class.
• Listing 5 (p. 1134) . The reverseOrder method.
• Listing 6 (p. 1135) . Sorting the list.
• Listing 7 (p. 1136) . Produce the output.

549http://docs.oracle.com/javase/tutorial/collections/index.html
550http://docs.oracle.com/javase/tutorial/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1123

3.4.27.3 Preview

In this module, I will teach you how to use a Comparator created by the reverseOrder method of the
Collections class to sort a list into reverse natural order . I will also teach you how to use the reverse
method of the Collections class to reverse the order of the elements in a list.

3.4.27.4 Generics

The code in this series of modules is written with no thought given to Generics 551 . As a result, if you copy
and compile the code, you will probably get warnings about unchecked or unsafe operations .

While you will ultimately need to understand how to use Generics, that is a very complex topic. An
understanding of Generics is beyond the scope of this course. Therefore, for purposes of this course, you can
simply ignore those warnings.

3.4.27.5 Discussion and sample code

3.4.27.5.1 Beginning with a quiz

Let's begin with a quiz to test your prior knowledge of the Collections Framework.
What output is produced by the program shown in Listing 1 (p. 1131) (select one or more answers) ?

• A. Compiler Error
• B. Runtime Error
• C. Joe Bill Tom JOE BILL TOM
• D. BILL Bill JOE Joe TOM Tom
• E. TOM BILL JOE Tom Bill Joe
• F. Joe Bill Tom JOE TOM BILL
• G. Tom TOM Joe JOE Bill BILL
• H. Joe Bill Tom
• I. None of the above.

551http://docs.oracle.com/javase/tutorial/java/generics/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1124 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 1 . The program named Comparator07 .

//File Comparator07.java

//Copyright 2001, R.G.Baldwin

import java.util.*;

public class Comparator07{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparator07

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

ref = new ArrayList();

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

System.out.println();

Collections.reverse((List)ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

System.out.println();

Comparator aComparator= Collections.reverseOrder();

Collections.sort((List)ref, aComparator);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add("Joe");

ref.add("Bill");

ref.add("Tom");

ref.add("JOE");

ref.add("BILL");

ref.add("TOM");

}//end fillIt()

}//end class Populator
Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1125

Table 3.441

3.4.27.5.1.1 And the answer is ...

The correct answer to the above question is C, E, and G. The output from the program is shown below:

Joe Bill Tom JOE BILL TOM

TOM BILL JOE Tom Bill Joe

Tom TOM Joe JOE Bill BILL

If that was your answer, you probably already understand most of the material covered in this module. In
that case, you might consider skipping this module and moving on to the next module. If that wasn't your
answer, you should probably continue with your study of this module.

3.4.27.5.1.2 Similar to previous programs

The overall structure of this program in Listing 1 (p. 1131) is similar to programs that I have discussed in
previous modules. Therefore, I will concentrate on those aspects of this program that di�erentiate it from
the programs in previous modules.

3.4.27.5.1.3 A new ArrayList object

The code in Listing 2 (p. 1132) instantiates a new ArrayList object and passes that object's reference to
a method named �llIt where it is populated with the names of several people.

Listing 2 . A new ArrayList object.

ref = new ArrayList();

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

Table 3.442

3.4.27.5.1.4 Displays the list contents

The code in Listing 2 (p. 1132) also gets an iterator on the list and uses that iterator to display the contents
of the populated list. At that point in the program, the list contains the following elements in the order
shown:

Joe Bill Tom JOE BILL TOM
You will recognize this as matching the order in which the elements were added to the list by the �llIt

method shown in Listing 3 (p. 1133) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1126 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 3 . The �llIt method.

class Populator{

public static void fillIt(Collection ref){

ref.add("Joe");

ref.add("Bill");

ref.add("Tom");

ref.add("JOE");

ref.add("BILL");

ref.add("TOM");

}//end fillIt()

}//end class Populator

Table 3.443

3.4.27.5.1.5 The ArrayList class

The ArrayList class is one of the concrete class implementations of the Collections Framework. This class
implements both the Collection interface and the List interface. Therefore, it is both a collection and
a list, and adheres to the contracts and stipulations of both interfaces.

Here is part of what Oracle has to say about the ArrayList class:

"Resizable-array implementation of the List interface. Implements all optional list operations,
and permits all elements, including null. ... (This class is roughly equivalent to Vector, except
that it is unsynchronized.)"

3.4.27.5.1.6 The reverse method of the Collections class

The call to the reverse method shown in Listing 4 (p. 1133) is new to this module.

Listing 4 . The reverse method of the Collections class.

Collections.reverse((List)ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

Table 3.444

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1127

3.4.27.5.2 The Collections class

A previous module discussed the Collections class, indicating that the class provides a number of static
methods that can be used to manipulate collections. As a refresher, here is part of what Oracle has to say
about the Collections class:

"This class consists exclusively of static methods that operate on or return collections. It contains
polymorphic algorithms that operate on collections, "wrappers", which return a new collection
backed by a speci�ed collection, and a few other odds and ends."

You should recall that the Collections class is not the same as the Collection interface. Don't confuse
the two.

3.4.27.5.2.1 The reverse method

One of the static methods in the Collections class is the method named reverse . Here is part of what
Oracle has to say about the reverse method:

"Reverses the order of the elements in the speci�ed list."

Pretty simple, huh? But also very useful in some cases.

3.4.27.5.2.2 Contents of the list

After calling the reverse method on the list, the code in Listing 4 (p. 1133) above used an iterator to get and
display the contents of the list. The contents of the list at that point in the program were as shown below:

TOM BILL JOE Tom Bill Joe
If you compare this with the previous output, you will see that the locations of the elements in the list

are reversed. The element at index 0 was moved to index 5, the element at index 5 was moved to index 0,
and the elements in between were moved accordingly.

3.4.27.5.2.3 The reverseOrder method

The code in Listing 5 (p. 1134) is also new to this module. This code calls the static reverseOrder method
of the Collections class and stores the returned value in a reference variable of type Comparator .

Listing 5 . The reverseOrder method.

Comparator aComparator= Collections.reverseOrder();

Table 3.445

3.4.27.5.2.4 What does Oracle have to say about this?

Here is part of what Oracle has to say about the reverseOrder method:

"Returns a comparator that imposes the reverse of the natural ordering on a collection of objects
that implement the Comparable interface. (The natural ordering is the ordering imposed by the
objects' own compareTo method.) This enables a simple idiom for sorting (or maintaining)
collections (or arrays) of objects that implement the Comparable interface in reverse-natural-
order."

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1128 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.27.5.2.5 Reverse natural order

You will recall that in several previous modules, I have written a class from which I instantiated a Com-
parator object that was used to sort elements into reverse natural order . I chose that sorting order
simply because I needed to illustrate how to de�ne such a class, and in my speci�c cases, reverse natural
order was relatively easy to implement. (With a little more e�ort, I could have implemented a variety of
di�erent sorting orders.)

In my design of those classes, I made no attempt to write a general class that could do the job indepen-
dently of the type of the elements to be sorted. Rather, my Comparator objects tended to be very type
speci�c.

3.4.27.5.3 A type-independent Comparator

What we see here is much more general and sophisticated. The Comparator object returned by the
reverseOrder method can be used to impose a reverse natural order on any collection of objects that
implement the Comparable interface. Thus, the class from which the objects are instantiated doesn't
matter, as long as those classes implement the Comparable interface. (I also discussed the Comparable
interface in some detail in an earlier module. You may want to refer back to that module to learn more
about it.)

3.4.27.5.3.1 The wonderful world of the Java interface

Here again, we see a manifestation of the bene�ts of polymorphism as implemented using the Java interface.
(I frequently tell my students that if they don't understand interfaces, they can't possibly understand Java.)

3.4.27.5.3.2 Sorting the list

The code in Listing 6 (p. 1135) is not new to this module. An earlier module discussed the use of the sort
method of the Collections class, along with a Comparator object to sort a list.

Listing 6 . Sorting the list.

Collections.sort((List)ref, aComparator);

Table 3.446

3.4.27.5.3.3 Source of Comparator object is new

The thing that is new to this module is the source of the Comparator object provided to the sort
method in Listing 6 (p. 1135) .

In the previous modules, the Comparator object was obtained by instantiating an object from a class
of my own design. Those classes implemented the Comparator interface.

In this case, a reference to a Comparator object was returned by the call to the reverseOrder
method of the Collections class, and that reference was passed as a parameter to the sort method.

3.4.27.5.3.4 Don't know, don't care

The sort method doesn't care where the Comparator object comes from, as long as it properly
implements the Comparator interface.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1129

Regardless of the source of the Comparator object, the sort method will use that object to impose
the sorting rules imposed by the compare method of the object. In this case, the sorting rules cause the
list to be sorted into reverse natural order .

3.4.27.5.3.5 The output

The code in Listing 7 (p. 1136) gets and uses an iterator to display the contents of the list following the call
to the sort method in Listing 6 (p. 1135) .

Listing 7 . Produce the output.

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

Table 3.447

The output produced by the code in Listing 7 (p. 1136) is shown below:
Tom TOM Joe JOE Bill BILL
You will recognize this as reverse natural order for the elements in the list.

3.4.27.6 Run the program

I encourage you to copy the code from Listing 1 (p. 1131) . Paste the code into your Java editor. Then
compile and execute it.

Run the program and observe the results. Experiment with the code. Make changes, run the program
again, and observe the results of your changes. Make certain that you can explain why your changes behave
as they do.

3.4.27.7 Summary

In this module, I taught you how to use a Comparator created by the reverseOrder method of the
Collections class to sort a list into reverse natural order . The Comparator object is generic, and
can be used to sort any list of objects that implement the Comparable interface.

I also taught you how to use the reverse method of the Collections class to reverse the order of the
elements in a list.

3.4.27.8 What's next?

In the next module, I am going to dig a little deeper into the implications of using the toArray method
declared in the Collection interface.

3.4.27.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4140: The Comparator Interface, Part 6

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1130 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• File: Java4140.htm
• Published: 05/07/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1131

3.4.28 Java4140r: Review
552

Revised: Fri Apr 08 11:14:25 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 553

• Object-Oriented Programming (OOP) with Java 554

3.4.28.1 Table of Contents

• Preface (p. 1138)
• Questions (p. 1138)

· 1 (p. 1138) , 2 (p. 1138) , 3 (p. 1138) , 4 (p. 1139) , 5 (p. 1139) , 6 (p. 1139) , 7 (p. 1139) , 8
(p. 1139) , 9 (p. 1139) , 10 (p. 1139) , 11 (p. 1140) , 12 (p. 1140) , 13 (p. 1140)

• Listings (p. 1140)
• Answers (p. 1141)
• Complete program listing (p. 1143)
• Miscellaneous (p. 1145)

3.4.28.2 Preface

This module is one in a collection of modules on Java Collections designed for teaching ITSE2321 - Object-
Oriented Programming (Java) at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4140: The Comparator
Interface, Part 6 555 .

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

3.4.28.3 Questions

3.4.28.3.1 Question 1 .

True or False? The reverseOrder method of the Collections class returns a reference to an object of
type String .

Answer 1 (p. 1142)

3.4.28.3.2 Question 2

True or False? The reverse method of the Collections class returns a reference to an object of the
interface type List .

Answer 2 (p. 1142)

3.4.28.3.3 Question 3

True or False? A Comparator created by the reverseOrder method of the Collections class can be
used to sort a list into reverse natural order .

Answer 3 (p. 1142)

552This content is available online at <http://cnx.org/content/m48153/1.5/>.
553http://cnx.org/contents/dzOvxPFw
554http://cnx.org/contents/-2RmHFs_
555http://cnx.org/contents/-N3LExTh

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1132 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.28.3.4 Question 4

What output is produced by the program shown in Listing 1 (p. 1144) (select one or more answers) ?

• Compiler Error
• Runtime Error
• Joe Bill Tom JOE BILL TOM
• BILL Bill JOE Joe TOM Tom
• TOM BILL JOE Tom Bill Joe
• Joe Bill Tom JOE TOM BILL
• Tom TOM Joe JOE Bill BILL
• Joe Bill Tom
• None of the above.

Answer 4 (p. 1142)

3.4.28.3.5 Question 5

True or False? The ArrayList class implements both the Collection interface and the List interface.
Therefore, it is both a collection and a list , and adheres to the contracts and stipulations of both
interfaces.

Answer 5 (p. 1142)

3.4.28.3.6 Question 6

True or False? The reverseOrder method returns a Comparator that imposes the reverse of the
natural ordering on a collection of objects that implement the Comparable interface.

Answer 6 (p. 1142)

3.4.28.3.7 Question 7

True or False? The natural ordering of the elements in a collection is the ordering imposed by the objects'
own compare method.

Answer 7 (p. 1142)

3.4.28.3.8 Question 8

True or False? All Java objects have a natural ordering .
Answer 8 (p. 1142)

3.4.28.3.9 Question 9

True or False? The Comparator object returned by the reverseOrder method can be used to impose
a reverse natural order on any collection of objects that implement the Comparable interface.

Answer 9 (p. 1142)

3.4.28.3.10 Question 10

True or False? If you don't understand interfaces, they can't possibly understand Java.
Answer 10 (p. 1141)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1133

3.4.28.3.11 Question 11

True or False? A SortedMap is a Map that maintains its entries in ascending order, sorted according
to the values' natural ordering, or according to a Comparator provided at the time of the SortedMap
creation.

Answer 11 (p. 1141)

3.4.28.3.12 Question 12

True or False? An object of type Map is an object that maps keys to values. Such an object can contain
duplicate keys but cannot contain duplicate values

Answer 12 (p. 1141)

3.4.28.3.13 Question 13

True or False? An object of type Deque allows elements to be inserted, retrieved, and removed at both
ends.

Answer 13 (p. 1141)

3.4.28.4 Listings

• Listing 1 (p. 1144) . Comparator07.java.

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1134 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.28.5 Answers

3.4.28.5.1 Answer 13

True.
Back to Question 13 (p. 1140)

3.4.28.5.2 Answer 12

False. Such an object can contain duplicate values but cannot contain duplicate keys .
Back to Question 12 (p. 1140)

3.4.28.5.3 Answer 11

False. A SortedMap is a Map that maintains its entries in ascending order, sorted according to the
keys' natural ordering, or according to a Comparator provided at the time of the SortedMap

creation.
Back to Question 11 (p. 1140)

3.4.28.5.4 Answer 10

True, in the opinion of this author.
Back to Question 10 (p. 1139)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1135

3.4.28.5.5 Answer 9

True.
Back to Question 9 (p. 1139)

3.4.28.5.6 Answer 8

False. The natural ordering of a collection of objects of a given class is determined by the code written
into the concrete compareTo method when the compareTo method inherited from the Comparable
interface is de�ned. Objects instantiated from a class that doesn't implement the Comparable interface
don't have a natural ordering.

Back to Question 8 (p. 1139)

3.4.28.5.7 Answer 7

False. The natural ordering of the elements in a collection is the ordering imposed by the objects' own
compareTo method.

Back to Question 7 (p. 1139)

3.4.28.5.8 Answer 6

True.
Back to Question 6 (p. 1139)

3.4.28.5.9 Answer 5

True.
Back to Question 5 (p. 1139)

3.4.28.5.10 Answer 4

The program output is the three lines of text shown below (without the bullets) .

• Joe Bill Tom JOE BILL TOM
• TOM BILL JOE Tom Bill Joe
• Tom TOM Joe JOE Bill BILL

Back to Question 4 (p. 1139)

3.4.28.5.11 Answer 3

True.
Back to Question 3 (p. 1138)

3.4.28.5.12 Answer 2

False? While it is true that the reverse method of the Collections class reverses the order of the
elements in a speci�ed list, the method has a void return type.

Back to Question 2 (p. 1138)

3.4.28.5.13 Answer 1

False. The reverseOrder method of the Collections class returns a reference to an object of the
interface type Comparator .

Back to Question 1 (p. 1138)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1136 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.28.6 Complete program listing

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1137

Listing 1 . Comparator07.java .

//File Comparator07.java

//Copyright 2001, R.G.Baldwin

import java.util.*;

public class Comparator07{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class Comparator07

class Worker{

public void doIt(){

Iterator iter;

Collection ref;

ref = new ArrayList();

Populator.fillIt(ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

System.out.println();

Collections.reverse((List)ref);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

System.out.println();

Comparator aComparator= Collections.reverseOrder();

Collections.sort((List)ref, aComparator);

iter = ref.iterator();

while(iter.hasNext()){

System.out.print(iter.next() + " ");

}//end while loop

System.out.println();

}//end doIt()

}// end class Worker

class Populator{

public static void fillIt(Collection ref){

ref.add("Joe");

ref.add("Bill");

ref.add("Tom");

ref.add("JOE");

ref.add("BILL");

ref.add("TOM");

}//end fillIt()

}//end class Populator
Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1138 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.448

3.4.28.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4140r: Review
• File: Java4140r.htm
• Published: 12/03/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.4.29 Java4150: The toArray Method, Part 1
556

Revised: Fri Apr 08 11:29:38 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 557

• Object-Oriented Programming (OOP) with Java 558

3.4.29.1 Table of Contents

• Preface (p. 1146)

· Viewing tip (p. 1146)

* Listings (p. 1147)

• Preview (p. 1147)

· Generics (p. 1147)

• Discussion and sample code (p. 1147)

· Beginning with a quiz (p. 1147)

556This content is available online at <http://cnx.org/content/m46197/1.6/>.
557http://cnx.org/contents/dzOvxPFw
558http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1139

* And the answer is ... (p. 1149)

· A new LinkedList collection (p. 1149)

* The LinkedList class (p. 1149)
* Populating the LinkedList collection (p. 1150)
* Four buttons and two labels (p. 1150)
* The toolTipText property (p. 1150)
* Why am I using Swing GUI components? (p. 1150)

· Making the objects distinguishable (p. 1151)

* Identifying the buttons and labels (p. 1151)
* Why populate this way? (p. 1151)
* Display the collection (p. 1151)
* Downcast is required (p. 1152)
* The output for the collection (p. 1152)

· Copy collection elements into an array (p. 1152)

* The toArray method (p. 1153)
* Display the array contents (p. 1153)
* The showArray method (p. 1154)
* The output for the array (p. 1154)

· How "safe" is the array? (p. 1154)

* Array contains copies of references to objects (p. 1154)
* Modifying the state of an object (p. 1154)
* Display array contents after object modi�cation (p. 1155)
* Display the contents of the collection again (p. 1155)

· The bottom line (p. 1156)

• Run the program (p. 1156)
• Summary (p. 1156)
• What's next? (p. 1156)
• Miscellaneous (p. 1156)

3.4.29.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
in general and the Java Collections framework in particular.

This module shows you how to use the simpler version of the overloaded toArray method that is
declared in the Collection interface. The module also explains why you need to exercise care when using
the elements stored in the resulting array to avoid corrupting the state of the objects referred to by the
elements in the collection.

In addition to studying these modules, I strongly recommend that you study the Collections Trail 559 in
Oracle's Java Tutorials 560 . The modules in this collection are intended to supplement and not to replace
those tutorials.

3.4.29.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the listings while you are reading about them.

559http://docs.oracle.com/javase/tutorial/collections/index.html
560http://docs.oracle.com/javase/tutorial/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1140 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.29.2.1.1 Listings

• Listing 1 (p. 1148) . The program named ToArray01.
• Listing 2 (p. 1149) . A new LinkedList collection.
• Listing 3 (p. 1150) . Beginning of the �llIt method.
• Listing 4 (p. 1151) . Making the objects distinguishable.
• Listing 5 (p. 1152) . The showCollection method.
• Listing 6 (p. 1153) . Copy collection elements into an array.
• Listing 7 (p. 1153) . Display the array contents.
• Listing 8 (p. 1153) . The showArray method.
• Listing 9 (p. 1155) . Modifying the state of an object.
• Listing 10 (p. 1155) . Display the contents of the collection again.

3.4.29.3 Preview

In earlier modules, I used the toArray method, declared in the Collection interface, to copy elements
from a collection into an array. However, in those modules, I didn't take the time to fully explain how to use
the method. Also, I didn't fully explain the precautions that you need to take when you use the method.

The Collection interface declares the following two overloaded versions of the toArray method:

public Object[] toArray()

public Object[] toArray(Object[] a)

In this module, will teach you how to use the �rst (simpler) version of the toArray method. I will also
show why you need to exercise care when using the elements stored in the array to avoid corrupting the state
of the objects referred to by the elements in the collection.

I will teach you how to use the second (more complex) version of the toArray method in the next
module.

3.4.29.4 Generics

The code in this series of modules is written with no thought given to Generics 561 . As a result, if you copy
and compile the code, you will probably get warnings about unchecked or unsafe operations .

While you will ultimately need to understand how to use Generics, that is a very complex topic. An
understanding of Generics is beyond the scope of this course. Therefore, for purposes of this course, you can
simply ignore those warnings.

3.4.29.5 Discussion and sample code

3.4.29.5.1 Beginning with a quiz

Let's begin with a quiz to test your prior knowledge of the Collections Framework. To take this quiz, examine
the program shown in Listing 1 (p. 1148) and write down the output produced by the program.

561http://docs.oracle.com/javase/tutorial/java/generics/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1141

Listing 1 . The program named ToArray01 .

//File ToArray01.java

//Copyright 2001, R.G.Baldwin

import java.util.*;

import javax.swing.*;

public class ToArray01{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class ToArray01

//===================================//

class Worker{

public void doIt(){

Collection ref;

//Create, populate, and display the

// contents of a collection

ref = new LinkedList();

Populator.fillIt(ref);

System.out.println("Collection contents");

showCollection(ref);

//Get collection contents into the

// array and display the new

// contents of the array.

Object[] array = ref.toArray();

System.out.println("New array contents");

showArray(array);

//Modify a property of an object

// referred to by one of the

// elements in the array. Display

// array contents after

// modification

System.out.println("Modified array contents");

((JComponent)array[0]).setToolTipText("XX");

showArray(array);

//Display the contents of the

// collection

System.out.println("Collection contents");

showCollection(ref);

}//end doIt()

//-----------------------------------//

//Utility method for displaying

// array contents

void showArray(Object[] array){

for(int i = 0; i < array.length;i++){

if(array[i] == null){

System.out.print("null ");

}else{

System.out.print(((JComponent)array[i]).

getToolTipText() + " ");

}//end else

}//end for loop

System.out.println();

}//end showArray()

//-----------------------------------//

//Utility method for displaying

// collection contents

void showCollection(Collection ref){

Iterator iter = ref.iterator();

while(iter.hasNext()){

System.out.print(((JComponent)iter.next()).

getToolTipText() + " ");

}//end while loop

System.out.println();

}//end showCollection

}// end class Worker

//===================================//

class Populator{

public static void fillIt(Collection ref){

ref.add(new JButton());

ref.add(new JButton());

ref.add(new JLabel());

ref.add(new JButton());

ref.add(new JButton());

ref.add(new JLabel());

Iterator iter = ref.iterator();

int cnt = 0;

JComponent refVar;

while(iter.hasNext()){

refVar = (JComponent)iter.next();

if(refVar instanceof JButton){

refVar.setToolTipText("B"+cnt++);

}else{

refVar.setToolTipText("L" + cnt++);

}//end else

}//end while loop

}//end fillIt()

}//end class Populator

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1142 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.449

3.4.29.5.1.1 And the answer is ...

The correct answer to the quiz is the program output shown below:

Collection contents

B0 B1 L2 B3 B4 L5

New array contents

B0 B1 L2 B3 B4 L5

Modified array contents

XX B1 L2 B3 B4 L5

Collection contents

XX B1 L2 B3 B4 L5

If that was your answer, you probably already understand most of the material covered in this module. In
that case, you might consider skipping this module and moving on to the next module. If that wasn't your
answer, you should probably continue with your study of this module.

3.4.29.5.2 A new LinkedList collection

The code in Listing 2 (p. 1149) creates and populates a new LinkedList object and saves the object's
reference as the interface type Collection . The collection is populated by passing the LinkedList
object's reference to a method named �llIt .

The code in Listing 2 (p. 1149) also displays the contents of the LinkedList after it has been populated.
The list is displayed by passing the LinkedList object's reference to a method named showCollection
.

Listing 2 . A new LinkedList collection.

Collection ref;

ref = new LinkedList();

Populator.fillIt(ref);

System.out.println("Collection contents");

showCollection(ref);

Table 3.450

3.4.29.5.2.1 The LinkedList class

The LinkedList class is one of the concrete class implementations of the Collections Framework . This
class implements the Collection interface and the List interface. Thus, it adheres to the contracts and
stipulations of the List interface.

Here is part of what Oracle has to say about this class:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1143

"Linked list implementation of the List interface. Implements all optional list operations, and
permits all elements (including null). In addition ..."

3.4.29.5.2.2 Populating the LinkedList collection

The beginning of the static �llIt method, used to populate the collection, is shown in Listing 3 (p. 1150) .

Listing 3 . Beginning of the �llIt method.

public static void fillIt(Collection ref){

ref.add(new JButton());

ref.add(new JButton());

ref.add(new JLabel());

ref.add(new JButton());

ref.add(new JButton());

ref.add(new JLabel());

Table 3.451

As shown in Listing 3 (p. 1150) , the �llIt method begins by calling the add method six times in
succession, passing references to new anonymous objects as a parameter to the add method.

3.4.29.5.2.3 Four buttons and two labels

Four of the objects are instantiated from the class named JButton . Two of the objects are instantiated
from the class named JLabel .

Both JButton and JLabel belong to the javax.swing package. Further, both are subclasses of
the class named JComponent .

3.4.29.5.2.4 The toolTipText property

Finally, both classes have a property named toolTipText , which can be set and accessed by calling the
following methods on a reference to the object:

void setToolTipText(String text)

String getToolTipText()

3.4.29.5.2.5 Why am I using Swing GUI components?

I really don't plan to do anything special with these Swing GUI components. Rather, I chose to use them
for illustration purposes simply because they possess the characteristics that I need for this module, and the
next module as well. Those characteristics are:

• Both classes subclass the class named JComponent (a common superclass below the Object class).
• Both classes inherit a property (toolTipText) that can be used to identify them later.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1144 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.29.5.3 Making the objects distinguishable

After the code in Listing 3 (p. 1150) has been executed, the buttons and labels are indistinguishable on the
basis of the null value of their toolTipText property.

The code in Listing 4 (p. 1151) deals with this issue. This code uses the setToolTipText method
to store a unique String value in the toolTipText property of the object referred to by each of the
elements in the collection.

Listing 4 . Making the objects distinguishable.

Iterator iter = ref.iterator();

int cnt = 0;

JComponent refVar;

while(iter.hasNext()){

refVar = (JComponent)iter.next();

if(refVar instanceof JButton){

refVar.setToolTipText("B"+cnt++);

}else{

refVar.setToolTipText("L" + cnt++);

}//end else

}//end while loop

}//end fillIt()

Table 3.452

3.4.29.5.3.1 Identifying the buttons and labels

In addition to storing a unique value in the toolTipText property of the object referred to by each element,
the code in Listing 4 (p. 1151) also makes it possible to distinguish between the JButton objects and
the JLabel objects. This is accomplished by including an upper-case "B" in the property value for each
JButton , and including an upper-case "L" in the property value for each JLabel button.

3.4.29.5.3.2 Why populate this way?

This approach to population is, admittedly, a little bit of an overkill for illustrating what I want to illustrate
in this program. However, I plan to use the same �llIt method in the sample program in the next module,
and it won't be an overkill there.

3.4.29.5.3.3 Display the collection

The code in Listing 2 (p. 1149) above calls the showCollection method to display the contents of the
populated LinkedList collection. The showCollection method is shown in Listing 5 (p. 1152)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1145

Listing 5 . The showCollection method.

void showCollection(Collection ref){

Iterator iter = ref.iterator();

while(iter.hasNext()){

System.out.print(((JComponent)iter.next()).

getToolTipText() + " ");

}//end while loop

System.out.println();

}//end showCollection

Table 3.453

By now, you should have no di�culty understanding the code in Listing 5 (p. 1152) . This code gets an
iterator on the incoming reference of type Collection . The code then uses that iterator to gain access
to each element in succession, displaying the String value of the toolTipText property belonging to a
particular object during each iteration.

3.4.29.5.3.4 Downcast is required

Note that the next method of the Iterator interface returns a reference to the next element in the
collection, as type Object . (Remember, Generics were not used to populate this collection.)

In order to call the getToolTipText method on the returned reference, the reference must be downcast
to type JComponent . Since both JButton and JLabel extend JComponent , and the
getToolTipText method is declared in the JComponent class, it is not necessary to be concerned as to
whether an object is type JButton or type JLabel to display the value of the toolTipText property.
(This is an example of polymorphic behavior based on class inheritance.)

3.4.29.5.3.5 The output for the collection

The output produced by the code in Listing 2 (p. 1149) is shown below:

Collection contents

B0 B1 L2 B3 B4 L5

By examining the "B" and "L" characters in this output, you can identify the JButton objects and the
JLabel objects.

3.4.29.5.4 Copy collection elements into an array

The code in Listing 6 (p. 1153) shows how to use the simple version of the toArray method to create an
array of type Object that contains a copy of each element in the LinkedList collection.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1146 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 6 . Copy collection elements into an array.

Object[] array = ref.toArray();

Table 3.454

3.4.29.5.4.1 The toArray method

Here is some of what Oracle has to say about this version of the toArray method:

"Returns an array containing all of the elements in this collection. If the collection makes any
guarantees as to what order its elements are returned by its iterator, this method must return
the elements in the same order.

The returned array will be "safe" in that no references to it are maintained by this collection.
... The caller is thus free to modify the returned array."

I will have some more to say about the safe aspects of the array shortly.

3.4.29.5.4.2 Display the array contents

The code in Listing 7 (p. 1153) calls a method named showArray to cause the current contents of the
array to be displayed.

Listing 7 . Display the array contents.

System.out.println("New array contents");

showArray(array);

Table 3.455

The entire showArray method is shown in Listing 8 (p. 1153) .

Listing 8 . The showArray method.

void showArray(Object[] array){

for(int i = 0; i < array.length;i++){

if(array[i] == null){

System.out.print("null ");

}else{

System.out.print(((JComponent)array[i]).

getToolTipText() + " ");

}//end else

}//end for loop

System.out.println();

}//end showArray()

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1147

Table 3.456

3.4.29.5.4.3 The showArray method

The behavior of the ShowArray method is straightforward. The method uses a for loop to access each
of the elements stored in the array in increasing index order.

A test is made to determine if the element contains a null reference. If so, then the word null is
displayed for that element. If not, the getToolTipText method is used to access and display the value of
the toolTipText property for each element in the array.

3.4.29.5.4.4 The output for the array

The output produced by the code in Listing 8 (p. 1153) is shown below:

New array contents

B0 B1 L2 B3 B4 L5

As you can see, (except for the String that identi�es the type of output) this is an exact match to the
output produced when the contents of the collection were displayed.

3.4.29.5.5 How "safe" is the array?

While it is "safe" to modify the contents of the array as explained in the quotation from Oracle earlier, there
is still some danger here that you need to be aware of.

Java collections do not store objects. Rather, Java collections store references to objects. In Java, it is
entirely possible to have two or more references to the same object.

3.4.29.5.5.1 Array contains copies of references to objects

Each element in the array is a copy of an element in the collection.
Therefore, at this point, for each object being managed by the collection, at least two references exist

that refer to that object. One copy is contained in the collection. The other copy is contained in the array.
If you use a reference stored in the array to modify the state of one of those objects, that modi�cation

is made to the object that is also referenced by an element in the collection. This may or may not be what
you intend. It's not necessarily a problem as long as you understand what is going on and be careful how
you use the references stored in the array.

3.4.29.5.5.2 Modifying the state of an object

The code shown in Listing 9 (p. 1155) calls the setToolTipText method on the reference stored in the
�rst element in the array to modify the state of the object to which that reference refers. Then the code
calls the showArray method to display the contents of the array.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1148 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 9 . Modifying the state of an object.

System.out.println("Modified array contents");

((JComponent)array[0]).setToolTipText("XX");

showArray(array);

Table 3.457

The toolTipText property value for each of the objects referred to by the remaining elements is left
undisturbed.

3.4.29.5.5.3 Display array contents after object modi�cation

The output produced by the code in Listing 9 (p. 1155) is shown below:

Modified array contents

XX B1 L2 B3 B4 L5

As you can see, except for the �rst element, this is a match for the display of the array contents before the
state of the object referred by the �rst element was modi�ed. However, the toolTipText property for the
object referred to by the �rst element now contains the string "XX", instead of the string "B0" as before.

3.4.29.5.5.4 Display the contents of the collection again

The code in Listing 10 (p. 1155) displays the state of each of the objects referred to by the elements in the
LinkedList collection.

Listing 10 . Display the contents of the collection again.

System.out.println("Collection contents");

showCollection(ref);

Table 3.458

The output produced by Listing 10 (p. 1155) is shown below:

Collection contents

XX B1 L2 B3 B4 L5

As you can see, the state of the object referred to by the reference stored in the �rst element of the collection
is also changed. The toolTipText property for that object now contains the string "XX" instead of "B0"
as before.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1149

3.4.29.5.6 The bottom line

It is safe to modify the contents of the array, even to replace the references in the array with references to
other objects. Such a replacement has no impact on the contents of the collection.

However, it is also possible to use the elements of the array to modify the state of the objects referred to
by the elements in the collection.

If this is what you intend to do, that's great. However, if that is not what you intend to do, that may be
a problem. So, the bottom line is, be careful what you do with the elements in the array.

3.4.29.6 Run the program

I encourage you to copy the code from Listing 1 (p. 1148) . Paste the code into your Java editor. Then
compile and execute it.

Run the program and observe the results. Experiment with the code. Make changes, run the program
again, and observe the results of your changes. Make certain that you can explain why your changes behave
as they do.

3.4.29.7 Summary

In this module, I taught you how to use the simpler version of the overloaded toArray method, declared
in the Collection interface, to copy the elements from a collection into an array of type Object .

I also showed why you need to exercise care when using the elements stored in the array, to avoid
corrupting the state of the objects referred to by the elements in the collection.

3.4.29.8 What's next?

In the next module, I will teach you how to use the other, more complex version of the overloaded toArray
method.

3.4.29.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4150: The toArray Method, Part 1
• File: Java4150.htm
• Published: 05/07/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1150 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.30 Java4150r: Review
562

Revised: Fri Apr 08 12:48:52 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 563

• Object-Oriented Programming (OOP) with Java 564

3.4.30.1 Table of Contents

• Preface (p. 1157)
• Questions (p. 1157)

· 1 (p. 1157) , 2 (p. 1157) , 3 (p. 1157) , 4 (p. 1158) , 5 (p. 1158) , 6 (p. 1158)

• Figures (p. 1158)
• Listings (p. 1158)
• Answers (p. 1160)
• Complete program listing (p. 1161)
• Miscellaneous (p. 1163)

3.4.30.2 Preface

This module is one in a collection of modules on Java Collections designed for teaching ITSE2321 - Object-
Oriented Programming (Java) at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4150: The toArray
Method, Part 1 565 .

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

3.4.30.3 Questions

3.4.30.3.1 Question 1 .

True or False? The Collection interface declares the following two versions of the toArray method
(with generics syntax omitted because generics is beyond the scope of this course) .

public Object[] toArray()
public Object[] toArray(Object[] a)
Answer 1 (p. 1160)

3.4.30.3.2 Question 2

Write down the output produced by the program in Listing 1 (p. 1162) .
Answer 2 (p. 1160)

3.4.30.3.3 Question 3

True or False? When the toArray method is used to produce an array containing the contents of a
collection, modifying the contents of the array will also modify the contents of the underlying collection.

Answer 3 (p. 1160)

562This content is available online at <http://cnx.org/content/m48168/1.4/>.
563http://cnx.org/contents/dzOvxPFw
564http://cnx.org/contents/-2RmHFs_
565http://cnx.org/contents/kmgT0upV

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1151

3.4.30.3.4 Question 4

True or False? When the toArray method is used to produce an array containing the contents of a
collection, the array ends up containing references to copies of the objects referred to by the elements of the
collection.

Answer 4 (p. 1160)

3.4.30.3.5 Question 5

True or False? In Java, it is not possible to have two or more references to the same object.
Answer 5 (p. 1160)

3.4.30.3.6 Question 6

True or False? When the toArray method is used to produce an array containing the contents of a
collection, if you use a reference stored in the array to modify the state of the object to which it refers, that
modi�cation is made to an object that is also referred to by an element in the collection. The array and the
collection contain references to the same objects.

Answer 6 (p. 1160)

3.4.30.4 Figures

• Figure 1 (p. 1160) . Answer 2.

3.4.30.5 Listings

• Listing 1 (p. 1162) . ToArray01.java.

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1152 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1153

3.4.30.6 Answers

3.4.30.6.1 Answer 6

True.
Back to Question 6 (p. 1158)

3.4.30.6.2 Answer 5

False. In Java, it is entirely possible to have two or more references to the same object.
Back to Question 5 (p. 1158)

3.4.30.6.3 Answer 4

False. When the toArray method is used to produce an array containing the contents of a collection, the
collection and the array end up containing copies of references to the same underlying objects.

Back to Question 4 (p. 1158)

3.4.30.6.4 Answer 3

False. According to Oracle,
" The returned array will be "safe" in that no references to it are maintained by this collection. ... The

caller is thus free to modify the returned array."
Note, however, that there is still some danger that you need to be aware of, and you must use caution

when using the contents of the array.
Back to Question 3 (p. 1157)

3.4.30.6.5 Answer 2

The program shown in Listing 1 (p. 1162) produces the output shown in Figure 1 (p. 1160) .

Figure 1 . Answer 2.

Collection contents

B0 B1 L2 B3 B4 L5

New array contents

B0 B1 L2 B3 B4 L5

Modified array contents

XX B1 L2 B3 B4 L5

Collection contents

XX B1 L2 B3 B4 L5

Table 3.459

Back to Question 2 (p. 1157)

3.4.30.6.6 Answer 1

True.
Back to Question 1 (p. 1157)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1154 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.30.7 Complete program listing

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1155

Listing 1 . ToArray01.java.

//File ToArray01.java

//Copyright 2001, R.G.Baldwin

import java.util.*;

import javax.swing.*;

public class ToArray01{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class ToArray01

//===================================//

class Worker{

public void doIt(){

Collection ref;

//Create, populate, and display the

// contents of a collection

ref = new LinkedList();

Populator.fillIt(ref);

System.out.println("Collection contents");

showCollection(ref);

//Get collection contents into the

// array and display the new

// contents of the array.

Object[] array = ref.toArray();

System.out.println("New array contents");

showArray(array);

//Modify a property of an object

// referred to by one of the

// elements in the array. Display

// array contents after

// modification

System.out.println("Modified array contents");

((JComponent)array[0]).setToolTipText("XX");

showArray(array);

//Display the contents of the

// collection

System.out.println("Collection contents");

showCollection(ref);

}//end doIt()

//-----------------------------------//

//Utility method for displaying

// array contents

void showArray(Object[] array){

for(int i = 0; i < array.length;i++){

if(array[i] == null){

System.out.print("null ");

}else{

System.out.print(((JComponent)array[i]).

getToolTipText() + " ");

}//end else

}//end for loop

System.out.println();

}//end showArray()

//-----------------------------------//

//Utility method for displaying

// collection contents

void showCollection(Collection ref){

Iterator iter = ref.iterator();

while(iter.hasNext()){

System.out.print(((JComponent)iter.next()).

getToolTipText() + " ");

}//end while loop

System.out.println();

}//end showCollection

}// end class Worker

//===================================//

class Populator{

public static void fillIt(Collection ref){

ref.add(new JButton());

ref.add(new JButton());

ref.add(new JLabel());

ref.add(new JButton());

ref.add(new JButton());

ref.add(new JLabel());

Iterator iter = ref.iterator();

int cnt = 0;

JComponent refVar;

while(iter.hasNext()){

refVar = (JComponent)iter.next();

if(refVar instanceof JButton){

refVar.setToolTipText("B"+cnt++);

}else{

refVar.setToolTipText("L" + cnt++);

}//end else

}//end while loop

}//end fillIt()

}//end class Populator

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1156 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.460

3.4.30.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4150r: Review
• File: Java4150r.htm
• Published: 12/04/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

3.4.31 Java4160: The toArray Method, Part 2
566

Revised: Fri Apr 08 13:14:35 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 567

• Object-Oriented Programming (OOP) with Java 568

3.4.31.1 Table of Contents

• Preface (p. 1164)

· Viewing tip (p. 1165)

* Listings (p. 1165)

• Preview (p. 1165)

· Generics (p. 1165)

• Discussion and sample code (p. 1166)

· Beginning with a quiz (p. 1166)

566This content is available online at <http://cnx.org/content/m46198/1.4/>.
567http://cnx.org/contents/dzOvxPFw
568http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1157

* And the answer is ... (p. 1168)
* Similar to previous program (p. 1168)
* A populated array (p. 1168)
* Display the array contents (p. 1169)
* A new LinkedList collection (p. 1169)
* Populating the LinkedList collection (p. 1169)
* Four buttons and two labels (p. 1170)
* The toolTipText property (p. 1170)
* JButton and JLabel (p. 1171)
* Making the objects distinguishable (p. 1171)
* Identifying the buttons and labels (p. 1171)
* Display the collection (p. 1171)
* Copy collection elements into an array (p. 1171)

· The toArray method (p. 1172)

* The essential di�erence (p. 1172)
* Type is not an issue for the simpler version (p. 1172)
* Size is not an issue for the simpler version (p. 1172)

· More-complex version presents some issues (p. 1172)

* The type issue (p. 1172)
* Two types of objects in this collection (p. 1173)
* The size issue (p. 1173)
* So, what did I do? (p. 1173)
* More information from Oracle (p. 1173)

· The output (p. 1173)

* Demonstrates same array was used (p. 1174)
* What if the array was too small? (p. 1174)
* Not di�cult to demonstrate (p. 1174)
* Array as large as or larger than collection (p. 1174)
* Array smaller than the collection (p. 1174)

· Modify an object (p. 1175)

* Now for the caution (p. 1176)

• Run the program (p. 1176)
• Summary (p. 1176)
• What's next? (p. 1177)
• Miscellaneous (p. 1177)

3.4.31.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
in general and the Java Collections framework in particular.

This module shows you how to use the more-complex version of the toArray method declared in the
Collection interface. The module discusses issues regarding the type of the array and the types of the
objects referred to by the elements in the collection. The module also discusses issues regarding the relative
sizes of the array and the collection. Finally, the module rea�rms that you need to exercise caution when
using the elements stored in the array, to avoid corrupting the state of the objects referred to by the elements
in the collection.

In addition to studying these modules, I strongly recommend that you study the Collections Trail 569 in
Oracle's Java Tutorials 570 . The modules in this collection are intended to supplement and not to replace

569http://docs.oracle.com/javase/tutorial/collections/index.html
570http://docs.oracle.com/javase/tutorial/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1158 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

those tutorials.

3.4.31.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the listings while you are reading about them.

3.4.31.2.1.1 Listings

• Listing 1 (p. 1167) . The program named ToArray02.
• Listing 2 (p. 1168) . A populated array.
• Listing 3 (p. 1169) . A new LinkedList collection.
• Listing 4 (p. 1170) . The �llIt method.
• Listing 5 (p. 1171) . Copy collection elements into an array.
• Listing 6 (p. 1176) . Modify an object .

3.4.31.3 Preview

The Collection interface declares the following two overloaded versions of the toArray method:

public Object[] toArray()

public Object[] toArray(Object[] a)

In the previous module, I taught you how to use the �rst (simpler) of the two methods. I also discussed
the need to exercise care when using the elements stored in the returned array to avoid corrupting the state
of the objects referred to by elements in the collection.

In this module, I will teach you how to use the second (more-complex) version of the toArray method
declared in the Collection interface. I will discuss issues regarding the type of the array and the types of
the objects referred to by the elements in the collection. I will also discuss issues regarding the relative sizes
of the array and the collection.

Finally, I will rea�rm that you need to exercise care when using the elements stored in the array, to
avoid corrupting the state of the objects referred to by the elements in the collection.

3.4.31.4 Generics

The code in this series of modules is written with no thought given to Generics 571 . As a result, if you copy
and compile the code, you will probably get warnings about unchecked or unsafe operations .

While you will ultimately need to understand how to use Generics, that is a very complex topic. An
understanding of Generics is beyond the scope of this course. Therefore, for purposes of this course, you can
simply ignore those warnings.

571http://docs.oracle.com/javase/tutorial/java/generics/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1159

3.4.31.5 Discussion and sample code

3.4.31.5.1 Beginning with a quiz

As has been the case in the last few modules, let's begin with a quiz to test your prior knowledge of the
Collections Framework. To take this quiz, examine the program shown in Listing 1 (p. 1167) and write
down the output produced by that program.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1160 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 1 . The program named ToArray02 .

//File ToArray02.java

//Copyright 2001, R.G.Baldwin

import java.util.*;

import javax.swing.*;

public class ToArray02{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class ToArray02

//===================================//

class Worker{

public void doIt(){

Collection ref;

//Create, populate, and display

// the contents of an array

JComponent[] array = new JComponent[8];

for(int cnt=0;cnt<8;cnt++){
array[cnt] = new JButton();

array[cnt].setToolTipText("" + (cnt+10));

}//end for loop

System.out.println();

showArray(array,"Original array contents");

//Create, populate, and display the

// contents of a collection

ref = new LinkedList();

Populator.fillIt(ref);

showCollection(ref,"Collection contents");

//Get collection contents into the

// array and display the new

// contents of the array.

array = (JComponent[])ref.toArray(array);

showArray(array,"New array contents");

//Modify a property of an object

// referred to by one of the

// elements in the array. Display

// array contents after

// modification

((JComponent)array[0]).setToolTipText("XX");

showArray(array,"Modified array contents");

//Display the contents of the collection

showCollection(ref,"Collection contents");

}//end doIt()

//-----------------------------------//

//Utility method for displaying

// array contents

void showArray(Object[] array,String title){

System.out.println(title);

for(int i = 0; i < array.length;i++){

if(array[i] == null){

System.out.print("null ");

}else{

System.out.print(((JComponent)array[i]).

getToolTipText() + " ");

}//end else

}//end for loop

System.out.println();

}//end showArray()

//-----------------------------------//

//Utility method for displaying

// collection contents

void showCollection(Collection ref,String title){

System.out.println(title);

Iterator iter = ref.iterator();

while(iter.hasNext()){

System.out.print(((JComponent)iter.next()).

getToolTipText() + " ");

}//end while loop

System.out.println();

}//end showCollection

}// end class Worker

//===================================//

class Populator{

public static void fillIt(Collection ref){

ref.add(new JButton());

ref.add(new JButton());

ref.add(new JLabel());

ref.add(new JButton());

ref.add(new JButton());

ref.add(new JLabel());

Iterator iter = ref.iterator();

int cnt = 0;

JComponent refVar;

while(iter.hasNext()){

refVar = (JComponent)iter.next();

if(refVar instanceof JButton){

refVar.setToolTipText("B"+cnt++);

}else{

refVar.setToolTipText("L" + cnt++);

}//end else

}//end while loop

}//end fillIt()

}//end class Populator

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1161

Table 3.461

3.4.31.5.1.1 And the answer is ...

The correct answer to the quiz is the program output shown below:

Original array contents

10 11 12 13 14 15 16 17

Collection contents

B0 B1 L2 B3 B4 L5

New array contents

B0 B1 L2 B3 B4 L5 null 17

Modified array contents

XX B1 L2 B3 B4 L5 null 17

Collection contents

XX B1 L2 B3 B4 L5

If that was your answer, you probably already understand most of the material covered in this module. In
that case, you might consider skipping this module and moving on to some more productive activity. If that
wasn't your answer, you should probably continue with your study of this module.

3.4.31.5.1.2 Similar to previous program

Except for the use of a di�erent version of the toArray method, the overall structure of the program in
Listing 1 (p. 1167) is similar to the program in the previous module. Therefore, I will concentrate on those
aspects of this program that di�erentiate it from the program in the previous module.

3.4.31.5.1.3 A populated array

Unlike the program in the previous module, the code in Listing 2 (p. 1168) creates and populates an eight-
element array of type JComponent . This array will be re-populated by the toArray method later
in the program. The array is populated with a set of initial element values at this point to make it obvious
when it is re-populated (overwritten elements) by the toArray method later.

Listing 2 . A populated array.

JComponent[] array = new JComponent[8];

for(int cnt=0;cnt<8;cnt++){
array[cnt] = new JButton();

array[cnt].setToolTipText("" + (cnt+10));

}//end for loop

System.out.println();

showArray(array,"Original array contents");

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1162 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.462

The JButton class, the JLabel class, and the setToolTipText method were discussed in detail
in the previous module, so I won't repeat that discussion here.

3.4.31.5.1.4 Display the array contents

After the array is populated by the code in Listing 2 (p. 1168) , a reference to the array object is passed to
the showArray method (also in Listing 2 (p. 1168)) to display the contents of the array.

With the exception of some minor changes implemented in this program to make the use of the showAr-
ray method more compact, this is the same showArray method used in the previous module. Therefore,
I won't discuss that method further in this module. The output produced by the code in Listing 2 (p. 1168)
is as follows:

Original array contents

10 11 12 13 14 15 16 17

As you can see, each of the eight elements in the array was initialized with an easily-recognizable and unique
value, (which may be overwritten by the toArray method later).

3.4.31.5.1.5 A new LinkedList collection

The code in Listing 3 (p. 1169) creates and populates a new LinkedList collection. The collection is
populated by passing the LinkedList object's reference to a method named �llIt .

The code in Listing 2 (p. 1168) also displays the contents of the LinkedList collection after it has
been populated. The list is displayed by passing the LinkedList object's reference to a method named
showCollection .

Listing 3 . A new LinkedList collection.

ref = new LinkedList();

Populator.fillIt(ref);

showCollection(ref,"Collection contents");

Table 3.463

Except for a couple of minor changes to the showCollection method, the code to create, populate,
and display the collection is the same as the code in the previous module.

3.4.31.5.1.6 Populating the LinkedList collection

A couple of points regarding the �llIt method (shown in Listing 4 (p. 1170)) are worthy of note.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1163

Listing 4 . The �llIt method.

public static void fillIt(Collection ref){

ref.add(new JButton());

ref.add(new JButton());

ref.add(new JLabel());

ref.add(new JButton());

ref.add(new JButton());

ref.add(new JLabel());

Iterator iter = ref.iterator();

int cnt = 0;

JComponent refVar;

while(iter.hasNext()){

refVar = (JComponent)iter.next();

if(refVar instanceof JButton){

refVar.setToolTipText("B"+cnt++);

}else{

refVar.setToolTipText("L" + cnt++);

}//end else

}//end while loop

}//end fillIt()

Table 3.464

The �llIt method begins by calling the add method six times in succession, passing references to new
anonymous objects (of types JButton and JLabel) as a parameter to the add method.

3.4.31.5.1.7 Four buttons and two labels

Four of the objects are instantiated from the class named JButton . The other two objects are instantiated
from the class named JLabel .

Both JButton and JLabel belong to the javax.swing package. Further, both are subclasses of
the class named JComponent .

3.4.31.5.1.8 The toolTipText property

Finally, both classes have a property named toolTipText , which can be set and accessed by calling the
following methods on a reference to the object:

void setToolTipText(String text)

String getToolTipText()

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1164 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.31.5.1.9 JButton and JLabel

I chose to use objects of these two classes for illustration purposes simply because they possess the charac-
teristics that I need for this module. Those characteristics are:

• Both classes subclass the class named JComponent (a common superclass below the Object class).
• Both classes inherit a property (toolTipText) that can be used to identify them later.

3.4.31.5.1.10 Making the objects distinguishable

After adding the objects' references to the collection, the code in Listing 4 (p. 1170) uses the setToolTip-
Text method to store a unique String value in the toolTipText property of the object referred to by
each of the elements in the collection.

3.4.31.5.1.11 Identifying the buttons and labels

In addition to storing a unique value in the toolTipText property of the object referred to by each element,
the code in Listing 4 (p. 1170) also makes it possible to distinguish between the JButton objects and
the JLabel objects. This is accomplished by including an upper-case "B" in the property value for each
JButton , and including an upper-case "L" in the property value for each JLabel button.

3.4.31.5.1.12 Display the collection

The code in Listing 3 (p. 1169) above calls the showCollection method to display the contents of the
populated LinkedList collection. The output produced by the code in Listing 3 (p. 1169) is shown below:

Collection contents

B0 B1 L2 B3 B4 L5

Each term in the output is the String value of the toolTipText property for a particular object. Hence,
there are six terms in the output, one for each element in the collection.

3.4.31.5.1.13 Copy collection elements into an array

Having completed the preliminaries, we have now reached the point that is the main thrust of this module.
The code in Listing 5 (p. 1171) shows how to use the more-complex version of the toArray method to

copy the elements in the collection into an array.

Listing 5 . Copy collection elements into an array.

array = (JComponent[])ref.toArray(array);

showArray(array,"New array contents");

Table 3.465

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1165

The code in Listing 5 (p. 1171) also causes the contents of the array to be displayed after it receives the
elements from the collection.

The �rst statement in Listing 5 (p. 1171) causes the �rst seven elements in the array to be overwritten
with element values from the collection (plus one null value).

The second statement in Listing 5 (p. 1171) causes the contents of the array to be displayed.

3.4.31.5.2 The toArray method

The most important thing to note about Listing 5 (p. 1171) is that a reference to an array object is passed
as a parameter to the toArray method. (The simpler version of the toArray method, discussed in the
previous module, doesn't take any parameters.)

3.4.31.5.2.1 The essential di�erence

The essential di�erence between the two overloaded versions of the toArray method has to do with the
origin of the array into which the toArray method copies the elements from the collection.

With the simpler version of the toArray method that takes no parameters. The toArray method
creates a new array object of type Object , populates it, and returns that object's reference as type
Object .

3.4.31.5.2.2 Type is not an issue for the simpler version

Since the new array object is of type Object , (when the rules for Generics are not adhered to) there are
no issues regarding type compatibility between the type of the array and the types of the elements stored in
the collection. A reference to an object of any type can be stored in an array of the generic type Object[]
.

3.4.31.5.2.3 Size is not an issue for the simpler version

Also, since the array is created when it is needed by the simpler version of the toArray method, there are
also no size issues. The array is created to be of the correct size to contain copies of all of the elements in
the collection.

3.4.31.5.3 More-complex version presents some issues

With the more-complex version of the toArray method (shown in Listing 5 (p. 1171)) , the programmer
must provide the array object that will be populated by the toArray method. In this situation, there are
size issues as well as type issues to be dealt with.

3.4.31.5.3.1 The type issue

Here is some of what the Oracle documentation for the LinkedList class has to say about the type issue
for this version of the toArray method:

"Returns an array containing all of the elements in this list in the correct order. The runtime
type of the returned array is that of the speci�ed array. ... Throws: ArrayStoreException - if the
runtime type of (the speci�ed array) is not a supertype of the runtime type of every element in
this list.

In other words, the type of the array passed as a parameter to the toArray method must be a superclass
of the classes from which all of the objects being managed by the collection were instantiated.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1166 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.31.5.3.2 Two types of objects in this collection

In this program, the collection is managing objects of the types JButton and JLabel . Each of these
types is a subclass of the class named JComponent . For that reason, the type of array that I instantiated
and passed to the toArray method is JComponent[] .

3.4.31.5.3.3 The size issue

Here is some of what the Oracle documentation for the LinkedList class has to say about the size issue
for this version of the toArray method.

"If the list �ts in the speci�ed array, it is returned therein. Otherwise, a new array is allocated
with the runtime type of the speci�ed array and the size of this list. If the list �ts in the speci�ed
array with room to spare (i.e., the array has more elements than the list), the element in the
array immediately following the end of the collection is set to null. This is useful in determining
the length of the list only if the caller knows that the list does not contain any null elements."

3.4.31.5.3.4 So, what did I do?

Knowing all of this in advance, I purposely caused the size of the JComponent array to be larger (by
two elements) than the number of elements in the collection. Therefore, the array that I passed to the
toArray method was populated and a reference to that populated array was returned.

(Had my array been smaller than the number of elements in the collection, the toArray method
would have created and populated a new array of type JComponent and would have returned a
reference to that new array object. In that case, my array would have been used by the toArray
method only for the purpose of determining the runtime type of my array.)

3.4.31.5.3.5 More information from Oracle

Here is some additional information about the toArray method provided by the Oracle documentation
for the Collection interface:

"If this collection makes any guarantees as to what order its elements are returned by its iterator,
this method must return the elements in the same order."

Because the iterator for a LinkedList object returns the elements in increasing index order, the toArray
method, in this case, copies the element at each index position in the collection into the element at the same
index position in the array. Thus, reference values are copied from each element in the collection into the
�rst six elements in the array.

3.4.31.5.4 The output

The output produced by the code in Listing 5 (p. 1171) is shown below:

New array contents

B0 B1 L2 B3 B4 L5 null 17

You will note that the �rst six elements in the array match the six elements in the collection (the initial
values placed in the array earlier when the array was instantiated have been overwritten).

You will also note that the value of the seventh element in the array (index value 6) has been overwritten
with a null reference.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1167

3.4.31.5.4.1 Demonstrates same array was used

Note �nally that the last element in the array was not overwritten. It still contains the value placed there
when the array object was instantiated. This demonstrates that the array that I passed to the toArray
method was populated with the collection data, and a reference to that array was returned by the toArray
method.

3.4.31.5.4.2 What if the array was too small?

Had my array been too small, it would have been discarded by the toArray method. The toArray
method would have created and populated a new array object of the correct size and runtime type, and
would have returned a reference to that new array.

3.4.31.5.4.3 Not di�cult to demonstrate

Although this is not demonstrated by this program, it is easy to modify the program to demonstrate this
feature.

A String representation of the array object can be displayed using a System.out.println(array)
statement before and after the array is passed to the toArray method.

3.4.31.5.4.4 Array as large as or larger than collection

For the cases where my array contained six, seven, or eight elements, and the collection contained six
elements, the String representations of the array object before and after the call to the toArray method
were the same. For one case, those String representations were as follows:

[Ljavax.swing.JComponent;@49ba38

[Ljavax.swing.JComponent;@49ba38

In other words, the reference variable named array referred to the same array object before and after the
call to the toArray method.

3.4.31.5.4.5 Array smaller than the collection

When I reduced the size of the array to �ve elements, keeping the size of the collection at six elements, the
before and after String representations of the array object were as follows:

[Ljavax.swing.JComponent;@506411

[Ljavax.swing.JComponent;@21807c

In this case, the reference to the array object returned by the toArray method was di�erent from the
reference that was passed to the toArray method. In other words, the returned reference referred to a
di�erent array object than was referred to by the reference that was passed to the toArray method.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1168 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.31.5.5 Modify an object

As in the program in the previous module, the code shown in Listing 6 (p. 1176) modi�es the value of the
toolTipText property of the object whose reference is stored in index 0 of the array.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1169

Listing 6 . Modify an object .

((JComponent)array[0]).setToolTipText("XX");

showArray(array,"Modified array contents");

showCollection(ref,"Collection contents");

Table 3.466

The code in Listing 6 (p. 1176) also displays the contents of the array and the contents of the collection
after the modi�cation is made.

The output produced by the code in Listing 6 (p. 1176) is shown below:

Modified array contents

XX B1 L2 B3 B4 L5 null 17

Collection contents

XX B1 L2 B3 B4 L5

3.4.31.5.5.1 Now for the caution

Note that the value of the toolTipText property of the object referred to by the reference at index 0 of
the array, and the same property of the object referred to by the reference at index 0 of the collection was
overwritten by "XX". (This is true because both references refer to the same object.)

This is the case regardless of which version of the toArray method is used. Therefore, the same
cautions discussed in the previous module apply here as well.

3.4.31.6 Run the program

I encourage you to copy the code from Listing 1 (p. 1167) , Paste the code into your Java editor. Then
compile and execute it.

Run the program and observe the results. Experiment with the code. Make changes, run the program
again, and observe the results of your changes. Make certain that you can explain why your changes behave
as they do.

3.4.31.7 Summary

In this module, I taught you how to use the more-complex version of the two overloaded versions of the
toArray method, declared in the Collection interface, to copy the elements from a collection into an
array of type JComponent .

I discussed issues regarding the type of the array and the type of the objects referred to by the elements in
the container. I also discussed issues regarding the size of the array as compared to the number of elements
in the collection.

Finally, I rea�rmed that you need to exercise care when using the elements stored in the array, to avoid
corrupting the state of the objects referred to by the elements in the collection.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1170 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.31.8 What's next?

For now, at least, this module concludes the series of modules on the Java Collections Framework. If I have
time later, I will come back and add more modules to teach you how to use the Map and SortedMap
interfaces, and the concrete class implementations of those interfaces.

3.4.31.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4160: The toArray Method, Part 2
• File: Java4160.htm
• Published: 05/07/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1171

3.4.32 Java4160r: Review
572

Revised: Fri Apr 08 13:36:43 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 573

• Object-Oriented Programming (OOP) with Java 574

3.4.32.1 Table of Contents

• Preface (p. 1178)
• Questions (p. 1178)

· 1 (p. 1178) , 2 (p. 1178) , 3 (p. 1179) , 4 (p. 1179) , 5 (p. 1179) , 6 (p. 1179) , 7 (p. 1179) , 8
(p. 1179) , 9 (p. 1179) , 10 (p. 1179) , 11 (p. 1179) , 12 (p. 1179)

• Figures (p. 1180)
• Listings (p. 1180)
• Answers (p. 1181)
• Complete program listing (p. 1183)
• Miscellaneous (p. 1185)

3.4.32.2 Preface

This module is one in a collection of modules on Java Collections designed for teaching ITSE2321 - Object-
Oriented Programming (Java) at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4160: The toArray
Method, Part 2 575 .

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

3.4.32.3 Questions

3.4.32.3.1 Question 1 .

True or False? The Collection interface declares the following two versions of the toArray method
(with generics syntax omitted because generics is beyond the scope of this course) .

public Object[] toArray()
public Object[] toArray(Object[] a)
Answer 1 (p. 1182)

3.4.32.3.2 Question 2

Write down the output produced by the program shown in Listing 1 (p. 1184) .
Answer 2 (p. 1182)

572This content is available online at <http://cnx.org/content/m48166/1.5/>.
573http://cnx.org/contents/dzOvxPFw
574http://cnx.org/contents/-2RmHFs_
575http://cnx.org/contents/PH5PYKx4

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1172 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.32.3.3 Question 3

True or False? The Collections class (as opposed to the Collection interface) , provides static
methods that operate on collections.

Answer 3 (p. 1182)

3.4.32.3.4 Question 4

True or False? TreeSet is a class in the Java Collections Framework .
Answer 4 (p. 1182)

3.4.32.3.5 Question 5

True or False? A SortedMap is a Map that maintains its entries in ascending order, sorted according
to the values' natural ordering, or according to a Comparator provided at the time of the SortedMap
creation.

Answer 5 (p. 1182)

3.4.32.3.6 Question 6

True or False? An object of type SortedSet is a Set that, by default, maintains its elements in descending
order.

Answer 6 (p. 1182)

3.4.32.3.7 Question 7

True or False? An object of type Map is an object that maps keys to values. Such an object can contain
duplicate keys but cannot contain duplicate values.

Answer 7 (p. 1182)

3.4.32.3.8 Question 8

True or False? An object of type Deque allows elements to be inserted, retrieved, and removed at both
ends.

Answer 8 (p. 1181)

3.4.32.3.9 Question 9

True or False? Objects of type List allow duplicates..
Answer 9 (p. 1181)

3.4.32.3.10 Question 10

True or False? Objects of type Set allow duplicates..
Answer 10 (p. 1181)

3.4.32.3.11 Question 11

True or False? Set is an interface in the Collections Framework .
Answer 11 (p. 1181)

3.4.32.3.12 Question 12

True or False? Collection is the class that forms the root of the Collections Framework hierarchy.
Answer 12 (p. 1181)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1173

3.4.32.4 Figures

• Figure 1 (p. 1182) . Answer 2.

3.4.32.5 Listings

• Listing 1 (p. 1184) . ToArray02.java.

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1174 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.32.6 Answers

3.4.32.6.1 Answer 12

False. Collection is an interface, not a class.
Back to Question 12 (p. 1179)

3.4.32.6.2 Answer 11

True.
Back to Question 11 (p. 1179)

3.4.32.6.3 Answer 10

False. Objects of type Set do not allow duplicates.
Back to Question 10 (p. 1179)

3.4.32.6.4 Answer 9

True.
Back to Question 9 (p. 1179)

3.4.32.6.5 Answer 8

True.
Back to Question 8 (p. 1179)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1175

3.4.32.6.6 Answer 7

False. An object of type Map can contain duplicate values but cannot contain duplicate keys.
Back to Question 7 (p. 1179)

3.4.32.6.7 Answer 6

False. An object of type SortedSet is a Set that, by default, maintains its elements in ascending order.
Back to Question 6 (p. 1179)

3.4.32.6.8 Answer 5

False. A SortedMap is a Map that maintains its entries in ascending order, sorted according to the
keys' natural ordering, or according to a Comparator provided at the time of the SortedMap creation.

Back to Question 5 (p. 1179)

3.4.32.6.9 Answer 4

True.
Back to Question 4 (p. 1179)

3.4.32.6.10 Answer 3

True.
Back to Question 3 (p. 1179)

3.4.32.6.11 Answer 2

The output produced by the program in Listing 1 (p. 1184) is shown in Figure 1 (p. 1182) .

Figure 1 - Answer 2.

Original array contents

10 11 12 13 14 15 16 17

Collection contents

B0 B1 L2 B3 B4 L5

New array contents

B0 B1 L2 B3 B4 L5 null 17

Modified array contents

XX B1 L2 B3 B4 L5 null 17

Collection contents

XX B1 L2 B3 B4 L5

Table 3.467

Back to Question 2 (p. 1178)

3.4.32.6.12 Answer 1

True.
Back to Question 1 (p. 1178)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1176 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.4.32.7 Complete program listing

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1177

Listing 1 . ToArray02.java .

//File ToArray02.java

//Copyright 2001, R.G.Baldwin

import java.util.*;

import javax.swing.*;

public class ToArray02{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class ToArray02

//===================================//

class Worker{

public void doIt(){

Collection ref;

//Create, populate, and display

// the contents of an array

JComponent[] array = new JComponent[8];

for(int cnt=0;cnt<8;cnt++){
array[cnt] = new JButton();

array[cnt].setToolTipText("" + (cnt+10));

}//end for loop

System.out.println();

showArray(array,"Original array contents");

//Create, populate, and display the

// contents of a collection

ref = new LinkedList();

Populator.fillIt(ref);

showCollection(ref,"Collection contents");

//Get collection contents into the

// array and display the new

// contents of the array.

array = (JComponent[])ref.toArray(array);

showArray(array,"New array contents");

//Modify a property of an object

// referred to by one of the

// elements in the array. Display

// array contents after

// modification

((JComponent)array[0]).setToolTipText("XX");

showArray(array,"Modified array contents");

//Display the contents of the collection

showCollection(ref,"Collection contents");

}//end doIt()

//-----------------------------------//

//Utility method for displaying

// array contents

void showArray(Object[] array,String title){

System.out.println(title);

for(int i = 0; i < array.length;i++){

if(array[i] == null){

System.out.print("null ");

}else{

System.out.print(((JComponent)array[i]).

getToolTipText() + " ");

}//end else

}//end for loop

System.out.println();

}//end showArray()

//-----------------------------------//

//Utility method for displaying

// collection contents

void showCollection(Collection ref,String title){

System.out.println(title);

Iterator iter = ref.iterator();

while(iter.hasNext()){

System.out.print(((JComponent)iter.next()).

getToolTipText() + " ");

}//end while loop

System.out.println();

}//end showCollection

}// end class Worker

//===================================//

class Populator{

public static void fillIt(Collection ref){

ref.add(new JButton());

ref.add(new JButton());

ref.add(new JLabel());

ref.add(new JButton());

ref.add(new JButton());

ref.add(new JLabel());

Iterator iter = ref.iterator();

int cnt = 0;

JComponent refVar;

while(iter.hasNext()){

refVar = (JComponent)iter.next();

if(refVar instanceof JButton){

refVar.setToolTipText("B"+cnt++);

}else{

refVar.setToolTipText("L" + cnt++);

}//end else

}//end while loop

}//end fillIt()

}//end class Populator

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1178 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Table 3.468

3.4.32.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4160r: Review
• File: Java4160r.htm
• Published: 12/04/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1179

3.5 Practice Programs

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1180 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.5.1 Java OOP: ITSE 2321 Practice Group 1
576

Revised: Fri Apr 08 17:47:15 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 577

• Object-Oriented Programming (OOP) with Java 578

3.5.1.1 ITSE 2321 Object-Oriented Programming - Practice Group 1

• Java and Media Library Version Requirements (p. 1187)
• Input Image Files (p. 1187)
• Solution source code �les (p. 1187)
• Output Images (p. 1187)
• New Classes (p. 1188)
• Hints (p. 1188)
• Testing Your Programs (p. 1188)
• Program Speci�cations (p. 1188)

· Program 1 (p. 1188)
· Program 2 (p. 1191)
· Program 3 (p. 1193)
· Program 4 (p. 1195)
· Program 5 (p. 1197)

• Miscellaneous Information (p. 1200)

3.5.1.1.1 Java and Media Library Version Requirements

Your programs must be compatible with Oracle's Standard Edition JDK Version 1.7 or later.
Some of the programs in this group require you to use the Guzdial-Ericson multimedia class library. You

will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 579 .

3.5.1.1.2 Input Image Files

Links are provided within the individual program speci�cations for downloading any image �les that may
be required to write, compile, and test your programs.

3.5.1.1.3 Solution source code �les

Links are provided within the individual program speci�cations for downloading source code �les that contain
the programming solutions. You can compile and execute those programs using procedures described in Java
OOP: The Guzdial-Ericson Multimedia Class Library 580 .

3.5.1.1.4 Output Images

Your output image(s) must match my output image(s) in every respect including color, size, position, etc.
Don't forget to display your name in the output image(s) as shown.

576This content is available online at <http://cnx.org/content/m44252/1.10/>.
577http://cnx.org/contents/dzOvxPFw
578http://cnx.org/contents/-2RmHFs_
579http://cnx.org/content/m44148/latest/
580http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1181

3.5.1.1.5 New Classes

You may de�ne new classes and add import directives as needed to cause your programs to behave as
required, but you may not modify the class de�nitions for the given classes named ProbXX.

3.5.1.1.6 Hints

For some of the programs, you may �rst need to deduce the algorithm used to transform the input image
into the output image, and then write a working program that implements that algorithm. In some cases,
you may need to compare numeric color values for corresponding pixels in the input and output images in
order to deduce the algorithm.

You can obtain those color values using the following procedure:

1. Click on the input image �le link(s) and use the capabilities of your browser to download and save the
image �le(s).

2. Click on the Java solution source code link(s) and use the capabilities of your browser to download
and save the source code �le(s).

3. If necessary, replace calls to the show method in my source code with calls to the explore method
to force the program to display the output images in a PictureExplorer window.

4. Write, compile, and execute a simple Java program that will display each input image �le in a
PictureExplorer window.

5. Use the input and output PictureExplorer windows to compare the input and output color values
on a pixel by pixel basis.

In addition to the hints listed above, I will precede the detailed speci�cations for each program with a
discussion that contains hints about the concepts and skills that you will probably need to successfully write
the program.

In order to write this or any other Java program of substance, you will need to know how to use 581 the
Java Platform, Standard Edition API Speci�cation 582 as well as the documentation for the Guzdial-Ericson
Multimedia Class Library 583 .

You may �nd other useful hints in my online tutorials and slides for this course as well as in the YouTube
video lectures for this course.

3.5.1.1.7 Testing Your Programs

You can compile and execute your program by following the instructions given at Java OOP: The Guzdial-
Ericson Multimedia Class Library 584 .

3.5.1.1.8 Program Speci�cations

3.5.1.1.8.1 Program 1

Discussion
The following is a non-exhaustive list of concepts that you need to understand along with knowledge

and skills that you need to possess in order to successfully write this program and/or understand the given
solution in Prob01.java 585 . Some of these items are general in nature and some are speci�c to the use of
Ericson's multimedia library.

581http://cnx.org/content/m45117/latest/
582http://docs.oracle.com/javase/7/docs/api/index.html
583http://cnx.org/content/m44148/latest/#Discussion_and_sample_code
584http://cnx.org/content/m44148/latest/
585http://cnx.org/content/m44252/latest/Prob01.java

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1182 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• How to design and implement an algorithm that will transform Prob01.jpg 586 into the image shown
in Figure 1 (p. 1190) .

• How to incorporate and use an external class library 587 in addition to the standard Java class library.

• The general syntax 588 for a Java application (not a Java applet).
• How to write 589 , compile, and execute 590 a Java application that uses the Guzdial-Ericson Multimedia

Class Library.
• How to use the standard print and println 591 methods of the System class to display text on the

command-line screen.
• The e�ect of overridden 592 versions of the toString 593 method on the print and println methods
• Knowledge of the need for and use of import directives 594 .
• How to de�ne 595 and instantiate an object 596 of a new class named Prob01Runner .
• Knowledge of the di�erence between local variables 597 and instance variables 598 .
• How to declare local reference variables 599 of a given type.
• How to save the Prob01Runner object's reference in a reference variable 600 of type

Prob01Runner named obj .
• How to call 601 the run method, (which controls the major behavior of the program) , on the

Prob01Runner object's reference.
• How to use private 602 , public 603 , protected 604 , and package-private 605 access modi�ers.
• How to declare and use reference variables 606 versus primitive variables 607 .
• How to select the appropriate overloaded constructors 608 in order to i nstantiate objects 609 of Ericson's

World , Turtle , and Picture classes.
• How to de�ne a constructor 610 for a class.
• How to write accessor methods 611 in your new class de�nition that return references to Turtle and

World objects.
• How and why to call accessor methods 612 on objects.
• How to instantiate anonymous objects 613 .
• How to replace 614 the default white Picture object encapsulated in a World object with a new

586http://cnx.org/content/m44252/latest/Prob01.jpg
587http://cnx.org/content/m44148/latest/
588http://cnx.org/content/m44150/latest/#Listing_9
589http://cnx.org/content/m44148/latest/#Listing_2
590http://cnx.org/content/m44148/latest/#Figure_4
591http://cnx.org/content/m44150/latest/#Listing_5
592http://cnx.org/content/m44190/latest/
593http://cnx.org/content/m44149/latest/
594http://cnx.org/content/m44149/latest/#Listing_1
595http://cnx.org/content/m44149/latest/#Listing_2
596http://cnx.org/content/m44149/latest/#Listing_1
597http://cnx.org/content/m44204/latest/
598http://cnx.org/content/m44150/latest/
599http://cnx.org/content/m44153/latest/
600http://cnx.org/content/m44150/latest/#Listing_2
601http://cnx.org/content/m44149/latest/#Listing_1
602http://cnx.org/content/m44149/
603http://cnx.org/content/m44153/latest/
604http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
605http://cnx.org/content/m44149/
606http://cnx.org/content/m44149/latest/
607http://cnx.org/content/m44149/latest/
608http://cnx.org/content/m44149/latest/#Figure_4
609http://cnx.org/content/m44149/latest/#Listing_2
610http://cnx.org/content/m44193/latest/
611http://cnx.org/content/m44149/latest/#Listing_4
612http://cnx.org/content/m44149/latest/
613http://cnx.org/content/m44206/latest/
614http://cnx.org/content/m44149/latest/#Listing_5

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1183

and di�erent Picture object encapsulating the contents of a local image �le.
• How to call a method on a Picture object to write text 615 onto the Picture object.
• How to call a variety of methods 616 on objects of the Turtle class to cause the Turtle objects in

your world to do things, such as move forward, change their colors, etc.
• How pictures are composed of images.
• How images are composed of pixels.
• How pixels are composed of red, green, and blue color values.
• How objects can be used to represent pictures, images, and pixels.
• How methods can be called on those objects to manipulate the red, green, and blue color values.

Listing 1 - Write the Java application described below.

/*File Prob01 Copyright 2012 R.G.Baldwin
Write a program named Prob01 that uses the class de�nition shown below and Ericson's media library
along with the image �le named Prob01.jpg 617 to produce the graphic output image shown in Figure 1
(p. 1190) below.
Click Prob01.java 618 to download a Java source �le containing the solution to this program.
In addition to the output image, your program must display your name and the other three lines of text
shown below on the command-line screen:

Display your name here.

A 300 by 274 world with 2 turtles in it.

joe turtle at 256, 131 heading 45.0.

sue turtle at 50, 37 heading 0.0.

***/

public class Prob01{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

Prob01Runner obj = new Prob01Runner();

obj.run();

System.out.println(obj.getMars());

System.out.println(obj.getJoe());

System.out.println(obj.getSue());

}//end main

}//end class Prob01nd program specifications.

Table 3.469

Figure 1 - Required output image for Prob01.

615http://cnx.org/content/m44149/latest/#Listing_6
616http://cnx.org/content/m44149/latest/#Listing_7
617http://cnx.org/content/m44252/latest/Prob01.jpg
618http://cnx.org/content/m44252/latest/Prob01.java

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1184 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.5.1.1.8.2 Program 2

Discussion
The following is a non-exhaustive list of concepts that you need to understand along with knowledge

and skills that you need to possess in order to successfully write this program and/or understand the given
solution in Prob02.java 619 . Some of these items are general in nature and some are speci�c to the use of
Ericson's multimedia library. I won't repeat the items listed under Program 1 (p. 1188) above. Instead, I
will concentrate on new concepts, knowledge, and skills not included in the above list.

• How to design and implement an algorithm that will transform Prob02.jpg 620 into the image shown
in Figure 2 (p. 1192) .

• How to declare and initialize 621 instance variables in a single statement.
• How to instantiate a new object 622 of Ericson's Picture class encapsulating the contents of a local

image �le.
• How to call methods 623 on the new Picture object for a variety of purposes.
• How to declare a reference variable 624 capable of storing a reference to a one-dimensional array object.

• How to populate a one-dimensional array object 625 of type Pixel[] with references to all of the
Pixel objects encapsulated in a Picture object.

619http://cnx.org/content/m44252/latest/Prob02.java
620http://cnx.org/content/m44252/latest/Prob02.jpg
621http://cnx.org/content/m44203/latest/#Listing_2
622http://cnx.org/content/m44203/latest/#Listing_2
623http://cnx.org/content/m44203/latest/#Listing_3
624http://cnx.org/content/m44203/latest/#Listing_4
625http://cnx.org/content/m44203/latest/#Listing_4

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1185

• How to use a l oop structure 626 to individually access the reference to each Pixel object in the array
object.

• How to use a reference to a Pixel object to modify 627 the red, green, and blue color values belonging
to the pixel that is represented by the Pixel object.

• How use a pair of PictureExplorer objects to design and implement an algorithm that will transform
the original image 628 into the required output image shown in Figure 2 (p. 1192) .

• How to display 629 your modi�ed Picture object in an object of Ericson's PictureExplorer class.

• How to con�rm the validity of your algorithm by numerically comparing the color values in your output
with the color values produced by compiling and running the program solution 630 given below.

Listing 2 - Write the Java application described below.

/*File Prob02 Copyright 2012 R.G.Baldwin
Write a program named Prob02 that uses the class de�nition shown below and Ericson's media library
along with the image �le named Prob02.jpg 631 to produce the graphic output image shown in Figure 2
(p. 1192) below.
Click Prob02.java 632 to download a Java source �le containing the solution to this program.
In addition to the output image, your program must display your name and the other text shown below
on the command-line screen:

Display your name here.

Picture, filename Prob02.jpg height 274 width 365

***/

public class Prob02{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

Prob02Runner obj = new Prob02Runner();

obj.run();

System.out.println(obj.getPicture());

}//end main

}//end class Prob02

//End program specifications.

Table 3.470

Figure 2 - Required output image for Prob02.

626http://cnx.org/content/m44203/latest/#Listing_4
627http://cnx.org/content/m44203/latest/#Listing_4
628http://cnx.org/content/m44252/latest/Prob02.jpg
629http://cnx.org/content/m44203/latest/#Listing_5
630http://cnx.org/content/m44252/latest/Prob02.java
631http://cnx.org/content/m44252/latest/Prob02.jpg
632http://cnx.org/content/m44252/latest/Prob02.java

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1186 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.5.1.1.8.3 Program 3

Discussion
The following is a non-exhaustive list of concepts that you need to understand along with knowledge

and skills that you need to possess in order to successfully write this programand/or understand the given
solution in Prob03.java 633 . Some of these items are general in nature and some are speci�c to the use
of Ericson's multimedia library. I won't repeat the items listed above. Instead, I will concentrate on new
concepts, knowledge, and skills not included in the above lists.

There are at least two alternative ways to write a program that will satisfy these requirements.
Both alternatives

• How to design and implement an algorithm that will transform Prob03.jpg 634 into the required output
image shown in Figure 3 (p. 1194) .

Alternative 1
633http://cnx.org/content/m44252/latest/Prob03.java
634http://cnx.org/content/m44252/latest/Prob03.jpg

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1187

• How to create a new one-dimensional array object 635 of type Pixel[] and populate it with references
to all of the Pixel objects encapsulated in a Picture object.

• How to use some complicated indexing arithmetic 636 in conjunction with the one-dimensional array
mentioned above to apply the required algorithm.

Alternative 2

• How to use a nested loop structure 637 to achieve the same result.
• How to use a cast operator 638 .

Listing 3 - Write the Java application described below.

/*File Prob03 Copyright 2012 R.G.Baldwin
Write a program named Prob03 that uses the class de�nition shown below and Ericson's media library
along with the image �le named Prob03.jpg 639 to produce the graphic output image shown in Figure 3
(p. 1194) below.
Click Prob03.java 640 to download a Java source �le containing the solution to this program.
In addition to the output, your program must display your name and the other text shown below on the
command-line screen:

Display your name here.

Picture, filename Prob03.jpg height 274 width 365

***/

public class Prob03{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

Prob03Runner obj = new Prob03Runner();

obj.run();

System.out.println(obj.getPicture());

}//end main

}//end class Prob03

//End program specifications.

Table 3.471

Figure 3 - Required output image for Prob03.

635http://cnx.org/content/m44204/latest/#Listing_3
636http://cnx.org/content/m44204/latest/#Listing_5
637http://cnx.org/content/m44207/latest/#Listing_5
638http://cnx.org/content/m44168/
639http://cnx.org/content/m44252/latest/Prob03.jpg
640http://cnx.org/content/m44252/latest/Prob03.java

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1188 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.5.1.1.8.4 Program 4

Discussion
The following is a non-exhaustive list of concepts that you need to understand along with knowledge

and skills that you need to possess in order to successfully write this programand/or understand the given
solution in Prob04.java 641 . Some of these items are general in nature and some are speci�c to the use
of Ericson's multimedia library. I won't repeat the items listed above. Instead, I will concentrate on new
concepts, knowledge, and skills not included in the above lists.

• How to design and implement an algorithm that will transform Prob04.jpg 642 into the image shown
in Figure 4 (p. 1196) .

• Similarities and di�erences between classes and interfaces 643 .
• The di�erent types under which you can store an object's reference when the class from which the

object was instantiated extends a class and implements one or more interfaces.

641http://cnx.org/content/m44252/latest/Prob04.java
642http://cnx.org/content/m44252/latest/Prob04.jpg
643http://cnx.org/content/m44195/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1189

• The kinds of new relationships that are created when a class implements one or more interfaces.
• The implications of inheriting one or more abstract methods.
• The signi�cance of all interface methods being implicitly abstract.
• That DigitalPicture is an interface 644 and is not a class in Ericson's library.
• The relationship that exists between the DigitalPicture interface and the Picture class.
• The circumstances under which an accessor method can return a reference to an object as type

DigitalPicture .
• The di�erence between displaying a Picture object with the show and explore methods.

Listing 4 - Write the Java application described below.

/*File Prob04 Copyright 2012 R.G.Baldwin
Write a program named Prob04 that uses the class de�nition shown below and Ericson's media library
along with the image �le named Prob04.jpg 645 to produce the graphic output image shown in Figure 4
(p. 1196) below.
Click Prob04.java 646 to download a Java source �le containing the solution to this program.
In addition to the output image, your program must display your name and the other text shown below
on the command-line screen:

Display your name here.

Picture, filename Prob04.jpg height 274 width 365

***/

public class Prob04{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

Prob04Runner obj = new Prob04Runner();

DigitalPicture digitalPicture =

obj.getDigitalPicture();

System.out.println(digitalPicture);

digitalPicture.show();

}//end main

}//end class Prob04

//End program specifications.

Table 3.472

Figure 4 - Required output image for Prob04.

644http://cnx.org/content/m44195/latest/?collection=col11441/latest
645http://cnx.org/content/m44252/latest/Prob04.jpg
646http://cnx.org/content/m44252/latest/Prob04.java

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1190 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.5.1.1.8.5 Program 5

Discussion
The following is a non-exhaustive list of concepts that you need to understand along with knowledge

and skills that you need to possess in order to successfully write this program and/or understand the given
solution in Prob05.java 647 . Some of these items are general in nature and some are speci�c to the use
of Ericson's multimedia library. I won't repeat the items listed above. Instead, I will concentrate on new
concepts, knowledge, and skills not included in the above lists.

• How to design and implement an algorithm that will transform Prob05a.jpg 648 and Prob05b.jpg 649

into the images shown in Figure 5 (p. 1198) and Figure 6 (p. 1199) .
• What it means for the method named getDigitalPictures to return a reference to an object as type

DigitalPicture[] 650 .
• What you can do with a reference of type DigitalPicture[] .
• The implications of the fact that calling the show method each of the elements of the array of type

DigitalPicture[] produces a di�erent output image.

Listing 5 - Write the Java application described below.

continued on next page

647http://cnx.org/content/m44252/latest/Prob05.java
648http://cnx.org/content/m44252/latest/Prob05a.jpg
649http://cnx.org/content/m44252/latest/Prob05b.jpg
650http://cnx.org/content/m44198/latest/#Listing_1

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1191

/*File Prob05 Copyright 2012 R.G.Baldwin
Write a program named Prob05 that uses the class de�nition shown below and Ericson's media library
along with the image �les named Prob05a.jpg 651 and Prob05b.jpg 652 to produce the pair of graphic
output images shown in Figure 5 (p. 1198) and Figure 6 (p. 1199) below.
Note that unless you know how to position the output images on the screen, they will both end up in the
upper-left corner of the screen with one image partially or completely covering the other image. Use your
mouse to drag and separate the images.
Click Prob05.java 653 to download a Java source �le containing the solution to this program.
In addition to the output images mentioned above, your program must display your name and the other
text shown below on the command-line screen:

Display your name here.

Picture, filename Prob05b.jpg height 309 width 412

Picture, filename Prob05a.jpg height 274 width 365

***/

public class Prob05{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

Prob05Runner obj = new Prob05Runner();

DigitalPicture[] digitalPictures =

obj.getDigitalPictures();

System.out.println(digitalPictures[0]);

digitalPictures[0].show();

System.out.println(digitalPictures[1]);

digitalPictures[1].show();

}//end main

}//end class Prob05

//End program specifications.

Table 3.473

Figure 5 - First required output image for Prob05.

651http://cnx.org/content/m44252/latest/Prob05a.jpg
652http://cnx.org/content/m44252/latest/Prob05b.jpg
653http://cnx.org/content/m44252/latest/Prob05.java

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1192 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 6 - Second required output image for Prob05.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1193

3.5.1.2 Miscellaneous Information

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: ITSE 2321 Practice Group 1
• File: PracticeGroup01.htm
• Published: 08/03/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1194 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.5.2 Java OOP: ITSE 2321 Practice Group 2
654

Revised: Fri Apr 08 17:48:44 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 655

• Object-Oriented Programming (OOP) with Java 656

3.5.2.1 ITSE 2321 Object-Oriented Programming - Practice Group 2

• Java and Media Library Version Requirements (p. 1201)
• Input Image Files (p. 1201)
• Solution source code �les (p. 1201)
• Output Images (p. 1201)
• New Classes (p. 1202)
• Hints (p. 1202)
• Testing Your Programs (p. 1202)
• Program Speci�cations (p. 1202)

· Program 1 (p. 1202)
· Program 2 (p. 1204)
· Program 3 (p. 1206)
· Program 4 (p. 1208)
· Program 5 (p. 1210)

• Miscellaneous Information (p. 1212)

3.5.2.1.1 Java and Media Library Version Requirements

Your programs must be compatible with Sun's Standard Edition JDK Version 1.7 or later.
Some of the programs in this group require you to use the Guzdial-Ericson multimedia class library. You

will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 657 .

3.5.2.1.2 Input Image Files

Links are provided within the individual program speci�cations for downloading any image �les that may
be required to write, compile, and test your programs.

3.5.2.1.3 Solution source code �les

Links are provided within the individual program speci�cations for downloading source code �les that contain
the programming solutions. You can compile and execute those programs using procedures described in Java
OOP: The Guzdial-Ericson Multimedia Class Library 658 .

3.5.2.1.4 Output Images

Your output image(s) must match my output image(s) in every respect including color, size, position, etc.
Don't forget to display your name in the output image(s) as shown.

654This content is available online at <http://cnx.org/content/m44254/1.9/>.
655http://cnx.org/contents/dzOvxPFw
656http://cnx.org/contents/-2RmHFs_
657http://cnx.org/content/m44148/latest/
658http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1195

3.5.2.1.5 New Classes

You may de�ne new classes and add import directives as needed to cause your programs to behave as
required, but you may not modify the class de�nitions for the given classes named ProbXX.

3.5.2.1.6 Hints

For some of the programs, you may �rst need to deduce the algorithm used to transform the input image
into the output image, and then write a working program that implements that algorithm. In some cases,
you may need to compare numeric color values for corresponding pixels in the input and output images in
order to deduce the algorithm.

You can obtain those color values using the following procedure:

1. Click on the input image �le link(s) and use the capabilities of your browser to download and save the
image �le(s).

2. Click on the Java solution source code link(s) and use the capabilities of your browser to download
and save the source code �le(s).

3. If necessary, replace calls to the show method in my source code with calls to the explore method
to force the program to display the output images in a PictureExplorer window.

4. Write, compile, and execute a simple Java program that will display each input image �le in a
PictureExplorer window.

5. Use the input and output PictureExplorer windows to compare the input and output color values
on a pixel by pixel basis.

In addition to the hints listed above, I will precede the detailed speci�cations for each program with a
discussion that contains hints about the concepts and skills that you will probably need to successfully write
the program.

In order to write this or any other Java program of substance, you will need to know how to use 659 the
Java Platform, Standard Edition API Speci�cation 660 as well as the documentation for the Guzdial-Ericson
Multimedia Class Library 661 .

You may �nd other useful hints in my online tutorials and slides for this course as well as in the YouTube
video lectures for this course.

3.5.2.1.7 Testing Your Programs

You can compile and execute your program by following the instructions given at Java OOP: The Guzdial-
Ericson Multimedia Class Library 662 .

3.5.2.1.8 Program Speci�cations

3.5.2.1.8.1 Program 1

Discussion
The following is a non-exhaustive list of concepts that you need to understand along with knowledge

and skills that you need to possess in order to successfully write this program and/or understand the given
solution in Prob01.java 663 . Some of these items are general in nature and some are speci�c to the use of
Ericson's multimedia library. I won't repeat the items that were listed with the programs in Practice Group
1 664 . Instead, I will concentrate on new concepts, knowledge, and skills not included in previous lists.

659http://cnx.org/content/m45117/latest/
660http://docs.oracle.com/javase/7/docs/api/index.html
661http://cnx.org/content/m44148/latest/#Discussion_and_sample_code
662http://cnx.org/content/m44148/latest/
663http://cnx.org/content/m44254/latest/Prob01.java
664http://cnx.org/content/m44252/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1196 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• How to design and implement an algorithm that will transform the original image 665 into the image
shown in Figure 1 (p. 1203) .

• How to instantiate an object and call a method on that object in a single statement 666 .
• How methods belonging to an object call other methods 667 belonging to the same object.
• How to call a method on an object to modify the object saving only 668 a reference to the modi�ed

object.
• The use of nested loops 669 to access and modify image pixels on the basis of the horizontal and vertical

coordinates of the pixels.
• How to create a mirror image of a portion of an image about a vertical line 670 in the image.
• How to create a mirror image of a portion of an image about a horizontal 671 line in the image.

Listing 1 - Write the Java application described below.

/*File Prob01 Copyright 2012 R.G.Baldwin
Write a program named Prob01 that uses the class de�nition shown below and Ericson's media library
along with the image �le named Prob01.jpg 672 to produce the graphic output image shown in Figure 1
(p. 1203) below.
Click Prob01.java 673 to download a Java source �le containing the solution to this program.
In addition to the output image, your program must display your name and the other text shown below
on the command-line screen:

Display your name here.

Picture, filename Prob01.jpg height 240 width 320

***/

public class Prob01{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

Picture pic = new Prob01Runner().run();

System.out.println(pic);

}//end main method

}//end class Prob01

//End program specifications.

Table 3.474

Figure 1 - Required output image for Prob01.

665http://cnx.org/content/m44254/latest/Prob01.jpg
666http://cnx.org/content/m44207/latest/#Listing_1
667http://cnx.org/content/m44207/latest/#Listing_3
668http://cnx.org/content/m44207/latest/#Listing_3
669http://cnx.org/content/m44207/latest/#Listing_5
670http://cnx.org/content/m44207/latest/#Listing_4
671http://cnx.org/content/m44207/latest/#Listing_7
672http://cnx.org/content/m44254/latest/Prob01.jpg
673http://cnx.org/content/m44254/latest/Prob01.java

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1197

3.5.2.1.8.2 Program 2

Discussion
The following is a non-exhaustive list of concepts that you need to understand along with knowledge

and skills that you need to possess in order to successfully write this program and/or understand the given
solution in Prob02.java 674 . Some of these items are general in nature and some are speci�c to the use of
Ericson's multimedia library. I won't repeat the items that were listed with the programs in Practice Group
1 675 or earlier programs in this practice group. Instead, I will concentrate on new concepts, knowledge, and
skills not included in previous lists.

• How to design and implement an algorithm that will transform Prob02a.jpg 676 and Prob02b.jpg 677

into the image shown in Figure 2 (p. 1205) .
• How to �ip 678 an image around its center line.
• How to crop 679 an image.

674http://cnx.org/content/m44254/latest/Prob02.java
675http://cnx.org/content/m44252/latest/
676http://cnx.org/content/m44254/latest/Prob02a.jpg
677http://cnx.org/content/m44254/latest/Prob02b.jpg
678http://cnx.org/content/m44238/latest/#Listing_4
679http://cnx.org/content/m44238/latest/#Listing_4

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1198 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• How to copy 680 one image onto another image.

Listing 2 - Write the Java application described below.

/*File Prob02 Copyright 2012 R.G.Baldwin
Write a program named Prob02 that uses the class de�nition shown below and Ericson's media library
along with the image �les named Prob02a.jpg 681 and Prob02b.jpg 682 to produce the graphic output
image shown in Figure 2 (p. 1205) below.
Click Prob02.java 683 to download a Java source �le containing the solution to this program.
In addition to the output image, your program must display your name and the other text shown below
on the command-line screen:

Display your name here.

Picture, filename Prob02a.jpg height 118 width 100

Picture, filename Prob02b.jpg height 240 width 320

Picture, filename None height 101 width 77

***/

public class Prob02{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

Picture[] pictures = new Prob02Runner().run();

System.out.println(pictures[0]);

System.out.println(pictures[1]);

System.out.println(pictures[2]);

}//end main method

}//end class Prob02

//End program specifications.

Table 3.475

Figure 2 - Required output image for Prob02.

680http://cnx.org/content/m44238/latest/#Listing_7
681http://cnx.org/content/m44254/latest/Prob02a.jpg
682http://cnx.org/content/m44254/latest/Prob02b.jpg
683http://cnx.org/content/m44254/latest/Prob02.java

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1199

3.5.2.1.8.3 Program 3

Discussion
The following is a non-exhaustive list of concepts that you need to understand along with knowledge

and skills that you need to possess in order to successfully write this program and/or understand the given
solution in Prob03.java 684 . Some of these items are general in nature and some are speci�c to the use of
Ericson's multimedia library. I won't repeat the items that were listed with the programs in Practice Group
1 685 or earlier programs in this practice group. Instead, I will concentrate on new concepts, knowledge, and
skills not included in previous lists.

• How to design and implement an algorithm that will transform Prob03a.bmp 686 , Prob03b.bmp 687 ,
Prob03c.bmp 688 , and Prob03d.jpg 689 into the image shown in Figure 3 (p. 1207) .

• Green screen processing 690 of image data.

684http://cnx.org/content/m44254/latest/Prob03.java
685http://cnx.org/content/m44252/latest/
686http://cnx.org/content/m44254/latest/Prob03a.bmp
687http://cnx.org/content/m44254/latest/Prob03b.bmp
688http://cnx.org/content/m44254/latest/Prob03c.bmp
689http://cnx.org/content/m44254/latest/Prob03d.jpg
690http://cnx.org/content/m44210/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1200 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• Di�erences among bmp, jpg 691 , and png �les insofar as green screen processing is concerned.
• Scaling 692 the size of images while maintaining the aspect ratio.

Listing 3 - Write the Java application described below.

/*File Prob03 Copyright 2012 R.G.Baldwin
Write a program named Prob03 that uses the class de�nition shown below and Ericson's media library
along with the image �les named Prob03a.bmp 693 , Prob03b.bmp 694 , Prob03c.bmp 695 , and Prob03d.jpg
696 to produce the graphic output image shown in Figure 3 (p. 1207) below.
Click Prob03.java 697 to download a Java source �le containing the solution to this program.
In addition to the output, your program must display your name and the other text shown below on the
command-line screen:

Display your name here.

Picture, filename None height 256 width 344

***/

public class Prob03{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

Prob03Runner obj = new Prob03Runner();

obj.run();

}//end main

}//end class Prob03

//End program specifications.

Table 3.476

Figure 3 - Required output image for Prob03.

691http://cnx.org/content/m44210/latest/#Discussion_and_sample_code
692http://cnx.org/content/m44210/latest/#Listing_4
693http://cnx.org/content/m44254/latest/Prob03a.bmp
694http://cnx.org/content/m44254/latest/Prob03b.bmp
695http://cnx.org/content/m44254/latest/Prob03c.bmp
696http://cnx.org/content/m44254/latest/Prob03d.jpg
697http://cnx.org/content/m44254/latest/Prob03.java

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1201

3.5.2.1.8.4 Program 4

Discussion
The following is a non-exhaustive list of concepts that you need to understand along with knowledge

and skills that you need to possess in order to successfully write this program and/or understand the given
solution in Prob04.java 698 . Some of these items are general in nature and some are speci�c to the use of
Ericson's multimedia library. I won't repeat the items that were listed with the programs in Practice Group
1 699 or earlier programs in this practice group. Instead, I will concentrate on new concepts, knowledge, and
skills not included in previous lists.

• How to design and implement an algorithm that will transform Prob04a.bmp 700 , Prob04b.bmp 701 ,
and Prob04c.jpg 702 into the image shown in Figure 4 (p. 1209) .

• How to use one image as a pattern 703 to perform modi�cations on another image.

698http://cnx.org/content/m44254/latest/Prob04.java
699http://cnx.org/content/m44252/latest/
700http://cnx.org/content/m44254/latest/Prob04a.bmp
701http://cnx.org/content/m44254/latest/Prob04b.bmp
702http://cnx.org/content/m44254/latest/Prob04c.jpg
703http://cnx.org/content/m44234/latest/#Listing_5

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1202 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

• How to brighten 704 the colors of selected pixels in an image.
• How to tint 705 the colors of selected pixels in an image.

Listing 4 - Write the Java application described below.

/*File Prob04 Copyright 2012 R.G.Baldwin
Write a program named Prob04 that uses the class de�nition shown below and Ericson's media library
along with the image �les named Prob04a.bmp 706 , Prob04b.bmp 707 , and Prob04c.jpg 708 to produce
the graphic output image shown in Figure 4 (p. 1209) below.
Click Prob04.java 709 to download a Java source �le containing the solution to this program.
In addition to the output image, your program must display your name and the other text shown below
on the command-line screen:

Display your name here.

Picture, filename None height 293 width 392

***/

import java.awt.Color;

public class Prob04{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

Prob04Runner obj = new Prob04Runner();

obj.run();

}//end main

}//end class Prob04

//End program specifications.

Table 3.477

Figure 4 - Required output image for Prob04.

704http://cnx.org/content/m44234/latest/
705http://cnx.org/content/m44234/latest/#Listing_8
706http://cnx.org/content/m44254/latest/Prob04a.bmp
707http://cnx.org/content/m44254/latest/Prob04b.bmp
708http://cnx.org/content/m44254/latest/Prob04c.jpg
709http://cnx.org/content/m44254/latest/Prob04.java

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1203

3.5.2.1.8.5 Program 5

Discussion
The following is a non-exhaustive list of concepts that you need to understand along with knowledge

and skills that you need to possess in order to successfully write this program and/or understand the given
solution in Prob05.java 710 . Some of these items are general in nature and some are speci�c to the use of
Ericson's multimedia library. I won't repeat the items that were listed with the programs in Practice Group
1 711 or earlier programs in this practice group. Instead, I will concentrate on new concepts, knowledge, and
skills not included in previous lists.

• How to design and implement an algorithm that will transform Prob05a.jpg 712 into the image shown
in Figure 5 (p. 1211) .

• How to extend a class to make it possible to override one or more methods 713 belonging to the class.

Listing 5 - Write the Java application described below.

continued on next page

710http://cnx.org/content/m44254/latest/Prob05.java
711http://cnx.org/content/m44252/latest/
712http://cnx.org/content/m44254/latest/Prob05.jpg
713http://cnx.org/content/m44177/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1204 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

/*File Prob05 Copyright 2012 R.G.Baldwin
Write a program named Prob05 that uses the class de�nition shown below and Ericson's media library
along with the image �le named Prob05a.jpg 714 to produce the graphic output image shown in Figure 5
(p. 1211) below.
Click Prob05.java 715 to download a Java source �le containing the solution to this program.
In addition to the output images mentioned above, your program must display your name and the other
text shown below on the command-line screen:

Display your name here.

Simple Picture, filename Prob05.jpg height 240 width 320

***/

public class Prob05{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

MyPicture pic = new Prob05Runner().run();

System.out.println(pic);

pic.addMessage("String",10,50);

pic.show();

}//end main method

}//end class Prob05

//End program specifications.

Table 3.478

Figure 5 - Required output image for Prob05.

714http://cnx.org/content/m44254/latest/Prob05.jpg
715http://cnx.org/content/m44254/latest/Prob05.java

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1205

3.5.2.2 Miscellaneous Information

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: ITSE 2321 Practice Group 2
• File: PracticeGroup02.htm
• Published: 08/03/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1206 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.5.3 Java OOP: ITSE 2321 Practice Group 3
716

Revised: Fri Apr 08 17:49:30 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 717

• Object-Oriented Programming (OOP) with Java 718

3.5.3.1 ITSE 2321 Object-Oriented Programming - Practice Group 3

• Java and Media Library Version Requirements (p. 1213)
• Input Image Files (p. 1213)
• Solution source code �les (p. 1213)
• Output Images (p. 1213)
• New Classes (p. 1214)
• Hints (p. 1214)
• Testing Your Programs (p. 1214)
• Program Speci�cations (p. 1215)

· Program 1 (p. 1215)
· Program 2 (p. 1216)
· Program 3 (p. 1219)
· Program 4 (p. 1221)
· Program 5 (p. 1222)

• Miscellaneous Information (p. 1223)

3.5.3.1.1 Java and Media Library Version Requirements

Your programs must be compatible with Sun's Standard Edition JDK Version 1.7 or later.
Some of the programs in this group require you to use the Guzdial-Ericson multimedia class library. You

will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 719 .

3.5.3.1.2 Input Image Files

Links are provided within the individual program speci�cations for downloading any image �les that may
be required to write, compile, and test your programs.

3.5.3.1.3 Solution source code �les

Links are provided within the individual program speci�cations for downloading source code �les that contain
the programming solutions. You can compile and execute those programs using procedures described in Java
OOP: The Guzdial-Ericson Multimedia Class Library 720 .

3.5.3.1.4 Output Images

Your output image(s) must match my output image(s) in every respect including color, size, position, etc.
Don't forget to display your name in the output image(s) as shown.

716This content is available online at <http://cnx.org/content/m44255/1.7/>.
717http://cnx.org/contents/dzOvxPFw
718http://cnx.org/contents/-2RmHFs_
719http://cnx.org/content/m44148/latest/
720http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1207

3.5.3.1.5 New Classes

You may de�ne new classes and add import directives as needed to cause your programs to behave as
required, but you may not modify the class de�nitions for the given classes named ProbXX.

3.5.3.1.6 Hints

For some of the programs, you may �rst need to deduce the algorithm used to transform the input image
into the output image, and then write a working program that implements that algorithm. In some cases,
you may need to compare numeric color values for corresponding pixels in the input and output images in
order to deduce the algorithm.

You can obtain those color values using the following procedure:

1. Click on the input image �le link(s) and use the capabilities of your browser to download and save the
image �le(s).

2. Click on the Java solution source code link(s) and use the capabilities of your browser to download
and save the source code �le(s).

3. If necessary, replace calls to the show method in my source code with calls to the explore method
to force the program to display the output images in a PictureExplorer window.

4. Write, compile, and execute a simple Java program that will display each input image �le in a
PictureExplorer window.

5. Use the input and output PictureExplorer windows to compare the input and output color values
on a pixel by pixel basis.

You may �nd other useful hints in my online tutorials and slides for this course as well as in the YouTube
video lectures for this course.

3.5.3.1.7 Testing Your Programs

You can compile and execute your program by following the instructions given at Java OOP: The Guzdial-
Ericson Multimedia Class Library 721 .

721http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1208 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.5.3.1.8 Program Speci�cations

3.5.3.1.8.1 Program 1

Listing 1 - Write the Java application described below.

/*File Prob01 Copyright 2012 R.G.Baldwin
Write a program named Prob01 that uses the class de�nition shown below and Ericson's media library
along with the image �le named Prob01.jpg 722 to produce the graphic output image shown in Figure 1
(p. 1215) below.
Click Prob01.java 723 to download a Java source �le containing the solution to this program.
In addition to the output image, your program must display your name and the other text shown below
on the command-line screen:

Display your name here.

Picture, filename None height 201 width 201

***/

public class Prob01{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

new Prob01Runner().run();

}//end main method

}//end class Prob01//End program specifications.

Table 3.479

Figure 1 - Required output image for Prob01.

722http://cnx.org/content/m44255/latest/Prob01.jpg
723http://cnx.org/content/m44255/latest/Prob01.java

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1209

3.5.3.1.8.2 Program 2

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1210 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Listing 2 - Write the Java application described below.

/*File Prob02 Copyright 2012 R.G.Baldwin
Write a program named Prob02 that uses the class de�nition shown below and Ericson's media library
along with the image �le named Prob02.jpg 724 to produce the graphic output image shown in Figure 2
(p. 1217) below.
Click Prob02.java 725 to download a Java source �le containing the solution to this program.
In addition to the output image, your program must display your name and the other text shown below
on the command-line screen:

Display your name here.

Picture, filename None height 404 width 425

***/

public class Prob02{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

new Prob02Runner().run();

}//end main method

}//end class Prob02//End program specifications.

Table 3.480

Figure 2 - Required output image for Prob02.

724http://cnx.org/content/m44255/latest/Prob02.jpg
725http://cnx.org/content/m44255/latest/Prob02.java

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1211

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1212 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.5.3.1.8.3 Program 3

Listing 3 - Write the Java application described below.

/*File Prob03 Copyright 2012 R.G.Baldwin
Write a program named Prob03 that uses the class de�nition shown below and Ericson's media library
to produce the graphic output image shown in Figure 3 (p. 1219) below.
Click Prob03.java 726 to download a Java source �le containing the solution to this program.
In addition to the output, your program must display your name and the other text shown below on the
command-line screen:

Display your name here.

Picture, filename None height 300 width 300

***/

public class Prob03{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

new Prob03Runner().run();

}//end main method

}//end class Prob03//End program specifications.

Table 3.481

Figure 3 - Required output image for Prob03.

726http://cnx.org/content/m44255/latest/Prob03.java

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1213

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1214 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

3.5.3.1.8.4 Program 4

Listing 4 - Write the Java application described below.

/*File Prob04 Copyright 2012 R.G.Baldwin
Write a program named Prob04 that uses the class de�nition shown below and Ericson's media library
along with the image �le named Prob04a.jpg 727 to produce the graphic output image shown in Figure 4
(p. 1221) below.
Click Prob04.java 728 to download a Java source �le containing the solution to this program.
In addition to the output image, your program must display your name and the other text shown below
on the command-line screen:

Display your name here.

Picture, filename None height 256 width 341

***/

public class Prob04{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

new Prob04Runner().run();

}//end main method

}//end class Prob04

//End program specifications.

Table 3.482

Figure 4 - Required output image for Prob04.

727http://cnx.org/content/m44255/latest/Prob04a.jpg
728http://cnx.org/content/m44255/latest/Prob04.java

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1215

3.5.3.1.8.5 Program 5

Listing 5 - Write the Java application described below.

/*File Prob05 Copyright 2012 R.G.Baldwin
Write a program named Prob05 that uses the class de�nition shown below and Ericson's media library
along with the image �les named Prob05a.jpg 729 and Prob05b.jpg 730 to produce the graphic output
image shown in Figure 5 (p. 1223) below.
Click Prob05.java 731 to download a Java source �le containing the solution to this program.
In addition to the output images mentioned above, your program must display your name and the other
text shown below on the command-line screen:

Display your name here.

Picture, filename None height 252 width 330

***/

public class Prob05{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

new Prob05Runner().run();

}//end main method

}//end class Prob05//End program specifications.

Table 3.483

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1216 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Figure 5 - Required output image for Prob05.

3.5.3.2 Miscellaneous Information

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: ITSE 2321 Practice Group 3
• File: PracticeGroup03.htm
• Published: 08/03/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

729http://cnx.org/content/m44255/latest/Prob05a.jpg
730http://cnx.org/content/m44255/latest/Prob05b.jpg
731http://cnx.org/content/m44255/latest/Prob05.java

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1217

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1218 CHAPTER 3. ITSE 2321 OBJECT-ORIENTED PROGRAMMING (JAVA)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

Chapter 4

ITSE2317 - Java Programming
(Intermediate)

4.1 Preface

4.1.1 Jy0030: Java OOP: Preface to ITSE 2317
1

Revised: Fri Sep 23 13:08:46 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 2

• Object-Oriented Programming (OOP) with Java 3

4.1.1.1 Table of Contents

• Welcome (p. 1225)
• Essence of OOP (p. 1226)
• Downloads (p. 1226)
• Miscellaneous (p. 1226)

4.1.1.2 Welcome

Welcome to the course material for ITSE2317 - Java Programming (Intermediate) , which I teach
at Austin Community College 4 in Austin, TX.

Information about the course
The college website for this course is: http://www.austincc.edu/baldwin/ 5

As of December 2013, the State of Texas description for this course reads as follows:

"Introduction to object-oriented Java programming including the fundamental syntax and seman-
tics of Java for applications and web applets."

1This content is available online at <http://cnx.org/content/m45258/1.11/>.
2http://cnx.org/contents/Rl23r3Lw
3http://cnx.org/contents/-2RmHFs_
4http://www.austincc.edu/
5http://www.austincc.edu/baldwin/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1219

1220 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

The prerequisite for the course is ITSE 2321 - Object-Oriented Programming (Java) 6 or department approval.
In the event that you enroll in this course without having successfully completed a section of that

prerequisite course taught by Prof. Baldwin, or you successfully completed that course under Prof. Baldwin
but a signi�cant amount of time has elapsed since you completed the course, you should review the material
in the following three Ebooks to make certain that you understand all of the material covered in those Ebooks
before embarking on this course:

• Programming Fundamentals with Java 7

• Java OOP Self-Assessment 8

• ITSE 2321 - Object-Oriented Programming (Java) 9

The course covers three major topics :

• Generics
• Event Handling
• JavaServer Pages (JSP)

4.1.1.3 Essence of OOP

In addition to the three major topics listed above (p. 1226) , there is also a topic named Essence of
OOP that contains necessary background material for an understanding of Event Handling . This
is a continuation of a topic having the same name that begins in the prerequisite course, ITSE 2321 -
Object-Oriented Programming (Java) 10 .

4.1.1.4 Downloads

I encourage you to take advantage of the download options that OpenStax has to o�er in order to customize
this material for use in your organized courses or for personal self study.

4.1.1.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jy0030: Java OOP: Preface to ITSE 2317
• File: Jy0030.htm
• Published: 11/29/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that I receive no �nancial compensation from the Connexions website even
if you purchase the printed PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive

6http://cnx.org/contents/dzOvxPFw
7http://cnx.org/contents/EHRr6hjR:pDHzTeQb
8http://cnx.org/contents/1CVBGBJj:4OPmk79Y
9http://cnx.org/contents/dzOvxPFw:6GrxCfXx

10http://cnx.org/contents/dzOvxPFw

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1221

compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.2 Essence of OOP

4.2.1 Java1632 The Essence of OOP using Java, Static Initializer Blocks
11

Revised: Wed May 11 14:42:52 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 12

• Object-Oriented Programming (OOP) with Java 13

4.2.1.1 Table of contents

• Preface (p. 1227)
• Tutorial and code links (p. 1227)
• Miscellaneous (p. 1228)

4.2.1.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 14 .

In the meantime, this is one of the pages in a book titled ITSE2317 - Java Programming (Intermediate)
15 that presents PDF versions of the original tutorials to make them readily available for Connexions users.
When I have time available, I plan to update this tutorial and to re-publish it as a standard page at cnx.org
16 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 17 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 18 . If not, you
can probably use a Google Advanced Search 19 to �nd a copy somewhere on the web.

4.2.1.3 Tutorial and code links

Click here 20 to download and view the PDF version of this page.
The representation of program code in PDF documents is often very unreliable. Click here 21 to download

a zip �le containing a clean copy of the program code discussed in this tutorial.

11This content is available online at <http://cnx.org/content/m59577/1.2/>.
12http://cnx.org/contents/Rl23r3Lw
13http://cnx.org/contents/-2RmHFs_
14http://cnx.org/
15http://cnx.org/contents/Rl23r3Lw
16http://cnx.org/
17http://cnx.org/
18http://cnx.org/
19https://www.google.com/advanced_search
20http://cnx.org/content/m59577/latest/Java1632.pdf
21http://cnx.org/content/m59577/latest/code.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1222 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.2.1.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java1632 The Essence of OOP using Java, Static Initializer Blocks
• File: Java1632.cnx.htm
• Published: 01/13/16

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1227) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 22 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.2.2 Java1634 The Essence of OOP using Java, Instance Initializers
23

Revised: Wed May 11 14:51:26 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 24

• Object-Oriented Programming (OOP) with Java 25

4.2.2.1 Table of contents

• Preface (p. 1228)
• Tutorial and code links (p. 1229)
• Miscellaneous (p. 1229)

4.2.2.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 26 .

In the meantime, this is one of the pages in a book titled ITSE2317 - Java Programming (Intermediate)
27 that presents PDF versions of the original tutorials to make them readily available for Connexions users.

22http://cnx.org/
23This content is available online at <http://cnx.org/content/m59579/1.2/>.
24http://cnx.org/contents/Rl23r3Lw
25http://cnx.org/contents/-2RmHFs_
26http://cnx.org/
27http://cnx.org/contents/Rl23r3Lw

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1223

When I have time available, I plan to update this tutorial and to re-publish it as a standard page at cnx.org
28 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 29 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 30 . If not, you
can probably use a Google Advanced Search 31 to �nd a copy somewhere on the web.

4.2.2.3 Tutorial and code links

Click here 32 to download and view the PDF version of this page.
The representation of program code in PDF documents is often very unreliable. Click here 33 to download

a zip �le containing a clean copy of the program code discussed in this tutorial.

4.2.2.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java1634 The Essence of OOP using Java, Instance Initializers
• File: Java1634.cnx.htm
• Published: 01/13/16

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1229) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 34 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.2.3 Java1636 Java OOP Member Classes
35

Revised: Wed May 11 15:16:30 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 36

• Object-Oriented Programming (OOP) with Java 37

28http://cnx.org/
29http://cnx.org/
30http://cnx.org/
31https://www.google.com/advanced_search
32http://cnx.org/content/m59579/latest/Java1634.pdf
33http://cnx.org/content/m59579/latest/code.zip
34http://cnx.org/
35This content is available online at <http://cnx.org/content/m44347/1.8/>.
36http://cnx.org/contents/Rl23r3Lw
37http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1224 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.2.3.1 Table of Contents

• Preface (p. 1230)

· Viewing tip (p. 1230)

* Figures (p. 1230)
* Listings (p. 1231)

• Preview (p. 1231)

· What can you include in a class de�nition? (p. 1231)
· What is a member class? (p. 1232)
· What about a member interface? (p. 1232)
· Why use member classes? (p. 1232)
· Smoke and mirrors (p. 1233)

• Discussion and sample code (p. 1233)

· Class containment hierarchy (p. 1234)
· Behavior of the program (p. 1234)
· Structure of the program (p. 1235)

• Run the program (p. 1242)
• Summary (p. 1242)
• What's next? (p. 1243)
• Complete program listing (p. 1243)
• Miscellaneous (p. 1243)
• Figures (p. 1243)
• Listings (p. 1247)

4.2.3.2 Preface

This module is one in a collection of modules designed for teaching ITSE2317 - Java Programming (Inter-
mediate) at Austin Community College in Austin, TX.

(Editor's note: As you read this module, you will see that it was originally written around 2003. However,
despite many improvements in Java since then, most of what was true then is still true in 2013.)

This module makes several references to my website, which is located at
http://www.dickbaldwin.com/toc.htm 38 .

4.2.3.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

4.2.3.2.1.1 Figures

• Figure 1 (p. 1243) . Class �les produced when the program is compiled.
• Figure 2 (p. 1244) . Screen output.
• Figure 3 (p. 1244) . Screen output.
• Figure 4 (p. 1244) . Screen output.
• Figure 5 (p. 1244) . Screen output.
• Figure 6 (p. 1244) . Screen output.
• Figure 7 (p. 1245) . Screen output.
• Figure 8 (p. 1245) . Screen output.
• Figure 9 (p. 1245) . Screen output.

38http://www.dickbaldwin.com/toc.htm

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1225

• Figure 10 (p. 1245) . Screen output.
• Figure 11 (p. 1246) . Screen output.
• Figure 12 (p. 1246) . Screen output.
• Figure 13 (p. 1246) . Screen output.
• Figure 14 (p. 1246) . Screen output.
• Figure 15 (p. 1247) . Screen output.
• Figure 16 (p. 1247) . Screen output.

4.2.3.2.1.2 Listings

• Listing 1 (p. 1247) . The main method.
• Listing 2 (p. 1247) . The class named X.
• Listing 3 (p. 1248) . Beginning of the top-level class named A.
• Listing 4 (p. 1248) . Constructor for class A.
• Listing 5 (p. 1248) . Beginning of the member class named B.
• Listing 6 (p. 1249) . Constructor for class B.
• Listing 7 (p. 1249) . Beginning of the member class named C.
• Listing 8 (p. 1249) . Beginning of constructor for class C.
• Listing 9 (p. 1250) . The private member class named D.
• Listing 10 (p. 1250) . More constructor code for class C.
• Listing 11 (p. 1250) . More constructor code for class C.
• Listing 12 (p. 1250) . The method named bShow.
• Listing 13 (p. 1251) . The method named aShow.
• Listing 14 (p. 1251) . Beginning of the cShow method.
• Listing 15 (p. 1251) . More cShow method code.
• Listing 16 (p. 1251) . Call the aShow method.
• Listing 17 (p. 1252) . More cShow method code.
• Listing 18 (p. 1252) . More cShow method code.
• Listing 19 (p. 1252) . More cShow method code.
• Listing 20 (p. 1253) . More cShow method code.
• Listing 21 (p. 1253) . More cShow method code.
• Listing 22 (p. 1253) . More cShow method code.
• Listing 23 (p. 1253) . Overridden toString method in class C.
• Listing 24 (p. 1254) . More cShow method code.
• Listing 25 (p. 1254) . Complete program listing.

4.2.3.3 Preview

4.2.3.3.1 What can you include in a class de�nition ?

There are several di�erent kinds of items that can be contained in a class de�nition. As you learned in the
early modules in this series, the list includes:

• Static variables
• Instance variables
• Static methods
• Instance methods
• Constructors

As you can learn at http://www.dickbaldwin.com/toc.htm 39 , the list also includes:

39http://www.dickbaldwin.com/toc.htm

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1226 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

• Static initializer blocks
• Instance initializers

Can also contain other class de�nitions
In this and the next two modules, you will learn that a class de�nition can also contain the following

three kinds of inner classes :

• Member classes
• Local classes
• Anonymous classes

A class can also contain Nested top-level classes and interfaces , which you can learn about at
http://www.dickbaldwin.com/toc.htm 40 .

(Note that it is questionable whether a nested top-level class or interface should be referred to as
an inner class, because an object of a nested top-level class can exist in the absence of an object
of the enclosing class. Regardless of whether the term inner class applies, a nested top-level class
is de�ned within the de�nition of another class, so its de�nition is internal to the de�nition of
another class.)

This module will be dedicated to an explanation of member classes . Subsequent modules will explain
the other two types of inner classes in the above list (p. 1232) .

4.2.3.3.2 What is a member class ?

A member class is a class that is de�ned inside the de�nition of another class, (without the use of the
static modi�er as is the case with a nested top-level class).

An object of the member class must be internally linked to an object of the enclosing class, (which is
not the case with a nested top-level class).

Thus, a member class is truly an inner class. (An object of the member class cannot exist in the absence
of an object of the enclosing class.)

4.2.3.3.3 What about a member interface ?

Interfaces de�ned within classes are implicitly static. This means that they are always top-level. There is
no such thing as a member interface, a local interface, or an anonymous interface.

4.2.3.3.4 Why use member classes ?

Probably the most important bene�t of member classes has to do with accessing the other members of
enclosing classes. The methods of a member class have direct access to all the members of the enclosing
classes, including private members. Thus the use of member classes can eliminate the requirement to connect
objects together via constructor parameters.

This is particularly useful in those cases where there is no reason for an object of a member class to exist
in the absence of an object of the enclosing class, and where the methods of the object of the member class
need access to members of the object of the enclosing class.

Data structures and iterators
For example, there is usually no reason for an Iterator object to exist in the absence of the data-

structure object for which it is designed to provide iterator services. Also, the iterator object usually needs
to have ready access to the members of the data-structure object, some or all of which may be private. Thus,
a class from which an Iterator object can be constructed is a good candidate for inclusion as a member
class in the class from which the associated data-structure object is instantiated.

40http://www.dickbaldwin.com/toc.htm

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1227

Listener objects
Another common use for inner classes is in the de�nition of classes from which listener objects (which

listen for events �red by other objects) are instantiated. (However, it may be more common to use
anonymous classes than member classes for this purpose.)

What does Flanagan have to say?
Here is how David Flanagan, author of Java in a Nutshell, summarizes his discussion of member classes.

"A class de�ned as a member (non-static) of another. Each instance has an enclosing instance,
and can use its members. New syntax for this , new , and super . Cannot have static
members. Cannot have same name as containing class."

According to Flanagan, the main features of member classes are:

• Every instance of a member class is internally associated with an instance of the class that de�nes or
contains the member class.

• The methods of a member class can implicitly refer to the �elds de�ned within the member class, as
well as those de�ned by any enclosing class, including private �elds of the enclosing class.

4.2.3.3.5 Smoke and mirrors

Every class de�nition in a Java program, including nested top-level classes, member classes, local classes,
and anonymous classes, produces a class �le when the program is compiled. According to Flanagan,

"The Java Virtual Machine knows nothing about nested top-level classes and interfaces or the
various types of inner classes. Therefore, the Java compiler must convert these new types into
standard non-nested class �les that the Java interpreter can understand. This is done through
source code transformations that insert $ characters into nested class names. These source code
transformations may also insert hidden �elds, methods, and constructor arguments into the
a�ected classes."

A reference to the containing object
For example, the compiler automatically inserts a private instance variable in the member class to hold

a reference to the containing object. It also inserts a hidden argument in all constructors for the member
class, and passes the containing object's reference to the constructor for the member class. The modi�ed
constructor saves that reference in the private instance variable of the object of the member class. Thus
each object instantiated from the member class contains a private reference to the containing object.

Accessing private members
In those cases where it is necessary for an object of the member class to access private members of

the containing object, the compiler automatically creates and uses accessor methods that make such access
possible.

Similar to your code
The bottom line is that the code that is automatically produced by the compiler is probably very similar

to code that you would write if you were writing the program using only of top-level classes. The good news
is that you don't have to write that extra code, and you don't have to maintain it. The extra code is written
for you, and if you modify your class structure, the extra code is automatically modi�ed accordingly.

4.2.3.4 Discussion and sample code

The paragraphs that follow will explain a program named InnerClasses06 , which is designed speci�cally
to illustrate various characteristics of member classes. I will discuss the program in fragments. A complete
listing is shown in Listing 25 (p. 1254) near the end of the module.

This program illustrates the use of member classes. The program consists of a total of six classes:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1228 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

• Top-level classes named

· InnerClasses06
· A
· X

• Member classes named

· B
· C
· D

When compiled, the program produces the class �les shown in Figure 1 (p. 1243) .

4.2.3.4.1 Class containment hierarchy

Once you understand the class �le naming convention, you can determine from the �le names in Figure 1
(p. 1243) that class B is a member class of class A.

(The class �le named A$B.class indicates that the class named B is a member of the class named
A.)

Similarly, class C is a member of class B, and class D is a private member of class C.

(However, you cannot tell from the class �le names that class D is private.)

4.2.3.4.2 Behavior of the program

An object is instantiated from the class named A. This makes it possible to instantiate an object of the
member class named B. The object of the class named B is internally linked to the object of the class named
A.

(This causes the instance variable, constructor parameter, and accessor methods discussed above
to be automatically created to link the object of the class named B to the object of the class
named A.)

The object of the class named B is used to instantiate an object of the member class named C. This object
of the class C is linked to the object of the class named B.

Instantiate additional objects of classes A and B, plus an object of class D
When the object of the class named C is instantiated, the constructor for that class instantiates separate

objects of the classes named A and B, and also instantiates an object of the private member class named
D.

(We will see later that the new and separate object of the class named B continues to be internally
linked to the original object of the Class named A, and is not internally linked to the new object
of the class named A.)

Instantiation of the object of class D illustrates the use of private member classes.

(Note that while top-level classes cannot be private, member classes can be private.)

Perform a variety of operations
A variety of operations are performed from within the methods belonging to the object of the class C to

illustrate the attributes and behavior of objects instantiated from member classes.
Comments in the code explain the purpose of each of those operations.
Many of those operations produce screen output, which will be shown in conjunction with the code that

produced the output.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1229

4.2.3.4.3 Structure of the program

The main method
The main method of the controlling class named InnerClasses06 , is shown in Listing 1 (p. 1247) .
The code in Listing 1 (p. 1247) instantiates an object of the member class named C and calls the method

named cShow on that object.

(Note that it is necessary to �rst instantiate objects of the enclosing classes named A and B
before the object of the member class named C can be instantiated.)

An independent top-level class named X
Listing 2 (p. 1247) shows the de�nition of an independent top-level class named X.
This class will be extended by the class named C, which is a member of the class named B, which is

a member of the class named A. This will illustrate that the inheritance hierarchy is independent of the
containment hierarchy.

As you can see in Listing 2 (p. 1247) , the class named X overrides the toString method to identify
itself when called.

(The toString method is automatically called whenever an object's reference is passed as a
parameter to the println method.)

The top-level class named A
Listing 3 (p. 1248) shows the beginning of the top-level class named A.
Listing 3 (p. 1248) shows the declaration of two instance variables and three class variables in the class

named A. All of the variables are private, and some are initialized when declared. The three class variables
will be used to maintain a count of the number of objects instantiated from the classes named A, B, and C.

(Because member classes cannot contain static members , the counter variables for the
member classes named B and C were placed in the top-level class named A instead of placing
them in their respective class de�nitions.)

Constructor for class A
Listing 4 (p. 1248) shows the constructor for the top-level class named A.
Whenever an object of the class named A is instantiated, the constructor does the following:

• Saves the value of an incoming parameter in a private instance variable named aVar .
• Increments the object counter named objCntA , maintaining a count of the objects instantiated

from class A.
• Saves the value of the object counter in an instance variable named objNumber to identify the

speci�c object.
• Displays a message showing the identi�cation of the object being instantiated.

The screen output
The code in Listing 1 (p. 1247) instantiates a new object of the class named A, passing the integer value

1 as a parameter to the constructor. As a result, the code in the constructor shown in Listing 4 (p. 1248)
produces the screen output shown in Figure 2 (p. 1244) .

As you can see from the value of the object counter in Figure 2 (p. 1244) , this is the �rst object
instantiated from the class named A.

(The value passed, as a parameter to the constructor, is not displayed by the code in the
constructor. That value will be displayed later.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1230 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

The method named aShow
The class named A also de�nes a private method named aShow . I will defer my discussion of that

method until later when it is called.
The member class named B
Listing 5 (p. 1248) shows the beginning of the member class named B.
If you examine the complete listing of the program in Listing 25 (p. 1254) , you will see that the class

named B is de�ned internal to the class named A. In other words, the beginning of the de�nition of the class
named B appears before the curly brace that signals the end of the de�nition of the class named A. Thus,
the class named B is a member class of the class named A.

The code in Listing 5 (p. 1248) declares two private instance variables and initializes one of them.
Constructor for class B
Listing 6 (p. 1249) shows the entire constructor for the class named B.
Whenever an object of the class named B is instantiated, the constructor does the following:

• Saves the value of an incoming parameter in a private instance variable named bVar .
• Increments the object counter named objCntB , which is a class variable of the containing top-level

class named A, maintaining a count of objects instantiated from class B.
• Saves the value of the object counter in an instance variable named objNumber to identify the

speci�c object.
• Displays a message showing the identi�cation of the object being instantiated.

The screen output
Listing 1 (p. 1247) shows the instantiation of a new object of class B, immediately following the instan-

tiation of an object of class A.
The object instantiated from the member class named B is linked to the object instantiated from the

top-level class named A.
The constructors for the classes named A and B produce the two lines of output shown in Figure 3 (p.

1244) , the �rst of which is a repeat of the output shown in Figure 2 (p. 1244) .
The method named bShow
The class named B also de�nes a private method named bShow . As with the method named aShow

mentioned earlier, I will defer a discussion of bShow until later when it is called.
The member class named C
Listing 7 (p. 1249) shows the beginning of a member class named C.
Class C is a member of the class named B. In other words, the beginning of the de�nition of the class

named C begins before the curly brace that ends the de�nition of the class named B.
The code in Listing 7 (p. 1249) declares several instance variables for the class named C, and initializes

two of them. The purpose of these variables will become clear later when they are used.

(Note also that class C extends class X, in order to illustrate that the class containment hierarchy
is independent of the inheritance hierarchy.)

Constructor for class C
Listing 8 (p. 1249) shows the beginning of the constructor for the class named C.
Whenever an object of the class named C is instantiated, the constructor code shown in Listing 8 (p.

1249) does the following:

• Saves the value of an incoming parameter in a private instance variable named cVar .
• Increments the object counter named objCntC , which is a class variable of the class named A,

maintaining a count of objects instantiated from class C.
• Saves the value of the object counter in an instance variable named objNumber to identify the

speci�c object.
• Displays a message showing the identi�cation of the object being instantiated.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1231

Screen output
Listing 1 (p. 1247) shows the instantiation of a new object of class C, immediately following the instan-

tiation of an object of class B.
The object instantiated from the member class named C is linked to the object instantiated from the

member class named B. Similarly, the object instantiated from the member class named B is linked to the
object instantiated from the top-level class named A.

The constructors for the classes named A, B, and C produce the three lines of output shown in Figure 4
(p. 1244) , the �rst two of which are repeated from Figures 2 and Figure 3 (p. 1244) .

The output shown in Figure 4 (p. 1244) demonstrates that the code in Listing 1 (p. 1247) causes the
constructors for the three classes to be executed in sequence.

At this point, I am going to put the discussion of the class named C on hold and discuss another member
class named D.

The private member class named D
Top-level classes cannot be private. However, member classes can be private provided that the using code

is consistent with the use of private members. To demonstrate this, the class named C contains a private
member class named D, which is shown in its entirety in Listing 9 (p. 1250) .

The most signi�cant thing about the class named D is that it is declared private.
When an object is instantiated from the class named D, it displays a couple of messages, one of which

provides the name of the class �le produced by the compiler to represent the class named D. We will see
those messages shortly in conjunction with the instantiation of an object of the class named D.

Returning to the constructor for class C
Listing 10 (p. 1250) shows the next statement in the constructor for the class named C. This statement

instantiates an object of its private member class named D.
The code in Listing 10 (p. 1250) causes the constructor for the class named D to be executed, producing

the screen output shown in Figure 5 (p. 1244) .
As mentioned earlier, comparing the class �le name in Figure 5 (p. 1244) with the class �le naming

convention for member classes, you can determine that D is a member of C, C is a member of B, and B is a
member of A.

Instantiate independent objects of classes A and B
The remaining constructor code for class C is shown in Listing 11 (p. 1250) .
The code in Listing 11 (p. 1250) instantiates new and independent objects of the classes named A and

B, both of which are enclosing classes of the member class named C.

(Note that the parameter values passed to the constructors are di�erent than was the case for
the objects instantiated in Listing 1 (p. 1247) . We will see the result of that later.)

I will display information about these two objects later. That information will show that the new object of
the member class named B is linked to the original object of the enclosing class named A.

The screen output
In the meantime, when these two objects are instantiated, their constructors are executed, producing the

screen output shown in Figure 6 (p. 1244) .
In each case, the value of the object counter shows that this is the second object instantiated from each

of these two classes.
Methods aShow, bShow, and cShow
The classes named A, B, and C, each contain display methods named aShow , bShow , and cShow

respectively.
The method named cShow is rather long, and I will discuss it in detail shortly. For now, su�ce it

to say that code in cShow calls the private method named bShow in the containing object to which
it is linked. Therefore, this will be an appropriate time to examine the method named bShow , which is
de�ned in the member class named B.

The method named bShow

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1232 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

The bShow method, de�ned in the member class named B, is shown in Listing 12 (p. 1250) . It is
important to note that this is a private method.

When this method is called, it does the following:

• Displays the value of the constructor parameter passed to the object when it was constructed.
• Displays the identi�cation of the object based on the value of the object counter when it was con-

structed.
• Calls the corresponding aShow method of the object of the containing class to which it is linked.

Since the code in the bShow method calls the private aShow method of the containing object to which
it is linked, it is also time to take a look at that method.

The method named aShow
The aShow method, de�ned in the top-level class named A, is shown in Listing 13 (p. 1251) . It is

also important to note that this is a private method.
When this method is called, it does the following:

• Displays the value of the constructor parameter passed to the object when it was constructed.
• Displays the identi�cation of the object based on the value of the object counter when it was con-

structed.

Containment hierarchy is displayed
Because cShow calls bShow , which in turn calls aShow , we should expect that the call to the

cShow method on an object of the member class named C would display information about the containment
hierarchy.

(Simply as another reminder, the containment hierarchy is completely independent of the inher-
itance hierarchy.)

Calling cShow
Referring once more to Listing 1 (p. 1247) , we see that the method named cShow is called on the

object of the class named C when that object is instantiated. We will see the result of that call shortly.
The cShow method
Listing 14 (p. 1251) shows the beginning of the cShow method.
The code in Listing 14 (p. 1251)

• Displays a string separator to help locate the speci�c output in the large quantity of output produced
by the program.

• Displays the object identi�er based on the object counter.
• Displays the value passed to the constructor when the object was instantiated.

The screen output
The code in Listing 14 (p. 1251) produces the output shown in Figure 7 (p. 1245) .
As you can see by comparing this with Listing 1 (p. 1247) , this is the �rst object instantiated from the

class named C, and is the object instantiated from the statement in the main method in Listing 1 (p.
1247) . (The constructor parameter value is 3.)

Call the bShow method
Continuing with the code in the cShow method, the code in Listing 15 (p. 1251) calls the private

method named bShow on the containing object of the class B to which this object is linked.
As you will recall from the previous discussion, the code in the bShow method will, in turn, call the

aShow method on the containing object of the class named A to which the object of the class B is linked.
The screen output
The code in Listing 15 (p. 1251) produces the output shown in Figure 8 (p. 1245) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1233

As you can see in Figure 8 (p. 1245) , the linked objects of the classes B and A are the �rst objects
instantiated from those classes. In addition, the saved values of the constructor parameters show that these
are the objects that were instantiated by the statement in the main method of Listing 1 (p. 1247) .

Call the aShow method
As I explained earlier, the object of the class C is linked to the containing object of the class named B.

The code in Listing 16 (p. 1251) shows that the object of the class C is also linked to the containing object of
the class A (even though the containing class named A is one level removed in the containment hierarchy).

Implicit access
The methods of a member class have implicit access to all members (including private members) of all

containing classes. Thus, the code in the cShow method, belonging to the object of the class named C,
can directly call the private aShow method of the containing class named A.

The screen output
Therefore, the code in Listing 16 (p. 1251) produces the output shown in Figure 9 (p. 1245) .
You can tell by the values displayed in Figure 9 (p. 1245) that the aShow method called in Listing 16

(p. 1251) was called on the same object on which the aShow method was called by the code in Listing
15 (p. 1251) . However, in Listing 15 (p. 1251) , the bShow method was called �rst, which in turn called
the aShow method.

Accessing the object of the class C, and the this keyword
The syntax used with the keyword this is somewhat di�erent for member classes and contained objects

than is the case for top-level classes. For example, continuing with the method named cShow , the code
in Listing 17 (p. 1252) shows �ve di�erent ways to access the object instantiated from the member class
named C in order to get and display the name of the class �le that represents the member class named C.

The screen output
All �ve statements in Listing 17 (p. 1252) display the name of the same class �le, as shown in Figure 10

(p. 1245) .
Obviously in this situation, the last three statements in Listing 17 (p. 1252) are overly complex. There

is no particular problem writing code in the method named cShow to gain access to the object to which
the method belongs. It isn't even necessary to use this to refer to that object, although the use of the
hidden reference this may make the code more readable.

Accessing the containing object of the class B
However, things get a little more complicated when you need to gain access to a containing object, such

as the containing object instantiated from the class named B.
The two statements shown in Listing 18 (p. 1252) gain access to the containing object of the class named

B. Each statement gets and displays the name of the class �le that represents the member class named B.
(Note the use of the keyword this in these statements.)

The screen output
The output produced by the code in Listing 18 (p. 1252) is shown in Figure 11 (p. 1246) . Once again,

both statements get and display the name of the same class �le.
Accessing the containing object of the class named A
Finally, the code in Listing 19 (p. 1252) gains access to the containing object of the class named A.

(Once again, note the use of the this keyword in the statement in Listing 19 (p. 1252) .)
The code in Listing 19 (p. 1252) produces the output shown in Figure 12 (p. 1246) .

(Since the class named A is a top-level class, the name of the class �le is the same as the name
of the class, with no $ characters inserted by the compiler.)

Investigate independent objects of classes A and B
Recall that when the object of the member class named C was instantiated, the constructor for the class

instantiated independent objects of the enclosing classes named A and B, and saved those object's references
in instance variables of the class named C.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1234 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

(See Listing 11 (p. 1250) , noting the parameter values of 10 and 20 passed to the constructors
for A and B. Recall that the constructors for A and B save those parameter values in private
instance variables named aVar and bVar .)

Display variable values and class �le names
The code in Listing 20 (p. 1253) displays the values stored in the private instance variables belonging

to those objects. The code in Listing 20 (p. 1253) also displays the names of the class �les representing the
classes from which those objects were instantiated.

Screen output
The code in Listing 20 (p. 1253) produces the output shown in Figure 13 (p. 1246) .
There should be no surprises in the output shown in Figure 13 (p. 1246) . The values of the instance

variables match the parameter values passed to the constructors in Listing 11 (p. 1250) when the objects
were instantiated. The class �le names match what you already know to be true from previous discussions
earlier in this module.

Call the private bShow method
The code in Listing 21 (p. 1253) is somewhat more interesting. This code calls the private bShow

method on the separate object instantiated from the class named B in order to identify the object to which
that object is linked.

The screen output
The output produced by the code in Listing 21 (p. 1253) is shown in Figure 14 (p. 1246) . Even though

this object of the member class B was instantiated from within the constructor for the member class named
C, the object of the class named B is internally linked to the object of the class named A that was originally
used to instantiate the object of the class named C.

(See Listing 1 (p. 1247) where the objects of classes named A, B, and C were originally instan-
tiated. This object of the class named B is a di�erent object from the object of the class named
B instantiated in Listing 1 (p. 1247) . This object of the class named B was instantiated by the
code in Listing 11 (p. 1250) .)

How is this determined from Figure 14 (p. 1246) ?
The second line in Figure 14 (p. 1246) shows that a parameter value of 20 was received by the constructor

when the object of the class named B was instantiated. This corresponds to the instantiation of the object
by the code in the constructor in Listing 11 (p. 1250) .

The third line in Figure 14 (p. 1246) shows that this was the second object instantiated from the class
named B. (See the de�nition of the bShow method in Listing 12 (p. 1250) , which displays the value
stored in a variable that is used to save the object number.)

The proof of the pudding
Now recall that the method named bShow (belonging to an object of the class B) calls the method

named aShow belonging to the object of the class named A to which it is internally linked.
The fourth line in Figure 14 (p. 1246) shows the value of the parameter passed to the constructor for the

object of class A when that object was instantiated. (See the de�nition of the aShow method in Listing
13 (p. 1251) .) This value corresponds to the value that was passed to the constructor for the original
object of class A when it was constructed in Listing 1 (p. 1247) .

(It does not correspond to the value passed to the constructor for the class named A when the
object of the class A was constructed in Listing 11 (p. 1250) .)

The �fth line in Figure 14 (p. 1246) shows that the object was the �rst object instantiated from the class
named A.

Both B objects link to the same A object
Thus, both objects instantiated from the class named B in this program are internally linked to the same

object instantiated from the class named A, which is the enclosing class for the class named B.
(However, had I instantiated the new object of the class B using a statement such as the following,

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1235

new A(100).new B(200).bShow();
the new object of the class B would have been linked to the new object of the class A rather than being

linked to the original object of the class A. As you can see, keeping mental track of which object is linked to
which other object could become complicated.)

Call the aShow method on the other A object
The code in Listing 22 (p. 1253) calls the private aShow method on the independent object of the

class A that was instantiated in the constructor for class C, shown in Listing 11 (p. 1250) .
The output produced by the code in Listing 22 (p. 1253) is shown in Figure 15 (p. 1247) .
It should come as no surprise that this object of the class A was instantiated with a constructor parameter

value of 10, and that it was the second object of the class named A that was constructed.
This is simply a matter of code in the constructor for class C instantiating an object of a top-level class,

and is no di�erent in concept from instantiating an object of the member class B, also shown in Listing 11
(p. 1250) .

Inheritance and containment hierarchies are independent
The remaining code is designed to demonstrate that the containment hierarchy is completely independent

of the inheritance hierarchy.
The class named C is a member of (is contained in) the class named B. That constitutes a part of the

containment hierarchy.
The class named C also extends the class named X, which in turn extends the class named Object .

That constitutes the inheritance hierarchy.
Overridden toString methods
I'm going to put the discussion of the method named cShow on hold and return to that discussion

shortly.
The class named X inherits, and overrides the toString method, as shown in Listing 2 (p. 1247) .

When this version of the toString method is called, it returns the string " toString in Class X ".
The class named C, which extends the class named X, also overrides the toString method as shown in

Listing 23 (p. 1253) .
When this version of the toString method is called, it returns the string
" toString in Class C ".
We will see the impact of overriding these two methods later.
Illustrate the inheritance hierarchy
Returning to the cShow method, the code in Listing 24 (p. 1254) illustrates the inheritance hierarchy

to which the class named C belongs by getting and displaying the value stored in the instance variables
named className belonging to the object instantiated from the class named C.

(The object contains two instance variables having the name className . One of these
instance variables was contributed to the object by the superclass named X. The other was
contributed to the object by the class named C.)

Two instance variables named className
The String value X was stored in one of the instance variables named className by the initialization

of the variable shown in Listing 2 (p. 1247) .
The String value C was stored in the other instance variable named className by the initialization

of the variable shown in Listing 7 (p. 1249) .

(Note that the variable named className is protected in the class named X. A subclass
method cannot access a private variable in a superclass. To be accessible by a subclass method,
the superclass variable must be protected , package-private , or public .)

Two overridden toString methods
An object instantiated from the class named C also contains two overridden versions of the toString

method. One version of the method was contributed to the object by the superclass named X. The other
version was contributed to the object by the class named C.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1236 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Call the toString methods
The code in Listing 24 (p. 1254) also calls the two overridden toString methods belonging to the

object instantiated from the classes named C. As explained earlier, one version of the toString method is
overridden in the class named X and the other version is overridden in the class named C.

(Note the use of the super keyword to access the variable named className and the method
named toString contributed to the object by the superclass named X.)

The code in Listing 24 (p. 1254) also signals the end of the cShow method.
The screen output
The output produced by the code in Listing 24 (p. 1254) is shown in Figure 16 (p. 1247) .
Figure 16 (p. 1247) shows that even though the class named C is contained in the class named B, the

superclass of C is X, and is not B. To repeat, the containment hierarchy is entirely independent of
the inheritance hierarchy.

(Note, however, that there is nothing to prevent you from establishing an inheritance relationship
between a member class and one of its containing classes if such a relationship will serve your
needs. For example, in this program, it would be technically acceptable for the class named B to
extend the class named A provided that either:

• A noarg constructor is provided for the class named A, or
• The constructor for the class named B calls the parameterized constructor belonging to the

class named A.)

And that is probably more than you ever wanted to know about the detailed relationships involving member
classes. However, once you start using member classes, you will need to keep these relationships in mind.

4.2.3.5 Run the program

I encourage you to copy the code from Listing 25 (p. 1254) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

4.2.3.6 Summary

In addition to a number of other items, a class de�nition can contain:

• Member classes
• Local classes
• Anonymous classes
• Nested top-level classes and interfaces

This module explains member classes. Future modules will explain local classes and anonymous classes
A member class is a class that is de�ned inside the de�nition of another class without being declared

static.
An object of the member class must be internally linked to an object of the enclosing class. A member

class is truly an inner class because an object of the member class cannot exist in the absence of an object
of the enclosing class.

The methods of a member class have direct access to all the members of the enclosing classes, including
private members. Thus the use of member classes can eliminate the requirement to connect objects together
via constructor parameters. This is particularly useful in those cases where there is no reason for an object
of a member class to exist in the absence of an object of the enclosing class, and where the methods of the
object of the member class need access to members of the object of the enclosing class.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1237

The containment hierarchy of member classes is independent of the inheritance hierarchy. However, it is
technically possible to establish an inheritance relationship between a member class and one of its enclosing
classes.

Member classes may be declared private, and may be instantiated from code that would normally have
access to a private member at that level.

4.2.3.7 What's next?

The next module in this series will explain and discuss local classes. A future module will explain anonymous
classes.

4.2.3.8 Complete program listing

A complete listing of the program discussed in this module is show in Listing 25 (p. 1254) .

4.2.3.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Member Classes
• File: Java1636.htm
• Published: 11/18/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

4.2.3.10 Figures

Figure 1 - Class �les produced when the program is compiled.

ABC$D.class

ABC.class

A$B.class

A.class

InnerClasses06.class

X.class

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1238 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Table 4.1

Figure 2 - Screen output.

In xstr for A, objCntA = 1

Table 4.2

Figure 3 - Screen output.

In xstr for A, objCntA = 1

In xstr for B, objCntB = 1

Table 4.3

Figure 4 - Screen output.

In xstr for A, objCntA = 1

In xstr for B, objCntB = 1

In xstr for C, objCntC = 1

Table 4.4

Figure 5 - Screen output.

Construct obj of private class D.

Private class file name: ABC$D

Table 4.5

Figure 6 - Screen output.

In xstr for A, objCntA = 2

In xstr for B, objCntB = 2

Table 4.6

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1239

Figure 7 - Screen output.

-1-

In cShow, objNumber = 1

In cShow, cVar = 3

Table 4.7

Figure 8 - Screen output.

-2-

In bShow, bVar = 2

In bShow, objNumber = 1

In aShow, aVar = 1

In aShow, objNumber = 1

Table 4.8

Figure 9 - Screen output.

-3-

In aShow, aVar = 1

In aShow, objNumber = 1

Table 4.9

Figure 10 - Screen output.

-4-

ABC

ABC

ABC

ABC

ABC

Table 4.10

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1240 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Figure 11 - Screen output.

-5-

A$B

A$B

Table 4.11

Figure 12 - Screen output.

-6-

A

Table 4.12

Figure 13 - Screen output.

-7-

In cShow, bVar = 20

A$B

In cShow, aVar = 10

A

Table 4.13

Figure 14 - Screen output.

-8-

In bShow, bVar = 20

In bShow, objNumber = 2

In aShow, aVar = 1

In aShow, objNumber = 1

Table 4.14

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1241

Figure 15 - Screen output.

-9-

In aShow, aVar = 10

In aShow, objNumber = 2

Table 4.15

Figure 16 - Screen output.

-10-

className = C

toString in Class C

className = X

toString in Class X

Table 4.16

4.2.3.11 Listings

Listing 1 - The main method.

public class InnerClasses06{

public static void main(String[] args){

new A(1).new B(2).new C(3).cShow();

}//end main

}//end class InnerClasses06

Table 4.17

Listing 2 - The class named X.

class X{//extends Object by default

protected String className = "X";

public String toString(){

return "toString in Class X";

}//end overridden toString

}//end class X

Table 4.18

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1242 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 3 - Beginning of the top-level class named A.

class A{

private int aVar;

private int objNumber = 0;

private static int objCntA = 0;

private static int objCntB = 0;

private static int objCntC = 0;

Table 4.19

Listing 4 - Constructor for class A.

A(int val){//top-level class constructor

aVar = val;

objCntA++;//Increment object counter

//Record the number of the object being

// instantiated

objNumber = objCntA;

System.out.println(

"In xstr for A, objCntA = " + objCntA);

}//end constructor

Table 4.20

Listing 5 - Beginning of the member class named B.

class B{//member class of A

private int bVar;

private int objNumber = 0;

Table 4.21

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1243

Listing 6 - Constructor for class B.

B(int val){//constructor

bVar = val;

//Increment static variable in top-level

// class named A

A.objCntB++;

//Record the number of the object being

// instantiated

objNumber = objCntB;

System.out.println(

"In xstr for B, objCntB = " + objCntB);

}//end constructor

Table 4.22

Listing 7 - Beginning of the member class named C.

class C extends X{//member class of B

private int cVar;

private A refToA;

private B refToB;

private String className = "C";

private int objNumber = 0;

Table 4.23

Listing 8 - Beginning of constructor for class C.

C(int val){//constructor

cVar = val;

//Increment the object counter in the

// top-level class named A.

A.objCntC++;

objNumber = A.objCntC;

System.out.println(

"In xstr for C, objCntC = "

+ A.objCntC);

Table 4.24

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1244 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 9 - The private member class named D.

private class D{//member class of C

D(){//constructor

System.out.println(

"Construct obj of private class D.");

System.out.println(

" Private class file name: "

+ this.getClass().getName());

}//end constructor

}//end class D

Table 4.25

Listing 10 - More constructor code for class C.

new D();

Table 4.26

Listing 11 - More constructor code for class C.

refToA = new A(10);

refToB = new B(20);

}//end constructor

Table 4.27

Listing 12 - The method named bShow.

private void bShow(){

System.out.println(

"In bShow, bVar = " + bVar);

System.out.println(

"In bShow, objNumber = " + objNumber);

aShow();

}//end bShow

Table 4.28

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1245

Listing 13 - The method named aShow.

private void aShow(){

System.out.println(

"In aShow, aVar = " + aVar);

System.out.println(

"In aShow, objNumber = " + objNumber);

}//end aShow

Table 4.29

Listing 14 - Beginning of the cShow method.

public void cShow(){

System.out.println("-1-");//separator

System.out.println(

"In cShow, objNumber = " + objNumber);

System.out.println(

"In cShow, cVar = " + cVar);

Table 4.30

Listing 15 - More cShow method code.

System.out.println("-2-");//separator

bShow();

Table 4.31

Listing 16 - Call the aShow method.

System.out.println("-3-");//separator

aShow();

Table 4.32

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1246 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 17 - More cShow method code.

System.out.println("-4-");//separator

System.out.println(getClass().getName());

System.out.println(

this.getClass().getName());

System.out.println(

C.this.getClass().getName());

System.out.println(

B.C.this.getClass().getName());

System.out.println(

A.B.C.this.getClass().getName());

Table 4.33

Listing 18 - More cShow method code.

System.out.println("-5-");//separator

System.out.println(

B.this.getClass().getName());

System.out.println(

A.B.this.getClass().getName());

Table 4.34

Listing 19 - More cShow method code.

System.out.println("-6-");//separator

System.out.println(

A.this.getClass().getName());

Table 4.35

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1247

Listing 20 - More cShow method code.

System.out.println("-7-");

System.out.println(

"In cShow, bVar = " + refToB.bVar);

System.out.println(

refToB.getClass().getName());

System.out.println(

"In cShow, aVar = " + refToA.aVar);

System.out.println(

refToA.getClass().getName());

Table 4.36

Listing 21 - More cShow method code.

System.out.println("-8-");

refToB.bShow();

Table 4.37

Listing 22 - More cShow method code.

System.out.println("-9-");

refToA.aShow();

Table 4.38

Listing 23 - Overridden toString method in class C.

public String toString(){

return "toString in Class C";

}//end overridden toString

Table 4.39

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1248 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 24 - More cShow method code.

System.out.println("-10-");

System.out.println(

"className = " + className);

System.out.println(toString());

System.out.println(

"className = " + super.className);

System.out.println(super.toString());

}//end cShow method

Table 4.40

Listing 25 - Complete program listing.

/*File InnerClasses06.java

Copyright 2003 R.G.Baldwin

Rev 6/22/03

Illustrates the use of member classes. Class B

is a member class of class A. Class C is a

member class of class B. Class D is a private

member class of class C. An object is

instantiated from the class named A, which makes

it possible to instantiate an object of the

member class named B. According to Flanagan,

this causes the object of the Class B to be

internally associated with the object of the

class named A. The object of the class named B

is used to instantiate an object of the member

class named C. This object is internally

associated with the object of the class B.

When the object of the class C is instantiated,

the constructor for that class instantiates

separate objects of the classes named A and B and

also instantiates an object of the private member

class named D. The new and separate object of

the class B continues to be internally associated

with the original object of the Class A.

A variety of operations are performed from within

methods belonging to the object of the Class C to

illustrate the various characteristics of objects

instantiated from member classes. Comments in

the code explain the purpose of each of those

operations.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1249

The compilation of this program produces the

following class files:

ABC$D.class

ABC.class

A$B.class

A.class

InnerClasses06.class

X.class

The output from this program is shown below:

In xstr for A, objCntA = 1

In xstr for B, objCntB = 1

In xstr for C, objCntC = 1

Construct obj of private class D.

Private class file name: ABC$D

In xstr for A, objCntA = 2

In xstr for B, objCntB = 2

-1-

In cShow, objNumber = 1

In cShow, cVar = 3

-2-

In bShow, bVar = 2

In bShow, objNumber = 1

In aShow, aVar = 1

In aShow, objNumber = 1

-3-

In aShow, aVar = 1

In aShow, objNumber = 1

-4-

ABC

ABC

ABC

ABC

ABC

-5-

A$B

A$B

-6-

A

-7-

In cShow, bVar = 20

A$B

In cShow, aVar = 10

A

-8-

In bShow, bVar = 20

In bShow, objNumber = 2

In aShow, aVar = 1

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1250 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

In aShow, objNumber = 1

-9-

In aShow, aVar = 10

In aShow, objNumber = 2

-10-

className = C

toString in Class C

className = X

toString in Class X

Tested using SDK 1.4.1 under WinXP

**/

public class InnerClasses06{

public static void main(String[] args){

//Instantiate an object of the member class

// named C. Note that it is necessary to

// instantiate objects of the enclosing

// classes as well. Then invoke the public

// method named cShow on the object of the

// class named C.

new A(1).new B(2).new C(3).cShow();

}//end main

}//end class InnerClasses06

//===//

//This class will be extended by the class named

// C, which is a member of the class named B,

// which is a member of the class named A. This

// will illustrate that the inheritance

// hierarchy is independent of the containment

// hierarchy.

class X{//extends Object by default

protected String className = "X";

//Override the toString method

public String toString(){

return "toString in Class X";

}//end overridden toString

}//end class X

//===//

class A{

private int aVar;

private static int objCntA = 0;

//Cannot place static variable in inner class.

// Place it here instead.

private static int objCntB = 0;

//Cannot place static variable in inner class.

// Place it here instead.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1251

private static int objCntC = 0;

private int objNumber = 0;

A(int val){//top-level class constructor

aVar = val;

objCntA++;//Increment object counter

//Record the number of the object being

// instantiated

objNumber = objCntA;

System.out.println(

"In xstr for A, objCntA = " + objCntA);

}//end constructor

//---//

private void aShow(){

System.out.println(

"In aShow, aVar = " + aVar);

System.out.println(

"In aShow, objNumber = " + objNumber);

}//end aShow

//===//

//Note that this class is defined internal to

// the class named A.

class B{//member class of A

private int bVar;

private int objNumber = 0;

B(int val){//constructor

bVar = val;

//Increment static variable in top-level

// class

A.objCntB++;

//Record the number of the object being

// instantiated

objNumber = objCntB;

System.out.println(

"In xstr for B, objCntB = " + objCntB);

}//end constructor

//---//

private void bShow(){

System.out.println(

"In bShow, bVar = " + bVar);

System.out.println(

"In bShow, objNumber = " + objNumber);

//Invoke the private method named aShow

// belonging to the internally associated

// object of the class named A.

aShow();

}//end bShow

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1252 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

//===//

//Note that this class is defined internal to

// the class named B.

class C extends X{//member class of B

private int cVar;

private A refToA;

private B refToB;

private String className = "C";

private int objNumber = 0;

C(int val){//constructor

cVar = val;

//Instantiate separate objects of the

// enclosing classes B and C. Will

// display info about them later. The

// object of the Class B is internally

// associated with the original object of

// the Class A.

//Increment the object counter in the

// top-level class.

A.objCntC++;

objNumber = A.objCntC;

System.out.println(

"In xstr for C, objCntC = "

+ A.objCntC);

//Instantiate object of private member

// class named D.

new D();

//Instantiate objects of enclosing

// classes named A and B.

refToA = new A(10);

refToB = new B(20);

}//end constructor

public void cShow(){

System.out.println("-1-");//separator

//Display private member variables

// belonging to this object.

System.out.println(

"In cShow, objNumber = " + objNumber);

System.out.println(

"In cShow, cVar = " + cVar);

System.out.println("-2-");//separator

//Invoke the private method named bShow

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1253

// in the internally associated object of

// the class named B. This method will,

// in turn invoke the private method

// named aShow in the object of the class

// named A to which the object of the

// class named B is internally

// associated.

bShow();

System.out.println("-3-");//separator

//Invoke the private method named aShow

// in the internally associated object

// of the class named A.

aShow();

System.out.println("-4-");//separator

//Illustrate the syntax required to gain

// access to the objects instantiated

// from the classes named C, B, and A.

// The first five statements produce the

// same result. The class names that are

// displayed match the names of the class

// files produced by the compilation

// process.

System.out.println(getClass().getName());

System.out.println(

this.getClass().getName());

System.out.println(

C.this.getClass().getName());

System.out.println(

B.C.this.getClass().getName());

System.out.println(

A.B.C.this.getClass().getName());

System.out.println("-5-");//separator

//The following two statements produce

// the same output

System.out.println(

B.this.getClass().getName());

System.out.println(

A.B.this.getClass().getName());

System.out.println("-6-");//separator

System.out.println(

A.this.getClass().getName());

System.out.println("-7-");

//Display private instance variables and

// class names belonging to separate

// objects instantiated from the

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1254 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

// enclosing classes named A and B.

System.out.println(

"In cShow, bVar = " + refToB.bVar);

System.out.println(

refToB.getClass().getName());

System.out.println(

"In cShow, aVar = " + refToA.aVar);

System.out.println(

refToA.getClass().getName());

System.out.println("-8-");

//Invoke the private bShow method on the

// separate object instantiated from the

// class named B in order to show the

// object to which that object is

// internally associated. Even though

// this object was instantiated from

// within the constructor for the class

// named C, it is internally associated

// with the object of the class A that

// was originally used to instantiate the

// object of the class named C.

refToB.bShow();

System.out.println("-9-");

//Invoke the private aShow method on the

// separate object instantiated from the

// class named A.

refToA.aShow();

System.out.println("-10-");

//Illustrate the inheritance hierarchy to

// which the class named C belongs by

// getting and displaying the variable

// named className from both the C class

// and the X class. Note that the

// variable is protected in the X class.

// Also invoke the overridden toString

// methods belonging to the object

// instantiated from the class named C.

// One version is overridden in the class

// named X and the other version is

// overridden in the class named C. Note

// that the inheritance hierarchy is

// totally independent of the containment

// hierarchy.

System.out.println(

"className = " + className);

System.out.println(toString());

//Note: cannot access private variable in

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1255

// superclass named X. Must be protected,

// package, or public.

System.out.println(

"className = " + super.className);

System.out.println(super.toString());

}//end cShow

//---------------------------------------//

//Override the toString method

public String toString(){

return "toString in Class C";

}//end overridden toString

//=======================================//

private class D{//member class of C

D(){//constructor

System.out.println(

"Construct obj of private class D.");

System.out.println(

" Private class file name: "

+ this.getClass().getName());

}//end constructor

//Note that all four class definitions end

// here in the proper nested order.

}//end class D

}//end class C

}//end class B

}//end class A

-end-

4.2.4 Java1638 Java OOP Local Classes
41

Revised: Wed May 11 15:29:28 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 42

• Object-Oriented Programming (OOP) with Java 43

4.2.4.1 Table of Contents

• Preface (p. 1262)

· Viewing tip (p. 1262)

* Figures (p. 1262)
* Listings (p. 1263)

• Preview (p. 1263)

· What can you include in a class de�nition? (p. 1263)

41This content is available online at <http://cnx.org/content/m44346/1.8/>.
42http://cnx.org/contents/Rl23r3Lw
43http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1256 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

· What is a local class? (p. 1263)
· Why use local classes? (p. 1264)
· Local classes versus member classes (p. 1264)
· The scope of a local class (p. 1264)
· Restrictions on local classes (p. 1265)

• Discussion and sample code (p. 1265)

· Class hierarchy (p. 1266)
· Overall program structure and behavior (p. 1266)

* The controlling class (p. 1267)
* The class named X (p. 1267)
* The class named Y (p. 1267)
* The class named A (p. 1267)
* The local class named B (p. 1269)

• Run the program (p. 1271)
• Summary (p. 1271)
• What's next? (p. 1272)
• Miscellaneous (p. 1272)
• Complete program listing (p. 1272)
• Figures (p. 1272)
• Listings (p. 1275)

4.2.4.2 Preface

This module is one in a collection of modules designed for teaching ITSE2317 - Java Programming (Inter-
mediate) at Austin Community College in Austin, TX.

(Editor's note: As you read this module, you will see that it was originally written around 2003.
However, despite many improvements in Java since then, most of what was true then is still true
in 2013.)

This module makes several references to my website, which is located at
http://www.dickbaldwin.com/toc.htm 44 .

4.2.4.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

4.2.4.2.1.1 Figures

• Figure 1 (p. 1272) . Class �les produced by the program.
• Figure 2 (p. 1273) . Screen output.
• Figure 3 (p. 1273) . Screen output.
• Figure 4 (p. 1273) . Screen output.
• Figure 5 (p. 1273) . Screen output.
• Figure 6 (p. 1274) . Screen output.
• Figure 7 (p. 1274) . Screen output.
• Figure 8 (p. 1274) . Screen output.
• Figure 9 (p. 1275) . Screen output.

44http://www.dickbaldwin.com/toc.htm

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1257

4.2.4.2.1.2 Listings

• Listing 1 (p. 1275) . The controlling class named InnerClasses07.
• Listing 2 (p. 1275) . The class named X.
• Listing 3 (p. 1276) . The class named Y.
• Listing 4 (p. 1276) . Beginning of the class named A.
• Listing 5 (p. 1276) . The showA method in class A.
• Listing 6 (p. 1277) . The delay method in class A.
• Listing 7 (p. 1277) . Beginning the meth method in class A.
• Listing 8 (p. 1277) . Set value of blank �nal variable.
• Listing 9 (p. 1277) . Beginning of class de�nition for local class B.
• Listing 10 (p. 1279) . Instantiate two objects of local class B.
• Listing 11 (p. 1279) . Call showB on the �rst object.
• Listing 12 (p. 1279) . Beginning of showB method in local class B.
• Listing 13 (p. 1280) . More code from showB method.
• Listing 14 (p. 1280) . Use of the keyword this.
• Listing 15 (p. 1280) . Illustrate the inheritance hierarchy.
• Listing 16 (p. 1281) . Call showB method on second object.
• Listing 17 (p. 1281) . Complete program listing.

4.2.4.3 Preview

4.2.4.3.1 What can you include in a class de�nition ?

There are several di�erent kinds of items that can be included in a class de�nition. As you learned in the
earlier modules in this series, the list includes:

• Static variables
• Instance variables
• Static methods
• Instance methods
• Constructors
• Static initializer blocks
• Instance initializers

Can also contain other class de�nitions
As you learned in the previous module 45 , a class de�nition can also contain the following three kinds of

inner classes:

• Member classes
• Local classes
• Anonymous classes

The previous module explained member classes. This module will explain local classes. The next module
will explain anonymous classes.

4.2.4.3.2 What is a local class ?

A local class is a class that is de�ned within a block of Java code. While local classes are probably most
frequently de�ned within methods and constructors, they can also be de�ned inside static initializer blocks
and instance initializers.

45http://cnx.org/content/m44347/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1258 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

As is the case for an object of a member class (discussed in the previous module 46), an object of a
local class must be internally linked to an object of the enclosing class. I will often refer to that object as
the containing object, and make comments about the containment hierarchy.

A local class is truly an inner class, because an object of the local class cannot exist in the absence of an
object of the enclosing class.

What about a local interface?
Interfaces de�ned within classes are implicitly static. This means that they are always top-level. There

is no such thing as a member interface, a local interface, or an anonymous interface.

4.2.4.3.3 Why use local classes ?

Objects instantiated from local classes share many of the characteristics of objects instantiated from member
classes. However, in some cases, a local class can be de�ned closer to its point of use than would be possible
with a member class, leading to improved code readability.

Probably the most important bene�t of local classes has to do with accessing the members of enclosing
classes. Just like with member classes, methods of a local class have direct access to all the members of
the enclosing classes, including private members. Thus the use of local classes can sometimes eliminate the
requirement to connect objects together via constructor parameters.

(We will also see in the example program in this module that methods of a local class have direct
access to protected members of the superclass of the enclosing class.)

Can be particularly useful when ...
A local class can be particularly useful in those cases where

• There is no reason for an object of the local class to exist in the absence of an object of the enclosing
class

• There is no reason for an object of the local class to exist outside a method of the enclosing class
• Methods of the object of the local class need access to members of the object of the enclosing class
• Methods of the object of the local class need access to �nal local variables and method parameters

belonging to the method in which the local class is de�ned

This module approaches local classes from a somewhat theoretical viewpoint. The next module will approach
local classes from a more practical viewpoint, including a comparison between local classes and anonymous
classes.

4.2.4.3.4 Local classes versus member classes

A local class has approximately the same relationship to a member class that a local variable in a method
has to an instance variable of the class containing the method.

4.2.4.3.5 The scope of a local class

As is the case with local variables, the name of a local class is visible and usable only within the block of
code in which it is de�ned (and blocks nested within that block). Further, the name of the local class is
visible and usable only to code following the class de�nition within that block.

The methods of a local class can use any �nal local variables or method parameters that are visible
from the scope in which the local class is de�ned.

Similar to member classes
As mentioned earlier, local classes have many characteristics in common with member classes. This

includes access to private �elds and methods in the containing class. The thing that separates local classes

46http://cnx.org/content/m44347/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1259

from member classes is the fact that local classes have access to local variables in the scope in which the
local class is de�ned.

A big restriction
There is a big restriction, however, on the ability of methods of the local class to access local variables

and method parameters. The methods in a local class can access local variables and method parameters
only if they are declared �nal .

What does Flanagan have to say?
According to one of my favorite authors, David Flanagan, author of Java in a Nutshell, the methods in

a local class don't really have access to local variables and method parameters. Rather, when an object of
the local class is instantiated, copies of the �nal local variables and method parameters referred to by the
object's methods are stored as instance variables in the object. The methods in the object of the local class
really access those hidden instance variables. (See the later section entitled Smoke and mirrors.)

Thus, the local variables and method parameters accessed by the methods of the local class must be
declared �nal to prevent their values from changing after the object is instantiated.

4.2.4.3.6 Restrictions on local classes

As with member classes, local classes cannot contain static members.
As with local variables, local classes cannot be declared public , protected , private , or static

.
A local class cannot have the same name as any of its enclosing classes.
Smoke and mirrors
As I mentioned in the previous module, every class de�nition in a Java program, including nested top-

level classes, member classes, local classes, and anonymous classes, produces a class �le when the program
is compiled. According to Flanagan,

"The Java Virtual Machine knows nothing about nested top-level classes and interfaces or the
various types of inner classes. Therefore, the Java compiler must convert these new types into
standard non-nested class �les that the Java interpreter can understand. This is done through
source code transformations that insert $ characters into nested class names. These source code
transformations may also insert hidden �elds, methods, and constructor arguments into the
a�ected classes."

A reference to the containing object
For example, the compiler automatically inserts a private instance variable in the local class to hold a

reference to the containing object. It also inserts a hidden argument in all constructors for the local class, and
passes the containing object's reference to the constructor for the local class. The modi�ed constructor saves
that reference in the private instance variable of the object of the local class. Thus each object instantiated
from the local class contains a private reference to the containing object.

Accessing private members
In those cases where it is necessary for an object of the local class to access private members of the

containing object, the compiler automatically creates and uses accessor methods that make such access
possible.

Similar to your code
The bottom line is that the code that is automatically produced by the compiler is probably very similar

to code that you would write if you were writing the program using only top-level classes. The good news is
that you don't have to write that extra code, and you don't have to maintain it. The extra code is written
for you, and if you modify your class structure, the extra code is automatically modi�ed accordingly.

4.2.4.4 Discussion and sample code

The paragraphs that follow will explain a program named InnerClasses07 . This program is designed
speci�cally to illustrate various characteristics of local classes. I will discuss the program in fragments. A

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1260 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

complete listing is shown in Listing 17 (p. 1281) near the end of the module.
This program illustrates the use of local classes. The program consists of a total of �ve classes:

• Four top-level classes named

· InnerClasses07
· A
· X
· Y

• A local class named B.

When compiled, the program produces the class �les shown in Figure 1 (p. 1272) . The �le named
A1B.class represents the local class. The remaining �les in Figure 1 (p. 1272) represent the four top-
level classes.

4.2.4.4.1 Class hierarchy

In the previous module, I explained that once you understand the class �le naming convention, you can
determine from the �le names how top-level classes and member classes are structured. However, the
situation isn't nearly so clear when it comes to local classes and anonymous classes. This will become more
apparent in the next module, which combines local classes and anonymous classes.

4.2.4.4.2 Overall program structure and behavior

Containment hierarchy
The program named InnerClasses07 de�nes a local class named B inside an instance method named

meth .
The method named meth is an instance method of a top-level class named A . The method named

meth instantiates two separate objects of the local class named B , and calls a method named showB
on each of them.

The method named showB displays certain data values that illustrate the characteristics of local
classes, as well as the containment hierarchy among objects of the local class and an object of the containing
class.

In this case, objects of the class named B are contained within an object of the class named A .
(The class named A is an enclosing class of the class named B .)

Inheritance hierarchy
The top-level class named A extends the top-level class named X , (which in turn, extends Object

).
The class named B is contained in or enclosed by the top-level class named A , but extends the

top-level class named Y , (which in turn, extends Object).
There is no inheritance relationship between the classes X and Y (aside from their common superclass

named Object).
There is no inheritance relationship between the classes A and B .
The method named showB also displays data values that are intended to demonstrate that the

inheritance hierarchy is independent of the containment hierarchy.

(Note that while the containment hierarchy of local classes is independent of the inheritance
hierarchy, it is technically possible to establish an inheritance relationship between a local class
and one of its enclosing classes. For example, by making a couple of minor modi�cations, it is
possible to cause the local class B in this program to extend the enclosing class A instead of
the top-level class Y .)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1261

4.2.4.4.2.1 The controlling class

The entire controlling class named InnerClasses07 , including the main method and a static variable
named baseTime , is shown in Listing 1 (p. 1275) .

The static variable named baseTime is initialized with the current date and time in milliseconds
(relative to January 1, 1970). This static variable is used later as a base to establish the relative points in
time that certain activities occur during the execution of the program.

The main method
The main method shown in Listing 1 (p. 1275) instantiates a new object of the class named A and

calls the method named meth on that object.
This method will sequentially instantiate two separate objects of a local class named B that is de�ned

inside the method named meth . Then the method named meth will call a method named showB on
each of those objects, causing them to display data values that illustrate the characteristics of local classes.

4.2.4.4.2.2 The class named X

The top-level class named X is shown in Listing 2 (p. 1275) .
The class named A extends this class to illustrate the di�erence between the inheritance hierarchy and

the containment hierarchy. Note that this class de�nes and initializes a protected instance variable, which
will be accessed later to illustrate the inheritance hierarchy.

(Somewhat surprisingly, you will also see later that this protected instance variable belonging
to the superclass of the enclosing class A is also accessible by methods belonging to an object
of the local class via the containment hierarchy.)

4.2.4.4.2.3 The class named Y

The top-level class named Y is shown in Listing 3 (p. 1276) .
The local class named B extends this class to illustrate the di�erence between the inheritance hierarchy

and the containment hierarchy.
Note that this class de�nes and initializes a protected instance variable. It also overrides the toString

method, which is inherited from the Object class.
The instance variable and the overridden toString method will be accessed later to illustrate the

inheritance hierarchy.

4.2.4.4.2.4 The class named A

The code in Listing 4 (p. 1276) shows the beginning of the top-level class named A .
This code declares and initializes a private instance variable named aTime , which establishes the

relative time that an object of class A is instantiated.
This private instance variable will be accessed directly by code belonging to an object of the local class

B , which is contained by an object of the class A .
Listing 4 (p. 1276) also shows the constructor for class A , which displays the time whenever an object

is instantiated from class A .
The screen output
The code shown earlier in the main method of Listing 1 (p. 1275) instantiates an object of class A .

This causes the screen output shown in Figure 2 (p. 1273) .

(Note that the relative time output value on your system may be di�erent, depending on the
speed of your system and the impact of other applications that may be running concurrently.)

The private showA method
Listing 5 (p. 1276) shows a private method named showA . This method displays the following

information about an object instantiated from class A :

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1262 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

• The relative time that the object was instantiated.
• The value of the instance variable named xVar , which is an instance variable of the superclass of

class A .
• The name of the class �le that represents the class named A .

Code in methods belonging to an object of the local class named B , contained in an object of class A ,
has direct access to private members of objects of the containing or enclosing class.

The private showA method will be called by a method named showB , belonging to an object of
the local class B , to demonstrate the truth of this statement.

The method named delay
Listing 6 (p. 1277) shows a utility method named delay , which is an instance method of class A .
The purpose of the delay method is simply to insert a 30-millisecond delay in the execution of the

program. This method is used to cause certain activities in the execution of the program to be spread far
enough apart in time to make them distinguishable, one from the other, on the basis of relative time.

The method named meth
The method named meth is an instance method of the class A . The beginning of this method is

shown in Listing 7 (p. 1277) .
The method named meth contains a local class de�nition for a class named B , which we will examine

later.
As you can see in Listing 7 (p. 1277) , it also declares a �nal local variable named methTime . As

you will see later, the method named meth instantiates two separate objects of local class B and calls a
method named showB on each of those objects.

The method named showB displays various data values that illustrate the characteristics of local
classes, including the value of the �nal local variable named methTime .

Access to �nal local variables
One of the characteristics of a local class is that objects of a local class have access to local variables

within the same scope, provided that those local variables are declared �nal .
Blank �nal variables
The code in Listing 7 (p. 1277) declares a �nal local variable named methTime . Because of the

syntax used, this variable is known as a blank �nal variable. A blank �nal variable is not initialized
when it is declared.

As with all local variables, the variable cannot be used until a value has been assigned to it. Because this
variable is declared �nal , once a value has been assigned to it, the value cannot be changed throughout
the remaining life of the variable.

Set value of blank �nal variable
The code in Listing 8 (p. 1277)

• Inserts a delay
• Sets a value for the �nal local variable named methTime
• Displays the value that was set in methTime
• Inserts an additional delay before continuing

The value that is set in the variable named methTime is the relative time that the statement is executed.
The screen output
The code in the main method of Listing 1 (p. 1275) calls meth on a new object of class A ,

producing the screen output shown in Figure 3 (p. 1273) .

(Once again, the actual time value displayed by your system may be di�erent, depending on the
speed of your system and other factors as well.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1263

4.2.4.4.2.5 The local class named B

The next block of code in the method named meth is the de�nition of a local class named B . The
beginning of the class de�nition for local class B is shown in Listing 9 (p. 1277) .

As with local variables, the class de�nition for a local class must appear before the code that attempts to
instantiate the class. Code in the method named meth following the local class de�nition will instantiate
and exercise objects of class B .

Local class B extends top-level class Y . This was done to illustrate that the inheritance hierarchy is
independent of the containment hierarchy.

The constructor
The code in Listing 9 (p. 1277) declares a private instance variable named bTime , which is used to

store the relative time that an object of class B is constructed.
Listing 9 (p. 1277) also shows the constructor for local class B , which establishes, saves, and then

displays the relative time that that an object is instantiated.

(I will show you the screen output produced by this constructor shortly as I discuss code that
instantiates objects of this class.)

Instantiate two objects of class B
At this point, I am going to temporarily set aside the discussion of local class B and discuss code in

the method named meth that immediately follows the de�nition of local class B . This code is shown in
Listing 10 (p. 1279) .

Listing 10 (p. 1279) shows the beginning of code that is called when the method named meth is called.
This code begins by instantiating two objects from the class named B , with a delay inserted between the
instantiation of the two objects.

The screen output
The code in Listing 10 (p. 1279) , in conjunction with the constructor code in Listing 9 (p. 1277)

produces the screen output shown in Figure 4 (p. 1273) as each of the two objects of local class B are
instantiated.

Call showB on the �rst object
Following this, the code in the method named meth calls the method named showB on each of the

two objects. The method named showB will, in turn, call the method named showA on the containing
object instantiated from the class named A . The third line of code in Listing 11 (p. 1279) calls the method
named showB on the �rst object instantiated in Listing 10 (p. 1279) .

The method named showB
That brings us back to a discussion of the method named showB , which is an instance method of

local class B . The beginning of the showB method is shown in Listing 12 (p. 1279) . This method
displays several private and protected variables, some of which belong to the containing object instantiated
from the top-level class named A .

(Note that code in this method has direct access to xVar , which is a protected member
variable of the superclass of the class named A .)

Items that are displayed
The code in Listing 12 (p. 1279) displays

• A visual line separator, -1-
• A private instance variable, bTime , belonging to the object instantiated from local class B
• A private instance variable, aTime , belonging to the containing object instantiated from the top-level

class A
• A �nal local variable, methTime , belonging to the method named meth , in which the local

class B is de�ned
• A protected instance variable, xVar , of the superclass of the class A , from which the containing

object was instantiated.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1264 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

• A protected instance variable, yVar , of the superclass of the local class B
• The name of the class �le that represents the local class B

The screen output
The combined code in Listing 11 (p. 1279) and Listing 12 (p. 1279) produces the output shown in Figure

5 (p. 1273) for the �rst object instantiated from local class B .
Call private method showA
One of the important characteristics of local classes is that the methods of objects instantiated from local

classes have direct access to all of the members, including private members, of all the containing classes in
the containment hierarchy.

(In this case, an object of the local class B has only one containing class, an object instantiated
from the top-level class A .)

Continuing with the method named showB , in local class B , the code in Listing 13 (p. 1280) displays
a line separator, -2-, and then calls the private method named showA on the containing object. This
illustrates the containment hierarchy.

The screen output
The method named showA is shown in Listing 5 (p. 1276) . The combination of the code in Listing

13 (p. 1280) and Listing 5 (p. 1276) produces the screen output shown in Figure 6 (p. 1274) .
Figure 6 (p. 1274) displays

• The relative time that the containing object of the class A was instantiated
• A protected instance variable in the superclass of the class from which the containing object was

instantiated
• The name of the class �le that represents the top-level class named A

Use of the keyword this
As is the case with member classes, (discussed in the previous module), objects of local classes use a

special syntax of the keyword this to gain access to objects in the containment hierarchy.
The code in Listing 14 (p. 1280) shows how to use regular syntax to gain access to the current object,

and how to use special syntax to gain access to the containing object.
Having gained access to the two objects, the code in Listing 14 (p. 1280) gets and displays the values of

private instance variables belonging to those objects.
The screen output
The code in Listing 14 (p. 1280) produced the screen output shown in Figure 7 (p. 1274) .
You saw these same two values displayed earlier in Figure 4 (p. 1273) and Figure 2 (p. 1273) .
Illustrate the inheritance hierarchy
Remember that the inheritance hierarchy is independent of the containment hierarchy. The code in

Listing 15 (p. 1280) illustrates the inheritance hierarchy by

• Calling the overridden toString method belonging to the local class B
• Using the super keyword to call the overridden toString method belonging to the class Y ,

which is the superclass of the local class B

Listing 15 (p. 1280) also de�nes the overridden toString method belonging to local class B . The
overridden toString method belonging to class Y is shown in Listing 3 (p. 1276) .

The screen output
The combined code in Listing 15 (p. 1280) and Listing 3 (p. 1276) produces the screen output shown in

Figure 8 (p. 1274) . (Once again, you have seen these same values displayed in earlier Figures.)
That concludes the results of calling the showB method on the �rst object instantiated from local class

B .
Call showB method on second object

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1265

The code in Listing 10 (p. 1279) instantiated two objects from local class B , and saved the object's
references in instance variables named obj1 and obj2 . The screen output that I have been discussing
resulted from calling the showB method on obj1 in Listing 11 (p. 1279) .

Listing 16 (p. 1281) calls the showB method on obj2 . Listing 16 (p. 1281) also signals the end of
the method named meth , and the end of the class named A .

The screen output The code in Listing 16 (p. 1281) produces the screen output shown in Figure 9
(p. 1275)

Important considerations The important things to note about the output shown in Listing 16 (p.
1281) include:

• The second object instantiated from local class B is de�nitely a di�erent object from the �rst object
instantiated from local class B , as evidenced by a di�erent value for bTime . (Compare the value
of bTime in Figure 9 (p. 1275) with the value of bTime in Figure 5 (p. 1273) .) In other words,
the second object was instantiated after the �rst object was instantiated.

• Even though the two objects instantiated from local class B are di�erent objects, they both belong
to the same containing object, as evidenced by the same values for aTime in Figure 9 (p. 1275) and
Figure 5 (p. 1273) .

• The two objects instantiated from local class B each access the same �nal local variable belonging
to the method named meth , as evidenced by the same values for methTime in Figure 9 (p. 1275)
and Figure 5 (p. 1273) .

4.2.4.5 Run the program

I encourage you to copy the code from Listing 17 (p. 1281) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

4.2.4.6 Summary

In addition to a number of other items, a class de�nition can contain:

• Member classes
• Local classes
• Anonymous classes
• Nested top-level classes and interfaces

Member classes were explained in the previous module. This module explains local classes. The next module
will explain anonymous classes.

A local class is a class that is de�ned within a block of Java code. While local classes are probably most
frequently de�ned within method and constructors, they can also be de�ned inside static initializer blocks
and instance initializers.

An object of the local class must be internally linked to an object of the enclosing class (which I often
refer to as the containing object). A local class is truly an inner class because an object of the local class
cannot exist in the absence of an object of the enclosing class.

The methods of a local class have direct access to all the members in the hierarchy of enclosing classes,
including private members. In addition, the methods of local classes have access to �nal local variables
and �nal method parameters in the scope in which the local class is de�ned.

The containment hierarchy of local classes is independent of the inheritance hierarchy. However, it is
technically possible to establish an inheritance relationship between a local class and one of its enclosing
classes.

Local classes may not be declared public , protected , private , or static .
Local classes cannot contain static members.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1266 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

A local class has approximately the same relationship to a member class that a local variable in a method
has to an instance variable of the class containing the method.

4.2.4.7 What's next?

The next module in this series will explain and discuss anonymous classes, and will also compare anonymous
classes to local classes.

4.2.4.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Local Classes
• File: Java1638.htm
• Published: 11/19/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

4.2.4.9 Complete program listing

A complete listing of the program is provided in Listing 17 (p. 1281) .

4.2.4.10 Figures

Figure 1 - Class �les produced by the program.

A1B.class

A.class

InnerClasses07.class

X.class

Y.class

Table 4.41

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1267

Figure 2 - Screen output.

In xstr for A, aTime = 10

Table 4.42

Figure 3 - Screen output.

In meth, methTime = 40

Table 4.43

Figure 4 - Screen output.

Instantiate first B-object

In xstr for B, bTime = 70

Delay and instantiate second B-object

In xstr for B, bTime = 100

Table 4.44

Figure 5 - Screen output.

Display first B-Object

-1-

In showB, private bTime = 70

In showB, private aTime = 10

In showB, final methTime = 40

In showB, protected xVar = 1000

In showB, protected yVar = 2000

In showB, class name = A1B

Table 4.45

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1268 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Figure 6 - Screen output.

-2-

In showA, aTime = 10

In showA, xVar = 1000

In showA, class name = A

Table 4.46

Figure 7 - Screen output.

-3-

In showB, bTime = 70

In showB, aTime = 10

Table 4.47

Figure 8 - Screen output.

-4-

toString in class B, bTime = 70

toString in class Y, yVar = 2000

Table 4.48

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1269

Figure 9 - Screen output.

Display second B-Object

-1-

In showB, private bTime = 100

In showB, private aTime = 10

In showB, final methTime = 40

In showB, protected xVar = 1000

In showB, protected yVar = 2000

In showB, class name = A1B

-2-

In showA, aTime = 10

In showA, xVar = 1000

In showA, class name = A

-3-

In showB, bTime = 100

In showB, aTime = 10

-4-

toString in class B, bTime = 100

toString in class Y, yVar = 2000

Table 4.49

4.2.4.11 Listings

Listing 1 - The controlling class named InnerClasses07.

public class InnerClasses07{

static long baseTime = new Date().getTime();

public static void main(String[] args){

new A().meth();

}//end main

}//end class InnerClasses07

Table 4.50

Listing 2 - The class named X.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1270 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

class X{

protected int xVar = 1000;

}//end class X

Table 4.51

Listing 3 - The class named Y.

class Y{

protected int yVar = 2000;

public String toString(){

return "toString in class Y, yVar = " + yVar;

}//end overridden toString

}//end class Y

Table 4.52

Listing 4 - Beginning of the class named A.

class A extends X{

private long aTime = new Date().getTime() -

InnerClasses07.baseTime;

A(){//constructor

System.out.println(

"In xstr for A, aTime = " + aTime);

}//end constructor

Table 4.53

Listing 5 - The showA method in class A.

private void showA(){

System.out.println(

"In showA, aTime = " + aTime);

System.out.println(

"In showA, xVar = " + xVar);

System.out.println("In showA, class name = "

+ getClass().getName());

}//end showA

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1271

Table 4.54

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1272 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 6 - The delay method in class A.

void delay(){

try{

Thread.currentThread().sleep(30);

}catch(InterruptedException e){

System.out.println(e);

}//end catch

}//end delay

Table 4.55

Listing 7 - Beginning the meth method in class A.

void meth(){

final long methTime;

Table 4.56

Listing 8 - Set value of blank �nal variable.

delay();

methTime = new Date().getTime() -

InnerClasses07.baseTime;

System.out.println(

"In meth, methTime = " + methTime);

delay();

Table 4.57

Listing 9 - Beginning of class de�nition for local class B.

class B extends Y{

private long bTime;

B(){//constructor

bTime = new Date().getTime() -

InnerClasses07.baseTime;

System.out.println(

"In xstr for B, bTime = " + bTime);

}//end constructor

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1273

Table 4.58

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1274 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 10 - Instantiate two objects of local class B.

System.out.println("----------------------");

System.out.println(

"Instantiate first B-object");

final B obj1 = new B();

System.out.println(

"Delay and instantiate second B-object");

delay();

final B obj2 = new B();

Table 4.59

Listing 11 - Call showB on the �rst object.

System.out.println("----------------------");

System.out.println("Display first B-Object");

obj1.showB()

Table 4.60

Listing 12 - Beginning of showB method in local class B.

//Continuing with local class B definition

void showB(){

System.out.println("-1-");

System.out.println(

"In showB, private bTime = " + bTime);

System.out.println(

"In showB, private aTime = " + aTime);

System.out.println(

"In showB, final methTime = " +

methTime);

System.out.println(

"In showB, protected xVar = " + xVar);

System.out.println(

"In showB, protected yVar = " + yVar);

System.out.println(

"In showB, class name = " +

getClass().getName());

Table 4.61

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1275

Listing 13 - More code from showB method.

System.out.println("-2-");

showA();

Table 4.62

Listing 14 - Use of the keyword this.

System.out.println("-3-");

System.out.println(

"In showB, bTime = " + this.bTime);

System.out.println(

"In showB, aTime = " + A.this.aTime)

Table 4.63

Listing 15 - Illustrate the inheritance hierarchy.

System.out.println("-4-");

System.out.println(toString());

System.out.println(super.toString());

}//end showB

//---------------------------------------//

//Overridden toString method

public String toString(){

return

"toString in class B, bTime = " + bTime;

}//end overridden toString

}//end local class B

Table 4.64

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1276 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 16 - Call showB method on second object.

System.out.println("----------------------");

System.out.println(

"Display second B-Object");

obj2.showB();

}// end meth

}//end class A

Table 4.65

Listing 17 - Complete program listing.

/*File InnerClasses07.java

Copyright 2003 R.G.Baldwin

Illustrates the use of local classes.

This program defines a local class named B inside

an instance method named meth. The method named

meth is an instance method of a class named A.

The method named meth instantiates two separate

objects of the local class named B, and calls

on each of them a method named showB, which

displays certain data values that illustrate the

characteristics of local classes, a well as the

relationships among objects of a local class and

an object to which that object is internally

associated. In this case, objects of the class

named B are internally associated with an object

of the class named A.

This program produces the following class files

when compiled:

A1B.class

A.class

InnerClasses07.class

X.class

Y.class

The file named A1B.class represents the local

class named B.

This program produces the following output:

In xstr for A, aTime = 10

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1277

In meth, methTime = 40

Instantiate first B-object

In xstr for B, bTime = 70

Delay and instantiate second B-object

In xstr for B, bTime = 100

Display first B-Object

-1-

In showB, private bTime = 70

In showB, private aTime = 10

In showB, final methTime = 40

In showB, protected xVar = 1000

In showB, protected yVar = 2000

In showB, class name = A1B

-2-

In showA, aTime = 10

In showA, xVar = 1000

In showA, class name = A

-3-

In showB, bTime = 70

In showB, aTime = 10

-4-

toString in class B, bTime = 70

toString in class Y, yVar = 2000

Display second B-Object

-1-

In showB, private bTime = 100

In showB, private aTime = 10

In showB, final methTime = 40

In showB, protected xVar = 1000

In showB, protected yVar = 2000

In showB, class name = A1B

-2-

In showA, aTime = 10

In showA, xVar = 1000

In showA, class name = A

-3-

In showB, bTime = 100

In showB, aTime = 10

-4-

toString in class B, bTime = 100

toString in class Y, yVar = 2000

Tested using SDK 1.4.1 under WinXP

**/

import java.util.Date;

public class InnerClasses07{

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1278 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

//The following static variable is used as a

// base to establish the relative points in

// time that certain activities occur during

// the execution of the program.

static long baseTime = new Date().getTime();

public static void main(String[] args){

//Instantiate a new object of the class named

// A and call the method named meth on that

// object. This method will sequentially

// instantiate two separate objects of a

// local class named B that is defined inside

// the method named meth. Then it will

// call a method named showB on each of

// those objects to cause them to display

// various data values that illustrate the

// characteristics of local classes.

new A().meth();

}//end main

}//end class InnerClasses07

//===//

//The class named A extends this class to

// illustrate the difference between the

// inheritance hierarchy and the containment

// hierarchy.

class X{

protected int xVar = 1000;

}//end class X

//===//

//The local class named B extends this class to

// illustrate the difference between the

// inheritance hierarchy and the containment

// hierarchy.

class Y{

protected int yVar = 2000;

//Overridden toString method

public String toString(){

return "toString in class Y, yVar = " + yVar;

}//end overridden toString

}//end class Y

//===//

class A extends X{

//Establish the relative time that the object

// of class A is instantiated.

private long aTime = new Date().getTime() -

InnerClasses07.baseTime;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1279

A(){//constructor

System.out.println(

"In xstr for A, aTime = " + aTime);

}//end constructor

//---//

//Displays information about the object

// instantiated from class A.

private void showA(){

System.out.println(

"In showA, aTime = " + aTime);

System.out.println(

"In showA, xVar = " + xVar);

System.out.println("In showA, class name = "

+ getClass().getName());

}//end showA

//---//

//Method used to insert a time delay of 30

// milliseconds.

void delay(){

try{

Thread.currentThread().sleep(30);

}catch(InterruptedException e){

System.out.println(e);

}//end catch

}//end delay

//---//

//This method contains a local class definition

// for a class named B. The method

// instantiates two separate objects of class B

// and calls a method named showB on each of

// the objects. The method named showB

// displays various data values that illustrate

// the characteristics of local classes.

void meth(){

//The following local variable must be final

// to be accessible from a local class. This

// is a blank final variable whose value can

// be set once and never changed after that.

final long methTime;

//Delay and then set the value of the blank

// final local variable to a relative time.

// Then delay again before continuing.

delay();

methTime = new Date().getTime() -

InnerClasses07.baseTime;

System.out.println(

"In meth, methTime = " + methTime);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1280 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

delay();

//---//

//This is the definition of a local class

// named B. Note that as with local

// variables, the class definition must

// appear before the code that attempts to

// instantiate the class. The class extends

// class Y to illustrate that the inheritance

// hierarchy is independent of the

// containment hierarchy.

class B extends Y{

private long bTime;

B(){//constructor

//Establish the relative time that the

// object is instantiated.

bTime = new Date().getTime() -

InnerClasses07.baseTime;

System.out.println(

"In xstr for B, bTime = " + bTime);

}//end constructor

void showB(){

//Display private and protected

// variables, some of which belong to the

// internally associated object

// instantiated from the class named A.

// Note that code in this method has

// access to xVar, which is a protected

// member variable of a superclass of the

// class named A.

System.out.println("-1-");

System.out.println(

"In showB, private bTime = " + bTime);

System.out.println(

"In showB, private aTime = " + aTime);

System.out.println(

"In showB, final methTime = " +

methTime);

System.out.println(

"In showB, protected xVar = " + xVar);

System.out.println(

"In showB, protected yVar = " + yVar);

System.out.println(

"In showB, class name = " +

getClass().getName());

System.out.println("-2-");

//Call the private method named showA

// in the internally associated object

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1281

// instantiated from the class named A,

// to illustrate the containment

// hierarchy.

showA();

System.out.println("-3-");

//Show how to access individual objects,

// including the internally associated

// object instantiated from the class

// named A.

System.out.println(

"In showB, bTime = " + this.bTime);

System.out.println(

"In showB, aTime = " + A.this.aTime);

System.out.println("-4-");

//Illustrate the inheritance hierarchy by

// calling the overridden toString

// methods belonging to the class named B

// and its superclass named Y.

System.out.println(toString());

System.out.println(super.toString());

}//end showB

//---------------------------------------//

//Overridden toString method

public String toString(){

return

"toString in class B, bTime = " + bTime;

}//end overridden toString

}//end local class B

//This is the code that is executed when this

// method named meth is called. Instantiate

// two objects from the class named B and

// call the method named showB on each of

// them. Those methods will, in turn call

// the method named showA on the internally

// associated object instantiated from the

// class named A. Insert a delay between the

// instantiation of the two objects.

System.out.println("----------------------");

System.out.println(

"Instantiate first B-object");

final B obj1 = new B();

System.out.println(

"Delay and instantiate second B-object");

delay();

final B obj2 = new B();

System.out.println("----------------------");

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1282 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

System.out.println("Display first B-Object");

obj1.showB();

System.out.println("----------------------");

System.out.println(

"Display second B-Object");

obj2.showB();

}// end meth

}//end class A

//===//

-end-

4.2.5 Java1640 Java OOP Anonymous Classes
47

Revised: Wed May 11 15:54:45 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 48

• Object-Oriented Programming (OOP) with Java 49

4.2.5.1 Table of Contents

• Preface (p. 1288)

· Purpose of this module (p. 1288)
· Viewing tip (p. 1288)

* Figures (p. 1288)
* Listings (p. 1289)

• Preview (p. 1289)

· What can you include in a class de�nition? (p. 1289)
· What is an anonymous class? (p. 1289)
· What about an anonymous interface? (p. 1290)
· Why use anonymous classes? (p. 1290)
· Anonymous classes versus local classes (p. 1290)
· Restrictions on the use of anonymous classes (p. 1291)
· Smoke and mirrors (p. 1291)
· Syntax for anonymous classes (p. 1291)

• Discussion and sample code (p. 1292)

· Class �le names (p. 1292)
· Program structure and behavior (p. 1293)

* A local class (p. 1293)
* Three anonymous classes (p. 1293)
* The screen output (p. 1294)
* The controlling class (p. 1294)
* Local and anonymous classes inside GUI constructor (p. 1294)
* The GUI class (p. 1294)

47This content is available online at <http://cnx.org/content/m44342/1.9/>.
48http://cnx.org/contents/Rl23r3Lw
49http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1283

* An anonymous inner class for low-level event handling (p. 1296)
* Instantiating and registering a MouseListener object (p. 1297)
* Extending the WindowAdapter class (p. 1298)

· The GUI remains on the screen until terminated (p. 1299)
· Simple event handlers (p. 1299)

• Run the program (p. 1299)
• Summary (p. 1299)
• Miscellaneous (p. 1300)
• Complete program listing (p. 1301)
• Figures (p. 1301)
• Listings (p. 1302)

4.2.5.2 Preface

This module is one in a collection of modules designed for teaching ITSE2317 - Java Programming (Inter-
mediate) at Austin Community College in Austin, TX.

(Editor's note: As you read this module, you will see that it was originally written around 2003.
However, despite many improvements in Java since then, most of what was true then is still true
in 2013.)

This module makes several references to my website, which is located at
http://www.dickbaldwin.com/toc.htm 50 .

4.2.5.2.1 Purpose of this module

This module explains anonymous classes from a practical viewpoint, including a comparison between anony-
mous classes and local classes.

4.2.5.2.2 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

4.2.5.2.2.1 Figures

• Figure 1 (p. 1301) . Syntax for anonymous classes.
• Figure 2 (p. 1301) . Program GUI.
• Figure 3 (p. 1301) . Class �le names.
• Figure 4 (p. 1301) . Screen output.
• Figure 5 (p. 1302) . Screen output.
• Figure 6 (p. 1302) . Screen output.
• Figure 7 (p. 1302) . Screen output.
• Figure 8 (p. 1302) . Screen output.
• Figure 9 (p. 1302) . Screen output.

50http://www.dickbaldwin.com/toc.htm

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1284 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.2.5.2.2.2 Listings

• Listing 1 (p. 1303) . The controlling class.
• Listing 2 (p. 1303) . Beginning of the GUI class.
• Listing 3 (p. 1303) . Beginning of the BaldButton class.
• Listing 4 (p. 1304) . The processMouseEvent method.
• Listing 5 (p. 1304) . Beginning of anonymous inner class.
• Listing 6 (p. 1305) . Overridden processMouseEvent method.
• Listing 7 (p. 1305) . Register a MouseListener object.
• Listing 8 (p. 1306) . Implementing the interface.
• Listing 9 (p. 1306) . Registering a WindowListener on the Frame .
• Listing 10 (p. 1306) . Complete program listing.

4.2.5.3 Preview

4.2.5.3.1 What can you include in a class de�nition ?

There are several di�erent kinds of items that can be included in a class de�nition. As you learned in the
earlier modules in this series, the list includes:

• Static variables
• Instance variables
• Static methods
• Instance methods
• Constructors
• Static initializer blocks
• Instance initializers

Can also contain other class de�nitions
As you also learned in previous modules, a class de�nition can also contain the following kinds of inner

classes:

• Member classes
• Local classes
• Anonymous classes
• Nested top-level classes and interfaces

The previous two modules explained member classes and local classes. This module will explain anonymous
classes.

4.2.5.3.2 What is an anonymous class ?

I'm going to begin my discussion with a quotation from one of my favorite authors, David Flanagan, author
of Java in a Nutshell .

"An anonymous class is essentially a local class without a name."

If you have read the previous module, you should know quite a lot about local classes at this point in time.
Continuing with Flanagan's words,

"Instead of de�ning a local class and then instantiating it, you can often use an anonymous class
to combine these two steps... an anonymous class is de�ned by a Java expression , not a Java
statement . This means that an anonymous class de�nition can be included within a larger
Java expression..."

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1285

As you will see from the sample program in this module, anonymous class de�nitions are often included as
arguments to method calls.

As is the case for an object of a member class or a local class (discussed in previous modules), an object
of an anonymous class must be internally linked to an object of the enclosing class.

Thus, an anonymous class is truly an inner class, because an object of the anonymous class cannot exist
in the absence of an object of the enclosing class.

4.2.5.3.3 What about an anonymous interface ?

Interfaces de�ned within classes are implicitly static. This means that they are always top-level. There is
no such thing as a member interface, a local interface, or an anonymous interface.

4.2.5.3.4 Why use anonymous classes ?

As with local classes, objects instantiated from anonymous classes share many of the characteristics of objects
instantiated from member classes. However, in some cases, an anonymous class can be de�ned closer to its
point of use than would be possible with a member class or a local class. Once you become accustomed to
the somewhat cryptic syntax used with anonymous classes, this can often lead to improved code readability.

Probably the most important bene�t of anonymous classes has to do with accessing the members of
enclosing classes. Just like with member classes and local classes, methods of an anonymous class have direct
access to all the members of the enclosing classes, including private members. Thus the use of anonymous
classes can often eliminate the requirement to connect objects together via constructor parameters.

In addition, although not demonstrated in this module, as with local classes, objects of anonymous classes
have access to �nal local variables that are declared within the scope of the anonymous class.

Can be particularly useful when ...
An anonymous class can be particularly useful in those cases where

• There is no reason for an object of the anonymous class to exist in the absence of an object of the
enclosing class.

• There is no reason for an object of the anonymous class to exist outside a method of the enclosing
class.

• Methods of the object of the anonymous class need access to members of the object of the enclosing
class.

• Methods of the object of the anonymous class need access to �nal local variables and method
parameters belonging to the method in which the anonymous class is de�ned.

• Only one instance of the anonymous class is needed.
• There is no need for the class to have a name that is accessible elsewhere in the program.

4.2.5.3.5 Anonymous classes versus local classes

Once again, according to David Flanagan,

"...an anonymous class behaves just like a local class, and is distinguished from a local class
merely in the syntax used to de�ne and instantiate it."

Unlike a local class, however, an anonymous class cannot de�ne a constructor. However, an anonymous class
can de�ne an instance initializer, which can provide some of the bene�ts of a constructor.

(I discussed instance initializers in detail in an earlier tutorial titled The Essence of OOP using
Java, Instance Initializers 51 . As you may recall, a primary shortcoming of an instance initializer
as compared to a constructor is that an instance initializer cannot accept incoming parameters.)

51http://cnx.org/content/m45597/latest/Java1634.htm

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1286 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.2.5.3.6 Restrictions on the use of anonymous classes

Because an anonymous class has no name, and the de�nition and instantiation of the class appear in a single
expression, only one instance of each anonymous class can be created. If you need more than one instance
of the class, you should probably use a local class, a member class, or a top-level class instead.

As mentioned above, it is not possible to de�ne constructors for anonymous classes. If you need to use
a constructor when you instantiate the class, you should probably use a local class, a member class, or a
top-level class instead.

As with member classes and local classes, anonymous classes cannot contain static members.
As with local variables and local classes, anonymous classes cannot be declared public , protected

, private , or static . In fact, no modi�ers can be speci�ed in the de�nition of an anonymous class.

4.2.5.3.7 Smoke and mirrors

As I told you in my earlier modules on local classes, the methods in an anonymous class don't really
have access to local variables and method parameters. Rather, when an object of the anonymous class is
instantiated, copies of the �nal local variables and method parameters referred to by the object's methods
are stored as instance variables in the object. The methods in the object of the anonymous class really access
those hidden instance variables.

Thus, the local variables and method parameters accessed by the methods of the local class must be
declared �nal to prevent their values from changing after the object is instantiated.

There are some additional activities involving smoke and mirrors taking place behind the scenes when
you de�ne and instantiate an anonymous class. Generally speaking, this involves the automatic generation
of code to cause things to behave as they do. The good news is that you don't have to write that extra code,
and you don't have to maintain it. The extra code is written for you, and if you modify your class structure,
the extra code is automatically modi�ed accordingly.

You can read about the code that is automatically generated in my earlier modules on local classes and
member classes.

4.2.5.3.8 Syntax for anonymous classes

Before getting into actual code in the sample program, I want to explain the syntax used to de�ne and
instantiate an anonymous class.

The de�nition and instantiation of an anonymous class uses one or the other of the two expressions shown
in Figure 1 (p. 1301) .

Usually, this expression is included inside a larger overall expression, such as an argument to a method
call.

What does the �rst expression mean?
Here is how I usually explain this syntax to my students. The �rst expression in Figure 1 (p. 1301) starts

out fairly normal, but becomes cryptic very quickly.
This expression instantiates a new object from an unnamed and previously unde�ned class. That class

automatically extends the class named className , and cannot explicitly implement any interfaces.
The body of the new class is given by classBody .
The result of executing this expression is that:

• a new class that extends className is de�ned,
• a new object of the new class is instantiated, and
• the expression is replaced by a reference to the new object.

Example usage
If this expression appears as the right operand of an assignment operator, the new object's reference is

saved in the left operand of the assignment operator.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1287

If the expression appears as an argument in a method call, the new object's reference is passed to the
method.

If the expression appears in some other form of larger overall expression, the new object's reference is
handed over to the surrounding expression to be used appropriately.

What about instantiating an interface?
The second expression in Figure 1 (p. 1301) starts out very weird. To my knowledge, there is no other

situation in Java where you apply the new operator to the name of an interface.
From the beginning, you have been told (or should have been told) that you cannot instantiate an

object of an interface. (An interface is implicitly abstract and it doesn't have a constructor, not even a
default constructor.)

However, you can instantiate an object of a class that implements none, one, or more interfaces.
The correct interpretation of the second expression in Figure 1 (p. 1301) is as follows. This expression

instantiates a new object from an unnamed and previously unde�ned class. That class automatically
implements the interface named interfaceName , and it automatically extends the class named
Object .

The class can explicitly implement one, and only one interface, and cannot extend any class other than
Object .

Once again, the body of the new class is given by classBody .
As in the case of the �rst expression in Figure 1 (p. 1301) , the result of executing this second expression

is that

• a new class that implements interfaceName is de�ned,
• a new object of the new class is instantiated, and
• the expression is replaced by a reference to the new object.

That reference is handed over to the surrounding expression to be used appropriately.
What about constructor parameters?
As mentioned earlier in this module, since the new class doesn't have a name, it isn't possible to de�ne

a constructor for the new class.
According to Flanagan (with regard to the �rst expression in Figure 1 (p. 1301)) ,

"Any arguments you specify between the parentheses following the superclass name in an anony-
mous class de�nition are implicitly passed to the superclass constructor."

Thus, it is possible to de�ne an anonymous class that extends a class whose constructor requires parameters,
and to pass those parameters to the superclass constructor when the anonymous class is instantiated.

The parentheses following interfaceName in the second expression in Figure 1 (p. 1301) must always
be empty. In this case, the superclass is always Object , which never expects constructor parameters.

4.2.5.4 Discussion and sample code

The paragraphs that follow will explain a program named InnerClasses08 . This program is designed
speci�cally to illustrate anonymous classes, and to compare anonymous classes with local classes.

I will discuss the program in fragments. A complete listing of the program is provided in Listing 10 (p.
1306) .

When the program is executed, it produces the GUI shown in Figure 2 (p. 1301) . I will refer back to
this image during the discussion of the program.

4.2.5.4.1 Class �le names

This program consists of a total of six classes:

• Two top-level classes

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1288 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

· InnerClasses08.class
· GUI.class

• One local class

· GUI1BaldButton.class

• Three anonymous classes

· GUI$1.class
· GUI$2.class
· GUI$3.class

When compiled, the program produces the class �les shown in Figure 3 (p. 1301) .

(As you can see, the anonymous classes are not truly anonymous, since the �les that represent
them must have names. Generally, however, the establishment of the individual names is beyond
the control of the programmer, and the names are not known to the program in a way that makes
it possible to refer to them by name.)

4.2.5.4.2 Program structure and behavior

This program is designed to illustrate the use of local classes and anonymous classes in a very practical way.
It illustrates one implementation of a local class and three di�erent implementations of anonymous classes.
The program compares the local class with an anonymous class designed to accomplish the same purpose.
The program also illustrates the use of instance initializers as an alternative to constructors.

4.2.5.4.2.1 A local class

The program de�nes and uses a local class to instantiate an object to handle mouse clicked events on a
button with low-level event handling. This class uses a constructor to enable mouse events on a new
extended Button class. It also uses a constructor to display the name of the class �le.

4.2.5.4.2.2 Three anonymous classes

An anonymous class to compare with the local class
The program also de�nes and uses an anonymous class to instantiate an object to handle mouse clicked

events on a button with low-level event handling.
This class uses an instance initializer to enable mouse events on a new extended Button class. It also

uses an instance initializer to display the name of the class �le.
This class and the local class described above provide a direct comparison between the use of local classes

and anonymous classes to serve the same purpose.
An anonymous class that implements an interface
The program illustrates the use of an anonymous class that implements the MouseListener interface,

to instantiate an object to handle mouse clicked events using the source-listener event model (sometimes
referred to as the delegation event model or the JavaBeans event model). The anonymous class uses an
instance initializer to display the name of the class �le.

An anonymous class that extends an existing class
The program illustrates the use of an anonymous class that extends the WindowAdapter class, to

instantiate an object to handle window events �red by the close button in the upper-right corner of the
Frame object shown in Figure 2 (p. 1301) . This class also uses the source-listener event model, and uses
an instance initializer to display the name of the class �le.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1289

4.2.5.4.2.3 The screen output

The program produces the screen output shown in Figure 4 (p. 1301) when

• The program is started
• Each button shown in Figure 2 (p. 1301) is clicked once in succession, going from left to right
• The close button in the upper-right corner of the Frame object in Figure 2 (p. 1301) is clicked

When the close button is clicked, the program produces the last line of text in Figure 4 (p. 1301) and
terminates. I will identify the code that produces each line of output text in the discussion of the program
that follows.

4.2.5.4.2.4 The controlling class

The controlling class for the program is shown in Listing 1 (p. 1303) .
As you can see, the controlling class is very simple, with the main method instantiating an object of

the GUI class. This results in the GUI that is pictured in Figure 2 (p. 1301) .

4.2.5.4.2.5 Local and anonymous classes inside GUI constructor

The local class and the three anonymous classes are de�ned inside the constructor for the GUI class.

(Recall that local classes and anonymous classes are de�ned inside code blocks, which often place
them inside methods and constructors, but you can also place them inside static initializer blocks
and instance initializers.)

The �rst four lines of the output text in Figure 4 (p. 1301) are produced by constructors and instance
initializers in the local and anonymous classes. Therefore, those four lines of text are produced when the
new object of the GUI class is instantiated.

4.2.5.4.2.6 The GUI class

As is often the case, the GUI class used to create the visual GUI shown in Figure 2 (p. 1301) consists
solely of a constructor. Basically, this constructor

• places three buttons in the frame and
• registers event handlers on the buttons and on the frame.

Once the GUI object is constructed and appears on the screen, all further activity in the program occurs
under control of the event handlers associated with the buttons and the frame.

(You can learn more about event handling here 52 .)

The GUI constructor
The GUI class, and the constructor for that class begin in Listing 2 (p. 1303) .
As you can see, the GUI class extends Frame , so that an object of the class is a frame.
The constructor code shown in Listing 2 (p. 1303) simply sets values for the layout, size, and title

properties of the frame.
The BaldButton class
The de�nition of the BaldButton class begins in Listing 3 (p. 1303) . This is a local class that extends

Button .
Extending the Button class makes it possible to override the processMouseEvent method in order

to handle mouse events that are �red by the button.

52http://cnx.org/content/m47842/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1290 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

This is a form of low-level event handling that will be contrasted with source-listener event handling later
in the program.

Listing 3 (p. 1303) shows the constructor for the BaldButton class.
Enable mouse events
The most important code in the constructor is the statement that enables mouse events on the button.
If you are unfamiliar with the enableEvents method, you should look it up in the Sun documentation.

Brie�y, this method must be called on the button to cause the overridden processMouseEvent method
to be called later when the button �res a mouse event.

The remaining constructor code
The remaining code in the constructor

• Sets the text value on the face of the button
• Gets and displays the name of the class �le that represents this local class

The screen output
Construction of the button by the code in Listing 3 (p. 1303) causes the text shown in Figure 5 (p. 1302)

to appear on the screen. This is how I was able to identify the name of the class �le that represents the local
class in my earlier discussion of class �le names.

We will see later that this button will be added as the leftmost button in the GUI shown in Figure 2 (p.
1301) .

The processMouseEvent method
Continuing with the constructor for the GUI class, Listing 4 (p. 1304) shows the overridden process-

MouseEvent method for an object of the BaldButton class.
This method is called each time an object instantiated from this class �res a mouse event. That is why

I refer to the method as an event handler for the button.
Di�erent kinds of mouse events A button can �re a variety of di�erent kinds or subcategories of

mouse events :

• MOUSE_CLICKED
• MOUSE_DRAGGED
• MOUSE_ENTERED
• MOUSE_EXITED
• MOUSE_MOVED
• MOUSE_PRESSED
• MOUSE_RELEASED

In this case, I elected to ignore all but MOUSE_CLICKED . This subcategory of mouse event occurs
when a mouse button is pressed and then released.

The code in the event handler of Listing 4 (p. 1304) �rst con�rms that the event was of the
MOUSE_CLICKED variety. If so, it displays a message that matches the �fth line of text in the out-
put shown in Figure 4 (p. 1301) .

Call processMouseEvent on the superclass
Without getting into the details of why this is required, I'm simply going to tell you that when you use

this low-level event model to handle events, your overridden processMouseEvent method must call the
same method in the superclass, passing the incoming parameter of type MouseEvent as a parameter to
the superclass version of the method.

Add a button to the frame
The last statement in Listing 4 (p. 1304) instantiates a new BaldButton object, setting the text on

the face of the button to A , and adds that new object to the frame.
Because the layout property of the frame has been set to FlowLayout 53 , and because this is the �rst

component added to the frame, this button appears as the leftmost button in the GUI shown in Figure 2 (p.
1301) .

53http://cnx.org/content/m45597/latest/Java116.htm

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1291

Could instantiate multiple buttons of this type
Although I instantiated the button object as an anonymous object in this case, that wasn't necessary.

Using this local class, I could instantiate more than one object of this type, saving the object's references in
reference variables of the appropriate type. Later we will see that this is not possible for anonymous classes.

It is interesting to note, however, that with this event handling model, if I were to instantiate multiple
buttons of this type, the same processMouseEvent method would be called no matter which of the
buttons �red a mouse event. If I wanted di�erent behavior as a result of the di�erent buttons �ring mouse
events, I would have to write code inside the processMouseEvent method to deal with that issue.

The source-listener event model that I will illustrate later doesn't su�er from that restriction.

4.2.5.4.2.7 An anonymous inner class for low-level event handling

Listing 5 (p. 1304) shows the beginning of an anonymous class to perform low-level event handling similar
to that shown in Listing 4 (p. 1304) .

This code de�nes an anonymous inner class that implicitly extends Button and has mouse events
enabled. I provided this class primarily for comparison with the local class named BaldButton . This
class is an anonymous alternative to the local BaldButton class.

An argument to the add method
Note that the de�nition of this anonymous class appears as an argument to the add method for the

frame. Thus, the anonymous object instantiated from the anonymous class is added as the second (middle)
button in Figure 2 (p. 1301) .

Extends the Button class
Note also that this form of anonymous class implicitly extends the Button class. Once again, this

makes it possible to override the processMouseEvent method belonging to the Button class.
An instance initializer
As I mentioned earlier in this module, it is not possible to de�ne a constructor for an anonymous class.

However, it is possible to de�ne an instance initializer.

(In Listing 5 (p. 1304) , the instance initializer consists of two statements enclosed by matching
curly brackets.)

This class de�nes an instance initializer that

• Enables mouse events on an anonymous object instantiated from the anonymous class.
• Gets and displays the name of the class �le that represents the anonymous class.

The screen output
Therefore, the instantiation of this anonymous object causes the text shown in Figure 6 (p. 1302) to

appear on the screen. About all you can tell by looking at this class name is that it is the name of a �le that
represents an anonymous class.

Overridden processMouseEvent method
The remaining code in the anonymous class de�nition is shown in Listing 6 (p. 1305) . The code in

Listing 6 (p. 1305) consists of

• an overridden processMouseEvent method, plus
• the curly brackets, parentheses, and semicolon necessary to complete the expression and the statement.

Same code as before
The code in this overridden processMouseEvent method is essentially the same as that shown for

the local class in Listing 4 (p. 1304) , except that it produces a di�erent message on the screen when the
user clicks the button.

Clicking the middle button in Figure 2 (p. 1301) produces the screen output shown by the sixth line in
Figure 4 (p. 1301) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1292 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.2.5.4.2.8 Instantiating and registering a MouseListener object

Implementing a listener interface
Now I'm going to switch from low-level event handling to source-listener event handling. The

code to accomplish this begins in Listing 7 (p. 1305) .
With this event handling model:

• A listener object is instantiated from a class that implements a speci�c listener interface. In this case,
that interface will be the MouseListener interface.

• The listener object is registered on an object that knows how to �re events of a type that is associated
with the listener interface. In this case, that will be events of type MouseEvent .

• When the source object �res an event of the speci�ed type, one of the methods belonging to the
registered listener object will be called to handle the event. The di�erent methods belonging to the
listener object are declared in the implemented listener interface.

Listing 7 (p. 1305) begins by instantiating a new Button object.

(Note that with this event model, it is not necessary to extend the Button class, because it
is not necessary to override methods belonging to the Button object.)

Register a MouseListener object
After instantiating the Button object, the code in Listing 7 (p. 1305) calls the addMouseListener

method to register a MouseListener object on that button. The argument to the addMouseListener
method must be a reference to an object instantiated from a class that implements the MouseListener
interface.

Instantiate the listener object
In this case, that listener object is created by

• writing an expression to instantiate an anonymous object from an anonymous class and
• placing that expression as an argument to the addMouseListener method.

Implement the MouseListener interface
The de�nition of the anonymous class in this example uses the syntax that implements an interface.
An instance initializer
As before, an instance initializer is used to get and display the name of the class �le that represents the

anonymous class. Thus, when the new anonymous object of the anonymous class is instantiated, the text
shown in Figure 7 (p. 1302) appears on the screen.

Note the similarity of this class �le name to that shown earlier in Figure 6 (p. 1302) . (You can also
compare them in Figure 4 (p. 1301) .) The names of the two class �les di�er only with respect to a number
that is provided by the compiler to guarantee that each class �le name is unique.

Implementing the interface
Whenever a class implements an interface, it must provide a concrete de�nition for each of the methods

declared in the interface, even if some of those methods are empty.
Continuing with the de�nition of the anonymous class, Listing 8 (p. 1306) provides de�nitions for all �ve

of the methods declared in the MouseListener interface. Four of those methods are de�ned as empty
methods.

Separation of event subcategories
One of the major di�erences between the low-level event model discussed earlier and the source-

listener model being discussed here has to do with where the separation between the di�erent subcategories
(mouseClicked, mousePressed, mouseReleased, etc.) of a given event type is accomplished.

In the low-level model, the separation must be accomplished by code in the overridden event handler
method, such as with the if statement in the processMouseEvent method de�ned in Listing 6 (p.
1305) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1293

In the source-listener model, the separation is accomplished before the event handler method is called,
and a speci�c event handler method, such as the mouseClicked method is called on the listener object.

When the button �res a mouse event ...
In this case, whenever the button �res a MouseEvent of the MOUSE_CLICKED subcategory

(p. 1295) , the mouseClicked method de�ned in Listing 8 (p. 1306) will be called automatically, causing
the seventh line of text in Figure 4 (p. 1301) to appear on the screen.

Whenever the button �res a MouseEvent of one of the other subcategories (p. 1295) , one of the
empty methods de�ned in Listing 8 (p. 1306) will be called. This method will return immediately, doing
nothing but wasting a little computer time.

(In case you are wondering what happened to the mouseMoved and mouseDragged meth-
ods, they are de�ned in the MouseMotionListener interface instead of the MouseListener
interface.)

Add the button to the frame
Finally, the last statement in Listing 8 (p. 1306) adds the new button to the Frame as the rightmost

button in Figure 2 (p. 1301) .
A disclaimer
I wrote this code the way that I did in Listing 8 (p. 1306) to illustrate an anonymous class that implements

an interface. In real life, I would probably cause the anonymous class to extend the MouseAdapter class
and override the mouseClicked method instead of implementing the MouseListener interface. That
would eliminate the requirement for me to de�ne the four empty methods in Listing 8 (p. 1306) .

4.2.5.4.2.9 Extending the WindowAdapter class

The above disclaimer provides a perfect lead-in to the de�nition of the anonymous class shown in Listing 9
(p. 1306) .

Registering a WindowListener on the Frame
The code in Listing 9 (p. 1306) instantiates an anonymous object of an anonymous class that extends

the WindowAdapter class.
That anonymous object is registered as a WindowListener on the Frame by passing the object's

reference to the addWindowListener method belonging to the Frame .

(The addWindowListener method requires an incoming parameter of type WindowLis-
tener . This is satis�ed by the fact that the WindowAdapter class implements the
WindowListener interface. Thus, an object instantiated from a class that extends Win-
dowAdapter can also be treated as type WindowListener .)

The screen output
This anonymous class de�nition uses an instance initializer to get and display the name of the class that

represents the anonymous class. Thus, when the anonymous object of the anonymous class is instantiated,
the text shown in Figure 8 (p. 1302) appears on the screen.

(In an earlier module explaining member classes, I told you that it is possible to examine the
names of the class �les that represent the member classes and to determine quite a lot about the
structure of the program in terms of which classes are members of which other classes. However,
in the case of local classes and anonymous classes, about all that you can determine from the
name of the class �le is that the �le either represents a local class or represents an anonymous
class (see the summary of class names in Figure 3 (p. 1301)).)

The windowClosing method
The code in Listing 9 (p. 1306) overrides the windowClosing method inherited from the Win-

dowAdapter class.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1294 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Clicking the close button with the X in the upper right hand corner of Figure 2 (p. 1301) causes the
windowClosing method to be called on any WindowListener objects that have been registered on the
frame.

In this case, the overridden windowClosing method in Listing 9 (p. 1306) causes the last line of text
in Figure 4 (p. 1301) to be displayed on the screen.

Following that, the overridden windowClosing method calls the System.exit method to terminate
the program.

The remaining code
The remaining code in Listing 9 (p. 1306)

• Causes the frame to become visible
• Signals the end of the constructor
• Signals the end of the GUI class

4.2.5.4.3 The GUI remains on the screen until terminated

Once the constructor is executed, the GUI simply remains on the screen waiting for someone to click one
of the buttons or to click the close button in the upper right corner of the frame. When these buttons are
clicked, the event handlers are called, causing text such as that shown in Figure 9 (p. 1302) to appear on
the screen.

4.2.5.4.4 Simple event handlers

In this demo program, the event handlers simply display messages on the screen, and in the case of the
close button, terminate the program. In a real world program, the behavior of the event handlers would
likely be much more substantive, but the overall skeleton of the program need not be any di�erent from that
illustrated here.

4.2.5.5 Run the program

I encourage you to copy the code from Listing 10 (p. 1306) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

4.2.5.6 Summary

In addition to a number of other items, a class de�nition can contain:

• Member classes
• Local classes
• Anonymous classes
• Nested top-level classes and interfaces

Member classes and local classes were explained in previous modules. This module explains anonymous
classes.

Although there are some di�erences, an anonymous class is very similar to a local class without a name.
Instead of de�ning a local class and then instantiating it, you can often use an anonymous class to combine
these two steps.

An anonymous class is de�ned by a Java expression, not a statement. Therefore, an anonymous class
de�nition can be included within a larger overall Java expression.

Anonymous class de�nitions are often included as arguments to method calls, or as the right operand of
assignment operators.

An object of an anonymous class must be internally linked to an object of the enclosing class.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1295

There is no such thing as an anonymous interface, a local interface, or a member interface.
An anonymous class can often be de�ned very close to its point of use. Once you become accustomed to

the somewhat cryptic syntax used with anonymous classes, this can lead to improved code readability.
Probably the most important bene�t of anonymous classes has to do with accessing the members of

enclosing classes. As with member classes and local classes, methods of an anonymous class have direct
access to all the members of the enclosing classes, including private members. Thus the use of anonymous
classes can sometimes eliminate the requirement to connect objects together via constructor parameters. In
addition, objects of anonymous classes have access to �nal local variables that are declared within the
scope of the anonymous class.

An anonymous class can be particularly useful in those cases where

• There is no reason for an object of the anonymous class to exist in the absence of an object of the
enclosing class.

• There is no reason for an object of the anonymous class to exist outside a method of the enclosing
class.

• Methods of the object of the anonymous class need access to members of the object of the enclosing
class.

• Methods of the object of the anonymous class need access to �nal local variables and method
parameters belonging to the method in which the anonymous class is de�ned.

• Only one instance of the anonymous class is needed.
• There is no need for the class to have a name that is accessible elsewhere in the program.

An anonymous class cannot de�ne a constructor. However, it can de�ne an instance initializer.
Any arguments that you specify between the parentheses following the superclass name in an anonymous

class de�nition are implicitly passed to the superclass constructor.
Only one instance of an anonymous class can be created.
As with member classes and local classes, anonymous classes cannot contain static members.
As with local variables and local classes, anonymous classes cannot be declared public , protected

, private , or static .

4.2.5.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Anonymous Classes
• File: Java1640.htm
• Published: 11/20/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1296 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.2.5.8 Complete program listing

A complete listing of the program discussed in this module is show in Listing 10 (p. 1306) .

4.2.5.9 Figures

Figure 1 - Syntax for anonymous classes.

new className(optional argument list){classBody}

new interfaceName(){classBody}

Table 4.66

Figure 2 - Program GUI.

Figure 3 - Class �le names.

GUI1BaldButton.class

GUI$1.class

GUI$2.class

GUI$3.class

GUI.class

InnerClasses08.class

Table 4.67

Figure 4 - Screen output.

Local class name: GUI1BaldButton

Anonymous class B name: GUI$1

Anonymous class C name: GUI$2

Anonymous window listener class name: GUI$3

buttonA clicked

buttonB clicked

buttonC clicked

Close button clicked

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1297

Table 4.68

Figure 5 - Screen output.

Local class name: GUI1BaldButton

Table 4.69

Figure 6 - Screen output.

Anonymous class B name: GUI$1

Table 4.70

Figure 7 - Screen output.

Anonymous class C name: GUI$2

Table 4.71

Figure 8 - Screen output.

Anonymous window listener class name: GUI$3

Table 4.72

Figure 9 - Screen output.

buttonA clicked

buttonB clicked

buttonC clicked

Close button clicked

Table 4.73

4.2.5.10 Listings

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1298 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 1 - The controlling class.

public class InnerClasses08 {

public static void main(String[] args){

new GUI();

}//end main

}//end class InnerClasses08

Table 4.74

Listing 2 - Beginning of the GUI class.

class GUI extends Frame{

public GUI(){//constructor

setLayout(new FlowLayout());

setSize(250,75);

setTitle("Copyright 2003 R.G.Baldwin");

Table 4.75

Listing 3 - Beginning of the BaldButton class.

class BaldButton extends Button{

BaldButton(String text){//constructor

enableEvents(AWTEvent.MOUSE_EVENT_MASK);

setLabel(text);

System.out.println("Local class name: " +

getClass().getName());

}//end constructor

Table 4.76

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1299

Listing 4 - The processMouseEvent method.

public void processMouseEvent(MouseEvent e){

if (e.getID() == MouseEvent.MOUSE_CLICKED){

System.out.println("buttonA clicked");

}//end if

//The following is required of overridden

// processMouseEvent method.

super.processMouseEvent(e);

}//end processMouseEvent

}//end class BaldButton

//Add button to Frame

add(new BaldButton("A"));

Table 4.77

Listing 5 - Beginning of anonymous inner class.

add(new Button("B")

{//Begin class definition

{//Instance initializer

enableEvents(

AWTEvent.MOUSE_EVENT_MASK);

System.out.println(

"Anonymous class B name: " +

getClass().getName());

}//end instance initializer

Table 4.78

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1300 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 6 - Overridden processMouseEvent method.

public void processMouseEvent(

MouseEvent e){

if (e.getID() ==

MouseEvent.MOUSE_CLICKED){

System.out.println("buttonB clicked");

}//end if

//Required of overridden

// processMouseEvent method.

super.processMouseEvent(e);

}//end processMouseEvent

}//end class definition

);//end add method call

Table 4.79

Listing 7 - Register a MouseListener object.

Button buttonC = new Button("C");

buttonC.addMouseListener(new MouseListener()

{//begin class definition

//Instance initializer

{System.out.println(

"Anonymous class C name: " +

getClass().getName());}

Table 4.80

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1301

Listing 8 - Implementing the interface.

public void mouseClicked(MouseEvent e){

System.out.println("buttonC clicked");

}//end mouseClicked

//All interface methods must be defined

public void mousePressed(MouseEvent e){}

public void mouseReleased(MouseEvent e){}

public void mouseEntered(MouseEvent e){}

public void mouseExited(MouseEvent e){}

}//end class definition

);//end addMouseListener call

add(buttonC);//add button to frame

Table 4.81

Listing 9 - Registering a WindowListener on the Frame .

addWindowListener(new WindowAdapter()

{//begin class definition

//Instance initializer

{System.out.println(

"Anonymous window listener class " +

"name: " + getClass().getName());}

public void windowClosing(WindowEvent e){

System.out.println(

"Close button clicked");

System.exit(0);

}//end windowClosing

}//end class definition

);//end addWindowListener

setVisible(true);

}//end constructor

}//end GUI class

Table 4.82

Listing 10 - Complete program listing.

/*File InnerClasses08.java

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1302 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Copyright 2003 R.G.Baldwin

This program is designed to illustrate the use

of local classes, and anonymous classes. It

illustrates three different implementations of

anonymous classes. It also illustrates the use

of instance initializers as an alternative to

constructors.

Illustrates use of local class to instantiate

object to handle mouse clicked event with

low-level event handling. This class uses

constructor to enable mouse events on a new

extended Button class. Also uses constructor

to display the class file name.

Illustrates use of anonymous class to instantiate

object to handle mouse clicked event with

low-level event handling. This class uses an

instance initializer to enable mouse events on a

new extended Button class. Also uses instance

initializer to display name of class file.

Illustrates use of anonymous class, which

implements MouseListener interface, to

instantiate object to handle mouse clicked event

using source-listener event model. Uses instance

initializer to display name of class file.

Illustrates use of anonymous class, which extends

WindowAdapter class, to instantiate object to

handle window events fired by the close button in

the upper-right corner of a Frame object, using

source-listener event model. Uses instance

initializer to display name of class file.

This program produces the following class files

when compiled:

GUI1BaldButton.class

GUI$1.class

GUI$2.class

GUI$3.class

GUI.class

InnerClasses08.class

The program produces the following output when

the program is started, each button is clicked

once in succession, and then the close button

in the upper-right corner of the Frame is

clicked:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1303

Local class name: GUI1BaldButton

Anonymous class B name: GUI$1

Anonymous class C name: GUI$2

Anonymous window listener class name: GUI$3

buttonA clicked

buttonB clicked

buttonC clicked

Close button clicked

Tested using JDK 1.4.1 under Win

**/

import java.awt.*;

import java.awt.event.*;

public class InnerClasses08 {

public static void main(String[] args){

new GUI();

}//end main

}//end class InnerClasses08

//===//

class GUI extends Frame{

public GUI(){//constructor

setLayout(new FlowLayout());

setSize(250,75);

setTitle("Copyright 2003 R.G.Baldwin");

//Local class w/mouse events enabled. The new

// class extends Button, and uses low-level

// event handling to handle mouse clicked

// events on the button.

class BaldButton extends Button{

BaldButton(String text){//constructor

enableEvents(AWTEvent.MOUSE_EVENT_MASK);

setLabel(text);

//Display the name of the class file

System.out.println("Local class name: " +

getClass().getName());

}//end constructor

//This is the event handling method.

public void processMouseEvent(

MouseEvent e){

if (e.getID() ==

MouseEvent.MOUSE_CLICKED){

System.out.println("buttonA clicked");

}//end if

//The following is required of overridden

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1304 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

// processMouseEvent method.

super.processMouseEvent(e);

}//end processMouseEvent

}//end class BaldButton

//Add button to Frame

add(new BaldButton("A"));

//This code defines an anonymous Inner Class

// w/mouse events enabled. The new class

// extends Button. This class uses low-level

// event handling to handle mouse clicked

// events on the button. This is an

// anonymous alternative to the local class

// defined above.

add(new Button("B")

{//Begin class definition

{//Instance initializer

enableEvents(

AWTEvent.MOUSE_EVENT_MASK);

System.out.println(

"Anonymous class B name: " +

getClass().getName());

}//end instance initializer

//Override the inherited

// processMouseEvent method.

public void processMouseEvent(

MouseEvent e){

if (e.getID() ==

MouseEvent.MOUSE_CLICKED){

System.out.println(

"buttonB clicked");

}//end if

//Required of overridden

// processMouseEvent method.

super.processMouseEvent(e);

}//end processMouseEvent

}//end class definition

);//end add method call

Button buttonC = new Button("C");

//Anonymous inner class that implements

// MouseListener interface

buttonC.addMouseListener(new MouseListener()

{//begin class definition

//Instance initializer

{System.out.println(

"Anonymous class C name: " +

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1305

getClass().getName());}

public void mouseClicked(MouseEvent e){

System.out.println("buttonC clicked");

}//end mouseClicked

//All interface methods must be defined

public void mousePressed(MouseEvent e){}

public void mouseReleased(MouseEvent e){}

public void mouseEntered(MouseEvent e){}

public void mouseExited(MouseEvent e){}

}//end class definition

);//end addMouseListener call

add(buttonC);//add button to frame

//Use an anonymous class to register a window

// listener on the Frame. This class extends

// WindowAdapter

addWindowListener(new WindowAdapter()

{//begin class definition

//Instance initializer

{System.out.println(

"Anonymous window listener class " +

"name: " + getClass().getName());}

public void windowClosing(WindowEvent e){

System.out.println(

"Close button clicked");

System.exit(0);

}//end windowClosing

}//end class definition

);//end addWindowListener

setVisible(true);

}//end constructor

}//end GUI class

//===//

-end-

4.2.6 Java1642 The Essence of OOP using Java, Nested Top-Level Classes
54

Revised: Wed May 11 16:20:00 CDT 2016
This page is included in the following Books:

54This content is available online at <http://cnx.org/content/m59576/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1306 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

• ITSE2317 - Java Programming (Intermediate) 55

• Object-Oriented Programming (OOP) with Java 56

4.2.6.1 Table of contents

• Preface (p. 1311)
• Tutorial and code links (p. 1311)
• Miscellaneous (p. 1311)

4.2.6.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 57 .

In the meantime, this is one of the pages in a book titled ITSE2317 - Java Programming (Intermediate)
58 that presents PDF versions of the original tutorials to make them readily available for Connexions users.
When I have time available, I plan to update this tutorial and to re-publish it as a standard page at cnx.org
59 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 60 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 61 . If not, you
can probably use a Google Advanced Search 62 to �nd a copy somewhere on the web.

4.2.6.3 Tutorial and code links

Click here 63 to download and view the PDF version of this page.
The representation of program code in PDF documents is often very unreliable. Click here 64 to download

a zip �le containing a clean copy of the program code discussed in this tutorial.

4.2.6.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java1642 The Essence of OOP using Java, Nested Top-Level Classes
• File: Java1642.cnx.htm
• Published: 01/13/16

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1311) .

55http://cnx.org/contents/Rl23r3Lw
56http://cnx.org/contents/-2RmHFs_
57http://cnx.org/
58http://cnx.org/contents/Rl23r3Lw
59http://cnx.org/
60http://cnx.org/
61http://cnx.org/
62https://www.google.com/advanced_search
63http://cnx.org/content/m59576/latest/Java1642.pdf
64http://cnx.org/content/m59576/latest/code.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1307

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 65 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.3 Generics

4.3.1 Java4210: Getting Started with Generics
66

Revised: Wed May 11 17:07:35 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 67

• Object-Oriented Programming (OOP) with Java 68

4.3.1.1 Table of Contents

• Table of Contents (p. 1312)
• Preface (p. 1313)

· Viewing tip (p. 1313)

* Figures (p. 1313)
* Listings (p. 1313)

• General background information (p. 1314)
• Preview (p. 1316)
• Discussion and sample code (p. 1316)

· Collection behavior prior to Java version 1.5 (p. 1316)
· An incorrect cast in code that doesn't use generics (p. 1318)
· Dealing with angle brackets in cnxml body text (p. 1319)
· Avoiding the requirement to cast through the use of generics (p. 1320)
· Compile-time type safety provided by the use of generics (p. 1322)
· Generic iterator syntax and the enhanced for loop (p. 1322)

• Run the programs (p. 1325)
• Summary (p. 1325)
• What's next? (p. 1326)
• Miscellaneous (p. 1326)
• Complete program listings (p. 1327)

65http://cnx.org/
66This content is available online at <http://cnx.org/content/m47554/1.5/>.
67http://cnx.org/contents/Rl23r3Lw
68http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1308 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.3.1.2 Preface

This module is one in a collection of modules on Java Generics designed for teaching ITSE2317 - Java
Programming (Intermediate) at Austin Community College in Austin, TX.

Many new features in Java version 1.5
When Java version 1.5 was released, it contained many new language features, including:

• Generics
• Enhanced for Loop
• Autoboxing/Unboxing
• Typesafe Enums
• Varargs
• Static Import
• Metadata

In addition to the new language features, Java version 1.5 also contained other new features such as new
Look and Feel capabilities for Swing GUIs.

First in a series
This is the �rst module in a series of modules designed to teach you about Generics in Java version 1.5.

This module will teach you some of the rudimentary aspects of the generics capability . This module will
also teach you how to use the enhanced for loop with collections.

Future modules will teach you how to use other aspects of generics

4.3.1.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and the Listings while you are reading about them.

4.3.1.2.1.1 Figures

• Figure 1 (p. 1315) . Typical v1.5 compiler warning.
• Figure 2 (p. 1315) . Warning with -Xlint:unchecked.
• Figure 3 (p. 1319) . A ClassCastException.
• Figure 4 (p. 1322) . A compiler error.
• Figure 5 (p. 1324) . Iterator output.

4.3.1.2.1.2 Listings

• Listing 1 (p. 1323) . Beginning of the program named Generics05.
• Listing 2 (p. 1323) . Beginning of the runIt method.
• Listing 3 (p. 1324) . An iterator.
• Listing 4 (p. 1325) . Enhanced for loop.
• Listing 5 (p. 1327) . The program named Generics01.
• Listing 6 (p. 1328) . The program named Generics02.
• Listing 7 (p. 1329) . The program named Generics03.
• Listing 8 (p. 1330) . The program named Generics04.
• Listing 9 (p. 1331) . The program named Generics05.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1309

4.3.1.3 General background information

A new compiler warning
Have you recently tried to recompile a legacy program that has compiled and executed properly for many

years only to get a compiler message similar to that shown in Figure 1 (p. 1315) ?

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1310 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Figure 1 - Typical v1.5 compiler warning.

Note: Generics01.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

Table 4.83

If you followed up and recompiled as directed, you probably got a message from the compiler that looked
something like the one shown in Figure 2 (p. 1315) .

Figure 2 - Warning with -Xlint:unchecked.

Generics01.java:34: warning: [unchecked] unchecked call to add(E) as a member of

the raw type ArrayList

var1.add(new Date());

^

where E is a type-variable:

E extends Object declared in class ArrayList

1 warning

Table 4.84

If that has happened to you, you have had your �rst encounter with a new feature in Java version 1.5
known as generics.

What are generics?
Oracle has this to say about generics (boldface added for emphasis):

"This long-awaited enhancement to the type system allows a type or method to operate on objects
of various types while providing compile-time type safety . It adds compile-time type safety
to the Collections Framework and eliminates the drudgery of casting."

In addition to the Collections Framework, generics impacts several other areas of Java programming as well.
Generics are not particularly easy
Don't be lulled into a false sense of security by what you will �nd in this module. Although the intro-

ductory material presented in this module is rather straightforward, a full understanding of generics can be
fairly di�cult. The tentacles of generics reach into many di�erent areas of Java in very complex ways.

The truth of this is borne out by the fact that the excellent book entitled Java How to Program, Sixth
Edition (Deitel) 69 dedicates an entire chapter consisting of more than 30 pages to generics. Furthermore,
the chapter on generics doesn't even include many additional pages that the book dedicates to a discussion
of the impact of generics on the Java Collections Framework. The book covers several topics in the chapter
on generics, including the following:

• Generic methods
• Generic classes
• Raw types

69http://www.amazon.com/exec/obidos/ASIN/0131483986/qid=1110389658/sr=11-1/ref=sr_11_1/102-4105266-9447324

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1311

• Wildcards
• Generics and inheritance

The impact of generics on the Java Collections Framework is covered in a di�erent chapter. Hopefully, the
bene�ts provided by generics will outweigh the additional complexity. Only time will tell.

The Java Collections Framework
Even though the material that will be presented in this module will be relatively straightforward, you

will need to know something about the Java Collections Framework for it to make much sense. If you need
to learn more about the Java Collections Framework, see the modules beginning with Java4010: Getting
Started with Java Collections 70 at I TSE 2321 - Object-Oriented Programming (Java) 71 . Be aware,
however, that those modules were originally published long before generics existed in Java. If you compile
the programs in those modules using Java version 1.5 or a later version, you will get the warning messages
from the compiler shown in Figure 1 (p. 1315) .

4.3.1.4 Preview

I will present and explain several very simple programs in this module. Those programs are intended to
illustrate the following concepts:

• How the Java Collections Framework behaved prior to the release of Java version 1.5.
• The e�ect of an incorrect cast in code that doesn't use generics.
• Avoiding the requirement to cast through the use of generics. This program also includes an illustration

of some of the required syntax for generics.
• Compile-time type safety provided by the use of generics.
• Syntax requirements for the use of iterators with generics. This program also illustrates the use of the

enhanced for loop with collections, which is another new feature in Java version 1.5.

4.3.1.5 Discussion and sample code

Listings of the programs
Complete listings of all the programs discussed in this module are provided in Listing 5 (p. 1327) through

Listing 9 (p. 1331) near the end of the module.

4.3.1.5.1 Collection behavior prior to Java version 1.5

The main purpose of the program named Generics01 is to establish a baseline against which to compare
the other programs. A secondary purpose is to illustrate the warnings produced by the Java version 1.5 (or
later) compiler when the syntax of the source code doesn't take generics into account.

A complete listing of the program named Generics01 is shown in Listing 5 (p. 1327) near the end of
the module.

As you will see later, this program was written using the program syntax and style that was common
prior to the release of Java version 1.5. In particular, this program does not include the syntax necessary to
take generics into account.

Notes at compile time
When this program is compiled using the Java version 1.5 or later compiler, the text shown in Figure 1

(p. 1315) appears on the screen.
Note that the text in Figure 1 (p. 1315) is not identi�ed as either an error or a warning. Rather, the text

is identi�ed simply as notes. These notes provide instructions on how to recompile and get more information
regarding a potential problem.

Recompiling with the Xlint switch

70http://cnx.org/contents/dzOvxPFw:BaPSYll8
71http://cnx.org/contents/dzOvxPFw

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1312 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

When the program is recompiled using the Xlint switch shown in Figure 1 (p. 1315) , the compiler
produces the text shown in Figure 2 (p. 1315) . Note that this text is identi�ed as a warning.

(Later when we examine the code from the program named Generics01 , you can compare it
with this text to see just what the compiler is complaining about.)

Get used to it
The text in Figure 1 (p. 1315) and Figure 2 (p. 1315) is similar to what you can expect to see any time

that you use the Java version 1.5 or later compiler to compile a program that includes the Java Collections
Framework and doesn't use the required syntax to take generics into account. This probably includes many
of the programs that you wrote, compiled, and executed successfully prior to the release of Java version 1.5.

The program code
The code for the program named Generics01 is shown in its entirety in Listing 5 (p. 1327) .
The main method
As you can see in Listing 5 (p. 1327) , the main method instantiates a new object of the class named

Generics01 , and calls the method named runIt on that object. It is the behavior of the runIt method
that interests us. More particularly, it is the expression contained in the argument list for the println
method that interests us the most.

A baseline program
As mentioned earlier, the main purpose of this program is to establish a baseline against which we can

compare the other programs to be discussed later. This program was written exactly as it would have been
written prior to the release of generics in Java version 1.5.

An ArrayList object
The program declares and initializes an instance variable named var1 with a reference to an object

instantiated from the class named ArrayList . ArrayList is one of the concrete implementations of
the interfaces provided in the Java Collections Framework. Brie�y, an object of the ArrayList class is an
object that implements the List interface, providing a convenient place to store references to other objects.

One of the methods of an ArrayList object is the method named add . This method is used to add
new elements to the end of the list.

Adding a Date object's reference to the list
Listing 5 (p. 1327) calls the add method to add a new Date object's reference to the list.

(This is the method call that the compiler was complaining about in the warning in Figure 2 (p.
1315) .)

When an object's reference is added to an ArrayList object (without the use of generic syntax), that
reference is automatically converted to and stored as type Object .

(As you will see later, that is probably also true even with the use of generic syntax. I will have
more to say about this later.)

What can you do with a reference of type Object?
I often tell my students that there are only twelve things that you can do with an object's reference that

has been converted to type Object . The �rst eleven of those twelve things is to call any one of the eleven
methods that are de�ned in the Object class and inherited into all subclasses of Object . The twelfth
thing is to attempt to cast the reference to some other type in an attempt to call some other method on the
reference after casting.

Invoking getTime on the reference
The objective of the code in this program is to call the method named getTime on the Date object's

reference. The getTime method is not one of the eleven methods that are de�ned in the Object class.
Rather, the getTime method is de�ned in the Date class.

Change the type of the reference

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1313

Therefore, in order to call the getTime method on the reference after it is retrieved from the ArrayList
object, the type of the reference must be converted from type Object to type Date . This is accomplished
by the cast operation in the expression contained in the argument list for the println method in Listing
5 (p. 1327) .

That expression calls the get method on the reference to the ArrayList object to retrieve the element
stored at index 0 of the collection. The get method returns the reference as type Object (at least that
was true prior to the introduction of generics). Then the expression casts the reference to type Date ,
converting its type back to type Date .

Invoking the getTime method
Finally, the expression successfully calls the getTime method on the reference of type Date .
The program produces an output similar to that shown below:
1377991758665
This is the number of milliseconds since January 1, 1970, 00:00:00 GMT represented by the Date object.
Casting was a necessity prior to Java version 1.5
Prior to the release of Java version 1.5, it was always necessary to cast references retrieved from collection

objects in order to call any methods on them other than the eleven methods de�ned in the Object class.
Some authors refer to this casting requirement as "the drudgery of casting," and indicate that casting

may be eliminated through generics.

(In my opinion, from this viewpoint alone, the cure is worse than the disease. Casting syntax is
much simpler and more straightforward than generics syntax.)

May eliminate runtime errors and exceptions
However, it is possible for the programmer to perform an incorrect cast at this point in the program,

which will usually result in a ClassCastException being thrown at runtime.
The great promise of generics is that it can sometimes cause programming errors to be recognized at

compile time instead of encountering them at runtime.
Obviously, the best approach is to avoid writing programs containing programming errors in the �rst

place. However, if you are going to write programs containing errors, it is usually better to catch them
at compile time than to have them occur at runtime. This is the thing that may make the complexity of
generics worthwhile.

4.3.1.5.2 An incorrect cast in code that doesn't use generics

The program named Generics02 (shown later in Listing 6 (p. 1328)) illustrates the application of an
incorrect cast to an element that is retrieved from an ArrayList object, along with the runtime error that
is produced by that incorrect cast.

No compiler error
This program does not produce a compiler error.

(However, the Java version 1.5 compiler does produce a warning having to do with the failure to
apply the new generics syntax that was released in Java version 1.5. Note that earlier compilers
would not have produced such a warning.)

The point here is that the compiler does not check to con�rm that the correct cast is applied. This results
in a successful compilation, but the program throws an exception at runtime.

A ClassCastException
The runtime exception that is thrown by this program is shown in Figure 3 (p. 1319) . You can compare

the details of this exception with the program code later. The reference to line 46 in Figure 3 (p. 1319) is
a reference to the statement in Listing 6 (p. 1328) that attempts to cast the reference to type Date .
(That reference was originally a reference to an object of type String .)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1314 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Figure 3 - A ClassCastException.

Exception in thread "main" java.lang.ClassCastException:

java.lang.String cannot

be cast to java.util.Date

at Generics02.runIt(Generics02.java:46)

at Generics02.main(Generics02.java:53)

Table 4.85

The program code
The program is shown in its entirety in Listing 6 (p. 1328) . As before, the main method instantiates

an object of the Generics02 class and calls the runIt method on that object. Also as in the previous
program, this program instantiates a new ArrayList object and saves the object's reference in the instance
variable named var1 .

The runIt method
The runIt method begins by populating the ArrayList object with references to two di�erent objects

of di�erent types. One of the objects is type Date . The other object is type String .
A questionable programming style
While this is probably not a very good programming style, it is a style that was commonly used by Java

programmers prior to the advent of generics. It was common to populate collection objects with references
to a mixture of objects of di�erent types.

References are stored as type Object
As you already know, when these object's references are put into the collection, the types of all the

references are automatically converted to type Object . As you also already know, when the references
are retrieved from the collection, if the purpose is to call any method on a reference other than one of the
eleven methods de�ned in the Object class, it is necessary to cast the reference to a type that is consistent
with the method.

Casting errors are likely
This is a scenario where the programmer is likely to make a casting error when casting elements retrieved

from the collection. Unless the programmer uses the instanceof operator to determine the type of a
retrieved reference prior to performing the cast, the programmer is depending on his memory to know the
type of each reference in the population on the basis of the index of the element. If the programmer loses
track of the types of the di�erent references with respect to the element's indices, a casting error is a strong
possibility.

The error scenario
This is the error scenario depicted by the �rst call to the println method in Listing 6 (p. 1328) . In

this case, the element at index 0 is a reference to a Date object, and the element at index 1 is a reference
to a String object. However, the programmer mistakenly retrieves the element at index 1 and attempts to
cast it to type Date , which is the type of the reference at index 0. This results in the runtime exception
shown in Figure 3 (p. 1319) .

Of course, it has always been possible to use the instanceof operator to con�rm the type of a reference
before performing a cast as a way to avoid this type of programming error. Good programming practice
would dictate the use of that construct when working with references to objects of mixed types in a single
collection.

4.3.1.5.3 Dealing with angle brackets in cnxml body text

You are reading this module at cnx.org. Documents published at cnx.org are maintained in a special �avor
of xml know as cnxml. Without getting into the details, I will tell you that creating cnxml is not an easy

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1315

task. In order to avoid having to write these modules in raw cnxml code, I originally write them using a
WYSIWYG xhtml editor and then run the xhtml �les through a program of my own design that transforms
the xhtml document into cnxml.

Unfortunately, my transform program is incapable of handling angle brackets in the body text of the
document. Therefore, whenever the body text in this document needs a left angle bracket, I will indicate
the existence of a left or right angle bracket using a text description of the angle bracket. The code in the
listings, however, will show the left and right angle brackets intact as required.

4.3.1.5.4 Avoiding the requirement to cast through the use of generics

The program named Generics03 shown in Listing 7 (p. 1329) illustrates how generics can be used to
avoid the requirement to cast references when they are retrieved from a collection.

(While casting is not di�cult, avoiding the requirement to cast can also avoid the possibility of
casting incorrectly.)

As in the previous programs, the main method in this program instantiates an object of the class named
Generics03 and calls the method named runIt on the object.

Instantiate an ArrayList object
Also, as in the previous programs, this program declares an instance variable named var1 and initializes

that variable with a reference to a new object of type ArrayList . However, the syntax that is used for this
purpose in this program is signi�cantly di�erent from the syntax used for the same purpose in the previous
two programs.

(Note the code in Listing 7 (p. 1329) that shows the type Date enclosed in matching angle
brackets. This is the primary syntax change required to use generics.)

What does this syntax mean?
One way to think of this syntax is that the expression on the right of the assignment operator instantiates

a new ArrayList object that is capable of containing only references to objects of type Date .

(Those references are probably still stored as type Object . We will see how this apparent
discrepancy is reconciled later through automatic casting.)

Similarly, the expression on the left of the assignment operator is the declaration of an instance variable
capable of holding a reference to an ArrayList object, which in turn is capable of containing only references
to objects of type Date .

Must qualify both expressions
Additional changes to generics were made in the release of Java version 1.7. Prior to the release of Java

version 1.7, it was necessary to qualify the expressions on both sides of the assignment operator by use of
the angle-bracket syntax. If the quali�er was included in the expression on the right, but was omitted from
the variable declaration on the left, the compilation would fail later. That is still true following the release
of Java version 1.7.

If the angle-bracket quali�er was included with the variable declaration on the left and omitted from the
instantiation of the new object on the right, the program would compile and run successfully. However, the
compiler would issue an unchecked conversion warning indicating the possibility of a runtime error under
certain conditions.

Following the release of Java version 1.7, it is not necessary to qualify the expression on the right side of
the assignment operator. You will learn more about this in a future module.

What does Oracle have to say?
According to Oracle (boldface added for emphasis),

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1316 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

"Generics provides a way for you to communicate the type of a collection to the compiler, so that
it can be checked. Once the compiler knows the element type of the collection, the compiler can
check that you have used the collection consistently and can insert the correct casts on values
being taken out of the collection."

Note the boldface text in the above quotation indicating that the compiler modi�es your code by inserting
casts where appropriate.

Compile-time type safety
In discussing code similar to the code in Listing 7 (p. 1329) , Oracle states,

"... so the compiler can verify at compile time that the type constraints are not violated at run
time. Because the program compiles without warnings, we can state with certainty that it will not
throw a ClassCastException at run time. The net e�ect of using generics, especially in large
programs, is improved readability and robustness."

In order to achieve compile-time type safety, it is necessary that the program compiles without warnings.
Otherwise, the program may execute, but may throw a ClassCastException at runtime.

More on generics with collections
In further explaining generics as used with collections, Oracle goes on to say (boldface added for em-

phasis):

"... when we declare c to be of type Collection (String in angle brackets), this tells us something
about the variable c that holds true wherever and whenever it is used, and the compiler guarantees
it (assuming the program compiles without warnings). A cast, on the other hand, tells us
something the programmer thinks is true at a single point in the code, and the VM checks whether
the programmer is right only at run time."

The bottom line
The bottom line on generics (when used with collections) seems to be that references to objects are

still stored in the collection as type Object . However, when we notify the compiler of the type of data
to be stored in the collection using angle-bracket syntax, and the program compiles without warnings, the
compiler will do at least the following:

• Ensure that only references to objects of the speci�ed type are stored in the collection, and used
consistently throughout the program, thus eliminating the possibility of a ClassCastException at
runtime.

• Automatically cast the reference to the speci�ed type when it is later retrieved by program code.

No explicit cast is required
That brings us back to a discussion of the code in Listing 7 (p. 1329) . Note that unlike the code in

Listing 5 (p. 1327) , the print statement in Listing 7 (p. 1329) does not contain an explicit cast to type
Date , (at least not in the code that I wrote).

As described above, having been noti�ed that the collection can contain only references to objects of
type Date , the compiler automatically inserted a cast to type Date at the appropriate place in the
code, thereby guaranteeing that the reference is converted from type Object to type Date before the
getTime method is called on the reference.

There is still a cast involved. However, the cast is automatically inserted by the compiler. This eliminates
the requirement for me (the programmer) to insert the cast, and also eliminates the possibility of me
inserting an incorrect cast.

Once again, all of this assumes that the program compiles without warnings.
Program output
The program in Listing 7 (p. 1329) compiles and executes correctly, producing the following output for

one particular run.
1377995720768

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1317

4.3.1.5.5 Compile-time type safety provided by the use of generics

The program named Generics04 shown in Listing 8 (p. 1330) illustrates the ability of generics to prevent
the storing of the wrong type of references in a collection. This in turn can prevent runtime errors.

A new ArrayList object
Listing 8 (p. 1330) instantiates a new object of type ArrayList capable of storing only references to

objects of type Date . This object's reference is stored in the instance variable named var1 .
Other types cannot be stored in the collection
Once the ArrayList has been constrained to contain only references to objects of type Date , the

compiler will not allow a reference to an object of any other type (other than types that are assignment
compatible with Date , such as subclasses of Date) to be stored in the collection.

A compiler error rather than a runtime error
The �rst statement in the runIt method in Listing 8 (p. 1330) attempts to add a new element to the

ArrayList object. The new element is a reference to a literal String object that encapsulates the string
"abcd". This results in the compiler error shown in Figure 4 (p. 1322) .

Figure 4 - A compiler error.

Generics04.java:34: error: no suitable method found for add(String)

var1.add("abcd");

^

method ArrayList.add(int,Date) is not applicable

(actual and formal argument lists differ in length)

method ArrayList.add(Date) is not applicable

(actual argument String cannot be converted to Date by method invocation

conversion)

1 error

Table 4.86

Without the use of generics, a reference to an object of any type could be added to the collection. This
could result in a runtime error later if the programmer expected an object of type Date when in fact the
object is of type String . If you are going to write programs containing errors, compiler errors are almost
always preferable to runtime errors.

4.3.1.5.6 Generic iterator syntax and the enhanced for loop

Iterators
Listing 7 (p. 1329) and Listing 8 (p. 1330) showed the syntax that you must use to cause a collection

object to be treated as a generic collection. You must also use a special syntax when working with generic
iterators and the Java Collections Framework.

The enhanced for loop
Another new feature of Java version 1.5, referred to by Oracle as an enhanced for loop, can be used

in certain situations to provide most of the bene�ts of an iterator with a somewhat simpler syntax.

(The enhanced for loop is also sometimes referred to as a for-each loop.)

The program named Generics05 , which begins in Listing 1 (p. 1323) , illustrates both of these concepts.
A complete listing of the program is provided in Listing 9 (p. 1331) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1318 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 1 - Beginning of the program named Generics05.

import java.util.*;

public class Generics05{

//Create an ArrayList object suitable for

// storing references to Date objects.

ArrayList <Date> var1 = new ArrayList<Date>();

Table 4.87

The main method
As in the previous programs, the main method instantiates an object of the Generics05 class and

calls the runIt method on that object. You can view the main method in Listing 9 (p. 1331) near the
end of the module.

Instantiate a generic ArrayList object
This program is a little longer than the previous programs, so I will break it down and explain it in

fragments.
Listing 1 (p. 1323) shows the beginning of the Generics05 class. The code in Listing 1 (p. 1323)

instantiates a new ArrayList object capable of storing references to objects of type Date only. The
code in Listing 1 (p. 1323) also saves that object's reference in a generic instance variable named var1 .
This is the same syntax that you have seen in previous listings.

Populate the collection
Listing 2 (p. 1323) shows the beginning of the runIt method. This code populates the ArrayList

object with references to three Date objects. The �rst object encapsulates the current date and time. The
second object encapsulates the date and time one day later than the �rst. The third object encapsulates the
date and time two days later than the �rst object.

Listing 2 - Beginning of the runIt method.

void runIt(){

//Get current date and time in milliseconds.

long now = new Date().getTime();

//Get length of one day in milliseconds

long oneDay = 24 * 60 * 60 * 1000;

//Populate the ArrayList object

var1.add(new Date(now));

var1.add(new Date(now + oneDay));

var1.add(new Date(now + 2 * oneDay));

Table 4.88

The code in Listing 2 (p. 1323) is straightforward and shouldn't require further explanation.
Get and use an iterator
An iterator is an object instantiated from a specially designed class that implements the Iterator

interface. The design of the class makes it possible for client code to gain sequential access to each element

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1319

encapsulated in an associated collection object without a requirement to know anything about how the
collection is structured.

Required syntax
The �rst statement in Listing 3 (p. 1324) shows the syntax required to get and save a reference to a

generic iterator for the ArrayList object instantiated earlier in Listing 1 (p. 1323) .

Listing 3 - An iterator.

//Get an iterator

Iterator <Date> iter = var1.iterator();

//Perform the iteration

while(iter.hasNext()){

System.out.println(iter.next().getTime());

}//end while loop

System.out.println();//blank line

Table 4.89

Note the requirement to qualify the declaration of the local variable named iter with the type of data
stored in the collection using angle-bracket notation similar to that used earlier.. You might think of this as
a variable capable of holding a reference to an iterator object, which is capable of iterating on an ArrayList
object, which in turn is capable of storing references to objects of type Date only.

Perform the iteration
The remaining code in Listing 3 (p. 1324) uses the iterator to sequentially access and display information

encapsulated in each of the three Date objects whose references are stored in the ArrayList object. This
is standard code for the use of an iterator and should not require further explanation. This code produces
the �rst three lines of text (plus the blank line) shown in Figure 5 (p. 1324) .

Figure 5 - Iterator output.

1378070280877

1378156680877

1378243080877

1378070280877

1378156680877

1378243080877

Table 4.90

The program output
The output produced by this program depends on when you run it. The output produced for one

particular run is shown in Figure 5 (p. 1324) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1320 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

The output will be di�erent each time you run the program depending on the current date and time.
The enhanced for loop
The code in Listing 4 (p. 1325) performs the same iteration using the new enhanced for loop that was

released in Java version 1.5.

Listing 4 - Enhanced for loop.

//Now perform the same iteration using

// the new for-each construct.

for(Date element : var1){

System.out.println(element.getTime());

}//end for-each

}//end runIt

Table 4.91

You might think of this syntax as meaning:

For each element of type Date contained in the collection referred to by var1 , get the value of
the element and save it in the variable named element . Then use the contents of that variable
to perform the operations speci�ed within the body of the loop.

More compact syntax
As you can see, this approach does not require you to get an iterator and to explicitly use that iterator

to sequentially access the elements in the collection. Thus, the syntax is more compact than the syntax
shown in Listing 3 (p. 1324) . Further, by eliminating the requirement to get the iterator, this construct also
eliminates the requirement for you to qualify the code using the angle-bracket syntax. All of those details
are handled automatically behind the scenes.

Not quite as powerful as an iterator
Although not shown in Listing 3 (p. 1324) , the use of an iterator allows you to remove the most recently

accessed element from a collection. As near as I can tell, the enhanced for loop does not provide that
capability. Therefore, the enhanced for loop is not quite as powerful as an iterator. However, if you don't
need to remove elements from the collection, the enhanced for loop appears to be a good and somewhat
simpler alternative to an iterator.

The output
The code in Listing 4 (p. 1325) produced the last three lines of text in the output shown in Figure 5 (p.

1324) . Obviously the last three lines match the �rst three lines since they simply represent di�erent ways
to produce a text representation of the same three Date objects.

4.3.1.6 Run the programs

I encourage you to copy the code from Listing 5 (p. 1327) through Listing 9 (p. 1331) Compile the code and
execute it. Experiment with the code, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

4.3.1.7 Summary

In this module, I explained:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1321

• How the Java Collections Framework behaved prior to the release of Java version 1.5.
• The e�ect of an incorrect cast in code that doesn't use generics.
• How to avoid the requirement to cast through the use of generics, including an illustration of some of

the required syntax for generics.
• The compile-time type safety provided by the use of generics.
• The syntax requirements for the use of iterators with generics.
• The use of the enhanced for loop with collections.

4.3.1.8 What's next?

Future modules in this series will be based on the Generics (Updated) 72 section of The Java Tutorials 73

from Oracle. (In the event that these links become broken, you should have no di�culty �nding the Oracle
material with an online search.)

Those modules will teach you about other aspects of generics including:

• Generic methods
• Generic classes
• Raw types in generics
• Wildcards and bounded wildcards in generics
• The impact of inheritance on generics

4.3.1.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Getting Started with Generics
• File: Java4210.htm
• Published: 09/01/2013

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

72http://docs.oracle.com/javase/tutorial/java/generics/
73http://docs.oracle.com/javase/tutorial/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1322 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.3.1.10 Complete program listings

Complete listings of the programs discussed in this module are provided below.

Listing 5 - The program named Generics01.

/*File Generics01.java

Copyright 2005, R.G.Baldwin

Illustrates requirement to cast without the use

of generics.

V1.5 compiler produces following warning:

Note: Generics01.java uses unchecked or unsafe

operations.

Note: Recompile with -Xlint:unchecked for

details.

Recompilation with -Xlint:unchecked produces

the following output:

Generics01.java:34: warning: [unchecked] unchecked

call to add(E) as a member of

the raw type ArrayList

var1.add(new Date());

^

where E is a type-variable:

E extends Object declared in class ArrayList

1 warning

Tested using JDK 1.7 under Win 7.

**/

import java.util.*;

public class Generics01{

ArrayList var1 = new ArrayList();

void runIt(){

var1.add(new Date());

//Note the required cast in the following

// statement.

System.out.println(

((Date)var1.get(0)).getTime());

}//runIt

public static void main(String[] args){

new Generics01().runIt();

}//end main

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1323

}//end class Generics01

//===//

Listing 6 - The program named Generics02.

/*File Generics02.java

Copyright 2005, R.G.Baldwin

Illustrates the application of an incorrect cast

to an element that is fetched from an ArrayList

object and the runtime error produced by that

incorrect cast.

This program does not produce a compiler error,

although the v1.5 compiler does produce a

general warning having to do with the failure

to apply the new generics syntax released in

v1.5. (Earlier compilers would not have produced

such a warning.)

However, the compiler does not check to confirm

that the correct cast is applied. This results

in the following runtime error when an incorrect

cast is applied:

Exception in thread "main" java.lang.ClassCastException: java.lang.String cannot

be cast to java.util.Date

at Generics02.runIt(Generics02.java:46)

at Generics02.main(Generics02.java:53)

Tested using JDK 1.7 under Win 7.

**/

import java.util.*;

public class Generics02{

ArrayList var1 = new ArrayList();

void runIt(){

var1.add(new Date());

var1.add("abcd");

//Note that the (Date) cast is applied to

// an element of type String in the following

// statement, producing a runtime error. The

// problem is that the wrong index was used

// in fetching the element. Thus, the wrong

// element was fetched.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1324 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

System.out.println(

((Date)var1.get(1)).getTime());

System.out.println(

((String)var1.get(1)).length());

}//end runIt

public static void main(String[] args){

new Generics02().runIt();

}//end main

}//end class Generics02

//===//

Listing 7 - The program named Generics03.

/*File Generics03.java

Copyright 2005, R.G.Baldwin

Illustrates use of generics to avoid requirement

to cast. Requires v1.5 or later.

Program output for one run was:

1377995720768

Tested using JDK 1.7 under Win 7.

**/

import java.util.*;

public class Generics03{

ArrayList <Date> var1 = new ArrayList<Date>();

void runIt(){

var1.add(new Date());

//Note that no cast is required in the

// following statement.

System.out.println(var1.get(0).getTime());

}//end runIt

public static void main(String[] args){

new Generics03().runIt();

}//end main

}//end class Generics03

//===//

Table 4.92

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1325

Listing 8 - The program named Generics04.

/*File Generics04.java

Copyright 2005, R.G.Baldwin

Illustrates ability of generics to prevent

storing of wrong type in a collection.

Requires v1.5 or later.

Compilation produces following error message:

Generics04.java:34: error: no suitable method

found for add(String)

var1.add("abcd");

^

method ArrayList.add(int,Date) is not

applicable (actual and formal argument lists

differ in length)

method ArrayList.add(Date) is not applicable

(actual argument String cannot be converted

to Date by method invocation conversion)

1 error

Once the ArrayList has been declared to be of

type Date, it is not possible to add an element

of type String. An attempt to do so produces

a compiler error.

Tested using JDK 1.7 under Win 7.

**/

import java.util.*;

public class Generics04{

ArrayList <Date> var1 = new ArrayList<Date>();

void runIt(){

var1.add("abcd");

System.out.println(var1.get(0).getTime());

}//end runIt

public static void main(String[] args){

new Generics04().runIt();

}//end main

}//end class Generics04

//===//

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1326 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Table 4.93

Listing 9 - The program named Generics05.

/*File Generics05.java

Copyright 2005, R.G.Baldwin

Illustrates required syntax for using an iterator

with generics. Also illustrates the new for-each

construct in Java 5.0

Output for one particular run is shown below.

1378070280877

1378156680877

1378243080877

1378070280877

1378156680877

1378243080877

Output will be different each time the program

is run depending on the current date and time.

Tested using JDK 1.7 under Win 7.

**/

import java.util.*;

public class Generics05{

//Create an ArrayList object suitable for

// storing references to Date objects.

ArrayList <Date> var1 = new ArrayList<Date>();

void runIt(){

//Get current date and time in milliseconds.

long now = new Date().getTime();

//Get length of one day in milliseconds

long oneDay = 24 * 60 * 60 * 1000;

//Populate the ArrayList object

var1.add(new Date(now));

var1.add(new Date(now + oneDay));

var1.add(new Date(now + 2 * oneDay));

//Get an iterator

Iterator <Date> iter = var1.iterator();

//Perform the iteration

while(iter.hasNext()){

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1327

System.out.println(iter.next().getTime());

}//end while loop

System.out.println();//blank line

//Now perform the same iteration using

// the new for-each construct.

for(Date element : var1){

System.out.println(element.getTime());

}//end for-each

}//end runIt

public static void main(String[] args){

new Generics05().runIt();

}//end main

}//end class Generics05

//===//

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1328 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.3.2 Java4210r: Review of Getting Started
74

Revised: Wed May 11 17:31:29 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 75

• Object-Oriented Programming (OOP) with Java 76

4.3.2.1 Table of Contents

• Table of Contents (p. 1333)
• Preface (p. 1334)
• Questions (p. 1334)

· Question 1 (p. 1334)
· Question 2 (p. 1334)
· Question 3 (p. 1335)
· Question 4 (p. 1335)
· Question 5 (p. 1335)
· Question 6 (p. 1336)
· Question 7 (p. 1336)
· Question 8 (p. 1337)
· Question 9 (p. 1337)
· Question 10 (p. 1338)
· Question 11 (p. 1339)
· Question 12 (p. 1340)
· Question 13 (p. 1340)

• Figures (p. 1342)
• Listings (p. 1342)
• Answers (p. 1344)

· Answer 13 (p. 1344)
· Answer 12 (p. 1345)
· Answer 11 (p. 1345)
· Answer 10 (p. 1345)
· Answer 9 (p. 1346)
· Answer 8 (p. 1347)
· Answer 7 (p. 1348)
· Answer 6 (p. 1348)
· Answer 5 (p. 1348)
· Answer 4 (p. 1349)
· Answer 3 (p. 1349)
· Answer 2 (p. 1349)
· Answer 1 (p. 1349)

• Miscellaneous (p. 1349)

74This content is available online at <http://cnx.org/content/m47555/1.8/>.
75http://cnx.org/contents/Rl23r3Lw
76http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1329

4.3.2.2 Preface

This module contains review questions and answers keyed to the module titled Java4210: Getting Started
with Generics 77 .

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

4.3.2.3 Questions

4.3.2.3.1 Question 1 .

True or False: When Java version 1.5 was released, it contained many new language features, including:

• Generics
• Enhanced for Loop
• Autoboxing/Unboxing
• Collections
• Typesafe Enums
• Varargs
• Static Import
• Metadata

Answer 1 (p. 1349)

4.3.2.3.2 Question 2

True or False: Using Java version1.7, the code shown in Listing 1 (p. 1335) will compile without warnings,
errors, or other messages being generated by the compiler.

77http://cnx.org/contents/Rl23r3Lw:Ss0r2-1m

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1330 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 1 - Question 2

/*File Q02.java

**/

import java.util.*;

public class Q02{

ArrayList var1 = new ArrayList();

void runIt(){

var1.add(new Date());

//Note the required cast in the following

// statement.

System.out.println(

((Date)var1.get(0)).getTime());

}//runIt

public static void main(String[] args){

new Q02().runIt();

}//end main

}//end class Q02

//===//

Table 4.94

Answer 2 (p. 1349)

4.3.2.3.3 Question 3

Generics was introduced in Java v1.5 to provide which of the following:

• A. Code simplicity
• B. Compile-time type safety
• C. A clear and straightforward code syntax.
• D. None of the above.

Answer 3 (p. 1349)

4.3.2.3.4 Question 4

True or False: The use of generics is limited to the Java Collections framework.
Answer 4 (p. 1349)

4.3.2.3.5 Question 5

True or False: The Java v1.7 compiler produces an error message when an attempt is made to compile the
code shown in Listing 1 (p. 1335) .

Answer 5 (p. 1348)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1331

4.3.2.3.6 Question 6

True or False: When the code in Listing 1 (p. 1335) is compiled using the -Xlint:unchecked switch with
Java v1.7, the compiler produces:

• A. An error message
• B. A warning
• C. None of the above

Answer 6 (p. 1348)

4.3.2.3.7 Question 7

True or False: The program code shown in Listing 2 (p. 1336) will compile and execute successfully to
produce an output similar to that shown in Figure 1 (p. 1336) .

Listing 2 - Question 7.

/*File Q07.java

**/

import java.util.*;

public class Q07{

ArrayList var1 = new ArrayList();

void runIt(){

var1.add(new Date());

System.out.println(

(var1.get(0)).getTime());

}//runIt

public static void main(String[] args){

new Q07().runIt();

}//end main

}//end class Q07

//===//

Table 4.95

Figure 1 - Question 7.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1332 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

1378054267172

Table 4.96

Answer 7 (p. 1348)

4.3.2.3.8 Question 8

What modi�cation must be made to the code shown in Listing 2 (p. 1336) to cause it to compile and execute
successfully?

Answer 8 (p. 1347)

4.3.2.3.9 Question 9

True or False: The program code shown in Listing 3 (p. 1337) will compile and execute successfully to
produce an output similar to that shown in Figure 2 (p. 1338) .

Listing 3 - Question 9.

/*File Q09.java

**/

import java.util.*;

public class Q09{

ArrayList var1 = new ArrayList();

void runIt(){

var1.add(new Date());

var1.add("abcd");

System.out.println(

((Date)var1.get(1)).getTime());

System.out.println(

((String)var1.get(1)).length());

}//end runIt

public static void main(String[] args){

new Q09().runIt();

}//end main

}//end class Q09

//===//

Table 4.97

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1333

Figure 2 - Question 9.

1378056276557

4

Table 4.98

Answer 9 (p. 1346)

4.3.2.3.10 Question 10

The code shown in Listing 4 (p. 1338) will not compile and run successfully. Without using a cast operator,
what changes can you make to the class named Q10 to cause the program to compile and run successfully
and to produce the current time in milliseconds?

Listing 4 - Question 10.

/*File Q10.java

**/

import java.util.*;

public class Q10{

ArrayList var1 = new ArrayList();

void runIt(){

var1.add(new Date());

//Note the required cast in the following

// statement.

System.out.println(

(var1.get(0)).getTime());

}//runIt

public static void main(String[] args){

new Q10().runIt();

}//end main

}//end class Q10

//===//

Table 4.99

Answer 10 (p. 1345)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1334 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.3.2.3.11 Question 11

True or False: Using Java v1.7, even with the empty angle brackets shown in the instantiation of the
ArrayList object in Listing 5 (p. 1339) , the program in Listing 5 (p. 1339) will compile and run successfully
with no notes, warnings, errors, or other complaints from the compiler. The program will produce an output
similar to that shown in Figure 3 (p. 1339) .

Listing 5 - Question 11.

/*File Q11.java

**/

import java.util.*;

public class Q11{

ArrayList <Date> var1 = new ArrayList<>();

void runIt(){

var1.add(new Date());

//Note the required cast in the following

// statement.

System.out.println(

(var1.get(0)).getTime());

}//runIt

public static void main(String[] args){

new Q11().runIt();

}//end main

}//end class Q11

//===//

Table 4.100

Figure 3 - Question 11.

1378059224125

Table 4.101

Answer 11 (p. 1345)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1335

4.3.2.3.12 Question 12

True or False: The program shown in Listing 6 (p. 1340) will compile and run successfully producing an
output similar to that shown in Figure 4 (p. 1340) .

Listing 6 - Question 12.

/*File Q12.java

**/

import java.util.*;

public class Q12{

ArrayList <Date> var1 = new ArrayList<Date>();

void runIt(){

var1.add("abcd");

System.out.println(var1.get(0).getTime());

}//end runIt

public static void main(String[] args){

new Q12().runIt();

}//end main

}//end class Q12

//===//

Table 4.102

Figure 4 - Question 12.

1378060513651

Table 4.103

Answer 12 (p. 1345)

4.3.2.3.13 Question 13

True or False: The code shown in Listing 7 (p. 1341) will compile and run successfully and produce the
output shown in Figure 5 (p. 1341) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1336 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 7 - Question 13.

/*File Q13.java

**/

import java.util.*;

public class Q13{

ArrayList <Integer> var1 = new ArrayList<Integer>();

void runIt(){

var1.add(new Integer(1));

var1.add(new Integer(2));

var1.add(new Integer(3));

//Get an iterator

Iterator iter = var1.iterator();

//Perform the iteration

while(iter.hasNext()){

System.out.println(iter.next().intValue());

}//end while loop

}//end runIt

public static void main(String[] args){

new Q13().runIt();

}//end main

}//end class Q13

//===//

Table 4.104

Figure 5 - Question 13.

1

2

3

Table 4.105

Answer 13 (p. 1344)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1337

4.3.2.4 Figures

• Figure 1 (p. 1336) . Question 7
• Figure 2 (p. 1338) . Question 9.
• Figure 3 (p. 1339) . Question 11.
• Figure 4 (p. 1340) . Question 12.
• Figure 5 (p. 1341) . Question 13.
• Figure 6 (p. 1345) . Answer 13.
• Figure 7 (p. 1345) . Answer 12.
• Figure 8 (p. 1346) . Answer 10.
• Figure 9 (p. 1347) . Answer 9.
• Figure 10 (p. 1348) . Answer 7.
• Figure 11 (p. 1348) . Answer 6.
• Figure 12 (p. 1349) . Answer 2.

4.3.2.5 Listings

• Listing 1 (p. 1335) . Question 2.
• Listing 2 (p. 1336) . Question 7.
• Listing 3 (p. 1337) . Question 9.
• Listing 4 (p. 1338) . Question 10.
• Listing 5 (p. 1339) . Question 11.
• Listing 6 (p. 1340) . Question 12.
• Listing 7 (p. 1341) . Question 13.
• Listing 8 (p. 1344) . Answer 13.
• Listing 9 (p. 1346) . Answer 10.
• Listing 10 (p. 1347) . Answer 8.

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1338 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1339

4.3.2.6 Answers

4.3.2.6.1 Answer 13

False. This program produces the error shown in Figure 6 (p. 1345) below. You must qualify the iterator as
shown in Listing 8 (p. 1344) to correct the error. If you don't qualify the iterator, the reference is retrieved
from the list as type Object. The Object class neither de�nes nor inherits a method named intValue.

Listing 8 - Answer 13.

/*File A13.java

**/

import java.util.*;

public class A13{

ArrayList <Integer> var1 = new ArrayList<Integer>();

void runIt(){

var1.add(new Integer(1));

var1.add(new Integer(2));

var1.add(new Integer(3));

//Get an iterator

Iterator <Integer> iter = var1.iterator();

//Perform the iteration

while(iter.hasNext()){

System.out.println(iter.next().intValue());

}//end while loop

}//end runIt

public static void main(String[] args){

new Q13().runIt();

}//end main

}//end class A13

//===//

Table 4.106

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1340 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Figure 6 - Answer 13.

Q13.java:22: error: cannot find symbol

System.out.println(iter.next().intValue());

^

symbol: method intValue()

location: class Object

1 error

Table 4.107

Back to Question 13 (p. 1340)

4.3.2.6.2 Answer 12

False. This program produces the compiler error shown in Figure 7 (p. 1345) below. This is the result of
attempting to store an object's reference of type String in a collection reserved exclusively for references to
objects of type Date.

Figure 7 - Answer 12.

Q12.java:13: error: no suitable method found for add(String)

var1.add("abcd");

^

method ArrayList.add(int,Date) is not applicable

(actual and formal argument lists differ in length)

method ArrayList.add(Date) is not applicable

(actual argument String cannot be converted to Date by method invocation

conversion)

1 error

Table 4.108

Back to Question 12 (p. 1340)

4.3.2.6.3 Answer 11

True. Updates made in Java v1.7 eliminated the requirement to insert the name of a type in those angle
brackets in order to make the compiler happy.

Back to Question 11 (p. 1339)

4.3.2.6.4 Answer 10

One solution is to add the generic syntax shown in the class named A10 in Listing 9 (p. 1346) below. This
will cause the program to compile and execute successfully producing an output similar to that shown in
Figure 8 (p. 1346) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1341

Listing 9 - Answer 10.

/*File A10.java

**/

import java.util.*;

public class A10{

ArrayList <Date> var1 = new ArrayList<Date>();

void runIt(){

var1.add(new Date());

//Note the required cast in the following

// statement.

System.out.println(

(var1.get(0)).getTime());

}//runIt

public static void main(String[] args){

new A10().runIt();

}//end main

}//end class A10

//===//

Table 4.109

Figure 8 - Answer 10.

1378058466149

Table 4.110

Back to Question 10 (p. 1338)

4.3.2.6.5 Answer 9

False: The program produces the runtime error shown in Figure 9 (p. 1347) below. The (Date) cast is
applied to the contents of the element at index 1. However, that element contains a reference to an object
of type String.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1342 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Figure 9 - Answer 9.

Exception in thread "main" java.lang.ClassCastException: java.lang.String cannot

be cast to java.util.Date

at Q09.runIt(Q09.java:15)

at Q09.main(Q09.java:22)

Table 4.111

Back to Question 9 (p. 1337)

4.3.2.6.6 Answer 8

The program must be updated to include the cast operator (Date) shown in Listing 10 (p. 1347) below.

Listing 10 - Answer 8.

/*File Q08.java

**/

import java.util.*;

public class Q08{

ArrayList var1 = new ArrayList();

void runIt(){

var1.add(new Date());

//Note the required cast in the following

// statement.

System.out.println(

((Date)var1.get(0)).getTime());

}//runIt

public static void main(String[] args){

new Q08().runIt();

}//end main

}//end class Q08

//===//

Table 4.112

Back to Question 8 (p. 1337)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1343

4.3.2.6.7 Answer 7

False: This program produces the compiler error shown in Figure 10 (p. 1348) below.

Figure 10 - Answer 7.

Q07.java:17: error: cannot find symbol

(var1.get(0)).getTime());

^

symbol: method getTime()

location: class Object

Note: Q07.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

1 error

Table 4.113

Back to Question 7 (p. 1336)

4.3.2.6.8 Answer 6

B. A warning
The compiler output is shown in Figure 11 (p. 1348) below:

Figure 11 - Answer 6.

Q02.java:13: warning: [unchecked] unchecked call to add(E) as a member of the raw

type ArrayList

var1.add(new Date());

^

where E is a type-variable:

E extends Object declared in class ArrayList

1 warning

Table 4.114

Back to Question 6 (p. 1336)

4.3.2.6.9 Answer 5

False. Two notes are displayed. However, the messages produced by the Java v1.7 compiler in this cases are
neither error messages nor warnings. Instead they are simply notes. The notes provide instructions on how
to recompile and get more information regarding a potential problem.

Back to Question 5 (p. 1335)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1344 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.3.2.6.10 Answer 4

False. The tentacles of generics reach into many di�erent areas of Java in very complex ways including:

• Generic methods
• Generic classes
• Raw types
• Wildcards
• Generics and inheritance

Back to Question 4 (p. 1335)

4.3.2.6.11 Answer 3

B. Compile-time type safety
Back to Question 3 (p. 1335)

4.3.2.6.12 Answer 2

False: An attempt to compile the program using the Java v1.7 compiler produces an output similar to that
shown in Figure 12 (p. 1349) below.

Figure 12 - Answer 2.

Note: Q02.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

Table 4.115

Back to Question 2 (p. 1334)

4.3.2.6.13 Answer 1

False. The Collections framework was not new in Java v1.5. It was available long before version 1.5 was
released.

Back to Question 1 (p. 1334)

4.3.2.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4210r Review
• File: Java4210r.htm
• Published: 09/01/13

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1345

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1346 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.3.3 Java4220r: Review of Generic Types
78

Revised: Wed May 11 17:44:56 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 79

• Object-Oriented Programming (OOP) with Java 80

4.3.3.1 Table of Contents

• Table of Contents (p. 1351)
• Preface (p. 1352)
• Questions (p. 1352)

· Question 1 (p. 1352)
· Question 2 (p. 1352)
· Question 3 (p. 1352)
· Question 4 (p. 1352)
· Question 5 (p. 1353)
· Question 6 (p. 1353)
· Question 7 (p. 1354)
· Question 8 (p. 1354)
· Question 9 (p. 1355)
· Question 10 (p. 1356)
· Question 11 (p. 1357)
· Question 12 (p. 1358)
· Question 13 (p. 1359)

• Figures (p. 1360)
• Listings (p. 1360)
• Answers (p. 1362)

· Answer 13 (p. 1362)
· Answer 12 (p. 1362)
· Answer 11 (p. 1362)
· Answer 10 (p. 1363)
· Answer 9 (p. 1363)
· Answer 8 (p. 1363)
· Answer 7 (p. 1364)
· Answer 6 (p. 1364)
· Answer 5 (p. 1364)
· Answer 4 (p. 1365)
· Answer 3 (p. 1365)
· Answer 2 (p. 1365)
· Answer 1 (p. 1365)

• Miscellaneous (p. 1365)

78This content is available online at <http://cnx.org/content/m47562/1.6/>.
79http://cnx.org/contents/Rl23r3Lw
80http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1347

4.3.3.2 Preface

This module is one in a collection of modules on Java Generics designed for teaching ITSE2317 - Java
Programming (Intermediate) at Austin Community College in Austin, TX.

This and future modules in this series will be based on the Generics (Updated) 81 section of The Java
Tutorials 82 from Oracle. (In the event that these links become broken, you should have no di�culty �nding
the Oracle material with an online search.)

You will �nd the learning resources for this module on the Oracle site at:

• Generics (Updated) 83

• Why Use Generics 84

• Generic Types 85

· Raw Types 86

This module contains review questions and answers keyed to the material in the above list.
Once you study that material, you should be able to answer the review questions in this module.
Once you complete your study of all the material on generics 87 , you should be able to answer the review

questions at Questions and Exercises 88 on the Oracle site.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

4.3.3.3 Questions

4.3.3.3.1 Question 1 .

True or False: Generics add stability to your code by making more of your bugs detectable at runtime.
Answer 1 (p. 1365)

4.3.3.3.2 Question 2

True or False: Generics enable types (classes and interfaces) to be parameters when de�ning classes,
interfaces and methods.

Answer 2 (p. 1365)

4.3.3.3.3 Question 3

True or False: Type parameters provide a way for you to re-use the same code with di�erent inputs. The
inputs to type parameters are values.

Answer 3 (p. 1365)

4.3.3.3.4 Question 4

True or False: Code that uses generics provides the following bene�ts over non-generic code:

• Stronger type checks at compile time.
• Elimination of casts.
• Enabling programmers to implement generic algorithms.

Answer 4 (p. 1365)

81http://docs.oracle.com/javase/tutorial/java/generics/
82http://docs.oracle.com/javase/tutorial/index.html
83http://docs.oracle.com/javase/tutorial/java/generics/index.html
84http://docs.oracle.com/javase/tutorial/java/generics/why.html
85http://docs.oracle.com/javase/tutorial/java/generics/types.html
86http://docs.oracle.com/javase/tutorial/java/generics/rawTypes.html
87http://docs.oracle.com/javase/tutorial/java/generics/index.html
88http://docs.oracle.com/javase/tutorial/java/generics/QandE/generics-questions.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1348 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.3.3.3.5 Question 5

True or False: A generic type is a generic class or interface that is parameterized over types.
Answer 5 (p. 1364)

4.3.3.3.6 Question 6

True or False: The code shown in Listing 1 (p. 1353) will compile and run successfully producing the output
shown in Figure 1 (p. 1353) .

Listing 1 - Question 6.

/*File Q06.java

**/

public class Q06{

public static void main(String[] args){

Box box = new Box();

box.set(new Integer(5));

System.out.println(

((Integer)(box.get())).intValue());

}//end main

}//end class Q06

class Box{

private Object object;

public void set(Object object){

this.object = object;

}//end set

public Object get(){

return object;

}//end get

}//end Box

//===//

Table 4.116

Figure 1 - Question 6..

5

Table 4.117

Answer 6 (p. 1364)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1349

4.3.3.3.7 Question 7

True or False: The code shown in Listing 2 (p. 1354) will compile and run successfully producing the output
shown in Figure 2 (p. 1354) .

Listing 2 - Question 7.

/*File Q07.java

**/

public class Q07{

public static void main(String[] args){

Box <Integer> box = new Box <Integer>();
box.set(new Integer(5));

System.out.println(box.get().intValue());

}//end main

}//end class Q07

class Box{

private Object object;

public void set(Object object){

this.object = object;

}//end set

public Object get(){

return object;

}//end get

}//end Box

//===//

Table 4.118

Figure 2 - Question 7.

5

Table 4.119

Answer 7 (p. 1364)

4.3.3.3.8 Question 8

Design and write a class named A08Box which, when combined with the class de�ned in Listing 3 (p. 1355)
will compile, run, and produce the output shown in Figure 3 (p. 1355) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1350 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 3 - Question 8.

/*File Q08.java

**/

public class Q08{

public static void main(String[] args){

A08Box <Integer> box = new A08Box <Integer>();
box.set(new Integer(5));

System.out.println(box.get().intValue());

}//end main

}//end class Q08

//===//

Table 4.120

Figure 3 - Question 8.

5

Table 4.121

Answer 8 (p. 1363)

4.3.3.3.9 Question 9

True or False: The program with the "diamond" syntax shown in Listing 4 (p. 1356) will compile and run
with no compiler complaints under Java v1.7, producing the output shown in Figure 4 (p. 1356) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1351

Listing 4 - Question 9.

/*File Q09.java

**/

public class Q09{

public static void main(String[] args){

Box <> box = new Box <Integer>();
box.set(new Integer(5));

System.out.println(box.get().intValue());

}//end main

}//end class Q09

//===//

class Box<T>{
private T t;

public void set(T t){

this.t = t;

}//end set

public T get(){

return t;

}//end get

}//end Box

//===//

Table 4.122

Figure 4 - Question 9.

5

Table 4.123

Answer 9 (p. 1363)

4.3.3.3.10 Question 10

True or False: The program with the "diamond" syntax shown in Listing 5 (p. 1357) will compile and run
with no compiler complaints under Java v1.7, producing the output shown in Figure 5 (p. 1357) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1352 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 5 - Question 10.

/*File Q10.java

**/

public class Q10{

public static void main(String[] args){

Box <Integer> box = new Box <>();
box.set(new Integer(5));

System.out.println(box.get().intValue());

}//end main

}//end class Q10

//===//

class Box<T>{
private T t;

public void set(T t){

this.t = t;

}//end set

public T get(){

return t;

}//end get

}//end Box

//===//

Table 4.124

Figure 5 - Question 10.

5

Table 4.125

Answer 10 (p. 1363)

4.3.3.3.11 Question 11

Design and write a class named A11Box which, when used in conjunction with the code shown in Listing 6
(p. 1358) , will compile and run successfully producing the output shown in Figure 6 (p. 1358) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1353

Listing 6 - Question 11.

/*File Q11.java

**/

public class Q11{

public static void main(String[] args){

A11Box <Integer> box =

new A11Box <>(new Integer(5));

System.out.println(box.get().intValue());

}//end main

}//end class Q11

//===//

Table 4.126

Figure 6 - Question 11.

5

Table 4.127

Answer 11 (p. 1362)

4.3.3.3.12 Question 12

Design and write a class named A12Box which, when used in conjunction with the code shown in Listing 7
(p. 1359) , will compile and run successfully producing the output shown in Figure 7 (p. 1359) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1354 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 7 - Question 12.

/*File Q12.java

**/

public class Q12{

public static void main(String[] args){

A12Box <String,Integer> boxA =

new A12Box <>("abcde",new Integer(500));

System.out.println(boxA.get1());

System.out.println(boxA.get2());

A12Box <Integer,String> boxB =

new A12Box <>(new Integer(900),"fghijkl");

System.out.println(boxB.get1());

System.out.println(boxB.get2());

}//end main

}//end class Q12

//===//

Table 4.128

Figure 7 - Question 12.

abcde

500

900

fghijkl

Table 4.129

Answer 12 (p. 1362)

4.3.3.3.13 Question 13

Given: When mixing legacy code with generic code, you may encounter messages similar to those shown in
Figure 8 (p. 1359) .

Figure 8 - Question 13.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1355

Note: Example.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

Table 4.130

True or False: In such cases, the term "unchecked" means that the compiler does not have enough type
information to perform all type checks necessary to ensure type safety.

Answer 13 (p. 1362)

4.3.3.4 Figures

• Figure 1 (p. 1353) . Question 6.
• Figure 2 (p. 1354) . Question 7.
• Figure 3 (p. 1355) . Question 8.
• Figure 4 (p. 1356) . Question 9.
• Figure 5 (p. 1357) . Question 10.
• Figure 6 (p. 1358) . Question 11.
• Figure 7 (p. 1359) . Question 12.
• Figure 8 (p. 1359) . Question 13.
• Figure 9 (p. 1363) . Answer 9.
• Figure 10 (p. 1364) . Answer 7.

4.3.3.5 Listings

• Listing 1 (p. 1353) . Question 6.
• Listing 2 (p. 1354) . Question 7.
• Listing 3 (p. 1355) . Question 8.
• Listing 4 (p. 1356) . Question 9.
• Listing 5 (p. 1357) . Question 10.
• Listing 6 (p. 1358) . Question 11.
• Listing 7 (p. 1359) . Question 12.
• Listing 8 (p. 1362) . Answer 12.
• Listing 9 (p. 1363) . Answer 11.
• Listing 10 (p. 1364) . Answer 8.

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1356 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1357

4.3.3.6 Answers

4.3.3.6.1 Answer 13

True.
Back to Question 13 (p. 1359)

4.3.3.6.2 Answer 12

One possible solution is provided in Listing 8 (p. 1362) below.

Listing 8 - Answer 12.

/*File A12Box.java

**/

public class A12Box<T1,T2>{
private T1 t1;

private T2 t2;

public A12Box(T1 t1,T2 t2){

this.t1 = t1;

this.t2 = t2;

}//end constructor

public T1 get1(){

return t1;

}//end get1

public T2 get2(){

return t2;

}//end get2

}//end A12Box

//===//

Table 4.131

Back to Question 12 (p. 1358)

4.3.3.6.3 Answer 11

One possible solution is provided in Listing 9 (p. 1363) below.

Listing 9 - Answer 11.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1358 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

/*File A11Box.java

**/

public class A11Box<T>{
private T t;

public A11Box(T t){

this.t = t;

}//end constructor

public T get(){

return t;

}//end get

}//end A11Box

//===//

Table 4.132

Back to Question 11 (p. 1357)

4.3.3.6.4 Answer 10

True.
Back to Question 10 (p. 1356)

4.3.3.6.5 Answer 9

False. This program produces the error message shown in Figure 9 (p. 1363) below.

Figure 9 - Answer 9.

Q09.java:8: error: illegal start of type

Box <> box = new Box <Integer>();
^

1 error

Table 4.133

Back to Question 9 (p. 1355)

4.3.3.6.6 Answer 8

One possible solution is shown in Listing 10 (p. 1364) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1359

Listing 10 - Answer 8.

/*File A08Box.java

**/

public class A08Box<T>{
private T t;

public void set(T t){

this.t = t;

}//end set

public T get(){

return t;

}//end get

}//end A08Box

//===//

Table 4.134

Back to Question 8 (p. 1354)

4.3.3.6.7 Answer 7

False. This program produces the compiler errors shown in Figure 10 (p. 1364) below.

Figure 10 - Answer 7.

Q07.java:8: error: type Box does not take parameters

Box <Integer> box = new Box <Integer>();
^

Q07.java:8: error: type Box does not take parameters

Box <Integer> box = new Box <Integer>();
^

2 errors

Table 4.135

Back to Question 7 (p. 1354)

4.3.3.6.8 Answer 6

True.
Back to Question 6 (p. 1353)

4.3.3.6.9 Answer 5

True.
Back to Question 5 (p. 1353)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1360 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.3.3.6.10 Answer 4

True.
Back to Question 4 (p. 1352)

4.3.3.6.11 Answer 3

False. The correct statement is:
"Type parameters provide a way for you to re-use the same code with di�erent inputs. The inputs to

type parameters are types ."
Back to Question 3 (p. 1352)

4.3.3.6.12 Answer 2

True,
Back to Question 2 (p. 1352)

4.3.3.6.13 Answer 1

False. The correct statement is
"Generics add stability to your code by making more of your bugs detectable at compile time ."
Back to Question 1 (p. 1352)

4.3.3.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4220r: Review of Generic Types
• File: Java4220r.htm
• Published: 09/02/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1361

4.3.4 Java4230r: Review of Generic Methods
89

Revised: Wed May 11 17:54:19 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 90

• Object-Oriented Programming (OOP) with Java 91

4.3.4.1 Table of Contents

• Table of Contents (p. 1366)
• Preface (p. 1366)
• Questions (p. 1367)

· Question 1 (p. 1367)
· Question 2 (p. 1367)
· Question 3 (p. 1367)
· Question 4 (p. 1367)
· Question 5 (p. 1367)
· Question 6 (p. 1368)
· Question 7 (p. 1369)
· Question 8 (p. 1370)

• Figures (p. 1370)
• Listings (p. 1371)
• Answers (p. 1372)

· Answer 8 (p. 1372)
· Answer 7 (p. 1372)
· Answer 6 (p. 1373)
· Answer 5 (p. 1374)
· Answer 4 (p. 1375)
· Answer 3 (p. 1375)
· Answer 2 (p. 1375)
· Answer 1 (p. 1375)

• Miscellaneous (p. 1375)

4.3.4.2 Preface

This module is one in a collection of modules on Java Generics designed for teaching ITSE2317 - Java
Programming (Intermediate) at Austin Community College in Austin, TX.

This and future modules in this series will be based on the Generics (Updated) 92 section of The Java
Tutorials 93 from Oracle. (In the event that these links become broken, you should have no di�culty �nding
the Oracle material with an online search.)

You will �nd the learning resources for this module on the Oracle site at:

• Generic Methods 94

89This content is available online at <http://cnx.org/content/m47563/1.5/>.
90http://cnx.org/contents/Rl23r3Lw
91http://cnx.org/contents/-2RmHFs_
92http://docs.oracle.com/javase/tutorial/java/generics/
93http://docs.oracle.com/javase/tutorial/index.html
94http://docs.oracle.com/javase/tutorial/java/generics/methods.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1362 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

This module contains review questions and answers keyed to the material in the above document.
Once you study that material, you should be able to answer the review questions in this module.
Once you complete your study of all the material on generics 95 , you should be able to answer the review

questions at Questions and Exercises 96 on the Oracle site.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

4.3.4.3 Questions

4.3.4.3.1 Question 1 .

True or False: Generic methods are methods that introduce their own type parameters.
Answer 1 (p. 1375)

4.3.4.3.2 Question 2

True or False: De�ning a generic method is similar to declaring a generic type. The type parameter's scope
is limited to the class in which it is declared.

Answer 2 (p. 1375)

4.3.4.3.3 Question 3

True or False: Generic methods may be either static or non-static.
Answer 3 (p. 1375)

4.3.4.3.4 Question 4

True or False: Generic class constructors are not allowed.
Answer 4 (p. 1375)

4.3.4.3.5 Question 5

Design and write a class named A05Foo which, when combined with the class de�ned in Listing 1 (p. 1368)
will compile, run, and produce the output shown in Figure 1 (p. 1368) .

95http://docs.oracle.com/javase/tutorial/java/generics/index.html
96http://docs.oracle.com/javase/tutorial/java/generics/QandE/generics-questions.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1363

Listing 1 - Question 5.

/*File Q05.java

**/

public class Q05{

public static void main(String[] args){

A05Foo fooA = new A05Foo();

System.out.println(fooA.cat("abcd ","efgh"));

System.out.println(

fooA.cat("abcd ",new Integer(500)));

System.out.println(

fooA.cat(new Integer(500)," abcd"));

}//end main

}//end class Q05

//===//

Table 4.136

Figure 1 - Question 5.

abcd efgh

abcd 500

500 abcd

Table 4.137

Answer 5 (p. 1374)

4.3.4.3.6 Question 6

Design and write a class named A06Foo which, when combined with the class de�ned in Listing 2 (p. 1369)
will compile, run, and produce the output shown in Figure 2 (p. 1369) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1364 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 2 - Question 6.

/*File Q06.java

**/

public class Q06{

public static void main(String[] args){

A06Foo <String>fooA = new A06Foo<>();
fooA.set("_ijklm");

System.out.println(fooA.cat("abcd ","efgh"));

System.out.println(

fooA.cat("abcd ",new Integer(500)));

System.out.println(

fooA.cat(new Integer(500)," abcd"));

}//end main

}//end class Q06

//===//

Table 4.138

Figure 2 - Question 6.

abcd efgh_ijklm

abcd 500_ijklm

500 abcd_ijklm

Table 4.139

Answer 6 (p. 1373)

4.3.4.3.7 Question 7

Design and write a class named A07Foo which, when combined with the class de�ned in Listing 3 (p. 1370)
will compile, run, and produce the output shown in Figure 3 (p. 1370) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1365

Listing 3 - Question 7.

/*File Q07.java

**/

public class Q07{

public static void main(String[] args){

A07Foo <Integer,String>fooA =

new A07Foo<>(" ijkl");

fooA.set(new Integer(-300));

System.out.println(

fooA.cat("abcd "," efgh "));

System.out.println(

fooA.cat("abcd ",new Integer(500)));

System.out.println(

fooA.cat(new Integer(500)," abcd "));

}//end main

}//end class Q07

//===//

Table 4.140

Figure 3 - Question 7.

abcd efgh -300 ijkl

abcd 500-300 ijkl

500 abcd -300 ijkl

Table 4.141

Answer 7 (p. 1372)

4.3.4.3.8 Question 8

True or False: The syntax for a generic method includes a type parameter, inside angle brackets, and appears
after the method's return type

Answer 8 (p. 1372)

4.3.4.4 Figures

• Figure 1 (p. 1368) . Question 5.
• Figure 2 (p. 1369) . Question 6.
• Figure 3 (p. 1370) . Question 7.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1366 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.3.4.5 Listings

• Listing 1 (p. 1368) . Question 5.
• Listing 2 (p. 1369) . Question 6.
• Listing 3 (p. 1370) . Question 7.
• Listing 4 (p. 1373) . Answer 7.
• Listing 5 (p. 1374) . Answer 6.
• Listing 6 (p. 1374) . Answer 5.

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1367

4.3.4.6 Answers

4.3.4.6.1 Answer 8

False. The statement should read:
"The syntax for a generic method includes a type parameter, inside angle brackets, and appears before

the method's return type"
Back to Question 8 (p. 1370)

4.3.4.6.2 Answer 7

One possible solution is provided in Listing 4 (p. 1373) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1368 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 4 - Answer 7.

/*File A07Foo.java

**/

//A generic class

public class A07Foo<T3,T4>{
private T3 tC;

private T4 tD;

//constructor

public A07Foo(T4 tD){

this.tD = tD;

}//end constructor

//A set method

public void set(T3 tC){

this.tC = tC;

}//end cat

//A generic concatenation method

public <T1,T2> String cat(T1 tA,T2 tB){

return tA.toString() + tB.toString()

+ tC.toString() + tD.toString();

}//end cat

}//end A07Foo

//===//

Table 4.142

Back to Question 7 (p. 1369)

4.3.4.6.3 Answer 6

One possible solution is provided in Listing 5 (p. 1374) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1369

Listing 5 - Answer 6.

/*File A06Foo.java

**/

public class A06Foo<T3>{
private T3 tC;

//A set method

public void set(T3 tC){

this.tC = tC;

}//end cat

//A generic concatenation method

public <T1,T2> String cat(T1 tA,T2 tB){

return tA.toString() + tB.toString()

+ tC.toString();

}//end cat

}//end A06Foo

//===//

Table 4.143

Back to Question 6 (p. 1368)

4.3.4.6.4 Answer 5

One possible solution is provided in Listing 6 (p. 1374) below.

Listing 6 - Answer 5.

/*File A05Foo.java

**/

public class A05Foo{

//A generic concatenation method

public <T1,T2> String cat(T1 tA,T2 tB){

return tA.toString() + tB.toString();

}//end cat

}//end A05Foo

//===//

Table 4.144

Back to Question 5 (p. 1367)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1370 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.3.4.6.5 Answer 4

False. Generic class constructors are allowed.
Back to Question 4 (p. 1367)

4.3.4.6.6 Answer 3

True.
Back to Question 3 (p. 1367)

4.3.4.6.7 Answer 2

False. The statement should read as follows:
"De�ning a generic method is similar to declaring a generic type, but the type parameter's scope is

limited to the method where it is declared."
Back to Question 2 (p. 1367)

4.3.4.6.8 Answer 1

True.
Back to Question 1 (p. 1367)

4.3.4.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4230r: Review of Generic Methods
• File: Java4230r.htm
• Published: 09/02/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1371

4.3.5 Java4240r: Review of Bounded Type Parameters
97

Revised: Wed May 11 18:05:10 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 98

• Object-Oriented Programming (OOP) with Java 99

4.3.5.1 Table of Contents

• Table of Contents (p. 1376)
• Preface (p. 1376)
• Questions (p. 1377)

· Question 1 (p. 1377)
· Question 2 (p. 1377)
· Question 3 (p. 1377)
· Question 4 (p. 1377)
· Question 5 (p. 1378)
· Question 6 (p. 1379)
· Question 7 (p. 1380)
· Question 8 (p. 1382)
· Question 9 (p. 1383)
· Question 10 (p. 1384)

• Figures (p. 1385)
• Listings (p. 1385)
• Answers (p. 1387)

· Answer 10 (p. 1387)
· Answer 9 (p. 1387)
· Answer 8 (p. 1388)
· Answer 7 (p. 1388)
· Answer 6 (p. 1388)
· Answer 5 (p. 1389)
· Answer 4 (p. 1390)
· Answer 3 (p. 1390)
· Answer 2 (p. 1390)
· Answer 1 (p. 1390)

• Miscellaneous (p. 1391)

4.3.5.2 Preface

This module is one in a collection of modules on Java Generics designed for teaching ITSE2317 - Java
Programming (Intermediate) at Austin Community College in Austin, TX.

This and future modules in this series will be based on the Generics (Updated) 100 section of The Java
Tutorials 101 from Oracle. (In the event that these links become broken, you should have no di�culty
�nding the Oracle material with an online search.)

You will �nd the learning resources for this module on the Oracle site at:

97This content is available online at <http://cnx.org/content/m47819/1.5/>.
98http://cnx.org/contents/Rl23r3Lw
99http://cnx.org/contents/-2RmHFs_

100http://docs.oracle.com/javase/tutorial/java/generics/
101http://docs.oracle.com/javase/tutorial/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1372 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

• Bounded Type Parameters 102

· Generic Methods and Bounded Type Parameters 103

This module contains review questions and answers keyed to the material in the above listed documents.
Once you study that material, you should be able to answer the review questions in this module.
Once you complete your study of all the material on generics 104 , you should be able to answer the

review questions at Questions and Exercises 105 on the Oracle site.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

4.3.5.3 Questions

4.3.5.3.1 Question 1 .

True or False: Bounded type parameters are used to restrict the types that can be used as arguments in a
parameterized type.

Answer 1 (p. 1390)

4.3.5.3.2 Question 2

True or False: To declare a bounded type parameter, list the type parameter's name, followed by the
extends or implements keyword, followed by its upper bound class or interface.

Answer 2 (p. 1390)

4.3.5.3.3 Question 3

True or False: A type parameter can have multiple bounds as shown in Figure 1 (p. 1377) .

Figure 1 - Question 3.

<T extends B1 & B2 & B3>

Table 4.145

Answer 3 (p. 1390)

4.3.5.3.4 Question 4

True or False: The code shown in Listing 1 (p. 1377) will compile and run successfully producing the output
shown in Figure 2 (p. 1378) .

Listing 1 - Question 4.

continued on next page

102http://docs.oracle.com/javase/tutorial/java/generics/bounded.html
103http://docs.oracle.com/javase/tutorial/java/generics/boundedTypeParams.html
104http://docs.oracle.com/javase/tutorial/java/generics/index.html
105http://docs.oracle.com/javase/tutorial/java/generics/QandE/generics-questions.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1373

/*File Q04.java

**/

import java.awt.*;

/*Note the following inheritance hierarchy

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Window

java.awt.Frame

*/

public class Q04{

public static void main(String[] args){

Foo <Window> aFoo = new Foo <>();
aFoo.runIt();

}//end main

}//end class Q04

//===//

class Foo<T extends Frame>{
public void runIt(){

System.out.println("Object instantiated.");

}//end runIt

}//end Foo

Table 4.146

Figure 2 - Question 4.

Object instantiated.

Table 4.147

Answer 4 (p. 1390)

4.3.5.3.5 Question 5

De�ne and write a class named A05Foo which, when combined with the code shown in Listing 2 (p. 1379)
will produce the output shown in Figure 3 (p. 1379) .

Listing 2 - Question 5.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1374 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

/*File Q05.java

**/

import java.awt.*;

/*Note the following inheritance hierarchy

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Window

java.awt.Frame

*/

public class Q05{

public static void main(String[] args){

A05Foo <Window> aA05Foo = new A05Foo <>();
aA05Foo.runIt();

}//end main

}//end class Q05

//===//

Table 4.148

Figure 3 - Question 5.

Object instantiated.

Table 4.149

Answer 5 (p. 1389)

4.3.5.3.6 Question 6

De�ne and write a class named A06Foo which, when combined with the code shown in Listing 3 (p. 1380)
will produce the output shown in Figure 4 (p. 1380) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1375

Listing 3 - Question 6.

/*File Q06.java

**/

import java.awt.*;

/*Note the following inheritance hierarchy

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Window

java.awt.Frame

*/

public class Q06{

public static void main(String[] args){

A06Foo <Window> aA06Foo =

new A06Foo <Window>(new Frame());

aA06Foo.runIt();

}//end main

}//end class Q06

//===//

Table 4.150

Figure 4 - Question 6.

Object instantiated.

class java.awt.Frame

Table 4.151

Answer 6 (p. 1388)

4.3.5.3.7 Question 7

True or False: The code shown in Listing 4 (p. 1381) will compile and run successfully producing the output
shown in Figure 5 (p. 1381) .

Listing 4 - Question 7.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1376 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

/*File Q07.java

**/

import java.awt.*;

import javax.swing.*;

/*Note the following inheritance hierarchy

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Window

java.awt.Frame

javax.swing.JFrame

*/

public class Q07{

public static void main(String[] args){

JFrame aFrame = new JFrame("This is a title");

System.out.println(aFrame.getTitle());

Foo aFoo = new Foo();

aFoo.runIt(aFrame);

}//end main

}//end class Q07

//===//

class Foo{

public <T extends Frame> void runIt(T ref){

System.out.println("Running runIt");

System.out.println(ref.getTitle());

}//end runIt

}//end Foo

//===//

Table 4.152

Figure 5 - Question 7.

This is a title

Running runIt

This is a title

Table 4.153

Answer 7 (p. 1388)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1377

4.3.5.3.8 Question 8

True or False: The code shown in Listing 5 (p. 1382) will compile and run successfully producing the output
shown in Figure 6 (p. 1382) .

Listing 5 - Question 8.

/*File Q08.java

**/

import java.awt.*;

import javax.swing.*;

/*Note the following inheritance hierarchy

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Window

java.awt.Frame

javax.swing.JFrame

*/

public class Q08{

public static void main(String[] args){

Frame aFrame = new Frame("This is a title");

System.out.println(aFrame.getTitle());

Foo aFoo = new Foo();

aFoo.runIt(aFrame);

}//end main

}//end class Q08

//===//

class Foo{

public <T extends JFrame> void runIt(T ref){

System.out.println("Running runIt");

System.out.println(ref.getTitle());

}//end runIt

}//end Foo

Table 4.154

Figure 6 - Question 8.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1378 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

This is a title

Table 4.155

Answer 8 (p. 1388)

4.3.5.3.9 Question 9

True or False: The code shown in Listing 6 (p. 1383) will compile and run successfully producing the output
shown in Figure 7 (p. 1383) .

Listing 6 - Question 9.

/*File Q09.java

**/

import java.awt.*;

import javax.swing.*;

/*Note the following inheritance hierarchy

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Window

java.awt.Frame

javax.swing.JFrame

*/

public class Q09{

public static void main(String[] args){

JFrame aFrame = new JFrame("This is a title");

System.out.println(aFrame.getTitle());

Foo aFoo = new Foo();

aFoo.runIt(aFrame);

}//end main

}//end class Q09

//===//

class Foo{

public <T> void runIt(T ref){

System.out.println("Running runIt");

System.out.println(ref.getTitle());

}//end runIt

}//end Foo

//===//

Table 4.156

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1379

Figure 7 - Question 9.

This is a title

Table 4.157

Answer 9 (p. 1387)

4.3.5.3.10 Question 10

True or False: The code shown in Listing 7 (p. 1384) will compile and run successfully producing the output
shown in Figure 8 (p. 1385) .

Listing 7 - Question 10.

/*File Q10.java

**/

import java.awt.*;

import javax.swing.*;

/*Note the following inheritance hierarchy

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Window

java.awt.Frame

javax.swing.JFrame

*/

public class Q10{

public static void main(String[] args){

JFrame aFrame = new JFrame("This is a title");

System.out.println(aFrame.getTitle());

Foo aFoo = new Foo();

aFoo.runIt(aFrame);

}//end main

}//end class Q10

//===//

class Foo{

public <T extends Object> void runIt(T ref){

System.out.println("Running runIt");

System.out.println(ref.getTitle());

}//end runIt

}//end Foo

//===//

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1380 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Table 4.158

Figure 8 - Question 10.

This is a title

Table 4.159

Answer 10 (p. 1387)

4.3.5.4 Figures

• Figure 1 (p. 1377) . Question 3.
• Figure 2 (p. 1378) . Question 4.
• Figure 3 (p. 1379) . Question 5.
• Figure 4 (p. 1380) . Question 6.
• Figure 5 (p. 1381) . Question 7.
• Figure 6 (p. 1382) . Question 8.
• Figure 7 (p. 1383) . Question 9.
• Figure 8 (p. 1385) . Question 10.
• Figure 9 (p. 1387) . Answer 10.
• Figure 10 (p. 1387) . Answer 9.
• Figure 11 (p. 1388) . Answer 8.
• Figure 12 (p. 1390) . Answer 4.

4.3.5.5 Listings

• Listing 1 (p. 1377) . Question 4.
• Listing 2 (p. 1379) . Question 5.
• Listing 3 (p. 1380) . Question 6.
• Listing 4 (p. 1381) . Question 7.
• Listing 5 (p. 1382) . Question 8.
• Listing 6 (p. 1383) . Question 9.
• Listing 7 (p. 1384) . Question 10.
• Listing 8 (p. 1389) . Answer 6.
• Listing 9 (p. 1389) . Answer 5.

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1381

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1382 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.3.5.6 Answers

4.3.5.6.1 Answer 10

False. This is an unsuccessful call to generic method with speci�ed upper- bound of Object. The incoming
reference is received as type Object and must be downcast to at least Frame to call the method named
getTitle. The incoming parameter is received as the type of the speci�ed upper-bound. This results in the
compiler error shown in Figure 9 (p. 1387) .

Figure 9 - Answer 10.

Q10.java:36: error: cannot find symbol

System.out.println(ref.getTitle());

^

symbol: method getTitle()

location: variable ref of type T

where T is a type-variable:

T extends Object declared in method <T>runIt(T)
1 error

Table 4.160

Back to Question 10 (p. 1384)

4.3.5.6.2 Answer 9

False. This is an unsuccessful call to generic method with default upper- bound of Object. The incoming
reference is received as type Object and must be downcast to at least Frame to call the method named
getTitle. The incoming parameter is received as the type of the speci�ed upper-bound which is Object by
default. This results in the compiler error shown in Figure 10 (p. 1387) .

Figure 10 - Answer 9.

Q09.java:36: error: cannot find symbol

System.out.println(ref.getTitle());

^

symbol: method getTitle()

location: variable ref of type T

where T is a type-variable:

T extends Object declared in method <T>runIt(T)
1 error

Table 4.161

Back to Question 9 (p. 1383)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1383

4.3.5.6.3 Answer 8

False. This is an unsuccessful call to a generic method where the type of the object passed to the method is
above the upper bound on the speci�ed generic type for the method. An attempt to compile the program
results in the error shown in Figure 11 (p. 1388) below.

Figure 11 - Answer 8.

Q08.java:25: error: method runIt in class Foo

cannot be applied to given types;

aFoo.runIt(aFrame);

^

required: T

found: Frame

reason: inferred type does not conform to declared bound(s)

inferred: Frame

bound(s): JFrame

where T is a type-variable:

T extends JFrame declared in method <T>runIt(T)
1 error

Table 4.162

Back to Question 8 (p. 1382)

4.3.5.6.4 Answer 7

True. This is a successful call to a generic method where the generic type for the method is above (in the
inheritance hierarchy) the type of object passed as a parameter.

Back to Question 7 (p. 1380)

4.3.5.6.5 Answer 6

One possible solution is shown in Listing 8 (p. 1389) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1384 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 8 - Answer 6.

/*File A06Foo.java

**/

import java.awt.*;

public class A06Foo<T extends Component>{
private T param;

public A06Foo(T param){

this.param = param;

}//end constructor

public void runIt(){

System.out.println("Object instantiated.");

System.out.println(param.getClass());

}//end runIt

}//end A06Foo

//===//

Table 4.163

Back to Question 6 (p. 1379)

4.3.5.6.6 Answer 5

One possible solution is shown in Listing 9 (p. 1389) below where T extends Component . However,
causing T to extend Window, Container, Component, or Object would all be valid solutions. The upper
bound for T must be at or above the type being passed as a type parameter in the inheritance hierarchy.

Listing 9 - Answer 5.

/*File A05Foo.java

**/

import java.awt.*;

public class A05Foo<T extends Component>{
public void runIt(){

System.out.println("Object instantiated.");

}//end runIt

}//end A05Foo

//===//

Table 4.164

Back to Question 5 (p. 1378)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1385

4.3.5.6.7 Answer 4

False. This program produces the compiler error shown in Figure 12 (p. 1390) below. The problem is that
the upper bound for the type parameter in the class named Foo (Frame) is below the type passed as a
parameter (Window) in the attempt to instantiate an object of the class named Foo.

Figure 12 - Answer 4.

Q04.java:20: error: type argument Window is not within bounds

of type-variable T

Foo <Window> aFoo = new Foo <>();
^

where T is a type-variable:

T extends Frame declared in class Foo

Q04.java:20: error: cannot infer type arguments for Foo<>;
Foo <Window> aFoo = new Foo <>();

^

reason: no instance(s) of type variable(s) T exist so that

Foo<T> conforms to

Foo<Window>
where T is a type-variable:

T extends Frame declared in class Foo

2 errors

Table 4.165

Back to Question 4 (p. 1377)

4.3.5.6.8 Answer 3

True. A type variable with multiple bounds is a subtype of all the types listed in the bound. If one of the
bounds is a class, it must be speci�ed �rst.

Back to Question 3 (p. 1377)

4.3.5.6.9 Answer 2

False. The correct statement is:
"To declare a bounded type parameter, list the type parameter's name, followed by the extends key-

word, followed by its upper bound. Note that, in this context, extends is used in a general sense to mean
either "extends" (as in classes) or "implements" (as in interfaces)."

Back to Question 2 (p. 1377)

4.3.5.6.10 Answer 1

True. There may be times when you want to restrict the types that can be used as type arguments in a
parameterized type. For example, a method that operates on numbers might only want to accept instances
of Number or its subclasses. This is what bounded type parameters are for.

Back to Question 1 (p. 1377)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1386 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.3.5.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4240r: Review of Bounded Type Parameters
• File: Java4240r.htm
• Published: 10/19/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1387

4.3.6 Java4250r: Review of Generics, Inheritance, and Subtypes
106

Revised: Wed May 11 18:13:42 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 107

• Object-Oriented Programming (OOP) with Java 108

4.3.6.1 Table of Contents

• Table of Contents (p. 1392)
• Preface (p. 1392)
• Questions (p. 1393)

· Question 1 (p. 1393)
· Question 2 (p. 1394)
· Question 3 (p. 1396)
· Question 4 (p. 1398)
· Question 5 (p. 1399)
· Question 6 (p. 1401)

• Figures (p. 1403)
• Listings (p. 1403)
• Answers (p. 1405)

· Answer 6 (p. 1405)
· Answer 5 (p. 1405)
· Answer 4 (p. 1406)
· Answer 3 (p. 1406)
· Answer 2 (p. 1406)
· Answer 1 (p. 1406)

• Miscellaneous (p. 1406)

4.3.6.2 Preface

This module is one in a collection of modules on Java Generics designed for teaching ITSE2317 - Java
Programming (Intermediate) at Austin Community College in Austin, TX.

This and future modules in this series will be based on the Generics (Updated) 109 section of The Java
Tutorials 110 from Oracle. (In the event that these links become broken, you should have no di�culty
�nding the Oracle material with an online search.)

You will �nd the learning resources for this module on the Oracle site at Generics, Inheritance, and
Subtypes 111 .

This module contains review questions and answers keyed to the material in that document.
Once you study that material, you should be able to answer the review questions in this module.
Once you complete your study of all the material on generics 112 , you should be able to answer the

review questions at Questions and Exercises 113 on the Oracle site.

106This content is available online at <http://cnx.org/content/m47822/1.7/>.
107http://cnx.org/contents/Rl23r3Lw
108http://cnx.org/contents/-2RmHFs_
109http://docs.oracle.com/javase/tutorial/java/generics/
110http://docs.oracle.com/javase/tutorial/index.html
111http://docs.oracle.com/javase/tutorial/java/generics/inheritance.html
112http://docs.oracle.com/javase/tutorial/java/generics/index.html
113http://docs.oracle.com/javase/tutorial/java/generics/QandE/generics-questions.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1388 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

The questions and the answers in this module are connected by hyperlinks to make it easy for you to
navigate from the question to the answer and back again.

4.3.6.3 Questions

4.3.6.3.1 Question 1 .

True or False: The code shown in Listing 1 (p. 1393) will compile and run successfully producing the output
shown in Figure 1 (p. 1394) .

Listing 1 - Question 1.

/*File Q01.java

**/

/*

Integer and Double are both subclasses of

Number. Both classes define a method named

doubleValue that returns the encapsulated

numeric value as type double.

*/

public class Q01{

public static void main(String[] args){

Foo <Integer> iFoo = new Foo <Integer>(15);
System.out.println(iFoo.get().doubleValue());

Foo <Double> dFoo = new Foo <Double>(1.0/3);
System.out.println(dFoo.get().doubleValue());

}//end main

}//end class Q01

//===//

class Foo<T extends Number>{
private T obj;

public Foo(T obj){

this.obj = obj;

}//end constructor

public T get(){

return obj;

}//end get

}//end Foo

//===//

Table 4.166

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1389

Figure 1 - Question 1.

15.0

0.3333333333333333

Table 4.167

Answer 1 (p. 1406)

4.3.6.3.2 Question 2

True or False: The code shown in Listing 2 (p. 1395) will compile and run successfully producing the output
shown in Figure 2 (p. 1396) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1390 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 2 - Question 2.

/*File Q02.java

**/

import java.awt.Frame;

import javax.swing.JInternalFrame;

import java.awt.Container;

/*

Frame and JInternalFrame are both subclasses of

Container. Both classes define a constructor

that accepts a String as a title. Both classes

define a method named getTitle that returns the

title string.

*/

public class Q02{

public static void main(String[] args){

Foo <Frame> fFoo =

new Foo <Frame>(
new Frame("Frame title"));

System.out.println(fFoo.get().getTitle());

Foo <JInternalFrame> jFoo =

new Foo <JInternalFrame>(
new JInternalFrame(

"JInternalFrame title"));

System.out.println(jFoo.get().getTitle());

}//end main

}//end class Q02

//===//

class Foo<T extends Container>{
private T obj;

public Foo(T obj){

this.obj = obj;

}//end constructor

public T get(){

return obj;

}//end get

}//end Foo

//===//

Table 4.168

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1391

Figure 2 - Question 2.

Frame title

JInternalFrame title

Table 4.169

Answer 2 (p. 1406)

4.3.6.3.3 Question 3

True or False: The code shown in Listing 3 (p. 1397) will compile and run successfully producing the output
shown in Figure 3 (p. 1398) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1392 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 3 - Question 3.

/*File Q03.java

**/

public class Q03{

/*

Integer and Double are both subclasses of

Number. Both classes define a method named

doubleValue that returns the encapsulated

numeric value as type double.

*/

public static void main(String[] args){

Foo <Integer> iFoo = new Foo <Integer>(15);
System.out.println(iFoo.get().doubleValue());

Foo <Double> dFoo = new Foo <Double>(1.0/3);
System.out.println(dFoo.get().doubleValue());

displayClassI(iFoo);

displayClassD(dFoo);

}//end main

//---//

static void displayClassI(Foo<Integer> obj){

System.out.println(obj.getClass());

}//end displayClassI

//---//

static void displayClassD(Foo<Double> obj){

System.out.println(obj.getClass());

}//end displayClassD

}//end class Q03

//===//

class Foo<T extends Number>{
private T obj;

public Foo(T obj){

this.obj = obj;

}//end constructor

public T get(){

return obj;

}//end get

}//end Foo

//===//

Table 4.170

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1393

Figure 3 - Question 3.

15.0

0.3333333333333333

class Foo

class Foo

Table 4.171

Answer 3 (p. 1406)

4.3.6.3.4 Question 4

True or False: The code shown in Listing 4 (p. 1398) will compile and run successfully producing the output
shown in Figure 4 (p. 1399) .

Listing 4 - Question 4.

/*File Q04.java

**/

import java.awt.Frame;

import javax.swing.JInternalFrame;

import java.awt.Container;

/*

Frame and JInternalFrame are both subclasses of

Container. Both classes define a constructor

that accepts a String as a title. Both classes

define a method named getTitle that returns the

title string.

*/

public class Q04{

public static void main(String[] args){

Foo <Frame> fFoo =

new Foo <Frame>(
new Frame("Frame title"));

System.out.println(fFoo.get().getTitle());

Foo <JInternalFrame> jFoo =

new Foo <JInternalFrame>(
new JInternalFrame(

"JInternalFrame title"));

System.out.println(jFoo.get().getTitle());

displayClassF(fFoo);

displayClassJ(jFoo);

}//end main

//---//

static void displayClassF(Foo<Frame> obj){

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1394 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

System.out.println(obj.getClass());

}//end displayClassF

//---//

static void displayClassJ(

Foo<JInternalFrame> obj){

System.out.println(obj.getClass());

}//end displayClassJ

}//end class Q04

//===//

class Foo<T extends Container>{
private T obj;

public Foo(T obj){

this.obj = obj;

}//end constructor

public T get(){

return obj;

}//end get

}//end Foo

//===//

Figure 4 - Question 4.

Frame title

JInternalFrame title

class Foo

class Foo

Table 4.172

Answer 4 (p. 1406)

4.3.6.3.5 Question 5

True or False: The code shown in Listing 5 (p. 1399) will compile and run successfully producing the output
shown in Figure 5 (p. 1400) .

Listing 5 - Question 5.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1395

/*File Q05.java

**/

/*

Integer and Double are both subclasses of

Number. Both classes define a method named

doubleValue that returns the encapsulated

numeric value as type double. Both classes

also contain a method named intValue that

returns the encapsulated numeric value as

type int.

*/

public class Q05{

public static void main(String[] args){

Foo <Integer> iFoo = new Foo <Integer>(15);
System.out.println(iFoo.get().intValue());

displayClass(iFoo);

}//end main

//---//

static void displayClass(Foo<Number> obj){

System.out.println(obj.getClass());

}//end displayClass

}//end class Q05

//===//

class Foo<T extends Number>{
private T obj;

public Foo(T obj){

this.obj = obj;

}//end constructor

public T get(){

return obj;

}//end get

}//end Foo

//===//

Table 4.173

Figure 5 - Question 5.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1396 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

15

class Foo

Table 4.174

Answer 5 (p. 1405)

4.3.6.3.6 Question 6

True or False: The code shown in Listing 6 (p. 1402) will compile and run successfully producing the output
shown in Figure 6 (p. 1403) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1397

Listing 6 - Question 6.

/*File Q06.java

**/

import java.awt.Frame;

import javax.swing.JInternalFrame;

import java.awt.Container;

/*

Frame and JInternalFrame are both subclasses of

Container. Both classes define a constructor

that accepts a String as a title. Both classes

define a method named getTitle that returns the

title string.

*/

public class Q06{

public static void main(String[] args){

Foo <Frame> fFoo =

new Foo <Frame>(
new Frame("Frame title"));

System.out.println(fFoo.get().getTitle());

displayClass(fFoo);

}//end main

//---//

static void displayClass(Foo<Container> obj){

System.out.println(obj.getClass());

}//end displayClass

}//end class Q06

//===//

class Foo<T extends Container>{
private T obj;

public Foo(T obj){

this.obj = obj;

}//end constructor

public T get(){

return obj;

}//end get

}//end Foo

//===//

Table 4.175

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1398 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Figure 6 - Question 6.

Frame title

class Foo

Table 4.176

Answer 6 (p. 1405)

4.3.6.4 Figures

• Figure 1 (p. 1394) . Question 1.
• Figure 2 (p. 1396) . Question 2.
• Figure 3 (p. 1398) . Question 3.
• Figure 4 (p. 1399) . Question 4.
• Figure 5 (p. 1400) . Question 5.
• Figure 6 (p. 1403) . Question 6.
• Figure 7 (p. 1405) . Answer 6.
• Figure 8 (p. 1405) . Answer 5.

4.3.6.5 Listings

• Listing 1 (p. 1393) . Question 1.
• Listing 2 (p. 1395) . Question 2.
• Listing 3 (p. 1397) . Question 3.
• Listing 4 (p. 1398) . Question 4.
• Listing 5 (p. 1399) . Question 5.
• Listing 6 (p. 1402) . Question 6.

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1399

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1400 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.3.6.6 Answers

4.3.6.6.1 Answer 6

False. This program illustrates that you cannot pass an object of a parameterized class to a method that is
designed to accept an incoming parameter of that class with a speci�c type of parameter that is a superclass
of the actual type of parameter. An attempt to compile the program results in the error shown in Figure 7
(p. 1405) .

Figure 7 - Answer 6.

Q06.java:29: error: method displayClass in class Q06 cannot be

applied to given types;

displayClass(fFoo);

^

required: Foo<Container>
found: Foo<Frame>
reason: actual argument Foo<Frame> cannot be converted to

Foo<Container> by method invocation conversion

1 error

Table 4.177

Back to Question 6 (p. 1401)

4.3.6.6.2 Answer 5

False. This program illustrates that you cannot pass an object of a parameterized class to a method that is
designed to accept an incoming parameter of that class with a speci�c type of parameter that is a superclass
of the actual type of parameter. An attempt to compile the program results in the error shown in Figure 8
(p. 1405) .

Figure 8 - Answer 5.

Q05.java:23: error: method displayClass in class Q05 cannot be

applied to given types;

displayClass(iFoo);

^

required: Foo<Number>
found: Foo<Integer>
reason: actual argument Foo<Integer> cannot be converted to

Foo<Number> by method invocation conversion

1 error

Table 4.178

Back to Question 5 (p. 1399)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1401

4.3.6.6.3 Answer 4

True. This program illustrates passing an object of a parameterized class to a method that is designed to
accept an incoming parameter of that class with a speci�c type of parameter.

Back to Question 4 (p. 1398)

4.3.6.6.4 Answer 3

True. This program illustrates passing an object of a parameterized class to a method that is designed to
accept an incoming parameter of that class with a speci�c type of parameter.

Back to Question 3 (p. 1396)

4.3.6.6.5 Answer 2

True. This program illustrates the successful use of bounded type parameters.
Back to Question 2 (p. 1394)

4.3.6.6.6 Answer 1

True. This program illustrates the successful use of bounded type parameters. It also illustrates the use of
autoboxing to encapsulate primitive types int and double into objects of the wrapper classes Integer and
Double.

Back to Question 1 (p. 1393)

4.3.6.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4250r: Review of Generics, Inheritance, and Subtypes
• File: Java4250r.htm
• Published: 10/20/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1402 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.3.7 Java4260r: Review of Type Inference
114

Revised: Wed May 11 18:23:25 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 115

• Object-Oriented Programming (OOP) with Java 116

4.3.7.1 Table of Contents

• Table of Contents (p. 1407)
• Preface (p. 1407)
• Questions (p. 1408)

· Question 1 (p. 1408)
· Question 2 (p. 1409)
· Question 3 (p. 1409)
· Question 4 (p. 1410)
· Question 5 (p. 1412)
· Question 6 (p. 1414)

• Figures (p. 1416)
• Listings (p. 1416)
• Answers (p. 1418)

· Answer 6 (p. 1418)
· Answer 5 (p. 1418)
· Answer 4 (p. 1418)
· Answer 3 (p. 1418)
· Answer 2 (p. 1419)
· Answer 1 (p. 1419)

• Miscellaneous (p. 1419)

4.3.7.2 Preface

This module is one in a collection of modules on Java Generics designed for teaching ITSE2317 - Java
Programming (Intermediate) at Austin Community College in Austin, TX.

This and future modules in this series will be based on the Generics (Updated) 117 section of The Java
Tutorials 118 from Oracle. (In the event that these links become broken, you should have no di�culty
�nding the Oracle material with an online search.)

You will �nd the learning resources for this module on the Oracle site at Type Inference 119 . This module
contains review questions and answers keyed to the material in that document.

Once you study that material, you should be able to answer the review questions in this module.
Once you complete your study of all the material on generics 120 , you should be able to answer the

review questions at Questions and Exercises 121 on the Oracle site.

114This content is available online at <http://cnx.org/content/m47828/1.6/>.
115http://cnx.org/contents/Rl23r3Lw
116http://cnx.org/contents/-2RmHFs_
117http://docs.oracle.com/javase/tutorial/java/generics/
118http://docs.oracle.com/javase/tutorial/index.html
119http://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html
120http://docs.oracle.com/javase/tutorial/java/generics/index.html
121http://docs.oracle.com/javase/tutorial/java/generics/QandE/generics-questions.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1403

The questions and the answers in this module are connected by hyperlinks to make it easy for you to
navigate from the question to the answer and back again.

Note that much of the type inference material discussed in this module requires the use of Java SE 7 or
a later version.

4.3.7.3 Questions

4.3.7.3.1 Question 1 .

True or False: The code shown in Listing 1 (p. 1408) will compile and run successfully producing the output
shown in Figure 1 (p. 1408) .

Listing 1 - Question 1.

/*File Q01.java

**/

import java.awt.*;

/*Note the following inheritance hierarchy

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Window

java.awt.Frame

*/

public class Q01{

public static void main(String[] args){

Foo <Window> var = new Foo <Window>();
var.runIt();

}//end main

}//end class Q01

//===//

class Foo<T extends Component>{
public void runIt(){

System.out.println("Object instantiated.");

}//end runIt

}//end Foo

Table 4.179

Figure 1 - Question 1.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1404 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Object instantiated.

Table 4.180

Answer 1 (p. 1419)

4.3.7.3.2 Question 2

True or False: The code shown in Listing 2 (p. 1409) will compile and run successfully producing the output
shown in Figure 2 (p. 1409) .

Listing 2 - Question 2.

/*File Q02.java

**/

import java.awt.*;

/*Note the following inheritance hierarchy

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Window

java.awt.Frame

*/

public class Q02{

public static void main(String[] args){

Foo <Window> var = new Foo <>();
var.runIt();

}//end main

}//end class Q02

//===//

class Foo<T extends Component>{
public void runIt(){

System.out.println("Object instantiated.");

}//end runIt

}//end Foo

Table 4.181

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1405

Figure 2 - Question 2.

Object instantiated.

Table 4.182

Answer 2 (p. 1419)

4.3.7.3.3 Question 3

True or False: The code shown in Listing 3 (p. 1410) will compile and run successfully producing the output
shown in Figure 3 (p. 1410) .

Listing 3 - Question 3.

/*File Q03.java

**/

import java.awt.*;

/*Note the following inheritance hierarchy

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Window

java.awt.Frame

*/

public class Q03{

public static void main(String[] args){

Foo <> var = new Foo <Window>();
var.runIt();

}//end main

}//end class Q03

//===//

class Foo<T extends Component>{
public void runIt(){

System.out.println("Object instantiated.");

}//end runIt

}//end Foo

Table 4.183

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1406 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Figure 3 - Question 3.

Object instantiated.

Table 4.184

Answer 3 (p. 1418)

4.3.7.3.4 Question 4

True or False: The code shown in Listing 4 (p. 1411) will compile and run successfully producing the output
shown in Figure 4 (p. 1411) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1407

Listing 4 - Question 4.

/*File Q04.java

**/

public class Q04{

public static void main(String[] args){

Foo <String,Integer> varA =

new Foo <String,Integer>("abcde",500);
System.out.print(varA.get1());

System.out.println("," + varA.get2());

Foo <Integer,String> varB =

new Foo <Integer,String>(900,"fghijkl");
System.out.print(varB.get1());

System.out.println("," + varB.get2());

}//end main

}//end class Q04

//===//

class Foo<T1,T2>{
private T1 t1;

private T2 t2;

public Foo(T1 t1,T2 t2){

this.t1 = t1;

this.t2 = t2;

}//end constructor

public T1 get1(){

return t1;

}//end get1

public T2 get2(){

return t2;

}//end get2

}//end Foo

Table 4.185

Figure 4 - Question 4.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1408 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

abcde,500

900,fghijkl

Table 4.186

Answer 4 (p. 1418)

4.3.7.3.5 Question 5

True or False: The code shown in Listing 5 (p. 1413) will compile and run successfully producing the output
shown in I mage 5 (p. 1413) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1409

Listing 5 - Question 5.

/*File Q05.java

**/

public class Q05{

public static void main(String[] args){

Foo <String,Integer> varA =

new Foo <>("abcde",500);
System.out.print(varA.get1());

System.out.println("," + varA.get2());

Foo <Integer,String> varB =

new Foo <>(900,"fghijkl");
System.out.print(varB.get1());

System.out.println("," + varB.get2());

}//end main

}//end class Q05

//===//

class Foo<T1,T2>{
private T1 t1;

private T2 t2;

public Foo(T1 t1,T2 t2){

this.t1 = t1;

this.t2 = t2;

}//end constructor

public T1 get1(){

return t1;

}//end get1

public T2 get2(){

return t2;

}//end get2

}//end Foo

Table 4.187

Figure 5 - Question 5.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1410 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

abcde,500

900,fghijkl

Table 4.188

Answer 5 (p. 1418)

4.3.7.3.6 Question 6

True or False: The code shown in Listing 6 (p. 1415) will compile and run successfully producing the output
shown in Figure 6 (p. 1415) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1411

Listing 6 - Question 6.

/*File Q06.java

**/

public class Q06{

public static void main(String[] args){

Foo <> varA =

new Foo <String,Integer>("abcde",500);
System.out.print(varA.get1());

System.out.println("," + varA.get2());

Foo <> varB =

new Foo <Integer,String>(900,"fghijkl");
System.out.print(varB.get1());

System.out.println("," + varB.get2());

}//end main

}//end class Q06

//===//

class Foo<T1,T2>{
private T1 t1;

private T2 t2;

public Foo(T1 t1,T2 t2){

this.t1 = t1;

this.t2 = t2;

}//end constructor

public T1 get1(){

return t1;

}//end get1

public T2 get2(){

return t2;

}//end get2

}//end Foo

Table 4.189

Figure 6 - Question 6.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1412 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

abcde,500

900,fghijkl

Table 4.190

Answer 6 (p. 1418)

4.3.7.4 Figures

• Figure 1 (p. 1408) . Question 1.
• Figure 2 (p. 1409) . Question 2.
• Figure 3 (p. 1410) . Question 3.
• Figure 4 (p. 1411) . Question 4.
• Figure 5 (p. 1413) . Question 5.
• Figure 6 (p. 1415) . Question 6.
• Figure 7 (p. 1418) . Answer 6.
• Figure 8 (p. 1419) . Answer 3.

4.3.7.5 Listings

• Listing 1 (p. 1408) . Question 1.
• Listing 2 (p. 1409) . Question 2.
• Listing 3 (p. 1410) . Question 3.
• Listing 4 (p. 1411) . Question 4.
• Listing 5 (p. 1413) . Question 5.
• Listing 6 (p. 1415) . Question 6.

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1413

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1414 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.3.7.6 Answers

4.3.7.6.1 Answer 6

False. This program illustrates incorrect use of the diamond for type inference and will not compile. In Java
SE 7 and later, you can replace the type arguments required to invoke the constructor of a generic class with
an empty set of matching angle brackets as long as the compiler can determine, or infer, the type arguments
from the context. This pair of angle brackets, is informally called the diamond. However, in this case, the
diamond is in the wrong location. This results in the errors shown in Figure 7 (p. 1418) .

Figure 7 - Answer 6.

Q06.java:18: error: illegal start of type

Foo <> varA =

^

Q06.java:23: error: illegal start of type

Foo <> varB =

^

2 errors

Table 4.191

Back to Question 6 (p. 1414)

4.3.7.6.2 Answer 5

True. This program illustrates type inference. In Java SE 7 and later, you can replace the type arguments
required to invoke the constructor of a generic class with an empty set of matching angle brackets as long
as the compiler can determine, or infer, the type arguments from the context. This pair of angle brackets,
is informally called the diamond.

Note that the Foo constructor requires two parameters and the types of those parameters are speci�ed
inside the angle brackets.

Also note that the order of the types of the two parameters is swapped between the instantiation of the
�rst and second objects. The program also illustrates autoboxing.

Back to Question 5 (p. 1412)

4.3.7.6.3 Answer 4

True. This program illustrates generics without any obvious type inference. This is the style of programming
that would have been used prior to the release of Java SE 7.

Note that the Foo constructor requires two parameters and the types of those parameters are speci�ed
inside the angle brackets.

Also note that the order of the types of the two parameters is swapped between the instantiation of the
�rst and second objects. The program also illustrates autoboxing.

Back to Question 4 (p. 1410)

4.3.7.6.4 Answer 3

False. This program illustrates incorrect use of the diamond for type inference and will not compile. In Java
SE 7 and later, you can replace the type arguments required to invoke the constructor of a generic class with

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1415

an empty set of matching angle brackets as long as the compiler can determine, or infer, the type arguments
from the context. This pair of angle brackets, is informally called the diamond. However, in this case, the
diamond is in the wrong location. Therefore, the program produces the error shown in Figure 8 (p. 1419) .

Figure 8 - Answer 3.

Q03.java:26: error: illegal start of type

Foo <> var = new Foo <Window>();
^

1 error

Table 4.192

Back to Question 3 (p. 1409)

4.3.7.6.5 Answer 2

True. This program illustrates bounded parameters along with type inference. In Java SE 7 and later,
you can replace the type arguments required to invoke the constructor of a generic class with an empty set
of matching angle brackets as long as the compiler can determine, or infer, the type arguments from the
context. This pair of angle brackets, is informally called the diamond.

Back to Question 2 (p. 1409)

4.3.7.6.6 Answer 1

True. This program illustrates generics with bounded parameters but without any obvious type inference.
This is the style of programming that would have been used prior to the release of Java SE 7.

Back to Question 1 (p. 1408)

4.3.7.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4260r: Review of Type Inference
• File: Java4260r.htm
• Published: 10/22/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1416 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1417

4.3.8 Java4270r: Review of Wildcards
122

Revised: Wed May 11 18:39:23 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 123

• Object-Oriented Programming (OOP) with Java 124

4.3.8.1 Table of Contents

• Table of Contents (p. 1421)
• Preface (p. 1421)
• Questions (p. 1422)

· Question 1 (p. 1422)
· Question 2 (p. 1423)
· Question 3 (p. 1425)
· Question 4 (p. 1426)
· Question 5 (p. 1428)
· Question 6 (p. 1429)

• Figures (p. 1431)
• Listings (p. 1431)
• Answers (p. 1433)

· Answer 6 (p. 1433)
· Answer 5 (p. 1433)
· Answer 4 (p. 1433)
· Answer 3 (p. 1434)
· Answer 2 (p. 1434)
· Answer 1 (p. 1434)

• Miscellaneous (p. 1436)

4.3.8.2 Preface

This module is one in a collection of modules on Java Generics designed for teaching ITSE2317 - Java
Programming (Intermediate) at Austin Community College in Austin, TX.

This and future modules in this series will be based on the Generics (Updated) 125 section of The Java
Tutorials 126 from Oracle. (In the event that these links become broken, you should have no di�culty
�nding the Oracle material with an online search.)

You will �nd the learning resources for this module on the Oracle site at Wildcards 127 .
This module contains review questions and answers keyed to the material in Wildcards 128 .
Once you study that material, you should be able to answer the review questions in this module.
This is the �nal module in this series. This course does not cover the following topics:

• Type Erasure 129

122This content is available online at <http://cnx.org/content/m47836/1.5/>.
123http://cnx.org/contents/Rl23r3Lw
124http://cnx.org/contents/-2RmHFs_
125http://docs.oracle.com/javase/tutorial/java/generics/
126http://docs.oracle.com/javase/tutorial/index.html
127http://docs.oracle.com/javase/tutorial/java/generics/wildcards.html
128http://docs.oracle.com/javase/tutorial/java/generics/wildcards.html
129http://docs.oracle.com/javase/tutorial/java/generics/erasure.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1418 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

• Restrictions on Generics 130

However, once you complete your study of all the material on generics 131 , (including the two topics listed
above) , you should be able to answer the review questions at Questions and Exercises 132 on the Oracle
site.

The questions and the answers in this module are connected by hyperlinks to make it easy for you to
navigate from the question to the answer and back again.

4.3.8.3 Questions

4.3.8.3.1 Question 1 .

True or False: The code shown in Listing 1 (p. 1422) will compile and run successfully producing the output
shown in Figure 1 (p. 1423) .

Listing 1 - Question 1.

/*File Q01.java

**/

import java.util.ArrayList;

import java.awt.Button;

import java.awt.Label;

import java.awt.Component;

public class Q01{

/*

Given:

Button and Label are subclasses of the Component

class.

The getClass method is defined in the Object

class. When called on a reference to an object,

the method returns the name of the class from

which the object was instantiated.

*/

public static void main(String[] args){

//Create and populate a list designed to

// store references to objects of type Button

// and display its contents.

ArrayList <Button> listA = new ArrayList<>();
listA.add(new Button("Button01"));

listA.add(new Button("Button02"));

display(listA);

System.out.println("");//blank line

//Create and populate a list designed to

// store references to objects of type Label

// and display its contents.

ArrayList <Label> listB = new ArrayList<>();

130http://docs.oracle.com/javase/tutorial/java/generics/restrictions.html
131http://docs.oracle.com/javase/tutorial/java/generics/index.html
132http://docs.oracle.com/javase/tutorial/java/generics/QandE/generics-questions.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1419

listB.add(new Label("Label01"));

listB.add(new Label("Label02"));

display(listB);

}//end main

//---//

static void display(ArrayList<Component> list){

for(Component n : list){

System.out.println(n.getClass());

if(n instanceof Button){

System.out.println(

((Button)n).getLabel());

}else if(n instanceof Label) {

System.out.println(((Label)n).getText());

}//end else

}//end for loop

}//end display

}//end class Q01

Figure 1 - Question 1.

class java.awt.Button

Button01

class java.awt.Button

Button02

class java.awt.Label

Label01

class java.awt.Label

Label02

Table 4.193

Answer 1 (p. 1434)

4.3.8.3.2 Question 2

True or False: The code shown in Listing 2 (p. 1423) will compile and run successfully producing the output
shown in Figure 2 (p. 1425) .

Listing 2 - Question 2.

/*File Q02.java

**/

import java.util.ArrayList;

import java.awt.Button;

import java.awt.Label;

import java.awt.Component;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1420 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

public class Q02{

/*

Given:

Button and Label are subclasses of the Component

class.

The getClass method is defined in the Object

class. When called on a reference to an object,

the method returns the name of the class from

which the object was instantiated.

*/

public static void main(String[] args){

//Create and populate a list designed to

// store references to objects of type Button

// and display its contents.

ArrayList <Button> listA = new ArrayList<>();
listA.add(new Button("Button01"));

listA.add(new Button("Button02"));

display(listA);

System.out.println("");//blank line

//Create and populate a list designed to

// store references to objects of type Label

// and display its contents.

ArrayList <Label> listB = new ArrayList<>();
listB.add(new Label("Label01"));

listB.add(new Label("Label02"));

display(listB);

}//end main

//---//

static void display(

ArrayList<? extends Component> list){

for(Component n : list){

System.out.println(n.getClass());

if(n instanceof Button){

System.out.println(

((Button)n).getLabel());

}else if(n instanceof Label) {

System.out.println(((Label)n).getText());

}//end else

}//end for loop

}//end display

}//end class Q02

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1421

Figure 2 - Question 2.

class java.awt.Button

Button01

class java.awt.Button

Button02

class java.awt.Label

Label01

class java.awt.Label

Label02

Table 4.194

Answer 2 (p. 1434)

4.3.8.3.3 Question 3

True or False: The code shown in Listing 3 (p. 1425) will compile and run successfully producing the output
shown in Figure 3 (p. 1426) .

Listing 3 - Question 3.

/*File Q03.java

**/

import java.util.ArrayList;

import java.awt.Button;

import java.awt.Label;

import java.awt.Component;

public class Q03{

/*

Given:

Button and Label are subclasses of the Component

class.

The getClass method is defined in the Object

class. When called on a reference to an object,

the method returns the name of the class from

which the object was instantiated.

*/

public static void main(String[] args){

//Create and populate a list designed to

// store references to objects of type Button

// and display its contents.

ArrayList <Button> listA = new ArrayList<>();
listA.add(new Button("Button01"));

listA.add(new Button("Button02"));

display(listA);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1422 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

System.out.println("");//blank line

//Create and populate a list designed to

// store references to objects of type Label

// and display its contents.

ArrayList <Label> listB = new ArrayList<>();
listB.add(new Label("Label01"));

listB.add(new Label("Label02"));

display(listB);

}//end main

//---//

static void display(ArrayList<?> list){

for(Object n : list){

System.out.println(n.getClass());

if(n instanceof Button){

System.out.println(

((Button)n).getLabel());

}else if(n instanceof Label) {

System.out.println(((Label)n).getText());

}//end else

}//end for loop

}//end display

}//end class Q03

Figure 3 - Question 3.

class java.awt.Button

Button01

class java.awt.Button

Button02

class java.awt.Label

Label01

class java.awt.Label

Label02

Table 4.195

Answer 3 (p. 1434)

4.3.8.3.4 Question 4

True or False: The code shown in Listing 4 (p. 1426) will compile and run successfully producing the output
shown in Figure 4 (p. 1428) .

Listing 4 - Question 4.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1423

/*File Q04.java

**/

import java.util.ArrayList;

import java.awt.Button;

import java.awt.Label;

import java.awt.Component;

public class Q04{

/*

Given:

Button and Label are subclasses of the Component

class.

The getClass method is defined in the Object

class. When called on a reference to an object,

the method returns the name of the class from

which the object was instantiated.

*/

public static void main(String[] args){

//Create and populate a list designed to

// store references to objects of type Button

// and display its contents.

ArrayList <Button> listA = new ArrayList<>();
listA.add(new Button("Button01"));

listA.add(new Button("Button02"));

display(listA);

System.out.println("");//blank line

//Create and populate a list designed to

// store references to objects of type Label

// and display its contents.

ArrayList <Label> listB = new ArrayList<>();
listB.add(new Label("Label01"));

listB.add(new Label("Label02"));

display(listB);

}//end main

//---//

static void display(ArrayList<Object> list){

for(Object n : list){

System.out.println(n.getClass());

if(n instanceof Button){

System.out.println(

((Button)n).getLabel());

}else if(n instanceof Label) {

System.out.println(((Label)n).getText());

}//end else

}//end for loop

}//end display

}//end class Q04

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1424 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Figure 4 - Question 4.

class java.awt.Button

Button01

class java.awt.Button

Button02

class java.awt.Label

Label01

class java.awt.Label

Label02

Table 4.196

Answer 4 (p. 1433)

4.3.8.3.5 Question 5

True or False: The code shown in Listing 5 (p. 1428) will compile and run successfully producing the output
shown in Figure 5 (p. 1429) .

Listing 5 - Question 5.

/*File Q05.java

**/

import java.util.ArrayList;

import java.awt.Window;

import java.awt.Frame;

import javax.swing.JFrame;

public class Q05{

/*

Given:

Component extends Object

Container extends Component

Window extends Container

Frame extends Window

JFrame extends Frame

The getClass method is defined in the Object

class. When called on a reference to an object,

the method returns the name of the class from

which the object was instantiated.

*/

public static void main(String[] args){

Frame frame0 = new Frame("Frame0");

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1425

ArrayList <Frame> listA = new ArrayList<>();
listA.add(frame0);

listA.add(new Frame("Frame1"));

display(listA);

ArrayList<Window> listB = new ArrayList<>();
listB.add(new Window(frame0));

listB.add(new Window(frame0));

display(listB);

ArrayList<JFrame> listC = new ArrayList<>();
listC.add(new JFrame("JFrame0"));

listC.add(new JFrame("JFrame1"));

display(listC);

}//end main

//---//

static void display(

ArrayList<? super JFrame> list){

for(Object n : list){

System.out.println(n.getClass());

}//end for loop

System.out.println();//blank line

}//end display

}//end class Q05

Figure 5 - Question 5.

class java.awt.Frame

class java.awt.Frame

class java.awt.Window

class java.awt.Window

class javax.swing.JFrame

class javax.swing.JFrame

Table 4.197

Answer 5 (p. 1433)

4.3.8.3.6 Question 6

True or False: The code shown in Listing 6 (p. 1429) will compile and run successfully producing the output
shown in Figure 6 (p. 1431) .

Listing 6 - Question 6.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1426 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

/*File Q06.java

**/

import java.util.ArrayList;

import java.awt.Window;

import java.awt.Frame;

import javax.swing.JFrame;

public class Q06{

/*

Given:

Component extends Object

Container extends Component

Window extends Container

Frame extends Window

JFrame extends Frame

The getClass method is defined in the Object

class. When called on a reference to an object,

the method returns the name of the class from

which the object was instantiated.

*/

public static void main(String[] args){

Frame frame0 = new Frame("Frame0");

ArrayList <Frame> listA = new ArrayList<>();
listA.add(frame0);

listA.add(new Frame("Frame1"));

display(listA);

ArrayList<Window> listB = new ArrayList<>();
listB.add(new Window(frame0));

listB.add(new Window(frame0));

display(listB);

ArrayList<JFrame> listC = new ArrayList<>();
listC.add(new JFrame("JFrame0"));

listC.add(new JFrame("JFrame1"));

display(listC);

}//end main

//---//

static void display(

ArrayList<? super Frame> list){

for(Object n : list){

System.out.println(n.getClass());

}//end for loop

System.out.println();//blank line

}//end display

}//end class Q06

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1427

Figure 6 - Question 6.

class java.awt.Frame

class java.awt.Frame

class java.awt.Window

class java.awt.Window

class javax.swing.JFrame

class javax.swing.JFrame

Table 4.198

Answer 6 (p. 1433)

4.3.8.4 Figures

• Figure 1 (p. 1423) . Question 1.
• Figure 2 (p. 1425) . Question 2.
• Figure 3 (p. 1426) . Question 3.
• Figure 4 (p. 1428) . Question 4.
• Figure 5 (p. 1429) . Question 5.
• Figure 6 (p. 1431) . Question 6.
• Figure 7 (p. 1433) . Answer 6.
• Figure 8 (p. 1434) . Answer 4.
• Figure 9 (p. 1436) . Answer 1.

4.3.8.5 Listings

• Listing 1 (p. 1422) . Question 1.
• Listing 2 (p. 1423) . Question 2.
• Listing 3 (p. 1425) . Question 3.
• Listing 4 (p. 1426) . Question 4.
• Listing 5 (p. 1428) . Question 5.
• Listing 6 (p. 1429) . Question 6.

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1428 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1429

4.3.8.6 Answers

4.3.8.6.1 Answer 6

False. This program attempts to illustrate the use of a lower bounded wildcard to de�ne a generic method
that will accept an incoming reference to an object of a generic class where the parameter type for the object
is equal to or above the type of the wildcard in the inheritance hierarchy. The lower bounded wildcard type
for the display method is Frame. Therefore, the display method will accept references to ArrayList objects
for parameter types Frame, Window, Container, Component, or Object, but it will not accept a reference to
an ArrayList object for parameter type JFrame. Therefore, the program will not compile, resulting in the
error shown in Figure 7 (p. 1433) .

Figure 7 - Answer 6.

Q06.java:56: error: method display in class Q06 cannot be applied

to given types;

display(listC);

^

required: ArrayList<? super Frame>
found: ArrayList<JFrame>
reason: actual argument ArrayList<JFrame> cannot be converted to

ArrayList<? super Frame> by method invocation conversion

1 error

Table 4.199

Back to Question 6 (p. 1429)

4.3.8.6.2 Answer 5

True. This program illustrates the use of a lower bounded wildcard to de�ne a generic method that will
accept an incoming reference to an object of a generic class where the parameter type for the object is equal
to or above the type of the wildcard in the inheritance hierarchy. The lower bounded wildcard type for the
display method is JFrame. Therefore, the display method will accept references to ArrayList objects for
parameter types JFrame, Frame, Window, Container, Component, or Object

Back to Question 5 (p. 1428)

4.3.8.6.3 Answer 4

False. This program illustrates the fact that a parameter of type Object is not the same as an unbounded
wildcard parameter. The program refuses to compile and produces the errors shown in Figure 8 (p. 1434) .

Figure 8 - Answer 4.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1430 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Q04.java:31: error: method display in class Q04 cannot be applied

to given types;

display(listA);

^

required: ArrayList<Object>
found: ArrayList<Button>
reason: actual argument ArrayList<Button> cannot be converted to

ArrayList<Object> by method invocation conversion

Q04.java:40: error: method display in class Q04 cannot be applied

to given types;

display(listB);

^

required: ArrayList<Object>
found: ArrayList<Label>
reason: actual argument ArrayList<Label> cannot be converted to

ArrayList<Object> by method invocation conversion

2 errors

Table 4.200

Back to Question 4 (p. 1426)

4.3.8.6.4 Answer 3

True. This program illustrates two scenarios where an unbounded wildcard is a useful approach:
1. When you are writing a method that can be implemented using functionality provided in the Object

class. The getClass method that is called in the display method is de�ned in the Object class.
2. When the code in a generic method doesn't depend on the type parameter. An if-else statement along

with speci�c casts is used in the display method to isolate the calls to the getText and getLabel methods
from the type parameter.

Back to Question 3 (p. 1425)

4.3.8.6.5 Answer 2

True. This program illustrates the use of upper bounded wildcards. The method named display will accept
and process a reference to an ArrayList object whose element types are Component or any subclass of
Component. Methods that are de�ned in or inherited into the Component class can be called on the
elements with no requirement for a cast. Methods that are not de�ned in or inherited into the Component
class but are de�ned in the element classes can be called on the elements after casting to the element type.

Back to Question 2 (p. 1423)

4.3.8.6.6 Answer 1

False. This program will not compile. The method named display will only accept and process a reference
to an ArrayList object whose element are of type Component. ArrayList objects whose element types are
subclasses of Component do not satisfy that requirement. An attempt to compile the program produces the
errors shown in Figure 9 (p. 1436) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1431

Figure 9 - Answer 1.

Q01.java:34: error: method display in class Q01

cannot be applied to given types;

display(listA);

^

required: ArrayList<Component>
found: ArrayList<Button>
reason: actual argument ArrayList<Button> cannot be converted to

ArrayList<Component> by method invocation conversion

Q01.java:43: error: method display in class Q01 cannot be applied

to given types;

display(listB);

^

required: ArrayList<Component>
found: ArrayList<Label>
reason: actual argument ArrayList<Label> cannot be converted to

ArrayList<Component> by method invocation conversion

2 errors

Table 4.201

Back to Question 1 (p. 1422)

4.3.8.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4270r: Review of Wildcards
• File: Java4270r.htm
• Published: 10/24/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1432 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4 Event Handling

4.4.1 Jy0035: Java OOP: Preface to Event Handling
133

Revised: Thu May 12 10:35:00 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 134

• Object-Oriented Programming (OOP) with Java 135

4.4.1.1 Additional material

While most of the material required for success in the Event Handling portion of this course is contained
in this book, other important material is contained in the section titled Essence of OOP in the book for
the prerequisite course, ITSE 2321 - Object-Oriented Programming (Java) 136 .

In addition, the following material in the Essence of OOP section of this book is particularly germane
to the Event Handling portion of this course:

• Java1636 Java OOP: Member Classes
• Java1638 Java OOP: Local Classes
• Java1640 Java OOP: Anonymous Classes

(Note in particular that the page titled Java1640 Java OOP: Anonymous Classes contains quite a lot
of material on event handling in addition to the material on anonymous classes. You will need to understand
the material on anonymous classes as well as the material on event handling to succeed in the Event
Handling portion of this course.)

4.4.1.2 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jy0035: Java OOP: Preface to Event Handling
• File: Jy0035.htm
• Published: 10/26/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

133This content is available online at <http://cnx.org/content/m47842/1.11/>.
134http://cnx.org/contents/Rl23r3Lw
135http://cnx.org/contents/-2RmHFs_
136http://cnx.org/contents/dzOvxPFw

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1433

-end-

4.4.2 Java Event Handling Basics

4.4.2.1 Java0073 Java OOP The AWT and Swing, A Preview
137

Revised: Thu May 12 10:07:20 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 138

• Object-Oriented Programming (OOP) with Java 139

4.4.2.1.1 Table of Contents

• Preface (p. 1438)
• Discussion (p. 1438)
• What's next? (p. 1440)
• Miscellaneous (p. 1440)

4.4.2.1.2 Preface

This module is part of a collection of modules designed to teach you about Object-Oriented Programming
(OOP) using Java.

(Editor's note: As you will see when you read this module, the original version was written about
eighteen years ago. However, despite numerous improvements that have occurred in Java since then, most
of what was true on this topic in 1998 is still true in 2012. A wise man once said, "If it ain't broke, don't �x
it."

One of the changes that you will see in subsequent modules is that the name of the package that contains
the Swing classes has been changed to javax.swing .)

4.4.2.1.3 Discussion

This module provides a very brief preview of some of what you can expect to �nd in subsequent modules
regarding the Abstract Windows Toolkit (AWT) and the Swing component set.

The user interface of a modern computer program often involves techniques to activate many of the
human senses. We use icons, text boxes, images, sound, boardroom graphics, etc.

We weren't too concerned with these aspects of programming in the prerequisite course (ITSE 2321)
because there was a lot that you needed to learn to prepare yourself for understanding material of this sort.
That is about to change.

Much of the actual programming that you will do with Java will involve those aspects of the interface
that we commonly refer to as the Graphical User Interface (GUI) .

As of 5/10/98, there are two primary packages that are used for GUI programming under JDK 1.1.6:

1. java. awt .*
2. com.sun.java. swing .*

There are, of course, numerous other packages that are used in support of these two packages.
The AWT material was made available to Java programmers early in the life of Java. This was the

original material that was used to create graphical user interfaces. Major improvements to the AWT were
introduced with the release of JDK 1.1.
137This content is available online at <http://cnx.org/content/m44331/1.5/>.
138http://cnx.org/contents/Rl23r3Lw
139http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1434 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

The Swing components became available in released form for use with JDK 1.1 around the beginning
of 1998. These components added signi�cantly to the ability of the programmer to create GUIs, both in
terms of functionality and cosmetics.

The capability and cosmetics of the AWT were very limited but Swing made GUI programming in
Java competitive in the real world. A Java programmer no longer need apologize for the quality of the GUIs
that she can create.

We expect that these two packages may become more integrated (causing changes in your import
directives) with the release of JDK 1.2, (probably sometime in 1998) but hopefully the concepts involved
won't be greatly di�erent.

As of 3/5/97, there were more than �fty classes de�ned in package java.awt . We will discuss some of
the more important AWT classes in subsequent modules.

As of 5/10/98, the com.sun.java.swing package contains more than 75 classes and about 20 interfaces.
You might expect, therefore, that learning to use this material e�ectively won't be a trivial task.

It is very important to understand that Swing is an extension of, and not a replacement for the AWT
. While it is true that there is some overlap (for example a Swing JButton component might be
viewed as an improved functional replacement for an AWT Button component, and once you begin
using Swing buttons you may choose to never again use an AWT button) , the basic functionality
of Swing is built upon the functionality of the AWT .

Therefore, as students, we cannot simply skip over an understanding of the AWT and move on to
Swing . The AWT is the foundation for Swing .

We must �rst understand the AWT and then understand how Swing extends and improves on the
AWT . I will attempt to integrate an understanding of both the AWT and Swing in the remaining
modules in this collection.

We will begin by introducing you to a few simple components of each type and use these components to
teach you about such topics as event-driven programming, layout, graphics, etc. Then, time permitting, we
will dig a little deeper into the more complex aspects of both the AWT and Swing components and
other features.

What I won't do is show you a lot of pictures of various AWT and Swing components as is the
case with many books and other tutorials (although such pictures can be important for an appreciation of
GUI programming) . (Have you noticed how many Java books use copies of the JavaSoft documentation
as �ller material to make the book appear to contain more information than it actually contains? At least
half of many of the books currently in print is nothing more than a reproduction of the documentation that
you can download for free from JavaSoft. Oh well, enough of that!)

If you want to see some pictures of AWT and Swing components (which would be only natural) ,
you can create them yourself on your own computer screen.

For examples of the AWT components, simply look in the folders in the software that you downloaded
from JavaSoft. When you install JDK 1.1.6, a folder named "demo" will be created that contains about
two-dozen sample programs. Many of these sample programs have graphical user interfaces that make use
of the AWT . Just run the programs to see examples of the use of the AWT .

When you download and install Swing 1.0.1, a folder named "examples" will be created. This folder
contains about nine folders, each of which contains a demonstration application or applet that makes use of
Swing . You can run these programs to see the examples on your computer screen.
A particularly interesting demonstration application is the one named SwingSet . One of the new

components in Swing is a tabbed pane that looks much like a common cardboard �le folder with a labeled
tab on the top, bottom, left, or right. The AWT doesn't contain such a component.

This demonstration starts with about twenty such tabbed panes on the screen, each one of which demon-
strates one aspect of the use of Swing . By clicking on each of the labeled tabs, you can select and exercise
one aspect of Swing . In addition, there are �ve menus that contain selections, some of which impact the
behavior of some aspect of the demonstration.

While you are there, pay attention to the fact that virtually all of the Swing components are also
containers, so it is possible to cause other items (such as images) to be contained in components such as

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1435

buttons and menus.
Take a look at the pane labeled RadioButtons and see how two di�erent images of JavaSoft's little

creature named Duke can be made to function as a radio button. In this case, the selected Duke is waving
while the unselected Dukes aren't waving.

Duke shows up again under ToggleButtons where the button which has been toggled has Duke animated
in a child's swing.

The Checkboxes pane uses light bulbs that either are or are not illuminated to illustrate selection of
Checkbox items.

The examples on the Slider pane are truly impressive (the AWT doesn't have a slider component,
although it is possible to use a ScrollBar as a crude slider) .

Take a look at the ListBox pane to see another example of using images inside of a component.
The DebugGraphics pane demonstrates how to run your program in slow motion so that you can see

how the components are assembled for debugging purposes. Note that a Slider is used to control the speed
of assembly of the components.

And of course, every where you turn in this demo, you will see tool tips that are not a part of the
AWT . For a little comic relief, take a look at the ToolTips pane.

Don't forget to pull down the Options menu and select the "look and feel" of the di�erent panes as you
view them.

Actually, words are inadequate to describe what you are going to �nd when you install and run the
SwingSet demonstration. To use a corny phrase made famous by an old TV commercial (which many of
you are probably too young to remember) , "Try it, you'll like it."

4.4.2.1.4 What's next?

The next module in the collection will take a �rst look at callbacks .

4.4.2.1.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: The AWT and Swing, A Preview
• File: Java0073.htm
• Published: 1998

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1436 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.2.2 Java0077 Java OOP Callbacks - I
140

Revised: Thu May 12 11:00:55 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 141

• Object-Oriented Programming (OOP) with Java 142

4.4.2.2.1 Table of Contents

• Preface (p. 1441)

· Viewing tip (p. 1441)

* Figures (p. 1441)
* Listings (p. 1441)

• Preview (p. 1442)
• Discussion and sample code (p. 1443)

· Unicast sample program (p. 1443)
· Multicast sample program (p. 1448)

• Run the program (p. 1460)
• Summary (p. 1460)
• What's next? (p. 1460)
• Miscellaneous (p. 1460)

4.4.2.2.2 Preface

This module is one in a series of three modules designed to teach you about callbacks in Object-Oriented
Programming (OOP) using Java. The other two modules are titled Callbacks - II and Callbacks - III.

4.4.2.2.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

4.4.2.2.2.1.1 Figures

• Figure 1 (p. 1451) . Documentation for the removeElement method.
• Figure 2 (p. 1455) . Output from Callback02.

4.4.2.2.2.1.2 Listings

• Listing 1 (p. 1444) . De�ne the CallBack interface.
• Listing 2 (p. 1444) . De�ne the Teacher class.
• Listing 3 (p. 1445) . De�ne the Student class.
• Listing 4 (p. 1446) . A controlling class named Callback01.
• Listing 5 (p. 1446) . Complete listing of program named Callback01.
• Listing 6 (p. 1449) . De�ne the CallBack interface.
• Listing 7 (p. 1450) . De�ne the Teacher class.

140This content is available online at <http://cnx.org/content/m44333/1.7/>.
141http://cnx.org/contents/Rl23r3Lw
142http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1437

• Listing 8 (p. 1450) . De�ne the method named register.
• Listing 9 (p. 1451) . The unRegister method.
• Listing 10 (p. 1452) . De�ne the callTheRoll method.
• Listing 11 (p. 1452) . De�ne the class named Dog.
• Listing 12 (p. 1453) . De�ne the class named Callback02.
• Listing 13 (p. 1455) . Complete listing of program named Callback02.

4.4.2.2.3 Preview

Many processes in the standard Java API make use of a mechanism that might be referred to as a callback
mechanism. Basically, this is a mechanism where a method in one object asks a method in another object
to "call me back" or "notify me" when an interesting event happens.

An interesting event
For example, an interesting event might be that the price of a speci�ed stock goes above its previous high

value, or the toaster �nishes toasting the bread.
Multicasting
In fact, many di�erent objects may ask one object to notify them when the interesting event happens.

This is sometimes referred to as multicasting . (The one-to-one case is often referred to as unicasting.)
Going further, many di�erent objects may ask one object to notify them when any interesting event in

a family of interesting events happens, and to identify the speci�c event that actually happened along with
the noti�cation.

Many examples
For example, we see di�erent forms of callback activity in conjunction with

• the Delegation Event Model used with GUIs in JDK 1.1,
• the Observer/Observable concept used in the Model-View-Controller paradigm,
• the concept of Bound Properties and Constrained Properties in Java Beans , etc.

You can �nd examples of all of these in the pages of my online tutorial lessons.
Callback implementation
Callback capabilities are often implemented in other languages by passing a function pointer to another

function. The receiving function uses the passed function pointer to call another function when an interesting
event happens. However, Java doesn't support function pointers. In this module, we will learn how to
implement the callback mechanism using interfaces instead.

From the simple to the more complex
As usual, our approach will be to learn the material by reviewing programs that progress from very

simple to more complex. As mentioned earlier, this topic consumes all of this module and two additional
lessons on my website as well.

Meaningful scenarios
It is usually easier to understand abstract concepts if they are explained in terms of meaningful scenarios.

In this case, our scenario will consist of a teacher and some students . In the beginning there will only be
one student. Ultimately there will be many students and there will also be some animals in the classroom
as well.

Registration
The students (and the animals) register themselves on the teachers roll book to be noti�ed of interesting

events. Initially the interesting event will simply be the teacher taking the roll. Ultimately the interesting
event will be noti�cation that it is either time for recess, or it is time for lunch.

Unicast and multicast scenarios
Initially, only one student receives noti�cation of the one type of event. Ultimately, all of the students

and all of the animals receive noti�cation of both types of event (recess or lunch) but some of those who
are noti�ed choose to ignore the noti�cation.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1438 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

We will refer to the case where only one student is on the list as the unicast program. We will refer to
the case where many students (and possibly animals as well) are on the list as the multicast program.
This terminology was selected because it matches the terminology used in the JDK 1.1 documentation for
the Delegation Event Model.

Without further discussion, let's look at some code.

4.4.2.2.4 Discussion and sample code

4.4.2.2.4.1 Unicast sample program

The purpose of this program is to develop a callback capability using Interfaces . This version of the
program is designed to emphasize the structure of the process. Therefore an e�ort was made to avoid the
requirement for any extra code so it doesn't do anything fancy.

A CallBack interface
This program de�nes a CallBack interface (interface named CallBack) that can be used to

establish a new type of object reference, and also to declare the interface to a method named callBack
that will be contained in all objects of classes that implement the interface. This method will then be used
to notify those objects whenever something interesting happens.

A Teacher class
The program de�nes a Teacher class that has the ability to

• create and maintain a list of (only) one object of the interface type (multiple objects come later) ,
and

• to notify that object that something interesting has happened by calling its callBack method.

(As mentioned earlier, the size of the list was constrained to only one object in order to emphasize call-
back structure and avoid getting bogged down in list processing. A subsequent version will implement list
processing.)

A Student class
The program de�nes a class named Student that implements the CallBack interface. Objects of

the Student class can be registered on the list maintained by an object of the Teacher class, and
can be noti�ed by the object of the Teacher class whenever something interesting happens. Noti�cation
takes the form of calling the callBack method on the object.

The method named callBack
The body of the callBack method can be designed to do anything, but in this case, to keep things

simple, it just announces that it has been called.
The controlling class
Finally, the program de�nes a controlling class named Callback01 that ties all the pieces together and

exercises them.
The program was originally tested using JDK 1.1.3 under Win95 and more recently tested using JDK

1.7 under Windows Vista.
The output from the program is shown in the complete program listing in a later section.
Interesting unicast code fragments
Listing 1 (p. 1444) de�nes an interface named CallBack that creates a new type and declares a generic

method named callBack that can be used to execute a callback on any object that is instantiated from a
class that implements the interface.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1439

Listing 1 . De�ne the CallBack interface.

interface CallBack{

public void callBack();

}//end interface CallBack

Table 4.202

A class that can register and notify objects of type CallBack
Next we need a class whose objects can maintain a list of references to objects of type CallBack

(objects whose class implements the CallBack interface) .
We refer to the process of putting an object on the list is registering the object.
This class also needs to have the ability to notify all the objects on that list when something interesting

happens. We will name this class Teacher in keeping with the scenario described earlier.
As mentioned earlier, to keep things simple, and emphasize the callback structure without getting bogged

down in list processing, we will begin with a limitation of one object for the length of the list.
The unicast class named Teacher
The unicast Teacher class consists of one instance variable of type CallBack (the interface type)

and two instance methods.
One of the methods named register places an object on the list. The other method named callTheRoll

calls the callBack method on the object that is on the list.
Note that the object on the list is guaranteed to have a method named callBack because it implements

the CallBack interface. Otherwise, it couldn't get on the list in the �rst place. This is because the
register method requires the incoming object's reference to be of type CallBack .

The Teacher class is de�ned in Listing 2 (p. 1444) .

Listing 2 . De�ne the Teacher class.

class Teacher{

CallBack obj; //list of objects of type CallBack

//---//

//Method to add objects to the list.

void register(CallBack obj){

this.obj = obj;

}//end register()

//---//

//Method to notify all objects on the list

void callTheRoll(){

obj.callBack();

}//end callTheRoll()

//---//

}//end class Teacher

Table 4.203

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1440 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

A class that implements the CallBack interface
Next, we need a class that implements the CallBack interface. Objects of this class can be registered

on the list maintained by an object of the Teacher class, and will be noti�ed whenever that object calls
the callBack method on the registered objects on the list. In keeping with the scenario described earlier,
we will name this class Student .

By claiming to implement the CallBack interface, this class is required to provide a concrete de�nition
for the method named callBack that is declared in the interface. Otherwise, the program won't compile.
In this case, that de�nition is rather simple. The callBack method simply announces that it has been
called.

The callback mechanism
As we saw above, an object of the Teacher class will call the callBack method on all objects on its

list when the interesting event occurs. It is important to note that the callback mechanism is to call this
method.

The Student class is de�ned in Listing 3 (p. 1445) .

Listing 3 . De�ne the Student class.

class Student implements CallBack{

String name;

//---//

Student(String name){//constructor

this.name = name; //save the name to identify the obj

}//end constructor

//---//

public void callBack(){

System.out.println(name + " here");

}//end callBack()

}//end class Student

Table 4.204

A controlling class named Callback01
Finally, we need a controlling class to tie all the pieces together and to exercise them. The main method

in this class

• instantiates an object of the Teacher class named missJones ,
• instantiates an anonymous Student object named " Joe ",
• registers the object on the list maintained by missJones , and
• calls the callTheRoll method on missJones to cause the objects on the list to be noti�ed (to

cause their callBack methods to be called).

This is not too complicated once you break the process into its component parts.
The class named Callback01 is de�ned in Listing 4 (p. 1446) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1441

Listing 4 . A controlling class named Callback01.

class Callback01{

public static void main(String[] args){

//Instantiate Teacher object

Teacher missJones = new Teacher();

//Instantiate and register a Student object with the

// Teacher object

missJones.register(new Student("Joe"));

//Cause the Teacher object to do a callBack on the

// Student object.

missJones.callTheRoll();

}//end main()

}//end class Callback01

Table 4.205

There you have it. This simple program contains the sum and substance of one approach to callbacks in
Java.

It is critical to note that the objects registered on the list are of the interface type CallBack . This
guarantees that there cannot be an object on the list that does not have an instance method named callBack
.

Unicast Program Listing
A complete listing of the program is provided in Listing 5 (p. 1446) so that you can view the code

fragments in context.

Listing 5 . Complete listing of program named Callback01.

/*File Callback01.java Copyright 1997, R.G.Baldwin

The purpose of this program is to develop a callback

capability using Interfaces. This version of the

program is designed to emphasize the structure of

the process, and therefore an effort was made to

avoid the requirement for any extra code to do

anything fancy.

Tested using JDK 1.1.3 under Win95.

The output from the program is:

Joe here.

**/

//First we define an interface that will create a new type

// and declare a generic method that can be used to

// callback any object that is of a class that implements

// the interface.

interface CallBack{

public void callBack();

}//end interface CallBack

//===//

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1442 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

//Next we need a class whose objects can maintain a

// registered list of objects of type CallBack (whose

// class implements the CallBack interface) and can

// notify all the objects on that list when something

// interesting happens.

//To keep things simple, and emphasize the structure of

// what we are doing, we will begin with a limitation

// of one object on the length of the list.

class Teacher{

CallBack obj; //list of objects of type CallBack

//---//

//Method to add objects to the list.

void register(CallBack obj){

this.obj = obj;

}//end register()

//---//

//Method to notify all objects on the list that

// something interesting has happened.

void callTheRoll(){

//Call the callBack() method on the object. The

// object is guaranteed to have such a method because

// it is of a class that implements the CallBack

// interface.

obj.callBack();

}//end callTheRoll()

//---//

}//end class Teacher

//===//

//Class that implements the CallBack interface. Objects

// of this class can be registered on the list maintained

// by an object of the Teacher class, and will be notified

// whenever that object calls the callBack method on the

// registered objects on the list.

class Student implements CallBack{

String name;

//---//

Student(String name){//constructor

this.name = name; //save the name to identify the obj

}//end constructor

//---//

//An object of the Teacher class will call this method

// as the callback mechanism to notify an object of this

// class that something interesting has happened.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1443

public void callBack(){

System.out.println(name + " here");

}//end overridden callBack()

}//end class Student

//===//

//Controlling class that ties all the pieces together and

// exercises them.

class Callback01{

public static void main(String[] args){

//Instantiate Teacher object

Teacher missJones = new Teacher();

//Instantiate and register a Student object with the

// Teacher object

missJones.register(new Student("Joe"));

//Cause the Teacher object to do a callBack on the

// Student object.

missJones.callTheRoll();

}//end main()

}//end class Callback01

//===/

4.4.2.2.4.2 Multicast sample program

The multicast version of this program does not modify the basic callback mechanism developed in the
previous program. It simply enhances that mechanism to make it possible to maintain a list of objects
registered for callback and to notify all the objects on that list when an interesting event happens.

In case you started reading at this point, this is an enhanced version of the program named Callback01
. You should familiarize yourself with that program before trying to understand this program.

A list of registered objects
This program has the capability to create and maintain a list of objects that register for callback whereas

the program named Callback01 could only remember a single object for callback.
Multiple classes implement CallBack interface
In addition, this program de�nes two di�erent classes that implement the CallBack interface. Mixed

objects of those two types are maintained on the list and noti�ed at callback time. This is a subtle but very
important point. It is not necessary that all the objects that are registered on a callback list be of the same
class type, only that they all be of a class that implements the CallBack interface.

The CallBack interface
As before, this program de�nes a CallBack interface that establishes a new type of object, and also

declares the interface to a method named callBack that is contained in all objects of classes that implement
the interface. Because the callBack method is guaranteed to be contained in all of the objects on the list,
it can be used to notify those objects whenever something interesting happens.

The Teacher class
The program de�nes a Teacher class that creates and maintains a list of objects of the CallBack

interface type, and noti�es those objects that something interesting has happened by calling the callBack
method on each of the objects on the list.

The size of the list is limited only to the largest Vector object that can be accommodated by the
system. (See the Java documentation or my online tutorials for information about the Vector class.)

The Student and Dog classes
The program de�nes a class named Student that implements the CallBack interface. The program

also de�nes a class named Dog that implements the CallBack interface as well. (Back in the description

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1444 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

of the scenario, I promised you that missJones was going to have to deal with animals in the classroom.
I'm glad I don't have that problem.)

Registration and noti�cation of Student and Dog objects
Objects of the Student and Dog classes can be registered on the list (of CallBack objects)

maintained by an object of the Teacher class (because they both implement the CallBack interface)
, and can be noti�ed by the object of the Teacher class whenever something interesting happens.

Addition and removal from the list
Note that objects can be added to the list and then removed from the list. One object is �rst added and

later removed for demonstration purposes.
The callback mechanism
As before, noti�cation takes the form of calling the callBack method on each of the objects on the list.
Behavior of the callBack methods
The behavior of the callBack methods in the classes that implement the interface can be designed to

do anything. In this case, to keep things simple, they just announce that they have been called. However,
they make the announcement in slightly di�erent ways.

Text display statements
This program contains display statements in the registration and noti�cation methods for demonstration

purposes only, and to allow us to track what is happening as the program runs.
The controlling class
Finally, the program de�nes a controlling class named Callback02 that ties all the pieces together and

exercises them.
The program was originally tested using JDK 1.1.3 under Win95 and more recently tested using JDK

1.7 under Windows Vista.
The output from the program is shown following a discussion of the controlling class at the end of the

next section.
Interesting multicast code fragments
Listing 6 (p. 1449) de�nes an interface that creates a new type and declares a generic method that can

be used to call back any object that is of a class that implements the interface. There is nothing new here.

Listing 6 . De�ne the CallBack interface.

interface CallBack{

public void callBack();

}//end interface CallBack

Table 4.206

A class that can register and notify objects of type CallBack
Next we need a class whose objects can maintain a registered list of objects of type CallBack (objects

whose class implements the CallBack interface) and can notify all the objects on that list when
something interesting happens. As before, we name this class Teacher .

The Teacher class
The Teacher class has grown to the point that we will break it into parts and discuss them separately.
There is quite a bit here that is new, due simply to the requirement for list processing. There is nothing

new about the basic callback mechanism.
An object of type Vector
We start out by replacing the single instance variable of type CallBack by a reference to an object of

type Vector . We will maintain our list in an object of type Vector .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1445

Recall that a Vector object can only work with references to objects of type Object , so this will
entail some down casting later.

(Editor's note: Sometime around JDK 1.5, a concept known as generics was released into Java, which
eliminated the restriction to objects of type Object mentioned in the previous paragraph. However, this
code has not been updated to take advantage of that capability.)

The constructor for our new Teacher class, which is shown in Listing 7 (p. 1450) , instantiates the
Vector object.

Listing 7 . De�ne the Teacher class.

class Teacher{

Vector objList; //list of objects of type CallBack

//--//

Teacher(){//constructor

objList = new Vector();

}//end constructor

Table 4.207

The method named register
Next we need a method to add objects to the list. We will synchronize it to protect against the possibility

of two or more objects on di�erent threads trying to register at the same time.
Note that the references to the objects are received as type CallBack , which is the interface type,

and stored as type Object , because the Vector class only accommodates references to objects of type
Object . (See the earlier editor's note.) Again, this will lead to some down casting requirements later.

Listing 8 . De�ne the method named register.

synchronized void register(CallBack obj){

this.objList.addElement(obj);

System.out.println(obj + " added");

}//end register()

Table 4.208

The unRegister method
To be general, we also need a method to remove objects from the list. Removal of an object from the

list is a little more complicated than adding an object to the list due to the possibility of having two or
more identical objects on the list. (We could, and possibly should, guard against that possibility when
constructing the list.)

Figure 1 (p. 1451) contains a partial excerpt from the JDK 1.1.3 documentation, which describes the
removeElement method of the Vector class that we are using to accomplish this (three di�erent
methods are available to remove objects from a Vector).

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1446 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Figure 1 . Documentation for the removeElement method.

public final synchronized boolean removeElement(Object obj)

This method removes the first occurrence of the argument from this

vector. Indices beyond that point are adjusted appropriately

Parameters: obj - the component to be removed.

Returns: true if the argument was a component of this vector;

false otherwise.

Table 4.209

Registered object removal code
Given that explanation, the code for removal of an object from the list is straightforward. The unReg-

ister method is shown in Listing 9 (p. 1451) .

Listing 9 . The unRegister method.

synchronized void unRegister(CallBack obj){

if(this.objList.removeElement(obj))

System.out.println(obj + " removed");

else System.out.println(obj + " not in the list");

}//end register()

Table 4.210

The callTheRoll method
Now we need a method to notify all of the objects on the list that something interesting has happened.

We will name this method callTheRoll to adhere to our classroom scenario.
Maintain the integrity of the callback list
One of the potential problems with this type of callback mechanism is that when the callback method is

called on an object, that method might take a while to �nish.
(As an aside, when writing callback methods, if they do anything signi�cant in terms of time, the code in

the method should probably spawn another thread to do the actual work and return as quickly as possible.)
This leads to the possibility that additional objects might attempt to register during that time interval.

To protect against this, we make a copy of the state of the list object as it existed at the point in time that
the decision was made to do the callbacks, and then perform the callbacks using that copy. That way, the
original list is free to be updated as needed during this interval.

So, we start out by creating a clone of the list. We also synchronize this process to prevent the list from
being modi�ed while we are creating the clone.

Following this, we use a for loop to access all the objects on the list, and call the callBack method
on those objects. (Actually, the list contains references to objects, and not the actual objects, so we are
calling the method on the references.)

As promised earlier, we have to downcast from Object to CallBack to gain access to the callBack
method in the objects.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1447

Listing 10 . De�ne the callTheRoll method.

void callTheRoll(){

Vector tempList;//save a temporary copy of list here

synchronized(this){

tempList = (Vector)objList.clone();

}//end synchronized block

for(int cnt = 0; cnt < tempList.size(); cnt++){

((CallBack)tempList.elementAt(cnt)).callBack();

}//end for loop

}//end callTheRoll()

Table 4.211

End of the class named Teacher
That ends the discussion of the class named Teacher and brings us to the class named Student that

implements the CallBack interface. This class hasn't changed. As indicated earlier, this version of the
program also has a class named Dog that implements the interface. These two classes are essentially the
same.

De�ne the class named Dog
Because of their similarity, and because they are essentially the same as in the previous program, I will

simply show the class named Dog with no further discussion.

Listing 11 . De�ne the class named Dog.

class Dog implements CallBack{

String name; //store name here for later ID

//---//

Dog(String name){//constructor

this.name = name; //save the name to identify the obj

}//end constructor

//---//

//An object of the Teacher class will call this method

// as the callback mechanism to notify an object of this

// class that something interesting has happened.

public void callBack(){//announce callBack

System.out.println("Woof, Woof " + name);

}//end overridden callBack()

}//end class Dog

Table 4.212

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1448 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

The controlling class
That brings us to the controlling class named Callback02 that ties all the pieces together and exercises

them. This class is shown in Listing 12 (p. 1453) .

Listing 12 . De�ne the class named Callback02.

class Callback02{

public static void main(String[] args){

//Instantiate Teacher object

Teacher missJones = new Teacher();

//Instantiate some Student objects

Student tom = new Student("Tom");

Student sue = new Student("Sue");

Student peg = new Student("Peg");

Student bob = new Student("Bob");

Student joe = new Student("Joe");

//Instantiate some Dog objects.

Dog spot = new Dog("Spot");

Dog fido = new Dog("Fido");

Dog brownie = new Dog("Brownie");

//Register some Student and Dog objects with the

// Teacher object.

System.out.println("Register Tom");

missJones.register(tom);

System.out.println("Register Spot");

missJones.register(spot);

System.out.println("Register Sue");

missJones.register(sue);

System.out.println("Register Fido");

missJones.register(fido);

System.out.println("Register Peg");

missJones.register(peg);

System.out.println("Register Bob");

missJones.register(bob);

System.out.println("Register Brownie");

missJones.register(brownie);

//Remove a Student object from the list.

System.out.println("Remove Peg");

missJones.unRegister(peg);

//Try to remove an object that is not on the list.

System.out.println("Try to remove Joe");

missJones.unRegister(joe);

System.out.println();//blank line

//Cause the Teacher object to do a callBack on all

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1449

// the objects on the list.

missJones.callTheRoll();

}//end main()

}//end class Callback02

Di�erences relative to Callback01
This program di�ers from the previous program primarily in terms of the volume of Student and Dog

objects to be instantiated and registered on the Teacher object. There are also a lot of display statements
to help us keep track of what is going on.

The ability to remove objects from the list is also illustrated.
Call the roll
Finally, the callback to the objects on the list is executed in Listing 12 (p. 1453) by calling the

callTheRoll method on the Teacher object named missJones . The output from running this
program is shown later.

Mixed object types
A subtle, but extremely important point is illustrated here. Student and Dog are di�erent classes.

Objects of both of those classes are registered on the single object of the Teacher class. The Teacher
object doesn't care that they are di�erent, so long as they are all instantiated from classes that implement
the CallBack interface. The register method will only accept object references of type CallBack .

Program output
The output from running this program is shown in Figure 2 (p. 1455) . You can see the identi�cation of

each individual object as it is added to, or removed from the list.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1450 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Figure 2 . Output from Callback02.

Register Tom

Student@1cc73e added

Register Spot

Dog@1cc74e added

Register Sue

Student@1cc741 added

Register Fido

Dog@1cc751 added

Register Peg

Student@1cc744 added

Register Bob

Student@1cc747 added

Register Brownie

Dog@1cc754 added

Remove Peg

Student@1cc744 removed

Try to remove Joe

Student@1cc74a not in the list

Tom here

Woof, Woof Spot

Sue here

Woof, Woof Fido

Bob here

Woof, Woof Brownie

Table 4.213

Note that the attempt to remove Joe from the list was not successful because he was never registered in
the �rst place.

Finally, you see the output produced by calling callTheRoll which in turn calls the callBack method
on each of the objects on the list.

Note that Peg didn't appear in the roll call because she was �rst added and then removed from the list
before the roll call was taken.

The sum and substance
So there you have it, the sum and substance of multicast callbacks in Java. Obviously improvements

could be made. You can see a couple of them in the remaining two tutorial lessons on callbacks that are
published on my website.

Multicast Program Listing
A complete listing of the multicast program named Callback02 is provided in Listing 13 (p. 1455) .

Listing 13 . Complete listing of program named Callback02.

/*File Callback02.java Copyright 1997, R.G.Baldwin

The purpose of this program is to develop a callback

capability using Interfaces.

This is an enhanced version of the program named

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1451

Callback01. You should familiarize yourself with

the earlier program before getting into this program.

This version has the added capability to create and

maintain a list of objects that register for callback

whereas the program named Callback01 could only remember

a single object for callback.

Tested using JDK 1.1.3 under Win95.

The output from the program was:

Register Tom

Student@1cc73e added

Register Spot

Dog@1cc74e added

Register Sue

Student@1cc741 added

Register Fido

Dog@1cc751 added

Register Peg

Student@1cc744 added

Register Bob

Student@1cc747 added

Register Brownie

Dog@1cc754 added

Remove Peg

Student@1cc744 removed

Try to remove Joe

Student@1cc74a not in the list

Tom here

Woof, Woof Spot

Sue here

Woof, Woof Fido

Bob here

Woof, Woof Brownie

Note that Peg didn't appear in the callBack list because

she was first added to, and later removed from the list.

**/

import java.util.*;

//First we define an interface that will create a new type

// and declare a generic method that can be used to

// callback any object that is of a class that implements

// the interface.

interface CallBack{

public void callBack();

}//end interface CallBack

//===//

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1452 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

//Next we need a class whose objects can maintain a

// registered list of objects of type CallBack (whose

// class implements the CallBack interface) and can

// notify all the objects on that list when something

// interesting happens.

class Teacher{

Vector objList; //list of objects of type CallBack

//---//

Teacher(){//constructor

//Instantiate a Vector object to contain the list

// of registered objects.

objList = new Vector();

}//end constructor

//---//

//Method to add objects to the list. Synchronize to

// protect against two or more objects on different

// threads trying to register at the same time. Note

// that the objects are received as type CallBack which

// is the interface type, and stored as type Object,

// because the Vector class only accommodates objects of

// type Object.

synchronized void register(CallBack obj){

this.objList.addElement(obj);

System.out.println(obj + " added");

}//end register()

//---//

//Method to remove objects from the list.

synchronized void unRegister(CallBack obj){

if(this.objList.removeElement(obj))

//true when successfully found and removed

System.out.println(obj + " removed");

else//false on failure to find and remove

System.out.println(obj + " not in the list");

}//end register()

//---//

//Method to notify all objects on the list that

// something interesting has happened.

void callTheRoll(){

Vector tempList;//save a temporary copy of list here

//Make a copy of the list to avoid the possibility of

// the list changing while objects are being notified.

// Synchronize to protect against list changing while

// making the copy.

synchronized(this){

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1453

tempList = (Vector)objList.clone();

}//end synchronized block

//Call the callBack() method on each object on

// the list. The object are guaranteed to have such

// a method, even if they are of different types,

// because they are all of a class that implements

// the CallBack interface. If not, they could not

// have been registered on the list in the first

// place. Note the requirement to downcast to

// type CallBack.

for(int cnt = 0; cnt < tempList.size(); cnt++){

((CallBack)tempList.elementAt(cnt)).callBack();

}//end for loop

}//end callTheRoll()

//---//

}//end class Teacher

//===//

//Class that implements the CallBack interface. Objects

// of this class can be registered on the list maintained

// by an object of the Teacher class, and will be notified

// whenever that object calls the callBack method on the

// registered objects on the list. This program will not

// compile if this class fails to implement the CallBack

// interface

class Student implements CallBack{

String name; //store the object name here for later ID

//---//

Student(String name){//constructor

this.name = name; //save the name to identify the obj

}//end constructor

//---//

//An object of the Teacher class will call this method

// as the callback mechanism to notify an object of this

// class that something interesting has happened.

public void callBack(){//announce callBack

System.out.println(name + " here");

}//end overridden callBack()

}//end class Student

//===//

//Another Class that implements the CallBack interface.

// Objects of this class can also be registered on the list

// maintained by an object of the Teacher class, and will

// also be notified whenever that object calls the

// callBack() method on the registered objects on the

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1454 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

// list. This program will not compile if this class

// fails to implement the CallBack interface.

class Dog implements CallBack{

String name; //store name here for later ID

//---//

Dog(String name){//constructor

this.name = name; //save the name to identify the obj

}//end constructor

//---//

//An object of the Teacher class will call this method

// as the callback mechanism to notify an object of this

// class that something interesting has happened.

public void callBack(){//announce callBack

System.out.println("Woof, Woof " + name);

}//end overridden callBack()

}//end class Dog

//===//

//Controlling class that ties all the pieces together and

// exercises them.

class Callback02{

public static void main(String[] args){

//Instantiate Teacher object

Teacher missJones = new Teacher();

//Instantiate some Student objects

Student tom = new Student("Tom");

Student sue = new Student("Sue");

Student peg = new Student("Peg");

Student bob = new Student("Bob");

Student joe = new Student("Joe");

//Instantiate some Dog objects.

Dog spot = new Dog("Spot");

Dog fido = new Dog("Fido");

Dog brownie = new Dog("Brownie");

//Register some Student and Dog objects with the

// Teacher object.

System.out.println("Register Tom");

missJones.register(tom);

System.out.println("Register Spot");

missJones.register(spot);

System.out.println("Register Sue");

missJones.register(sue);

System.out.println("Register Fido");

missJones.register(fido);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1455

System.out.println("Register Peg");

missJones.register(peg);

System.out.println("Register Bob");

missJones.register(bob);

System.out.println("Register Brownie");

missJones.register(brownie);

//Remove a Student object from the list.

System.out.println("Remove Peg");

missJones.unRegister(peg);

//Try to remove an object that is not on the list.

System.out.println("Try to remove Joe");

missJones.unRegister(joe);

System.out.println();//blank line

//Cause the Teacher object to do a callBack on all

// the objects on the list.

missJones.callTheRoll();

}//end main()

}//end class Callback02

//===//

4.4.2.2.5 Run the program

I encourage you to copy the code from Listing 5 (p. 1446) and Listing 13 (p. 1455) . Compile the code and
execute it. Experiment with the code, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

4.4.2.2.6 Summary

In this module, you learned the fundamentals of callbacks using interfaces in Java.

4.4.2.2.7 What's next?

In the next module, you will learn about something that goes by the name Delegation Event Model along
with a few other names as well.

4.4.2.2.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Callbacks - I
• File: Java0077.htm
• Published: 1998

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1456 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.3 Java0078 Java OOP Callbacks - II
143

Revised: Tue Jul 05 19:16:25 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 144

• Object-Oriented Programming (OOP) with Java 145

4.4.2.3.1 Table of contents

• Table of contents (p. 1461)
• Preface (p. 1461)

· Viewing tip (p. 1462)

* Figures (p. 1462)
* Listings (p. 1462)

• Introduction (p. 1462)
• Sample program (p. 1462)

· Interesting code fragments (p. 1463)

• Summary (p. 1466)
• Complete program listing (p. 1466)
• Miscellaneous (p. 1472)

4.4.2.3.2 Preface

This is a page from the Event Handling 146 section of the book titled ITSE2317 - Java Programming
(Intermediate) 147 . The Event Handling section explains how to write programs that handle events in
Java.

This is the second in a series of three consecutive lessons on Callbacks in Java. The three lessons
are named Callbacks - I, Callbacks - II, and Callbacks - III. Students in Prof. Baldwin's ITSE 2317
Intermediate Java Programming classes at ACC are responsible for knowing and understanding all of
the material in this lesson.
143This content is available online at <http://cnx.org/content/m59589/1.3/>.
144http://cnx.org/contents/Rl23r3Lw
145http://cnx.org/contents/-2RmHFs_
146http://cnx.org/contents/Rl23r3Lw:qfO9iJX-
147http://cnx.org/contents/Rl23r3Lw:JVTd7bX1

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1457

4.4.2.3.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

4.4.2.3.2.1.1 Figures

• Figure 1. (p. 1466) Output from the program named Callback03.

4.4.2.3.2.1.2 Listings

• Listing 1 (p. 1463) . The CallBack interface.
• Listing 2 (p. 1464) . The callRecess method in the Teacher class.
• Listing 3 (p. 1464) . The Dog class.
• Listing 4 (p. 1465) . The controlling class named Callback03.
• Listing 5 (p. 1466) . The program named Callback03.

4.4.2.3.3 Introduction

Many processes in the standard Java API make use of a mechanism that in other programming environments
might be referred to as a callback mechanism. Basically, this is a mechanism where a method in one object
asks a method in another object to "call me back" or "notify me" when an interesting event happens.
For example, an interesting event might be that the price of a speci�ed stock goes above its previous high
value, or the toaster �nishes toasting the bread.

A previous lesson introduced you to the basic Java callback mechanism using interfaces and walked you
through the development of a set of classes that implement a simple multicast form of callback. In that
lesson, the de�nition of the CallBack interface was limited to a single method declaration. In a real
program involving callbacks, many di�erent objects may ask one object to notify them when any interesting
event in a family of interesting events happens, and to identify the speci�c event that actually happened
along with the noti�cation.

This lesson will enhance our previous program to accommodate this possibility. As mentioned in the
earlier lesson, it is usually easier to understand abstract concepts if they are explained in terms of a meaningful
scenario. For that reason, we have conjured up a scenario in which to develop and explain our callback
programs.

Our scenario consists of a teacher and some students. In the beginning there was only one student.
Then we expanded the scenario to include many students and some animals in the classroom as well. The
students (and the animals) register themselves on the teachers roll book to be noti�ed of interesting events.
Initially the interesting event was simply the teacher taking the roll. In this lesson, we expand that scenario
to include noti�cation that it is either time for recess, or it is time for lunch.

Initially, only one student received noti�cation of one type of event. In this lesson, all of the students
and all of the animals receive noti�cation of both types of event (recess or lunch) but some of those who
are noti�ed choose to ignore the noti�cation. Without further discussion, let's look at some code.

4.4.2.3.4 Sample program

In case you just started reading at this point, this program named Callback03 is an enhanced version of
the program named Callback02 that you learned about in an earlier 148 lesson. You should familiarize
yourself with the earlier program before trying to understand this program.

The earlier version of the program de�ned two di�erent classes that implemented the CallBack interface.
In order to give us more to work with, this version de�nes three di�erent classes named Student , Dog

148http://cnx.org/contents/Rl23r3Lw:0pd-9uyZ

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1458 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

, and Cat that implement the CallBack interface. Mixed objects of those three types are registered and
maintained on a list and noti�ed at callback time.

As before, this program de�nes a CallBack interface. However, this version of the interface declares
two di�erent methods that can be invoked as callback methods instead of just one. In other words, in this
case, the objects register to be noti�ed whenever an interesting event from a family of interesting events
occurs (the family has two members) .

When noti�ed, the objects also need to be advised as to which interesting event actually happened. The
methodology for di�erentiating between the two di�erent kinds of interesting events is to invoke one callback
method in the case of one event, and to invoke the other callback method in the case of the other event.

All classes that implement the CallBack interface must de�ne both methods, but it is allowable to
de�ne the method as an empty method. The net e�ect of de�ning a callback method as an empty method is
to simply ignore the callback associated with that method. Note however, there is some overhead associated
with the invocation of an empty method. (Although we haven't discussed the topic yet, I believe that this
overhead is the reason that JavaSoft chose to separate the MouseListener and MouseMotionListener
interfaces. Perhaps someone will remember to remind me to discuss that when we get to the topic of
MouseMotionListener interface in the classroom lecture.)

One of the callback methods in this version of our program is named recess and the other callback
method is named lunch . Thus, registered objects can be noti�ed either of a recess event, or of a lunch
event.

The Dog class ignores the recess callback by de�ning an empty recess method, and the Cat class
ignores the lunch callback by de�ning an empty lunch method. The Student class responds to both
types of callbacks with fully- de�ned methods.

The program de�nes a Teacher class that has the ability to create and maintain a list of objects of
the interface type, and to notify those objects that something interesting has happened by invoking either
the recess method or the lunch method on all the objects on the list. It is important to note that every
object on the list will be noti�ed of both types of callbacks, although as mentioned above, a particular type
of callback can be ignored by a class simply by leaving the callback method empty when it is de�ned.

As before, objects can be added to the list and then removed from the list. However, removal of objects
from the list was demonstrated in the previous program, so removal is not demonstrated in this program.

Noti�cation takes the form of invoking either the recess method or the lunch method on all the
objects on the list.

Finally, the program de�nes a controlling class that ties all the pieces together and exercises them. The
program was originally tested using JDK 1.1.3 under Win95. The program was more recently retested using
JDK 8 and Win7. The output from the program is shown later.

4.4.2.3.4.1 Interesting code fragments

The code in Listing 1 (p. 1463) de�nes an interface named CallBack that will create a new type and that
declares two generic methods that can be used to call back any object that is of a class that implements the
interface.

Listing 1 . The CallBack interface.

interface CallBack{

public void recess();

public void lunch();

}//end interface CallBack

Listing 2 (p. 1464) de�nes a class whose objects can maintain a list of registered objects (registration is the
process of placing an object on the list) of type CallBack and can notify all the objects on that list when
something interesting happens. This class di�ers form the one in the earlier lesson in that it has the ability
to notify for two di�erent types of callbacks: recess and lunch .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1459

The name of this class is Teacher . The code to construct the Teacher object, add objects to the
list, and remove objects from the list hasn't changed in a signi�cant way, so we will skip over that code and
go straight to the code that is new and di�erent.

Basically what we now have is two di�erent methods in place of one. One of the methods is named
callRecess and the other is named callLunch . Except for their names, these methods are almost
identical to the single method named callTheRoll in the earlier lesson, so a lot of discussion isn't needed.
The code in the method makes a copy of the list and then uses a for loop along with some Vector
methods to access each object reference. Then the callback method is invoked on each object reference. We
will show one of the methods below for reference.

Listing 2 . The callRecess method in the Teacher class.

void callRecess(){

Vector tempList;//save a temporary copy of list here

//Make a copy of the list.

synchronized(this){

tempList = (Vector)objList.clone();

}//end synchronized block

//Invoke the recess() method on each object on

// the list.

for(int cnt = 0; cnt < tempList.size(); cnt++){

((CallBack)tempList.elementAt(cnt)).recess();

}//end for loop

}//end callRecess()

That concludes the discussion of the class named Teacher . The Teacher class is followed by three
class de�nitions that implement the CallBack interface: Student, Dog , and Cat. These class
de�nitions di�er from the ones in the earlier lesson in that they de�ne two callback methods instead of just
one: recess and lunch .

Recall that I said that a class can ignore a particular type of callback simply by de�ning the callback
method as an empty method. Recall also that I said that the Dog class ignores the recess() callback in
just this way.

Because of the similarity of these three classes, I am only going to show one of them below. Listing 3 (p.
1464) shows the Dog class to illustrate how it de�nes an empty method to ignore the recess callback.

Listing 3 . The Dog class.

class Dog implements CallBack{

String name; //store name here for later ID

//---//

Dog(String name){//constructor

this.name = name; //save the name to identify the obj

}//end constructor

//---//

//An object of the Teacher class can invoke this method

// as the callback mechanism.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1460 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

public void recess(){//announce recess

//ignore this callback with an empty method

}//end overridden recess()

//---//

//An object of the Teacher class can also invoke this

// method as a callback mechanism.

public void lunch(){//announce recess

System.out.println(name + " lunch");

}//end overridden lunch()

}//end class Dog

That brings us to the controlling class that ties all the pieces together and exercises them (see Listing 4 (p.
1465)) . Except for the fact that the main method triggers two callbacks instead of just one, and the
code to remove an object from the list was deleted for brevity, this code is essentially the same as the code
in the earlier lesson. Therefore, I am going to delete some of the redundant code from this fragment and
primarily show only the new code.

The code in the main method of the controlling class instantiates a Teacher object named missJones
, and then instantiates some objects of the three types: Student , Dog , and Cat . These objects are
registered for callback by invoking the register method on the Teacher object.

Then the code triggers a recess callback and a lunch callback.

Listing 4 . The controlling class named Callback03.

class Callback03{

public static void main(String[] args){

//Instantiate Teacher object

Teacher missJones = new Teacher();

//Instantiate some Student objects

//... code deleted for brevity

//Instantiate some Dog objects.

//... code deleted for brevity

//Instantiate some Cat objects

//... code deleted for brevity

//Register some Student, Dog, and Cat objects with

// the Teacher object.

missJones.register(tom);

missJones.register(spot);

missJones.register(sue);

missJones.register(cleo);

missJones.register(fido);

missJones.register(peg);

missJones.register(kitty);

missJones.register(bob);

missJones.register(brownie);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1461

//Cause the Teacher object to call recess on all

// the objects on the list.

missJones.callRecess();

//Cause the Teacher object to call lunch on all

// the objects on the list.

missJones.callLunch();

}//end main()

}//end class Callback03

The output produced by this program is shown in Figure 1 (p. 1466) .

Figure 1. Output from the program named Callback03.

Tom recess

Sue recess

CleoCat recess

Peg recess

KittyKat recess

Bob recess

Tom lunch

SpotDog lunch

Sue lunch

FidoDog lunch

Peg lunch

Bob lunch

BrownieDog lunch

4.4.2.3.5 Summary

In summary then, we have objects of di�erent classes registered on a common callback list where every object
on the list receives a callback for every di�erent type of callback event associated with the list.

The di�erent types of callbacks are established by the method declarations in the CallBack interface.
Each class of object that registers for callbacks can either respond to all of the di�erent types of callbacks

by providing full de�nitions for all of the callback methods, or can selectively ignore some types of callbacks
by de�ning those callback methods as empty methods.

4.4.2.3.6 Complete program listing

A complete listing of the program named Callback03 is shown in Listing 5 (p. 1466) .

Listing 5 . The program named Callback03.

/*File Callback03.java Copyright 1997, R.G.Baldwin

The purpose of this program is to develop a callback

capability using Interfaces.

This is an enhanced version of the program named

Callback02. You should familiarize yourself with

the earlier program before getting into this program.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1462 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

This version defines three different classes named

Student, Dog, and Cat that implement the CallBack

interface. Mixed objects of those three types are

maintained on a list and notified at CallBack time.

As before, this program defines a CallBack interface

that can be used to establish a new type of object.

This version of the interface declares two

different methods that can be invoked as callback

methods instead of just one. All classes that implement

the interface must define both methods, but it is

allowable to define the method as an empty method and

ignore the callback associated with a particular method.

One of the callback methods is now called recess() and

the other is called lunch().

The Dog class ignores the recess() callback by defining

an empty method, and the Cat class ignores the lunch()

callback by defining an empty method. The Student

class responds to both types of callbacks with fully-

defined methods.

The program defines a Teacher class that has the

ability to create and maintain a list of objects

of the interface type, and to notify those objects

that something interesting has happened by invoking

either the recess() method or the lunch() method on all

the objects on the list. It is important to note that

every object on the list will be notified of both

types of callback, although as mentioned above, a

particular type of callback can be ignored simply by

leaving the method empty when it is defined.

Note that objects can be added to the list and then

removed from the list. However, removal of objects from

the list was demonstrated in the previous program, so

removal is not demonstrated in this program.

As always, notification takes the form of invoking

either the recess() method or the lunch() method on all

the objects on the list.

Finally, the program defines a controlling class that

ties all the pieces together and exercises them.

Tested using JDK 1.1.3 under Win95.

The output from the program was:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1463

Tom recess

Sue recess

CleoCat recess

Peg recess

KittyKat recess

Bob recess

Tom lunch

SpotDog lunch

Sue lunch

FidoDog lunch

Peg lunch

Bob lunch

BrownieDog lunch

**/

import java.util.*;

//First we define an interface that will create a new type

// and declare two generic methods that can be used to

// callback any object that is of a class that implements

// the interface.

interface CallBack{

public void recess();

public void lunch();

}//end interface CallBack

//===//

//Next we need a class whose objects can maintain a

// registered list of objects of type CallBack and can

// notify all the objects on that list when something

// interesting happens. This class has the ability to

// notify of two different types of callbacks, recess()

// and lunch().

class Teacher{

Vector objList; //list of objects of type CallBack

//---//

Teacher(){//constructor

//Instantiate a Vector object to contain the list

// of registered objects.

objList = new Vector();

}//end constructor

//---//

//Method to add objects to the list.

synchronized void register(CallBack obj){

this.objList.addElement(obj);

}//end register()

//---//

//Method to remove objects from the list.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1464 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

synchronized void unRegister(CallBack obj){

if(this.objList.removeElement(obj))

System.out.println(obj + " removed");

else

System.out.println(obj + " not in the list");

}//end register()

//---//

//Method to notify all objects on the list that

// something interesting has happened regarding recess.

void callRecess(){

Vector tempList;//save a temporary copy of list here

//Make a copy of the list.

synchronized(this){

tempList = (Vector)objList.clone();

}//end synchronized block

//Invoke the recess() method on each object on

// the list.

for(int cnt = 0; cnt < tempList.size(); cnt++){

((CallBack)tempList.elementAt(cnt)).recess();

}//end for loop

}//end callRecess()

//---//

//Method to notify all objects on the list that

// something interesting has happened regarding lunch.

void callLunch(){

Vector tempList;//save a temporary copy of list here

//Make a copy of the list.

synchronized(this){

tempList = (Vector)objList.clone();

}//end synchronized block

//Invoke the lunch() method on each object on

// the list.

for(int cnt = 0; cnt < tempList.size(); cnt++){

((CallBack)tempList.elementAt(cnt)).lunch();

}//end for loop

}//end callRecess()

//---//

}//end class Teacher

//===//

//Class that implements the CallBack interface. Objects

// of this class can be registered on the list maintained

// by an object of the Teacher class, and will be notified

// whenever that object invokes either the recess() method

// or the lunch() method on the registered objects on

// the list. This method provides a full definition for

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1465

// both methods.

class Student implements CallBack{

String name; //store the object name here for later ID

//---//

Student(String name){//constructor

this.name = name; //save the name to identify the obj

}//end constructor

//---//

//An object of the Teacher class can invoke this method

// as a callback mechanism.

public void recess(){//announce recess

System.out.println(name + " recess");

}//end overridden recess()

//---//

//An object of the Teacher class can also invoke this

// method as a callback mechanism.

public void lunch(){//announce recess

System.out.println(name + " lunch");

}//end overridden lunch()

}//end class Student

//===//

//Another Class that implements the CallBack interface.

// See description above. This class defines the recess()

// method as an empty method.

class Dog implements CallBack{

String name; //store name here for later ID

//---//

Dog(String name){//constructor

this.name = name; //save the name to identify the obj

}//end constructor

//---//

//An object of the Teacher class can invoke this method

// as the callback mechanism.

public void recess(){//announce recess

//ignore this callback with an empty method

}//end overridden recess()

//---//

//An object of the Teacher class can also invoke this

// method as a callback mechanism.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1466 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

public void lunch(){//announce recess

System.out.println(name + " lunch");

}//end overridden lunch()

}//end class Dog

//===//

//A third Class that implements the CallBack interface,

// similar to the other two classes. This class defines

// the lunch() method as an empty method.

class Cat implements CallBack{

String name; //store name here for later ID

//---//

Cat(String name){//constructor

this.name = name; //save the name to identify the obj

}//end constructor

//---//

//An object of the Teacher class can invoke this method

// as the callback mechanism.

public void recess(){//announce recess

System.out.println(name + " recess");

}//end overridden recess()

//---//

//An object of the Teacher class can also invoke this

// method as a callback mechanism.

public void lunch(){//announce recess

//ignore this callback with an empty method

}//end overridden lunch()

}//end class Cat

//===//

//Controlling class that ties all the pieces together and

// exercises them.

class Callback03{

public static void main(String[] args){

//Instantiate Teacher object

Teacher missJones = new Teacher();

//Instantiate some Student objects

Student tom = new Student("Tom");

Student sue = new Student("Sue");

Student peg = new Student("Peg");

Student bob = new Student("Bob");

Student joe = new Student("Joe");

//Instantiate some Dog objects.

Dog spot = new Dog("SpotDog");

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1467

Dog fido = new Dog("FidoDog");

Dog brownie = new Dog("BrownieDog");

//Instantiate some Cat objects

Cat cleo = new Cat("CleoCat");

Cat kitty = new Cat("KittyKat");

//Register some Student, Dog, and Cat objects with

// the Teacher object.

missJones.register(tom);

missJones.register(spot);

missJones.register(sue);

missJones.register(cleo);

missJones.register(fido);

missJones.register(peg);

missJones.register(kitty);

missJones.register(bob);

missJones.register(brownie);

//Cause the Teacher object to call recess on all

// the objects on the list.

missJones.callRecess();

//Cause the Teacher object to call lunch on all

// the objects on the list.

missJones.callLunch();

}//end main()

}//end class Callback03

//===//

4.4.2.3.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java0078 Java OOP Callbacks - II
• File: Java0078.htm
• Published: 1997

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1468 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.4 Java0079 Java OOP Callbacks - III
149

Revised: Wed Jul 06 11:46:37 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 150

• Object-Oriented Programming (OOP) with Java 151

4.4.2.4.1 Table of contents

• Table of contents (p. 1473)
• Preface (p. 1473)

· Viewing tip (p. 1473)

* Listings (p. 1474)

• Introduction (p. 1474)
• Sample program (p. 1474)

· Interesting code fragments (p. 1475)

* The interface named CallBack (p. 1475)
* The class named CallBackObjectClass (p. 1476)
* The class named CallBackAdapter (p. 1476)
* The class named Teacher (p. 1476)
* The class named Dog (p. 1477)
* The controlling class named Callback04 (p. 1478)

• Summary (p. 1478)
• Complete program listings (p. 1478)
• Miscellaneous (p. 1485)

4.4.2.4.2 Preface

This is a page from the Event Handling 152 section of the book titled ITSE2317 - Java Programming
(Intermediate) 153 . The Event Handling section explains how to write programs that handle events in
Java.

This is the third in a series of three lessons on Callbacks in Java. The three lessons are named Callbacks
- I, Callbacks - II, and Callbacks - III. Students in Prof. Baldwin's ITSE 2317 Intermediate Java
Programming classes at ACC are responsible for knowing and understanding all of the material in this
lesson.

4.4.2.4.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Listings while you are reading about them.

149This content is available online at <http://cnx.org/content/m59592/1.4/>.
150http://cnx.org/contents/Rl23r3Lw
151http://cnx.org/contents/-2RmHFs_
152http://cnx.org/contents/Rl23r3Lw:qfO9iJX-
153http://cnx.org/contents/Rl23r3Lw:JVTd7bX1

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1469

4.4.2.4.2.1.1 Listings

• Listing 1 (p. 1475) . The interface named CallBack.
• Listing 2 (p. 1476) . The class named CallBackObjectClass.
• Listing 3 (p. 1476) . The class named CallBackAdapter.
• Listing 4 (p. 1477) . Abbreviated version of the Teacher class.
• Listing 5 (p. 1477) . The class named Dog.
• Listing 6 (p. 1478) . The program named Callback04.

4.4.2.4.3 Introduction

Hopefully, by this point, you are familiar with the callback material in the earlier lessons. Therefore, I will
avoid, insofar as practical, repeating the introductory material from those lessons.

In a real program involving callbacks, many di�erent objects may ask one object to notify them when any
interesting event in a family of interesting events happens, and to identify the speci�c event that actually
happened along with the noti�cation.

In addition, it is often desirable to encapsulate information in an object and to pass that object as a
parameter when the callback method is invoked. This lesson will enhance the previous program by providing
this capability.

Also, sometimes the interfaces used to implement callbacks declare many callback methods, and some
classes are interested in only a few of those methods. It can become burdensome to have to provide large
numbers of empty methods in all the classes that implement such an interface. For this reason, a mechanism
known in Java terms as an adapter class is used to reduce the burden.

This lesson will show you how to create and use such adapter classes.
We will continue with our earlier scenario consisting of a teacher and some students . At this point,

we have expanded our scenario to include many students and some animals in the classroom.
The students (and the animals) register themselves on the teachers roll book to be noti�ed when it is

time for recess, or it is time for lunch.
In this lesson, as in the earlier lesson, all of the students and all of the animals receive noti�cation of both

types of events (recess or lunch) but some of those who are noti�ed choose to ignore the noti�cation.
However, in this lesson, the methodology for ignoring the noti�cation is di�erent than it was in the previous
lesson.

4.4.2.4.4 Sample program

In case you just started reading at this point, this program named Callback04 is an enhanced version of
the earlier program named Callback03 . You should familiarize yourself with the earlier program before
trying to understand this program.

This version of the program makes two unrelated enhancements to the program named Callback03 .

• First, a new class is de�ned in conjunction with the CallBack interface that makes it possible for
the Teacher class to encapsulate information into an object and pass that object as a parameter
whenever a callback is made.

• Second, a new class is de�ned in conjunction with the CallBack interface which, in Java terminology,
is often called an adapter class.

An adapter class, as de�ned here, is a convenience class that implements the interface and de�nes all
the methods declared in the interface with empty methods. Then any class that needs to implement the
interface can extend the adapter class without a requirement to de�ne those methods that are not of
interest.

In this version of the program, the CallBack interface is expanded to declare several dummy methods
to emphasize this bene�t of the use of an adapter class.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1470 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Note that objects of a class that extends the adapter class can be referred to by the interface type.
Thus, interface type is an inherited attribute that results from extending a class that implements an
interface.

Using an adapter class also makes it possible to expand the interface later, by declaring new methods,
without breaking code that already implements the interface, provided that the adapter class is
appropriately rede�ned. In this sense, the adapter class is a little more than a convenience class.

This version of the program de�nes three di�erent classes named Student , Dog , and Cat , that
implement the CallBack interface indirectly by extending the adapter class.

Mixed objects of these three types are maintained in a common list and noti�ed at callback time.
As in the previous version of the program, the Dog class ignores the recess callback and the Cat

class ignores the lunch callback. In this program, these classes simply don't bother to override methods
of the interface that are not of interest.

The Student class responds to both types of callbacks with fully- de�ned methods.
The program de�nes a Teacher class that has the ability to create and maintain a list of objects of the

interface type, and to notify those objects that something interesting has happened by invoking either the
recess method or the lunch method on all the objects on the list. An object is instantiated and passed
as a parameter whenever one or the other of these methods is invoked.

Finally, the program de�nes a controlling class that ties all the pieces together and exercises them.
The program was originally tested using JDK 1.1.3 under Win95. More recently it was tested using Java

8 and Windows 7.

4.4.2.4.4.1 Interesting code fragments

4.4.2.4.4.1.1 The interface named CallBack

We begin by de�ning an interface named CallBack that will create a new type and will declare two
generic methods that can be used to callback any object that is of a class that implements the interface.
The interface named CallBack is shown in Listing 1 (p. 1475) .

Listing 1 . The interface named CallBack.

interface CallBack{

public void recess(CallBackObjectClass obj);

public void lunch(CallBackObjectClass obj);

public void dummy1(CallBackObjectClass obj);

public void dummy2(CallBackObjectClass obj);

public void dummy3(CallBackObjectClass obj);

public void dummy4(CallBackObjectClass obj);

public void dummy5(CallBackObjectClass obj);

public void dummy6(CallBackObjectClass obj);

}//end interface CallBack

Note that in addition to two methods mentioned above, the interface also declares several additional dummy
methods to emphasize the bene�t of extending the adapter class that is de�ned later.

Note also that the methods now require a parameter, which was not the case in earlier lessons. The class
for this parameter will be de�ned soon next.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1471

4.4.2.4.4.1.2 The class named CallBackObjectClass

Listing 2 (p. 1476) de�nes a class from which we can instantiate an object to pass as a parameter in the
callback methods. This class can be as simple or as elaborate as needed to convey the amount and type of
information needed with the callback. In our case, it contains a single String object.

Listing 2 . The class named CallBackObjectClass.

class CallBackObjectClass{

String data;

CallBackObjectClass(String data){//constructor

this.data = data;

}//end constructor

}//end CallBackObjectClass

4.4.2.4.4.1.3 The class named CallBackAdapter

Listing 3 (p. 1476) shows the de�nition of the adapter class for the CallBack interface. This class de�nes
all the interface methods with empty methods.

Listing 3 . The class named CallBackAdapter.

class CallBackAdapter implements CallBack{

public void recess(CallBackObjectClass obj){};

public void lunch(CallBackObjectClass obj){};

public void dummy1(CallBackObjectClass obj){};

public void dummy2(CallBackObjectClass obj){};

public void dummy3(CallBackObjectClass obj){};

public void dummy4(CallBackObjectClass obj){};

public void dummy5(CallBackObjectClass obj){};

public void dummy6(CallBackObjectClass obj){};

}//end class CallBackAdapter

Classes that need to implement the CallBack interface can now

• extend the CallBackAdapter class,
• override only the empty methods of interest, and
• ignore the other methods.

It is important to note that the existence of the adapter does not prevent another class from implementing
the interface instead of extending the adapter class.

Objects of a class that extends the CallBackAdapter class can be referenced as the interface type
CallBack .

4.4.2.4.4.1.4 The class named Teacher

Next we need a class whose objects can maintain a list of registered objects of type CallBack and can
notify all the objects on that list when something interesting happens. This class has the ability to invoke
two di�erent callback methods: recess and lunch .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1472 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Obviously, if you have been following this development, you will know by now that this is the class named
Teacher .
The only thing signi�cantly di�erent about this version of the Teacher class is the fact that it instan-

tiates and passes an object of type CallBackObjectClass whenever it makes a callback.
Since you have seen this method several times before, and should be very familiar with it by now, I

am going to delete most of the code in the class and show you only that portion of the code that invokes
the recess callback method on all the objects on the list, instantiating and passing an object of type
CallBackObjectClass as a parameter in each case. The abbreviated version of the Teacher class is
shown in Listing 4 (p. 1477) .

Listing 4 . Abbreviated version of the Teacher class.

class Teacher{

//code deleted

void callRecess(){

//code deleted

for(int cnt = 0; cnt < tempList.size(); cnt++){

((CallBack)tempList.elementAt(cnt)).recess(

new CallBackObjectClass(" Recess"));

}//end for loop

}//end callRecess()

//code deleted

}//end class Teacher

4.4.2.4.4.1.5 The class named Dog

That brings us to the three classes that implement the CallBack interface indirectly by extending the
CallBackAdapter class.
Objects of these three classes can be registered on the list maintained by an object of the Teacher

class, and will be noti�ed whenever that object invokes either the recess method or the lunch method
on the registered objects on the list.

Part of the noti�cation will be an object passed as a parameter to the callback method. Code in the
callback method can either ignore that object, or can extract the information from the object and use it.

These three classes are very similar, so I will show you only one of them here. To be consistent with the
previous lesson, I will show you the de�nition for the Dog class that ignores the recess callback. This
class, which is shown in Listing 5 (p. 1477) , also ignores all of the dummy methods that were declared in
the CallBack i interface in this program.

Listing 5 . The class named Dog.

class Dog extends CallBackAdapter{

String name; //store name here for later ID

//---//

Dog(String name){//constructor

this.name = name; //save the name to identify the obj

}//end constructor

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1473

//---//

//An object of the Teacher class can invoke this

// method as a callback mechanism passing an object

// as a parameter.

public void lunch(CallBackObjectClass obj){//announce

System.out.println(name + obj.data);

}//end overridden lunch()

//---//

}//end class Dog

Note �rst that this class extends the CallBackAdapter class and does not implement any interfaces.
Note also that it only overrides the lunch method from the adapter class, ignoring all of the other

empty methods de�ned in that class. Were it not for the adapter class in this case, this Dog class
de�nition would have to de�ne the six dummy methods and the recess method with empty methods.
Therefore, the availability of an adapter class can be a real convenience for the programmer.

Finally, note that code in the lunch method extracts the instance variable named data and displays
that information instead of a literal string as was the case in the earlier versions of this program.

4.4.2.4.4.1.6 The controlling class named Callback04

That brings us to the controlling class that ties all the other pieces together and exercises them. The
controlling class in this version of the program is no di�erent from that of the earlier version named
Callback03 .

Also, the output from running this version of the program is almost the same as the earlier version, with
the main di�erence being that the callback methods display information encapsulated in an object passed to
the method which was not the case in the earlier versions. The output can be seen in the complete program
listing shown in Listing 6 (p. 1478) .

Therefore, there should be no need to provide any further discussion regarding the testing of this version
of the program.

4.4.2.4.5 Summary

We have objects of di�erent classes registered on a common callback list where every object on the list
receives a callback for every di�erent type of callback event associated with the list.

Whenever a callback occurs, an object is instantiated to contain information and passed as a parameter
to the callback method. The code in the callback method can either ignore that object, or extract the
information from the object and use it. In this program, the code in the callback methods extracts and
displays the information encapsulated in the object.

The di�erent types of callbacks are established by the method declarations in the CallBack interface.
An adapter class is de�ned that implements the CallBack interface and de�nes all of its methods

as empty methods.
Each class of object that registers for callbacks can either respond to all of the di�erent types of callbacks

by overriding all of the callback methods in the adapter class, or can selectively ignore some types of
callbacks simply by not overriding those methods.

Such a class can also ignore the adapter class and implement the interface directly as in the earlier
lessons.

4.4.2.4.6 Complete program listings

A complete listing of the program is shown in Listing 6 (p. 1478) .

Listing 6 . The program named Callback04.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1474 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

/*File Callback04.java Copyright 1997, R.G.Baldwin

The purpose of this program is to develop a callback

capability using Interfaces.

This is an enhanced version of the program named

Callback03. You should familiarize yourself with

the earlier program before getting into this program.

This version of the program makes two unrelated

enhancements to the program named Callback03.

First, a new class is defined in conjunction with the

CallBack interface that makes it possible for the

Teacher class to encapsulate information into an object

and pass that object whenever a callback is made.

Second, a new class is defined in conjunction with the

CallBack interface which, in Java terminology, is often

called an adapter class. This is a convenience class

that implements the interface and defines all the

methods declared in the interface with empty methods.

Then any class that needs to implement the interface

can extend the adapter class without a requirement to

define those methods that are not of interest.

In this case, the interface is expanded to declare

several dummy methods to emphasize this benefit of

the use of an adapter class.

Note that objects of classes that extend the adapter

class that implements the interface can be referred to

by the interface type. Thus, interface type is an

inherited attribute that results from extending a class.

Using an adapter class also makes it possible to expand

the interface later by declaring new methods without

breaking code that already implements the interface.

This version defines three different classes named

Student, Dog, and Cat, that implement the CallBack

interface indirectly by extending the adapter class.

These classes simply don't bother to define

methods of the interface that are not of interest.

Mixed objects of these three types are maintained

on a list and notified at CallBack time.

The Dog class ignores the recess() callback and the

Cat class ignores the lunch() callback. The Student

class responds to both types of callbacks with fully-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1475

defined methods.

The program defines a Teacher class that has the

ability to create and maintain a list of objects

of the interface type, and to notify those objects

that something interesting has happened by invoking

either the recess() method or the lunch() method on all

the objects on the list.

Finally, the program defines a controlling class that

ties all the pieces together and exercises them.

Tested using JDK 1.1.3 under Win95.

The output from the program was:

Tom Recess

Sue Recess

CleoCat Recess

Peg Recess

KittyKat Recess

Bob Recess

Tom Lunch

SpotDog Lunch

Sue Lunch

FidoDog Lunch

Peg Lunch

Bob Lunch

BrownieDog Lunch

**/

import java.util.*;

//First we define an interface that will create a new type

// and declare two generic methods that can be used to

// callback any object that is of a class that implements

// the interface. Note that the methods now require a

// parameter. Note also that we have declared several

// additional dummy methods to emphasize the benefit of

// extending the adapter class that is defined later.

interface CallBack{

public void recess(CallBackObjectClass obj);

public void lunch(CallBackObjectClass obj);

public void dummy1(CallBackObjectClass obj);

public void dummy2(CallBackObjectClass obj);

public void dummy3(CallBackObjectClass obj);

public void dummy4(CallBackObjectClass obj);

public void dummy5(CallBackObjectClass obj);

public void dummy6(CallBackObjectClass obj);

}//end interface CallBack

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1476 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

//===//

//Now we need a class that can be instantiated to

// pass an object in the callback methods.

class CallBackObjectClass{

String data;

CallBackObjectClass(String data){//constructor

this.data = data;

}//end constructor

}//end CallBackObjectClass

//===//

//Now we need an adapter class for the CallBack interface.

// This class defines all the interface methods with

// empty methods. Classes that need the interface can

// now extend this class and override only the empty

// methods of interest, and ignore the others. Note that

// objects of a class that extends this class can be

// referenced as the interface type CallBack.

class CallBackAdapter implements CallBack{

public void recess(CallBackObjectClass obj){};

public void lunch(CallBackObjectClass obj){};

public void dummy1(CallBackObjectClass obj){};

public void dummy2(CallBackObjectClass obj){};

public void dummy3(CallBackObjectClass obj){};

public void dummy4(CallBackObjectClass obj){};

public void dummy5(CallBackObjectClass obj){};

public void dummy6(CallBackObjectClass obj){};

}//end class CallBackAdapter

//===//

//Next we need a class whose objects can maintain a

// registered list of objects of type CallBack and can

// notify all the objects on that list when something

// interesting happens. This class has the ability to

// notify two different types of callbacks, recess()

// and lunch().

class Teacher{

Vector objList; //list of objects of type CallBack

//---//

Teacher(){//constructor

//Instantiate a Vector object to contain the list

// of registered objects.

objList = new Vector();

}//end constructor

//---//

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1477

//Method to add objects to the list.

synchronized void register(CallBack obj){

this.objList.addElement(obj);

}//end register()

//---//

//Method to remove objects from the list.

synchronized void unRegister(CallBack obj){

if(this.objList.removeElement(obj))

System.out.println(obj + " removed");

else

System.out.println(obj + " not in the list");

}//end register()

//---//

//Method to notify all objects on the list that

// something interesting has happened regarding

// recess and to pass information to the object

// encapsulated in an object as a parameter.

void callRecess(){

Vector tempList;//save a temporary copy of list here

//Make a copy of the list.

synchronized(this){

tempList = (Vector)objList.clone();

}//end synchronized block

//Invoke the recess() method on each object on

// the list, passing an object as a parameter.

for(int cnt = 0; cnt < tempList.size(); cnt++){

((CallBack)tempList.elementAt(cnt)).recess(

new CallBackObjectClass(" Recess"));

}//end for loop

}//end callRecess()

//---//

//Method to notify all objects on the list that

// something interesting has happened regarding

// lunch and to pass an object containing information

// as a parameter to the callback method.

void callLunch(){

Vector tempList;//save a temporary copy of list here

//Make a copy of the list.

synchronized(this){

tempList = (Vector)objList.clone();

}//end synchronized block

//Invoke the lunch() method on each object on

// the list, passing an object as a parameter.

for(int cnt = 0; cnt < tempList.size(); cnt++){

((CallBack)tempList.elementAt(cnt)).lunch(

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1478 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

new CallBackObjectClass(" Lunch"));

}//end for loop

}//end callRecess()

//---//

}//end class Teacher

//===//

//Class that implements the CallBack interface indirectly

// by extending the CallBackAdapter class. Objects

// of this class can be registered on the list maintained

// by an object of the Teacher class, and will be notified

// whenever that object invokes either the recess() method

// or the lunch() method on the registered objects on

// the list. This method provides a full definition for

// both methods.

class Student extends CallBackAdapter{

String name; //store the object name here for later ID

//---//

Student(String name){//constructor

this.name = name; //save the name to identify the obj

}//end constructor

//---//

//An object of the Teacher class can invoke this method

// as a callback mechanism. Note that this method

// displays the data encapsulated in the incoming

// object.

public void recess(CallBackObjectClass obj){//announce

System.out.println(name + obj.data);

}//end overridden recess()

//---//

//An object of the Teacher class can also invoke this

// method as a callback mechanism passing an object

// as a parameter.

public void lunch(CallBackObjectClass obj){//announce

System.out.println(name + obj.data);

}//end overridden lunch()

//---//

}//end class Student

//===//

//Another Class that implements the CallBack interface

// indirectly by extending the CallBackAdapter class.

// See description above. This class ignores the recess()

// method as well as the dummy methods.

class Dog extends CallBackAdapter{

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1479

String name; //store name here for later ID

//---//

Dog(String name){//constructor

this.name = name; //save the name to identify the obj

}//end constructor

//---//

//An object of the Teacher class can invoke this

// method as a callback mechanism passing an object

// as a parameter.

public void lunch(CallBackObjectClass obj){//announce

System.out.println(name + obj.data);

}//end overridden lunch()

//---//

}//end class Dog

//===//

//A third Class that implements the CallBack interface

// indirectly by extending the CallBackAdapter class,

// similar to the other two classes. This class ignores

// the lunch() method as well as the dummy methods.

class Cat extends CallBackAdapter{

String name; //store name here for later ID

//---//

Cat(String name){//constructor

this.name = name; //save the name to identify the obj

}//end constructor

//---//

//An object of the Teacher class can invoke this method

// as the callback mechanism, passing an object as a

// parameter.

public void recess(CallBackObjectClass obj){//announce

System.out.println(name + obj.data);

}//end overridden recess()

//---//

}//end class Cat

//===//

//Controlling class that ties all the pieces together and

// exercises them.

class Callback04{

public static void main(String[] args){

//Instantiate Teacher object

Teacher missJones = new Teacher();

//Instantiate some Student objects

Student tom = new Student("Tom");

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1480 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Student sue = new Student("Sue");

Student peg = new Student("Peg");

Student bob = new Student("Bob");

Student joe = new Student("Joe");

//Instantiate some Dog objects.

Dog spot = new Dog("SpotDog");

Dog fido = new Dog("FidoDog");

Dog brownie = new Dog("BrownieDog");

//Instantiate some Cat objects

Cat cleo = new Cat("CleoCat");

Cat kitty = new Cat("KittyKat");

//Register some Student, Dog, and Cat objects with

// the Teacher object.

missJones.register(tom);

missJones.register(spot);

missJones.register(sue);

missJones.register(cleo);

missJones.register(fido);

missJones.register(peg);

missJones.register(kitty);

missJones.register(bob);

missJones.register(brownie);

//Cause the Teacher object to call recess on all

// the objects on the list.

missJones.callRecess();

//Cause the Teacher object to call lunch on all

// the objects on the list.

missJones.callLunch();

}//end main()

}//end class Callback04

//===//

4.4.2.4.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java0079 Java OOP Callbacks - III
• File: Java0079.htm
• Originally published: 1997

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1481

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.5 Java0080 Java OOP Event Handling in JDK 1.1, A First Look, Delegation Event
Model

154

4.4.2.5.1 Table of Contents

• Preface (p. 1487)

· Viewing tip (p. 1487)

* Figures (p. 1487)
* Listings (p. 1487)

• Introduction (p. 1487)
• Design Goals of the JDK 1.1 Delegation Event Model (p. 1488)
• Simpli�ed Overview of the New Delegation Model (p. 1488)

· Sample Program (p. 1489)
· Interesting Code Fragments (p. 1489)
· Program Listing for Event08 (p. 1495)

• More Detailed Overview of the Delegation Model (p. 1498)

· Event Hierarchy (p. 1499)
· Low-level vs. Semantic Events (p. 1499)
· Event Listeners (p. 1500)
· Event sources (p. 1501)
· Adapters (p. 1503)
· Filtering for Performance (p. 1503)

• Another Sample Program (p. 1504)

· Event09 Interesting Code Fragments (p. 1504)
· Event09 Program Listing (p. 1508)

• Summary (p. 1510)
• Review (p. 1511)
• Run the program (p. 1511)
• Summary (p. 1510)
• Miscellaneous (p. 1511)

154This content is available online at <http://cnx.org/content/m44340/1.7/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1482 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.2.5.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

(Editor's note: As you read this module, you will see that it was originally written in 1997. However,
despite many improvements in Java since 1997, most of what was true in 1997 is still true in 2012.)

This module makes several references to my website, which is located at
http://www.dickbaldwin.com/toc.htm 155 . A copy of the original html version of this module is
available here 156 .

4.4.2.5.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

4.4.2.5.2.1.1 Figures

• Figure 1 (p. 1493) . Program output.
• Figure 2 (p. 1504) . Screen output from Event09.

4.4.2.5.2.1.2 Listings

• Listing 1 (p. 1490) . The main method for Event08.
• Listing 2 (p. 1490) . Beginning of the constructor.
• Listing 3 (p. 1491) . Instantiate two Listener objects.
• Listing 4 (p. 1491) . Register the listener objects.
• Listing 5 (p. 1492) . Make the Frame visible.
• Listing 6 (p. 1492) . Beginning of the class named WProc1.
• Listing 7 (p. 1493) . The windowClosing event handler.
• Listing 8 (p. 1493) . De�nition for the class named WProc2.
• Listing 9 (p. 1495) . Complete listing for Event08.
• Listing 10 (p. 1505) . Beginning of the class named Event09.
• Listing 11 (p. 1505) . The class named MyFrame.
• Listing 12 (p. 1506) . Beginning of the class named GUI.
• Listing 13 (p. 1506) . Register two listener objects.
• Listing 14 (p. 1507) . The class named MouseProc.
• Listing 15 (p. 1507) . The class named WProc1.
• Listing 16 (p. 1508) . Complete listing of Event09.

4.4.2.5.3 Introduction

This module provides a description of the Delegation Event Model as de�ned in JDK 1.1 along with sample
programs that illustrate some aspects of the model. I describe how the event model maps to the AWT API.

Much of this information was taken from the documentation released with the various versions of JDK
1.1, and is the intellectual property of Sun Microsystems. The material is being reproduced here for the sole
purpose of assisting students in learning how to use the event model.

155http://www.dickbaldwin.com/toc.htm
156http://cnx.org/content/m45597/latest/Java080.htm

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1483

4.4.2.5.4 Design Goals of the JDK 1.1 Delegation Model

According to Sun, the primary design goals of the event model in the AWT are the following:

Design goals:

• Simple and easy to learn
• Support a clean separation between application and GUI code
• Facilitate the creation of robust event handling code which is less error-prone (strong compile-
time checking)
• Flexible enough to enable varied application models for event �ow and propagation
• For visual tool builders, enable run-time discovery of both events that a component generates
as well as the events it may observe
• Support backward binary compatibility with the old model

It will be up to you to decide if they have met their goals.

4.4.2.5.5 Simpli�ed Overview of the New Delegation Model

First, I will provide a simpli�ed overview of the model including a sample program. Following that, I will
embark on a detailed discussion of the model. Hopefully the simpli�ed discussion and the sample program
will help you to understand the material in the detailed discussion.

Also, the earlier module on callbacks 157 should have given you considerable background to help you
understand this material. If you are not familiar with the callback material, you should go back and review
that material.

Event sources and listeners
Events are now organized into a hierarchy of event classes. The model makes use of event sources

and event listeners .
An event source is an object that has the ability

• to determine when an interesting event has occurred, and
• to notify listener objects of the occurrence of the event.

Although you as the programmer establish the framework for such noti�cation, the actual noti�cation takes
place automatically behind the scenes.

A listener object is an instance of a class (or instance of a subclass of a class) that

• implements a speci�c listener interface.

A number of listener interfaces are de�ned where each interface declares the methods appropriate for a
speci�c class of events. Thus, there is natural pairing of classes of events and interface de�nitions.

For example, there is a class of mouse events that includes most of the events normally associated with
mouse action. There is a matching interface de�nition, which is used to de�ne a listener class for those events
(actually this is the one case where two interfaces are de�ned to match up with a single event class) .

Registration
A listener object can be registered on a source object to be noti�ed of the occurrence of all events of

the speci�c class for which the listener object is designed.
Once a listener object is registered to be noti�ed of those events, the occurrence of an event de�ned by

the speci�ed class will automatically call the matching method in the listener object. The code in the body
of the method is designed by the programmer to perform the desired action when the event occurs.

Multiple noti�cation methods

157http://cnx.org/content/m44333/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1484 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Some event classes (such as the mouse events, for example) involve a number of di�erent possible event
types (noti�cation methods) . A listener class that implements the matching interface for that event class
must implement or de�ne (provide a body for) all the methods declared in the interface.

Adapter classes
An intermediate set of classes, known as Adapter classes, is provided to prevent this from becoming

burdensome. These Adapter classes implement the listener interfaces, and de�ne the matching interface
methods with empty methods.

A listener class can then be de�ned that extends the Adapter class instead of implementing the
corresponding listener interface. With this approach, the listener class need only override those methods of
interest since the requirement to de�ne all of the interface methods has already been satis�ed by the Adapter
class.

An example
For example, in the sample program that follows, two di�erent listener objects instantiated from two

di�erent listener classes are registered to receive all events involving the manipulation of a Frame object
(opening, closing, minimizing, etc.) .

One of the listener classes implements the WindowListener interface and hence must de�ne all six
methods of that interface.

The other listener class extends the WindowAdapter class, which in turn implements the
WindowListener interface. The WindowAdapter class de�nes all six methods as empty methods.
Thus, this listener class can get by with overriding only two of the six methods of the interface.

4.4.2.5.5.1 Sample Program

This program named Event08 (p. 1495) was designed for simplicity. In this program, the code in each of the
methods is simple. In all cases but one, the code simply displays a message indicating that the method has
been called. Obviously, in order for a program to be of much value, the body of code in the methods would
have to be much more substantive, or at least would have to call other methods that are more substantive.

This program illustrates the use of Event Sources , Event Listeners , and Adapters in the Delegation
Event Model .

Description
Brie�y, this program (p. 1495) instantiates an object that creates a user interface consisting of a simple

Frame object. This object is an Event Source that noti�es two di�erent Event Listener objects of
Window events.

One of the Listener objects implements the WindowListener interface and de�nes all of the
methods declared in that interface. The other Listener object extends the Adapter class named
WindowAdapter .

As explained earlier, the purpose of Adapter classes (as used in this context) is to implement the
Listener interfaces and to de�ne all of the methods with empty methods.

Classes that extend the Adapter classes can then selectively override only those methods of interest.
This Listener object overrides only two of the methods.

(Note that this program does not terminate and return control to the operating system. You must
forcefully terminate it.)

This program was originally tested using JDK 1.1.3 under Win95. More recently it was tested using JDK
1.7 under Windows Vista.

The output produced by running the program is presented later in this module.

4.4.2.5.5.2 Interesting Code Fragments

Listing 1 (p. 1490) shows the main method of the controlling class that instantiates a Graphical User
Interface (GUI) object. There are more compact (and more cryptic) ways to accomplish this objective, but
for the time being, in order to achieve clarity, I will use this approach.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1485

Listing 1 - The main method for Event08.

public class Event08 {//controlling class

public static void main(String[] args){

GUI gui = new GUI();//instantiate a GUInterface object

}//end main

}//end class Event08

Table 4.214

The GUI class is rather long, so I will break it up and discuss it in parts.
This class is used

• to instantiate and display a user interface object,
• to instantiate two Listener objects, and
• to register those two objects for noti�cation whenever a Window event occurs.

The class begins by de�ning its own constructor. The �rst interesting code in the constructor is the code to
instantiate an object of type Frame , set its size, and give it a title, as shown in Listing 2 (p. 1490) .

Listing 2 - Beginning of the constructor.

class GUI{

public GUI(){//constructor

//Create a new Frame object

Frame displayWindow = new Frame();

displayWindow.setSize(300,200);

displayWindow.setTitle("Copyright 1997, R.G.Baldwin");

Table 4.215

What is a Frame?
The JDK documentation describes a Frame as follows:

Description of a Frame: A Frame is a top-level window with a title and a border. The
default layout for a frame is BorderLayout . (We will learn more about layout managers later)

Frames are capable of generating the following types of window events:

• WindowOpened
• WindowClosing
• WindowClosed
• WindowIconi�ed
• WindowDeiconi�ed
• WindowActivated
• WindowDeactivated.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1486 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Stated di�erently, a Frame object is the type of GUI object that we might refer to as a window or a
form in a typical GUI environment.

Instantiate two Listener objects
Listing 3 (p. 1491) instantiates two Listener objects that will process Window events.
The class de�nitions, named Wproc1 and Wproc2 , for these two classes will follow the discussion

of the GUI class.
(Note that I am passing a reference to the Frame object to the constructor for one of these

classes. There is a better (and more cryptic) way to achieve the same objective without the need to pass the
reference. Again, since this program was designed for clarity, I am doing it the obvious way.)

Listing 3 - Instantiate two Listener objects.

WProc1 winProcCmd1 = new WProc1(displayWindow);

WProc2 winProcCmd2 = new WProc2();

Table 4.216

Register the listener objects
The code in Listing 4 (p. 1491) is extremely important. This is the code by which we register the listener

objects for noti�cation of Window events where the Frame object named displayWindow is the
source of the events.

Pay close attention to the syntax of these two statements, because you will be using this syntax often.
In subsequent modules, we will dig deeper into the Delegation Event Model and I will teach you what is
going on behind the scenes when you execute statements of this sort.

Listing 4 - Register the listener objects .

displayWindow.addWindowListener(winProcCmd1);

displayWindow.addWindowListener(winProcCmd2);

Table 4.217

Interpretation
The interpretation of the code in Listing 4 (p. 1491) is that the two listener objects named win-

ProcCmd1 and winProcCmd2 are added to a list of listener objects that are to be automatically
noti�ed

• whenever an event of the WindowEvent class occurs
• with respect to the Frame object named displayWindow .

These listener objects are noti�ed by calling the methods in the objects that match the speci�c type of the
event (open window, close window, closing window, minimize window, etc.) .

Make the Frame visible
We wrap up the de�nition of our GUI class with the statement shown in Listing 5 (p. 1492) that

causes the Frame object to become visible on the screen. Note that this statement also causes the
windowActivated and windowOpened events to be generated. (Current jargon would say that those
events are "�red".)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1487

Listing 5 - Make the Frame visible.

displayWindow.setVisible(true);

}//end constructor

}//end GUI class definition

Table 4.218

Code for the Listener objects
At this point, we have examined the code that will create a Frame object and display it on the screen.

Also we have examined the code that registers two Listener objects on the Frame object. However,
at this point, the program cannot be compiled because the classes from which the two Listener objects
are to be instantiated have not yet been de�ned. That will be our next assignment.

Beginning of the class named WProc1
Listing 6 (p. 1492) begins the de�nition of the classes that can be used to instantiate Listener objects.
The �rst class de�nition that we will look at implements the WindowListener interface. This

requires that all the methods declared in the interface be de�ned in this class. This class de�nes all of the
methods. Each of the methods displays a descriptive message whenever it is called.

I will begin the discussion with the constructor as shown in Listing 6 (p. 1492) .

Listing 6 - Beginning of the class named WProc1.

class WProc1 implements WindowListener{

Frame displayWindowRef;

WProc1(Frame windowIn){//constructor

this.displayWindowRef = windowIn;

}//end constructor

Table 4.219

(Note that the constructor for this class requires a reference to the Source object to be passed as a
parameter. As mentioned earlier, this is not the preferred way to accomplish our objective, but it is the most
straightforward and easy to understand. That is why I elected to use it here. The code in the constructor
saves a reference to the Source object in an instance variable named displayWindowRef .)

Implementing the WindowListener interface
It is important to note that this class implements the WindowListener interface. This means that

it must de�ne all of the methods that are declared in that interface.
If you examine the complete program listing that is presented later, you will see that there is one method

de�nition in this class de�nition for each of the methods that are declared in the WindowListener
interface.

The de�nition of all the interface methods are very similar, so I am not going to show all of them here.
However, I will show the one that requires the reference to the source object that was discussed above, which
is the most complicated one of the set.

The windowClosing event handler
The methods that are declared in the listener interfaces are often referred to as event handler methods

or event handlers for short. The windowClosing event handler method is shown in Listing 7 (p. 1493)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1488 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

. As you can see, this method starts out by displaying a message. Then it calls the dispose method on
the Frame object. That is the reason that a reference to the Frame object was required to be passed
in as a parameter.

Calling the dispose method causes a WindowClosed event to be �red. (As far as I know, that is
the only way to cause a WindowClosed event to be �red.)

Listing 7 - The windowClosing event handler.

public void windowClosing(WindowEvent e){

System.out.println("WProc1 windowClosing test msg");

displayWindowRef.dispose();//generate WindowClosed

}//end windowClosing()

Table 4.220

The class named WProc2
The class de�nition shown in Listing 8 (p. 1493) does not implement the WindowListener interface.

Instead, it extends the WindowAdapter class. Therefore, it can selectively override only those methods
that are of interest.

In this case, only two of the methods of the WindowListener interface are overridden. These overridden
methods display a message whenever they are called.

Listing 8 - De�nition for the class named WProc2.

class WProc2 extends WindowAdapter{

public void windowIconified(WindowEvent e){

System.out.println(

"******** WProc2 windowIconified test msg");

}//end windowIconified()

public void windowDeiconified(WindowEvent e){

System.out.println(

"******** WProc2 windowDeiconified test msg");

}//end windowDeiconified()

}//end class WProc2

Table 4.221

Program output
Figure 1 (p. 1493) shows a sample output from this program. The small Frame in the upper-left

corner is the graphic Frame object. A command-line screen with text output is shown immediately below
the Frame.

Figure 1 - Program output.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1489

The text output
The output from running this program for a variety of user actions is shown below. You should be able

to correlate the messages shown in the output with the event handler methods discussed above and the user
actions that caused those event handlers to be called.

Text output from Event08

This program was tested using JDK 1.1.3 under Win95.

When executed, this application places a simple empty

Frame object on the screen.

Starting the program produces the following output:

WProc1 windowActivated test msg

Wproc1 windowOpened test msg

Pressing the minimize button on the Frame produces the

following output:

WProc1 windowIconified test msg

******** WProc2 windowIconified test msg

WProc1 windowDeactivated test msg

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1490 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Restoring the Frame after minimization produces the

following output:

WProc1 windowActivated test msg

WProc1 windowDeiconified test msg

******** WProc2 windowDeiconified test msg

WProc1 windowActivated test msg

Closing the Frame by pressing the X-icon in the upper

right of the Frame produces the following output.

WProc1 windowClosing test msg

WProc1 windowDeactivated test msg

WProc1 windowClosed test msg

4.4.2.5.5.3 Program Listing for Event08

A complete listing of the program is provided in Listing 9 (p. 1495) . You can view the code that was not
shown above in this listing.

Listing 9 - Complete listing for Event08.

/*File Event08.java Copyright 1997, R.G.Baldwin

Rev 01/10/98

Illustrates the use of Event Sources, Event Listeners, and

Adapters in the Delegation Event Model.

Briefly, this application instantiates an object that

creates a user interface consisting of a simple Frame

object. This object is an Event Source that notifies two

different Event Listener objects of Window events.

One of the Listener objects implements the WindowListener

interface and overrides all of the methods declared in

that interface.

The other Listener object extends the Adapter class named

WindowAdapter. The purpose of Adapter classes is to

implement the Listener interfaces and to define all of

the methods with empty methods. Classes that extend the

Adapter classes can then selectively override only those

methods of interest. This Listener object overrides only

two of the methods.

Note that this application does not terminate and return

control to the operating system. You must forcefully

terminate it.

This program was tested using JDK 1.1.3 under Win95.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1491

When executed, this application places a simple empty

Frame object on the screen.

Starting the program produces the following output:

WProc1 windowActivated test msg

Wproc1 windowOpened test msg

Pressing the minimize button on the Frame produces the

following output:

WProc1 windowIconified test msg

******** WProc2 windowIconified test msg

WProc1 windowDeactivated test msg

Restoring the Frame after minimization produces the

following output:

WProc1 windowActivated test msg

WProc1 windowDeiconified test msg

******** WProc2 windowDeiconified test msg

WProc1 windowActivated test msg

Closing the Frame by pressing the X-icon in the upper

right of the Frame produces the following output.

WProc1 windowClosing test msg

WProc1 windowDeactivated test msg

WProc1 windowClosed test msg

**/

import java.awt.*;

import java.awt.event.*;

public class Event08 {

public static void main(String[] args){

GUI gui = new GUI();//instantiate a GUInterface object

}//end main

}//end class Event08

//===//

//The following class is used to instantiate a user

// interface object, to instantiate two Listener objects,

// and to register those two objects for notification

// whenever a Window event occurs.

class GUI{

public GUI(){//constructor

//Create a new Frame object

Frame displayWindow = new Frame();

displayWindow.setSize(300,200);

displayWindow.setTitle("Copyright 1997, R.G.Baldwin");

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1492 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

//Instantiate two Listener objects that will process

// Window events

WProc1 winProcCmd1 = new WProc1(displayWindow);

WProc2 winProcCmd2 = new WProc2();

//Register the Listener objects for notification of

// Window events. This object is the Event Source.

displayWindow.addWindowListener(winProcCmd1);

displayWindow.addWindowListener(winProcCmd2);

//windowActivated and windowOpened test messages

// are produced here

displayWindow.setVisible(true);

}//end constructor

}//end class GUI definition

//===//

//The following two classes can be used to instantiate

// Listener objects. Note that this class implements the

// WindowListener interface. This requires that all the

// methods declared in the interface be overridden in this

// class. This class overrides all of the methods and

// displays a descriptive message whenever one of the

// methods is called.

class WProc1 implements WindowListener{

//used to save a reference to the Frame object

Frame displayWindowRef;

WProc1(Frame windowIn){//constructor

// save ref to Frame object

this.displayWindowRef = windowIn;

}//end constructor

public void windowClosed(WindowEvent e){

System.out.println("WProc1 windowClosed test msg");

}//end windowClosed()

public void windowIconified(WindowEvent e){

System.out.println("WProc1 windowIconified test msg");

}//end windowIconified()

public void windowOpened(WindowEvent e){

System.out.println("WProc1 windowOpened test msg");

}//end windowOpened()

public void windowClosing(WindowEvent e){

System.out.println("WProc1 windowClosing test msg");

displayWindowRef.dispose();//generate WindowClosed

}//end windowClosing()

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1493

public void windowDeiconified(WindowEvent e){

System.out.println(

"WProc1 windowDeiconified test msg");

}//end windowDeiconified()

public void windowActivated(WindowEvent e){

System.out.println("WProc1 windowActivated test msg");

}//end windowActivated()

public void windowDeactivated(WindowEvent e){

System.out.println(

"WProc1 windowDeactivated test msg");

}//end windowDeactivated()

}//end class WProc1

//===//

//This and the previous class can be used to instantiate

// Listener objects. Note that this class extends an

// Adapter class that can be used to avoid the

// requirement to define all of the methods of the

// actual Listener class named WindowListener. This class

// overrides only two of the methods declared in the

// interface. It displays a message whenever one of the

// methods is called.

class WProc2 extends WindowAdapter{

public void windowIconified(WindowEvent e){

System.out.println(

"******** WProc2 windowIconified test msg");

}//end windowIconified()

public void windowDeiconified(WindowEvent e){

System.out.println(

"******** WProc2 windowDeiconified test msg");

}//end windowDeiconified()

}//end class WProc2

4.4.2.5.6 More Detailed Overview of the Delegation Model

JDK 1.1 encapsulates events in a class hierarchy with the root class named java.util.EventObject .
The propagation of an event from a Source object to a Listener object involves calling a method

on the Listener object and passing an object that contains encapsulated information about the event.
Note that each event class may include more than one actual type of event (as determined by the methods
declared in the listener interface) .

An event listener
A Listener object is an instance of a class that implements a speci�c EventListener interface

extended from the generic java.util.EventListener .
An EventListener interface declares one or more methods that must be de�ned in the Listener

class. Those methods are called by the event source in response to each speci�c event type handled by the
interface.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1494 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

The calling of these methods is the mechanism by which the Source noti�es the Listener of the
occurrence of an event of a speci�c type.

An event source
An Event Source is an object that "originates" or "�res" events by calling the methods of one or more

Listener objects. The Source maintains a list containing a reference to all of the Listener objects
that have registered to be noti�ed of events of that class.

Registration of event listener objects
The programmer causes Listener objects to be added to this list using add (EventType) Listener

method calls.
Placing references to Listener objects on the list is often referred to as registering speci�c Listeners

to receive noti�cation of speci�c events.
Notifying listener objects
Once the list is populated (Listener objects are registered) , the Source object uses that list

to notify each Listener of the occurrence of an event of the speci�ed type without further e�ort on the
part of the programmer.

Event sources and listeners
The Event Source is often a GUI component and the Listener is commonly an object of a class

that implements the appropriate listener interface, but this is not a requirement. For example we will learn
later how to cause a program to generate events without any physical involvement on the part of a user and
a GUI component.

The Listener object could also be another AWT component that implements one or more Listener
interfaces for the purpose of hooking GUI objects up to each other.

4.4.2.5.6.1 Event Hierarchy

As mentioned earlier, each speci�c event type is a member of a class of event types and these classes form a
hierarchy of event classes.

Since a single event class may be used to represent more than one event type (i.e. MouseEvent
represents mouse up, mouse down, mouse drag, mouse move, etc.) , some event classes may also contain
an "id" (unique within that class) that maps to its speci�c event types.

Setter and getter methods
There are no public �elds in the event classes. Rather the data in the event is encapsulated and available

only through the use of appropriate setter and getter methods.
The setter methods only exist for attributes on an event that can be modi�ed by a listener. If you

continue with your studies in Java, you will learn that the setter and getter methods match a design
pattern for Java Beans.

A concrete set of event classes is de�ned by the AWT. In addition, programmers may de�ne their own
event types by subclassing either java.util.EventObject or one of the AWT event classes.

4.4.2.5.6.2 Low-level vs. Semantic Events

The AWT provides two conceptual types of events:

• low-level events
• semantic events

Low-level events
A low-level event is one that represents a low-level input or window-system occurrence on a visual

component on the screen. As of February 1997, JDK 1.1 de�ned the following low-level event classes:

Low-level event classes

• java.util.EventObject

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1495

· java.awt.AWTEvent

*java.awt.event.ComponentEvent (component resized, moved,etc.)

·java.awt.event.FocusEvent (component got focus, lost focus)
·java.awt.event.InputEvent
·java.awt.event.KeyEvent (component got key-press, key-release,etc.)
·java.awt.event.MouseEvent (component got mouse-down, mouse-move,etc.)

·java.awt.event.ContainerEvent
·java.awt.event.WindowEvent

As indicated earlier, some of the event classes encompass several di�erent event types. Generally, there are
corresponding Listener interfaces for each of the event classes, and corresponding interface methods for
each of the di�erent event types in each event class.

Semantic events
Semantic events are de�ned at a higher-level to encapsulate the semantics of a user interface component's

model. As of February 1997, the semantic event classes de�ned by the JDK 1.1 version of the AWT were as
follows:

Semantic event classes

• java.util.EventObject
· java.awt.AWTEvent

*java.awt.event.ActionEvent ("do a command")
*java.awt.event.AdjustmentEvent ("value was adjusted")
*java.awt.event.ItemEvent ("item state has changed")
*java.awt.event.TextEvent ("the value of the text object changed")

A more general event type
The semantic events are not tied to speci�c screen-based component classes, but may apply across

a set of components that implement a similar semantic model. For example, a Button object will �re
an "action" event when it is pressed and a List object will �re an "action" event when an item is
double-clicked.

Not tied to user actions
Even though the above discussion seems to tie these event classes to user actions on screen components

(because that is the norm) , you need to remember that there is nothing to prevent you from having your
code generate events of these types completely independent of such user actions. For example, you can easily
cause an ActionEvent to be generated and attributed to some component whenever a software timer
expires. We will learn how to do this sort of thing in subsequent modules.

4.4.2.5.6.3 Event Listeners

An EventListener interface will typically have a separate method for each distinct event type that the event
class represents. For example, the FocusEventListener interface de�nes two methods, focusGained
and focusLost , one for each event type that the FocusEvent class represents.

Low-level listener interfaces
As of February 1997, the low-level listener interfaces de�ned by the JDK 1.1 version of the AWT were

as follows:

Low-level listener interfaces

• java.util.EventListener
· java.awt.event.ComponentListener

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1496 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

· java.awt.event.ContainerListener
· java.awt.event.FocusListener
· java.awt.event.KeyListener
· java.awt.event.MouseListener
· java.awt.event.MouseMotionListener
· java.awt.event.WindowListener

If you match this up with the previous list of low-level event classes, you will see that there is a listener
interface de�ned for each of the "leaf" classes in the hierarchy of event classes. (In fact, there are two
di�erent listener interfaces de�ned for the MouseEvent class. This will be discussed further at the
appropriate point in time.)

Semantic listener interfaces
As of February 1997, the semantic listener interfaces de�ned by the AWT were as follows:

Semantic event listener interfaces

• java.util.EventListener
· java.awt.event.ActionListener
· java.awt.event.AdjustmentListener
· java.awt.event.ItemListener
· java.awt.event.TextListener

There is a one-to-one correspondence between semantic listener interfaces and semantic event classes.

4.4.2.5.6.4 Event Sources

All AWT event sources support a multicast model for listeners. This means that multiple listeners can be
added and removed from a single source. In other words, noti�cation of the occurrence of the same event
can be sent to one or more listener objects.

According to JDK 1.1 documentation,
"The API makes no guarantees about the order in which the events are delivered to a set of registered

listeners for a given event on a given source. Additionally, any event which allows its properties to be
modi�ed (via setXXX() methods) will be explicitly copied such that each listener receives a replica of the
original event. If the order in which events are delivered to listeners is a factor for your program, you should
chain the listeners o� a single listener which is registered on the source (the fact that the event data is
encapsulated in a single object makes propagating the event extremely simple)."

Low-level event sources
As before, a distinction is drawn between low-level and semantic events. The source for low-level

events will often be one of the visual component classes (Button , Scrollbar , etc.) because
the event is bound to the actual component on the screen (but counterfeit events can be generated) .

As of February 1997, JDK 1.1 de�ned low-level listeners on the following components.

Low-level listener components

• java.awt.Component
· addComponentListener(ComponentListener l)
· addFocusListener(FocusListener l)
· addKeyListener(KeyListener l)
· addMouseListener(MouseListener l)
· addMouseMotionListener(MouseMotionListener l)

• java.awt.Container

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1497

· addContainerListener(ContainerListener l)
• java.awt.Dialog

· addWindowListener(WindowListener l)

• java.awt.Frame
· addWindowListener(WindowListener l)

Must take inheritance into account
To determine all of the speci�c event types that can be communicated from a source object to a listener

object, you must take inheritance into account.
For example, as you will see in a sample program later in this module, a source object can detect mouse

events on a Frame object and notify a MouseListener object of the occurrence of those events even
though the above list does not show a MouseListener on a Frame . This is possible because a Frame
object indirectly extends the Component class, and MouseListener is de�ned for the Component
class.

Semantic event sources
As of February 1997, JDK 1.1 de�ned the following semantic listeners for AWT components:

Semantic listener components

• java.awt.Button
· addActionListener(ActionListener l)

• java.awt.Choice (implements java.awt.ItemSelectable)
· addItemListener(ItemListener l)

• java.awt.Checkbox (implements java.awt.ItemSelectable)

· addItemListener(ItemListener l)
• java.awt.CheckboxMenuItem (implements java.awt.ItemSelectable)

· addItemListener(ItemListener l)
• java.awt.List (implements java.awt.ItemSelectable)

· addActionListener(ActionListener l)
· addItemListener(ItemListener l)

• java.awt.MenuItem

· addActionListener(ActionListener l)

• java.awt.Scrollbar (implements java.awt.Adjustable)
· addAdjustmentListener(AdjustmentListener l)

• java.awt.TextArea
· addTextListener(TextListener l)

• java.awt.TextField
· addActionListener(ActionListener l)
· addTextListener(TextListener l)

The nature of semantic events
The nature of semantic event types can be inferred by noticing that in some cases, di�erent types of

components support the same type of semantic event. For example, four di�erent types of components are
identi�ed in the above list that can register and service action events .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1498 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

A single ActionEvent listener object could be registered to be noti�ed of action events on one or more
components of all of these types. Of course, it would then be necessary for the code in that event handler
to determine which source was responsible for generating the event if such identi�cation is important.

An important di�erence between low level events and semantic events has to do with where the classes
that de�ne those events plug into the class hierarchy. Low level events plug in further down the class
hierarchy and inherit more methods that can be used to process the event object than is the case with
semantic events.

4.4.2.5.6.5 Adapters

Many EventListener interfaces are designed to listen to multiple event classes. For example, the
MouseListener listens to mouse-down, mouse-up, mouse-enter , etc. The MouseListener interface
declares a method for each of these subtypes.

When you implement an interface, you are required to de�ne all of the methods that are declared in the
interface, even if you de�ne them with empty methods. In some cases, the requirement to de�ne all the
methods declared in an interface can be burdensome.

For this reason (and possibly for some other reasons as well), the AWT provides a set of abstract adapter
classes that match up with the de�ned interfaces. Each adapter class implements one interface and de�nes
all of the methods declared by that interface as empty methods, thus satisfying the requirement to de�ne all
of the methods.

You can then de�ne your listener classes by extending the adapter classes instead of implementing the
listener interfaces.. This allows you the freedom to override only those methods of the interface that interest
you.

Again, recall that the methods declared within an interface correspond to the individual event types
contained within a corresponding event class, and the Source object noti�es your Listener object of
the occurrence of an event of a speci�c type by calling your interface method.

As of February 1997, the Adapter classes provided by the JDK 1.1 version of the AWT were as follows:

Adapter classes

• java.awt.event.ComponentAdapter
• java.awt.event.FocusAdapter
• java.awt.event.KeyAdapter
• java.awt.event.MouseAdapter
• java.awt.event.MouseMotionAdapter
• java.awt.event.WindowAdapter

4.4.2.5.6.6 Filtering for Performance

Since listeners are registered to handle speci�c event types, they are noti�ed only of the occurrence of those
event types and are not required to deal with event types for which they are not registered. That was not
the case in JDK 1.0.2 where all events passed through a common set of event handler code whether those
events were of interest or not.

This �ltering of events should improve performance, especially with high frequency events, such as mouse-
moves.

According to the JDK 1.1 documentation,
"All platforms should see some performance improvement from reduced event tra�c, but the Solaris

implementation should gain exceptional improvement since it's a network-based window system."

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1499

4.4.2.5.7 Another Sample Program

The previous program did not terminate when the user closed the window. The following program does
terminate when the user closes the window by executing a System.exit(0) statement in the closing
event handler..

The previous program implemented an Event Source object that noti�ed two di�erent Listener
objects of the occurrence of an event in the Window class.

The following program implements an Event Source object that noti�es one Listener object of the
occurrence of an event in the Window class and noti�es another Listener object of the occurrence of
an event in the Mouse class.

This program implements a MouseListener interface on a Frame object, which is possible because
the Frame class indirectly extends the Component class, and addMouseListener is de�ned on the
Component class.

Program output
If you compile and execute this program, whenever you click the mouse inside the Frame , you should

see the coordinates of the mouse pointer displayed above the mouse pointer as shown in Figure 2 (p. 1504)
below.

Figure 2 - Screen output from Event09.

4.4.2.5.7.1 Event09 Interesting Code Fragments

The �rst interesting code fragment is the de�nition of the controlling class. The main method for this
class instantiates a GUI object where all the real work is done. Listing 10 (p. 1505) shows the class named
Event09 including the main method.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1500 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 10 - Beginning of the class named Event09.

public class Event09 {

public static void main(String[] args){

GUI gui = new GUI();//instantiate a GUI

}//end main

}//end class Event09

Table 4.222

The paint and repaint methods
Various tutorial lessons on my website discuss the relationship between the paint method and the

repaint method. If you are unfamiliar with that relationship, you may need to go back and review it.
In this program, we are going to override the paint method to make it possible for us to draw coordinate

information on the screen.
In order to override the paint method, we need to extend the Frame class. By doing so, we can de�ne

our own version of the Frame class where we have the ability to override the paint method. Listing 11
(p. 1505) extends Frame into MyFrame and overrides the paint method.

Listing 11 - The class named MyFrame.

class MyFrame extends Frame{

int clickX;

int clickY;

public void paint(Graphics g){

g.drawString(

"" + clickX + ", " + clickY, clickX, clickY);

}//end paint()

}//end class MyFrame

Table 4.223

Storing and using coordinate information
For future reference, note that this class contains a couple of instance variables that will be used to store

X and Y coordinate information.
The overridden version of the paint method causes the coordinate values stored in clickX and

clickY to be displayed in the client area of the Frame object at the location speci�ed by the values of
those two instance variables.

The drawString method
The drawString method requires three parameters. The �rst parameter is the string to draw on the

screen. The next two parameters are the coordinate values in pixels where the string is to be drawn.
As is normally the case, coordinate values are speci�ed relative to the upper left corner of the object

being drawn on. The above overridden version of the drawString method converts the coordinate values
to a String , and draws that string at the location speci�ed by the coordinate values.

The class named GUI
As before, the GUI class is rather long. Therefore, I will break it up and discuss it in fragments.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1501

The �rst fragment that I will discuss is the constructor that begins in Listing 12 (p. 1506) . The important
thing to note here is that we are not instantiating an object of type Frame . Instead, we are instantiating
an object of type MyFrame that is our extended version of Frame .

Other than that, you should be familiar with the code in Listing 12 (p. 1506) by now.

Listing 12 - Beginning of the class named GUI.

class GUI {

public GUI(){//constructor

//Create a new Frame object, set size, title, etc.

MyFrame displayWindow = new MyFrame();

displayWindow.setSize(300,300);

displayWindow.setTitle("Copyright 1997, R.G.Baldwin");

displayWindow.setVisible(true);

Table 4.224

Register two listener objects
Listing 13 (p. 1506) uses standard syntax to instantiate and register two di�erent Listener objects on

the MyFrame object. The �rst is a WindowListener object that will terminate the program when
the user closes the MyFrame object.

The second is a MouseListener object that will process mouse events on the MyFrame object.
It is typical to register listener objects as anonymous objects in those cases where a speci�c reference

to the listener object is not otherwise needed. (Don't confuse anonymous objects with anonymous classes,
which is the topic of a future module.)

Listing 13 - Register two listener objects.

displayWindow.addWindowListener(new WProc1());

displayWindow.addMouseListener(

new MouseProc(displayWindow));

}//end constructor

}//end class GUI definition

Table 4.225

Listing 13 (p. 1506) ends the de�nition of the GUI class. That brings us to the de�nition of Listener
classes for the WindowListener and the MouseListener interfaces.

The MouseListener class
I will begin with the MouseListener class named MouseProc (p. 1507) . This class extends the

MouseAdapter class and does not directly implement the MouseListener interface. This saves us the
trouble of having to create empty methods for event types that we are not interested in.

Objects of this class that are registered on the Source will be noti�ed whenever a mousePressed()
event occurs on the Source. This will cause the mousePressed method to be called. The mouse-
Pressed method will display the coordinates of the mouse pointer when the mouse is pressed on the source
object.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1502 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

The mousePressed method
When the mousePressed method is called, it receives a reference to an object of type MouseEvent

as a parameter. Di�erent types of events encapsulate di�erent types of information in the object that is
passed as a parameter to the event handler method. This particular object contains a variety of information,
including the coordinates of the mouse pointer when the event occurred.

Extract and save mouse pointer coordinates
The code in the overridden mousePressed() method extracts that coordinate information from the

object and stores it in the instance variables named clickX and clickY of the Source object.
Then it calls the repaint method on the source object, causing the source object to be repainted on

the screen. This in turn causes the overridden paint method discussed earlier to be called, which displays
the new coordinate information on the screen in the proper location.

The class named MouseProc
Listing 14 (p. 1507) contain the de�nition of the MouseProc class, including the overridden mouse-

Pressed method.

Listing 14 - The class named MouseProc.

class MouseProc extends MouseAdapter{

MyFrame refToWin; //save a reference to the source here

MouseProc(MyFrame inWin){//constructor

refToWin = inWin;//save ref to window

}//end constructor

public void mousePressed(MouseEvent e){

refToWin.clickX = e.getX();

refToWin.clickY = e.getY();

refToWin.repaint();

}//end mousePressed()

}//end class MouseProc

Table 4.226

The class named WProc1
Finally, we come to the class that is used to instantiate a listener object that terminates the program

when the user closes the MyFrame object (see Listing 15 (p. 1507)) . You will be seeing this class over
and over as you review the sample programs in upcoming modules.

Listing 15 - The class named WProc1.

class WProc1 extends WindowAdapter{

public void windowClosing(WindowEvent e){

System.exit(0);

}//end windowClosing()

}//end class WProc1

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1503

Table 4.227

The WProc1 class extends the WindowAdapter class and overrides the method named window-
Closing .

The windowClosing method is called when the user clicks the red X in the upper right corner of
Figure 2 (p. 1504) .That causes the static exit method of the System class to be called, which in turn
causes the program to terminate.

4.4.2.5.7.2 Event09 Program Listing

A complete listing of the program named Event09 is provided in Listing 16 (p. 1508) .
Listing 16 - Complete listing of Event09.

/*File Event09.java Copyright 1997, R.G.Baldwin

This program is designed to be compiled under JDK 1.1

Illustrates the use of Event Sources, Event Listeners, and

Adapters in the Delegation Event Model.

This program instantiates a Listener object to process

mouse events. When a mouse press occurs in a Frame object,

the program gets the coordinates and then displays those

coordinates near the point of the mouse press.

This program was tested using JDK 1.1.3 under Win95.

**/

import java.awt.*;

import java.awt.event.*;

public class Event09 {

public static void main(String[] args){

GUI gui = new GUI();//instantiate a GUI

}//end main

}//end class Event09

//===//

//Subclass Frame in order to override the paint method.

class MyFrame extends Frame{

int clickX;

int clickY;

public void paint(Graphics g){

g.drawString(

"" + clickX + ", " + clickY, clickX, clickY);

}//end paint()

}//end class MyFrame

//===//

//The following class is used to instantiate a

// graphical user interface object.

class GUI {

public GUI(){//constructor

//Create a new Frame object, set size, title, etc.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1504 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

MyFrame displayWindow = new MyFrame();

displayWindow.setSize(300,300);

displayWindow.setTitle("Copyright 1997, R.G.Baldwin");

displayWindow.setVisible(true);

//Instantiate and register an anonymous Listener

// object that will terminate the program when the

// user closes the Frame.

displayWindow.addWindowListener(new WProc1());

//Instantiate and register an anonymous Listener

// object that will process mouse events to determine

// and display the coordinates when the user presses

// the mouse button in the client area of the Frame.

displayWindow.addMouseListener(

new MouseProc(displayWindow));

}//end constructor

}//end class GUI definition

//===//

//This listener class monitors for mouse presses and

// displays the coordinates of the mouse pointer when the

// mouse is pressed on the source object. Note that this

// class extends is an adapter class.

class MouseProc extends MouseAdapter{

MyFrame refToWin; //save a reference to the source here

MouseProc(MyFrame inWin){//constructor

refToWin = inWin;//save ref to window

}//end constructor

//Override the mousePressed method to determine and

// display the coordinates when the mouse is pressed.

public void mousePressed(MouseEvent e){

//Get X and Y coordinates of mouse pointer and store

// in an instance variable of the Frame object

refToWin.clickX = e.getX();

refToWin.clickY = e.getY();

//Force the Frame object to be repainted in order to

// display the coordinate information.

refToWin.repaint();

}//end mousePressed()

}//end class MouseProc

//===//

//The following listener is used to terminate the program

// when the user closes the frame. Note that this class

// extends an adapter class.

class WProc1 extends WindowAdapter{

public void windowClosing(WindowEvent e){

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1505

System.exit(0);

}//end windowClosing()

}//end class WProc1

//===//

4.4.2.5.8 Summary

In the simplest case, you can handle events as de�ned in JDK 1.1 with the following steps.

4.4.2.5.8.1 Step 1

De�ne a Listener class for a speci�c class of events by either implementing the listener interface that
matches that class of events, or extending the corresponding adapter class.

4.4.2.5.8.2 Step 2

De�ne or override the interface methods in the Listener class, for each speci�c event type in the event
class, to implement the desired behavior of the program upon occurrence of an event.

If you implement the listener interface, you must de�ne all interface methods. If instead you extend
the corresponding adapter class, you can override only those methods that tie to event types of interest.

4.4.2.5.8.3 Step 3

Write code that instantiates objects of the Source class and the Listener class and registers the listener
object on the source object for noti�cation of events generated by the source object.

You can use code such as the following for registration:
displayWindow. addMouseListener (mouseProcCmd);
In this code fragment,

• displayWindow is a reference to the object that �res the event,
• mouseProcCmd is the name of a reference to the listener object, and
• addMouseListener is the method that registers the listener object to receive mouse events from

the object referred to by displayWindow .

This statement will cause the object named mouseProcCmd to be noti�ed of all events generated by
displayWindow which are part of the class of mouse events.

The noti�cation takes the form of calling a method in the mouseProcCmd object where there must
be a corresponding method for each speci�c event type in the class of mouse events. (Some of those
methods can be empty shells if you have no interest in some of the event types).

4.4.2.5.8.3.1 Comments

As mentioned earlier, this is the procedure for the simplest cases. It is possible to make the situation more
complicated. For example, a single Source object can be required to notify two or more di�erent Listener
objects of the occurrence of an event of the same class on a single screen object.

The Source object can also be required to notify two or more di�erent Listener objects of the
occurrence of events of two di�erent classes on a single screen object.

A single Listener object can be registered to receive noti�cation of the occurrence of events of a given
class on more than one source object. In that case, it is normally necessary for the code in the Listener
object to crack open the event object to determine which screen object was responsible for the event (if it
matters) .

Also, the JDK 1.1 documentation indicates that it is possible to have event-style communication between
objects that are not screen objects. Subsequent modules will investigate a number of these possibilities.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1506 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.2.5.9 Review

The original HTML version 158 of this module contains a number of review questions with answers. If
interested, you can take a look at those review questions 159 .

4.4.2.5.10 Run the program

I encourage you to copy the code from Listing 9 (p. 1495) and Listing 16 (p. 1508) . Compile the code and
execute it. Experiment with the code, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

4.4.2.5.11 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Event Handling in JDK 1.1, A First Look, Delegation Event Model

• File: Java0080.htm
• Published: 11/17/13
• Revised: 02/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.6 Java0081 Java OOP Swing and the Delegation Event Model
160

4.4.2.6.1 Table of Contents

• Preface (p. 1512)

· Viewing tip (p. 1512)

* Listings (p. 1512)

• Introduction (p. 1512)

158http://cnx.org/content/m45597/latest/Java080.htm
159http://cnx.org/content/m45597/latest/Java080.htm#review
160This content is available online at <http://cnx.org/content/m44336/1.6/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1507

• Sample Program (p. 1513)

· Interesting Code Fragments (p. 1514)
· Program Listing (p. 1514)

• Another Sample Program (p. 1514)

· Interesting Code Fragments (p. 1515)
· Program Listing (p. 1515)

• Summary (p. 1515)
• Run the programs (p. 1515)
• Miscellaneous (p. 1515)
• Listings (p. 1516)

4.4.2.6.2 Preface

This module is one in a collection of modules designed for teaching ITSE2317 - Java Programming (Inter-
mediate) at Austin Community College in Austin, TX.

(Editor's note: As you read this module, you will see that it was originally written around 1997. However,
despite many improvements in Java since then, most of what was true then is still true in 2013.)

This module makes several references to my website, which is located at
http://www.dickbaldwin.com/toc.htm 161 . A copy of the original html version of this module is
available here 162 .

4.4.2.6.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the listings while you are reading about them.

4.4.2.6.2.1.1 Listings

• Listing 1 (p. 1516) . Beginning of the constructor for the GUI class.
• Listing 2 (p. 1516) . Complete listing of the program named SwingEvent08.
• Listing 3 (p. 1520) . The class named MyFrame.
• Listing 4 (p. 1520) . Complete listing of the program named SwingEvent09.

4.4.2.6.3 Introduction

To begin with, what is Swing?
Swing is the name given to a new set of lightweight components developed by Sun to supplement (and

possibly replace) the components in the AWT. (The general topic of lightweight components is covered in a
separate module.) With the exception of top-level containers, Swing components are developed completely
using Java and don't depend on the peer component rendering provided by the operating system.

Swing components have several advantages over AWT components, and probably some disadvantages as
well.

One of the advantages is that because the components are not rendered on the screen by the operating
system, the look and feel of a component does not change as the application or applet is executed on di�erent
platforms running under di�erent operating systems.

161http://www.dickbaldwin.com/toc.htm
162http://cnx.org/content/m45597/latest/Java081.htm

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1508 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Furthermore, it is possible to cause Swing components to mimic the look and feel of a speci�c platform
no matter what platform the program is running on. This is known as pluggable look and feel . (A
complete module is dedicated to pluggable look and feel.)

In any event, Swing components are here to stay, and from this point forward in these tutorial modules,
we will attempt to incorporate Swing into the modules in a meaningful way.

Swing components support the JDK 1.1 Delegation Event Model 163 . They do not support the JDK 1.0
event model, so if you want to use Swing components, you must program using the Delegation Event Model.

In some cases, conversion of an application or applet from AWT components to Swing components
involves nothing more complex than replacing the AWT components with corresponding Swing components.
For example, the Swing component that corresponds to the AWT Button component is the Swing
JButton component.

In all cases that you use Swing you will need to import, or otherwise recognize the package that contains
the Swing classes so that the compiler and interpreter will have access to those classes. Note that the way to
do this will probably change between JDK 1.1.x and JDK 1.2, but hopefully the change won't be too great.
(Rumor has it that Swing will be more tightly integrated into JDK 1.2 than is the case with JDK 1.1.)
This module is designed as a follow-on to the earlier module titled " Event Handling in JDK 1.1, A First

Look, Delegation Event Model 164 ." As such, material presented in that module will not be repeated here.
The two AWT sample programs in that module were converted to Swing programs for presentation in

this module using the simple substitution procedure described above. As you will see, the Swing version of
one of the sample program behaves essentially the same as its AWT counterpart. The Swing version of the
other sample program does not behave the same as its AWT counterpart.

So, where does that leave us? Well, fortunately, from an event handling viewpoint, Swing components
operate the same as AWT components (except that Swing provides a number of new event types) . From
other viewpoints, Swing components may or may not behave the same as their AWT counterparts.

In addition, many Swing components don't have an AWT counterpart. A number of new and exciting
components are included in the Swing library that don't exist in the AWT (tooltips, progress bars, trees,
etc.) .

Since this module is primarily concerned with event handling, we will pursue the Swing components from
an event-handling viewpoint in this module and leave other considerations surrounding Swing components
for subsequent modules. As you will see, this module will raise some interesting questions regarding the
behavior of Swing components, but won't provide the answers to those questions.

4.4.2.6.4 Sample Program

The sample program in this section, named SwingEvent08 (p. 1516) , was created by replacing each instance
of Frame in the program named Event08 , with an instance of JFrame . In addition, an import
declaration was added to cause the Swing classes to be accessible to the compiler and the interpreter.

(Note that as of JDK 1.7.x, the import declaration must read import javax.swing.*; instead of
import com.sun.java.swing.*; as shown in Listing 2 (p. 1516) .)

The event handling in this program is exactly the same as in Event08 from the earlier module. If you
haven't reviewed that program, and the module on the Delegation Event Model, you should probably go
back and review it now.

This program illustrates the use of Event Sources , Event Listeners , and Adapters in the Delegation
Event Model for Swing components.

Brie�y, this application instantiates an object that creates a user interface consisting of a simple JFrame
object. This object is an Event Source that noti�es two di�erent Event Listener objects of Window
events.

One of the Listener objects implements the WindowListener interface and de�nes all of the
methods declared in that interface.

163http://cnx.org/content/m44340/latest/?collection=col11441/latest
164http://cnx.org/content/m44340/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1509

The other Listener object extends the Adapter class named WindowAdapter . As explained
in the earlier module, the purpose of Adapter classes (as used in this context) is to implement the
Listener interfaces and to de�ne all of the methods with empty methods. (Adapter classes are viewed in
a broader context in the advanced modules on the Re�ection API.)

Classes that extend the Adapter classes can then selectively override only those methods of interest.
This Listener object overrides only two of the methods.

Note that this application does not terminate and return control to the operating system. You must
forcefully terminate it.

This program was tested using JDK 1.1.6 and Swing 1.0.1 under Win95. (Also, it was recently tested
using JDK 1.7 running under Windows Vista after modifying the import directive mentioned above.)

The output produced by running the program is presented in the comments at the beginning of the
program listing.

4.4.2.6.4.1 Interesting Code Fragments

Listing 1 (p. 1516) provides the �rst and only code fragment, that I am going to show and discuss. This
fragment shows the beginning of the constructor for the GUI class. The fragment illustrates that this
program uses the JFrame class to instantiate a top-level container for the graphical user interface instead
of a Frame object as in the earlier module 165 .

If you compile and run this program, you will see that it behaves essentially the same as its AWT
counterpart named Event08 that was discussed extensively in the earlier module 166 .

4.4.2.6.4.2 Program Listing

A complete listing of the program is provided in Listing 2 (p. 1516) .

4.4.2.6.5 Another Sample Program

This is a Swing version of the program named Event09 from the earlier module 167 .
The purpose of this program is to illustrate that in some cases, conversion of an AWT program to a

Swing program isn't as simple as importing the Swing package and replacing the AWT components with
their Swing counterparts.

That is what was done with this program. This program is identical to the AWT program named
Event09 except that all instances of Frame were replaced by JFrame and the Swing package was
imported.

The intended behavior of this program (go back and review Event09 if necessary) is to display
the coordinates of the mouse pointer each time the mouse is clicked inside the client area of the JFrame .

Initially, this program appears to work correctly. As each new click occurs on the client area of the
JFrame , a new pair of coordinate values is displayed. However, the previous pairs of coordinate values
does not disappear as is the case with the program named Event09 . Thus, the behavior is signi�cantly
di�erent under JDK 1.1.6 and Swing 1.0.1 under Win95. (The behavior is similarly di�erent under JDK
1.7x and Windows Vista.)

Furthermore, in some cases, while this GUI is on the screen, if focus is transferred to a di�erent applica-
tion, all of the coordinate values except the last one that was created will disappear.

It will be left as an exercise for the student to dig into the documentation on Swing in order to understand
and explain this behavior.

As explained earlier, this module is concerned with event handling in Swing and this program is adequate
to illustrate the use of the Delegation Event Model with Swing. We will leave the subtle behavior of the
Swing components for discussion in subsequent modules.

165http://cnx.org/content/m44340/latest/?collection=col11441/latest
166http://cnx.org/content/m44340/latest/?collection=col11441/latest
167http://cnx.org/content/m44340/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1510 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

If you compile and execute this program, whenever you click the mouse inside the JFrame , you should
see the coordinates of the mouse pointer displayed above the mouse pointer.

4.4.2.6.5.1 Interesting Code Fragments

Listing 3 (p. 1520) shows the only code fragment that will be highlighted for this program in this module.
This fragment illustrates how this program extends JFrame into a new class named MyFrame to make
it possible to override the paint() method of the JFrame class. Recall that in the program named
Event09 , the Frame class was extended in a similar way.

4.4.2.6.5.2 Program Listing

A complete listing of this program is provided in Listing 4 (p. 1520) .

4.4.2.6.6 Summary

Swing provides a new set of lightweight components that can be programmed using the Delegation Event
Model �rst introduced in JDK 1.1.

The Swing components cannot be programmed using the event model from JDK 1.0.
In some cases, all that is necessary to convert a program built around AWT components to a program

built around Swing components is to import the Swing classes and replace all instances of AWT components
with their Swing counterparts.

In other cases, a simple substitution as described above will not produce the same behavior.
Many of the Swing components do not have an AWT counterpart. The Swing classes contain a number

of components that were never added to the AWT component library.
This module has dealt exclusively with the use of the Delegation Event Model for programming Swing

components and has left some unanswered questions regarding how the behavior of Swing components does,
and in some cases does not, mirror that of their AWT counterparts.

4.4.2.6.7 Run the programs

I encourage you to copy the code from Listing 2 (p. 1516) and Listing 4 (p. 1520) . Compile the code and
execute it. Experiment with the code, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

4.4.2.6.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Swing and the Delegation Event Model
• File: Java0081.htm
• Published: 11/17/13
• Revised: 02/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1511

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

4.4.2.6.9 Listings

Listing 1 . Beginning of the constructor for the GUI class.

class GUI{

public GUI(){//constructor

//Create a new JFrame object

JFrame displayWindow = new JFrame();

displayWindow.setSize(300,200);

displayWindow.setTitle("Copyright 1998, R.G.Baldwin");

Table 4.228

Listing 2 . Complete listing of the program named SwingEvent08.

/*File SwingEvent08.java Copyright 1998, R.G.Baldwin

Rev 05/09/98

This is a Swing version of the program named Event08.

The purpose of this program is to illustrate that in many

respects, programming with Swing components is no different

from programming with AWT components.

Conversion of this program from AWT to Swing involved

nothing more complex than using the search and replace

feature of an editor to replace all instances of Frame

with JFrame and to import the swing package.

Illustrates the use of Event Sources, Event Listeners, and

Adapters in the Delegation Event Model for Swing

components.

Briefly, this application instantiates an object which;

creates a user interface consisting of a simple JFrame;

object. This object is an Event Source which notifies two

different Event Listener objects of Window events.

One of the Listener objects implements the WindowListener

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1512 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

interface and overrides all of the methods declared in;

that interface.

The other Listener object extends the Adapter class named;

WindowAdapter. The purpose of Adapter classes is to

implement the Listener interfaces and to define all of

the methods with empty methods. Classes which extend the

Adapter classes can then selectively override only those

methods of interest. This Listener object overrides only

two of the methods.

Note that this application does not terminate and return

control to the operating system. You must forcefully

terminate it.

Tested using JDK 1.1.6 and Swing 1.0.1 under Win95.

When executed, this application places a simple empty;

JFrame object on the screen.

Starting the program produces screen output similar to

the following:

WProc1 windowActivated test msg

Wproc1 windowOpened test msg

Pressing the minimize button on the JFrame produces the;

output similar to the following:

WProc1 windowIconified test msg

******** WProc2 windowIconified test msg

WProc1 windowDeactivated test msg

Restoring the JFrame after minimization produces the;

output similar to the following:

WProc1 windowActivated test msg

WProc1 windowDeiconified test msg

******** WProc2 windowDeiconified test msg

WProc1 windowActivated test msg

Closing the JFrame by pressing the X-icon in the upper;

right of the JFrame produces output similar to the;

following:

WProc1 windowClosing test msg

WProc1 windowDeactivated test msg

WProc1 windowClosed test msg

**/

import java.awt.*;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1513

import java.awt.event.*;

import com.sun.java.swing.*;

public class SwingEvent08 {

public static void main(String[] args){

GUI gui = new GUI();//instantiate a GUInterface object

}//end main

}//end class SwingEvent08

//===//

//The following class is used to instantiate a user;

// interface object, to instantiate two Listener objects,

// and to register those two objects for notification;

// whenever a Window event occurs.

class GUI{

public GUI(){//constructor

//Create a new JFrame object

JFrame displayWindow = new JFrame();

displayWindow.setSize(300,200);

displayWindow.setTitle("Copyright 1998, R.G.Baldwin");

//Instantiate two Listener objects which will process

// Window events

WProc1 winProcCmd1 = new WProc1(displayWindow);

WProc2 winProcCmd2 = new WProc2();

//Register the Listener objects for notification of

// Window events. This object is the Event Source.

displayWindow.addWindowListener(winProcCmd1);

displayWindow.addWindowListener(winProcCmd2);

//windowActivated and windowOpened test messages

// are produced here

displayWindow.setVisible(true);

}//end constructor

}//end class GUI definition

//===//

//The following two classes can be used to instantiate;

// Listener objects. Note that this class implements the;

// WindowListener interface. This requires that all the

// methods declared in the interface be overridden in this

// class. This class overrides all of the methods and

// displays a descriptive message whenever one of the

// methods is invoked.

class WProc1 implements WindowListener{

//used to save a reference to the JFrame object

JFrame displayWindowRef;

WProc1(JFrame windowIn){//constructor

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1514 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

// save ref to JFrame object

this.displayWindowRef = windowIn;

}//end constructor

public void windowClosed(WindowEvent e){

System.out.println("WProc1 windowClosed test msg");

}//end windowClosed()

public void windowIconified(WindowEvent e){

System.out.println("WProc1 windowIconified test msg");

}//end windowIconified()

public void windowOpened(WindowEvent e){

System.out.println("WProc1 windowOpened test msg");

}//end windowOpened()

public void windowClosing(WindowEvent e){

System.out.println("WProc1 windowClosing test msg");

displayWindowRef.dispose();//generate WindowClosed

}//end windowClosing()

public void windowDeiconified(WindowEvent e){

System.out.println(

"WProc1 windowDeiconified test msg");

}//end windowDeiconified()

public void windowActivated(WindowEvent e){

System.out.println("WProc1 windowActivated test msg");

}//end windowActivated()

public void windowDeactivated(WindowEvent e){

System.out.println(

"WProc1 windowDeactivated test msg");

}//end windowDeactivated()

}//end class WProc1

//===//

//This and the previous class can be used to instantiate;

// Listener objects. Note that this class extends an;

// Adapter class which can be used to avoid the;

// requirement to define all of the methods of the

// actual Listener class named WindowListener. This class

// overrides only two of the methods declared in the;

// interface. It displays a message whenever one of the

// methods is invoked.

class WProc2 extends WindowAdapter{

public void windowIconified(WindowEvent e){

System.out.println(

"******** WProc2 windowIconified test msg");

}//end windowIconified()

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1515

public void windowDeiconified(WindowEvent e){

System.out.println(

"******** WProc2 windowDeiconified test msg");

}//end windowDeiconified()

}//end class WProc2

Listing 3 . The class named MyFrame.

class MyFrame extends JFrame{

int clickX;

int clickY;

public void paint(Graphics g){

g.drawString(

"" + clickX + ", " + clickY, clickX, clickY);

}//end paint()

}//end class MyFrame

Table 4.229

Listing 4 . Complete listing of the program named SwingEvent09.

/*File SwingEvent09.java Copyright 1998, R.G.Baldwin

Rev 5/9/98 by RGB

This is a Swing version of the program named Event09.

The purpose of this program is to illustrate that in some

cases, conversion of an AWT program to a Swing program

isn't as simple as importing the Swing package and replacing

the AWT components with Swing components.

That is what was done with this program. In other words,

this program is identical to the AWT program named Event09

except that all instances of Frame were replaced by JFrame

and the Swing package was imported.

At the surface, the program appears to work correctly.

However, as each new click occurs on the client area of

the JFrame, a new pair of coordinate values is displayed,

but the previous pairs of coordinate values don't disappear

as is the case with the program named Event09.

Furthermore, in some cases, while this GUI is on the screen,

if focus is transferred to a different application, all of

the coordinate values except the last one created will;

disappear.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1516 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

It will be left as an exercise for the student to dig into

the (currently very sparse) documentation on Swing in order

to understand and explain this behavior.

Illustrates the use of Event Sources, Event Listeners, and;

Adapters in the Delegation Event Model for Swing.

This program instantiates a Listener object to process;

mouse events. When a mouse press occurs in a JFrame object,

the program gets the coordinates and then displays those

coordinates near the point of the mouse press.

Tested using JDK 1.1.6 and Swing 1.0.1 under Win95.

**/

import java.awt.*;

import java.awt.event.*;

import com.sun.java.swing.*;

public class SwingEvent09 {

public static void main(String[] args){

GUI gui = new GUI();//instantiate a GUI

}//end main

}//end class SwingEvent09

//===//

//Subclass JFrame in order to override the paint method.

class MyFrame extends JFrame{

int clickX;

int clickY;

public void paint(Graphics g){

g.drawString(

"" + clickX + ", " + clickY, clickX, clickY);

}//end paint()

}//end class MyFrame

//===//

//The following class is used to instantiate a;

// graphical user interface object.

class GUI {

public GUI(){//constructor

//Create a new JFrame object, set size, title, etc.

MyFrame displayWindow = new MyFrame();

displayWindow.setSize(300,300);

displayWindow.setTitle("Copyright 1998, R.G.Baldwin");

displayWindow.setVisible(true);

//Instantiate and register an anonymous Listener;

// object which will terminate the program when the;

// user closes the JFrame.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1517

displayWindow.addWindowListener(new WProc1());

//Instantiate and register an anonymous Listener;

// object that will process mouse events to determine

// and display the coordinates when the user presses

// the mouse button in the client area of the JFrame.

displayWindow.addMouseListener(

new MouseProc(displayWindow));

}//end constructor

}//end class GUI definition

//===//

//This listener class monitors for mouse presses and;

// displays the coordinates of the mouse pointer when the

// mouse is pressed on the source object. Note that this

// class extends is an adapter class.

class MouseProc extends MouseAdapter{

MyFrame refToWin; //save a reference to the source here

MouseProc(MyFrame inWin){//constructor

refToWin = inWin;//save ref to window

}//end constructor

//Override the mousePressed method to determine and;

// display the coordinates when the mouse is pressed.

public void mousePressed(MouseEvent e){

//Get X and Y coordinates of mouse pointer and store

// in an instance variable of the JFrame object

refToWin.clickX = e.getX();

refToWin.clickY = e.getY();

//Force the JFrame object to be repainted in order to

// display the coordinate information.

refToWin.repaint();

}//end mousePressed()

}//end class MouseProc

//===//

//The following listener is used to terminate the program

// when the user closes the frame. Note that this class

// extends an adapter class.

class WProc1 extends WindowAdapter{

public void windowClosing(WindowEvent e){

System.exit(0);

}//end windowClosing()

}//end class WProc1

//===//

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1518 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.2.7 Java082 Sharing a Listener Object Among Visual Components
168

Revised: Thu Jul 07 15:48:00 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 169

• Object-Oriented Programming (OOP) with Java 170

4.4.2.7.1 Table of contents

• Table of contents (p. 1523)
• Preface (p. 1523)

· Viewing tip (p. 1524)

* Figures (p. 1524)
* Listings (p. 1524)

• Introduction (p. 1524)
• First sample program (p. 1524)

· Interesting code fragments (p. 1525)

* The Event Source Objects (p. 1525)
* Unique names (p. 1525)
* Instantiate and register mouse listener object (p. 1526)
* Instantiate and register window listener object (p. 1526)
* The MouseListener object (p. 1527)
* Identify the event source (p. 1527)
* Cracking the MouseEvent object (p. 1527)
* The WindowListener Object (p. 1528)

· Complete program listing for Event10 (p. 1528)

• Second sample program (p. 1531)

· Changes relative to Event10 (p. 1531)
· Complete program listing for Event11 (p. 1532)

• Review (p. 1534)

· Question 1 (p. 1534)
· Question 2 (p. 1538)
· Question 3 (p. 1543)
· Question 4 (p. 1545)

• Miscellaneous (p. 1548)

4.4.2.7.2 Preface

This is a page from the Event Handling 171 section of the book titled ITSE2317 - Java Programming
(Intermediate) 172 . The Event Handling section explains how to write programs that handle events in
Java.

Students in Prof. Baldwin's ITSE 2327 Intermediate Java Programming classes at ACC are
responsible for knowing and understanding all of the material in this lesson.

168This content is available online at <http://cnx.org/content/m59602/1.2/>.
169http://cnx.org/contents/Rl23r3Lw
170http://cnx.org/contents/-2RmHFs_
171http://cnx.org/contents/Rl23r3Lw:qfO9iJX-
172http://cnx.org/contents/Rl23r3Lw:JVTd7bX1

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1519

4.4.2.7.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

4.4.2.7.2.1.1 Figures

• Figure 1. (p. 1525) Screen output from Event10.
• Figure 2. (p. 1531) Screen output from Event11.
• Figure 3. (p. 1535) Screen output for Question 1.
• Figure 4. (p. 1539) Screen output for Question 2.

4.4.2.7.2.1.2 Listings

• Listing 1. (p. 1525) An event source object.
• Listing 2. (p. 1525) Give the source objects unique names.
• Listing 3. (p. 1526) Instantiate and register mouse listener object.
• Listing 4. (p. 1526) Instantiate and register window listener object.
• Listing 5. (p. 1527) Identify the event source.
• Listing 6. (p. 1528) The program named Event10.
• Listing 7. (p. 1532) The program named Event11.
• Listing 8. (p. 1535) Solution to Question 1.
• Listing 9. (p. 1539) Solution to Question 2.
• Listing 10. (p. 1543) Solution to Question 3.
• Listing 11. (p. 1546) Solution to Question 4.

4.4.2.7.3 Introduction

Earlier lessons discussed the sharing of a single event source object among two or more listener objects
for low-level events.

This lesson discusses the sharing of a single listener object among two or more visual components for
low-level events generated by any of the visual components.

The event-handling method of the listener object

• responds to each event,
• determines which visual component generated the event, and
• takes the appropriate action.

The primary issue in this type of operation boils down to determining which component generated the event.
This can be accomplished by assigning a unique name to each visual component when it is instantiated

and using that name to distinguish among the visual components when an event occurs.
This approach is completely straightforward and intuitive. An improved approach to accomplishing the

same objective is illustrated in some sample programs near the end of the lesson. While possibly less intuitive,
the improved approach is more object-oriented and probably easier to maintain.

4.4.2.7.4 First sample program

This program illustrates the sharing of a single listener object among two di�erent visual components of the
same type.

The program detects mouse events occurring on either of two di�erent Frame objects. It distinguishes
between the two objects on the basis of the component name, and displays the coordinates of a mouse click
on whichever object experienced the mouse click.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1520 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

This program was originally tested using JDK 1.1.3 under Win95. More recently it was tested using Java
8 and Windows 7.

Note that when the program starts, the two visual components overlay one another. It is necessary to
physically move one of them in order to access the other as shown in Figure 1 (p. 1525) .

Figure 1. Screen output from Event10.

4.4.2.7.4.1 Interesting code fragments

This program is really quite simple. The only new code involves cracking the event object to obtain the
name of the visual component that generated the mousePressed event.

The main method instantiates an object of type GUI (named gui) which serves the purpose of
providing the visual interface.

The Frame class is extended into a new class named MyFrame to make it possible to override the
paint method of the class. This is necessary to display the coordinates of mouse clicks on the interior of
the frame using the graphics method named drawString .

4.4.2.7.4.1.1 The Event Source Objects

The constructor of the GUI class instantiates two objects of type MyFrame and makes them visible.
This is accomplished using code such as that shown in Listing 1 (p. 1525) .

Listing 1. An event source object.

MyFrame myFrame1 = new MyFrame("Frame1");

myFrame1.setVisible(true);

The reference variables for the two objects are named myFrame1 and myFrame2 .

4.4.2.7.4.1.2 Unique names

When they are instantiated, unique names (Frame1 and Frame2) are given to the objects using code
in the constructor (see Listing 2 (p. 1525)) for the extended Frame objects (the MyFrame class
extends the Frame class in order to override its paint method).

Listing 2. Give the source objects unique names.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1521

MyFrame(String name){//constructor

setTitle("Copyright 1997, R.G.Baldwin");

setSize(300,200);

//Name used to distinguish between the two objects

setName(name);

}//end constructor

The unique names are used later by the listener object to determine which object generated a mouse event.

4.4.2.7.4.1.3 Instantiate and register mouse listener object

The constructor in the GUI class also uses the code in Listing 3 (p. 1526) to instantiate a single listener
object which will process low-level mouse events on either of the two visual objects.

Listing 3. Instantiate and register mouse listener object.

MouseProc mouseProcCmd = new MouseProc(myFrame1,myFrame2);

myFrame1.addMouseListener(mouseProcCmd);

myFrame2.addMouseListener(mouseProcCmd);

The �rst statement in Listing 3 (p. 1526) instantiates the new listener object named mouseProcCmd
passing references to the two visual components as parameters.

The next two statements add that listener object (register the listener object) to a list of listener
objects that are automatically noti�ed whenever mouse events occur on the visual objects referred to as
myFrame1 and myFrame2 , respectively.

You will recall that once the programmer causes the name of a listener object to be added to the list, no
further programming e�ort is required to cause the noti�cation to occur.

The noti�cations are carried out by invoking speci�c overridden instance methods of the listener object
upon the occurrence of a speci�c types of mouse events.

The declarations for all of the methods that match up with all of the possible mouse event types are
de�ned by the MouseListener interface that matches the MouseEvent class.

The class from which the listener object is instantiated must de�ne, either directly or indirectly, all the
methods declared in the MouseListener interface.

4.4.2.7.4.1.4 Instantiate and register window listener object

In addition to the registration of the MouseListener object to receive mouse events, the program also
instantiates and registers a listener object that monitors for Window events and terminates the program
whenever the user closes either of the two visual objects. In this case, the code in the listener object makes
no attempt to distinguish between the two visual objects. The instantiation and registration code is shown
in Listing 4 (p. 1526) .

Listing 4. Instantiate and register window listener object.

WProc1 winProcCmd1 = new WProc1();

myFrame1.addWindowListener(winProcCmd1);

myFrame2.addWindowListener(winProcCmd1);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1522 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.2.7.4.1.5 The MouseListener object

Most of the programming complexity is tied up in the mouseListener object, and even that isn't very
complicated.

The central issue for the code in the listener object is how to determine which one of several visual
components generated an event.

This particular listener object only responds to mousePressed events, but the following information
applies to all of the di�erent types of mouse events, and probably to most or all of the low-level events as
well.

The MouseProc (listener) class in this program

• extends the MouseAdapter class and
• overrides the mousePressed method that is declared in the MouseListener interface.

You will recall that the MouseAdapter class overrides all of the methods of the MouseListener
interface with empty methods, thus freeing our code from the requirement to override all of those methods.

When the mousePressed method is invoked, an object of type MouseEvent (known locally as e
) is passed in as a parameter.

4.4.2.7.4.1.6 Identify the event source

The statement in Listing 5 (p. 1527) was used in the MouseListener object to determine if the name of
the object that generated the event is Frame1 .

Listing 5. Identify the event source.

if(e.getComponent().getName().compareTo("Frame1") == 0){

If it is determined that the name of the component that generated the event is Frame1 , code is executed
to display the coordinates of the mouse pointer on the visual object named Frame1 .

Otherwise, an else clause is used to display the coordinate information on the visual object named
Frame2 . (No provisions were made for the event to have been generated by any visual objects other than
these two.)

The code to display the coordinate information is essentially the same as was discussed in a similar
program in an earlier lesson, so it won't be discussed again here.

4.4.2.7.4.1.7 Cracking the MouseEvent object

Now let's take a look at the details of cracking the MouseEvent object to obtain the name of the visual
component that generated the event.

The getComponent method is a method of the java.awt.event.ComponentEvent class which,
according to the JDK 1.1 documentation, "Returns the component where this event originated." It is
returned as an object of type Component which is acted upon by the getName method in Listing 5
(p. 1527) .

The getName method was added to the java.awt.Component class by JDK 1.1. This method
"Gets the name of the component" and returns it as a String object. The String object is acted upon
by the compareTo method in Listing 5 (p. 1527) .

The compareTo method is a standard method of the String class, carried forward from JDK 1.0.2,
that can be used to compare two String objects. It is used to determine if the name of the component
matches the String " Frame1" .

Note that it is also possible to perform tests directly on the MouseEvent object to match it to a
component name. The procedure for doing this will be included in a future lesson.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1523

By the way, in case you haven't noticed, the java.awt.event package is di�erent from the java.awt
package. The java.awt.event package was added in JDK 1.1. It can be very confusing if you drop into
the java.awt package of the documentation when you really need to be in java.awt.event .

4.4.2.7.4.1.8 The WindowListener Object

This program also contains a WindowListener object, which terminates the program whenever the user
closes either of the Frame objects. Except for the fact that this object is registered to receive Window
events from either of the two Frame objects, it is no di�erent from similar listeners used in an earlier
sample program, and therefore, won't be discussed further here.

Note that an improved version of this program is presented at the end of this lesson. The improved version
does not require the establishment of source object names, and does not require the passing of references to
the constructor for the WindowListener in order to distinguish between the two sources. You should
become familiar with the methodology used in the improved version as well as the methodology used in the
following version.

4.4.2.7.4.2 Complete program listing for Event10

A complete listing of the program named Event10 is provided in Listing 6 (p. 1528) .

Listing 6. The program named Event10.

/*File Event10.java Copyright 1997, R.G.Baldwin

This program is designed to be compiled and run under

JDK 1.1

The program illustrates the sharing of a single listener

object among two different visual components of the same

type.

The program detects mouse events occurring on either of two

different Frame objects. It distinguishes between the two

objects on the basis of the component name, and displays

the coordinates of a mouse click on whichever object

experienced the mouse click.

This program was tested using JDK 1.1.3 under Win95.

Note that when the program starts, the two visual

components overlay one another. It is necessary to move

one of them in order to access the other.

**/

import java.awt.*;

import java.awt.event.*;

public class Event10 {

public static void main(String[] args){

GUI gui = new GUI();//instantiate a GUI

}//end main

}//end class Event10

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1524 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

//===//

//Subclass Frame in order to override the paint method.

class MyFrame extends Frame{

int xCoor;

int yCoor;

MyFrame(String name){//constructor

setTitle("Copyright 1997, R.G.Baldwin");

setSize(300,200);

//Name used to distinguish between the two objects

setName(name);

}//end constructor

public void paint(Graphics g){

//display coordinate information on the visual object

g.drawString("" + xCoor + ", " + yCoor, xCoor, yCoor);

}//end paint()

}//end class MyFrame

//===//

//The following class is used to instantiate a graphical

// user interface object.

class GUI {

public GUI(){//constructor

//Create two visual objects of type MyFrame and make

// them visible. Name them Frame1 and Frame2.

MyFrame myFrame1 = new MyFrame("Frame1");

myFrame1.setVisible(true);

MyFrame myFrame2 = new MyFrame("Frame2");

myFrame2.setVisible(true);

//Instantiate and register Listener object which will

// terminate the program when the user closes either

// window.

WProc1 winProcCmd1 = new WProc1();

myFrame1.addWindowListener(winProcCmd1);

myFrame2.addWindowListener(winProcCmd1);

//Instantiate and register Listener object which will

// process mouse events on either MyFrame object.

MouseProc mouseProcCmd =

new MouseProc(myFrame1,myFrame2);

myFrame1.addMouseListener(mouseProcCmd);

myFrame2.addMouseListener(mouseProcCmd);

}//end constructor

}//end class GUI definition

//===//

//This listener class monitors for mouse presses and

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1525

// displays the coordinates of the mouse pointer when the

// mouse is pressed. The listener object distinguishes

// between two different visual objects on the basis of

// their component names and displays the coordinate

// information on the visual object which generated the

// mouse event.

class MouseProc extends MouseAdapter{

//save references to the objects here

MyFrame refToFrame1,refToFrame2;

MouseProc(MyFrame inFrame1,MyFrame inFrame2){//construct

refToFrame1 = inFrame1;//save references to the frames

refToFrame2 = inFrame2;

}//end constructor

//Override the mousePressed() method to respond whenever

// the mouse is pressed on one of the frame objects.

// Distinguish between the two frame objects using the

// component name and display the coordinates of the

// mouse on the correct object.

public void mousePressed(MouseEvent e){

if(e.getComponent().getName().compareTo("Frame1") == 0){

//Get X and Y coordinates of mouse pointer

// and store in the Frame object

refToFrame1.xCoor = e.getX();

refToFrame1.yCoor = e.getY();

//display coordinate information

refToFrame1.repaint();

}else{

//Get X and Y coordinates of mouse pointer

//and store in the Frame object

refToFrame2.xCoor = e.getX();

refToFrame2.yCoor = e.getY();

//display coordinate information

refToFrame2.repaint();

}//end if-else

}//end mousePressed()

}//end class MouseProc

//===//

//The following listener is used to terminate the program

// when the user closes either frame object. Note that

// class extends the adapter class

class WProc1 extends WindowAdapter{

public void windowClosing(WindowEvent e){

System.exit(0);

}//end windowClosing()

}//end class WProc1

//===//

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1526 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.2.7.5 Second sample program

A single listener object can be registered to process events of a given class generated by two or more di�erent
visual objects.

Unique names can be assigned to the objects when they are instantiated.
When an event occurs, the code in the listener object can obtain the name of the visual object that

generated the event and use it to distinguish among the objects.
The name of the object that generated the event can be determined using the statement shown in Listing

5 (p. 1527) where

• e is the local name of the object passed into the low-level event-handling method, and
• "Frame" is a string being tested against the component name of a visual object that may have

generated the event.

4.4.2.7.5.1 Changes relative to Event10

Although the program named Event10 discussed above used two visual objects of the same type, there is
no reason that the visual objects have to be of the same type, as long as all of the visual objects that share
the listener object are capable of generating events of the event class for which the listener is designed.

This is illustrated by the program named Event11 (see Listing 7 (p. 1532)) that modi�es the
program named Event10 to use

• a visual Frame object and
• a visual Window object,

instead of two Frame objects.
The screen output is shown in Figure 2 (p. 1531) .

Figure 2. Screen output from Event11.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1527

Note that the Window object, shown as the white square in the upper left of Figure 2 (p. 1531) , doesn't
have a banner that allows it to be physically moved with the mouse. Therefore, I called the setBounds
method on both objects to separate them and to place them in a location on the screen where I could display
the white Window object against the black background of the command-line window.

The ability to display the coordinates of mouse clicks was also removed for simpli�cation of the program.
Information about mouse clicks is displayed in the command-line window as shown in Figure 2 (p. 1531) .
The operation of the program is discussed in the comments in Listing 7 (p. 1532) .

Note that an improved version of this program is also presented at the end of this lesson. The improved
version does not require the establishment of source object names, and does not require the passing of
references to the constructor for the Window listener in order to distinguish between the two sources. You
should become familiar with the methodology used in the improved version as well as the methodology used
in the version shown in Listing 7 (p. 1532) .

4.4.2.7.5.2 Complete program listing for Event11

A complete listing of the program named Event11 is shown in Listing 7 (p. 1532) .

Listing 7. The program named Event11.

/*File Event11.java Copyright 1997, R.G.Baldwin

This program is designed to be compiled and run under

JDK 1.1

The program illustrates the sharing of a single listener

object between two different visual components of

different types.

The program detects mouse events occurring on either a

visual Frame object or on a visual Window object. It

distinguishes between the two objects on the basis of the

component name, and displays a message indicating which

object generated the event.

Clicking inside the Frame object but outside the Window

object produces the following message:

Got mousePressed event from Frame object

Clicking inside the Window object produces the following

message:

Got mousePressed event from Window object

Closing the Frame object produces the following message

and terminates the program:

Got windowClosing event from Frame object

These results were produced using JDK 1.1.3, running under

Windows 95.

**/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1528 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

import java.awt.*;

import java.awt.event.*;

public class Event11 {

public static void main(String[] args){

GUI gui = new GUI();//instantiate a GUI

}//end main

}//end class Event11

//===//

//The following class is used to instantiate a graphical

// user interface object.

class GUI {

public GUI(){//constructor

//Create a visual Frame object and name it Frame

Frame myFrame = new Frame();

myFrame.setBounds(500,500,200,300);

myFrame.setTitle("Copyright 1997, R.G.Baldwin");

myFrame.setName("Frame");

myFrame.setVisible(true);

//Create a visual Window object inside the Frame

// object and name it Window

Window myWindow = new Window(myFrame);

myWindow.setBounds(380,500,100,100);

myWindow.setName("Window");

myWindow.setVisible(true);

//Instantiate and register a Listener object which

// will process mouse events on either the Frame

// object or the Window object.

MouseProc mouseProcCmd = new MouseProc();

myFrame.addMouseListener(mouseProcCmd);

myWindow.addMouseListener(mouseProcCmd);

//Instantiate and register a Listener object which

// will display a message and terminate the program

// when the user closes the Frame object

WProc1 winProcCmd1 = new WProc1();

myFrame.addWindowListener(winProcCmd1);

}//end constructor

}//end class GUI definition

//===//

//This listener class monitors for mouse presses and

// displays a message when a mousePressed() event occurs on

// either the Frame object or the Window object. The

// message identifies which visual object generated

// the event. The listener object distinguishes between

// the two visual objects on the basis of their component

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1529

// names.

class MouseProc extends MouseAdapter{

//Override the mousePressed() method to respond whenever

// the mouse is pressed on one of the visual objects.

public void mousePressed(MouseEvent e){

if(e.getComponent().getName().compareTo("Frame")

== 0){

System.out.println(

"Got mousePressed event from Frame object");

}//end if

if(e.getComponent().getName().compareTo("Window")

== 0){

System.out.println(

"Got mousePressed event from Window object");

}//end if

}//end mousePressed()

}//end class MouseProc

//===//

//The following listener is used to display a message and

// terminate the program when the user closes the Frame

// object.

class WProc1 extends WindowAdapter{

public void windowClosing(WindowEvent e){

System.out.println(

"Got windowClosing event from Frame object");

System.exit(0);

}//end windowClosing()

}//end class WProc1

//===//

4.4.2.7.6 Review

4.4.2.7.6.1 Question 1

Write a Java application that displays two Frame objects on the screen. Each object has a width of 300
pixels and a height of 200 pixels.

One object is located in the upper left-hand corner of the screen. The top left-hand corner of the other
object barely touches the bottom right-hand corner of the �rst object as shown in Figure 3 (p. 1535) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1530 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Figure 3. Screen output for Question 1.

Make your name and the name of each object appear in the banner at the top of each object. Do not assign
names to the objects.

Cause the two objects to share a single listener object to respond to mouse events.
Whenever the mouse is pressed internal to either object, the coordinates of the mouse pointer are displayed

near the pointer on that object with the horizontal coordinate being displayed �rst followed by the vertical
coordinate. The two coordinate values are separated by a comma and a space.

Also cause the two objects to share a single listener object that will terminate the program whenever the
user clicks the "close" button on either object.

Make certain that your application terminates and returns control to the operating system when the user
clicks on the "close" button in the upper right-hand corner of the object.

Solution - See the program in Listing 8 (p. 1535) .

Listing 8. Solution to Question 1.

/*File SampProg120.java from lesson 82

Copyright 1997, R.G.Baldwin

Without viewing the solution that follows, write a Java

application that displays two Frame objects on the screen.

Each object has a width of 300 pixels and a height of 200

pixels.

One object is located in the upper left-hand corner of the

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1531

screen. The top left-hand corner of the other object barely

touches the bottom right-hand corner of the first object.

Make your name and the name of each object appear in the

banner at the top of each object.

Do not assign names to the objects.

Cause the two objects to share a single Listener object

to respond to mouse events.

Whenever the mouse is pressed internal to either object,

the coordinates of the mouse pointer are displayed near

the pointer on that object with the horizontal coordinate

being displayed first followed by the vertical coordinate.

The two coordinate values are separated by a comma and a

space.

Also cause the two objects to share a single Listener

object that will terminate the program whenever the user

clicks the "close" button on either object.

Make certain that your application terminates and returns

control to the operating system when the user clicks on

the "close" button in the upper right-hand corner of the

object.

*/

//===

import java.awt.*;

import java.awt.event.*;

public class SampProg120 {

public static void main(String[] args){

GUI gui = new GUI();

}//end main

}//end class SampProg120

//---

//Subclass Frame in order to override the paint method.

class MyFrame extends Frame{

int xCoor;

int yCoor;

MyFrame(){//constructor

setTitle("Baldwin " + this.getName());

setSize(300,200);

}//end constructor

public void paint(Graphics g){//override paint() method

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1532 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

//display coordinate information on the object

g.drawString("" + xCoor + ", " + yCoor, xCoor, yCoor);

}//end paint()

}//end class MyFrame

//---

class GUI {

public GUI(){//constructor

//Create two visual objects of type MyFrame, specify

// their locations, and make them visible.

MyFrame myFrame1 = new MyFrame();

myFrame1.setLocation(new Point(0,0));

myFrame1.setVisible(true);

MyFrame myFrame2 = new MyFrame();

myFrame2.setLocation(new Point(300,200));

myFrame2.setVisible(true);

//Instantiate and register Listener object which will

// terminate the program when the user closes either

// window.

WProc1 winProcCmd1 = new WProc1();

myFrame1.addWindowListener(winProcCmd1);

myFrame2.addWindowListener(winProcCmd1);

//Instantiate and register Listener object which will

// process mouse events on either MyFrame object.

MouseProc mouseProcCmd =

new MouseProc(myFrame1,myFrame2);

myFrame1.addMouseListener(mouseProcCmd);

myFrame2.addMouseListener(mouseProcCmd);

}//end constructor

}//end class GUI definition

//---

//This listener class monitors for mouse presses and

// displays the coordinates of the mouse pointer when the

// mouse is pressed. The listener object distinguishes

// between two different visual objects on the basis of

// their component names and displays the coordinate

// information on the visual object which generated the

// mouse event.

class MouseProc extends MouseAdapter{

//save references to the objects here

MyFrame refToFrame1,refToFrame2;

MouseProc(MyFrame inFrame1,MyFrame inFrame2){//constructor

refToFrame1 = inFrame1;//save references to the frames

refToFrame2 = inFrame2;

}//end constructor

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1533

//Override the mousePressed() method to respond whenever

// the mouse is pressed on one of the frame objects.

// Distinguish between the two frame objects using the

// component name and display the coordinates of the

// mouse on the correct object.

public void mousePressed(MouseEvent e){

if(e.getComponent().getName().

compareTo(refToFrame1.getName()) == 0)

{

refToFrame1.xCoor = e.getX();

refToFrame1.yCoor = e.getY();

//display coordinates on Frame1

refToFrame1.repaint();

}else{

refToFrame2.xCoor = e.getX();

refToFrame2.yCoor = e.getY();

//display coordinates on Frame2

refToFrame2.repaint();

}//end if-else

}//end mousePressed()

}//end class MouseProc

//---

//The following listener is used to terminate the program

// when the user closes either frame object.

class WProc1 extends WindowAdapter{

public void windowClosing(WindowEvent e){

System.exit(0);

}//end windowClosing()

}//end class WProc1

//---

4.4.2.7.6.2 Question 2

Write a Java application that displays two Frame objects on the screen. Place a red Panel object in
the upper-left quadrant of the second Frame object as shown in Figure 4 (p. 1539) . (Note that the red
Panel is partially covered by the blue banner at the top of the Frame .)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1534 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Figure 4. Screen output for Question 2.

Each Frame object has a width of 300 pixels and a height of 200 pixels.
One Frame object is located in the upper left-hand corner of the screen. The top left-hand corner of

the second Frame object barely touches the bottom right-hand corner of the �rst Frame object.
Make your name and the name of each Frame object appear in the banner at the top of each Frame

object.
Cause the �rst Frame object and the Panel object to share a single listener object to respond to

mouse events. Do not allow the second Frame object (which contains the Panel object) to share
the listener object for mouse events.

Whenever the mouse is pressed internal to the �rst Frame object, or on the red portion of the Panel
object, the coordinates of the mouse pointer are displayed near the pointer on that object with the horizontal
coordinate being displayed �rst followed by the vertical coordinate. The two coordinate values are separated
by a comma and a space.

Whenever the mouse is pressed internal to the second Frame object, but not on the red Panel object,
coordinate values are not displayed.

Also cause the two Frame objects to share a single listener object that will terminate the program
whenever the user clicks the "close" button on either Frame object.

Make certain that your application terminates and returns control to the operating system when the user
clicks on the "close" button in the upper right-hand corner of either Frame object.

Solution - See the program in Listing 9 (p. 1539) .

Listing 9. Solution to Question 2.

/*File SampProg121.java from lesson 82

Copyright 1997, R.G.Baldwin

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1535

Without viewing the solution that follows, write a Java

application that displays two Frame objects on the screen.

Place a red Panel object in the upper-left quadrant of the

second Frame object.

Each Frame object has a width of 300 pixels and a height

of 200 pixels.

One Frame object is located in the upper left-hand corner

of the screen. The top left-hand corner of the second

Frame object barely touches the bottom right-hand corner of

the first Frame object.

Make your name and the name of each Frame object appear in

the banner at the top of each Frame object.

Cause the first Frame object and the Panel object to

share a single Listener object to respond to mouse events.

Do not allow the second Frame object to share the Listener

object for mouse events.

Whenever the mouse is pressed internal to the first Frame

object, or on the red portion of the Panel object, the

coordinates of the mouse pointer are displayed near

the pointer on that object with the horizontal coordinate

being displayed first followed by the vertical coordinate.

The two coordinate values are separated by a comma and a

space.

Whenever the mouse is pressed internal to the second Frame

object, but not on the red Panel object, coordinate values

are not displayed.

Also cause the two Frame objects to share a single Listener

object that will terminate the program whenever the user

clicks the "close" button on either Frame object.

Make certain that your application terminates and returns

control to the operating system when the user clicks on

the "close" button in the upper right-hand corner of either

Frame object.

*/

//===

import java.awt.*;

import java.awt.event.*;

public class SampProg121 {

public static void main(String[] args){

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1536 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

GUI gui = new GUI();

}//end main

}//end class SampProg121

//---

//Subclass Frame in order to override the paint method.

class MyFrame extends Frame{

int xCoor;

int yCoor;

MyFrame(){//constructor

setTitle("Baldwin " + this.getName());

setSize(300,200);

}//end constructor

public void paint(Graphics g){//override paint() method

//display coordinate information on the object

g.drawString("" + xCoor + ", " + yCoor, xCoor, yCoor);

}//end paint()

}//end class MyFrame

//---

//Subclass Panel in order to override the paint method.

class MyPanel extends Panel{

int xCoor;

int yCoor;

MyPanel(){//constructor

setBounds(new Rectangle(0,0,150,100));

setBackground(Color.red);

}//end constructor

public void paint(Graphics g){//override paint() method

//display coordinate information on the object

g.drawString("" + xCoor + ", " + yCoor, xCoor, yCoor);

}//end paint()

}//end class MyFrame

//---

class GUI {

public GUI(){//constructor

//Instantiate an object of type MyPanel

MyPanel myPanel = new MyPanel();

//Instantiate two objects of type MyFrame, specify

// their locations, and make them visible. Place the

// MyPanel object in the second MyFrame object.

MyFrame myFrame1 = new MyFrame();

myFrame1.setLocation(new Point(0,0));

myFrame1.setVisible(true);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1537

MyFrame myFrame2 = new MyFrame();

myFrame2.setLayout(null);

myFrame2.setLocation(new Point(300,200));

myFrame2.add(myPanel);

myFrame2.setVisible(true);

//Instantiate and register a Listener object which will

// terminate the program when the user closes either

// window.

WProc1 winProcCmd1 = new WProc1();

myFrame1.addWindowListener(winProcCmd1);

myFrame2.addWindowListener(winProcCmd1);

//Instantiate and register a Listener object which will

// process mouse events on either the MyFrame object

// or the myPanel object.

MouseProc mouseProcCmd =

new MouseProc(myFrame1,myPanel);

myFrame1.addMouseListener(mouseProcCmd);

myPanel.addMouseListener(mouseProcCmd);

}//end constructor

}//end class GUI definition

//---

//This listener class monitors for mouse presses and

// displays the coordinates of the mouse pointer when the

// mouse is pressed. The listener object distinguishes

// between two different visual objects on the basis of

// their component names and displays the coordinate

// information on the visual object which generated the

// mouse event.

class MouseProc extends MouseAdapter{

//save references to the objects here

MyFrame refToFrame1;

MyPanel refToPanel;

MouseProc(MyFrame inFrame1,MyPanel inPanel){//constructor

refToFrame1 = inFrame1;//save references to the frames

refToPanel = inPanel;

}//end constructor

//Override the mousePressed() method to respond whenever

// the mouse is pressed on one of the frame objects.

// Distinguish between the two frame objects using the

// component name and display the coordinates of the

// mouse on the correct object.

public void mousePressed(MouseEvent e){

if(e.getComponent().getName().

compareTo(refToFrame1.getName()) == 0)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1538 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

{ //display coordinates on the Frame object

refToFrame1.xCoor = e.getX();

refToFrame1.yCoor = e.getY();

refToFrame1.repaint();

}else{//display coordinates on the Panel object

refToPanel.xCoor = e.getX();

refToPanel.yCoor = e.getY();

refToPanel.repaint();

}//end if-else

}//end mousePressed()

}//end class MouseProc

//---

//The following listener is used to terminate the program

// when the user closes either frame object.

class WProc1 extends WindowAdapter{

public void windowClosing(WindowEvent e){

System.exit(0);

}//end windowClosing()

}//end class WProc1

//---

4.4.2.7.6.3 Question 3

Rewrite the program named Event10 and eliminate the requirement to pass parameters to the constructors
for the event listener objects.

Solution - See the program in Listing 10 (p. 1543) .

Listing 10. Solution to Question 3.

/*File Event10A.java Copyright 1997, R.G.Baldwin

Rewrite the program named Event10 and eliminate the

requirement to pass parameters to the constructors for the

event Listener objects.

This program is designed to be compiled and run under

JDK 1.1

The program illustrates the sharing of a single listener

object among two different visual components of the same

type.

The program detects mouse events occurring on either of two

different Frame objects. It distinguishes between the two

objects and displays the coordinates of a mouse click on

whichever object experienced the mouse click.

These results were produced using JDK 1.1.3 running under

Windows 95.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1539

Note that when the program starts, the two visual

components overlay one another. It is necessary to move

one of them in order to access the other.

*/

//===//

import java.awt.*;

import java.awt.event.*;

public class Event10A {

public static void main(String[] args){

//instantiate a Graphical User Interface object

GUI gui = new GUI();

}//end main

}//end class Event10A

//===//

//Subclass Frame in order to override the paint method.

class MyFrame extends Frame{

int xCoor;

int yCoor;

MyFrame(){//constructor

setTitle("Copyright 1997, R.G.Baldwin");

setSize(300,200);

}//end constructor

public void paint(Graphics g){

//display coordinate information on the visual object

g.drawString("" + xCoor + ", " + yCoor, xCoor, yCoor);

}//end paint()

}//end class MyFrame

//===//

//The following class is used to instantiate a graphical

// user interface object.

class GUI {

public GUI(){//constructor

//Create two visual objects of type MyFrame and make

// them visible.

MyFrame myFrame1 = new MyFrame();

myFrame1.setVisible(true);

MyFrame myFrame2 = new MyFrame();

myFrame2.setVisible(true);

//Instantiate and register Listener object which will

// terminate the program when the user closes either

// window.

WProc1 winProcCmd1 = new WProc1();

myFrame1.addWindowListener(winProcCmd1);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1540 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

myFrame2.addWindowListener(winProcCmd1);

//Instantiate and register Listener object which will

// process mouse events on either MyFrame object.

MouseProc mouseProcCmd = new MouseProc();

myFrame1.addMouseListener(mouseProcCmd);

myFrame2.addMouseListener(mouseProcCmd);

}//end constructor

}//end class GUI definition

//===//

//This listener class monitors for mouse presses and

// displays the coordinates of the mouse pointer when the

// mouse is pressed. The listener object distinguishes

// between two different visual objects and displays the

// coordinate information on the visual object which

// generated the mouse event.

class MouseProc extends MouseAdapter{

//Override the mousePressed() method to respond whenever

// the mouse is pressed on one of the frame objects.

public void mousePressed(MouseEvent e){

//Get X and Y coordinates of mouse pointer and store in

// the Frame object. Distinguish between the two

// components on the basis of the source of the event.

// Note that the following two formulations for X and Y

// can be used to produce the same results in this

// situation.

((MyFrame)e.getComponent()).xCoor = e.getX();

((MyFrame)e.getSource()).yCoor = e.getY();

//display coordinate information

e.getComponent().repaint();

}//end mousePressed()

}//end class MouseProc

//===//

//The following listener is used to terminate the program

// when the user closes either frame object.

class WProc1 extends WindowAdapter{

public void windowClosing(WindowEvent e){

System.exit(0);

}//end windowClosing()

}//end class WProc1

//===//

4.4.2.7.6.4 Question 4

Rewrite the program named Event11 and eliminate the requirement to pass parameters to the constructor
for the listener objects.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1541

Solution - See the program in Listing 11 (p. 1546) .

Listing 11. Solution to Question 4.

/*File Event11A.java Copyright 1997, R.G.Baldwin

Rewrite the program named Event11 and eliminate the

requirement to pass parameters to the constructor for the

listener objects.

This program is designed to be compiled and run under

JDK 1.1

The program illustrates the sharing of a single listener

object between two different visual components of different

types.

The program detects mouse events occurring on either a

visual Frame object or on a visual Window object. It

distinguishes between the two objects and displays a

message indicating which object generated the event.

Clicking inside the Frame object but outside the Window

object produces the following message:

Got mousePressed event from Frame object

Clicking inside the Window object produces the following

message:

Got mousePressed event from Window object

Closing the Frame object produces the following message and

terminates the program:

Got windowClosing event from Frame object

These results were produced using JDK 1.1.3 running under

Windows 95.

*/

//===//

import java.awt.*;

import java.awt.event.*;

public class Event11A {

public static void main(String[] args){

//instantiate a Graphical User Interface object

GUI gui = new GUI();

}//end main

}//end class Event11A

//===//

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1542 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

//The following class is used to instantiate a graphical

// user interface object.

class GUI {

public GUI(){//constructor

//Create a visual Frame object

Frame myFrame = new Frame();

myFrame.setSize(200,300);

myFrame.setTitle("Copyright 1997, R.G.Baldwin");

myFrame.setVisible(true);

//Create a visual Window object inside the Frame object

Window myWindow = new Window(myFrame);

myWindow.setSize(100,100);

myWindow.setVisible(true);

//Instantiate and register a Listener object which will

// process mouse events on either the Frame object or

// the Window object.

MouseProc mouseProcCmd = new MouseProc();

myFrame.addMouseListener(mouseProcCmd);

myWindow.addMouseListener(mouseProcCmd);

//Instantiate and register a Listener object which will

// display a message and terminate the program when the

// user closes the Frame object

WProc1 winProcCmd1 = new WProc1();

myFrame.addWindowListener(winProcCmd1);

}//end constructor

}//end class GUI definition

//===//

//This listener class monitors for mouse presses and

// displays a message when a mousePressed() event occurs on

// either the Frame object or the Window object. The

// message identifies which visual object generated the

// event. The listener object distinguishes between the two

// visual objects.

class MouseProc extends MouseAdapter{

//Override the mousePressed() method to respond whenever

// the mouse is pressed on one of the visual objects.

public void mousePressed(MouseEvent e){

System.out.print("Got mousePressed event from ");

if(e.getSource().toString().indexOf("Frame") >= 0)

System.out.println("Frame object");

else

System.out.println("Window object");

}//end mousePressed()

}//end class MouseProc

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1543

//===//

//The following listener is used to display a message and

// terminate the program when the user closes the Frame

// object.

class WProc1 extends WindowAdapter{

public void windowClosing(WindowEvent e){

System.out.println(

"Got windowClosing event from Frame object");

System.exit(0);

}//end windowClosing()

}//end class WProc1

//===//

4.4.2.7.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java082 Sharing a Listener Object Among Visual Components
• File: Java082.htm
• Originally published: 1997

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.8 Java084 Low-level and Semantic Events
173

Revised: Fri Jul 08 13:46:29 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 174

• Object-Oriented Programming (OOP) with Java 175

173This content is available online at <http://cnx.org/content/m59595/1.2/>.
174http://cnx.org/contents/Rl23r3Lw
175http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1544 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.2.8.1 Table of contents

• Table of contents (p. 1549)
• Preface (p. 1549)

· Viewing tip (p. 1549)

* Figures (p. 1549)
* Listings (p. 1550)

• Introduction (p. 1550)
• Overview (p. 1550)
• Sample program for low-level events (p. 1551)
• Sample program for low-level and semantic events (p. 1555)

· Focus events (p. 1561)
· Action events (p. 1561)
· ActionListener object (p. 1562)
· FocusListener object (p. 1562)
· MouseListener object (p. 1562)
· WindowListener object (p. 1563)
· More general comments about the program (p. 1563)

• Review (p. 1563)

· Question 1 (p. 1563)
· Question 2 (p. 1566)

• Miscellaneous (p. 1568)

4.4.2.8.2 Preface

This is a page from the Event Handling 176 section of the book titled ITSE2317 - Java Programming
(Intermediate) 177 . The Event Handling section explains how to write programs that handle events in
Java.

Students in Prof. Baldwin's ITSE 2317 Intermediate Java Programming classes at ACC are
responsible for knowing and understanding all of the material in this lesson.

4.4.2.8.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

4.4.2.8.2.1.1 Figures

• Figure 1. (p. 1554) Graphic screen output for Event13.
• Figure 2. (p. 1554) Sample text output from Event13.
• Figure 3. (p. 1561) Graphic screen output for Event12.
• Figure 4. (p. 1563) Screen output from SampProg200.
• Figure 5. (p. 1566) Screen output from SampProg201.

176http://cnx.org/contents/Rl23r3Lw:qfO9iJX-
177http://cnx.org/contents/Rl23r3Lw:JVTd7bX1

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1545

4.4.2.8.2.1.2 Listings

• Listing 1. (p. 1551) The program named Event13.
• Listing 2. (p. 1555) The program named Event12.
• Listing 3. (p. 1564) The solution to Question 1.
• Listing 4. (p. 1566) The solution to Question 2.

4.4.2.8.3 Introduction

An earlier lesson brie�y discussed the di�erences between low-level events and semantic events as described
in the JDK 1.1 documentation.

This lesson takes another look at that topic through the use of programs that apply both low-level event
handling and semantic event handling to the same set of visual components. This makes it possible to
compare the two types of events in a more meaningful way.

4.4.2.8.4 Overview

Although the suite of semantic events is generally used for di�erent purposes than the suite of low-level
events, from a practical programming viewpoint, there is very little di�erence.

The primary di�erence appears to reside in the nature of the event object that is passed to the event
handler when an event occurs.

Using the information in the event object, low-level events can gain access to the speci�c Component
object that generated the event.

Given a low-level event object, the getComponent method of the
java.awt.event.ComponentEvent class will return a reference to the actual object that generated the
event.

Once that reference is available, there are literally dozens of methods of the Component class that
can be invoked on the object, such as getLocation, getLocationOnScreen, getMaximumSize, get-
MinimumSize, getName, etc.

A sample program in a previous lesson invoked the getName method on such an object to determine
which object among several objects generated a low-level mouse event.

A sample program that we will see later in this lesson invokes some of the other available methods on
such a component object.

All low-level event classes are subclasses of the java.awt.event.ComponentEvent class, so the
event handlers for all low-level events have access to the object that generated the event.

Semantic events, on the other hand, do not subclass the ComponentEvent class. Rather, they
subclass the superclass of ComponentEvent making them siblings of ComponentEvent .

Because they do not subclass ComponentEvent , the event objects passed into semantic event handlers
do not provide a way to obtain a reference to the object that generated the event, and therefore cannot invoke
the methods of the Component class on that object.

Whether this is important or not depends on your needs. For example, if you needed to determine the
location of the object that generated an event, you could determine that location by processing a low-level
event but you (probably) could not determine that location by processing a semantic event. (Never say
never unless you want some ten-year-old programming genius to prove you wrong).

Regardless of the ability to access the object that generated the event, the name of that object is readily
available to the event handlers of both low-level and semantic events.

In both cases, the name of the object is encapsulated in the event object passed as a parameter and
can be extracted or tested using methods of the String class. Often knowing the name of the object is
su�cient to accomplish the desired result.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1546 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.2.8.5 Sample program for low-level events

The program named Event 13 shown in Listing 1 (p. 1551) illustrates some of the capability of low-level
events.

Listing 1. The program named Event13.

/*File Event13.java Copyright 1997, R.G.Baldwin

Revised 03/09/98 to make it fit the page better.

This program is designed to be compiled and run

under JDK 1.1

The program demonstrates the object-manipulation capability

of low-level events.

A Button object and a TextField object are placed in a

Frame object.

A MouseListener object is instantiated and registered to

monitor for low-level mousePressed() events on all three

objects. Whenever a mousePressed() event occurs, the

Listener object obtains and displays several pieces of

information about the object that generated the event.

Although this demonstration program only obtains and

displays information as a result of mousePressed() events,

all of the methods of the Component class are available for

use at that point. Thus the code in the event handler

method could also modify some of the attributes of the

object that generated the event.

Finally, a WindowListener object is instantiated and

registered to terminate the program when the user closes

the Frame object.

Starting the program and then clicking successively on the

Button, the TextField, and the interior of the Frame

produces the following output.

Name = Button1

Parent's name = Frame

Location = java.awt.Point[x=4,y=23]

Minimum Size = java.awt.Dimension[width=54,height=21]

Size = java.awt.Dimension[width=192,height=21]

Name = TextField1

Parent's name = Frame

Location = java.awt.Point[x=4,y=275]

Minimum Size = java.awt.Dimension[width=104,height=21]

Size = java.awt.Dimension[width=192,height=21]

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1547

Name = Frame

No parent name available at this level

Location = java.awt.Point[x=0,y=0]

Minimum Size = java.awt.Dimension[width=112,height=69]

Size = java.awt.Dimension[width=200,height=300]

These results were produced using JDK 1.1.3, under Win95.

**/

import java.awt.*;

import java.awt.event.*;

public class Event13 {

public static void main(String[] args){

//instantiate a Graphical User Interface object

GUI gui = new GUI();

}//end main

}//end class Event13

//===//

class GUI {

public GUI(){//constructor

//Create a visual TextField object

TextField myTextField = new TextField("Initial String");

myTextField.setName("TextField1");

//Create a visual Button object

Button myButton = new Button("Click me");

myButton.setName("Button1");

//Create a visual Frame object

Frame myFrame = new Frame();

myFrame.setSize(200,300);

myFrame.setTitle("Copyright 1997, R.G.Baldwin");

myFrame.setName("Frame");

//Add the Button and the TextField to the Frame object

myFrame.add("North",myButton);

myFrame.add("South",myTextField);

myFrame.setVisible(true);

//Instantiate and register a MouseListener object which

// will process mouse events on the Frame object, the

// Button object, and the TextField object.

MouseProc mouseProcCmd = new MouseProc();

myFrame.addMouseListener(mouseProcCmd);

myTextField.addMouseListener(mouseProcCmd);

myButton.addMouseListener(mouseProcCmd);

//Instantiate and register a Listener object which will

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1548 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

// terminate the program when the user closes the

// Frame object

WProc1 winProcCmd1 = new WProc1();

myFrame.addWindowListener(winProcCmd1);

}//end constructor

}//end class GUI definition

//===//

//Low-level event monitor.

// This listener class monitors for low-level

// mousePressed() events. Whenever mousePressed() event

// occurs, event handler obtains and displays several

// pieces of information about object that generated

// event.

class MouseProc extends MouseAdapter{

public void mousePressed(MouseEvent e){

System.out.println(

"Name = " + e.getComponent().getName());

try{

System.out.println("Parent's name = " +

e.getComponent().getParent().getName());

}catch(NullPointerException exception){

System.out.println(

"No parent name available at this level");

}//end try/catch

System.out.println("Location = " +

e.getComponent().getLocation().toString());

System.out.println("Minimum Size = " +

e.getComponent().getMinimumSize().toString());

System.out.println("Size = " +

e.getComponent().getSize().toString());

System.out.println();//blank line

}//end mousePressed()

}//end class MouseProc

//===//

//The following listener class is used to terminate the

// program when the user closes the Frame object.

class WProc1 extends WindowAdapter{

public void windowClosing(WindowEvent e){

System.exit(0);

}//end windowClosing()

}//end class WProc1

//===//

The graphic screen output produced by this program is shown in Figure 1 (p. 1554) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1549

Figure 1. Graphic screen output for Event13.

A Button object and a TextField object are placed at the top and bottom of a Frame object.
A MouseListener object is instantiated and registered to monitor for low-level mousePressed

events on all three objects.
Whenever a mousePressed event occurs, the listener object obtains and displays several pieces of

information about the object that generated the event. Some samples of the text information produced by
this program are shown in Figure 2 (p. 1554) .

Figure 2. Sample text output from Event13.

Name = Button1

Parent's name = Frame

Location = java.awt.Point[x=4,y=28]

Minimum Size = java.awt.Dimension[width=62,height=23]

Size = java.awt.Dimension[width=192,height=23]

Name = Frame

No parent name available at this level

Location = java.awt.Point[x=0,y=0]

Minimum Size = java.awt.Dimension[width=130,height=78]

Size = java.awt.Dimension[width=200,height=300]

Name = TextField1

Parent's name = Frame

Location = java.awt.Point[x=4,y=273]

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1550 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Minimum Size = java.awt.Dimension[width=122,height=23]

Size = java.awt.Dimension[width=192,height=23]

Although this demonstration program only obtains and displays information as a result of mousePressed
events, all of the methods of the Component class are available for use at that point. Thus the code in
the event handler method could also modify some of the attributes of the object that generated the event.

Finally, a WindowListener object is instantiated and registered to terminate the program when the
user closes the Frame object.

Additional information about the program is contained in the comments in Listing 1 (p. 1551) .

4.4.2.8.6 Sample program for low-level and semantic events

The sample program named Event 12 provides both low-level and semantic event handling for the same
three components as the previous program. Listing 2 (p. 1555) shows the program, which is fairly long, but
it is also fairly repetitive.

Listing 2. The program named Event12.

/*File Event12.java Copyright 1997, R.G.Baldwin

Revised 03/09/98 to fit the page better.

Revised 02/13/04 to correct an error in the comments.

This program is designed to be compiled and run

under JDK 1.1

The program supports experimentation with low-level events

and semantic events.

A Button object and a TextField object are placed in a

Frame object.

An ActionListener object is instantiated and registered to

monitor for semantic actionPerformed()events on the Button

and the TextField.

An actionPerformed() event can be generated on a TextField

by pressing the Enter key while the TextField object has

the focus.

An actionPerformed() event can be generated by a Button by

clicking on it with the mouse.

An action event cannot be generated by a Frame object.

Whenever an actionPerformed() event occurs, the Listener

object invokes the getActionCommand() method on the object

to obtain the "command name".

The getActionCommand() method returns the "command name"

associated with the action as a String. The string is

displayed. As it turns out, the "command name" associated

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1551

with a Button is simply the text, caption, or label on the

button. The "command name" associated with a TextField is

the current text content of the TextField object.

The ActionEvent object passed to the actionPerformed()

method includes the name of the component which can be

used in a conditional test based on the indexOf() method

of the String class to identify the component that

generated the event.

Each time the actionPerformed() method is invoked, code in

the body of the method uses the indexOf() method to

identify the component that generated the event and

displays a message identifying that component.

A FocusListener object is instantiated and registered to

monitor for low-level focusGained() and focusLost() events

on the Button and the TextField.

Whenever a focusGained() event occurs, a message is

displayed identifying the object which gained the focus.

Likewise, whenever a focusLost() event occurs, a message is

displayed identifying the object which lost the focus. The

object that gained or lost focus is identified by

performing conditional tests on the FocusEvent object

passed in as a parameter.

A MouseListener object is instantiated and registered to

monitor for low-level mousePressed() events on all three

objects. The Listener object differentiates among the

three on the basis of the component name assigned to each

object. The approach used to obtain the component name in

this program uses the indexOf() method of the String class

on the MouseEvent object. This is a somewhat less complex

approach than the approach used to obtain the component

name for a mousePressed() event in an earlier lesson. When

a mousePressed() event occurs on any of the three visual

objects, the Listener object displays a message identifying

the object that generated the event.

Finally, a WindowListener object is instantiated and

registered to terminate the program when the user closes

the Frame object.

Typical outputs from the program follow:

Clicking the mouse inside the frame but outside of both the

TextField and the Button produces the following output:

Got mousePressed event from Frame object

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1552 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Clicking the mouse on the TextField when the Button has the

focus produces the following output:

Got mousePressed event from TextField1 object

Got focusLost event from Button1 object

Got focusGained event from TextField1 object

Pressing the Enter key when the TextField has the focus

produces the following output:

e.getActionCommand() = Initial String

Got actionPerformed event from TextField1 object

Clicking the mouse on the Button when the TextField has the

focus produces the following output:

Got mousePressed event from Button1 object

Got focusLost event from TextField1 object

Got focusGained event from Button1 object

e.getActionCommand() = Click me

Got actionPerformed event from Button1 object

These results were produced using JDK 1.1.3 under Win95.

**/

import java.awt.*;

import java.awt.event.*;

public class Event12 {

public static void main(String[] args){

//instantiate a Graphical User Interface object

GUI gui = new GUI();

}//end main

}//end class Event12

//===//

//The following class is used to instantiate a graphical

// user interface object.

class GUI {

public GUI(){//constructor

//Create a visual TextField object

TextField myTextField =

new TextField("Initial String");

myTextField.setName("TextField1");

//Create a visual Button object

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1553

Button myButton = new Button("Click me");

myButton.setName("Button1");

//Create a visual Frame object and name it Frame

Frame myFrame = new Frame();

myFrame.setSize(200,300);

myFrame.setTitle("Copyright 1997, R.G.Baldwin");

myFrame.setName("Frame");

//Add the Button and the TextField to the Frame object

myFrame.add("North",myButton);

myFrame.add("South",myTextField);

myFrame.setVisible(true);

//Instantiate and register an ActionListener object

// which will monitor for action events on the

// TextField and the Button.

ActionProc actionProcCmd = new ActionProc();

myTextField.addActionListener(actionProcCmd);

myButton.addActionListener(actionProcCmd);

//Instantiate and register a FocusListener object which

// will monitor for focus events on the TextField and

// the Button.

FocusProc focusProcCmd = new FocusProc();

myTextField.addFocusListener(focusProcCmd);

myButton.addFocusListener(focusProcCmd);

//Instantiate and register a MouseListener object which

// will process mouse events on the Frame object, the

// Button object, or the TextField object.

MouseProc mouseProcCmd = new MouseProc();

myFrame.addMouseListener(mouseProcCmd);

myTextField.addMouseListener(mouseProcCmd);

myButton.addMouseListener(mouseProcCmd);

//Instantiate and register a Listener object which will

// terminate the program when the user closes the Frame

// object

WProc1 winProcCmd1 = new WProc1();

myFrame.addWindowListener(winProcCmd1);

}//end constructor

}//end class GUI definition

//===//

//Semantic event monitor.

// This ActionListener class is used to instantiate a

// Listener object that monitors for action events on the

// TextField and the Button. Whenever an actionPerformed()

// event occurs, it displays the ActionCommand and the

// identification of the component that generated the

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1554 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

// event. The listener object distinguishes between the

// components on the basis of their component names which

// are embedded in the object passed in as a parameter

// when an event occurs.

class ActionProc implements ActionListener{

public void actionPerformed(ActionEvent e){

System.out.println("e.getActionCommand() = " +

e.getActionCommand());

if(e.toString().indexOf("on TextField1") != -1){

System.out.println(

"Got actionPerformed event from TextField1 object");

}//end if

if(e.toString().indexOf("on Button1") != -1){

System.out.println(

"Got actionPerformed event from Button1 object");

}//end if

}//end actionPerformed()

}//end class ActionProc

//===//

//Low-level event monitor.

// This FocusListener class is used to instantiate a

// Listener object that monitors for focus events on the

// TextField and the Button. Whenever a focusLost() or

// focusGained() event occurs, it displays the

// identification of the component that generated the

// event. The listener object distinguishes between the

// components on the basis of their component names which

// are embedded in the object passed in as a parameter when

// an event occurs.

class FocusProc implements FocusListener{

public void focusGained(FocusEvent e){

if(e.toString().indexOf("on TextField1") != -1){

System.out.println(

"Got focusGained event from TextField1 object");

}//end if

if(e.toString().indexOf("on Button1") != -1){

System.out.println(

"Got focusGained event from Button1 object");

}//end if

}//end focusGained()

public void focusLost(FocusEvent e){

if(e.toString().indexOf("on TextField1") != -1){

System.out.println(

"Got focusLost event from TextField1 object");

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1555

}//end if

if(e.toString().indexOf("on Button1") != -1){

System.out.println(

"Got focusLost event from Button1 object");

}//end if

}//end focusLost()

}//end class FocusProc

//===//

//Low-level event monitor.

// This listener class monitors for mouse presses and

// displays a message when a mousPressed() event occurs on

// the Frame object, the Button object, or the TextField

// object. The message identifies the component that

// generated the event. The listener object distinguishes

// between the components on the basis of their component

// names which are embedded in the object passed in as a

// parameter when an event occurs.

class MouseProc extends MouseAdapter{

public void mousePressed(MouseEvent e){

if(e.toString().indexOf("on Frame") != -1){

System.out.println(

"Got mousePressed event from Frame object");

}//end if

if(e.toString().indexOf("on TextField1") != -1){

System.out.println(

"Got mousePressed event from TextField1 object");

}//end if

if(e.toString().indexOf("on Button1") != -1){

System.out.println(

"Got mousePressed event from Button1 object");

}//end if

}//end mousePressed()

}//end class MouseProc

//===//

//The following listener is used to display a message and

// terminate the program when the user closes the Frame

// object.

class WProc1 extends WindowAdapter{

public void windowClosing(WindowEvent e){

System.exit(0);

}//end windowClosing()

}//end class WProc1

//===//

The graphic screen output for this program is shown in Figure 3 (p. 1561) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1556 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Figure 3. Graphic screen output for Event12.

As before, a Button object and a TextField object are placed at the top and bottom respectively of a
Frame object.

Semantic event handling is provided for Action events. Low-level event handling is provided on
the same components for mousePressed events and Focus events.

4.4.2.8.6.1 Focus events

In Java, a component has the focus when it can accept keyboard input. There are a variety of ways by
which the focus can move from one component to another. Whenever it moves, one component generates a
focusLost event and the other component generates a focusGained event.

There are also some issues involving temporary and permanent changes in focus which aren't discussed
here, but can be found in the JDK 1.1 documentation.

On the basis of the above description, you should see that there are many di�erent types of components
that can generate a focus event. Any component that can gain the focus can generate such an event.

There are some components such as Button objects and TextField objects that automatically gain
the focus when they are clicked on by the mouse. There are other components such as Label objects that
do not automatically gain the focus when they are clicked on by the mouse. However, even these components
can gain the focus by requesting it. We will investigate this in more detail in a future lesson.

4.4.2.8.6.2 Action events

An action event can also be generated by many di�erent types of components. For example, clicking a button
or pressing the Enter key while a TextField object has the focus will generate an action event. The
terminology derives from the notion that those user actions that generate action events are messages to the
program to take the speci�c action indicated by the nature of the component.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1557

For example, if a button is labeled Exit and it is clicked by the user, that means that the user is
expecting an action that can be interpreted as exit in that context.

4.4.2.8.6.3 ActionListener object

In this program an ActionListener object is instantiated and registered to monitor for semantic action-
Performed events on the Button and the TextField .

When an actionPerformed event is generated, certain information regarding the event is encapsulated
into an object that is passed to the actionPerformed method of the listener object. This information
includes what the JDK 1.1 documentation refers to as a command name . This information can be accessed
by the code in the method by invoking the getActionCommand method on the object. In this program,
the command name is accessed and displayed on the screen.

As it turns out, the "command name" associated with a Button is simply the text , caption , or
label on the button (whatever you choose to call it). The "command name" associated with a TextField
is the current text content of the TextField object.

This information would have di�erent uses for di�erent components in di�erent situations. For example,
it might be used to distinguish among several buttons if the captions on the buttons were not allowed to
change during the execution of the program. It might be used to extract user input from a TextField
object.

The object of type ActionEvent passed to the actionPerformed method also includes the name of
the component, which can be used in a conditional test to identify the component that generated the event.
One way to do this is through use of the indexOf method of the String class to determine if a given
component name is included in a speci�c object.

In this program, each time the actionPerformed method is invoked, code in the body of the method
uses the indexOf method to identify the component that generated the event and displays a message
identifying that component.

4.4.2.8.6.4 FocusListener object

A FocusListener object is instantiated and registered to monitor for low-level focusGained and
focusLost events on the Button and the TextField .

Whenever a focusGained event occurs, a message is displayed identifying the object that gained the
focus.

Likewise, whenever a focusLost event occurs, a message is displayed identifying the object that lost
the focus.

The object that gained or lost the focus is identi�ed by performing conditional tests on the FocusEvent
object passed in as a parameter in the same manner that the ActionEvent object is used for action events.

4.4.2.8.6.5 MouseListener object

A MouseListener object is instantiated and registered to monitor for low-level mousePressed events
on all three objects. (Note that there are numerous other low-level mouse events that could be monitored
but they were omitted in for the sake of simplicity.)

The MouseListener object di�erentiates among the three objects (Frame , Button , and
TextField) on the basis of the component name assigned to each object when it is instantiated.
At this point, it would probably be worthwhile to point out that JDK 1.1 Beta 3 does not require the

programmer to assign unique names to components when they are instantiated. Assigned component names
can be duplicated among components. (I wonder if this is a bug? Other products such as Visual Basic and
Delphi prohibit the programmer from assigning duplicate names to components.)

If the programmer does not assign names to the components when they are instantiated, they are au-
tomatically assigned by the system, and are probably unique. The names that are automatically assigned
have the format frame0, frame1, frame2 , etc., with the main body of the name identifying the type of

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1558 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

component, and the digit at the end being assigned in the order in which the components are instantiated.
A clever programmer should be able to �nd a way to obtain and make use of those names as an alternative
to assigning her own names.

The approach used to obtain the component name in this program uses the indexOf method of the
String class on the MouseEvent object. (This is a slightly less complex approach than the approach
used to obtain the component name for a mousePressed event in an earlier lesson which went all the
way back to the component object and invoked the getName method.)

When a mousePressed event occurs on any of the three visual objects, the MouseListener object
displays a message identifying the object that generated the event.

4.4.2.8.6.6 WindowListener object

Finally, a WindowListener object is instantiated and registered to terminate the program when the user
closes the Frame object.

4.4.2.8.6.7 More general comments about the program

The screen output for a number of di�erent user actions is shown in the comments at the beginning of the
program. This material illustrates how the action, focus, and mousePressed events behave during normal
user interaction with the program.

In order to maintain simplicity, the response to events in this program is limited to simply displaying
information. Obviously, once control is within an event handler, more signi�cant behavior in response to an
event can be programmed.

This program illustrates the fact that a single user action can cause many di�erent types of events to be
generated.

One thing to notice in particular is that since this program was not designed to manipulate the objects
that generated the low-level events, there is very little di�erence in the handling of low-level events
and semantic events. However, the handling would have been signi�cantly di�erent if the capability to
manipulate the objects that generated the events had been exercised (as in the previous program).

4.4.2.8.7 Review

4.4.2.8.7.1 Question 1

Using only low-level events, write a Java application that originally displays a Frame object containing a
Button object at the top and a TextField object at the bottom. Cause the TextField to have red
letters on a yellow background as shown in Figure 4 (p. 1563) .

When you click on the TextField object, it disappears. When you click on the Button object, the
TextField object reappears.

When you click on the close button in the upper right-hand corner of the Frame object, the program
terminates and control is properly returned to the operating system.

Figure 4. Screen output from SampProg200.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1559

See the solution in Listing 3 (p. 1564) .

Listing 3. The solution to Question 1.

/*From lesson 84

Note that this appears to be a duplicate of SampProg122.

Copyright 1997, R.G.Baldwin

Without viewing the following solution, write a Java

application that originally displays a Frame object

containing a button at the top and a TextField object

at the bottom.

Cause the TextField to have red letters on a yellow

background.

When you click on the TextField object, it disappears.

When you click on the Button object, the TextField object

reappears.

Use only low level events.

When you click on the close button in the upper right-hand

corner of the Frame object, the program terminates and

control is properly returned to the operating system.

//===

*/

import java.awt.*;

import java.awt.event.*;

public class SampProg200 {

public static void main(String[] args){

GUI gui = new GUI();

}//end main

}//end class SampProg200

//===

class GUI {

public GUI(){//constructor

//Create a visual TextField object

TextField myTextField = new TextField("Initial String");

myTextField.setName("TextField1");

myTextField.setBackground(Color.yellow);

myTextField.setForeground(Color.red);

//Create a visual Button object

Button myButton = new Button("Click me");

myButton.setName("Button1");

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1560 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

//Create a visual Frame object

Frame myFrame = new Frame();

myFrame.setSize(300,100);

myFrame.setTitle("Copyright 1997, R.G.Baldwin");

//Add the Button and the TextField to the Frame object

myFrame.add("North",myButton);

myFrame.add("South",myTextField);

myFrame.setVisible(true);

//Instantiate and register a MouseListener object which

// will process mouse events on the Button object, and

// the TextField object.

MouseProc mouseProcCmd = new MouseProc(

myButton,myTextField);

myTextField.addMouseListener(mouseProcCmd);

myButton.addMouseListener(mouseProcCmd);

//Instantiate and register a Listener object which will

// terminate the program when the user closes the

// Frame object

myFrame.addWindowListener(new WProc1());

}//end constructor

}//end class GUI definition

//===

//Low-level event monitor.

// This listener class monitors for low-level mousePressed()

// events. Whenever a mousePressed() event occurs, the

// event handler determines which object was the source of

// the event and takes the appropriate action.

class MouseProc extends MouseAdapter{

Button refToButton = null;

TextField refToTextField = null;

String refToButtonName = null;

String refToTextFieldName = null;

public MouseProc(//constructor

Button inRefToButton, TextField inRefToTextField){

refToButton = inRefToButton;

refToTextField = inRefToTextField;

refToButtonName = inRefToButton.getName();

refToTextFieldName = inRefToTextField.getName();

}//end constructor

public void mousePressed(MouseEvent e){

if(e.getComponent().getName().compareTo(refToTextFieldName) == 0)

refToTextField.setVisible(false);

if(e.getComponent().getName().compareTo(refToButtonName) == 0)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1561

refToTextField.setVisible(true);

}//end mousePressed()

}//end class MouseProc

//==

//The following listener class is used to terminate the

// program when the user closes the Frame object.

class WProc1 extends WindowAdapter{

public void windowClosing(WindowEvent e){

System.exit(0);

}//end windowClosing()

}//end class WProc1

//==

4.4.2.8.7.2 Question 2

Using a mixture of low-level and semantic events, write a Java application that originally displays a Frame
object containing a Button object at the top and a TextField object at the bottom. Cause the
TextField to have red letters on a yellow background as shown in Figure 5 (p. 1566) .

When you click on the TextField object, it disappears. When you click on the Button object, the
TextField object reappears.

When you click on the close button in the upper right-hand corner of the Frame object, the program
terminates and control is properly returned to the operating system.

Figure 5. Screen output from SampProg201.

See the solution in Listing 4 (p. 1566) .

Listing 4. The solution to Question 2.

/*From lesson 84

Note that this appears to be a duplicate of SampProg123

Copyright 1997, R.G.Baldwin

*/

import java.awt.*;

import java.awt.event.*;

public class SampProg201 {

public static void main(String[] args){

GUI gui = new GUI();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1562 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

}//end main

}//end class SampProg201

//===

class GUI {

public GUI(){//constructor

//Create a visual TextField object

TextField myTxtField = new TextField("Initial String");

myTxtField.setBackground(Color.yellow);

myTxtField.setForeground(Color.red);

//Create a visual Button object

Button myButton = new Button("Click me");

//Create a visual Frame object

Frame myFrame = new Frame();

myFrame.setSize(300,100);

myFrame.setTitle("Copyright 1997, R.G.Baldwin");

//Add the Button and the TextField to the Frame object

myFrame.add("North",myButton);

myFrame.add("South",myTxtField);

myFrame.setVisible(true);

//Instantiate and register a MouseListener object which

// will process mouse events on the TextField object.

myTxtField.addMouseListener(new MouseProc(myTxtField));

//Instantiate and register an ActionListener object

// which will process action events on the Button

// object.

myButton.addActionListener(

new MyActionProcessor(myTxtField));

//Instantiate and register a Listener object which will

// terminate the program when the user closes the

// Frame object

myFrame.addWindowListener(new WProc1());

}//end constructor

}//end class GUI definition

//===

//Low-level event monitor.

// This listener class monitors for low-level

// mousePressed() events.

class MouseProc extends MouseAdapter{

TextField refToTextField = null;

public MouseProc(TextField inRefToTextField){

refToTextField = inRefToTextField;

}//end constructor

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1563

public void mousePressed(MouseEvent e){

refToTextField.setVisible(false);

}//end mousePressed()

}//end class MouseProc

//===

//Semantic event monitor.

// This listener class monitors for semantic action events.

class MyActionProcessor implements ActionListener{

TextField refToTextField = null;

MyActionProcessor(TextField inRefToTextField){//construct

refToTextField = inRefToTextField;

}//end constructor

public void actionPerformed(ActionEvent e){

refToTextField.setVisible(true);

}//end overridden actionPerformed method

}//end class MyActionProcessor

//===

//The following listener class is used to terminate the

// program when the user closes the Frame object.

class WProc1 extends WindowAdapter{

public void windowClosing(WindowEvent e){

System.exit(0);

}//end windowClosing()

}//end class WProc1

//===

4.4.2.8.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java084 Low-level and Semantic Events
• File: Java084.htm
• Originally published: 1997

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1564 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.9 Java085 Swing, New Event Types in Swing
178

Revised: Sat Jul 09 16:44:27 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 179

• Object-Oriented Programming (OOP) with Java 180

4.4.2.9.1 Table of contents

• Table of contents (p. 1569)
• Preface (p. 1569)

· Viewing tip (p. 1570)

* Figures (p. 1570)
* Listings (p. 1570)

• Introduction (p. 1570)
• New event types in Swing (p. 1570)
• First sample program (p. 1571)

· Interesting code fragments for SwingEvent10 (p. 1573)
· Program listing for SwingEvent10 (p. 1576)

• Second sample program (p. 1578)

· Interesting code fragments for SwingEvent11 (p. 1580)
· Program listing for SwingEvent11 (p. 1581)

• Miscellaneous (p. 1585)

4.4.2.9.2 Preface

This is a page from the Event Handling 181 section of the book titled ITSE2317 - Java Programming
(Intermediate) 182 . The Event Handling section explains how to write programs that handle events in
Java.

Students in Prof. Baldwin's Intermediate Java Programming classes at ACC are responsible for
knowing and understanding all of the material in this lesson.

178This content is available online at <http://cnx.org/content/m59621/1.2/>.
179http://cnx.org/contents/Rl23r3Lw
180http://cnx.org/contents/-2RmHFs_
181http://cnx.org/contents/Rl23r3Lw:qfO9iJX-
182http://cnx.org/contents/Rl23r3Lw:JVTd7bX1

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1565

4.4.2.9.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

4.4.2.9.2.1.1 Figures

• Figure 1. (p. 1570) Listener interfaces de�ned in Swing.
• Figure 2. (p. 1571) Event classes de�ned in Swing.
• Figure 3. (p. 1572) Graphic screen output for SwingEvent10.
• Figure 4. (p. 1572) Text screen output from moving the JFrame.
• Figure 5. (p. 1574) Information regarding the content pane.
• Figure 6. (p. 1575) Methods of the AncestorListener interface.
• Figure 7. (p. 1578) Graphic screen output for SwingEvent11.
• Figure 8. (p. 1579) Text output from clicking buttons.

4.4.2.9.2.1.2 Listings

• Listing 1. (p. 1573) Import directives for SwingEvent10.
• Listing 2. (p. 1573) The main method for SwingEvent10.
• Listing 3. (p. 1573) Beginning of the class named GUI.
• Listing 4. (p. 1575) De�nition of the AncestorAdded method.
• Listing 5. (p. 1576) Remaining two methods of the AncestorListener interface.
• Listing 6. (p. 1576) Complete listing of program named SwingEvent10.
• Listing 7. (p. 1580) The constructor for the GUI class.
• Listing 8. (p. 1581) De�nition of the ancestor listener class.
• Listing 9. (p. 1581) De�nition of the action listener class.
• Listing 10. (p. 1582) Complete listing of program named SwingEvent11.

4.4.2.9.3 Introduction

Although event handling using Swing components is essentially the same as event handling using AWT
components, the Swing classes provide a number of new event types.

This lesson will brie�y discuss the new event types (as of Swing 1.0.1) , and will provide two sample
programs that illustrate event handling with one of the new event types.

One of the sample programs will also illustrate an important new aspect of Swing wherein every
component is also a container. In this case, we will build a pyramid of Swing JButton objects where
each JButton object is contained in the one below it with the bottom JButton object being contained
in a JFrame object. (See Figure 7 (p. 1578) .)

We will then illustrate how these JButton objects respond to action events and ancestor events. Action
events come to us from the AWT whereas ancestor events are new to Swing .

4.4.2.9.4 New event types in Swing

One of the easiest ways to identify the new event types in Swing is to take a look at the listener interfaces
de�ned in Swing . Another way is to take a look at the event classes de�ned in Swing .

Figure 1 (p. 1570) shows a list of the listener interfaces de�ned in the com.sun.java.swing.event
package of Swing 1.0.1 . (Note that sometime between 1997 and 2016, all Swing components were
moved into the standard Java library in the javax.swing package.)

Figure 1. Listener interfaces de�ned in Swing.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1566 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

• AncestorListener
• CaretListener
• CellEditorListener
• ChangeListener
• DocumentEvent
• DocumentListener
• HyperlinkListener
• InternalFrameListener
• ListDataListener
• ListSelectionListener
• MenuListener
• PopupMenuListener
• TableColumnModelListener
• TableModelListener
• TreeExpansionListener
• TreeModelListener
• TreeSelectionListener
• UndoableEditListener

Figure 2 (p. 1571) shows a list of the event classes de�ned in the com.sun.java.swing.event package of
Swing 1.0.1 .

Figure 2. Event classes de�ned in Swing.

• AncestorEvent
• CaretEvent
• ChangeEvent
• EventListenerList
• HyperlinkEvent
• InternalFrameAdapter
• InternalFrameEvent
• ListDataEvent
• ListSelectionEvent
• MenuEvent
• PopupMenuEvent
• TableColumnModelEvent
• TableModelEvent
• TreeExpansionEvent
• TreeModelEvent
• TreeSelectionEvent
• UndoableEditEvent

The two sample programs that follow illustrate the AncestorEvent class and the AncestorListener
interface.

4.4.2.9.5 First sample program

The �rst sample program is named SwingEvent10 . A complete listing of the program is shown in Listing
6 (p. 1576) . This program illustrates the use of the getContentPane method to add a JButton object
to a JFrame object. It also illustrates the use of an AncestorListener on a JButton . The graphic
output produced by this program is shown in Figure 3 (p. 1572) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1567

Figure 3. Graphic screen output for SwingEvent10.

Running the program under Java 8 and physically moving the resulting JFrame object on the screen
produced the output shown in Figure 4 (p. 1572) .

Figure 4. Text screen output from moving the JFrame.

Make JFrame visible

ancestorMoved method

ancestorMoved method

ancestorAdded method invoked

Event source: javax.swing.JButton[,0,0,292x268,alignmentX=0.0,alignmentY=0.5,bor

der=javax.swing.plaf.BorderUIResource$CompoundBorderUIResource@7bac7cc2,flags=29

6,maximumSize=,minimumSize=,preferredSize=,defaultIcon=,disabledIcon=,disabledSe

lectedIcon=,margin=javax.swing.plaf.InsetsUIResource[top=2,left=14,bottom=2,righ

t=14],paintBorder=true,paintFocus=true,pressedIcon=,rolloverEnabled=true,rollove

rIcon=,rolloverSelectedIcon=,selectedIcon=,text=Button,defaultCapable=true]

Ancestor: javax.swing.JFrame[frame0,0,0,300x300,layout=java.awt.BorderLayout,tit

le=Copyright 1998, R.G.Baldwin,resizable,normal,defaultCloseOperation=HIDE_ON_CL

OSE,rootPane=javax.swing.JRootPane[,4,28,292x268,layout=javax.swing.JRootPane$Ro

otLayout,alignmentX=0.0,alignmentY=0.0,border=,flags=16777673,maximumSize=,minim

umSize=,preferredSize=],rootPaneCheckingEnabled=true]

Parent: null

Component: javax.swing.JButton[,0,0,292x268,alignmentX=0.0,alignmentY=0.5,border

=javax.swing.plaf.BorderUIResource$CompoundBorderUIResource@7bac7cc2,flags=296,m

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1568 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

aximumSize=,minimumSize=,preferredSize=,defaultIcon=,disabledIcon=,disabledSelec

tedIcon=,margin=javax.swing.plaf.InsetsUIResource[top=2,left=14,bottom=2,right=1

4],paintBorder=true,paintFocus=true,pressedIcon=,rolloverEnabled=true,rolloverIc

on=,rolloverSelectedIcon=,selectedIcon=,text=Button,defaultCapable=true]

ID value: 1

ancestorMoved method

ancestorMoved method

The program was originally tested using JDK 1.1.6 and Swing 1.0.1 under Windows 95. It was more recently
tested using Java 8 and Windows 7.

Note that Figure 4 (p. 1572) shows a lot more output than was produced when the same thing was done
using JDK 1.1.6 and Swing 1.0.1.

4.4.2.9.5.1 Interesting code fragments for SwingEvent10

I will discuss and explain this program in fragments. As mentioned earlier, a complete listing of this program
is shown in Listing 6 (p. 1576) . Listing 1 (p. 1573) shows the import declarations required to import the
Swing packages. (Note that this is di�erent than was the case with JDK 1.1.6 and Swing 1.0.1. The old
versions of the import directives are shown as comments in Listing 1 (p. 1573) .)

Listing 1. Import directives for SwingEvent10.

import java.awt.*;

import java.awt.event.*;

//import com.sun.java.swing.*;//JDK 1.1 version

//import com.sun.java.swing.event.*;//JDK 1.1 version

import javax.swing.*;//JDK 1.2 version

import javax.swing.event.*;//JDK 1.2 version

The main method in the controlling class is simple, but we will include it in Listing 2 (p. 1573) for
continuity.

Listing 2. The main method for SwingEvent10.

public class SwingEvent10 {

public static void main(String[] args){

GUI gui = new GUI();//instantiate a GUI

}//end main

}//end class SwingEvent10

That brings us to the class named GUI from which we will instantiate our graphical user interface object
and display it on the screen. The class named GUI begins in Listing 3 (p. 1573) .

Listing 3. Beginning of the class named GUI.

class GUI {

public GUI(){//constructor

//Create a new JFrame object, set size, title, etc.

JFrame displayWindow = new JFrame();

displayWindow.setSize(300,300);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1569

displayWindow.setTitle("Copyright 1998, R.G.Baldwin");

//Add window listener to terminate the program

displayWindow.addWindowListener(new WProc1());

//Create a JButton object

JButton theButton = new JButton("Button");

//Register an AncestorListener object on the JButton

theButton.addAncestorListener(new MyAncestorListener());

//Add the JButton to the JFrame using content pane

displayWindow.getContentPane().add(theButton);

System.out.println("Make JFrame visible");

displayWindow.setVisible(true);

}//end constructor

As you can see in Listing 3 (p. 1573) , the constructor for our GUI object is pretty straightforward.
We begin by instantiating a Swing object of type JFrame , setting its size, giving it a title, etc.
We also add a WindowListener to terminate the program when the user closes the JFrame object.

(There is an alternative and possibly better way to accomplish that in Java 8 than was the case in 1997.
See the setDefaultCloseOperation method in the documentation for the JFrame class.)

Then we instantiate a Swing object of type JButton and register an AncestorListener object
on the button. We will discuss the class from which the listener was instantiated shortly.

After this, we add the JButton object to the JFrame object named displayWindow by �rst
invoking the getContentPane method and then invoking the add method on the content pane.

Finally, we display a message and make the JFrame object visible. That concludes the constructor.
Now what about the getContentPane method. This is something that doesn't exist in the AWT .
In the AWT , we add components to, and otherwise manipulate the client area of a Frame object

directly. However, in Swing , some "panes" are automatically placed in the client area of a JFrame
object, and we add components to, and otherwise manipulate those panes instead of manipulating the client
area of the JFrame object directly.

Rather than to try to explain this in my own words, I am simply going to provide a quotation from the
JavaSoft documentation for the JFrame object, Swing, Version 1.0.1 in Figure 5 (p. 1574) . Note that
the wording in Figure 5 (p. 1574) is the copyrighted property of JavaSoft.

Figure 5. Information regarding the content pane.

public class JFrame extends Frame implements WindowConstants, Accessible, RootPaneContainer

An extended version of java.awt.Frame that adds support for interposing input and painting be-
havior in front of the frames children (see glassPane), support for special children that are managed
by a LayeredPane (see rootPane) and for Swing MenuBars.

The JFrame class is slightly incompatible with java.awt.Frame. JFrame contains a JRootPane as
it's only child. The contentPane should be the parent of any children of the JFrame. This is
di�erent than java.awt.Frame, e.g. to add a child to an AWT Frame you'd write:

frame.add(child);

However using JFrame you need to add the child to the JFrame,s contentPane instead:

frame.getContentPane().add(child);

The same is true for setting LayoutManagers, removing components, listing children, etc. All these
methods should normally be sent to the contentPane instead of the JFrame itself. The contentPane

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1570 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

will always be non-null. Attempting to set it to null will cause the JFrame to throw an exception.
The default contentPane will have a BorderLayout manager set on it.

Please see the JRootPane documentation for a complete description of the contentPane, glassPane,
and layeredPane properties.

For the time being, and for this simple example, this all boils down to a requirement to insert the method
call

getContentPane()

between the reference to the JFrame object and calls to add , setLayout , etc. For more complex
programs, the rami�cations could be more signi�cant.

Our GUI class has two inner classes. One of those is a WindowListener class that is used to
terminate the program when the user closes the JFrame object. It is so simple and so common that I'm
not going to show it here. You can see it in the complete listing of the program in Listing 6 (p. 1576) if you
are interested.

The second inner class (and these could just as well be implemented as top-level classes instead of inner
classes) is used to instantiate an AncestorListener object to be registered on the JButton object.

This is a little more interesting. The AncestorListener interface declares three methods, and as far as
I know there is no adapter for this interface. Therefore, our class that implements the interface must de�ne
all three methods.

A brief description of each of the three methods is provided in Figure 6 (p. 1575) .

Figure 6. Methods of the AncestorListener interface.

• ancestorAdded(AncestorEvent) � Called when the source or one of its ancestors is
made visible either by setVisible(true) being called or by its being added to the component
hierarchy.
• ancestorMoved(AncestorEvent) � Called when either the source or one of its ancestors
is moved.
• ancestorRemoved(AncestorEvent) � Called when the source or one of its ancestors
is made invisible either by setVisible(false) being called or by its being remove from the
component hierarchy.

As you can see, whenever one of the methods is called, an object of type AncestorEvent is passed as
a parameter. As usual, it is possible to invoke the methods of the AncestorEvent class and the classes
extended by that class to learn more about the event.

We will de�ne all three of the interface methods (as required) in our class de�nition. The code fragment
in Listing 4 (p. 1575) shows the de�nition of the ancestorAdded method.

Listing 4. De�nition of the AncestorAdded method.

class MyAncestorListener implements AncestorListener{

//Define three methods declared in AncestorListener

// interface.

public void ancestorAdded(AncestorEvent e){

System.out.println("ancestorAdded method invoked");

System.out.println("Event source: " + e.getSource());

System.out.println("Ancestor: " + e.getAncestor());

System.out.println("Parent: " + e.getAncestorParent());

System.out.println("Component: " + e.getComponent());

System.out.println("ID value: " + e.getID());

}//end ancestorAdded()

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1571

When this method is called, it invokes �ve di�erent methods of the incoming AncestorEvent object and
displays the material returned from those methods. The output from invoking these methods was shown
earlier in Figure 4 (p. 1572) .

The �nal code fragment for this program in Listing 5 (p. 1576) shows the de�nitions of the other two
methods of the AncestorListener interface.

Listing 5. Remaining two methods of the AncestorListener interface.

public void ancestorRemoved(AncestorEvent e){

System.out.println("ancestorRemoved method");

}//end ancestorRemoved()

public void ancestorMoved(AncestorEvent e){

System.out.println("ancestorMoved method");

}//end ancestorMoved

}//end class MyAncestorListener

//...//

}//end class GUI definition

If you compile and run this program and observe the output as the program runs, you will see that the
ancestorAdded method and the ancestorMoved method are both called when the JFrame object
is made visible.

Following this, whenever the JFrame object is moved on the screen, the ancestorMoved method
will be called.

Iconifying and then deiconifying the JFrame object will also cause the ancestorMoved method to
be called.

4.4.2.9.5.2 Program listing for SwingEvent10

Listing 6 (p. 1576) contains a complete listing for the program named SwingEvent10 .

Listing 6. Complete listing of program named SwingEvent10.

/*File SwingEvent10.java Copyright 1998, R.G.Baldwin

Code updated 07/10/16 to be Java 8 compatible.

Rev 1/12/99 to be JDK 1.2 Swing compatible

Illustrates use of getContentPane() to add a JButton to

a JFrame.

Illustrates use of AncestorListener on a JButton.

Running the program and moving the resulting JFrame on the

screen produced the following output. Note that line breaks

were manually added to this presentation to make the lines

fit in this format. Note that these outputs don't seem to

provide a good match for the descriptions and names of the

methods in the JavaSoft documentation.

Make JFrame visible

ancestorAdded method invoked

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1572 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Event source: com.sun.java.swing.JButton[,0,0,0x0,

invalid,layout=com.sun.java.swing.OverlayLayout]

Ancestor: com.sun.java.swing.JButton[,0,0,0x0,

invalid,layout=com.sun.java.swing.OverlayLayout]

Parent: com.sun.java.swing.JPanel[null.contentPane,0,0,0x0,

invalid,layout=com.sun.java.swing.JRootPane$1]

Component: com.sun.java.swing.JButton[,0,0,0x0,

invalid,layout=com.sun.java.swing.OverlayLayout]

ID value: 1

ancestorMoved method

ancestorMoved method

Tested using JDK 1.1.6 and Swing 1.0.1 under Win95.

**/

import java.awt.*;

import java.awt.event.*;

//import com.sun.java.swing.*;//JDK 1.1 version

//import com.sun.java.swing.event.*;//JDK 1.1 version

import javax.swing.*;//JDK 1.2 version

import javax.swing.event.*;//JDK 1.2 version

public class SwingEvent10 {

public static void main(String[] args){

GUI gui = new GUI();//instantiate a GUI

}//end main

}//end class SwingEvent10

//===//

//The following class is used to instantiate a

// graphical user interface object.

class GUI {

public GUI(){//constructor

//Create a new JFrame object, set size, title, etc.

JFrame displayWindow = new JFrame();

displayWindow.setSize(300,300);

displayWindow.setTitle("Copyright 1998, R.G.Baldwin");

//Add window listener to terminate the program

displayWindow.addWindowListener(new WProc1());

//Create a JButton object

JButton theButton = new JButton("Button");

//Register an AncestorListener object on the JButton

theButton.addAncestorListener(new MyAncestorListener());

//Add the JButton to the JFrame using content pane

displayWindow.getContentPane().add(theButton);

System.out.println("Make JFrame visible");

displayWindow.setVisible(true);

}//end constructor

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1573

//...//

//Begin inner class definitions

//The following listener is used to terminate the program

// when the user closes the frame.

class WProc1 extends WindowAdapter{

public void windowClosing(WindowEvent e){

System.exit(0);

}//end windowClosing()

}//end class WProc1

//...//

//Define an AncestorListener class

class MyAncestorListener implements AncestorListener{

//Define three methods declared in AncestorListener

// interface.

public void ancestorAdded(AncestorEvent e){

System.out.println("ancestorAdded method invoked");

System.out.println("Event source: " + e.getSource());

System.out.println("Ancestor: " + e.getAncestor());

System.out.println("Parent: " + e.getAncestorParent());

System.out.println("Component: " + e.getComponent());

System.out.println("ID value: " + e.getID());

}//end ancestorAdded()

public void ancestorRemoved(AncestorEvent e){

System.out.println("ancestorRemoved method");

}//end ancestorRemoved()

public void ancestorMoved(AncestorEvent e){

System.out.println("ancestorMoved method");

}//end ancestorMoved

}//end class MyAncestorListener

//...//

}//end class GUI definition

//===//

4.4.2.9.6 Second sample program

This program named SwingEvent11 further illustrates the use of an AncestorListener on a JButton
. The graphic screen output for this program is shown in Figure 7 (p. 1578) .

Figure 7. Graphic screen output for SwingEvent11.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1574 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

More importantly, this program illustrates the very important fact that JButton objects are containers
that can contain other objects including other JButton objects.

This program stacks three JButton objects on top of one another with the stack of three JButton
objects being placed on a JFrame object. ActionListener objects are registered on each of the buttons
to trap an actionPerformed event when the button is clicked and to display the source of the event.

Running the program using Java 8 and carefully clicking each of the three buttons in succession from the
top of the stack to the bottom of the stack, and then moving the JFrame object on the screen produces
the output shown in Figure 8 (p. 1579) .

Figure 8. Text output from clicking buttons.

Make JFrame visible

In ancestorMoved method

Event source: First Button

In ancestorMoved method

Event source: Second Button

In ancestorMoved method

Event source: Third Button

In ancestorMoved method

Event source: First Button

In ancestorMoved method

Event source: Second Button

In ancestorMoved method

Event source: Third Button

In ancestorMoved method

Event source: Second Button

In ancestorMoved method

Event source: Third Button

In ancestorMoved method

Event source: Third Button

In ancestorMoved method

Event source: First Button

In ancestorMoved method

Event source: Second Button

In ancestorMoved method

Event source: Third Button

In ancestorAdded method

Event source: First Button

In ancestorAdded method

Event source: Second Button

In ancestorAdded method

Event source: Third Button

In actionPerformed method

Event source: Third Button

In actionPerformed method

Event source: Second Button

In actionPerformed method

Event source: First Button

In ancestorMoved method

Event source: First Button

In ancestorMoved method

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1575

Event source: Second Button

In ancestorMoved method

Event source: Third Button

In ancestorMoved method

Event source: First Button

In ancestorMoved method

Event source: Second Button

In ancestorMoved method

Event source: Third Button

This program was originally tested using JDK 1.1.6 and Swing 1.0.1 under Windows 95. More recently it
was tested using Java 8 under Windows 7. As mentioned above, the output shown in Figure 8 (p. 1579) was
produced using Java 8.

4.4.2.9.6.1 Interesting code fragments for SwingEvent11

As before, I will discuss and explain this program using code fragments. A complete listing of the program
is shown in Listing 10 (p. 1582) .

The controlling class and the main method for this program is the same as the previous program, so I
won't discuss it here.

The GUI class is shown in Listing 7 (p. 1580) .

Listing 7. The constructor for the GUI class.

class GUI {

public GUI(){//constructor

//...snip

displayWindow.getContentPane().setLayout(

new FlowLayout());

//...snip

JButton firstButton = new JButton("First Button");

JButton secondButton = new JButton("Second Button");

JButton thirdButton = new JButton("Third Button");

//Stack the three JButton objects on top of one

// another.

firstButton.add(secondButton);

secondButton.add(thirdButton);

//Register an AncestorListener object on each JButton

firstButton.addAncestorListener(

new MyAncestorListener());

secondButton.addAncestorListener(

new MyAncestorListener());

thirdButton.addAncestorListener(

new MyAncestorListener());

//Register an ActionListener object on each JButton

firstButton.addActionListener(new MyActionListener());

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1576 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

secondButton.addActionListener(new MyActionListener());

thirdButton.addActionListener(new MyActionListener());

//...snip

}//end constructor

Much of the code in the constructor for the GUI class is also the same as in the previous program so I
deleted it from Listing 7 (p. 1580) for brevity.

Note the use of getContentPane when setting the layout manager as described earlier.
Three JButton objects are instantiated. Then the three buttons are stacked by adding secondButton

to �rstButton , and by adding thirdButton to secondButton .
An AncestorListener object is registered on all three of the buttons and then an ActionListener

object is registered on all three of the buttons.
The remainder of the constructor is the same as before and was deleted for brevity.
The ancestor listener class is very similar to the previous version, so the de�nition for only one of the

methods is shown in Listing 8 (p. 1581) .

Listing 8. De�nition of the ancestor listener class.

class MyAncestorListener implements AncestorListener{

public void ancestorAdded(AncestorEvent e){

System.out.println("In ancestorAdded method");

System.out.println("Event source: " +

((JButton)e.getSource()).getActionCommand());

}//end ancestorAdded()

//...snip

}//end class MyAncestorListener

Note the requirement for downcasting in this version of the method. This is because invocation of the
getSource method returns an object of type Object and it must be downcast to type JButton to be
useful.

Listing 9 (p. 1581) shows the ActionListener class that traps action events on the buttons when they
are clicked and presents appropriate output on the screen.

Listing 9. De�nition of the action listener class.

class MyActionListener implements ActionListener{

public void actionPerformed(ActionEvent e){

System.out.println("In actionPerformed method");

System.out.println("Event source: " +

((JButton)e.getSource()).getActionCommand());

}//end actionPerformed()

}//end class MyActionListener

4.4.2.9.6.2 Program listing for SwingEvent11

Listing 10 (p. 1582) contains a complete listing of the program named SwingEvent11 .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1577

Listing 10. Complete listing of program named SwingEvent11.

/*File SwingEvent11.java Copyright 1998, R.G.Baldwin

Code updated 7/10/16 for Java 8 compatibility.

Revised 1.12/98 for JDK 1.2 Swing compatibility.

Further illustrates use of AncestorListener on a JButton.

Also see SwingEvent10.java.

Illustrates that JButton objects are containers that

can contain other JButton objects.

This program stacks three JButton objects on top of one

another with the stack of three JButton objects being

placed on a JFrame object.

Running the program and carefully clicking each of the

three buttons in succession from the top of the stack to

the bottom of the stack, and then moving the JFrame object

on the screen produces the following output. Note that

some blank lines were manually inserted to make it easier

to follow this material.

Make JFrame visible

In ancestorAdded method

Event source: First Button

In ancestorAdded method

Event source: Second Button

In ancestorAdded method

Event source: Third Button

In ancestorMoved method

Event source: First Button

In ancestorMoved method

Event source: Second Button

In ancestorMoved method

Event source: Third Button

In ancestorMoved method

Event source: First Button

In ancestorMoved method

Event source: Second Button

In ancestorMoved method

Event source: Third Button

In ancestorMoved method

Event source: Second Button

In ancestorMoved method

Event source: Third Button

In ancestorMoved method

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1578 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Event source: Third Button

In actionPerformed method

Event source: Third Button

In actionPerformed method

Event source: Second Button

In actionPerformed method

Event source: First Button

In ancestorMoved method

Event source: First Button

In ancestorMoved method

Event source: Second Button

In ancestorMoved method

Event source: Third Button

Tested using JDK 1.1.6 and Swing 1.0.1 under Win95.

**/

import java.awt.*;

import java.awt.event.*;

//import com.sun.java.swing.*;//JDK 1.1 version

//import com.sun.java.swing.event.*;//JDK 1.1 version

import javax.swing.*;//JDK 1.2 version

import javax.swing.event.*;//JDK 1.2 version

public class SwingEvent11 {

public static void main(String[] args){

GUI gui = new GUI();//instantiate a GUI

}//end main

}//end class SwingEvent11

//===//

//The following class is used to instantiate a

// graphical user interface object.

class GUI {

public GUI(){//constructor

//Create a new JFrame object, set size, title, etc.

JFrame displayWindow = new JFrame();

displayWindow.setSize(300,100);

displayWindow.setTitle("Copyright 1998, R.G.Baldwin");

//Note required use of getContentPane() in following

// statement.

displayWindow.getContentPane().setLayout(

new FlowLayout());

//Add window listener to terminate the program

displayWindow.addWindowListener(new WProc1());

//Create three JButton objects

JButton firstButton = new JButton("First Button");

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1579

JButton secondButton = new JButton("Second Button");

JButton thirdButton = new JButton("Third Button");

//Stack the three JButton objects on top of one

// another.

firstButton.add(secondButton);

secondButton.add(thirdButton);

//Register an AncestorListener object on each JButton

firstButton.addAncestorListener(

new MyAncestorListener());

secondButton.addAncestorListener(

new MyAncestorListener());

thirdButton.addAncestorListener(

new MyAncestorListener());

//Register an ActionListener object on each JButton

firstButton.addActionListener(new MyActionListener());

secondButton.addActionListener(new MyActionListener());

thirdButton.addActionListener(new MyActionListener());

//Add the JButton to the JFrame using content pane

displayWindow.getContentPane().add(firstButton);

System.out.println("Make JFrame visible");

displayWindow.setVisible(true);

}//end constructor

//...//

//Begin inner class definitions

//The following listener is used to terminate the

// program when the user closes the frame.

class WProc1 extends WindowAdapter{

public void windowClosing(WindowEvent e){

System.exit(0);

}//end windowClosing()

}//end class WProc1

//...//

//Define an AncestorListener class

class MyAncestorListener implements AncestorListener{

//Define three methods declared in AncestorListener

// interface. Note the required downcasting.

public void ancestorAdded(AncestorEvent e){

System.out.println("In ancestorAdded method");

System.out.println("Event source: " +

((JButton)e.getSource()).getActionCommand());

}//end ancestorAdded()

public void ancestorRemoved(AncestorEvent e){

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1580 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

System.out.println("In ancestorRemoved method");

System.out.println("Event source: " +

((JButton)e.getSource()).getActionCommand());

}//end ancestorRemoved()

public void ancestorMoved(AncestorEvent e){

System.out.println("In ancestorMoved method");

System.out.println("Event source: " +

((JButton)e.getSource()).getActionCommand());

}//end ancestorMoved

}//end class MyAncestorListener

//...//

//Define an ActionListener class

class MyActionListener implements ActionListener{

public void actionPerformed(ActionEvent e){

System.out.println("In actionPerformed method");

System.out.println("Event source: " +

((JButton)e.getSource()).getActionCommand());

}//end actionPerformed()

}//end class MyActionListener

//...//

}//end class GUI definition

//===//

4.4.2.9.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java085 Swing, New Event Types in Swing
• File: Java085.htm
• Originally published: 1997

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1581

4.4.2.10 Java087 Swing, Understanding getContentPane() and other JFrame Layers
183

Revised: Sun Jul 10 12:16:18 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 184

• Object-Oriented Programming (OOP) with Java 185

4.4.2.10.1 Table of contents

• Table of contents (p. 1586)
• Preface (p. 1586)

· Viewing tip (p. 1586)

* Figures (p. 1586)
* Listings (p. 1587)

• Introduction (p. 1587)
• General discussion (p. 1587)

· Synopsis (p. 1588)
· More detailed discussion (p. 1589)

• Sample program (p. 1591)

· Interesting code fragments (p. 1593)
· Complete program listing (p. 1596)

• Miscellaneous (p. 1600)

4.4.2.10.2 Preface

This is a page from the Event Handling 186 section of the book titled ITSE2317 - Java Programming
(Intermediate) 187 . The Event Handling section explains how to write programs that handle events in
Java.

Students in Prof. Baldwin's ITSE 2317 Intermediate Java Programming classes at ACC are
responsible for knowing and understanding all of the material in this lesson.

4.4.2.10.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

4.4.2.10.2.1.1 Figures

• Figure 1. (p. 1591) Graphic screen output for the program named SwingPane01.
• Figure 2. (p. 1591) Screen output after clicking green button.
• Figure 3. (p. 1592) Text output.

183This content is available online at <http://cnx.org/content/m59614/1.2/>.
184http://cnx.org/contents/Rl23r3Lw
185http://cnx.org/contents/-2RmHFs_
186http://cnx.org/contents/Rl23r3Lw:qfO9iJX-
187http://cnx.org/contents/Rl23r3Lw:JVTd7bX1

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1582 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.2.10.2.1.2 Listings

• Listing 1. (p. 1593) Import declarations.
• Listing 2. (p. 1593) Beginning of the class named SwingPane01.
• Listing 3. (p. 1593) Beginning of the constructor.
• Listing 4. (p. 1594) Get and display types of panes.
• Listing 5. (p. 1594) Instantiate JLabel and JTextField objects.
• Listing 6. (p. 1594) Instantiate a green JButton object.
• Listing 7. (p. 1595) Instantiate a yellow JButton object.
• Listing 8. (p. 1595) The end of the constructor.
• Listing 9. (p. 1595) The class named MyActionListener.
• Listing 10. (p. 1596) Complete listing of SwingPane01.

4.4.2.10.3 Introduction

Previous lessons involving Swing told you that when you add a component to a JFrame object, unlike
with the AWT , you must use statements similar to the following.

myJFrameObject.getContentPane().add(myChildComponent);

As you have probably suspected, there is a lot more to it than just inserting getContentPane() between
the object reference and the add method.

The purpose of this lesson is to help you understand why you need to use getContentPane or some
similar method call to add components to a JFrame object, remove components from a JFrame object,
or set the layout for a JFrame object.

Note that this also applies to container objects of type JInternalFrame and JDialog as well.

4.4.2.10.4 General discussion

When programming with the AWT , you can place a Panel object in a Frame object and place other
components on the Panel object if you wish, or you can simply place other components directly on the
viewable area of the Frame object.

The viewable area of Frame or a JFrame is the bounds minus the insets . Insets are used
to account for the space covered by the borders and the values of the insets on all four sides are
available by invoking the method named getInsets() on the object.

However, you cannot place components directly on the viewable area of a JFrame object.
An object of type JRootPane is automatically placed in the JFrame completely covering the

viewable area of the JFrame object.
One way or another, if you want to place components in the JFrame , you must deal with the

JRootPane object.
One way to deal with it, and this is the way that you will �nd recommended in many current discussions

on the subject, is simply ignore the technical details and insert a call to the getContentPane method
between the reference to the JFrame and the add method.

My preference is to �rst understand why you need to do that, and in those cases where that is the
appropriate thing to do, go ahead and do it.

In those cases where invoking getContentPane is not the most appropriate thing to do, do the thing
that is most appropriate.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1583

Note: You will �nd much discussion in this lesson about some components being on top of other compo-
nents. These discussions apply only to Swing lightweight components. Remember that heavyweight (AWT)
components are always on top of lightweight (Swing) components regardless of what the text in this lesson
may say.

4.4.2.10.4.1 Synopsis

JRootPane is a container. The instance of JRootPane that is automatically placed in a JFrame
object contains at least two other objects.

• An object of type JLayeredPane that we will refer to simply as the layeredPane .
• An object of type JPanel that we will refer to simply as the glassPane .

There is also an optional menuBar object that comes in here somewhere, but since it is not
essential for understanding what is going on at this level, I have elected to defer the discussion until
the discussion on Swing menus.

The layeredPane and the glassPane also �ll the viewable area of the JFrame object. The glassPane
is on top of the layeredPane , and as the name might imply, it is normally transparent.

Components on the layeredPane are visible through the glassPane . Mouse events are capable of
penetrating the glassPane and reaching components on the layeredPane as long as the glassPane is
transparent.

The layeredPane contains another component of type JPanel that we will refer to as the content-
Pane . This is the same pane that we are dealing with when we invoke the getContentPane method
on the JFrame object.

The layeredPane has a very interesting behavior.
In the same sense that we can add components to the contentPane , we can also add components to

the layeredPane .
When we add components to the contentPane , they are all added at the same layer and components

added �rst are painted on top of components added later.
However, when we add components to the layeredPane , we can specify the layer number that we want

the component to be drawn on.
Components drawn on layers with high (algebraically signed) numbers are painted on top of components

on layers with smaller (algebraically signed) numbers.

Large negative numbers are smaller than small positive numbers in this case with the smallest
allowable layer number being -29999.

In addition, a variety of methods are available to move components from one layer to another at runtime.
This gives us the ability to not only control the order in which components are painted initially, but also to
modify that order later at runtime.

This layering concept is a much more powerful approach than simply inserting getContentPane be-
tween the reference to the JFrame object and the invocation of the add method.

Layering has a long history of bene�cial results in computer graphics such as Computer Aided
Design and game programming.

So, where does the contentPane object that belongs to the layeredPane �t into this?
Components on the contentPane are painted behind all components that may be added directly to the

layeredPane . In fact, the layer position for the contentPane is e�ectively layer number -30000. The
smallest layer number that can be used to place a component directly on a layer is -29999. (We will place
one there in our sample program later.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1584 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.2.10.4.2 More detailed discussion

As mentioned earlier, a JRootPane contains a glassPane (JPanel) and a layeredPane
(JLayeredPane). The layeredPane contains an optional menuBar (JMenuBar) and a
contentPane (JPanel). The menuBar component is optional and may or may exist at any given
time. The layeredPane , contentPane , and glassPane will always be available.

The syntax for dealing with these panes is somewhat di�erent from what you are accustomed to. For
example, the typical syntax for adding a component to a container would look something like the following:

parentContainer.add(childObject);

However, the required syntax for dealing with these panes is more like one of the following:

myJFrameObject.getContentPane().add(myChildComponent);

myJFrameObject.getLayeredPane().add(

myChildComponent, new Integer(5));

The �rst statement above adds a component to the contentPane . The second statement adds a component
to layer number 5 of the layeredPane .

The same concepts apply when removing components, setting layout managers, etc.
The contentPane has a BorderLayout manager by default. The layeredPane has no layout manager

(null) by default as you will see in the sample program that follows later in this lesson.
If a JMenuBar component is set on the JRootPane , it is positioned along the upper edge of the

frame. The contentPane is adjusted in location and size to �ll the remaining area.
If you examine the documentation for JLayeredPane , you will see that the class has the following

�elds which are all public static �nal Integer symbolic constants.

• DEFAULT_LAYER - Object de�ning the Default layer. Equivalent to new Integer(0).
• PALETTE_LAYER - Object de�ning the Palette layer. Equivalent to new Integer(100).

• MODAL_LAYER - Object de�ning the Modal layer. Equivalent to new Integer(200).
• POPUP_LAYER - Object de�ning the Popup layer. Equivalent to new Integer(300).
• DRAG_LAYER - Object de�ning the Drag layer. Equivalent to new Integer(400).
• FRAME_CONTENT_LAYER - Object de�ning the Frame Content layer. This layer
is normally only used to position the contentPane and menuBar components of JFrame
. Equivalent to new Integer(-30000).

The JMenuBar and the contentPane are added to the layeredPane component at the following layer
(-30000):

JLayeredPane.FRAME_CONTENT_LAYER

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1585

As mentioned earlier, the layeredPane object is an instance of the JLayeredPane class. The purpose of
this object is to be the parent of all children of the JRootPane .

Also, as mentioned earlier, this object provides the ability to add components at several layers. This is
very useful when working with popup menus, dialog boxes, during dragging, or for any other situation in
which you might want to separate graphic objects onto di�erent layers for display purposes.

Also as indicated earlier, the glassPane is always added as the �rst child of the JRootPane . This
causes the glassPane to always be on the top of the stack. By default, the glassPane is not visible and is
transparent. Thus, mouse events can normally penetrate the glassPane and impinge upon the components
below it.

It is theoretically possible to draw components on the glassPane (although I haven't been able to
purposely do it as of 5/12/98). When this is done, those components shadow the components below them
preventing mouse events from impinging on the components down below.

Components drawn on the glassPane will always be above all other lightweight components in the
stacking order of components (but not over top of heavyweight components). Thus, the glassPane can be
used to assure that such components as popup menus and tool tips are always on top of the other components
on the screen.

As mentioned earlier, by default, the glassPane is not visible. Developers should use setVisible on the
glassPane to control when the glassPane displays over the other children.

The layout manager used by JRootPane insures that the following is true:

• The glassPane , if present, �lls the entire viewable area of the JRootPane (bounds -
insets).
• The layeredPane �lls the entire viewable area of the JRootPane . (bounds - insets)
• The menuBar is positioned at the upper edge of the layeredPane ().
• The contentPane �lls the entire viewable area, minus the MenuBar , if present.

If you replace the layout manager of the JRootPane with a di�erent layout manager, you are responsible
for managing all of those views.

So now we know that the JRootPane object contains an object of type JLayeredPane . While
JLayeredPane manages it's list of children like a Container , it also allows for the de�nition of several
layers within itself.

Children in the same layer are managed exactly like the normal Container object. However, children
in higher layers display above the children in lower layers. Each layer has a distinct integer number.

Apparently each Swing Component has a layer attribute (but I haven't been able to �nd out anything
about it other than as described below).

There are at least three ways to set the layer attribute on a Component :

• Passing an Integer object with a literal integer value during the add call: layered-
Pane.add(child,new Integer(10));

• Passing one of the symbolic constants mentioned earlier during the add call: layered-
Pane.add(child,JLayeredPane.DEFAULT_LAYER)

• Calling the following set method on the JLayeredPane that will be the parent of the component
and passing the name of the component and an int that speci�es the layer number: layeredPane-
Parent.setLayer(child,10)

In this third case, the layer should be set before adding the child to the parent.
Layers with higher numbers display on top of layers with lower numbers.
Higher and lower in this case includes the algebraic sign of the layer. For example, a large negative

number is a lower layer than a small positive number.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1586 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

These layers are simply a logical construct and layout managers will a�ect all child components without
regard for layer settings. Therefore, to take advantage of this layering capability, you may need to design
your own layout manager or use absolute layout (null layout manager) .

We will see some examples in the sample program that follows.

4.4.2.10.5 Sample program

The primary purpose of this program is to illustrate the use of both the contentPane and the layeredPane
.

The program places a JFrame object on the screen as the primary GUI as shown in Figure 1 (p. 1591)
.

Figure 1. Graphic screen output for the program named SwingPane01.

A red JTextField object and a JLabel object are placed on the contentPane on the JFrame object.
The JTextField object is placed in the Center of the JFrame using the default border layout. The
JLabel is placed in the South position on the JFrame object.

A green JButton object and a yellow JButton object are placed on the layeredPane . Apparently
the default layout for the layeredPane is absolute or null. The JButton objects are purposely placed so
as to partially overlap. Both buttons appear on top of the red JTextField object on the contentPane .
(Components on layered panes are always on top of components on the contentPane).

The green JButton is initially placed at layer position +1 on the layered pane and the yellow JButton
is initially placed at layer position -29999 which is the limit in the negative direction.

Action listeners are registered on the two buttons. When the top (green) button is clicked, the action
is to swap the layer positions of the two buttons causing the yellow button to move to the top as shown in
Figure 2 (p. 1591) .

Figure 2. Screen output after clicking green button.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1587

The program was originally tested using JDK 1.1.6 and Swing 1.0.1 under Windows 95. More recently it
was tested using Java 8 under Windows 7.

Several lines of code are included in the program to investigate the parent child relationships of the
various panes. The text output from this part of the program, when run using Java 8, is shown in Figure 3
(p. 1592) .

Figure 3. Text output.

Root pane is: class javax.swing.JRootPane

Parent of root pane is SwingPane01[frame0,0,0,0x0,invalid,hidden,layout=java.awt

.BorderLayout,title=,resizable,normal,defaultCloseOperation=HIDE_ON_CLOSE,rootPa

ne=javax.swing.JRootPane[,0,0,0x0,invalid,layout=javax.swing.JRootPane$RootLayou

t,alignmentX=0.0,alignmentY=0.0,border=,flags=16777673,maximumSize=,minimumSize=

,preferredSize=],rootPaneCheckingEnabled=true]

Glass pane is: class javax.swing.JPanel

Parent of glass pane is javax.swing.JRootPane[,0,0,0x0,invalid,layout=javax.swin

g.JRootPane$RootLayout,alignmentX=0.0,alignmentY=0.0,border=,flags=16777673,maxi

mumSize=,minimumSize=,preferredSize=]

Layered pane is: class javax.swing.JLayeredPane

Parent of layered pane is javax.swing.JRootPane[,0,0,0x0,invalid,layout=javax.sw

ing.JRootPane$RootLayout,alignmentX=0.0,alignmentY=0.0,border=,flags=16777673,ma

ximumSize=,minimumSize=,preferredSize=]

Content pane is: class javax.swing.JPanel

Parent of content pane is javax.swing.JLayeredPane[null.layeredPane,0,0,0x0,inva

lid,alignmentX=0.0,alignmentY=0.0,border=,flags=0,maximumSize=,minimumSize=,pref

erredSize=,optimizedDrawingPossible=true]

The JavaSoft documentation indicates that the contentPane is placed at an equivalent layer position of
-30000 in the layeredPane .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1588 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

The glassPane is something of a mystery to me at this point in time (5/12/98). I was unable to draw on
the glassPane . An attempt to place either a JButton object or a JToolTip object on the glassPane
was rejected by the compiler with error messages that the JButton and the JToolTip could not be
converted to type JPopupMenu . I don't know if this is proper behavior or a bug.

4.4.2.10.5.1 Interesting code fragments

I will discuss and explain this program in fragments. A complete listing of the program is provided in Listing
10 (p. 1596) . Listing 1 (p. 1593) shows the import declarations required to import the Swing and AWT
packages using Java 8. (The older import declaration is shown as a comment.)

Listing 1. Import declarations.

import java.awt.*;

import java.awt.event.*;

//import com.sun.java.swing.*;//JDK 1.1 version

import javax.swing.*;//JDK 1.2 version

The class de�nition for SwingPane01 begins in Listing 2 (p. 1593) .

Listing 2. Beginning of the class named SwingPane01.

class SwingPane01 extends JFrame{

JLayeredPane theLayeredPane;

JButton greenButton;

JButton yellowButton;

public static void main(String[] args){

new SwingPane01();

}//end main

As you can see in Listing 2 (p. 1593) , the controlling class in this program is an object of type JFrame
because it extends JFrame . This fragment also declares some instance variables that are required later
in the ActionEvent handler to swap the two buttons between layers.

The main method is also included in this fragment simply to provide continuity.
Listing 3 (p. 1593) shows the beginning of the constructor where much of the work in this program is

accomplished.

Listing 3. Beginning of the constructor.

SwingPane01(){//constructor

//Get a ref to the layered pane for later use.

theLayeredPane = this.getLayeredPane();

int frameWidth = 300;

int frameHeight = 200;

Listing 3 (p. 1593) begins by getting a reference to the layeredPane to make it more convenient to work
with it later. The width and height values for the JFrame object are set in this fragment as well.

Listing 4 (p. 1594) shows the code that is used to discover and display the types of the di�erent panes
along with the parent-child relationships in the hierarchy of panes. This is the code that produced most of
the text output shown in Figure 3 (p. 1592) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1589

Listing 4. Get and display types of panes.

System.out.println("Root pane is: " +

this.getRootPane().getClass());

System.out.println("Parent of root pane is " +

this.getRootPane().getParent() + "\n");

System.out.println("Glass pane is: " +

this.getGlassPane().getClass());

System.out.println("Parent of glass pane is " +

this.getGlassPane().getParent() + "\n");

System.out.println("Layered pane is: " +

this.getLayeredPane().getClass());

System.out.println("Parent of layered pane is " +

this.getLayeredPane().getParent() + "\n");

System.out.println("Content pane is: " +

this.getContentPane().getClass());

System.out.println("Parent of content pane is " +

this.getContentPane().getParent() + "\n");

This code is all pretty intuitive. You should be able to surmise what it is doing simply from the names of
the methods being invoked.

Listing 5 (p. 1594) instantiates a JLabel object and a JTextField object and places them on the
contentPane .

Listing 5. Instantiate JLabel and JTextField objects.

JLabel theLabel = new JLabel(

" Click buttons to swap their layer positions.");

this.getContentPane().add(theLabel,"South");

//Put a red JTextField in the Center of the JFrame on

// the content pane.

JTextField redTextField = new JTextField(

" redTextField on contentPane");

redTextField.setBackground(Color.red);

this.getContentPane().add(redTextField,"Center");

The default layout manager for the contentPane is BorderLayout . This code places the red JTextField
in the Center position of the contentPane and places the JLabel in the South position.

For the metal Look and Feel, the JLabel appears to be part of the border at the bottom of the
JFrame object as shown in Figure 2 (p. 1591) .

The South JLabel provides instructions regarding the use of the JButton objects that will also be
placed on the JFrame object.

Listing 6 (p. 1594) instantiates a green JButton object and places it on the layeredPane at layer
number one (1).

Listing 6. Instantiate a green JButton object.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1590 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

greenButton = new JButton(

"greenButton on Layered Pane");

greenButton.setBackground(Color.green);

greenButton.setBounds(10,10,240,40);

greenButton.addActionListener(new MyActionListener());

theLayeredPane.add(greenButton,new Integer(1));

Note that the setBounds method is used to establish the location and size of the button in absolute
pixel coordinates. Recall that I said earlier that apparently the default layout manager for the layeredPane
is null. Otherwise, it would have been necessary for me to set it to null before placing this object on an
absolute location and size basis.

Also note that an ActionListener object is registered on the JButton object. We will see the class
that de�nes the behavior of the listener object later.

Listing 7 (p. 1595) instantiates a yellow JButton object and places it on the layeredPane at layer
number -29999. This is the bottom-most layer of all programmable layers in the layeredPane . The
contentPane falls immediately below this layer.

Listing 7. Instantiate a yellow JButton object.

yellowButton = new JButton(

"yellowButton on Layered Pane");

yellowButton.setBackground(Color.yellow);

yellowButton.setBounds(40,20,240,40);

yellowButton.addActionListener(new MyActionListener());

theLayeredPane.add(yellowButton,new Integer(-29999));

Listing 8 (p. 1595) sets the title, size, visibility, etc., of the JFrame object and register an anonymous
listener to terminate the program when the user closes the JFrame .

Listing 8. The end of the constructor.

this.setTitle("Copyright 1998, R.G.Baldwin");

this.setSize(frameWidth,frameHeight);

this.setVisible(true);

//===//

//Anonymous inner class to terminate program.

this.addWindowListener(new WindowAdapter(){

public void windowClosing(WindowEvent e){

System.exit(0);}});//end addWindowListener

}//end constructor

Listing 8 (p. 1595) also signals the end of the constructor.
Listing 9 (p. 1595) shows the ActionListener class from which listener objects are registered on the

two JButton objects.

Listing 9. The class named MyActionListener.

class MyActionListener implements ActionListener{

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1591

public void actionPerformed(ActionEvent e){

if(e.getActionCommand().equals(

"greenButton on Layered Pane")){

theLayeredPane.setLayer(greenButton,-29999);

theLayeredPane.setLayer(yellowButton,1);

}else{

theLayeredPane.setLayer(greenButton,1);

theLayeredPane.setLayer(yellowButton,-29999);

}//end else

}//end actionPerformed()

}//end class MyActionListener

This is a standard listener class that de�nes the actionPerformed method.
The behavior of the actionPerformed method in this case is to cause the layer positions of the two

JButton objects to be swapped whenever the button on top is clicked. This causes the JButton object
immediately below the one on the top to move to the top of the stack.

Note that this method invokes the setLayer method of the JLayeredPane class to rearrange the
positions of the two JButton objects at runtime.

4.4.2.10.5.2 Complete program listing

Listing 10 (p. 1596) shows a complete listing of the program named SwingPane01 .

Listing 10. Complete listing of SwingPane01.

/*File SwingPane01 Copyright 1998, R.G.Baldwin

Updated 7/10/16 for Java 8 compatibility.

Revised 1/12/99 for JDK 1.2 Swing compatibility

The purpose of this program is to illustrate the use of

the content pane and the layered pane.

The program places a JFrame object on the screen as the

primary GUI.

A red JTextField and a white JLabel are placed on the

content pane on the JFrame object. (The white label is

actually rendered as gray in the metal L&F.)

The JTextField is placed in the Center of the JFrame using

the default border layout. The JLabel is placed in the

South position on the JFrame object.

A green JButton and a yellow JButton are placed on the

layered pane of the JFrame object. Apparently the default

layout for the layered pane is absolute or null. The

JButton objects are purposely placed so as to partially

overlap. Both buttons appear on top of the JTextField

object on the content pane.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1592 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

The green JButton is initially placed at layer position +1

on the layered pane and the yellow JButton is initially

placed at layer position -29999 which is the limit in the

negative direction.

Action listeners are registered on the two buttons. When

the top button is clicked, the action is to swap the layer

positions of the two buttons causing the other one to

move to the top layer position.

Several lines of code are included to investigate the

parent child relationships of the various panes. The

output from this part of the program follows. Note that

line breaks were manually inserted here to force the

material to fit in this format.

Root pane is: class com.sun.java.swing.JRootPane

Parent of root pane is SwingPane01

[frame0,0,0,0x0,invalid,hidden,

layout=java.awt.BorderLayout,resizable,title=]

Glass pane is: class com.sun.java.swing.JPanel

Parent of glass pane is com.sun.java.swing.JRootPane

[,0,0,0x0,invalid,

layout=com.sun.java.swing.JRootPane$RootLayout]

Layered pane is: class com.sun.java.swing.JLayeredPane

Parent of layered pane is com.sun.java.swing.JRootPane

[,0,0,0x0,invalid,

layout=com.sun.java.swing.JRootPane$RootLayout]

Content pane is: class com.sun.java.swing.JPanel

Parent of content pane is com.sun.java.swing.JLayeredPane

[null.layeredPane,0,0,0x0,invalid]

An interpretation of the above is:

The root pane is a child of the JFrame object.

The glass page is a child of the root pane.

The layered pane is a child of the root pane.

The content pane is a child of the layered pane.

The root pane is of type JRootPane.

The glass pane is of type JPanel.

The layered pane is of type JLayeredPane.

The content pane is of type JPanel.

The JavaSoft documentation indicates that the content pane

is placed at layer position -30000 in the layered pane.

The glass pane is something of a mystery at this point.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1593

I was unable to draw upon the glass pane. An attempt to

place either a JButton object or a JToolTip object on the

glass plane was rejected by the compiler with error

messages that the JButton and the JToolTip could not be

converted to type JPopupMenu.

Tested using JDK 1.1.6 and Swing 1.0.1 under Win95.

**/

import java.awt.*;

import java.awt.event.*;

//import com.sun.java.swing.*;//JDK 1.1 version

import javax.swing.*;//JDK 1.2 version

class SwingPane01 extends JFrame{//subclass JFrame

JLayeredPane theLayeredPane;

JButton greenButton;

JButton yellowButton;

public static void main(String[] args){

new SwingPane01();

}//end main

//---//

SwingPane01(){//constructor

//Get a ref to the layered pane for later use.

theLayeredPane = this.getLayeredPane();

int frameWidth = 300;

int frameHeight = 200;

//Get and display types of different panes along with

// parent-child hierarchy.

System.out.println("Root pane is: " +

this.getRootPane().getClass());

System.out.println("Parent of root pane is " +

this.getRootPane().getParent() + "\n");

System.out.println("Glass pane is: " +

this.getGlassPane().getClass());

System.out.println("Parent of glass pane is " +

this.getGlassPane().getParent() + "\n");

System.out.println("Layered pane is: " +

this.getLayeredPane().getClass());

System.out.println("Parent of layered pane is " +

this.getLayeredPane().getParent() + "\n");

System.out.println("Content pane is: " +

this.getContentPane().getClass());

System.out.println("Parent of content pane is " +

this.getContentPane().getParent() + "\n");

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1594 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

//Put instructions in a JLabel on the content pane.

JLabel theLabel = new JLabel(

" Click buttons to swap their layer positions.");

this.getContentPane().add(theLabel,"South");

//Put a red JTextField in the Center of the JFrame on

// the content pane.

JTextField redTextField = new JTextField(

" redTextField on contentPane");

redTextField.setBackground(Color.red);

this.getContentPane().add(redTextField,"Center");

//Put a green JButton on the layered pane at a layer

// position of +1.

greenButton = new JButton(

"greenButton on Layered Pane");

greenButton.setBackground(Color.green);

greenButton.setBounds(10,10,240,40);

greenButton.addActionListener(new MyActionListener());

theLayeredPane.add(greenButton,new Integer(1));

//Put a yellow JButton on the layered pane at a layer

// position of -29999.

yellowButton = new JButton(

"yellowButton on Layered Pane");

yellowButton.setBackground(Color.yellow);

yellowButton.setBounds(40,20,240,40);

yellowButton.addActionListener(new MyActionListener());

theLayeredPane.add(yellowButton,new Integer(-29999));

//Set title, size, and visibility of JFrame object.

this.setTitle("Copyright 1998, R.G.Baldwin");

this.setSize(frameWidth,frameHeight);

this.setVisible(true);

//===//

//Anonymous inner class to terminate program.

this.addWindowListener(new WindowAdapter(){

public void windowClosing(WindowEvent e){

System.exit(0);}});//end addWindowListener

}//end constructor

//===//

//Inner class for listener objects which swap the layer

// positions of the two JButton objects when the one on

// the top is clicked.

class MyActionListener implements ActionListener{

public void actionPerformed(ActionEvent e){

if(e.getActionCommand().equals(

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1595

"greenButton on Layered Pane")){

theLayeredPane.setLayer(greenButton,-29999);

theLayeredPane.setLayer(yellowButton,1);

}else{

theLayeredPane.setLayer(greenButton,1);

theLayeredPane.setLayer(yellowButton,-29999);

}//end else

}//end actionPerformed()

}//end class MyActionListener

}//end class SwingPane01

//===//

4.4.2.10.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java087 Swing, Understanding getContentPane() and other JFrame Layers
• File: Java087.htm
• Originally published: 1997

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.11 Java090 Scrollbar (Adjustment) Event Handling
188

Revised: Mon Jul 11 13:04:48 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 189

• Object-Oriented Programming (OOP) with Java 190

188This content is available online at <http://cnx.org/content/m59619/1.2/>.
189http://cnx.org/contents/Rl23r3Lw
190http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1596 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.2.11.1 Table of contents

• Table of contents (p. 1601)
• Preface (p. 1601)

· Viewing tip (p. 1601)

* Figures (p. 1601)
* Listings (p. 1601)

• Introduction (p. 1602)
• Overview (p. 1602)
• The sample program (p. 1603)

· Discussion (p. 1603)
· Interesting code fragments (p. 1604)
· Complete program listing (p. 1608)

• Review (p. 1611)
• Miscellaneous (p. 1617)

4.4.2.11.2 Preface

This is a page from the Event Handling 191 section of the book titled ITSE2317 - Java Programming
(Intermediate) 192 . The Event Handling section explains how to write programs that handle events in
Java.

Students in Prof. Baldwin's ITSE 2317 Intermediate Java Programming classes at ACC are
responsible for knowing and understanding all of the material in this lesson.

Note: An object of the JSlider class in Java 8 can be used for some (but no all) of the purposes
that a Scrollbar object may have been used for in the early days of Java.

4.4.2.11.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

4.4.2.11.2.1.1 Figures

• Figure 1. (p. 1603) Graphic screen output for Event18.
• Figure 2. (p. 1607) Output produced by clicking right scrollbar button.
• Figure 3. (p. 1613) Graphic screen output from SampProg125.java.

4.4.2.11.2.1.2 Listings

• Listing 1. (p. 1604) The controlling class for Event18.java.
• Listing 2. (p. 1605) Beginning of the GUI class.
• Listing 3. (p. 1605) Beginning of the constructor for the GUI class.
• Listing 4. (p. 1605) Set the unit and block increments.
• Listing 5. (p. 1605) Complete the GUI.
• Listing 6. (p. 1606) Beginning of class that implements AdjustmentListener.

191http://cnx.org/contents/Rl23r3Lw:qfO9iJX-
192http://cnx.org/contents/Rl23r3Lw:JVTd7bX1

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1597

• Listing 7. (p. 1606) Beginning of the adjustmentValueChanged method.
• Listing 8. (p. 1607) Get and display the value of the scrollbar.
• Listing 9. (p. 1608) Complete listing of the program named Event18.java.
• Listing 10. (p. 1614) Complete listing of the program named SampProg125.java.

4.4.2.11.3 Introduction

JDK 1.1 was formally released on February 18, 1997. This lesson was originally written on February 21,
1997 using the software in JDK 1.1. It was upgraded to JDK 1.2 on 12/18/98. It was converted to CNXML
with minor updates for publication on OpenStax on 07/11/16.

4.4.2.11.4 Overview

Event handling on a Scrollbar object di�ers from the event handling in previous lessons in several
respects. The following paragraphs contrast the Scrollbar with the Mouse in order to illustrate some
of the di�erences.

To create a listener object for the mouse, you either implement the MouseListener interface, or you
extend the MouseAdapter class.

However, to create a listener object for a Scrollbar , you do not implement a ScrollbarListener
interface or extend a ScrollbarAdapter class, because they do not exist.

Instead, you implement the AdjustmentListener interface. The single method declared in the
AdjustmentListener interface receives an AdjustmentEvent object as a parameter. This is one of
the semantic events (as opposed to low-level events) similar to ActionEvent , ItemEvent , and
TextEvent.

As mentioned above, there is no AdjustmentAdapter class. It isn't needed because the Adjust-
mentListener interface declares only one method, which is shown below:

public abstract void adjustmentValueChanged(AdjustmentEvent e)

The adjustmentValueChanged method is invoked when the value of the adjustable object (the Scrollbar
object in this lesson) has changed.

Recall also that there are �ve di�erent types of mouse events declared in the MouseListener interface:

• mouseClicked,
• mouseEntered,
• mouseExited,
• mousePressed
• mouseReleased.

There are two additional types of mouse events that are declared in the MouseMotionListener interface:

• mouseDragged
• mouseMoved

Each of these di�erent types of mouse events is represented by a method declaration in one or the other of
the two interfaces de�ned for creating listener classes for mouse activity. You override the method(s) for
those types of events which interest you.

There are �ve di�erent types of adjustment events that correspond to the �ve ways of moving the
bubble in a Scrollbar object. However, as mentioned above, there is only one method declared in the

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1598 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

AdjustmentListener interface. It is named adjustmentValueChanged . It receives an object of type
AdjustmentEvent as a parameter when invoked.
The type of event is encoded into the object that is passed in as a parameter along with other information

such as the value of the Scrollbar and the name of the Scrollbar object. The value of the Scrollbar
is determined by the position of the bubble on the Scrollbar .

The AdjustmentEvent class de�nes several methods that can be used to extract information from
the object in case you need access to that information. This is discussed in more detail later.

The types of adjustment events (corresponding to physical methods of moving the bubble on the
Scrollbar) are de�ned as static variables in the AdjustmentEvent class. (This is similar to the
approach used in the earlier event model in JDK 1.0.2.) The �ve di�erent types of adjustment events and
their relationship to moving the bubble are:

• UNIT_INCREMENT - click button on one end of the Scrollbar
• UNIT_DECREMENT - click button on the other end of the Scrollbar
• BLOCK_INCREMENT - click in space between bubble and one button
• BLOCK_DECREMENT - click in space between bubble and other button
• TRACK - drag the bubble

As indicated, the two UNIT types are generated by clicking on the buttons at either end of the Scrollbar.
The two BLOCK types are generated by clicking interior to the Scrollbar on either side of the bubble.
The TRACK event is generated by dragging the bubble.
Methods are available for setting various parameters of the Scrollbar including the range, the width

of the bubble (alternately referred to in the documentation as page size or visible), the size of the unit
and block increments or decrements, etc.

One might surmise that this rather general purpose adjustment approach was de�ned to support a
family of components that operate on an adjustment basis. However, a quick search of the index in the
JDK 1.1.3 documentation package did not identify any other components that use the adjustment interface.
Perhaps other adjustable objects are planned for future versions of the AWT. (Note that as of Java 8, the
AdjustmentListener interface is also implemented by the AWTEventMulticaster class. However,
that class is not discussed in this lesson.)

4.4.2.11.5 The sample program

This section presents a discussion of the program followed by the program listing.

4.4.2.11.5.1 Discussion

This program places a Scrollbar object and a TextField object in a Frame object as shown in Figure
1 (p. 1603) .

Figure 1. Graphic screen output for Event18.

Whenever the bubble in the Scrollbar is moved using any of the �ve available physical methods for
moving the bubble, the value of the Scrollbar (which normally should represent the position of the
center of the bubble) is extracted from the event object and displayed in the TextField object. (Certain

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1599

arithmetic corrections are required to cause the value to represent the center of the bubble because the actual
value returned represents the left-hand edge of the bubble for a horizontal Scrollbar .)

Also, whenever the bubble is moved, several other pieces of information are extracted from the object
and displayed on the command-line screen. This includes the identi�cation of the adjustable object and the
type of adjustable event.

Note also that although �ve di�erent initialization parameters are included as parameters to the Scroll-
bar constructor, other important initialization parameters such as BlockIncrement and UnitIncre-
ment are not included in the parameter list. They must be set following instantiation using methods such
as setBlockIncrement .

Experimentation indicates that the default value for BlockIncrement is ten units and the default
value for UnitIncrement is one unit.

Reiterating what was mentioned earlier, the Scrollbar listener object is not added as a ScrollbarLis-
tener but rather is de�ned by implementing the AdjustmentListener interface and then added as an
AdjustmentListener .

The AdjustmentListener interface declares only one method that may be overridden: adjustment-
ValueChanged .

This method receives an object of type AdjustmentEvent that (as of Java 8) provides �ve methods
that can be used to obtain information about the event.

• The getAdjustable method of the AdjustmentEvent class returns information containing the
identi�cation of the object that generated the event.

• The getAdjustmentType method returns information containing the identi�cation of the type of
event (click the buttons on the Scrollbar, drag the bubble, etc.).

• The paramString method contains a variety of information which overlaps the two above methods
to some extent.

• The getValue method returns the value produced by the adjustment.
• The getValueIsAdjusting method returns true if this is one of multiple adjustment events. (This

method was not de�ned in the class when this lesson was originally written in 1997.)

Three of these �ve methods are used in the following program. The paramString and getValueIsAd-
justing methods are not used.

There are many important comments in the program that add to this discussion, particularly with respect
to bugs in the Scrollbar component, and arithmetic adjustments required to compensate for the width
of the bubble. (Note, however, that the comments related to bugs may no longer apply in Java 8 and
beyond.)

4.4.2.11.5.2 Interesting code fragments

I will discuss and explain this program in fragments. A complete listing is provided in Listing 9 (p. 1608) .
Listing 1 (p. 1604) shows the controlling class that contains the requisite main method. The main

method instantiates an object of type GUI where all of the work is done.

Listing 1. The controlling class for Event18.java.

import java.awt.*;

import java.awt.event.*;

class Event18{

public static void main(String[] args){

GUI gui = new GUI();

}//end main

}//end class Event18

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1600 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 2 (p. 1605) shows the beginning of the GUI class along with some instance variables used later in
the program.

Listing 2. Beginning of the GUI class.

class GUI{

Scrollbar myScrollbar;

TextField displayWindow;

int bubbleWidth;//needs to be accessible by event handler

Listing 3 (p. 1605) shows the beginning of the constructor for the GUI class. The constructor begins by
instantiating a Frame object to serve as a top-level window for the application.

Listing 3. Beginning of the constructor for the GUI class.

GUI(){

Frame myFrame = new Frame("Copyright 1997, R.G.Baldwin");

bubbleWidth = 20;

int initialPosition = 50 - bubbleWidth/2;

int min = 0 - bubbleWidth/2;

int max = 100 + bubbleWidth/2;

myScrollbar = new Scrollbar(Scrollbar.HORIZONTAL,

initialPosition, bubbleWidth, min, max);

This is followed by instantiation of a horizontal Scrollbar object with a range from 0 to 100, an initial
position at 50, a bubble width (page size) of 20, a unit increment of 2 (see Listing 4 (p. 1605)) , and a
block increment of 15 (see Listing 4 (p. 1605)) .

The Scrollbar component does not center the bubble on the value. Rather, the left edge of the bubble
is lined up with the value. The result is that values in the upper end of the range cannot be reached unless
appropriate adjustments are made using half the bubble width. This distributes the unreachable values at
each end of the Scrollbar. You can then set the min and max values to extend beyond the desired values
by one-half the bubble width.

Listing 4 (p. 1605) sets the unit increment to 2 and the block increment to 15. The unit increment is
the amount of change resulting from clicking a button on the end of the Scrollbar . The block increment
is the amount of change resulting from clicking between the bubble and the button on the end.

Listing 4. Set the unit and block increments.

myScrollbar.setBlockIncrement(15);

myScrollbar.setUnitIncrement(2);

The code in Listing 5 (p. 1605) should be very familiar to you by now. It really isn't very interesting at this
point, and is included in this section solely for completeness.

Listing 5. Complete the GUI.

displayWindow = new TextField("Initial Text");

displayWindow.setEditable(false);//make non-editable

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1601

//add components to the GUI

myFrame.add("South", myScrollbar);

myFrame.add("North", displayWindow);

myFrame.setSize(300,75);

myFrame.setVisible(true);

//Instantiate a listener object for the Scrollbar and

// register it to receive notification of adjustment

// events.

MyScrollbarListener myScrollbarListener =

new MyScrollbarListener(this);

//Note that the Scrollbar listener is not added as a

// ScrollbarListener but rather is added as an

// AdjustmentListener.

myScrollbar.addAdjustmentListener(myScrollbarListener);

//Close Frame to terminate.

myFrame.addWindowListener(new MyWindowListener());

}//end constructor

}//end class GUI

This fragment creates the display window using a TextField object. It also adds the two components to
the Frame , sets the size of the Frame , and makes the whole thing visible.

The fragment also includes typical code to instantiate a listener object for the Scrollbar and register
it to receive noti�cation of adjustment events.

This is followed by typical code to register a window listener to terminate the program when the user
clicks the close box on the Frame .

That ends the constructor and also ends the de�nition of the GUI class.
The code in Listing 6 (p. 1606) shows the beginning of the AdjustmentListener class from which

a listener object is instantiated and registered on the Scrollbar to listen for adjustment events. This
fragment shows the constructor for the class that saves a reference to the Scrollbar .

Listing 6. Beginning of class that implements AdjustmentListener.

class MyScrollbarListener implements AdjustmentListener{

GUI thisObject; //save ref to GUI object here

MyScrollbarListener(GUI objectIn){//constructor

thisObject = objectIn;

}//end constructor

Listing 7 (p. 1606) shows the beginning of the adjustmentValueChanged method, which is the only
method declared by the AdjustmentListener interface. This method receives a parameter which is an
object of type AdjustmentEvent and serves as the heart of this program.

Listing 7. Beginning of the adjustmentValueChanged method.

public void adjustmentValueChanged(AdjustmentEvent e){

int value;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1602 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

//Display the entire AdjustmentEvent object

System.out.println(e);

System.out.println("Adjustable = " + e.getAdjustable());

System.out.println("AdjustmentType = "

+ e.getAdjustmentType());

This fragment uses the incoming object to obtain and display

• the incoming object,
• the source of the event, and
• the type of the event.

The text output shown in Figure 2 (p. 1607) was produced by the above fragment when the button on the
right end of the scrollbar was clicked with the program running under Java 8 and Windows 7.

Figure 2. Output produced by clicking right scrollbar button.

java.awt.event.AdjustmentEvent[ADJUSTMENT_VALUE_CHANGED,adjType=UNIT_INCREMENT,v

alue=42,isAdjusting=false] on scrollbar0

Adjustable = java.awt.Scrollbar[scrollbar0,4,51,292x20,val=42,vis=20,min=-10,max

=110,horz,isAdjusting=false]

AdjustmentType = 1

value = 42

value = 42

Listing 8 (p. 1607) uses the incoming object to get the value of the scrollbar and display it in the
TextField object. The value should represent the position of the bubble (it really represents the position
of the left edge of the bubble, not the center).

Listing 8. Get and display the value of the scrollbar.

value = e.getValue();//get and save the value

//The following code is here to work around a possible

// bug in the Scrollbar object where small negative

// values are reported as very large positive values

// when the Scrollbar is adjusted by sliding the bubble.

// Note that this bug still exists in JDK 1.1.6 but has

// been fixed in JDK 1.2.

System.out.println("value = " + value);

if(value > 65000) value = value - 65536;

System.out.println("value = " + value);

thisObject.displayWindow.setText("Value = "

+ (value + thisObject.bubbleWidth/2));

//The following seems like a kludge but is required to

// make the scrollbar bubble stay put. Otherwise, it

// jumps back to the previous value when you try to

// move it.

//Note that this statement is required for JDK 1.1.6

// but is not required for the first release of JDK 1.2

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1603

thisObject.myScrollbar.setValue(value);

}//end adjustmentValueChanged()

}//end class MyScrollbarListener

This fragment contains code to serve as a workaround for a bug in JDK 1.1.6 where small negative values
are reported as very large positive values when the Scrollbar is adjusted by dragging the bubble. (Note
that this bug has been �xed in JDK 1.2.)

The fragment also contains code to adjust the reported value to the center of the bubble instead of the
left edge of the bubble by increasing the value by one-half the width of the bubble. The adjusted value is
displayed in the TextField object.

It also contains code to resolve another bug which causes the bubble to jump back to its previous value
when you attempt to drag it in JDK 1.1.6. (This also has been �xed in JDK 1.2.)

That concludes the interesting code fragments for this program. A complete listing is provided in the
next section.

4.4.2.11.5.3 Complete program listing

Listing 9 (p. 1608) provides a complete listing of the program. As mentioned earlier, some of the comments
related to bugs may no longer apply in Java 8 and beyond.

Listing 9. Complete listing of the program named Event18.java.

/*File Event18.java Copyright 1997, R.G.Baldwin

Revised 12/18/97

This program was designed to be compiled and executed under

JDK 1.1.3 or later version.

In an earlier version of this program compiled under

JDK 1.1, in February 1997, I reported numerous bugs in the

JDK Scrollbar handling. I have now recompiled the program

and can report that most of the bugs seem to have been fixed,

although a couple of bugs still seem to exist.

One remaining bug is that if you adjust the scrollbar by

dragging the bubble into an area which would report negative

values, large positive values are reported instead of small

negative values (ie: something like 65536 instead of -1).

This does not happen if the scrollbar is adjusted by

clicking on the end buttons or in the area between the

bubble and the buttons. A numeric workaround was

implemented in this program to work around that bug. Note

that the bug still exists in JDK 1.1.6 but was fixed in the

first release of JDK 1.2.

Another possible bug is that the scrollbar seems to be able

to report a value that is one unitIncrement too large for

the specified maximum value and bubble width. Note

that the bug still exists in JDK 1.1.6 but was fixed in the

first release of JDK 1.2.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1604 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

This program places a Scrollbar object and a TextField

object in a Frame. Whenever the bubble in the Scrollbar is

moved using any of the five available methods for moving

the bubble the value of the Scrollbar (which should

represent the position of the bubble) is displayed in the

TextField object.

Also, whenever the bubble is moved, several other pieces of

information are displayed on the screen which identify

various parameters of the adjustment.

Closing the frame terminates the program.

*/

//===

import java.awt.*;

import java.awt.event.*;

class Event18{

public static void main(String[] args){

GUI gui = new GUI();

}//end main

}//end class Event18

//==

class GUI{

Scrollbar myScrollbar;

TextField displayWindow;

int bubbleWidth;//needs to be accessible by event handler

GUI(){

Frame myFrame = new Frame("Copyright 1997, R.G.Baldwin");

//Instantiate a horizontal Scrollbar object with range

// from 0 to 100, initial position at 50, bubble width

// (page size) of 20, unitIncrement of 2 and a

// blockIncrement of 15.

// The Scrollbar component does not center the bubble on

// the value. Rather, the left edge of the bubble is

// lined up with the value. The result is that values

// in the upper end of the range cannot be reached

// unless appropriate adjustments are made using half

// the bubble width. This distributes the unreachable

// values at each end of the Scrollbar. You can then

// set the min and max values to extend beyond the

// desired values by one-half the bubble width.

bubbleWidth = 20;

int initialPosition = 50 - bubbleWidth/2;

int min = 0 - bubbleWidth/2;

int max = 100 + bubbleWidth/2;

myScrollbar = new Scrollbar(Scrollbar.HORIZONTAL,

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1605

initialPosition, bubbleWidth, min, max);

//It would have been nice to have included unitIncrement

// and blockIncrement as parameters to the constructor

// along with the other constructor parameteters. See

// next two statements which set the unitIncrement and

// the blockIncrement. The unitIncrement is the amount

// of change resulting from clicking a button on the

// end of the Scrollbar. The blockIncrement is the

// amount of change resulting from clicking between the

// bubble and the button on the end.

myScrollbar.setBlockIncrement(15);

myScrollbar.setUnitIncrement(2);

displayWindow = new TextField("Initial Text");

displayWindow.setEditable(false);//make non-editable

//add components to the GUI

myFrame.add("South", myScrollbar);

myFrame.add("North", displayWindow);

myFrame.setSize(300,75);

myFrame.setVisible(true);

//Instantiate a listener object for the Scrollbar and

// register it to receive notification of adjustment

// events.

MyScrollbarListener myScrollbarListener =

new MyScrollbarListener(this);

//Note that the Scrollbar listener is not added as a

// ScrollbarListener but rather is added as an

// AdjustmentListener.

myScrollbar.addAdjustmentListener(myScrollbarListener);

//Close Frame to terminate.

myFrame.addWindowListener(new MyWindowListener());

}//end constructor

}//end class GUI

//===

//Note that unlike some other components which have their

// own listener interface, this class does not implement

// ScrollbarListener because there is no such interface.

// Rather, the AdjustmentListener interface is used as a

// listener interface for Scrollbars.

class MyScrollbarListener implements AdjustmentListener{

GUI thisObject; //save ref to GUI object here

MyScrollbarListener(GUI objectIn){//constructor

thisObject = objectIn;

}//end constructor

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1606 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

public void adjustmentValueChanged(AdjustmentEvent e){

int value;

//Display the entire AdjustmentEvent object

System.out.println(e);

System.out.println("Adjustable = " + e.getAdjustable());

System.out.println("AdjustmentType = "

+ e.getAdjustmentType());

//Display the value of the Scrollbar object in the

// TextField. The value should represent the position

// of the bubble.

value = e.getValue();//get and save the value

//The following code is here to work around a possible

// bug in the Scrollbar object where small negative

// values are reported as very large positive values

// when the Scrollbar is adjusted by sliding the bubble.

// Note that this bug still exists in JDK 1.1.6 but has

// been fixed in JDK 1.2.

System.out.println("value = " + value);

if(value > 65000) value = value - 65536;

System.out.println("value = " + value);

thisObject.displayWindow.setText("Value = "

+ (value + thisObject.bubbleWidth/2));

//The following seems like a kludge but is required to

// make the scrollbar bubble stay put. Otherwise, it

// jumps back to the previous value when you try to

// move it.

//Note that this statement is required for JDK 1.1.6

// but is not required for the first release of JDK 1.2

thisObject.myScrollbar.setValue(value);

}//end adjustmentValueChanged()

}//end class MyScrollbarListener

//===

//Listener to terminate the program when the Frame is

// closed.

class MyWindowListener extends WindowAdapter{

public void windowClosing(WindowEvent e){

System.exit(0);

}//end windowClosing()

}//end class MyWindowListener

//===

4.4.2.11.6 Review

Q - All of the Scrollbar bugs were eliminated in JDK 1.1.3: True or False? If false, explain why.
A - False. JDK 1.1.3 appears to still have at least two Scrollbar bugs. One bug causes the track event

(which involves dragging the bubble in the Scrollbar object) to return large positive values such as 65535
when it should be returning small negative values such as -1. The other apparent bug allows the di�erent

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1607

versions of the event to return a value larger than would be calculated using the minimum and maximum
values along with the width of the bubble.

Q - The Scrollbar bugs listed above cause the Scrollbar component to be completely unusable:
True or False? If false, explain why.

A - False. While these two bugs represent a signi�cant inconvenience, it is probably possible to work
around both of them by making numeric corrections.

Q - To create a listener object for a Scrollbar , you must implement the ScrollbarListener interface
or extend a ScrollbarAdapter class: True or False? If false, explain why.

A - False. To create a listener object for a Scrollbar , you do not implement a ScrollbarListener
interface or extend a ScrollbarAdapter class, because they do not exist. Instead, you implement an
AdjustmentListener interface.

Q - To create a listener object for a Scrollbar , you can either implement the AdjustmentListener
interface or extend the AdjustmentAdapter class: True or False? If False, explain why.

A - False. There is no AdjustmentAdapter class. It isn't needed because the AdjustmentListener
interface declares only one method with the following signature:

public abstract void adjustmentValueChanged(AdjustmentEvent e)

Q - The adjustmentValueChanged method is invoked when the value of the Scrollbar object is
changed: True or False? If false, explain why.

A - True.
Q - There are �ve di�erent types of adjustment events that correspond to the di�erent methods of moving

the bubble in a Scrollbar object: True or False. If false, explain why.
A - True.
Q - As with most of the other classes in the AWT, the AdjustmentListener interface declares a separate

method for each type of adjustment event. Each of these methods must be implemented in any class that
implements the AdjustmentListener interface: True or False? If false, explain why.

A - False. Only one method is declared in the AdjustmentListener interface. The name of the method
is adjustmentValueChanged .

Q - The adjustmentValueChanged method receives an object of type AdjustmentEvent as a
parameter, and the type of event is encoded into the object: True or False? If false, explain why.

A - True.
Q - In addition to the type of the event, additional information is also encoded into the object that

is passed to the adjustmentValueChanged method. Give examples of two other kinds of information
encoded into the object..

A - Information such as the value of the Scrollbar and the name of the Scrollbar component is
also encoded into the object.

Q - The types of adjustment events are de�ned as static variables in the AdjustmentEvent class.
What are the names of these variables, and how do they correspond to user actions on the Scrollbar
object?

A - The names of the static variables and their relationship to the Scrollbar object are:

• UNIT_INCREMENT - click button on one end of the Scrollbar
• UNIT_DECREMENT - click button on the other end of the Scrollbar
• BLOCK_INCREMENT - click in space between bubble and one button
• BLOCK_DECREMENT - click in space between bubble and other button
• TRACK - drag the bubble

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1608 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Q - The width of the bubble is also referred to by at least two other terms in the Scrollbar documentation.
What are they?

A - The other terms used to describe the bubble width are page size and visible . These terms seem
to be related to the use of a Scrollbar on the side or bottom of a window of text where the size of the
bubble is indicative of the amount of text that is visible in the window in relation to the amount of text in
the entire document..

Q - In JDK 1.1.3, the value of the Scrollbar object is represented by the center of the bubble: True
or False? If false, explain why.

A - False. The value of the Scrollbar object is represented by an edge of the bubble. For example,
the value is represented by the position of the left edge of the bubble for a horizontal Scrollbar . If you
want the position of the center of the bubble to represent a value , you must perform a numeric correction
(involving half the width of the bubble) on the value of the Scrollbar actually extracted from the event
object.

Q - All necessary initialization parameters for a Scrollbar object are provided as parameters to one of
the Scrollbar constructors: True or False: If false, explain why.

A - False. Although �ve di�erent initialization parameters are included as parameters to the Scrollbar
constructor, other important initialization parameters such as BlockIncrement and UnitIncrement
are not included in the parameter list. They must be set following instantiation using methods such as
setBlockIncrement .

Q - The AdjustmentEvent class provides �ve methods that can be used to obtain information about
the event. What are they and what kinds of information do they return?

A - The �ve methods and the information that they return are listed below:

• The getAdjustable method returns the identi�cation of the object that generated the event.
• The getAdjustmentType method returns the identi�cation of the type of event.
• The paramString method returns a variety of information which overlaps the two above methods

to some extent.
• The getValue method returns the value produced by the adjustment.
• The getValueIsAdjusting method returns true if this is one of multiple adjustment events. (This

method was not de�ned in the class when this lesson was originally written in 1997.)

Q - Write an application that meets the speci�cations given in the comments in the program shown in Listing
10 (p. 1614) . The graphic screen output produced by the program is shown in Figure 3 (p. 1613) .

Figure 3. Graphic screen output from SampProg125.java.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1609

Listing 10. Complete listing of the program named SampProg125.java.

/*File SampProg125.java from lesson 90

Copyright 1997, R. G. Baldwin

Without viewing the following solution, write a Java

application that meets the specifications given below.

To accommodate this program, you will need to be using

JDK 1.1.3 or a later version.

Write an application that places a vertical Scrollbar and a

Label on a Frame. The Label is used to display the

position of the center of the bubble in the Scrollbar.

The Scrollbar values should range from approximately -50

to +50 (exact end points are difficult to achieve).

The width of the bubble should be 10 units.

When you click on the buttons at the end of the Scrollbar,

the bubble should move by 3 units.

When you click in the area between the bubble and the

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1610 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

buttons, the bubble should move by 6 units.

When the program starts, the bubble should be centered

and the Label should indicate a bubble position of 0.

Closing the frame terminates the program.

End of specifications.

*/

//===

import java.awt.*;

import java.awt.event.*;

class SampProg125{

public static void main(String[] args){

GUI gui = new GUI();

}//end main

}//end class SampProg125

//==

class GUI{

Scrollbar myScrollbar;

Label displayWindow;

int bubbleWidth;//needs to be accessible by event handler

GUI(){

Frame myFrame = new Frame("Copyright 1997, R.G.Baldwin");

bubbleWidth = 10;

int initialPosition = 0 - bubbleWidth/2;

int min = -50 - bubbleWidth/2;

int max = 50 + bubbleWidth/2;

myScrollbar = new Scrollbar(Scrollbar.VERTICAL,

initialPosition, bubbleWidth, min, max);

myScrollbar.setBlockIncrement(6);

myScrollbar.setUnitIncrement(3);

displayWindow = new Label("value = 0");

//add components to the GUI

myFrame.add("East", myScrollbar);

myFrame.add("North", displayWindow);

myFrame.setSize(300,300);

myFrame.setVisible(true);

//Instantiate a listener object for the Scrollbar and

// register it to receive notification of adjustment

// events.

MyScrollbarListener myScrollbarListener =

new MyScrollbarListener(this);

//Note that the Scrollbar listener is not added as a

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1611

// ScrollbarListener but rather is added as an

// AdjustmentListener.

myScrollbar.addAdjustmentListener(myScrollbarListener);

//Close Frame to terminate.

myFrame.addWindowListener(new MyWindowListener());

}//end constructor

}//end class GUI

//===

//Note that unlike some other components which have their

// own listener interface, this class does not implement

// ScrollbarListener because there is no such interface.

// Rather, the AdjustmentListener interface is used as a

// listener interface for Scrollbars.

class MyScrollbarListener implements AdjustmentListener{

GUI thisObject; //save ref to GUI object here

MyScrollbarListener(GUI objectIn){//constructor

thisObject = objectIn;

}//end constructor

public void adjustmentValueChanged(AdjustmentEvent e){

int value;

//Display the value of the Scrollbar object in the

// Label. The value should represent the position

// of the bubble.

value = e.getValue();//get and save the value

//The following code is here to work around a possible

// bug in the Scrollbar object where small negative

// values are reported as very large positive values

// when the Scrollbar is adjusted by sliding the bubble.

if(value > 65000) value = value - 65536;

thisObject.displayWindow.setText("Value = "

+ (value + thisObject.bubbleWidth/2));

//The following seems like a kludge but is required to

// make the scrollbar bubble stay put. Otherwise, it

// jumps back to the previous value when you try to

// move it.

thisObject.myScrollbar.setValue(value);

}//end adjustmentValueChanged()

}//end class MyScrollbarListener

//===

//Listener to terminate the program when the Frame is

// closed.

class MyWindowListener extends WindowAdapter{

public void windowClosing(WindowEvent e){

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1612 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

System.exit(0);

}//end windowClosing()

}//end class MyWindowListener

4.4.2.11.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java090 Scrollbar (Adjustment) Event Handling
• File: Java090.htm
• Originally published: 1997

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.12 Java092 Mouse Motion Events
193

4.4.2.12.1 Table of contents

• Preface (p. 1617)
• Tutorial and code links (p. 1618)
• Miscellaneous (p. 1618)

4.4.2.12.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 194 .

In the meantime, this is one of the pages in a book titled Object-Oriented Programming (OOP) with
Java 195 that presents PDF versions of the original tutorials to make them readily available for Connexions

193This content is available online at <http://cnx.org/content/m59617/1.2/>.
194http://cnx.org/
195http://cnx.org/contents/-2RmHFs_:JVTd7bX1

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1613

users. When I have time available, I plan to update this tutorial and to re-publish it as a standard page at
cnx.org 196 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 197 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 198 . If not, you
can probably use a Google Advanced Search 199 to �nd a copy somewhere on the web.

4.4.2.12.3 Tutorial and code links

Click here 200 to download and view the PDF version of this page.
The representation of program code in PDF documents is often very unreliable. Click here 201 to download

a zip �le containing a clean copy of the program code discussed in this tutorial.

4.4.2.12.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java092 Mouse Motion Events
• File: Java092.cnx.htm
• Published: 01/14/16

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1618) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 202 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.13 Java094 Using Abbreviated Inner Classes
203

4.4.2.13.1 Table of contents

• Preface (p. 1619)
• Tutorial and code links (p. 1619)
• Miscellaneous (p. 1619)

196http://cnx.org/
197http://cnx.org/
198http://cnx.org/
199https://www.google.com/advanced_search
200http://cnx.org/content/m59617/latest/Java092.pdf
201http://cnx.org/content/m59617/latest/code.zip
202http://cnx.org/
203This content is available online at <http://cnx.org/content/m59641/1.1/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1614 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.2.13.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 204 .

In the meantime, this is one of the pages in a book titled Object-Oriented Programming (OOP) with
Java 205 that presents PDF versions of the original tutorials to make them readily available for Connexions
users. When I have time available, I plan to update this tutorial and to re-publish it as a standard page at
cnx.org 206 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 207 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 208 . If not, you
can probably use a Google Advanced Search 209 to �nd a copy somewhere on the web.

4.4.2.13.3 Tutorial and code links

Click here 210 to download and view the PDF version of this page.
The representation of program code in PDF documents is often very unreliable. Click here 211 to download

a zip �le containing a clean copy of the program code discussed in this tutorial.

4.4.2.13.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java094 Using Abbreviated Inner Classes
• File: Java094.cnx.htm
• Published: 01/14/16

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1619) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 212 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

204http://cnx.org/
205http://cnx.org/contents/-2RmHFs_:JVTd7bX1
206http://cnx.org/
207http://cnx.org/
208http://cnx.org/
209https://www.google.com/advanced_search
210http://cnx.org/content/m59641/latest/Java094.pdf
211http://cnx.org/content/m59641/latest/code.zip
212http://cnx.org/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1615

4.4.2.14 Java095 Container Events and More on Inner Classes
213

4.4.2.14.1 Table of contents

• Preface (p. 1620)
• Tutorial and code links (p. 1620)
• Miscellaneous (p. 1620)

4.4.2.14.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 214 .

In the meantime, this is one of the pages in a book titled Object-Oriented Programming (OOP) with
Java 215 that presents PDF versions of the original tutorials to make them readily available for Connexions
users. When I have time available, I plan to update this tutorial and to re-publish it as a standard page at
cnx.org 216 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 217 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 218 . If not, you
can probably use a Google Advanced Search 219 to �nd a copy somewhere on the web.

4.4.2.14.3 Tutorial and code links

Click here 220 to download and view the PDF version of this page.
The representation of program code in PDF documents is often very unreliable. Click here 221 to download

a zip �le containing a clean copy of the program code discussed in this tutorial.

4.4.2.14.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java095 Container Events and More on Inner Classes
• File: Java095.cnx.htm
• Published: 01/14/16

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1620) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

213This content is available online at <http://cnx.org/content/m59631/1.1/>.
214http://cnx.org/
215http://cnx.org/contents/-2RmHFs_:JVTd7bX1
216http://cnx.org/
217http://cnx.org/
218http://cnx.org/
219https://www.google.com/advanced_search
220http://cnx.org/content/m59631/latest/Java095.pdf
221http://cnx.org/content/m59631/latest/code.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1616 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 222 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.15 Java096 Program-Generated Events and the AWTEventMulticaster Class
223

4.4.2.15.1 Table of contents

• Preface (p. 1621)
• Tutorial and code links (p. 1621)
• Miscellaneous (p. 1621)

4.4.2.15.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 224 .

In the meantime, this is one of the pages in a book titled Object-Oriented Programming (OOP) with
Java 225 that presents PDF versions of the original tutorials to make them readily available for Connexions
users. When I have time available, I plan to update this tutorial and to re-publish it as a standard page at
cnx.org 226 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 227 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 228 . If not, you
can probably use a Google Advanced Search 229 to �nd a copy somewhere on the web.

4.4.2.15.3 Tutorial and code links

Click here 230 to download and view the PDF version of this page.
The representation of program code in PDF documents is often very unreliable. Click here 231 to download

a zip �le containing a clean copy of the program code discussed in this tutorial.

4.4.2.15.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

222http://cnx.org/
223This content is available online at <http://cnx.org/content/m59643/1.1/>.
224http://cnx.org/
225http://cnx.org/contents/-2RmHFs_:JVTd7bX1
226http://cnx.org/
227http://cnx.org/
228http://cnx.org/
229https://www.google.com/advanced_search
230http://cnx.org/content/m59643/latest/Java096.pdf
231http://cnx.org/content/m59643/latest/code.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1617

• Module name: Java096 Program-Generated Events and the AWTEventMulticaster Class
• File: Java096.cnx.htm
• Published: 01/14/16

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1621) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 232 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.16 Java097 Component Events
233

4.4.2.16.1 Table of contents

• Preface (p. 1622)
• Tutorial and code links (p. 1623)
• Miscellaneous (p. 1623)

4.4.2.16.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 234 .

In the meantime, this is one of the pages in a book titled Object-Oriented Programming (OOP) with
Java 235 that presents PDF versions of the original tutorials to make them readily available for Connexions
users. When I have time available, I plan to update this tutorial and to re-publish it as a standard page at
cnx.org 236 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 237 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 238 . If not, you
can probably use a Google Advanced Search 239 to �nd a copy somewhere on the web.

232http://cnx.org/
233This content is available online at <http://cnx.org/content/m59638/1.1/>.
234http://cnx.org/
235http://cnx.org/contents/-2RmHFs_:JVTd7bX1
236http://cnx.org/
237http://cnx.org/
238http://cnx.org/
239https://www.google.com/advanced_search

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1618 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.2.16.3 Tutorial and code links

Click here 240 to download and view the PDF version of this page.
The representation of program code in PDF documents is often very unreliable. Click here 241 to download

a zip �le containing a clean copy of the program code discussed in this tutorial.

4.4.2.16.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java097 Component Events
• File: Java097cnx.htm
• Published: 01/14/16

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1623) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 242 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.17 Java099 Item Events
243

4.4.2.17.1 Table of contents

• Preface (p. 1623)
• Tutorial and code links (p. 1624)
• Miscellaneous (p. 1624)

4.4.2.17.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 244 .

In the meantime, this is one of the pages in a book titled Object-Oriented Programming (OOP) with
Java 245 that presents PDF versions of the original tutorials to make them readily available for Connexions

240http://cnx.org/content/m59638/latest/Java097.pdf
241http://cnx.org/content/m59638/latest/code.zip
242http://cnx.org/
243This content is available online at <http://cnx.org/content/m59637/1.1/>.
244http://cnx.org/
245http://cnx.org/contents/-2RmHFs_:JVTd7bX1

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1619

users. When I have time available, I plan to update this tutorial and to re-publish it as a standard page at
cnx.org 246 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 247 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 248 . If not, you
can probably use a Google Advanced Search 249 to �nd a copy somewhere on the web.

4.4.2.17.3 Tutorial and code links

Click here 250 to download and view the PDF version of this page.
The representation of program code in PDF documents is often very unreliable. Click here 251 to download

a zip �le containing a clean copy of the program code discussed in this tutorial.

4.4.2.17.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java099 Item Events
• File: Java099.cnx.htm
• Published: 01/14/16

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1624) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 252 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.18 Java100 Creating, Trapping, and Processing Custom Event Types
253

4.4.2.18.1 Table of contents

• Preface (p. 1625)
• Tutorial and code links (p. 1625)
• Miscellaneous (p. 1625)

246http://cnx.org/
247http://cnx.org/
248http://cnx.org/
249https://www.google.com/advanced_search
250http://cnx.org/content/m59637/latest/Java099.pdf
251http://cnx.org/content/m59637/latest/code.zip
252http://cnx.org/
253This content is available online at <http://cnx.org/content/m59627/1.1/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1620 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.2.18.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 254 .

In the meantime, this is one of the pages in a book titled Object-Oriented Programming (OOP) with
Java 255 that presents PDF versions of the original tutorials to make them readily available for Connexions
users. When I have time available, I plan to update this tutorial and to re-publish it as a standard page at
cnx.org 256 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 257 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 258 . If not, you
can probably use a Google Advanced Search 259 to �nd a copy somewhere on the web.

4.4.2.18.3 Tutorial and code links

Click here 260 to download and view the PDF version of this page.
The representation of program code in PDF documents is often very unreliable. Click here 261 to download

a zip �le containing a clean copy of the program code discussed in this tutorial.

4.4.2.18.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java100 Creating, Trapping, and Processing Custom Event Types
• File: Java100.cnx.htm
• Published: 01/14/16

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1625) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 262 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

254http://cnx.org/
255http://cnx.org/contents/-2RmHFs_:JVTd7bX1
256http://cnx.org/
257http://cnx.org/
258http://cnx.org/
259https://www.google.com/advanced_search
260http://cnx.org/content/m59627/latest/Java100.pdf
261http://cnx.org/content/m59627/latest/code.zip
262http://cnx.org/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1621

4.4.2.19 Java101 Paint Events
263

4.4.2.19.1 Table of contents

• Preface (p. 1626)
• Tutorial link (p. 1626)
• Miscellaneous (p. 1626)

4.4.2.19.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 264 .

In the meantime, this is one of the pages in a book titled Object-Oriented Programming (OOP) with
Java 265 that presents PDF versions of the original tutorials to make them readily available for Connexions
users. When I have time available, I plan to update this tutorial and to re-publish it as a standard page at
cnx.org 266 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 267 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 268 . If not, you
can probably use a Google Advanced Search 269 to �nd a copy somewhere on the web.

4.4.2.19.3 Tutorial link

Click here 270 to download and view the PDF version of this page.

4.4.2.19.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java101 Paint Events
• File: Java101.cnx.htm
• Published: 01/15/16

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1626) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such

263This content is available online at <http://cnx.org/content/m59644/1.1/>.
264http://cnx.org/
265http://cnx.org/contents/-2RmHFs_:JVTd7bX1
266http://cnx.org/
267http://cnx.org/
268http://cnx.org/
269https://www.google.com/advanced_search
270http://cnx.org/content/m59644/latest/Java101.pdf

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1622 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

a book, please be aware that it is a copy of material that is freely available on cnx.org 271 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.20 Java102 Handling Events in Extended Components without Listener Objects
272

4.4.2.20.1 Table of contents

• Preface (p. 1627)
• Tutorial and code links (p. 1627)
• Miscellaneous (p. 1627)

4.4.2.20.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 273 .

In the meantime, this is one of the pages in a book titled Object-Oriented Programming (OOP) with
Java 274 that presents PDF versions of the original tutorials to make them readily available for Connexions
users. When I have time available, I plan to update this tutorial and to re-publish it as a standard page at
cnx.org 275 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 276 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 277 . If not, you
can probably use a Google Advanced Search 278 to �nd a copy somewhere on the web.

4.4.2.20.3 Tutorial and code links

Click here 279 to download and view the PDF version of this page.
The representation of program code in PDF documents is often very unreliable. Click here 280 to download

a zip �le containing a clean copy of the program code discussed in this tutorial.

4.4.2.20.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java102 Handling Events in Extended Components without Listener Objects
• File: Java102.cnx.htm
• Published: 01/15/16

271http://cnx.org/
272This content is available online at <http://cnx.org/content/m59658/1.1/>.
273http://cnx.org/
274http://cnx.org/contents/-2RmHFs_:JVTd7bX1
275http://cnx.org/
276http://cnx.org/
277http://cnx.org/
278https://www.google.com/advanced_search
279http://cnx.org/content/m59658/latest/Java102.pdf
280http://cnx.org/content/m59658/latest/code.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1623

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1627) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 281 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.21 Java104 Posting Synthetic Events to the System Event Queue
282

4.4.2.21.1 Table of contents

• Preface (p. 1628)
• Tutorial and code links (p. 1628)
• Miscellaneous (p. 1629)

4.4.2.21.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 283 .

In the meantime, this is one of the pages in a book titled Object-Oriented Programming (OOP) with
Java 284 that presents PDF versions of the original tutorials to make them readily available for Connexions
users. When I have time available, I plan to update this tutorial and to re-publish it as a standard page at
cnx.org 285 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 286 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 287 . If not, you
can probably use a Google Advanced Search 288 to �nd a copy somewhere on the web.

4.4.2.21.3 Tutorial and code links

Click here 289 to download and view the PDF version of this page.
The representation of program code in PDF documents is often very unreliable. Click here 290 to download

a zip �le containing a clean copy of the program code discussed in this tutorial.

281http://cnx.org/
282This content is available online at <http://cnx.org/content/m59650/1.1/>.
283http://cnx.org/
284http://cnx.org/contents/-2RmHFs_:JVTd7bX1
285http://cnx.org/
286http://cnx.org/
287http://cnx.org/
288https://www.google.com/advanced_search
289http://cnx.org/content/m59650/latest/Java104.pdf
290http://cnx.org/content/m59650/latest/code.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1624 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.2.21.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java104 Posting Synthetic Events to the System Event Queue
• File: Java104.cnx.htm
• Published: 01/15/16

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1628) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 291 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.22 Java105 Text Events
292

4.4.2.22.1 Table of contents

• Preface (p. 1629)
• Tutorial and code links (p. 1630)
• Miscellaneous (p. 1630)

4.4.2.22.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 293 .

In the meantime, this is one of the pages in a book titled Object-Oriented Programming (OOP) with
Java 294 that presents PDF versions of the original tutorials to make them readily available for Connexions
users. When I have time available, I plan to update this tutorial and to re-publish it as a standard page at
cnx.org 295 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 296 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 297 . If not, you
can probably use a Google Advanced Search 298 to �nd a copy somewhere on the web.

291http://cnx.org/
292This content is available online at <http://cnx.org/content/m59660/1.1/>.
293http://cnx.org/
294http://cnx.org/contents/-2RmHFs_:JVTd7bX1
295http://cnx.org/
296http://cnx.org/
297http://cnx.org/
298https://www.google.com/advanced_search

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1625

4.4.2.22.3 Tutorial and code links

Click here 299 to download and view the PDF version of this page.
The representation of program code in PDF documents is often very unreliable. Click here 300 to download

a zip �le containing a clean copy of the program code discussed in this tutorial.

4.4.2.22.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java105 Text Events
• File: Java105.cnx.htm
• Published: 01/15/16

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1630) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 301 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.23 Java107 Understanding Action Objects in Java
302

4.4.2.23.1 Table of contents

• Preface (p. 1630)
• Tutorial and code links (p. 1631)
• Miscellaneous (p. 1631)

4.4.2.23.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 303 .

In the meantime, this is one of the pages in a book titled Object-Oriented Programming (OOP) with
Java 304 that presents PDF versions of the original tutorials to make them readily available for Connexions

299http://cnx.org/content/m59660/latest/Java105.pdf
300http://cnx.org/content/m59660/latest/code.zip
301http://cnx.org/
302This content is available online at <http://cnx.org/content/m59662/1.1/>.
303http://cnx.org/
304http://cnx.org/contents/-2RmHFs_:JVTd7bX1

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1626 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

users. When I have time available, I plan to update this tutorial and to re-publish it as a standard page at
cnx.org 305 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 306 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 307 . If not, you
can probably use a Google Advanced Search 308 to �nd a copy somewhere on the web.

4.4.2.23.3 Tutorial and code links

Click here 309 to download and view the PDF version of this page.
The representation of program code in PDF documents is often very unreliable. Click here 310 to download

a zip �le containing a clean copy of the program code discussed in this tutorial.

4.4.2.23.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java107 Understanding Action Objects in Java
• File: Java107.cnx.htm
• Published: 01/15/16

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1631) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 311 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.24 Java110 The AWT Package, An Overview
312

This page is included in the following books:

• Object-Oriented Programming (OOP) with Java 313

• Java Graphics 314

305http://cnx.org/
306http://cnx.org/
307http://cnx.org/
308https://www.google.com/advanced_search
309http://cnx.org/content/m59662/latest/Java107.pdf
310http://cnx.org/content/m59662/latest/code.zip
311http://cnx.org/
312This content is available online at <http://cnx.org/content/m59567/1.2/>.
313http://cnx.org/contents/-2RmHFs_
314http://cnx.org/contents/rrRQJ3ZS:d69eq136

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1627

4.4.2.24.1 Table of contents

• Preface (p. 1632)
• Tutorial link (p. 1632)
• Miscellaneous (p. 1632)

4.4.2.24.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 315 .

In the meantime, this is one of the pages in a book titled Java Graphics 316 that presents PDF versions
of the original tutorials to make them readily available for Connexions users. When I have time available, I
plan to update this tutorial and to re-publish it as a standard page at cnx.org 317 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 318 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 319 . If not, you
can probably use a Google Advanced Search 320 to �nd a copy somewhere on the web.

4.4.2.24.3 Tutorial link

Click here 321 to download and view the PDF version of this page.

4.4.2.24.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java110 The AWT Package, An Overview
• File: Java110.cnx.htm
• Published: 01/12/16
• Revised: 01/15/16

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1632) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 322 and that
it was made and published without my prior knowledge.

315http://cnx.org/
316http://cnx.org/contents/rrRQJ3ZS
317http://cnx.org/
318http://cnx.org/
319http://cnx.org/
320https://www.google.com/advanced_search
321http://cnx.org/content/m59567/latest/Java110.pdf
322http://cnx.org/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1628 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.25 Java112 Placing Components in Containers, Absolute Coordinates
323

4.4.2.25.1 Table of contents

• Preface (p. 1633)
• Tutorial and code links (p. 1633)
• Miscellaneous (p. 1633)

4.4.2.25.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 324 .

In the meantime, this is one of the pages in a book titled Object-Oriented Programming (OOP) with
Java 325 that presents PDF versions of the original tutorials to make them readily available for Connexions
users. When I have time available, I plan to update this tutorial and to re-publish it as a standard page at
cnx.org 326 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 327 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 328 . If not, you
can probably use a Google Advanced Search 329 to �nd a copy somewhere on the web.

4.4.2.25.3 Tutorial and code links

Click here 330 to download and view the PDF version of this page.
The representation of program code in PDF documents is often very unreliable. Click here 331 to download

a zip �le containing a clean copy of the program code discussed in this tutorial.

4.4.2.25.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java112 Placing Components in Containers, Absolute Coordinates
• File: Java112.cnx.htm
• Published: 01/15/16

323This content is available online at <http://cnx.org/content/m59679/1.1/>.
324http://cnx.org/
325http://cnx.org/contents/-2RmHFs_:JVTd7bX1
326http://cnx.org/
327http://cnx.org/
328http://cnx.org/
329https://www.google.com/advanced_search
330http://cnx.org/content/m59679/latest/Java112.pdf
331http://cnx.org/content/m59679/latest/code.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1629

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1633) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 332 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.26 Java114 BorderLayout
333

4.4.2.26.1 Table of contents

• Preface (p. 1634)
• Tutorial and code links (p. 1634)
• Miscellaneous (p. 1635)

4.4.2.26.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 334 .

In the meantime, this is one of the pages in a book titled Object-Oriented Programming (OOP) with
Java 335 that presents PDF versions of the original tutorials to make them readily available for Connexions
users. When I have time available, I plan to update this tutorial and to re-publish it as a standard page at
cnx.org 336 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 337 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 338 . If not, you
can probably use a Google Advanced Search 339 to �nd a copy somewhere on the web.

4.4.2.26.3 Tutorial and code links

Click here 340 to download and view the PDF version of this page.
The representation of program code in PDF documents is often very unreliable. Click here 341 to download

a zip �le containing a clean copy of the program code discussed in this tutorial.

332http://cnx.org/
333This content is available online at <http://cnx.org/content/m59654/1.1/>.
334http://cnx.org/
335http://cnx.org/contents/-2RmHFs_:JVTd7bX1
336http://cnx.org/
337http://cnx.org/
338http://cnx.org/
339https://www.google.com/advanced_search
340http://cnx.org/content/m59654/latest/Java114.pdf
341http://cnx.org/content/m59654/latest/code.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1630 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.2.26.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java114 BorderLayout
• File: Java114.cnx.htm
• Published: 01/15/16

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1634) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 342 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.27 Java116 FlowLayout
343

4.4.2.27.1 Table of contents

• Preface (p. 1635)
• Tutorial and code links (p. 1636)
• Miscellaneous (p. 1636)

4.4.2.27.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 344 .

In the meantime, this is one of the pages in a book titled Object-Oriented Programming (OOP) with
Java 345 that presents PDF versions of the original tutorials to make them readily available for Connexions
users. When I have time available, I plan to update this tutorial and to re-publish it as a standard page at
cnx.org 346 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 347 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 348 . If not, you
can probably use a Google Advanced Search 349 to �nd a copy somewhere on the web.

342http://cnx.org/
343This content is available online at <http://cnx.org/content/m59678/1.1/>.
344http://cnx.org/
345http://cnx.org/contents/-2RmHFs_:JVTd7bX1
346http://cnx.org/
347http://cnx.org/
348http://cnx.org/
349https://www.google.com/advanced_search

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1631

4.4.2.27.3 Tutorial and code links

Click here 350 to download and view the PDF version of this page.
The representation of program code in PDF documents is often very unreliable. Click here 351 to download

a zip �le containing a clean copy of the program code discussed in this tutorial.

4.4.2.27.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java116 FlowLayout
• File: Java116.cnx.htm
• Published: 01/15/16

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1636) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 352 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.28 Java118 GridLayout
353

4.4.2.28.1 Table of contents

• Preface (p. 1636)
• Tutorial and code links (p. 1637)
• Miscellaneous (p. 1637)

4.4.2.28.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 354 .

In the meantime, this is one of the pages in a book titled Object-Oriented Programming (OOP) with
Java 355 that presents PDF versions of the original tutorials to make them readily available for Connexions

350http://cnx.org/content/m59678/latest/Java116.pdf
351http://cnx.org/content/m59678/latest/code.zip
352http://cnx.org/
353This content is available online at <http://cnx.org/content/m59664/1.1/>.
354http://cnx.org/
355http://cnx.org/contents/-2RmHFs_:JVTd7bX1

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1632 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

users. When I have time available, I plan to update this tutorial and to re-publish it as a standard page at
cnx.org 356 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 357 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 358 . If not, you
can probably use a Google Advanced Search 359 to �nd a copy somewhere on the web.

4.4.2.28.3 Tutorial and code links

Click here 360 to download and view the PDF version of this page.
The representation of program code in PDF documents is often very unreliable. Click here 361 to download

a zip �le containing a clean copy of the program code discussed in this tutorial.

4.4.2.28.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java118 GridLayout
• File: Java118.cnx.htm
• Published: 01/15/16

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1637) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 362 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.29 Java120 CardLayout
363

4.4.2.29.1 Table of contents

• Preface (p. 1638)
• Tutorial and code links (p. 1638)
• Miscellaneous (p. 1638)

356http://cnx.org/
357http://cnx.org/
358http://cnx.org/
359https://www.google.com/advanced_search
360http://cnx.org/content/m59664/latest/Java118.pdf
361http://cnx.org/content/m59664/latest/code.zip
362http://cnx.org/
363This content is available online at <http://cnx.org/content/m59674/1.1/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1633

4.4.2.29.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 364 .

In the meantime, this is one of the pages in a book titled Object-Oriented Programming (OOP) with
Java 365 that presents PDF versions of the original tutorials to make them readily available for Connexions
users. When I have time available, I plan to update this tutorial and to re-publish it as a standard page at
cnx.org 366 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 367 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 368 . If not, you
can probably use a Google Advanced Search 369 to �nd a copy somewhere on the web.

4.4.2.29.3 Tutorial and code links

Click here 370 to download and view the PDF version of this page.
The representation of program code in PDF documents is often very unreliable. Click here 371 to download

a zip �le containing a clean copy of the program code discussed in this tutorial.

4.4.2.29.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java120 CardLayout
• File: Java120.cnx.htm
• Published: 01/15/16

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1638) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 372 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

364http://cnx.org/
365http://cnx.org/contents/-2RmHFs_:JVTd7bX1
366http://cnx.org/
367http://cnx.org/
368http://cnx.org/
369https://www.google.com/advanced_search
370http://cnx.org/content/m59674/latest/Java120.pdf
371http://cnx.org/content/m59674/latest/code.zip
372http://cnx.org/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1634 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.2.30 Java1855 The KeyEventDispatcher in Java
373

4.4.2.30.1 Table of contents

• Preface (p. 1639)
• Tutorial and code links (p. 1639)
• Miscellaneous (p. 1639)

4.4.2.30.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 374 .

In the meantime, this is one of the pages in a book titled Object-Oriented Programming (OOP) with
Java 375 that presents PDF versions of the original tutorials to make them readily available for Connexions
users. When I have time available, I plan to update this tutorial and to re-publish it as a standard page at
cnx.org 376 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 377 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 378 . If not, you
can probably use a Google Advanced Search 379 to �nd a copy somewhere on the web.

4.4.2.30.3 Tutorial and code links

Click here 380 to download and view the PDF version of this page.
The representation of program code in PDF documents is often very unreliable. Click here 381 to download

a zip �le containing a clean copy of the program code discussed in this tutorial.

4.4.2.30.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java1855 The KeyEventDispatcher in Java
• File: Java1855cnx.htm
• Published: 01/15/16

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1639) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

373This content is available online at <http://cnx.org/content/m59669/1.1/>.
374http://cnx.org/
375http://cnx.org/contents/-2RmHFs_:JVTd7bX1
376http://cnx.org/
377http://cnx.org/
378http://cnx.org/
379https://www.google.com/advanced_search
380http://cnx.org/content/m59669/latest/Java1855.pdf
381http://cnx.org/content/m59669/latest/code.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1635

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 382 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.2.31 Java1856 The KeyEventPostProcessor in Java (Capturing Keyboard Strokes in
Java)

383

4.4.2.31.1 Table of contents

• Preface (p. 1640)
• Tutorial and code links (p. 1640)
• Miscellaneous (p. 1640)

4.4.2.31.2 Preface

Over the years, I have published a large number of tutorials in the areas of computer programming and digital
signal processing (DSP). As I have time available, I am converting the more signi�cant of those tutorials
into cnxml code and re-publishing them at cnx.org 384 .

In the meantime, this is one of the pages in a book titled Object-Oriented Programming (OOP) with
Java 385 that presents PDF versions of the original tutorials to make them readily available for Connexions
users. When I have time available, I plan to update this tutorial and to re-publish it as a standard page at
cnx.org 386 .

This tutorial may contain internal links to other tutorials that I have written and published somewhere
on the web. Those links may, or may not still be good. In any event, if you search cnx.org 387 for the tutorial
by title or by topic, you will probably �nd a clean copy of the referenced tutorial at cnx.org 388 . If not, you
can probably use a Google Advanced Search 389 to �nd a copy somewhere on the web.

4.4.2.31.3 Tutorial and code links

Click here 390 to download and view the PDF version of this page.
The representation of program code in PDF documents is often very unreliable. Click here 391 to download

a zip �le containing a clean copy of the program code discussed in this tutorial.

4.4.2.31.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

382http://cnx.org/
383This content is available online at <http://cnx.org/content/m59671/1.1/>.
384http://cnx.org/
385http://cnx.org/contents/-2RmHFs_:JVTd7bX1
386http://cnx.org/
387http://cnx.org/
388http://cnx.org/
389https://www.google.com/advanced_search
390http://cnx.org/content/m59671/latest/Java1856.pdf
391http://cnx.org/content/m59671/latest/code.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1636 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

• Module name: Java1856 The KeyEventPostProcessor in Java (Capturing Keyboard Strokes
in Java)
• File: Java1856.cnx.htm
• Published: 01/15/16

Disclaimers: Financial : Although the Connexions website makes it possible for you to
purchase a pre-printed version of the book containing this page, please be aware that the pre-printed
version probably won't contain the contents of the PDF �le referenced above (p. 1640) .

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the pre-printed version of the book.

In the past, unknown individuals have copied my materials from cnx.org, converted them to Kindle
books, and have placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of material that is freely available on cnx.org 392 and that
it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.3 Event Handling with Graphics

4.4.3.1 Part 1

4.4.3.1.1 Java3102 Java OOP Modifying the World and SimpleTurtle Classes
393

4.4.3.1.1.1 Table of Contents

• Preface (p. 1641)

· Viewing tip (p. 1642)

* Figures (p. 1642)
* Listings (p. 1642)

• Preview (p. 1642)
• Discussion and sample code (p. 1644)
• Run the program (p. 1646)
• Summary (p. 1646)
• What's next? (p. 1646)
• Miscellaneous (p. 1647)
• Complete program listings (p. 1647)

4.4.3.1.1.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 394 .

392http://cnx.org/
393This content is available online at <http://cnx.org/content/m44330/1.5/>.
394http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1637

4.4.3.1.1.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

4.4.3.1.1.2.1.1 Figures

• Figure 1 (p. 1642) . The required graphic output image.
• Figure 2 (p. 1643) . Required output on the command line screen.

4.4.3.1.1.2.1.2 Listings

• Listing 1 (p. 1644) . Modi�cation to load a jpg �le by default.
• Listing 2 (p. 1645) . Original array containing turtle colors.
• Listing 3 (p. 1645) . Modi�ed array of turtle colors.
• Listing 4 (p. 1646) . Change the initial heading.
• Listing 5 (p. 1647) . Source code for driver class named Prob01..
• Listing 6 (p. 1647) . Source code for the modi�ed World class..
• Listing 7 (p. 1653) . Source code for the modi�ed SimpleTurtle class..

4.4.3.1.1.3 Preview

Program speci�cations
Write a program named Prob01 that uses the class de�nition shown in Listing 5 (p. 1647) and Ericson's

media library along with the image �le named Prob01.jpg to produce the graphic output image shown
in Figure 1 (p. 1642) .

Figure 1 - The required graphic output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1638 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

No new classes
You may not de�ne any new classes to cause your program to behave as required, and you may not

modify the class de�nition for the class named Prob01 given in Listing 5 (p. 1647) . You must copy and
modify (if necessary) the following media classes to cause your program to produce the required output:

• World.java
• Turtle.java
• SimpleTurtle.java

Files in your folder
Your folder must contain only the following class �les, source-code �les, and image �les:

• Prob01.class
• Prob01.java
• Prob01.jpg
• SimpleTurtle.class
• SimpleTurtle.java
• Turtle.class
• Turtle.java
• World.class
• World.java

Output text
In addition to the output image described above, your program must produce the output text on the

command- line screen shown in Figure 2 (p. 1643) .

Figure 2 - Required output on the command line screen.

Dick Baldwin

Picture, filename Prob01.jpg height 274 width 365

Dick Baldwin

Dick Baldwin

Dick Baldwin

Dick Baldwin

Table 4.230

You must substitute your name for mine wherever my name appears in the image and on the command-
line screen.

An analysis
As is often the case, the real challenge with this problem is to decide what needs to be done to satisfy

the speci�cations.
Required modi�cations
By comparing the default behavior of the World and SimpleTurtle classes with the requirements

of this program, it can be determined that the following modi�cations to the World and SimpleTurtle
classes are required to meet the speci�cations. (Modi�cation of the Turtle class is not required) :

• Modify the World class to load a picture named Prob01.jpg as the default background for the
world in place of the all-white Picture object.

• Modify the World class to display the student's name near the top of the image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1639

• Modify the World class to display the student's name and information about the picture on the
command-line screen.

• Modify the SimpleTurtle class to change the initial heading for new turtle objects to northeast
instead of north.

• Modify the SimpleTurtle class to change the order in which colors are assigned to new turtles as
they are instantiated.

4.4.3.1.1.4 Discussion and sample code

4.4.3.1.1.4.1 Modi�cations to the World class

Ericson's World class was modi�ed to cause it to load a jpg �le by default instead of displaying a blank
picture by default. It was also modi�ed to cause it to display text on the background image and to display
text on the command line screen. These changes are re�ected in Figure 1 (p. 1642) and Figure 2 (p. 1643) .

A complete listing of the modi�ed World class is shown in Listing 6 (p. 1647) .
Modifying the code
The code used to accomplish the modi�cations described above is shown in Listing 1 (p. 1644) .

Listing 1 - Modi�cation to load a jpg �le by default.

//create the background picture

//picture = new Picture(width,height);

picture = new Picture("Prob01.jpg");

picture.addMessage("Dick Baldwin",10,20);

System.out.println(picture);

Table 4.231

Note that one original statement was disabled and replaced by three new statements.
In addition, several other println statements were added at strategic locations within the World and

SimpleTurtle classes (not shown here) to cause the student's name to appear multiple times in the text
output shown in Figure 2 (p. 1643) .

Meeting the requirements
These modi�cations to the World and SimpleTurtle classes met the following requirements estab-

lished earlier under Analysis 395 .

• Modify the World class to load a picture named Prob01.jpg as the default background for the
world in place of the all-white Picture object.

• Modify the World class to display the student's name near the top of the image.
• Modify the World class to display the student's name and information about the picture on the

command-line screen.

395http://cnx.org/content/m44330/latest/Lecture01.htm#Analysis

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1640 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.3.1.1.4.2 Modi�cations to the SimpleTurtle class

The SimpleTurtle class was modi�ed to change the order in which colors are assigned to new turtle
objects and to change the initial heading of the turtle from north to northeast.

A complete listing of the modi�ed SimpleTurtle class is shown in Listing 7 (p. 1653) near the end of
the module.

Change the order of color assignment
Listing 2 (p. 1645) declares and initializes an array of color data that is used in the original version of

the SimpleTurtle class to assign colors to the turtles on a cyclical basis as they are instantiated.

Listing 2 - Original array containing turtle colors.

/** array of colors to use for the turtles */

private static Color[] colorArray =

{ Color.green,

Color.cyan,

new Color(204,0,204),

Color.gray};

Table 4.232

Listing 3 (p. 1645) declares and initializes a modi�ed version of the array of color data that is used to
assign colors to the turtles as they are instantiated.

Listing 3 - Modi�ed array of turtle colors.

/** array of colors to use for the turtles */

private static Color[] colorArray =

{ Color.cyan,

new Color(204,0,204),

Color.green,

Color.gray};

Table 4.233

Determining which color to use
The code that assigns colors to the turtles as they are instantiated keeps track of the number of turtle

objects that have been instantiated.
An index is computed as the
turtle count modulus the length of the array .
The colors are extracted from the array on a cyclical basis as more and more turtle objects are instantiated.
Each time the number of turtles is evenly divisible by the length of the array, the index used to access

colors from the array starts over at zero.
Meeting the requirements
This modi�cation to the SimpleTurtle class accomplished the following requirement established earlier

under Analysis 396 .

396http://cnx.org/content/m44330/latest/Lecture01.htm#Analysis

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1641

• Modify the SimpleTurtle class to change the order in which colors are assigned to new turtles as
they are instantiated.

Change the initial heading
Listing 4 (p. 1646) modi�es the initialization value for a variable named heading , which is used to

establish the direction that the turtle is facing.

Listing 4 - Change the initial heading.

/** heading angle */

//THIS IS A MODIFICATION

//private double heading = 0;//default faces north

private double heading = 45;// default faces northeast

Table 4.234

The default direction in the original version of the class is due north or zero degrees. The modi�ed default
direction is northeast or 45 degrees.

Meeting the requirements
This modi�cation to the SimpleTurtle class accomplished the following requirement established earlier

under Analysis 397 .

• Modify the SimpleTurtle class to change the initial heading for new turtle objects to northeast
instead of north.

That completes the required modi�cations that were established under Analysis 398 .

4.4.3.1.1.5 Run the program

I encourage you to copy the code from Listing 5 (p. 1647) , Listing 6 (p. 1647) , and Listing 7 (p. 1653) .
Compile the code and execute it. Experiment with the code, making changes, and observing the results of
your changes. Make certain that you can explain why your changes behave as they do.

Click Prob01.jpg 399 to download the required input image �le.

4.4.3.1.1.6 Summary

You learned how to make simple modi�cation to the World and SimpleTurtle classes that modify how
a program that uses Ericson's library behaves.

4.4.3.1.1.7 What's next?

This module dealt with modi�cations to the World and SimpleTurtle Classes. The next module will
deal with modi�cations to the Turtle and SimpleTurtle Classes.

397http://cnx.org/content/m44330/latest/Lecture01.htm#Analysis
398http://cnx.org/content/m44330/latest/Lecture01.htm#Analysis
399http://cnx.org/content/m44330/latest/Prob01.jpg

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1642 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.3.1.1.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Modifying the World and SimpleTurtle Classes
• File: Java3102.htm
• Revised: 02/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

4.4.3.1.1.9 Complete program listings

Complete listings of the classes discussed in this module are shown in Listing 5 (p. 1647) , Listing 6 (p.
1647) , and Listing 7 (p. 1653) below.

Listing 5 - Source code for driver class named Prob01.

public class Prob01{

public static void main(String[] args){

World mars = new World(200,250);

Turtle joe = new Turtle(mars);

joe.forward();

Turtle bill = new Turtle(mars);

bill.moveTo(50,125);

Turtle sue = new Turtle(mars);

sue.moveTo(150,125);

Turtle tom = new Turtle(mars);

tom.moveTo(100,225);

}//end main method

}//end class Prob01

Table 4.235

Listing 6 - Source code for the modi�ed World class.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1643

import javax.swing.*;

import java.util.List;

import java.util.ArrayList;

import java.util.Iterator;

import java.util.Observer;

import java.awt.*;

/*Note, this version of the World class was modified to

* cause it to load a jpg file by default instead of

* displaying a blank picture by default. 12/23/08

*/

/**

* Class to represent a 2d world that can hold turtles and

* display them

*

* Copyright Georgia Institute of Technology 2004

* @author Barb Ericson ericson@cc.gatech.edu

*/

public class World extends JComponent implements ModelDisplay

{

////////////////// fields ///////////////////////

/** should automatically repaint when model changed */

private boolean autoRepaint = true;

/** the background color for the world */

private Color background = Color.WHITE;

/** the width of the world */

private int width = 640;

/** the height of the world */

private int height = 480;

/** the list of turtles in the world */

private List<Turtle> turtleList = new ArrayList<Turtle>();

/** the JFrame to show this world in */

private JFrame frame = new JFrame("World");

/** background picture */

private Picture picture = null;

////////////////// the constructors ///////////////

/**

* Constructor that takes no arguments

*/

public World()

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1644 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

{

// set up the world and make it visible

initWorld(true);

}

/**

* Constructor that takes a boolean to

* say if this world should be visible

* or not

* @param visibleFlag if true will be visible

* else if false will not be visible

*/

public World(boolean visibleFlag)

{

initWorld(visibleFlag);

}

/**

* Constructor that takes a width and height for this

* world

* @param w the width for the world

* @param h the height for the world

*/

public World(int w, int h)

{

width = w;

height = h;

System.out.println("Dick Baldwin");

// set up the world and make it visible

initWorld(true);

}

///////////////// methods ///////////////////////////

/**

* Method to initialize the world

* @param visibleFlag the flag to make the world

* visible or not

*/

private void initWorld(boolean visibleFlag)

{

// set the preferred size

this.setPreferredSize(new Dimension(width,height));

// create the background picture

//THIS IS A MODIFICATION

//picture = new Picture(width,height);

picture = new Picture("Prob01.jpg");

picture.addMessage("Dick Baldwin",10,20);

System.out.println(picture);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1645

// add this panel to the frame

frame.getContentPane().add(this);

// pack the frame

frame.pack();

// show this world

frame.setVisible(visibleFlag);

}

/**

* Method to get the graphics context for drawing on

* @return the graphics context of the background picture

*/

public Graphics getGraphics() { return picture.getGraphics(); }

/**

* Method to clear the background picture

*/

public void clearBackground() { picture = new Picture(width,height); }

/**

* Method to get the background picture

* @return the background picture

*/

public Picture getPicture() { return picture; }

/**

* Method to set the background picture

* @param pict the background picture to use

*/

public void setPicture(Picture pict) { picture = pict; }

/**

* Method to paint this component

* @param g the graphics context

*/

public synchronized void paintComponent(Graphics g)

{

Turtle turtle = null;

// draw the background image

g.drawImage(picture.getImage(),0,0,null);

// loop drawing each turtle on the background image

Iterator iterator = turtleList.iterator();

while (iterator.hasNext())

{

turtle = (Turtle) iterator.next();

turtle.paintComponent(g);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1646 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

}

}

/**

* Metod to get the last turtle in this world

* @return the last turtle added to this world

*/

public Turtle getLastTurtle()

{

return (Turtle) turtleList.get(turtleList.size() - 1);

}

/**

* Method to add a model to this model displayer

* @param model the model object to add

*/

public void addModel(Object model)

{

turtleList.add((Turtle) model);

if (autoRepaint)

repaint();

}

/**

* Method to check if this world contains the passed

* turtle

* @return true if there else false

*/

public boolean containsTurtle(Turtle turtle)

{

return (turtleList.contains(turtle));

}

/**

* Method to remove the passed object from the world

* @param model the model object to remove

*/

public void remove(Object model)

{

turtleList.remove(model);

}

/**

* Method to get the width in pixels

* @return the width in pixels

*/

public int getWidth() { return width; }

/**

* Method to get the height in pixels

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1647

* @return the height in pixels

*/

public int getHeight() { return height; }

/**

* Method that allows the model to notify the display

*/

public void modelChanged()

{

if (autoRepaint)

repaint();

}

/**

* Method to set the automatically repaint flag

* @param value if true will auto repaint

*/

public void setAutoRepaint(boolean value) { autoRepaint = value; }

/**

* Method to hide the frame

*/

// public void hide()

// {

// frame.setVisible(false);

// }

/**

* Method to show the frame

*/

// public void show()

// {

// frame.setVisible(true);

// }

/**

* Method to set the visibility of the world

* @param value a boolean value to say if should show or hide

*/

public void setVisible(boolean value)

{

frame.setVisible(value);

}

/**

* Method to get the list of turtles in the world

* @return a list of turtles in the world

*/

public List getTurtleList()

{ return turtleList;}

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1648 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

/**

* Method to get an iterator on the list of turtles

* @return an iterator for the list of turtles

*/

public Iterator getTurtleIterator()

{ return turtleList.iterator();}

/**

* Method that returns information about this world

* in the form of a string

* @return a string of information about this world

*/

public String toString()

{

return "A " + getWidth() + " by " + getHeight() +

" world with " + turtleList.size() + " turtles in it.";

}

} // end of World class

Listing 7 - Source code for the modi�ed SimpleTurtle class.

import javax.swing.*;

import java.awt.*;

import java.awt.font.*;

import java.awt.geom.*;

import java.util.Observer;

import java.util.Random;

/*Note: This class was modified to change the order of the

* colors used for new turtle objects as well as the

* initial heading for the turtle. 12/23/08

*/

/**

*Class that represents a Logo-style turtle. The turtle

* starts off facing north.

* A turtle can have a name, has a starting x and y position,

* has a heading, has a width, has a height, has a visible

* flag, has a body color, can have a shell color, and has a pen.

* The turtle will not go beyond the model display or picture

* boundaries.

*

* You can display this turtle in either a picture or in

* a class that implements ModelDisplay.

*

* Copyright Georgia Institute of Technology 2004

* @author Barb Ericson ericson@cc.gatech.edu

*/

public class SimpleTurtle

{

///////////////// fields ////////////////////////

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1649

/** count of the number of turtles created */

private static int numTurtles = 0;

/** array of colors to use for the turtles */

//THIS IS A MODIFICATION

//THE ORDER OF THE COLORS IN THE ARRAY HAS BEEN MODIFIED

private static Color[] colorArray = { Color.cyan, new Color(204,0,204),Color.green, Color.gray};

/** who to notify about changes to this turtle */

private ModelDisplay modelDisplay = null;

/** picture to draw this turtle on */

private Picture picture = null;

/** width of turtle in pixels */

private int width = 15;

/** height of turtle in pixels */

private int height = 18;

/** current location in x (center) */

private int xPos = 0;

/** current location in y (center) */

private int yPos = 0;

/** heading angle */

//THIS IS A MODIFICATION

//private double heading = 0;// default is facing north

private double heading = 45;// default is facing northeast

/** pen to use for this turtle */

private Pen pen = new Pen();

/** color to draw the body in */

private Color bodyColor = null;

/** color to draw the shell in */

private Color shellColor = null;

/** color of information string */

private Color infoColor = Color.black;

/** flag to say if this turtle is visible */

private boolean visible = true;

/** flag to say if should show turtle info */

private boolean showInfo = false;

/** the name of this turtle */

private String name = "No name";

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1650 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

////////////////// constructors ///////////////////

/**

* Constructor that takes the x and y position for the

* turtle

* @param x the x pos

* @param y the y pos

*/

public SimpleTurtle(int x, int y)

{

xPos = x;

yPos = y;

bodyColor = colorArray[numTurtles % colorArray.length];

setPenColor(bodyColor);

numTurtles++;

}

/**

* Constructor that takes the x and y position and the

* model displayer

* @param x the x pos

* @param y the y pos

* @param display the model display

*/

public SimpleTurtle(int x, int y, ModelDisplay display)

{

this(x,y); // invoke constructor that takes x and y

modelDisplay = display;

display.addModel(this);

}

/**

* Constructor that takes a model display and adds

* a turtle in the middle of it

* @param display the model display

*/

public SimpleTurtle(ModelDisplay display)

{

// invoke constructor that takes x and y

this((int) (display.getWidth() / 2),

(int) (display.getHeight() / 2));

modelDisplay = display;

display.addModel(this);

System.out.println("Dick Baldwin");

}

/**

* Constructor that takes the x and y position and the

* picture to draw on

* @param x the x pos

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1651

* @param y the y pos

* @param picture the picture to draw on

*/

public SimpleTurtle(int x, int y, Picture picture)

{

this(x,y); // invoke constructor that takes x and y

this.picture = picture;

this.visible = false; // default is not to see the turtle

}

/**

* Constructor that takes the

* picture to draw on and will appear in the middle

* @param picture the picture to draw on

*/

public SimpleTurtle(Picture picture)

{

// invoke constructor that takes x and y

this((int) (picture.getWidth() / 2),

(int) (picture.getHeight() / 2));

this.picture = picture;

this.visible = false; // default is not to see the turtle

}

//////////////////// methods /////////////////////////

/**

* Get the distance from the passed x and y location

* @param x the x location

* @param y the y location

*/

public double getDistance(int x, int y)

{

int xDiff = x - xPos;

int yDiff = y - yPos;

return (Math.sqrt((xDiff * xDiff) + (yDiff * yDiff)));

}

/**

* Method to turn to face another simple turtle

*/

public void turnToFace(SimpleTurtle turtle)

{

turnToFace(turtle.xPos,turtle.yPos);

}

/**

* Method to turn towards the given x and y

* @param x the x to turn towards

* @param y the y to turn towards

*/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1652 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

public void turnToFace(int x, int y)

{

double dx = x - this.xPos;

double dy = y - this.yPos;

double arcTan = 0.0;

double angle = 0.0;

// avoid a divide by 0

if (dx == 0)

{

// if below the current turtle

if (dy > 0)

heading = 180;

// if above the current turtle

else if (dy < 0)

heading = 0;

}

// dx isn't 0 so can divide by it

else

{

arcTan = Math.toDegrees(Math.atan(dy / dx));

if (dx < 0)

heading = arcTan - 90;

else

heading = arcTan + 90;

}

// notify the display that we need to repaint

updateDisplay();

}

/**

* Method to get the picture for this simple turtle

* @return the picture for this turtle (may be null)

*/

public Picture getPicture() { return this.picture; }

/**

* Method to set the picture for this simple turtle

* @param pict the picture to use

*/

public void setPicture(Picture pict) { this.picture = pict; }

/**

* Method to get the model display for this simple turtle

* @return the model display if there is one else null

*/

public ModelDisplay getModelDisplay() { return this.modelDisplay; }

/**

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1653

* Method to set the model display for this simple turtle

* @param theModelDisplay the model display to use

*/

public void setModelDisplay(ModelDisplay theModelDisplay)

{ this.modelDisplay = theModelDisplay; }

/**

* Method to get value of show info

* @return true if should show info, else false

*/

public boolean getShowInfo() { return this.showInfo; }

/**

* Method to show the turtle information string

* @param value the value to set showInfo to

*/

public void setShowInfo(boolean value) { this.showInfo = value; }

/**

* Method to get the shell color

* @return the shell color

*/

public Color getShellColor()

{

Color color = null;

if (this.shellColor == null && this.bodyColor != null)

color = bodyColor.darker();

else color = this.shellColor;

return color;

}

/**

* Method to set the shell color

* @param color the color to use

*/

public void setShellColor(Color color) { this.shellColor = color; }

/**

* Method to get the body color

* @return the body color

*/

public Color getBodyColor() { return this.bodyColor; }

/**

* Method to set the body color which

* will also set the pen color

* @param color the color to use

*/

public void setBodyColor(Color color)

{

this.bodyColor = color;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1654 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

setPenColor(this.bodyColor);

}

/**

* Method to set the color of the turtle.

* This will set the body color

* @param color the color to use

*/

public void setColor(Color color) { this.setBodyColor(color); }

/**

* Method to get the information color

* @return the color of the information string

*/

public Color getInfoColor() { return this.infoColor; }

/**

* Method to set the information color

* @param color the new color to use

*/

public void setInfoColor(Color color) { this.infoColor = color; }

/**

* Method to return the width of this object

* @return the width in pixels

*/

public int getWidth() { return this.width; }

/**

* Method to return the height of this object

* @return the height in pixels

*/

public int getHeight() { return this.height; }

/**

* Method to set the width of this object

* @param theWidth in width in pixels

*/

public void setWidth(int theWidth) { this.width = theWidth; }

/**

* Method to set the height of this object

* @param theHeight the height in pixels

*/

public void setHeight(int theHeight) { this.height = theHeight; }

/**

* Method to get the current x position

* @return the x position (in pixels)

*/

public int getXPos() { return this.xPos; }

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1655

/**

* Method to get the current y position

* @return the y position (in pixels)

*/

public int getYPos() { return this.yPos; }

/**

* Method to get the pen

* @return the pen

*/

public Pen getPen() { return this.pen; }

/**

* Method to set the pen

* @param thePen the new pen to use

*/

public void setPen(Pen thePen) { this.pen = thePen; }

/**

* Method to check if the pen is down

* @return true if down else false

*/

public boolean isPenDown() { return this.pen.isPenDown(); }

/**

* Method to set the pen down boolean variable

* @param value the value to set it to

*/

public void setPenDown(boolean value) { this.pen.setPenDown(value); }

/**

* Method to lift the pen up

*/

public void penUp() { this.pen.setPenDown(false);}

/**

* Method to set the pen down

*/

public void penDown() { this.pen.setPenDown(true);}

/**

* Method to get the pen color

* @return the pen color

*/

public Color getPenColor() { return this.pen.getColor(); }

/**

* Method to set the pen color

* @param color the color for the pen ink

*/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1656 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

public void setPenColor(Color color) { this.pen.setColor(color); }

/**

* Method to set the pen width

* @param width the width to use in pixels

*/

public void setPenWidth(int width) { this.pen.setWidth(width); }

/**

* Method to get the pen width

* @return the width of the pen in pixels

*/

public int getPenWidth() { return this.pen.getWidth(); }

/**

* Method to clear the path (history of

* where the turtle has been)

*/

public void clearPath()

{

this.pen.clearPath();

}

/**

* Method to get the current heading

* @return the heading in degrees

*/

public double getHeading() { return this.heading; }

/**

* Method to set the heading

* @param heading the new heading to use

*/

public void setHeading(double heading)

{

this.heading = heading;

}

/**

* Method to get the name of the turtle

* @return the name of this turtle

*/

public String getName() { return this.name; }

/**

* Method to set the name of the turtle

* @param theName the new name to use

*/

public void setName(String theName)

{

this.name = theName;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1657

}

/**

* Method to get the value of the visible flag

* @return true if visible else false

*/

public boolean isVisible() { return this.visible;}

/**

* Method to hide the turtle (stop showing it)

* This doesn't affect the pen status

*/

public void hide() { this.setVisible(false); }

/**

* Method to show the turtle (doesn't affect

* the pen status

*/

public void show() { this.setVisible(true); }

/**

* Method to set the visible flag

* @param value the value to set it to

*/

public void setVisible(boolean value)

{

// if the turtle wasn't visible and now is

if (visible == false && value == true)

{

// update the display

this.updateDisplay();

}

// set the visibile flag to the passed value

this.visible = value;

}

/**

* Method to update the display of this turtle and

* also check that the turtle is in the bounds

*/

public synchronized void updateDisplay()

{

// check that x and y are at least 0

if (xPos < 0)

xPos = 0;

if (yPos < 0)

yPos = 0;

// if picture

if (picture != null)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1658 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

{

if (xPos >= picture.getWidth())

xPos = picture.getWidth() - 1;

if (yPos >= picture.getHeight())

yPos = picture.getHeight() - 1;

Graphics g = picture.getGraphics();

paintComponent(g);

}

else if (modelDisplay != null)

{

if (xPos >= modelDisplay.getWidth())

xPos = modelDisplay.getWidth() - 1;

if (yPos >= modelDisplay.getHeight())

yPos = modelDisplay.getHeight() - 1;

modelDisplay.modelChanged();

}

}

/**

* Method to move the turtle foward 100 pixels

*/

public void forward() { forward(100); }

/**

* Method to move the turtle forward the given number of pixels

* @param pixels the number of pixels to walk forward in the heading direction

*/

public void forward(int pixels)

{

int oldX = xPos;

int oldY = yPos;

// change the current position

xPos = oldX + (int) (pixels * Math.sin(Math.toRadians(heading)));

yPos = oldY + (int) (pixels * -Math.cos(Math.toRadians(heading)));

// add a move from the old position to the new position to the pen

pen.addMove(oldX,oldY,xPos,yPos);

// update the display to show the new line

updateDisplay();

}

/**

* Method to go backward by 100 pixels

*/

public void backward()

{

backward(100);

}

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1659

/**

* Method to go backward a given number of pixels

* @param pixels the number of pixels to walk backward

*/

public void backward(int pixels)

{

forward(-pixels);

}

/**

* Method to move to turtle to the given x and y location

* @param x the x value to move to

* @param y the y value to move to

*/

public void moveTo(int x, int y)

{

this.pen.addMove(xPos,yPos,x,y);

this.xPos = x;

this.yPos = y;

this.updateDisplay();

}

/**

* Method to turn left

*/

public void turnLeft()

{

this.turn(-90);

}

/**

* Method to turn right

*/

public void turnRight()

{

this.turn(90);

}

/**

* Method to turn the turtle the passed degrees

* use negative to turn left and pos to turn right

* @param degrees the amount to turn in degrees

*/

public void turn(int degrees)

{

this.heading = (heading + degrees) % 360;

this.updateDisplay();

}

/**

* Method to draw a passed picture at the current turtle

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1660 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

* location and rotation in a picture or model display

* @param dropPicture the picture to drop

*/

public synchronized void drop(Picture dropPicture)

{

Graphics2D g2 = null;

// only do this if drawing on a picture

if (picture != null)

g2 = (Graphics2D) picture.getGraphics();

else if (modelDisplay != null)

g2 = (Graphics2D) modelDisplay.getGraphics();

// if g2 isn't null

if (g2 != null)

{

// save the current tranform

AffineTransform oldTransform = g2.getTransform();

// rotate to turtle heading and translate to xPos and yPos

g2.rotate(Math.toRadians(heading),xPos,yPos);

// draw the passed picture

g2.drawImage(dropPicture.getImage(),xPos,yPos,null);

// reset the tranformation matrix

g2.setTransform(oldTransform);

// draw the pen

pen.paintComponent(g2);

}

}

/**

* Method to paint the turtle

* @param g the graphics context to paint on

*/

public synchronized void paintComponent(Graphics g)

{

// cast to 2d object

Graphics2D g2 = (Graphics2D) g;

// if the turtle is visible

if (visible)

{

// save the current tranform

AffineTransform oldTransform = g2.getTransform();

// rotate the turtle and translate to xPos and yPos

g2.rotate(Math.toRadians(heading),xPos,yPos);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1661

// determine the half width and height of the shell

int halfWidth = (int) (width/2); // of shell

int halfHeight = (int) (height/2); // of shell

int quarterWidth = (int) (width/4); // of shell

int thirdHeight = (int) (height/3); // of shell

int thirdWidth = (int) (width/3); // of shell

// draw the body parts (head)

g2.setColor(bodyColor);

g2.fillOval(xPos - quarterWidth,

yPos - halfHeight - (int) (height/3),

halfWidth, thirdHeight);

g2.fillOval(xPos - (2 * thirdWidth),

yPos - thirdHeight,

thirdWidth,thirdHeight);

g2.fillOval(xPos - (int) (1.6 * thirdWidth),

yPos + thirdHeight,

thirdWidth,thirdHeight);

g2.fillOval(xPos + (int) (1.3 * thirdWidth),

yPos - thirdHeight,

thirdWidth,thirdHeight);

g2.fillOval(xPos + (int) (0.9 * thirdWidth),

yPos + thirdHeight,

thirdWidth,thirdHeight);

// draw the shell

g2.setColor(getShellColor());

g2.fillOval(xPos - halfWidth,

yPos - halfHeight, width, height);

// draw the info string if the flag is true

if (showInfo)

drawInfoString(g2);

// reset the tranformation matrix

g2.setTransform(oldTransform);

}

// draw the pen

pen.paintComponent(g);

}

/**

* Method to draw the information string

* @param g the graphics context

*/

public synchronized void drawInfoString(Graphics g)

{

g.setColor(infoColor);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1662 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

g.drawString(this.toString(),xPos + (int) (width/2),yPos);

}

/**

* Method to return a string with informaiton

* about this turtle

* @return a string with information about this object

*/

public String toString()

{

return this.name + " turtle at " + this.xPos + ", " +

this.yPos + " heading " + this.heading + ".";

}

} // end of class

-end-

4.4.3.1.2 Java3104 Java OOP Modi�cations to the Turtle and SimpleTurtle Classes
400

4.4.3.1.2.1 Table of Contents

• Preface (p. 1667)

· Viewing tip (p. 1667)

* Figures (p. 1668)
* Listings (p. 1668)

• Preview (p. 1668)
• Discussion and sample code (p. 1669)
• Run the program (p. 1671)
• Summary (p. 1671)
• What's next? (p. 1671)
• Miscellaneous (p. 1672)
• Complete program listing (p. 1672)

4.4.3.1.2.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 401 .

4.4.3.1.2.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

400This content is available online at <http://cnx.org/content/m44348/1.5/>.
401http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1663

4.4.3.1.2.2.1.1 Figures

• Figure 1 (p. 1668) . Required screen output.
• Figure 2 (p. 1669) . Required text output.

4.4.3.1.2.2.1.2 Listings

• Listing 1 (p. 1670) . Modi�ed Turtle constructor. .
• Listing 2 (p. 1670) . Modi�ed SimpleTurtle constructor.
• Listing 3 (p. 1671) . Modi�ed toString method.
• Listing 4 (p. 1672) . Source code for the class named Prob02.
• Listing 5 (p. 1672) . Modi�ed Turtle class.
• Listing 6 (p. 1674) . Modi�ed SimpleTurtle class.

4.4.3.1.2.3 Preview

Program speci�cations
Write a program named Prob02 that uses the class de�nition shown in Listing 4 (p. 1672) and Ericson's

media library to produce the graphic output image shown in Figure 1 (p. 1668) .
Figure 1 - Required screen output.

No new classes allowed
You may not de�ne any new classes to cause your program to behave as required, and you may not

modify the class de�nition for the class named Prob02 given in Listing 4 (p. 1672) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1664 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Files in your folder
You must copy and modify (as necessary) the media classes named Turtle.java and SimpleTur-

tle.java from Ericson's library to cause your program to produce the required output.
Your folder must contain only the following class �les and source-code �les:

• Prob02.class
• Prob02.java
• SimpleTurtle.class
• SimpleTurtle.java
• Turtle.class
• Turtle.java

Output text
In addition to the output image described above, your program must produce the text output shown in

Figure 2 (p. 1669) on the command- line screen

Figure 2 - Required text output.

Dick Baldwin

My name is Joe the turtle.

Table 4.236

Required modi�cations
By comparing the default behavior of the Turtle and SimpleTurtle classes with the requirements

of this program, it can be determined that the following modi�cations to the Turtle and SimpleTurtle
classes are required to meet the speci�cations.

1. Modify the Turtle class to cause the student's name to be displayed on the command line.
2. Modify the Turtle and SimpleTurtle classes to accept and save a String parameter in addition

to the World parameter when the Turtle object is constructed.
3. Modify the SimpleTurtle class to cause the default background of the world to be BLUE.
4. Modify the SimpleTurtle class to cause the student's name to be displayed near the top of the
World image.

5. Modify the toString method in the SimpleTurtle class to cause it to return the value of the
String parameter whenever the toString method is called. This causes the drawInfoString
method to display the string in place of its normal behavior. It also causes the last statement in Listing
4 (p. 1672) to display the turtle's name.

4.4.3.1.2.4 Discussion and sample code

4.4.3.1.2.4.1 Modi�cations to the Turtle class

Ericson's Turtle class was modi�ed according to the �rst two items listed above under required modi�ca-
tions 402 .

A complete listing of the modi�ed Turtle class is provided in Listing 5 (p. 1672) near the end of the
module.

Modi�cation to the Turtle constructor
402http://cnx.org/content/m44348/latest/Lecture02.htm#Required_modi�cations

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1665

The Turtle class has several overloaded constructors. One of the constructors was modi�ed to accept
a String parameter in addition to the World parameter and pass the new parameter along to the
superclass constructor. The code is shown in Listing 1 (p. 1670) .

Listing 1 - Modi�ed Turtle constructor.

public Turtle (ModelDisplay modelDisplay,

String turtleName){

// let the parent constructor handle it

super(modelDisplay,turtleName);

System.out.println("Dick Baldwin");

}

Table 4.237

A println statement was also added to the modi�ed constructor to cause it to display the student's
name on the command line screen when the Turtle object is constructed as shown in Figure 2.

4.4.3.1.2.4.2 Modi�cations to the SimpleTurtle class

A complete listing of the modi�ed SimpleTurtle class is shown in Listing 6 (p. 1674) near the end of the
module.

The superclass of the Turtle class
The SimpleTurtle class is the superclass of the Turtle class. Therefore, the SimpleTurtle class

must be modi�ed to accept the String parameter passed to the superclass in Listing 1 (p. 1670) . This
was accomplished by modifying one of the constructors of the SimpleTurtle class as shown in Listing 2
(p. 1670) .

Listing 2 - Modi�ed SimpleTurtle constructor.

String turtleName = null;

public SimpleTurtle(ModelDisplay display,

String turtleName){

// call constructor that takes x and y

this((int) (display.getWidth() / 2),

(int) (display.getHeight() / 2));

modelDisplay = display;

display.addModel(this);

//THIS IS THE MODIFICATION

this.turtleName = turtleName;

Picture picture = ((World)(display)).getPicture();

picture.setAllPixelsToAColor(Color.BLUE);

picture.addMessage("Dick Baldwin",10,20);

}

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1666 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Table 4.238

The modi�cation is shown in the last four statements in Listing 2 (p. 1670) . This modi�cation satis�es
items 2, 3, and 4 listed earlier under required modi�cations 403 .

Modi�ed toString method
Listing 3 (p. 1671) shows the modi�ed toString method that satis�es item 5 listed above under

required modi�cations 404 .

Listing 3 - Modi�ed toString method.

public String toString(){

//return this.name + " turtle at " + this.xPos + ", " +

// this.yPos + " heading " + this.heading + ".";

return "My name is " + turtleName + " the turtle.";

}//end toString

Table 4.239

The original code was preserved as comments in Listing 3 (p. 1671) , and the new modi�ed code is shown
below those comments.

4.4.3.1.2.5 Run the program

I encourage you to copy the code from Listing 4 (p. 1672) , Listing 5 (p. 1672) , and Listing 6 (p. 1674) .
Compile the code and execute it. Experiment with the code, making changes, and observing the results of
your changes. Make certain that you can explain why your changes behave as they do.

4.4.3.1.2.6 Summary

You learned how to:

1. Modify the Turtle class to cause the student's name to be displayed on the command line.
2. Modify the Turtle and SimpleTurtle classes to accept and save a String parameter in addition

to the World parameter when the Turtle object is constructed.
3. Modify the SimpleTurtle class to cause the default background of the world to be BLUE.
4. Modify the SimpleTurtle class to cause the student's name to be displayed near the top of the
World image.

5. Modify the toString method in the SimpleTurtle class to cause it to return the value of the
String parameter whenever the toString method is called. This causes the drawInfoString
method to display the string in place of its normal behavior. It also causes the last statement in Listing
4 (p. 1672) to display the turtle's name.

4.4.3.1.2.7 What's next?

In the next module, you will learn how to incorporate GUI components into a World object. In particular,
you will learn how to add a JButton object to a World object and register an action listener on the
button to control the behavior of the program.

403http://cnx.org/content/m44348/latest/Lecture02.htm#Required_modi�cations
404http://cnx.org/content/m44348/latest/Lecture02.htm#Required_modi�cations

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1667

4.4.3.1.2.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Modi�cations to the Turtle and SimpleTurtle Classes
• File: Java3104.htm
• Revised: 02/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

4.4.3.1.2.9 Complete program listing

Complete listings of the programs discussed in this module are shown below.

Listing 4 - Source code for the class named Prob02.

import java.awt.Color;

public class Prob02{

public static void main(String[] args){

World mars = new World(200,300);

Turtle joe = new Turtle(mars,"Joe");

joe.moveTo(20,280);

joe.setInfoColor(Color.WHITE);

joe.setShowInfo(true);

System.out.println(joe);

}//end main method

}//end class Prob02

Table 4.240

Listing 5 - Modi�ed Turtle class.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1668 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

/*12/23/0812/23/08 This class and the class named

SimpleTurtle were modified to:

Accept and save a String parameter in addition to the

World parameter when the Turtle object is constructed.

Modify the toString method to cause it to return the

value of the String parameter whenever the toString

method is called. This causes the drawInfoString method

to display the string in place of its normal behavior.

Cause the default background of the world to be BLUE.

Cause the student's name to be displayed near the top of

the World image.

Cause the student's name as well as the turtle's name to

be displayed on the command line.

*/

/**

* Class that represents a turtle which is similar to a Logo turtle.

* This class inherts from SimpleTurtle and is for students

* to add methods to.

*

* Copyright Georgia Institute of Technology 2004

* @author Barb Ericson ericson@cc.gatech.edu

*/

public class Turtle extends SimpleTurtle

{

////////////////// constructors ///////////////////////

/** Constructor that takes the x and y and a picture to

* draw on

* @param x the starting x position

* @param y the starting y position

* @param picture the picture to draw on

*/

public Turtle (int x, int y, Picture picture)

{

// let the parent constructor handle it

super(x,y,picture);

}

/** Constructor that takes the x and y and a model

* display to draw it on

* @param x the starting x position

* @param y the starting y position

* @param modelDisplayer the thing that displays the model

*/

public Turtle (int x, int y,

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1669

ModelDisplay modelDisplayer)

{

// let the parent constructor handle it

super(x,y,modelDisplayer);

}

//THIS IS A MODIFICATION

//The following constructor was modified to accept and

// save a String parameter and pass it to the superclass

// constructor.

/** Constructor that takes the model display

* @param modelDisplay the thing that displays the model

*/

public Turtle (ModelDisplay modelDisplay,

String turtleName){

// let the parent constructor handle it

super(modelDisplay,turtleName);

System.out.println("Dick Baldwin");

}

/**

* Constructor that takes a picture to draw on

* @param p the picture to draw on

*/

public Turtle (Picture p)

{

// let the parent constructor handle it

super(p);

}

/////////////////// methods ///////////////////////

} // this } is the end of class Turtle, put all new methods before this

Listing 6 - Modi�ed SimpleTurtle class.

import javax.swing.*;

import java.awt.*;

import java.awt.font.*;

import java.awt.geom.*;

import java.util.Observer;

import java.util.Random;

/*12/23/08 This class and the class named Turtle were

modified to:

Accept and save a String parameter in addition to the

World parameter when the Turtle object is constructed.

Modify the toString method to cause it to return the

value of the String parameter whenever the toString

method is called. This causes the drawInfoString method

to display the string in place of its normal behavior.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1670 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Cause the default background of the world to be BLUE.

Cause the student's name to be displayed near the top of

the World image.

Cause the student's name as well as the turtle's name to

be displayed on the command line.

*/

/**

* Class that represents a Logo-style turtle. The turtle

* starts off facing north.

* A turtle can have a name, has a starting x and y position,

* has a heading, has a width, has a height, has a visible

* flag, has a body color, can have a shell color, and has a pen.

* The turtle will not go beyond the model display or picture

* boundaries.

*

* You can display this turtle in either a picture or in

* a class that implements ModelDisplay.

*

* Copyright Georgia Institute of Technology 2004

* @author Barb Ericson ericson@cc.gatech.edu

*/

public class SimpleTurtle

{

///////////////// fields ////////////////////////

/** count of the number of turtles created */

private static int numTurtles = 0;

/** array of colors to use for the turtles */

private static Color[] colorArray = { Color.green, Color.cyan, new Color(204,0,204), Color.gray};

/** who to notify about changes to this turtle */

private ModelDisplay modelDisplay = null;

/** picture to draw this turtle on */

private Picture picture = null;

/** width of turtle in pixels */

private int width = 15;

/** height of turtle in pixels */

private int height = 18;

/** current location in x (center) */

private int xPos = 0;

/** current location in y (center) */

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1671

private int yPos = 0;

/** heading angle */

private double heading = 0; // default is facing north

/** pen to use for this turtle */

private Pen pen = new Pen();

/** color to draw the body in */

private Color bodyColor = null;

/** color to draw the shell in */

private Color shellColor = null;

/** color of information string */

private Color infoColor = Color.black;

/** flag to say if this turtle is visible */

private boolean visible = true;

/** flag to say if should show turtle info */

private boolean showInfo = false;

/** the name of this turtle */

private String name = "No name";

////////////////// constructors ///////////////////

/**

* Constructor that takes the x and y position for the

* turtle

* @param x the x pos

* @param y the y pos

*/

public SimpleTurtle(int x, int y)

{

xPos = x;

yPos = y;

bodyColor = colorArray[numTurtles % colorArray.length];

setPenColor(bodyColor);

numTurtles++;

}

/**

* Constructor that takes the x and y position and the

* model displayer

* @param x the x pos

* @param y the y pos

* @param display the model display

*/

public SimpleTurtle(int x, int y, ModelDisplay display)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1672 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

{

this(x,y); // call constructor that takes x and y

modelDisplay = display;

display.addModel(this);

}

//THIS IS A MODIFICATION

//The following constructor was modified to accept and

// save a String parameter.

String turtleName = null;

/**

* Constructor that takes a model display and adds

* a turtle in the middle of it

* @param display the model display

*/

public SimpleTurtle(ModelDisplay display,

String turtleName){

// call constructor that takes x and y

this((int) (display.getWidth() / 2),

(int) (display.getHeight() / 2));

modelDisplay = display;

display.addModel(this);

this.turtleName = turtleName;

Picture picture = ((World)(display)).getPicture();

//THIS IS A MODIFICATION

picture.setAllPixelsToAColor(Color.BLUE);

picture.addMessage("Dick Baldwin",10,20);

}

/**

* Constructor that takes the x and y position and the

* picture to draw on

* @param x the x pos

* @param y the y pos

* @param picture the picture to draw on

*/

public SimpleTurtle(int x, int y, Picture picture)

{

this(x,y); // call constructor that takes x and y

this.picture = picture;

this.visible = false; // default is not to see the turtle

}

/**

* Constructor that takes the

* picture to draw on and will appear in the middle

* @param picture the picture to draw on

*/

public SimpleTurtle(Picture picture)

{

// call constructor that takes x and y

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1673

this((int) (picture.getWidth() / 2),

(int) (picture.getHeight() / 2));

this.picture = picture;

this.visible = false; // default is not to see the turtle

}

//////////////////// methods /////////////////////////

/**

* Get the distance from the passed x and y location

* @param x the x location

* @param y the y location

*/

public double getDistance(int x, int y)

{

int xDiff = x - xPos;

int yDiff = y - yPos;

return (Math.sqrt((xDiff * xDiff) + (yDiff * yDiff)));

}

/**

* Method to turn to face another simple turtle

*/

public void turnToFace(SimpleTurtle turtle)

{

turnToFace(turtle.xPos,turtle.yPos);

}

/**

* Method to turn towards the given x and y

* @param x the x to turn towards

* @param y the y to turn towards

*/

public void turnToFace(int x, int y)

{

double dx = x - this.xPos;

double dy = y - this.yPos;

double arcTan = 0.0;

double angle = 0.0;

// avoid a divide by 0

if (dx == 0)

{

// if below the current turtle

if (dy > 0)

heading = 180;

// if above the current turtle

else if (dy < 0)

heading = 0;

}

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1674 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

// dx isn't 0 so can divide by it

else

{

arcTan = Math.toDegrees(Math.atan(dy / dx));

if (dx < 0)

heading = arcTan - 90;

else

heading = arcTan + 90;

}

// notify the display that we need to repaint

updateDisplay();

}

/**

* Method to get the picture for this simple turtle

* @return the picture for this turtle (may be null)

*/

public Picture getPicture() { return this.picture; }

/**

* Method to set the picture for this simple turtle

* @param pict the picture to use

*/

public void setPicture(Picture pict) { this.picture = pict; }

/**

* Method to get the model display for this simple turtle

* @return the model display if there is one else null

*/

public ModelDisplay getModelDisplay() { return this.modelDisplay; }

/**

* Method to set the model display for this simple turtle

* @param theModelDisplay the model display to use

*/

public void setModelDisplay(ModelDisplay theModelDisplay)

{ this.modelDisplay = theModelDisplay; }

/**

* Method to get value of show info

* @return true if should show info, else false

*/

public boolean getShowInfo() { return this.showInfo; }

/**

* Method to show the turtle information string

* @param value the value to set showInfo to

*/

public void setShowInfo(boolean value) { this.showInfo = value; }

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1675

/**

* Method to get the shell color

* @return the shell color

*/

public Color getShellColor()

{

Color color = null;

if (this.shellColor == null && this.bodyColor != null)

color = bodyColor.darker();

else color = this.shellColor;

return color;

}

/**

* Method to set the shell color

* @param color the color to use

*/

public void setShellColor(Color color) { this.shellColor = color; }

/**

* Method to get the body color

* @return the body color

*/

public Color getBodyColor() { return this.bodyColor; }

/**

* Method to set the body color which

* will also set the pen color

* @param color the color to use

*/

public void setBodyColor(Color color)

{

this.bodyColor = color;

setPenColor(this.bodyColor);

}

/**

* Method to set the color of the turtle.

* This will set the body color

* @param color the color to use

*/

public void setColor(Color color) { this.setBodyColor(color); }

/**

* Method to get the information color

* @return the color of the information string

*/

public Color getInfoColor() { return this.infoColor; }

/**

* Method to set the information color

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1676 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

* @param color the new color to use

*/

public void setInfoColor(Color color) { this.infoColor = color; }

/**

* Method to return the width of this object

* @return the width in pixels

*/

public int getWidth() { return this.width; }

/**

* Method to return the height of this object

* @return the height in pixels

*/

public int getHeight() { return this.height; }

/**

* Method to set the width of this object

* @param theWidth in width in pixels

*/

public void setWidth(int theWidth) { this.width = theWidth; }

/**

* Method to set the height of this object

* @param theHeight the height in pixels

*/

public void setHeight(int theHeight) { this.height = theHeight; }

/**

* Method to get the current x position

* @return the x position (in pixels)

*/

public int getXPos() { return this.xPos; }

/**

* Method to get the current y position

* @return the y position (in pixels)

*/

public int getYPos() { return this.yPos; }

/**

* Method to get the pen

* @return the pen

*/

public Pen getPen() { return this.pen; }

/**

* Method to set the pen

* @param thePen the new pen to use

*/

public void setPen(Pen thePen) { this.pen = thePen; }

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1677

/**

* Method to check if the pen is down

* @return true if down else false

*/

public boolean isPenDown() { return this.pen.isPenDown(); }

/**

* Method to set the pen down boolean variable

* @param value the value to set it to

*/

public void setPenDown(boolean value) { this.pen.setPenDown(value); }

/**

* Method to lift the pen up

*/

public void penUp() { this.pen.setPenDown(false);}

/**

* Method to set the pen down

*/

public void penDown() { this.pen.setPenDown(true);}

/**

* Method to get the pen color

* @return the pen color

*/

public Color getPenColor() { return this.pen.getColor(); }

/**

* Method to set the pen color

* @param color the color for the pen ink

*/

public void setPenColor(Color color) { this.pen.setColor(color); }

/**

* Method to set the pen width

* @param width the width to use in pixels

*/

public void setPenWidth(int width) { this.pen.setWidth(width); }

/**

* Method to get the pen width

* @return the width of the pen in pixels

*/

public int getPenWidth() { return this.pen.getWidth(); }

/**

* Method to clear the path (history of

* where the turtle has been)

*/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1678 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

public void clearPath()

{

this.pen.clearPath();

}

/**

* Method to get the current heading

* @return the heading in degrees

*/

public double getHeading() { return this.heading; }

/**

* Method to set the heading

* @param heading the new heading to use

*/

public void setHeading(double heading)

{

this.heading = heading;

}

/**

* Method to get the name of the turtle

* @return the name of this turtle

*/

public String getName() { return this.name; }

/**

* Method to set the name of the turtle

* @param theName the new name to use

*/

public void setName(String theName)

{

this.name = theName;

}

/**

* Method to get the value of the visible flag

* @return true if visible else false

*/

public boolean isVisible() { return this.visible;}

/**

* Method to hide the turtle (stop showing it)

* This doesn't affect the pen status

*/

public void hide() { this.setVisible(false); }

/**

* Method to show the turtle (doesn't affect

* the pen status

*/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1679

public void show() { this.setVisible(true); }

/**

* Method to set the visible flag

* @param value the value to set it to

*/

public void setVisible(boolean value)

{

// if the turtle wasn't visible and now is

if (visible == false && value == true)

{

// update the display

this.updateDisplay();

}

// set the visibile flag to the passed value

this.visible = value;

}

/**

* Method to update the display of this turtle and

* also check that the turtle is in the bounds

*/

public synchronized void updateDisplay()

{

// check that x and y are at least 0

if (xPos < 0)

xPos = 0;

if (yPos < 0)

yPos = 0;

// if picture

if (picture != null)

{

if (xPos >= picture.getWidth())

xPos = picture.getWidth() - 1;

if (yPos >= picture.getHeight())

yPos = picture.getHeight() - 1;

Graphics g = picture.getGraphics();

paintComponent(g);

}

else if (modelDisplay != null)

{

if (xPos >= modelDisplay.getWidth())

xPos = modelDisplay.getWidth() - 1;

if (yPos >= modelDisplay.getHeight())

yPos = modelDisplay.getHeight() - 1;

modelDisplay.modelChanged();

}

}

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1680 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

/**

* Method to move the turtle foward 100 pixels

*/

public void forward() { forward(100); }

/**

* Method to move the turtle forward the given number of pixels

* @param pixels the number of pixels to walk forward in the heading direction

*/

public void forward(int pixels)

{

int oldX = xPos;

int oldY = yPos;

// change the current position

xPos = oldX + (int) (pixels * Math.sin(Math.toRadians(heading)));

yPos = oldY + (int) (pixels * -Math.cos(Math.toRadians(heading)));

// add a move from the old position to the new position to the pen

pen.addMove(oldX,oldY,xPos,yPos);

// update the display to show the new line

updateDisplay();

}

/**

* Method to go backward by 100 pixels

*/

public void backward()

{

backward(100);

}

/**

* Method to go backward a given number of pixels

* @param pixels the number of pixels to walk backward

*/

public void backward(int pixels)

{

forward(-pixels);

}

/**

* Method to move to turtle to the given x and y location

* @param x the x value to move to

* @param y the y value to move to

*/

public void moveTo(int x, int y)

{

this.pen.addMove(xPos,yPos,x,y);

this.xPos = x;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1681

this.yPos = y;

this.updateDisplay();

}

/**

* Method to turn left

*/

public void turnLeft()

{

this.turn(-90);

}

/**

* Method to turn right

*/

public void turnRight()

{

this.turn(90);

}

/**

* Method to turn the turtle the passed degrees

* use negative to turn left and pos to turn right

* @param degrees the amount to turn in degrees

*/

public void turn(int degrees)

{

this.heading = (heading + degrees) % 360;

this.updateDisplay();

}

/**

* Method to draw a passed picture at the current turtle

* location and rotation in a picture or model display

* @param dropPicture the picture to drop

*/

public synchronized void drop(Picture dropPicture)

{

Graphics2D g2 = null;

// only do this if drawing on a picture

if (picture != null)

g2 = (Graphics2D) picture.getGraphics();

else if (modelDisplay != null)

g2 = (Graphics2D) modelDisplay.getGraphics();

// if g2 isn't null

if (g2 != null)

{

// save the current tranform

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1682 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

AffineTransform oldTransform = g2.getTransform();

// rotate to turtle heading and translate to xPos and yPos

g2.rotate(Math.toRadians(heading),xPos,yPos);

// draw the passed picture

g2.drawImage(dropPicture.getImage(),xPos,yPos,null);

// reset the tranformation matrix

g2.setTransform(oldTransform);

// draw the pen

pen.paintComponent(g2);

}

}

/**

* Method to paint the turtle

* @param g the graphics context to paint on

*/

public synchronized void paintComponent(Graphics g)

{

// cast to 2d object

Graphics2D g2 = (Graphics2D) g;

// if the turtle is visible

if (visible)

{

// save the current tranform

AffineTransform oldTransform = g2.getTransform();

// rotate the turtle and translate to xPos and yPos

g2.rotate(Math.toRadians(heading),xPos,yPos);

// determine the half width and height of the shell

int halfWidth = (int) (width/2); // of shell

int halfHeight = (int) (height/2); // of shell

int quarterWidth = (int) (width/4); // of shell

int thirdHeight = (int) (height/3); // of shell

int thirdWidth = (int) (width/3); // of shell

// draw the body parts (head)

g2.setColor(bodyColor);

g2.fillOval(xPos - quarterWidth,

yPos - halfHeight - (int) (height/3),

halfWidth, thirdHeight);

g2.fillOval(xPos - (2 * thirdWidth),

yPos - thirdHeight,

thirdWidth,thirdHeight);

g2.fillOval(xPos - (int) (1.6 * thirdWidth),

yPos + thirdHeight,

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1683

thirdWidth,thirdHeight);

g2.fillOval(xPos + (int) (1.3 * thirdWidth),

yPos - thirdHeight,

thirdWidth,thirdHeight);

g2.fillOval(xPos + (int) (0.9 * thirdWidth),

yPos + thirdHeight,

thirdWidth,thirdHeight);

// draw the shell

g2.setColor(getShellColor());

g2.fillOval(xPos - halfWidth,

yPos - halfHeight, width, height);

// draw the info string if the flag is true

if (showInfo)

drawInfoString(g2);

// reset the tranformation matrix

g2.setTransform(oldTransform);

}

// draw the pen

pen.paintComponent(g);

}

/**

* Method to draw the information string

* @param g the graphics context

*/

public synchronized void drawInfoString(Graphics g)

{

g.setColor(infoColor);

g.drawString(this.toString(),xPos + (int) (width/2),yPos);

}

//This toString method was modified.

/**

* Method to return a string with informaiton

* about this turtle

* @return a string with information about this object

*/

//THIS IS A MODIFICATION

//MODIFIED toString METHOD

public String toString()

{

// return this.name + " turtle at " + this.xPos + ", " +

// this.yPos + " heading " + this.heading + ".";

return "My name is " + turtleName + " the turtle.";

}

} // end of class

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1684 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

-end-

4.4.3.1.3 Java3106 Java OOP Incorporating GUI Components into a World Object
405

4.4.3.1.3.1 Table of Contents

• Preface (p. 1689)

· Viewing tip (p. 1689)

* Figures (p. 1689)
* Listings (p. 1689)

• Preview (p. 1690)
• Discussion and sample code (p. 1692)
• Run the program (p. 1697)
• Summary (p. 1697)
• What's next? (p. 1698)
• Miscellaneous (p. 1698)
• Complete program listing (p. 1698)

4.4.3.1.3.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 406 .

4.4.3.1.3.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

4.4.3.1.3.2.1.1 Figures

• Figure 1 (p. 1690) . Initial screen output.
• Figure 2 (p. 1690) . Screen output after clicking the button.
• Figure 3 (p. 1692) . Required text output.

4.4.3.1.3.2.1.2 Listings

• Listing 1 (p. 1692) . The new getFrame method.
• Listing 2 (p. 1693) . Prob03 class de�nition.
• Listing 3 (p. 1693) . Beginning of the Prob03Runner class.
• Listing 4 (p. 1694) . Beginning of the run method.
• Listing 5 (p. 1695) . Register an action listener on the button.
• Listing 6 (p. 1695) . Set the picture background to blue.
• Listing 7 (p. 1697) . Display the student's name on the picture.
• Listing 8 (p. 1697) . Add a turtle to the world.
• Listing 9 (p. 1698) . Source code for the program named Prob03.
• Listing 10 (p. 1699) . The modi�ed World class.

405This content is available online at <http://cnx.org/content/m44350/1.5/>.
406http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1685

4.4.3.1.3.3 Preview

In this module, you will learn how to incorporate GUI components into a World object. In particular,
you will learn how to add a JButton object to a World object and register an action listener on the
button to control the behavior of the program.

Program speci�cations
Write a program named Prob03 that uses the Prob03 class de�nition shown in Listing 2 (p. 1693)

and Ericson's media library to produce the graphic output images shown in Figure 1 (p. 1690) and Figure
2 (p. 1690) .

The image shown in Figure 1 (p. 1690) is the image that appears on the screen when the program starts
running.

Figure 1 - Initial screen output.

Click the button
The image shown in Figure 2 (p. 1690) is what you should see when you click the button at the bottom

of the world.
Figure 2 - Screen output after clicking the button.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1686 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Modify Ericson's World class
You must copy and modify (as necessary) the media class named World to cause your program to

produce the required output with the required behavior.
Add a JButton to the World
This program adds a JButton object to the SOUTH location of the World object as shown in Figure

1 (p. 1690) and Figure 2 (p. 1690) and registers an action listener on the button to control the behavior of
the program.

Program behavior
The program initially displays an empty white world as shown in Figure 1 (p. 1690) . When the user

clicks the button, the world's background color changes to blue, a turtle appears in the center of the World
, and the student's name appears near the top of the world.

Output text
In addition to the output images described above, your program must produce the text output shown in

Figure 3 (p. 1692) on the command- line screen

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1687

Figure 3 - Required text output.

Dick Baldwin

Dick Baldwin

Picture, filename None height 300 width 200

Table 4.241

Analysis
A World object is actually a specialized use of a standard Java JFrame object. However, by default,

the frame is not available to users of the World class. Therefore, in order to satisfy the requirements of
this program, the World class must be modi�ed to provide access to the frame.

Add a getFrame method
This program adds a method named getFrame to the World class. The getFrame method returns

a reference to the JFrame object that is used to display the world. This makes it possible to treat World
objects in much the same way that other JFrame objects are treated.

Add a button and pack the frame
The program uses the JFrame object's reference to add a JButton object to the SOUTH location

of the JFrame . After adding the button, the program calls the pack method on the frame to cause the
size of the frame to be automatically adjusted to accommodate both the Picture object that constitutes
the background and the JButton object.

4.4.3.1.3.4 Discussion and sample code

4.4.3.1.3.4.1 Modi�cation to the World class

A complete listing of the modi�ed World class is provided in Listing 10 (p. 1699) near the end of the
module

Getting access to the frame
An object of the World class contains a private instance variable named frame that contains a

reference to the JFrame object. Because it is private, however, it is not available to users of the World
class. The getter method shown in Listing 1 (p. 1692) was added to the World class to provide access
to the JFrame .

Listing 1 - The new getFrame method.

public JFrame getFrame(){

System.out.println("Dick Baldwin");

return frame;

}//end getFrame

Table 4.242

The new method also displays the student's name when the method is called, producing part of the text
output in Figure 3 (p. 1692) .

No other change to is required
This is the only change to Ericson's library that is required to write this program. Everything else in the

program makes use of existing library classes with no modi�cations.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1688 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.3.1.3.4.2 The Prob03Runner class

Will explain in fragments
I will explain this program in fragments. A complete listing is shown in Listing 9 (p. 1698) near the end

of the module.
The driver class
The driver class for this program is named Prob03 . The de�nition of the driver class is shown in its

entirety in Listing 2 (p. 1693) .

Listing 2 - Prob03 class de�nition.

import java.awt.BorderLayout;

import javax.swing.JFrame;

import javax.swing.JButton;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

import java.awt.Color;

public class Prob03{

public static void main(String[] args){

new Prob03Runner().run();

}//end main method

}//end class Prob03

Table 4.243

The driver class simply instantiates a new object of a class named Prob03Runner and calls a method
named run on that object.

Beginning of the Prob03Runner class
The beginning of the Prob03Runner class and the constructor for the class is shown in Listing 3 (p.

1693) .

Listing 3 - Beginning of the Prob03Runner class.

class Prob03Runner{

public Prob03Runner(){

System.out.println("Dick Baldwin");

}//end constructor

Table 4.244

As you can see, the constructor simply displays the student's name, providing some of the text output
shown in Figure 3 (p. 1693) .

Beginning of the run method
The beginning of the run method is shown in Listing 4 (p. 1694) . This is where things start to get

interesting.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1689

Listing 4 - Beginning of the run method.

public void run(){

//This reference must be final because it is

// referenced from within an anonymous class

// definition.

final World world = new World(200,300);

//Get a reference to the JFrame object that is used

// to display the World.

JFrame frame = world.getFrame();

//Instantiate a new JButton object and add it to the

// SOUTH location in the JFrame object.

JButton button = new JButton(

"Click to make a turtle.");

frame.getContentPane().add(button,BorderLayout.SOUTH);

frame.pack();//VERY IMPORTANT

Table 4.245

A new World object
Listing 4 (p. 1694) begins by instantiating a new object of the World class with a size of 200x300

pixels. The reference to the object is saved in a �nal variable named world .
A �nal reference variable
As the comment indicates, the variable must be �nal because it is referenced from within an anonymous

class de�nition. I won't take the time to explain that here. I will simply refer you to my website where I
have published several tutorial modules on anonymous classes.

The size of the world...
The purpose of specifying the size of the world when it is instantiated is to implicitly specify the size of

the Picture object that forms the background for the world.
The size of the picture actually matches the speci�ed dimensions. Therefore the actual size of the world

is a little larger than the speci�ed dimensions due to the borders that surround the picture.
Get a reference to the frame
After the World object is instantiated, the new getFrame method is called on the world's reference

in order to get and save a reference to the frame.
A new JButton object
Then a new JButton object is instantiated. The reference to the JButton object is saved in the

variable named button .
Add the button to the frame and pack it
Then the button is added to the SOUTH location in the frame and the pack method is called on the

frame. Calling the pack method causes the size of the frame, (and hence the size of the world) to be
adjusted so as to accommodate the picture in the CENTER of the frame and the button at the bottom
(SOUTH) of the frame.

The �nal size of the world
After the button is added and the world is packed, the overall height of the world is quite a bit larger

than the original dimensions. I measured it and found it to be about 209x361 pixels including borders.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1690 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

The expansion in height is necessary to make room for the button. However, as you can see in Figure 3
(p. 1692) , the size of the picture remains at 200x300 pixels.

Register an action listener on the button
I elected to use an anonymous class to register an action listener on the button. The purpose of the

listener is to produce the desired behavior when the button is clicked.
Note, however, that there are other ways to register an action listener on the button and the student is

not required to use an anonymous class for that purpose.
Beginning of the anonymous class
The de�nition of the anonymous listener class and the instantiation of the listener object begins in Listing

5 (p. 1695) .

Listing 5 - Register an action listener on the button.

button.addActionListener(new ActionListener()

{//Begin the class definition

public void actionPerformed(ActionEvent e){

Picture picture = world.getPicture();

System.out.println(picture);

Table 4.246

Unfamiliar with anonymous classes?
If you are unfamiliar with anonymous classes and action listeners, I will simply refer you to my website

where I have published several tutorial modules on the topic. I have also published modules on the topic in
this collection.

In a nutshell...
In a nutshell, however, the method named actionPerformed , which begins in Listing 5 (p. 1695) ,

will be executed each time the user clicks the button in Figure 1 (p. 1690) .
Behavior of the actionPerformed method
The code in Listing 5 (p. 1695) gets and saves a reference to the Picture object that forms the

background in the world object. Then it passes a copy of that reference to the println method, producing
the third line of output text shown in Figure 3 (p. 1692) .

Set the background picture to blue
Listing 6 (p. 1695) calls the method named setAllPixelsToAColor on the Picture object passing

the color BLUE as a parameter.

Listing 6 - Set the picture background to blue.

picture.setAllPixelsToAColor(Color.BLUE);

Table 4.247

As you might expect, this causes the background of the world to turn from white to blue as shown in
Figure 2 (p. 1690) .

Display the student's name on the picture
Listing 7 (p. 1697) calls the addMessage method on the picture to add the student's name near the

upper-left corner of the world. (See Figure 2 (p. 1690) .)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1691

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1692 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 7 - Display the student's name on the picture.

picture.addMessage("Dick Baldwin",10,20);

Table 4.248

Finally, Listing 8 (p. 1697) instantiates a new Turtle object in the default color, with the default
heading (north) , located in the default position, which is the center of the picture that constitutes the
background image for the world.

Listing 8 - Add a turtle to the world.

Turtle turtle = new Turtle(world);

}//end actionPerformed

}//end class definition

);//end addActionListener

}//end run

//--//

}//end class Prob03Runner

Table 4.249

Multiple clicks
If you click the button more than once, you will instantiate a new Turtle object and produce a line

of output text on the command line screen with each click. The turtles will all be in the same location but
they will cycle through four di�erent color schemes.

Note that adding the turtle to the world causes the world to be repainted, eliminating the requirement
to purposely repaint the world.

End the run method
Finally, Listing 8 (p. 1697) signals the end of the run method, causing the run method to terminate

and return control to the main method in Listing 2 (p. 1693) . The main method terminates causing
the program to terminate.

4.4.3.1.3.5 Run the program

I encourage you to copy the code from Listing 9 (p. 1698) and Listing 10 (p. 1699) . Compile the code and
execute it. Experiment with the code, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

4.4.3.1.3.6 Summary

In this module, you learned how to incorporate GUI components into a World object. In particular, you
learned how to add a JButton object to a World object and register an action listener on the button
to control the behavior of the program.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1693

4.4.3.1.3.7 What's next?

In the next module, you will learn how to modify the SimplePicture class to make it possible to control
the color of the text that is placed on the image in a Picture object. Then you will place a turtle object
in a world and perform a series of maneuvers causing the turtle to draw a square spiral.

4.4.3.1.3.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Incorporating GUI Components into a World Object
• File: Java3106.htm
• Revised: 02/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

4.4.3.1.3.9 Complete program listing

Complete listings of the programs discussed in this module are provided below.
Listing 9 - Source code for the program named Prob03.

import java.awt.BorderLayout;

import javax.swing.JFrame;

import javax.swing.JButton;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

import java.awt.Color;

public class Prob03{

public static void main(String[] args){

new Prob03Runner().run();

}//end main method

}//end class Prob03

//==//

class Prob03Runner{

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1694 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

public Prob03Runner(){

System.out.println("Dick Baldwin");

}//end constructor

//--//

public void run(){

//This reference must be final because it is

// referenced from within an anonymous class

// definition.

final World world = new World(200,300);

//Get a reference to the JFrame object that is used

// to display the World.

JFrame frame = world.getFrame();

//Instantiate a new JButton object and add it to the

// SOUTH location in the JFrame object.

JButton button = new JButton(

"Click to make a turtle.");

frame.getContentPane().add(button,BorderLayout.SOUTH);

frame.pack();//VERY IMPORTANT

//Use an anonymous class to register an action

// listener on the button. Note that the student is

// not required to use an anonymous class.

button.addActionListener(new ActionListener()

{//Begin the class definition

public void actionPerformed(ActionEvent e){

Picture picture = world.getPicture();

System.out.println(picture);

//Set picture background to blue.

picture.setAllPixelsToAColor(Color.BLUE);

//Display the student's name on the picture.

picture.addMessage(

"Dick Baldwin",10,20);

//Add a turtle to the world. This causes the

// world to be repainted.

Turtle turtle = new Turtle(world);

}//end actionPerformed

}//end class definition

);//end addActionListener

}//end run

//--//

}//end class Prob03Runner

Listing 10 - The modi�ed World class.

import javax.swing.*;

import java.util.List;

import java.util.ArrayList;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1695

import java.util.Iterator;

import java.util.Observer;

import java.awt.*;

/*12/23/08 Modified the World class. Added a method named

*getFrame that returns a reference to the JFrame object

*in which the turtles are displayed.

*/

/**

* Class to represent a 2d world that can hold turtles and

* display them

*

* Copyright Georgia Institute of Technology 2004

* @author Barb Ericson ericson@cc.gatech.edu

*/

public class World extends JComponent implements ModelDisplay

{

////////////////// fields ///////////////////////

/** should automatically repaint when model changed */

private boolean autoRepaint = true;

/** the background color for the world */

private Color background = Color.white;

/** the width of the world */

private int width = 640;

/** the height of the world */

private int height = 480;

/** the list of turtles in the world */

private List<Turtle> turtleList = new ArrayList<Turtle>();

/** the JFrame to show this world in */

private JFrame frame = new JFrame("World");

/** background picture */

private Picture picture = null;

////////////////// the constructors ///////////////

/**

* Constructor that takes no arguments

*/

public World()

{

// set up the world and make it visible

initWorld(true);

}

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1696 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

/**

* Constructor that takes a boolean to

* say if this world should be visible

* or not

* @param visibleFlag if true will be visible

* else if false will not be visible

*/

public World(boolean visibleFlag)

{

initWorld(visibleFlag);

}

/**

* Constructor that takes a width and height for this

* world

* @param w the width for the world

* @param h the height for the world

*/

public World(int w, int h)

{

width = w;

height = h;

// set up the world and make it visible

initWorld(true);

}

///////////////// methods ///////////////////////////

/**

*Method to return a reference to the JFrame.

*/

public JFrame getFrame(){

System.out.println("Dick Baldwin");

return frame;

}//end getFrame

/**

* Method to initialize the world

* @param visibleFlag the flag to make the world

* visible or not

*/

private void initWorld(boolean visibleFlag)

{

// set the preferred size

this.setPreferredSize(new Dimension(width,height));

// create the background picture

picture = new Picture(width,height);

// add this panel to the frame

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1697

frame.getContentPane().add(this);

// pack the frame

frame.pack();

// show this world

frame.setVisible(visibleFlag);

}

/**

* Method to get the graphics context for drawing on

* @return the graphics context of the background picture

*/

public Graphics getGraphics() { return picture.getGraphics(); }

/**

* Method to clear the background picture

*/

public void clearBackground() { picture = new Picture(width,height); }

/**

* Method to get the background picture

* @return the background picture

*/

public Picture getPicture() { return picture; }

/**

* Method to set the background picture

* @param pict the background picture to use

*/

public void setPicture(Picture pict) { picture = pict; }

/**

* Method to paint this component

* @param g the graphics context

*/

public synchronized void paintComponent(Graphics g)

{

Turtle turtle = null;

// draw the background image

g.drawImage(picture.getImage(),0,0,null);

// loop drawing each turtle on the background image

Iterator iterator = turtleList.iterator();

while (iterator.hasNext())

{

turtle = (Turtle) iterator.next();

turtle.paintComponent(g);

}

}

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1698 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

/**

* Metod to get the last turtle in this world

* @return the last turtle added to this world

*/

public Turtle getLastTurtle()

{

return (Turtle) turtleList.get(turtleList.size() - 1);

}

/**

* Method to add a model to this model displayer

* @param model the model object to add

*/

public void addModel(Object model)

{

turtleList.add((Turtle) model);

if (autoRepaint)

repaint();

}

/**

* Method to check if this world contains the passed

* turtle

* @return true if there else false

*/

public boolean containsTurtle(Turtle turtle)

{

return (turtleList.contains(turtle));

}

/**

* Method to remove the passed object from the world

* @param model the model object to remove

*/

public void remove(Object model)

{

turtleList.remove(model);

}

/**

* Method to get the width in pixels

* @return the width in pixels

*/

public int getWidth() { return width; }

/**

* Method to get the height in pixels

* @return the height in pixels

*/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1699

public int getHeight() { return height; }

/**

* Method that allows the model to notify the display

*/

public void modelChanged()

{

if (autoRepaint)

repaint();

}

/**

* Method to set the automatically repaint flag

* @param value if true will auto repaint

*/

public void setAutoRepaint(boolean value) { autoRepaint = value; }

/**

* Method to hide the frame

*/

// public void hide()

// {

// frame.setVisible(false);

// }

/**

* Method to show the frame

*/

// public void show()

// {

// frame.setVisible(true);

// }

/**

* Method to set the visibility of the world

* @param value a boolean value to say if should show or hide

*/

public void setVisible(boolean value)

{

frame.setVisible(value);

}

/**

* Method to get the list of turtles in the world

* @return a list of turtles in the world

*/

public List getTurtleList()

{ return turtleList;}

/**

* Method to get an iterator on the list of turtles

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1700 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

* @return an iterator for the list of turtles

*/

public Iterator getTurtleIterator()

{ return turtleList.iterator();}

/**

* Method that returns information about this world

* in the form of a string

* @return a string of information about this world

*/

public String toString()

{

return "A " + getWidth() + " by " + getHeight() +

" world with " + turtleList.size() + " turtles in it.";

}

} // end of World class

-end-

4.4.3.1.4 Java3108 Java OOP Background Color, Text Color, Mouse Clicks, etc
407

4.4.3.1.4.1 Table of Contents

• Preface (p. 1705)

· Viewing tip (p. 1705)

* Figures (p. 1706)
* Listings (p. 1706)

• Preview (p. 1706)
• Discussion and sample code (p. 1709)
• Run the program (p. 1716)
• Summary (p. 1716)
• What's next? (p. 1716)
• Miscellaneous (p. 1716)
• Complete program listings (p. 1717)

4.4.3.1.4.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 408 .

4.4.3.1.4.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

407This content is available online at <http://cnx.org/content/m44351/1.5/>.
408http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1701

4.4.3.1.4.2.1.1 Figures

• Figure 1 (p. 1706) . Output image at startup.
• Figure 2 (p. 1707) . Output image after ten mouse clicks.
• Figure 3 (p. 1708) . Output image after eleven mouse clicks.

4.4.3.1.4.2.1.2 Listings

• Listing 1 (p. 1709) . The new setMessageColor method.
• Listing 2 (p. 1711) . The modi�ed addMessage method.
• Listing 3 (p. 1712) . Beginning of the Prob04Runner class.
• Listing 4 (p. 1713) . Beginning of the anonymous listener class.
• Listing 5 (p. 1713) . Add a turtle to the world.
• Listing 6 (p. 1714) . Not the �rst click.
• Listing 7 (p. 1715) . Process odd or even clicks.
• Listing 8 (p. 1716) . Cause the program to terminate properly.
• Listing 9 (p. 1717) . Source code for the program named Prob04.
• Listing 10 (p. 1719) . Modi�ed World class.
• Listing 11 (p. 1724) . Modi�ed SimplePicture class.

4.4.3.1.4.3 Preview

The program that I will explain in this module requires you to modify both the World class and the
SimplePicture class from Ericson's media library.

Just as you did in an earlier module, you will modify the World class to make it possible to get access
to the JFrame object that is encapsulated in a World object.

You will modify the SimplePicture class to make it possible to control the color of the text that is
placed on the image in a Picture object.

Program speci�cations
Write a program named Prob04 that uses the class de�nition for the Prob04 class shown in Listing

9 (p. 1717) along with Ericson's media library to produce the graphic output images shown in Figure 1 (p.
1706) , Figure 2 (p. 1707) , and Figure 3 (p. 1708) .

Output image at startup
Figure 1 (p. 1706) shows the output image when you �rst start the program.
Figure 1 - Output image at startup.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1702 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Output image after ten mouse clicks
This program adds a JButton object to the SOUTH location of the World object as shown in Figure

1 (p. 1706) . Figure 2 (p. 1707) shows the output image after you click button ten times.
Figure 2 - Output image after ten mouse clicks.

Output image after eleven mouse clicks
Figure 3 (p. 1708) shows the output image after you click button eleven times.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1703

Figure 3 - Output image after eleven mouse clicks.

Operational description
The program initially displays an empty white world with a button at the bottom as shown in Figure 1

(p. 1706) .
When the user clicks the button:

• The world's background color changes to green.
• A turtle appears near the bottom right corner of the World.
• The student's name appears near the top left corner of the world in red.
• The turtle has a blue body and a red shell.

Click the button again
When you click the button the second time:

• The background color changes to yellow.
• The student's name changes to blue.
• The turtle changes to a red body with a blue shell.
• The turtle turns 90 degrees left and moves forward 100 pixels plus the value of a click counter.
• The turtle leaves a blue trail.

Click the button another time
On the next click:

• The colors revert to the color scheme with the yellow background.
• The turtle turns 90 degrees left and moves forward 100 pixels plus the value of the click counter leaving

a red trail.

Click the button repeatedly
This cycle repeats on each click with the turtle's trail drawing a square spiral of increasing size with red

lines on the top and bottom of the spiral and blue lines on the right and left of the spiral.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1704 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Output text
In addition to the output images described above, your program must produce some output text on the

command- line screen

4.4.3.1.4.4 Discussion and sample code

The driver class
The driver class named Prob04 is shown at the beginning of Listing 9 (p. 1717) near the end of the

module. The main method simply instantiates a new object of the class named Prob04Runner ,
which I will explain later. The event driven behavior of the program is controlled by a listener object that
is registered on the button in the constructor of the Prob04Runner class.

Modi�cation of the World class
This program adds a method named getFrame to the World class. The method returns a reference

to the JFrame object that is used to display the world.
The program uses that reference to add a JButton object to the SOUTH location of the World . I

explained a modi�cation very similar to this in an earlier module, so I won't repeat that explanation here.
A complete listing of the modi�ed World class is provided in Listing 10 (p. 1719) near the end of the

module.
Modi�cation of the SimplePicture class
This program modi�es the addMessage method of the SimplePicture class to cause it to use a color

variable named messageColor to set the color of the text. The modi�cation also declares and initializes
the private instance variable named messageColor .

The SimplePicture class was also modi�ed to include a setMessageColor method that can be
used to set the color value stored in the variable named messageColor .

The new setMessageColor method
The new method named setMessageColor that was added to the SimplePicture class is shown in

Listing 1 (p. 1709) .

Listing 1 - The new setMessageColor method.

public void setMessageColor(Color color){

System.out.println("Dick Baldwin");

messageColor = color;

}//end setMessageColor

Table 4.250

Save the color value
The setMessageColor method saves the incoming color parameter in a private instance variable

named messageColor that was added to the class.
The default value of the variable is Color.WHITE , thereby preserving the default behavior of the

addMessage method.
You can view the new variable named messageColor in Listing 11 (p. 1724) near the end of the

module.
Display the student's name
The new setMessageColor method also causes my name to be displayed each time the method is

called. This is of no operational value, but is useful during the testing stage of the modi�ed class. This is
part of the code that produces text output on the command line screen.

The modi�ed addMessage method
The modi�ed version of the addMessage method is shown in Listing 2 (p. 1711) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1705

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1706 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 2 - The modi�ed addMessage method.

public void addMessage(

String message, int xPos, int yPos){

// get a graphics context to use to draw on the

// buffered image

Graphics2D graphics2d = bufferedImage.createGraphics();

// set the color to white

//graphics2d.setPaint(Color.white);

//modified by Baldwin on 12/23/08

graphics2d.setPaint(messageColor);

// set the font to Helvetica bold style and size 16

graphics2d.setFont(new Font("Helvetica",Font.BOLD,16));

// draw the message

graphics2d.drawString(message,xPos,yPos);

}//end addMessage

Table 4.251

The original statement shown in Listing 2 (p. 1711) was disabled and replaced by the statement shown
following the modi�cation comment. This causes the text to be displayed on the image using the color stored
in the new private instance variable named messageColor .

The Prob04Runner class
I will explain this program in fragments. A complete listing is shown in Listing 9 (p. 1717) near the end

of the module.
The driver class
The driver class for this program is named Prob04 . As I mentioned earlier, you can view the class

de�nition in its entirety near the beginning of Listing 9 (p. 1717) .
Beginning of the Prob04Runner class
The Prob04Runner class begins in Listing 3 (p. 1712) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1707

Listing 3 - Beginning of the Prob04Runner class.

class Prob04Runner{

Turtle turtle = null;

Picture picture = null;

int counter = 0;

World world = new World(200,200);

JButton button = new JButton("Click Me.");

public Prob04Runner(){

System.out.println("Dick Baldwin");

System.out.println(world.getPicture());

//Get a reference to the JFrame object that is used

// to display the World.

JFrame frame = world.getFrame();

//Add the JButton object to the

// SOUTH location in the JFrame object.

frame.getContentPane().add(button,BorderLayout.SOUTH);

frame.pack();

Table 4.252

Very familiar code
You should already be familiar with all of the code in Listing 3 (p. 1712) . When the code in Listing 3

(p. 1712) has �nished executing, the image shown in Figure 1 (p. 1706) should have appeared on the screen.
Waiting for an event
At this point, the program is essentially idle waiting for the user to either click the button at the bottom

of Figure 1 (p. 1706) , or click the red X-button in the upper-right corner of Figure 1 (p. 1706) . (More on
the red X-button later.)

Beginning of the anonymous listener class
This program uses an anonymous inner class to register an action listener on the button. The anonymous

class begins in Listing 4 (p. 1713) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1708 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 4 - Beginning of the anonymous listener class.

button.addActionListener(new ActionListener()

{//Begin the anonymous class definition

public void actionPerformed(ActionEvent e){

picture = world.getPicture();

//Set picture background to green.

picture.setAllPixelsToAColor(Color.GREEN);

picture.setMessageColor(Color.RED);

//Display the student's name on the picture.

picture.addMessage("Dick Baldwin",10,20);

Table 4.253

The event handler method named actionPerformed
Once the listener object is instantiated from the anonymous class and registered on the button, the

method named actionPerformed , which begins in Listing 4 (p. 1713) , will be executed each time the
button is clicked.

Get a reference to the background picture
The actionPerformed method begins by getting and saving a reference to the Picture object that

provides the background image for the World object. By default, all of the pixels in this image are white,
as shown in Figure 1 (p. 1706) .

Set the background color to green
Then the method calls Ericson's standard method named setAllPixelsToAColor method to set the

color of all of the background pixels to green.
Display student's name in red
Following that, the method calls the new setMessageColor method to set the text color to red, and

calls the modi�ed addMessage method to display my name in red near the upper-left corner of the image.
Figure 3 (p. 1708) shows an example of a green background and red text.

Add a turtle to the world
Listing 5 (p. 1713) tests to determine if the variable named turtle that was declared in Listing 3 (p.

1712) still contains null. If so, that means that this is the �rst time that the button has been clicked and
the Turtle object has not yet been added to the world.

Listing 5 - Add a turtle to the world.

if(turtle == null){

turtle = new Turtle(150,150,world);

turtle.setHeading(90);

turtle.setShellColor(Color.RED);

turtle.setBodyColor(Color.BLUE);

Table 4.254

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1709

Add a Turtle object and set its colors
Listing 5 (p. 1713) instantiates a new Turtle object and adds it to the world near the lower-right

corner facing due east (90 degrees) .
The shell color is set to red and the body color (feet and head) is set to blue. An example of the turtle

with this color scheme is shown in Figure 3 (p. 1708) .
Not the �rst click
If the conditional clause in Listing 5 (p. 1713) returns false, that means that this is not the �rst time the

button has been clicked and the else clause, which begins in Listing 6 (p. 1714) will be executed.

Listing 6 - Not the �rst click.

}else{

turtle.turnLeft();

turtle.forward(100+counter);

Table 4.255

Rotate and move
The else clause begins by causing the turtle to rotate to the left by a default angle of 90 degrees. Then

the turtle moves forward by a distance equal to 100 plus the value of a counter that is incremented by one
each time the button is clicked.

For example, on the second click of the button, the turtle moves toward the north drawing a blue line
along the way. The default width of the line is one pixel and the default color of the line is the same as the
shell color.

Process odd or even clicks
The behavior of the actionPerformed method at this point depends on whether the incremented

value of the counter variable is even or odd. The code to accomplish this is shown in Listing 7 (p. 1715) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1710 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 7 - Process odd or even clicks.

if(counter++ %2 != 0){

picture.setAllPixelsToAColor(Color.GREEN);

picture.setMessageColor(Color.RED);

picture.addMessage(

"Dick Baldwin",10,20);

turtle.setShellColor(Color.RED);

turtle.setBodyColor(Color.BLUE);

}else{

picture.setAllPixelsToAColor(Color.YELLOW);

picture.setMessageColor(Color.BLUE);

picture.addMessage(

"Dick Baldwin",10,20);

turtle.setShellColor(Color.BLUE);

turtle.setBodyColor(Color.RED);

}//end else

picture.addMessage(

"Dick Baldwin",10,20);

}//end else

}//end actionPerformed

}//end class definition

);//end addActionListener

}//end constructor

//--//

}//end class Prob04Runner

Table 4.256

If the counter value is odd...
If the value of the counter (before it is incremented � note the post-increment operator) is odd, the

color scheme for the background, the message, and the turtle is set to that shown in Figure 3 (p. 1708) with
the green background.

If the counter value is even...
Otherwise, if the counter value is even, the color scheme is set to that shown in Figure 2 (p. 1707) with

the yellow background.
The end of several sections of code
Listing 7 (p. 1715) also completes the else clause that began in Listing 6 (p. 1714) .
In addition, Listing 7 (p. 1715) signals the end of the actionPerformed method, the end of the

anonymous class de�nition, the end of the constructor, and the end of the class named Prob04Runner .
Waiting for an event
As mentioned earlier, once the constructor �nishes execution, the program becomes idle waiting for the

user to either click the button at the bottom of Figure 1 (p. 1706) , or click the red X-button in the

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1711

upper-right corner of Figure 1 (p. 1706) .
Does not terminate as expected
Normally a user would expect the program to terminate and return control to the operating system when

the user clicks the red X-button in the upper-right corner of the last remaining window. However, this
program does not do that. Instead, clicking this button simply hides the window and control is not returned
to the operating system.

A programming oversight
This was a programming oversight on my part, which can be corrected by adding the second statement in

Listing 8 (p. 1716) to the de�nition of the Prob04Runner class immediately following the �rst statement
shown in Listing 8 (p. 1716) .

Listing 8 - Cause the program to terminate properly.

JFrame frame = world.getFrame();

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Table 4.257

To understand why this is necessary to cause the program to terminate, I recommend that you visit the
standard Sun javadocs and examine the description of the method named setDefaultCloseOperation in
the JFrame class.

4.4.3.1.4.5 Run the program

I encourage you to copy the code from Listing 9 (p. 1717) , Listing 10 (p. 1719) , and Listing 11 (p. 1724) .
Compile the code and execute it. Experiment with the code, making changes, and observing the results of
your changes. Make certain that you can explain why your changes behave as they do.

4.4.3.1.4.6 Summary

Just as you did in an earlier module, you modi�ed the World class to make it possible to get access to the
JFrame object that is encapsulated in a World object.
You learned how to modify the SimplePicture class to make it possible to control the color of the

text that is placed on the image in a Picture object.
Then you placed a turtle object in a world and performed a series of maneuvers causing the turtle to

draw a square spiral.

4.4.3.1.4.7 What's next?

In the next module, you will learn how to create and service a graphical user interface containing panels,
labels, text �elds, and buttons.

4.4.3.1.4.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Background Color, Text Color, Mouse Clicks, etc.
• File: Java3108.htm

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1712 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

• Revised: 02/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

4.4.3.1.4.9 Complete program listings

Complete listings of the programs discussed in this module are shown below.
Listing 9 - Source code for the program named Prob04.

/*File Prob04 Copyright 2008 R.G.Baldwin

***/

import java.awt.BorderLayout;

import javax.swing.JFrame;

import javax.swing.JButton;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

import java.awt.Color;

import java.awt.Toolkit;

public class Prob04{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

new Prob04Runner();

}//end main method

}//end class Prob04

//==//

class Prob04Runner{

Turtle turtle = null;

Picture picture = null;

int counter = 0;

World world = new World(200,200);

JButton button = new JButton("Click Me.");

public Prob04Runner(){

System.out.println("Dick Baldwin");

System.out.println(world.getPicture());

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1713

//Get a reference to the JFrame object that is used

// to display the World.

JFrame frame = world.getFrame();

//Add the JButton object to the

// SOUTH location in the JFrame object.

frame.getContentPane().add(button,BorderLayout.SOUTH);

frame.pack();

//Use an anonymous class to register an action

// listener on the button. Note that the student is

// not required to use an anonymous class.

button.addActionListener(new ActionListener()

{//Begin the class definition

public void actionPerformed(ActionEvent e){

picture = world.getPicture();

//Set picture background to green.

picture.setAllPixelsToAColor(Color.GREEN);

picture.setMessageColor(Color.RED);

//Display the student's name on the picture.

picture.addMessage(

"Dick Baldwin",10,20);

//Add a turtle to the world. This causes the

// world to be repainted.

if(turtle == null){

turtle = new Turtle(150,150,world);

turtle.setHeading(90);

turtle.setShellColor(Color.RED);

turtle.setBodyColor(Color.BLUE);

}else{

turtle.turnLeft();

turtle.forward(100+counter);

if(counter++ %2 != 0){

picture.setAllPixelsToAColor(Color.GREEN);

picture.setMessageColor(Color.RED);

picture.addMessage(

"Dick Baldwin",10,20);

turtle.setShellColor(Color.RED);

turtle.setBodyColor(Color.BLUE);

}else{

picture.setAllPixelsToAColor(Color.YELLOW);

picture.setMessageColor(Color.BLUE);

picture.addMessage(

"Dick Baldwin",10,20);

turtle.setShellColor(Color.BLUE);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1714 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

turtle.setBodyColor(Color.RED);

}//end else

picture.addMessage(

"Dick Baldwin",10,20);

}//end else

}//end actionPerformed

}//end class definition

);//end addActionListener

}//end constructor

//--//

}//end class Prob04Runner

Listing 10 - Modi�ed World class.

import javax.swing.*;

import java.util.List;

import java.util.ArrayList;

import java.util.Iterator;

import java.util.Observer;

import java.awt.*;

/*12/23/08 Modified the World class. Added a method named

*getFrame that returns a reference to the JFrame object

*in which the turtles are displayed.

*/

/**

* Class to represent a 2d world that can hold turtles and

* display them

*

* Copyright Georgia Institute of Technology 2004

* @author Barb Ericson ericson@cc.gatech.edu

*/

public class World extends JComponent implements ModelDisplay

{

////////////////// fields ///////////////////////

/** should automatically repaint when model changed */

private boolean autoRepaint = true;

/** the background color for the world */

private Color background = Color.white;

/** the width of the world */

private int width = 640;

/** the height of the world */

private int height = 480;

/** the list of turtles in the world */

private List<Turtle> turtleList = new ArrayList<Turtle>();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1715

/** the JFrame to show this world in */

private JFrame frame = new JFrame("World");

/** background picture */

private Picture picture = null;

////////////////// the constructors ///////////////

/**

* Constructor that takes no arguments

*/

public World()

{

// set up the world and make it visible

initWorld(true);

}

/**

* Constructor that takes a boolean to

* say if this world should be visible

* or not

* @param visibleFlag if true will be visible

* else if false will not be visible

*/

public World(boolean visibleFlag)

{

initWorld(visibleFlag);

}

/**

* Constructor that takes a width and height for this

* world

* @param w the width for the world

* @param h the height for the world

*/

public World(int w, int h)

{

width = w;

height = h;

// set up the world and make it visible

initWorld(true);

}

///////////////// methods ///////////////////////////

/**

*Method to return a reference to the JFrame.

*/

public JFrame getFrame(){

System.out.println("Dick Baldwin");

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1716 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

return frame;

}//end getFrame

/**

* Method to initialize the world

* @param visibleFlag the flag to make the world

* visible or not

*/

private void initWorld(boolean visibleFlag)

{

// set the preferred size

this.setPreferredSize(new Dimension(width,height));

// create the background picture

picture = new Picture(width,height);

// add this panel to the frame

frame.getContentPane().add(this);

// pack the frame

frame.pack();

// show this world

frame.setVisible(visibleFlag);

}

/**

* Method to get the graphics context for drawing on

* @return the graphics context of the background picture

*/

public Graphics getGraphics() { return picture.getGraphics(); }

/**

* Method to clear the background picture

*/

public void clearBackground() { picture = new Picture(width,height); }

/**

* Method to get the background picture

* @return the background picture

*/

public Picture getPicture() { return picture; }

/**

* Method to set the background picture

* @param pict the background picture to use

*/

public void setPicture(Picture pict) { picture = pict; }

/**

* Method to paint this component

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1717

* @param g the graphics context

*/

public synchronized void paintComponent(Graphics g)

{

Turtle turtle = null;

// draw the background image

g.drawImage(picture.getImage(),0,0,null);

// loop drawing each turtle on the background image

Iterator iterator = turtleList.iterator();

while (iterator.hasNext())

{

turtle = (Turtle) iterator.next();

turtle.paintComponent(g);

}

}

/**

* Metod to get the last turtle in this world

* @return the last turtle added to this world

*/

public Turtle getLastTurtle()

{

return (Turtle) turtleList.get(turtleList.size() - 1);

}

/**

* Method to add a model to this model displayer

* @param model the model object to add

*/

public void addModel(Object model)

{

turtleList.add((Turtle) model);

if (autoRepaint)

repaint();

}

/**

* Method to check if this world contains the passed

* turtle

* @return true if there else false

*/

public boolean containsTurtle(Turtle turtle)

{

return (turtleList.contains(turtle));

}

/**

* Method to remove the passed object from the world

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1718 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

* @param model the model object to remove

*/

public void remove(Object model)

{

turtleList.remove(model);

}

/**

* Method to get the width in pixels

* @return the width in pixels

*/

public int getWidth() { return width; }

/**

* Method to get the height in pixels

* @return the height in pixels

*/

public int getHeight() { return height; }

/**

* Method that allows the model to notify the display

*/

public void modelChanged()

{

if (autoRepaint)

repaint();

}

/**

* Method to set the automatically repaint flag

* @param value if true will auto repaint

*/

public void setAutoRepaint(boolean value) { autoRepaint = value; }

/**

* Method to hide the frame

*/

// public void hide()

// {

// frame.setVisible(false);

// }

/**

* Method to show the frame

*/

// public void show()

// {

// frame.setVisible(true);

// }

/**

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1719

* Method to set the visibility of the world

* @param value a boolean value to say if should show or hide

*/

public void setVisible(boolean value)

{

frame.setVisible(value);

}

/**

* Method to get the list of turtles in the world

* @return a list of turtles in the world

*/

public List getTurtleList()

{ return turtleList;}

/**

* Method to get an iterator on the list of turtles

* @return an iterator for the list of turtles

*/

public Iterator getTurtleIterator()

{ return turtleList.iterator();}

/**

* Method that returns information about this world

* in the form of a string

* @return a string of information about this world

*/

public String toString()

{

return "A " + getWidth() + " by " + getHeight() +

" world with " + turtleList.size() + " turtles in it.";

}

} // end of World class

Listing 11 - Modi�ed SimplePicture class.

import javax.imageio.ImageIO;

import java.awt.image.BufferedImage;

import javax.swing.ImageIcon;

import java.awt.*;

import java.io.*;

import java.awt.geom.*;

/*

12/23/08 Modified the addMessage method to cause it to

use a color variable to set the color of the message.

Also provided a setMessageColor method to set the color

and a variable named messageColor to contain the color.

/*

/**

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1720 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

* A class that represents a simple picture. A simple picture may have

* an associated file name and a title. A simple picture has pixels,

* width, and height. A simple picture uses a BufferedImage to

* hold the pixels. You can show a simple picture in a

* PictureFrame (a JFrame).

*

* Copyright Georgia Institute of Technology 2004

* @author Barb Ericson ericson@cc.gatech.edu

*/

public class SimplePicture implements DigitalPicture

{

/////////////////////// Fields /////////////////////////

/**

* the color of the message

*/

private Color messageColor = Color.WHITE;

/**

* the file name associated with the simple picture

*/

private String fileName;

/**

* the title of the simple picture

*/

private String title;

/**

* buffered image to hold pixels for the simple picture

*/

private BufferedImage bufferedImage;

/**

* frame used to display the simple picture

*/

private PictureFrame pictureFrame;

/**

* extension for this file (jpg or bmp)

*/

private String extension;

/////////////////////// Constructors /////////////////////////

/**

* A Constructor that takes no arguments. All fields will be null.

* A no-argument constructor must be given in order for a class to

* be able to be subclassed. By default all subclasses will implicitly

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1721

* call this in their parent's no argument constructor unless a

* different call to super() is explicitly made as the first line

* of code in a constructor.

*/

public SimplePicture()

{this(200,100);}

/**

* A Constructor that takes a file name and uses the file to create

* a picture

* @param fileName the file name to use in creating the picture

*/

public SimplePicture(String fileName)

{

// load the picture into the buffered image

load(fileName);

}

/**

* A constructor that takes the width and height desired for a picture and

* creates a buffered image of that size. This constructor doesn't

* show the picture.

* @param width the desired width

* @param height the desired height

*/

public SimplePicture(int width, int height)

{

bufferedImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB);

title = "None";

fileName = "None";

extension = "jpg";

setAllPixelsToAColor(Color.white);

}

/**

* A constructor that takes the width and height desired for a picture and

* creates a buffered image of that size. It also takes the

* color to use for the background of the picture.

* @param width the desired width

* @param height the desired height

* @param theColor the background color for the picture

*/

public SimplePicture(int width, int height, Color theColor)

{

this(width,height);

setAllPixelsToAColor(theColor);

}

/**

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1722 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

* A Constructor that takes a picture to copy information from

* @param copyPicture the picture to copy from

*/

public SimplePicture(SimplePicture copyPicture)

{

if (copyPicture.fileName != null)

{

this.fileName = new String(copyPicture.fileName);

this.extension = copyPicture.extension;

}

if (copyPicture.title != null)

this.title = new String(copyPicture.title);

if (copyPicture.bufferedImage != null)

{

this.bufferedImage = new BufferedImage(copyPicture.getWidth(),

copyPicture.getHeight(), BufferedImage.TYPE_INT_RGB);

this.copyPicture(copyPicture);

}

}

/**

* A constructor that takes a buffered image

* @param image the buffered image

*/

public SimplePicture(BufferedImage image)

{

this.bufferedImage = image;

title = "None";

fileName = "None";

extension = "jpg";

}

////////////////////////// Methods //////////////////////////////////

/**

* Method to set the color used for a message.

*/

public void setMessageColor(Color color){

System.out.println("Dick Baldwin");

messageColor = color;

}//end setMessageColor

/**

* Method to get the extension for this picture

* @return the extendsion (jpg or bmp)

*/

public String getExtension() { return extension; }

/**

* Method that will copy all of the passed source picture into

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1723

* the current picture object

* @param sourcePicture the picture object to copy

*/

public void copyPicture(SimplePicture sourcePicture)

{

Pixel sourcePixel = null;

Pixel targetPixel = null;

// loop through the columns

for (int sourceX = 0, targetX = 0;

sourceX < sourcePicture.getWidth() &&

targetX < this.getWidth();

sourceX++, targetX++)

{

// loop through the rows

for (int sourceY = 0, targetY = 0;

sourceY < sourcePicture.getHeight() &&

targetY < this.getHeight();

sourceY++, targetY++)

{

sourcePixel = sourcePicture.getPixel(sourceX,sourceY);

targetPixel = this.getPixel(targetX,targetY);

targetPixel.setColor(sourcePixel.getColor());

}

}

}

/**

* Method to set the color in the picture to the passed color

* @param color the color to set to

*/

public void setAllPixelsToAColor(Color color)

{

// loop through all x

for (int x = 0; x < this.getWidth(); x++)

{

// loop through all y

for (int y = 0; y < this.getHeight(); y++)

{

getPixel(x,y).setColor(color);

}

}

}

/**

* Method to get the buffered image

* @return the buffered image

*/

public BufferedImage getBufferedImage()

{

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1724 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

return bufferedImage;

}

/**

* Method to get a graphics object for this picture to use to draw on

* @return a graphics object to use for drawing

*/

public Graphics getGraphics()

{

return bufferedImage.getGraphics();

}

/**

* Method to get a Graphics2D object for this picture which can

* be used to do 2D drawing on the picture

*/

public Graphics2D createGraphics()

{

return bufferedImage.createGraphics();

}

/**

* Method to get the file name associated with the picture

* @return the file name associated with the picture

*/

public String getFileName() { return fileName; }

/**

* Method to set the file name

* @param name the full pathname of the file

*/

public void setFileName(String name)

{

fileName = name;

}

/**

* Method to get the title of the picture

* @return the title of the picture

*/

public String getTitle()

{ return title; }

/**

* Method to set the title for the picture

* @param title the title to use for the picture

*/

public void setTitle(String title)

{

this.title = title;

if (pictureFrame != null)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1725

pictureFrame.setTitle(title);

}

/**

* Method to get the width of the picture in pixels

* @return the width of the picture in pixels

*/

public int getWidth() { return bufferedImage.getWidth(); }

/**

* Method to get the height of the picture in pixels

* @return the height of the picture in pixels

*/

public int getHeight() { return bufferedImage.getHeight(); }

/**

* Method to get the picture frame for the picture

* @return the picture frame associated with this picture

* (it may be null)

*/

public PictureFrame getPictureFrame() { return pictureFrame; }

/**

* Method to set the picture frame for this picture

* @param pictureFrame the picture frame to use

*/

public void setPictureFrame(PictureFrame pictureFrame)

{

// set this picture objects' picture frame to the passed one

this.pictureFrame = pictureFrame;

}

/**

* Method to get an image from the picture

* @return the buffered image since it is an image

*/

public Image getImage()

{

return bufferedImage;

}

/**

* Method to return the pixel value as an int for the given x and y location

* @param x the x coordinate of the pixel

* @param y the y coordinate of the pixel

* @return the pixel value as an integer (alpha, red, green, blue)

*/

public int getBasicPixel(int x, int y)

{

return bufferedImage.getRGB(x,y);

}

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1726 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

/**

* Method to set the value of a pixel in the picture from an int

* @param x the x coordinate of the pixel

* @param y the y coordinate of the pixel

* @param rgb the new rgb value of the pixel (alpha, red, green, blue)

*/

public void setBasicPixel(int x, int y, int rgb)

{

bufferedImage.setRGB(x,y,rgb);

}

/**

* Method to get a pixel object for the given x and y location

* @param x the x location of the pixel in the picture

* @param y the y location of the pixel in the picture

* @return a Pixel object for this location

*/

public Pixel getPixel(int x, int y)

{

// create the pixel object for this picture and the given x and y location

Pixel pixel = new Pixel(this,x,y);

return pixel;

}

/**

* Method to get a one-dimensional array of Pixels for this simple picture

* @return a one-dimensional array of Pixel objects starting with y=0

* to y=height-1 and x=0 to x=width-1.

*/

public Pixel[] getPixels()

{

int width = getWidth();

int height = getHeight();

Pixel[] pixelArray = new Pixel[width * height];

// loop through height rows from top to bottom

for (int row = 0; row < height; row++)

for (int col = 0; col < width; col++)

pixelArray[row * width + col] = new Pixel(this,col,row);

return pixelArray;

}

/**

* Method to load the buffered image with the passed image

* @param image the image to use

*/

public void load(Image image)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1727

{

// get a graphics context to use to draw on the buffered image

Graphics2D graphics2d = bufferedImage.createGraphics();

// draw the image on the buffered image starting at 0,0

graphics2d.drawImage(image,0,0,null);

// show the new image

show();

}

/**

* Method to show the picture in a picture frame

*/

public void show()

{

// if there is a current picture frame then use it

if (pictureFrame != null)

pictureFrame.updateImageAndShowIt();

// else create a new picture frame with this picture

else

pictureFrame = new PictureFrame(this);

}

/**

* Method to hide the picture

*/

public void hide()

{

if (pictureFrame != null)

pictureFrame.setVisible(false);

}

/**

* Method to make this picture visible or not

* @param flag true if you want it visible else false

*/

public void setVisible(boolean flag)

{

if (flag)

this.show();

else

this.hide();

}

/**

* Method to open a picture explorer on a copy of this simple picture

*/

public void explore()

{

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1728 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

// create a copy of the current picture and explore it

new PictureExplorer(new SimplePicture(this));

}

/**

* Method to force the picture to redraw itself. This is very

* useful after you have changed the pixels in a picture.

*/

public void repaint()

{

// if there is a picture frame tell it to repaint

if (pictureFrame != null)

pictureFrame.repaint();

// else create a new picture frame

else

pictureFrame = new PictureFrame(this);

}

/**

* Method to load the picture from the passed file name

* @param fileName the file name to use to load the picture from

*/

public void loadOrFail(String fileName) throws IOException

{

// set the current picture's file name

this.fileName = fileName;

// set the extension

int posDot = fileName.indexOf('.');

if (posDot >= 0)

this.extension = fileName.substring(posDot + 1);

// if the current title is null use the file name

if (title == null)

title = fileName;

File file = new File(this.fileName);

if (!file.canRead())

{

// try adding the media path

file = new File(FileChooser.getMediaPath(this.fileName));

if (!file.canRead())

{

throw new IOException(this.fileName +

" could not be opened. Check that you specified the path");

}

}

bufferedImage = ImageIO.read(file);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1729

}

/**

* Method to write the contents of the picture to a file with

* the passed name without throwing errors

* @param fileName the name of the file to write the picture to

* @return true if success else false

*/

public boolean load(String fileName)

{

try {

this.loadOrFail(fileName);

return true;

} catch (Exception ex) {

System.out.println("There was an error trying to open " + fileName);

bufferedImage = new BufferedImage(600,200,

BufferedImage.TYPE_INT_RGB);

addMessage("Couldn't load " + fileName,5,100);

return false;

}

}

/**

* Method to load the picture from the passed file name

* this just calls load(fileName) and is for name compatibility

* @param fileName the file name to use to load the picture from

* @return true if success else false

*/

public boolean loadImage(String fileName)

{

return load(fileName);

}

/**

* Method to draw a message as a string on the buffered image

* @param message the message to draw on the buffered image

* @param xPos the leftmost point of the string in x

* @param yPos the bottom of the string in y

*/

public void addMessage(String message, int xPos, int yPos)

{

// get a graphics context to use to draw on the buffered image

Graphics2D graphics2d = bufferedImage.createGraphics();

// set the color to white

// graphics2d.setPaint(Color.white);

//modified by baldwin on 12/23/08

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1730 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

graphics2d.setPaint(messageColor);

// set the font to Helvetica bold style and size 16

graphics2d.setFont(new Font("Helvetica",Font.BOLD,16));

// draw the message

graphics2d.drawString(message,xPos,yPos);

}

/**

* Method to draw a string at the given location on the picture

* @param text the text to draw

* @param xPos the left x for the text

* @param yPos the top y for the text

*/

public void drawString(String text, int xPos, int yPos)

{

addMessage(text,xPos,yPos);

}

/**

* Method to create a new picture by scaling the current

* picture by the given x and y factors

* @param xFactor the amount to scale in x

* @param yFactor the amount to scale in y

* @return the resulting picture

*/

public Picture scale(double xFactor, double yFactor)

{

// set up the scale tranform

AffineTransform scaleTransform = new AffineTransform();

scaleTransform.scale(xFactor,yFactor);

// create a new picture object that is the right size

Picture result = new Picture((int) (getWidth() * xFactor),

(int) (getHeight() * yFactor));

// get the graphics 2d object to draw on the result

Graphics graphics = result.getGraphics();

Graphics2D g2 = (Graphics2D) graphics;

// draw the current image onto the result image scaled

g2.drawImage(this.getImage(),scaleTransform,null);

return result;

}

/**

* Method to create a new picture of the passed width.

* The aspect ratio of the width and height will stay

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1731

* the same.

* @param width the desired width

* @return the resulting picture

*/

public Picture getPictureWithWidth(int width)

{

// set up the scale tranform

double xFactor = (double) width / this.getWidth();

Picture result = scale(xFactor,xFactor);

return result;

}

/**

* Method to create a new picture of the passed height.

* The aspect ratio of the width and height will stay

* the same.

* @param height the desired height

* @return the resulting picture

*/

public Picture getPictureWithHeight(int height)

{

// set up the scale tranform

double yFactor = (double) height / this.getHeight();

Picture result = scale(yFactor,yFactor);

return result;

}

/**

* Method to load a picture from a file name and show it in a picture frame

* @param fileName the file name to load the picture from

* @return true if success else false

*/

public boolean loadPictureAndShowIt(String fileName)

{

boolean result = true; // the default is that it worked

// try to load the picture into the buffered image from the file name

result = load(fileName);

// show the picture in a picture frame

show();

return result;

}

/**

* Method to write the contents of the picture to a file with

* the passed name

* @param fileName the name of the file to write the picture to

*/

public void writeOrFail(String fileName) throws IOException

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1732 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

{

String extension = this.extension; // the default is current

// create the file object

File file = new File(fileName);

File fileLoc = file.getParentFile();

// canWrite is true only when the file exists already! (alexr)

if (!fileLoc.canWrite()) {

// System.err.println("can't write the file but trying anyway? ...");

throw new IOException(fileName +

" could not be opened. Check to see if you can write to the directory.");

}

// get the extension

int posDot = fileName.indexOf('.');

if (posDot >= 0)

extension = fileName.substring(posDot + 1);

// write the contents of the buffered image to the file as jpeg

ImageIO.write(bufferedImage, extension, file);

}

/**

* Method to write the contents of the picture to a file with

* the passed name without throwing errors

* @param fileName the name of the file to write the picture to

* @return true if success else false

*/

public boolean write(String fileName)

{

try {

this.writeOrFail(fileName);

return true;

} catch (Exception ex) {

System.out.println("There was an error trying to write " + fileName);

return false;

}

}

/**

* Method to set the media path by setting the directory to use

* @param directory the directory to use for the media path

*/

public static void setMediaPath(String directory) {

FileChooser.setMediaPath(directory);

}

/**

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1733

* Method to get the directory for the media

* @param fileName the base file name to use

* @return the full path name by appending

* the file name to the media directory

*/

public static String getMediaPath(String fileName) {

return FileChooser.getMediaPath(fileName);

}

/**

* Method to get the coordinates of the enclosing rectangle after this

* transformation is applied to the current picture

* @return the enclosing rectangle

*/

public Rectangle2D getTransformEnclosingRect(AffineTransform trans)

{

int width = getWidth();

int height = getHeight();

double maxX = width - 1;

double maxY = height - 1;

double minX, minY;

Point2D.Double p1 = new Point2D.Double(0,0);

Point2D.Double p2 = new Point2D.Double(maxX,0);

Point2D.Double p3 = new Point2D.Double(maxX,maxY);

Point2D.Double p4 = new Point2D.Double(0,maxY);

Point2D.Double result = new Point2D.Double(0,0);

Rectangle2D.Double rect = null;

// get the new points and min x and y and max x and y

trans.deltaTransform(p1,result);

minX = result.getX();

maxX = result.getX();

minY = result.getY();

maxY = result.getY();

trans.deltaTransform(p2,result);

minX = Math.min(minX,result.getX());

maxX = Math.max(maxX,result.getX());

minY = Math.min(minY,result.getY());

maxY = Math.max(maxY,result.getY());

trans.deltaTransform(p3,result);

minX = Math.min(minX,result.getX());

maxX = Math.max(maxX,result.getX());

minY = Math.min(minY,result.getY());

maxY = Math.max(maxY,result.getY());

trans.deltaTransform(p4,result);

minX = Math.min(minX,result.getX());

maxX = Math.max(maxX,result.getX());

minY = Math.min(minY,result.getY());

maxY = Math.max(maxY,result.getY());

// create the bounding rectangle to return

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1734 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

rect = new Rectangle2D.Double(minX,minY,maxX - minX + 1, maxY - minY + 1);

return rect;

}

/**

* Method to return a string with information about this picture

* @return a string with information about the picture

*/

public String toString()

{

String output = "Simple Picture, filename " + fileName +

" height " + getHeight() + " width " + getWidth();

return output;

}

} // end of SimplePicture class

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1735

4.4.3.1.5 Java3110 Java OOP Panels, Labels, Text Fields, and Buttons
409

4.4.3.1.5.1 Table of Contents

• Preface (p. 1740)

· Viewing tip (p. 1740)

* Figures (p. 1740)
* Listings (p. 1740)

• Preview (p. 1741)
• Discussion and sample code (p. 1744)
• Run the program (p. 1748)
• Summary (p. 1748)
• What's next? (p. 1749)
• Miscellaneous (p. 1749)
• Complete program listing (p. 1749)

4.4.3.1.5.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 410 .

4.4.3.1.5.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

4.4.3.1.5.2.1.1 Figures

• Figure 1 (p. 1741) . Program output at startup.
• Figure 2 (p. 1742) . Program output after one click.
• Figure 3 (p. 1742) . Program output after several clicks.

4.4.3.1.5.2.1.2 Listings

• Listing 1 (p. 1744) . Beginning of the class named Prob05Runner.
• Listing 2 (p. 1744) . Instantiate GUI components.
• Listing 3 (p. 1745) . Beginning of the constructor.
• Listing 4 (p. 1746) . Add the six GUI components to the panel.
• Listing 5 (p. 1746) . Get the frame and add the panel to the frame.
• Listing 6 (p. 1747) . Set the background to blue and add a turtle.
• Listing 7 (p. 1747) . De�ne, instantiate, and register a listener on the Move button.
• Listing 8 (p. 1748) . Action listener to terminate the program.
• Listing 9 (p. 1749) . Source code for Prob05.

409This content is available online at <http://cnx.org/content/m44352/1.6/>.
410http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1736 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.3.1.5.3 Preview

In this module, you will learn how to create and service a graphical user interface containing panels, labels,
text �elds, and buttons.

Just as you did in earlier modules, you will modify the World class to make it possible to get access
to the JFrame object that is encapsulated in a World object. However, because I explained those
modi�cations to the World class in earlier modules, I won't repeat the explanation here. You can �nd a
modi�ed version of the World class in Java OOP: Background Color, Text Color, Mouse Clicks, etc. 411

Program speci�cations
Write a program named Prob05 that uses the class de�nition named Prob05 shown in Listing 9 (p.

1749) along with Ericson's media library to produce the graphic output images shown in Figure 1 (p. 1741)
, Figure 2 (p. 1742) , and Figure 3 (p. 1742) .

Program output at startup
Figure 1 (p. 1741) shows the image that appears on the screen when the program �rst starts running.
Figure 1 - Program output at startup.

Program output after one click

411http://cnx.org/content/m44351/latest/#Listing_10

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1737

Figure 2 (p. 1742) shows the output image after the user enters the values shown into the two text �elds
and clicks the Move button once.

Figure 2 - Program output after one click.

Program output after several clicks
Figure 3 (p. 1742) shows the output image after the user enters several di�erent sets of values into the

text �elds and clicks the Move button several times.
Figure 3 - Program output after several clicks.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1738 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Labels, text �elds, and buttons
As shown in Figure 1 (p. 1741) , this program adds two buttons, two labels, and two text �elds to form

a GUI at the bottom of the World object. Although it isn't obvious, those six components are contained
in a Panel object.

Each time you enter numeric values into the angle and distance �elds and then click the Move button,
the turtle will turn by that angle in degrees and move by that distance in pixels.

Program termination
The program terminates and returns control to the operating system when the user clicks the Quit

button.
Use AWT components instead of Swing components
The GUI at the bottom of the World object is comprised of AWT components instead of Swing

components.
Required text output
In addition to the output image described above, your program must produce some rather inconsequential

text output on the command- line screen.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1739

4.4.3.1.5.4 Discussion and sample code

The class named Prob05
You can view the driver class named Prob05 at the beginning of the source code in Listing 9 (p. 1749)

. You are already familiar with the code in the main method of that class from earlier modules so I won't
waste time explaining it.

Brie�y, the main method instantiates a new object of the class named Prob05Runner . Once that
object is instantiated, the program goes idle waiting for an event to happen. Events happen when the user
enters text into the text �elds or presses one of the buttons shown in Figure 1 (p. 1741) .

The class named Prob05Runner
I will explain this program in fragments. A complete listing of the program is provided in Listing 9 (p.

1749) near the end of the module
The class named Prob05Runner begins in Listing 1 (p. 1744) .

Listing 1 - Beginning of the class named Prob05Runner.

class Prob05Runner{

Turtle turtle = null;

Picture picture = null;

World world = new World(200,300);

Table 4.258

There's nothing new in Listing 1 (p. 1744) . You have seen code like this in several earlier modules.
Instantiate GUI components
Listing 2 (p. 1744) instantiates the GUI components that are used to construct the GUI at the bottom

of Figure 1 (p. 1741) .

Listing 2 - Instantiate GUI components.

Panel mainPanel = new Panel();

Label angleLabel = new Label("Enter Angle");

TextField angleField = new TextField("000");

Label distanceLabel = new Label("Enter Distance");

TextField distanceField = new TextField("000");

Button moveButton = new Button("Move");

Button quitButton = new Button("Quit");

int angle = 0;

int distance = 0;

Table 4.259

References to the GUI components are saved in instance variables with descriptive names.
GUI component initialization
Except for the Panel object, each GUI component is initialized with information that is appropriate

to the type of component. Compare the initialization values in Listing 2 (p. 1744) with the image in Figure
1 (p. 1741) for a better understanding of what I mean by this.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1740 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Brief description of the GUI components
You are encouraged to visit the Sun Java documentation and read about the following AWT components:

• Panel : A panel provides space in which an application can attach any other components, including
other panels.

• Label : A Label object is a component for placing text in a container. A label displays a single line
of read-only text. The text can be changed by the application, but a user cannot edit it directly.

• TextField : A text component that allows for the editing of a single line of text.
• Button : This class creates a labeled button. The application can cause some action to happen

when the button is pushed.

Figure 1 (p. 1741) contains a Panel object at the bottom. The panel contains two Label objects (shown
as orange) , two TextField objects (white) , and two Button objects (gray) . Those seven objects
are instantiated in Listing 2 (p. 1744) .

The angle and distance variables
Listing 2 (p. 1744) also declares and initializes two instance variables named angle and distance .

(Note that these two variables would be automatically initialized to zero if I didn't initialize them, but I
prefer to initialize them explicitly in order to make the code more self-documenting.)

Beginning of the constructor
The constructor for the class named Prob05Runner begins in Listing 3 (p. 1745) .

Listing 3 - Beginning of the constructor.

public Prob05Runner(){

System.out.println("Dick Baldwin");

mainPanel.setBackground(Color.ORANGE);

mainPanel.setLayout(new GridLayout(0,2));

Table 4.260

The constructor begins by displaying my name on the command line screen. This is inconsequential
insofar as the overall operation of the program is concerned.

Set the panel background color to orange
Then Listing 3 (p. 1745) sets the background color of the panel to orange. This is what causes the two

labels in Figure 1 (p. 1741) to appear to be orange. They are actually transparent except for the text. The
orange color shows through causing the labels to appear to be orange.

Set the layout to GridLayout
Setting the layout manager controls how the components that are placed in the panel will be arranged.

A GridLayout causes all components to be the same size arranged in rows and columns.
Overloaded constructors
There are several overloaded versions of the GridLayout constructor. For the constructor used in

Listing 3 (p. 1745) , the parameters specify the number of rows and the number of columns in that order.
Specifying the number of rows as 0 and the number of columns as 2 means that the layout manager will
accept any number of rows but only two columns.

The order of component placement
The intersections of the rows and columns create cells . Components are placed in the cells in left to

right, top to bottom order as they are added to the panel.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1741

Add the six GUI components to the panel
Listing 4 (p. 1746) adds the six GUI components to the panel in the left to right, top to bottom order

described above.

Listing 4 - Add the six GUI components to the panel.

mainPanel.add(angleLabel);

mainPanel.add(angleField);

mainPanel.add(distanceLabel);

mainPanel.add(distanceField);

mainPanel.add(moveButton);

mainPanel.add(quitButton);

Table 4.261

At this point, the panel has been populated with GUI components, but the panel itself has not been
added to the JFrame object that forms the World object. That is accomplished in Listing 5 (p. 1746) .

Get the frame and add the panel to the frame
Listing 5 (p. 1746) gets a reference to the World object's frame and adds the panel to the SOUTH

location in that frame.

Listing 5 - Get the frame and add the panel to the frame.

JFrame frame = world.getFrame();

frame.getContentPane().add(

mainPanel,BorderLayout.SOUTH);

frame.pack();

Table 4.262

You can surmise from the word SOUTH that the panel is added to the bottom of the frame. To learn
more about this, visit the BorderLayout class in Sun's Java documentation.

Pack the frame
As you learned in an earlier module, it is very important that you pack the frame at this point. Packing

the frame causes the frame to adjust its dimensions in order to accommodate all of the components that
have been added to it. In this case, the frame contains a Picture object (placed there when the World
was constructed) and a Panel object placed there in Listing 5 (p. 1747) .

What about the size of the panel?
Exactly how the panel decides what size it needs to be to accommodate the six GUI components is a

fairly complicated topic, so I won't go into it here. However, if you do much work developing GUIs, you
de�nitely need to understand the process. I have explained the automatic sizing process in several tutorials
on my website.

Set the background to blue and add a turtle
Listing 6 (p. 1747) sets the background color of the world to blue and adds a turtle to the world.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1742 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 6 - Set the background to blue and add a turtle.

//Initialize the picture.

picture = world.getPicture();

//Set picture background to BLUE

picture.setAllPixelsToAColor(Color.BLUE);

//Display the student's name on the picture.

picture.addMessage("Dick Baldwin",10,20);

//Add a turtle to the world. This causes the

// world to be repainted.

turtle = new Turtle(world);

Table 4.263

There is nothing new in Listing 6 (p. 1747) . I have explained code very similar to this code in earlier
modules.

Could stop at this point
If we were to stop programming at this point, the program would be executable, and would produce the

output shown in Figure 1 (p. 1741) when it is run. However it would be completely passive. By that, I
mean that entering values into the text �elds and clicking the buttons at the bottom of Figure 1 (p. 1741)
would have no e�ect. However, the buttons would appear to be active from a visual viewpoint because the
animation behavior is built into objects of the Button class.

Register listener objects
In order to cause the buttons to impact the behavior of the program, we must instantiate and register

listener object on the buttons. I will do that using anonymous classes.
De�ne, instantiate, and register a listener on the Move button
The code in Listing 7 (p. 1747) :

• De�nes an anonymous ActionListener class.
• Instantiates an anonymous object of that class.
• Registers that object on the Move button

Listing 7 - De�ne, instantiate, and register a listener on the Move button.

moveButton.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent e){

angle = Integer.parseInt(angleField.getText());

distance = Integer.parseInt(

distanceField.getText());

turtle.turn(angle);

turtle.forward(distance);

}//end action performed

}//end newActionListener

);//end addActionListener

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1743

Table 4.264

The actionPerformed method
As you learned in an earlier module, the code in the actionPerformed method is executed each time

the user presses the Move button.
The actionPerformed method in Listing 7 (p. 1747) begins by getting the text from each of the text

�elds, converting the text to type int , and saving the int values in the variables named angle and
distance .

Then Listing 7 (p. 1747) calls the turn and forward methods of the Turtle class to cause the
turtle to turn by the speci�ed angle and then move forward by the speci�ed distance.

Action listener to terminate the program
Listing 8 (p. 1748) registers an action listener on the Quit button, which will cause the program to

terminate when the user clicks the button.

Listing 8 - Action listener to terminate the program.

quitButton.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent e){

System.exit(0);

}//end action performed

}//end newActionListener

);//end addActionListener

}//end constructor

//--//

}//end class Prob05Runner

Table 4.265

As you can see in Listing 8 (p. 1748) , this code causes the exit method of the System class to
be called when the user clicks the Quit button. According to the Sun documentation, a call to the exit
method "Terminates the currently running Java Virtual Machine."

The end of the constructor and the end of the class
Listing 8 (p. 1748) also shows the end of the constructor for the Prob05Runner class and the end of

the class.

4.4.3.1.5.5 Run the program

I encourage you to copy the code from Listing 9 (p. 1749) . Compile the code and execute it. Experiment
with the code, making changes and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

4.4.3.1.5.6 Summary

In this module, you learned how to create and service a graphical user interface containing panels, labels,
text �elds, and buttons.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1744 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.3.1.5.7 What's next?

In the next module, you will learn about:

• Alpha transparency
• A bu�ered image of type TYPE_INT_ARGB
• The ability to use the getBasicPixel and setBasicPixel methods,
• The use of the bitwise AND and OR operators,
• The use of the drawImage method of the Graphics class.

4.4.3.1.5.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Panels, Labels, Text Fields, and Buttons
• File: Java3110.htm
• Revised: 02/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

4.4.3.1.5.9 Complete program listing

A complete listing of the program discussed in this lesson is shown in Listing 9 (p. 1749) below.
Listing 9 - Source code for Prob05.

/*File Prob05 Copyright 2008 R.G.Baldwin

*Revised 12/31/08

***/

import java.awt.BorderLayout;

import java.awt.GridLayout;

import java.awt.Panel;

import java.awt.TextField;

import java.awt.Label;

import java.awt.Button;

import java.awt.event.ActionListener;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1745

import java.awt.event.ActionEvent;

import java.awt.Color;

import javax.swing.JFrame;

public class Prob05{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

new Prob05Runner();

}//end main method

}//end class Prob05

//End program specifications.

/*--//

***/

class Prob05Runner{

Turtle turtle = null;

Picture picture = null;

World world = new World(200,300);

Panel mainPanel = new Panel();

Label angleLabel = new Label("Enter Angle");

TextField angleField = new TextField("000");

Label distanceLabel = new Label("Enter Distance");

TextField distanceField = new TextField("000");

Button moveButton = new Button("Move");

Button quitButton = new Button("Quit");

int angle = 0;

int distance = 0;

public Prob05Runner(){

System.out.println("Dick Baldwin");

//Construct the GUI.

mainPanel.setBackground(Color.ORANGE);

mainPanel.setLayout(new GridLayout(0,2));

mainPanel.add(angleLabel);

mainPanel.add(angleField);

mainPanel.add(distanceLabel);

mainPanel.add(distanceField);

mainPanel.add(moveButton);

mainPanel.add(quitButton);

//Get a reference to the world frame and add the GUI

// to the frame.

JFrame frame = world.getFrame();

frame.getContentPane().add(

mainPanel,BorderLayout.SOUTH);

frame.pack();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1746 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

//Initialize the picture.

picture = world.getPicture();

//Set picture background to BLUE

picture.setAllPixelsToAColor(Color.BLUE);

//Display the student's name on the picture.

picture.addMessage("Dick Baldwin",10,20);

//Add a turtle to the world. This causes the

// world to be repainted.

turtle = new Turtle(world);

//--//

//Register anonymous listeners on the two buttons.

moveButton.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent e){

angle = Integer.parseInt(angleField.getText());

distance = Integer.parseInt(

distanceField.getText());

turtle.turn(angle);

turtle.forward(distance);

}//end action performed

}//end newActionListener

);//end addActionListener

quitButton.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent e){

System.exit(0);

}//end action performed

}//end newActionListener

);//end addActionListener

}//end constructor

//--//

}//end class Prob05Runner

-end-

4.4.3.2 Part 2

4.4.3.2.1 Java3112 Java OOP Using Alpha Transparency with Ericson's Media Library
412

4.4.3.2.1.1 Table of Contents

• Preface (p. 1752)

· Viewing tip (p. 1752)

* Figures (p. 1752)
* Listings (p. 1752)

412This content is available online at <http://cnx.org/content/m44911/1.5/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1747

• Preview (p. 1752)
• General background information (p. 1757)
• Discussion and sample code (p. 1758)
• Run the program (p. 1763)
• Summary (p. 1763)
• What's next? (p. 1763)
• Miscellaneous (p. 1763)
• Complete program listing (p. 1764)

4.4.3.2.1.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 413 .

4.4.3.2.1.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

4.4.3.2.1.2.1.1 Figures

• Figure 1 (p. 1753) . Image from �le named Prob06a.
• Figure 2 (p. 1754) . Image from �le named Prob06b.
• Figure 3 (p. 1755) . Processed output image.
• Figure 4 (p. 1757) . Required text output.

4.4.3.2.1.2.1.2 Listings

• Listing 1 (p. 1758) . Modi�cation of the SimplePicture class.
• Listing 2 (p. 1759) . Beginning of the class named Prob06Runner.
• Listing 3 (p. 1759) . The run method.
• Listing 4 (p. 1760) . Beginning of the cropAndFlip method.
• Listing 5 (p. 1761) . Make the pixels partially transparent.
• Listing 6 (p. 1762) . The copyPictureWithCrop method.
• Listing 7 (p. 1764) . Complete program listing.

4.4.3.2.1.3 Preview

The primary objective of this module is to incorporate alpha transparency into the use of Ericson's media
library.

Two approaches
There are at least two ways to incorporate alpha transparency into Ericson's media library, The easiest

way, which is not necessarily the best way, is to make a relatively simple modi�cation to a constructor in
Ericson's SimplePicture class. That is the approach used in this module.

The second approach

413http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1748 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

The second approach is more complicated, but does not require the modi�cation of the classes in Ericson's
library. That is probably a better approach due simply to the fact that modi�cations to Ericson's library
are not required. However, that approach is not shown in this module.

Outside research
This program may require a signi�cant amount of outside research on the part of the student in order to

learn about:

• Alpha transparency
• A bu�ered image of type TYPE_INT_ARGB
• The ability to use Ericson's getBasicPixel and setBasicPixel methods,
• The use of the bitwise AND and OR operators, and
• The use of the drawImage method of the Graphics class.

The getBasicPixel and setBasicPixel methods
The program uses the getBasicPixel and setBasicPixel methods from Ericson's library along with

bitwise operations to set the alpha value for all the pixels in a cropped and �ipped image of a butter�y to a
hexadecimal value of 5F.

Modi�cation to the SimplePicture class
The student must modify the SimplePicture class to cause the bu�ered image used to store the image

to be TYPE_INT_ARGB instead of TYPE_INT_RGB , which is its normal type.
Crop, �ip, and set alpha values
Then the student must write a method that will crop and �ip an image of a butter�y and set the value

of every alpha byte to a hexadecimal value of 5F.
Draw a partially transparent image of a butter�y
Finally, the student must use the standard drawImage method of the Graphics class to draw the

image of the butter�y onto an image of a beach with transparency.
Brief program speci�cations
Write a program named Prob06 that uses the class de�nition for the class named Prob06 in

Listing 7 (p. 1764) along with Ericson's media library and the image �les named Prob06a.jpg 414 and
Prob06b.jpg 415 to produce the three graphic output images shown in Figure 1 (p. 1753) , Figure 2 (p.
1754) , and Figure 3 (p. 1755) .

Figure 1 - Image from �le named Prob06a.

414http://cnx.org/content/m44911/latest/Prob06a.jpg
415http://cnx.org/content/m44911/latest/Prob06b.jpg

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1749

Figure 2 - Image from �le named Prob06b.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1750 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Figure 3 - Processed output image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1751

De�ne new classes
You may de�ne new classes as necessary to cause your program to behave as required, but you may not

modify the class de�nition for the class named Prob06 given in Listing 7 (p. 1764) .
A partially transparent image of a butter�y
Just in case you haven't noticed it, the �nal image of the beach contains a partially transparent image

of a butter�y superimposed and centered on the beach image.
Modi�cation to the SimplePicture class
In order to write this program, you will need to modify the class from Ericson's media library named

SimplePicture .
Your modi�cations must make it possible for you to display a partially transparent image on top of

another image with the background image showing through.
Transparency
The degree of transparency can range from being completely transparent at one extreme to being totally

opaque at the other extreme. In this case, the butter�y image shown in Figure 3 (p. 1755) is about 37-percent
opaque (or 63-percent transparent) .

Outside research
You will probably need to do some outside research in order to write this program. For example, you

will need to learn about the following topics and probably some other topics as well:

• Alpha transparency
• Bu�eredImage objects of TYPE_INT_ARGB
• The representation of a pixel as type int
• Bit manipulation of pixels
• The drawImage method of the Graphics class

Required text output
In addition to the output images described above, your program must produce the text output shown in

Figure 4 (p. 1757) on the command- line screen.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1752 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Figure 4 - Required text output.

Dick Baldwin.

Dick Baldwin

Picture, filename Prob06a.jpg height 118 width 100

Picture, filename Prob06b.jpg height 240 width 320

Picture, filename None height 101 width 77

Table 4.266

You must substitute your name for my name wherever my name appears both in the images and on the
command-line screen.

4.4.3.2.1.4 General background information

The image in a SimplePicture object is stored in an object of the Bu�eredImage class, which is a
class in the standard Sun Java library.

Image data formats
An examination of the documentation for the Bu�eredImage class shows that the red, green, blue,

and alpha values for each pixel can be formatted in about fourteen di�erent ways in an object of the
Bu�eredImage class.

No alpha data
Some of those formats, including the way that information is stored in a SimplePicture object, don't

include an alpha value.
Modi�cation of the SimplePicture class
One way to modify the SimplePicture class to force it to accommodate alpha transparency data is

to modify one of the constructors for the SimplePicture class as shown in Listing 1 (p. 1758) . Note
that Bu�eredImage.TYPE_INT_RGB was replaced by Bu�eredImage.TYPE_INT_ARGB
in Listing 1. (There are probably other ways that you can modify the class to achieve the same result as
well.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1753

Listing 1 - Modi�cation of the SimplePicture class.

/**

* A constructor that takes the width and height desired

* for a picture and creates a buffered image of that

* size. This constructor doesn't show the picture.

*/

public SimplePicture(int width, int height){

//Disable the following statement

// bufferedImage = new BufferedImage(

// width, height, BufferedImage.TYPE_INT_RGB);

//Modify constructor to support alpha transparency.

System.out.println("Dick Baldwin");

bufferedImage = new BufferedImage(

width, height, BufferedImage.TYPE_INT_ARGB);

title = "None";

fileName = "None";

extension = "jpg";

setAllPixelsToAColor(Color.white);

}//end constructor

Table 4.267

Future Picture objects will accommodate alpha transparency
Having made this modi�cation, future objects instantiated from the SimplePicture class using this

constructor will accommodate alpha transparency. (The SimplePicture class is the superclass of the
Picture class.)

Display the student's name
Note that the constructor in Listing 1 (p. 1758) is also modi�ed to cause it to display the student's name,

which is a requirement of the program.
No complete listing of SimplePicture provided
Because of the simplicity of this modi�cation, a complete listing of the modi�ed SimplePicture class

will not be provided in this module.

4.4.3.2.1.5 Discussion and sample code

4.4.3.2.1.5.1 The class named Prob06

You can view the driver class named Prob06 at the beginning of the source code in Listing 7 (p. 1764) .
You are already familiar with the code in the main method of that class from earlier modules so I won't
spend any time explaining it.

Brie�y, the main method instantiates a new object of the class named Prob06Runner and calls the
run method on that object. When the run method returns, the code in the main method displays
some information about the three images and terminates.

(Because there are images on the screen, the program does not actually terminate until the user forces
it to terminate.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1754 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.3.2.1.5.2 The class named Prob06Runner

Will explain in fragments
I will explain this program in fragments. A complete listing of the program is provided in Listing 7 (p.

1764) near the end of the module
The class named Prob06Runner begins in Listing 2 (p. 1759) , which shows the constructor for the

class.

Listing 2 - Beginning of the class named Prob06Runner.

class Prob06Runner{

public Prob06Runner(){//constructor

System.out.println("Dick Baldwin.");

}//end constructor

Table 4.268

The constructor simply displays the student's name to satisfy one of the requirements of the program.
The run method
The run method, which is called from the main method in Listing 7 (p. 1764) , is shown in its entirety

in Listing 3 (p. 1759) .

Listing 3 - The run method.

public Picture[] run(){

//Insert executable code here

Picture picA = new Picture("Prob06a.jpg");

picA.explore();

Picture picB = new Picture("Prob06b.jpg");

picB.addMessage("Dick Baldwin.",10,20);

picB.explore();

Picture picC = cropAndFlip(picA,4,5,80,105);

copyPictureWithCrop(picC,picB,122,70);

picB.show();

Picture[] output = {picA,picB,picC};

return output;

}//end run

Table 4.269

New material
The only thing in Listing 3 (p. 1759) that is new to this module is the pair of calls to the following

methods. I will explain these methods in the paragraphs that follow:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1755

• cropAndFlip
• copyPictureWithCrop

Beginning of the cropAndFlip method
The cropAndFlip method begins in Listing 4 (p. 1760) . This method receives an incoming reference

to a Picture object. It crops the picture to a set of speci�ed coordinate values and �ips it around a vertical
line at its center.

Listing 4 - Beginning of the cropAndFlip method.

private Picture cropAndFlip(

Picture pic,int x1,int y1,int x2,int y2){

Picture output = new Picture(x2-x1+1,y2-y1+1);

int width = output.getWidth();

Pixel pixel = null;

Color color = null;

for(int col = x1;col < (x2+1);col++){

for(int row = y1;row < (y2+1);row++){

color = pic.getPixel(col,row).getColor();

pixel = output.getPixel(width-col+x1-1,row-y1);

pixel.setColor(color);

}//end inner loop

}//end outer loop

Table 4.270

Receives a reference to the butter�y image
Note from Listing 3 (p. 1759) that the cropAndFlip method receives a reference to the Picture

object of the butter�y that is displayed in Figure 1 (p. 1753) .
Also note that the butter�y in Figure 1 (p. 1753) is facing toward the right while the butter�y in the

output image in Figure 3 (p. 1755) has been cropped to a smaller size and is facing toward the left.
Crop and �ip is not new
The capability to crop and �ip an image is not new to this module. However, the cropAndFlip method

also makes the image partially transparent as shown in Figure 3 (p. 1755) . That capability is new to this
module. I will explain how that is done shortly.

A call to the modi�ed SimplePicture constructor
Although there is nothing new in the code in Listing 4 (p. 1760) , it is important to note that the �rst

statement in Listing 4 (p. 1760) causes the SimplePicture constructor that was modi�ed in Listing 1 (p.
1758) to be called.

As a result, the Picture object referred to by the reference variable named output in Listing 4 (p.
1760) will accommodate alpha transparency data.

Make the pixels partially transparent
The code in Listing 5 (p. 1761) uses a pair of nested for loops to iterate through all of the pixels in

the picture referred to by output and modify each pixel.
The four statements in the body of the inner loop in Listing 5 (p. 1761) cause the current pixel to become

partially transparent.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1756 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 5 - Make the pixels partially transparent.

width = output.getWidth();

int height = output.getHeight();

pixel = null;

color = null;

for(int col = 0;col < width;col++){

for(int row = 0;row < height;row++){

int basicPixel = output.getBasicPixel(col,row);

basicPixel = basicPixel & 0x00FFFFFF;

basicPixel = basicPixel | 0x5F000000;

output.setBasicPixel(col,row,basicPixel);

}//end inner loop

}//end outer loop

return output;

}//end crop and flip

Table 4.271

The getBasicPixel method
According to Ericson's documentation, the getBasicPixel method will "return the pixel value as an

int for the given x and y location." In other words, a call to the getBasicPixel method will return an
int value containing the red, green, blue, and alpha values for the pixel at the speci�ed location.

A bitwise AND operation
Listing 5 (p. 1761) uses a bitwise AND operation (note the single ampersand) to force the eight

most signi�cant bits (the alpha byte) in the int representation of the current pixel to zero while preserving
the bit values stored in the least signi�cant 24 bits.

A bitwise OR operation
Then Listing 5 (p. 1761) uses a bitwise OR operation (|) to store the hexadecimal value 5F in the

eight most signi�cant bits (the alpha byte) without changing the values stored in the 24 least signi�cant
bits.

The alpha byte
The value of the alpha byte can range from 0 to 255. When rendered using a mechanism that supports

alpha transparency, an alpha value of zero causes the pixel to be totally transparent.
Similarly, an alpha value of 255 causes the pixel to be totally opaque.
Values between zero and 255 cause the pixel to be rendered as partially opaque or partially transparent,

whichever terminology you prefer.
Thirty-seven percent opaque
If I did the arithmetic correctly, a hexadecimal value of 5F represents a decimal value of 95. Therefore,

this value will cause the pixel to be about 37-percent opaque (or 63-percent transparent) .
The setBasicPixel method
As the name implies, the setBasicPixel method can be used to "set the value of a pixel in the picture

from an int."
Therefore, the last statement in the body of the inner loop in Listing 5 (p. 1761) replaces the value of

the current pixel with the modi�ed value containing a value of 95 in the alpha byte.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1757

The end of the cropAndFlip method
When the pair of nested for loops in Listing 5 (p. 1761) terminates, the cropAndFlip method

returns control to the run method in Listing 3 (p. 1759) , returning a copy of the reference from the
variable named output (see Listing 4 (p. 1760)) in the process.

Save the Picture object's reference
The returned reference is stored in the reference variable named picC in Listing 3 (p. 1759) .
At this point, picC contains a reference to a butter�y image that has been cropped, �ipped, and

formatted into a bu�ered image that contains alpha transparency information.
Call the copyPictureWithCrop method
Listing 3 (p. 1759) immediately calls the copyPictureWithCrop method passing copies of the

references stored in picC and picB along with a pair of integer coordinate values.
The copyPictureWithCrop method
The copyPictureWithCrop method is shown in its entirety in Listing 6 (p. 1762) .

Listing 6 - The copyPictureWithCrop method.

private void copyPictureWithCrop(

Picture source,Picture dest,int xOff,

int yOff){

Graphics destGraphics = dest.getGraphics();

Image sourceImage = source.getImage();

destGraphics.drawImage(sourceImage,

xOff,

yOff,

null);

}//end copyPictureWithCrop method

}//end class Prob06Runner

Table 4.272

The purpose of the copyPictureWithCrop method is to copy a source picture onto a destination
picture with an o�set on each axis.

An exercise for the student
I won't attempt to explain the code in Listing 6 (p. 1762) in this module. Instead, I will simply suggest

that you go to Google and search for the following or similar keywords:
baldwin java drawImage

You will �nd many tutorials that I have written that deal with topics in this area.
Modify the destination pixel colors
I will tell you that the use of the drawImage method in Listing 6 (p. 1762) modi�es the destination

picture in such a way that the color of each pixel in the resulting image is a combination of the colors in the
original destination image and the corresponding pixel in the source image.

An illusion of transparency
If a source pixel is totally transparent, it has no e�ect on the color of the destination pixel.
If the source pixel is totally opaque, the color of the destination pixel is changed to the color of the source

pixel.
For alpha values between these two extremes, the �nal color of the destination pixel produces the illusion

of a partially transparent image in front of the original destination image.
Termination of the copyPictureWithCrop method

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1758 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

When the copyPictureWithCrop method terminates in Listing 6 (p. 1762) , control returns to the
run method in Listing 3 (p. 1759) .

Listing 3 (p. 1759) calls the show method to display the image in the now-modi�ed Picture object
referred to by picB , as shown in Figure 3 (p. 1755) .

Return a reference to an array object
Then the run method encapsulates references to each of the three images in an array object and returns

control to the main method in Listing 7 (p. 1764) , returning a copy of the array object's reference in the
process.

The main method in Listing 7 (p. 1764) displays information about each of the three Picture objects,
producing the output shown in Figure 4 (p. 1757) . Then the main method terminates.

Images don't go away immediately
Because there are images belonging to the program still on the screen, the program doesn't return control

to the operating system. It will simply wait until it is forced to terminate by the user before returning control
to the operating system.

Clicking the X-buttons in the upper-right corners of the images will simply hide the frames and won't
terminate the program. Some extra work is required to deal with this issue.

4.4.3.2.1.6 Run the program

I encourage you to copy the code from Listing 7 (p. 1764) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

4.4.3.2.1.7 Summary

In this module, you learned about:

• Alpha transparency
• A bu�ered image of type TYPE_INT_ARGB
• The ability to use the getBasicPixel and setBasicPixel methods,
• The use of the bitwise AND and OR operators,
• The use of the drawImage method of the Graphics class.

You modi�ed the SimplePicture class to cause the bu�ered image used to store the image to be
TYPE_INT_ARGB instead of TYPE_INT_RGB, which is its normal type.

You wrote a method that cropped and �ipped an image of a butter�y.
You used the getBasicPixel and setBasicPixel methods from Ericson's library along with bitwise

operations to set the alpha value for all the pixels in the cropped and �ipped image of the butter�y to a
hexadecimal value of 5F.

Finally, you used the standard drawImage method of the Graphics class to draw the image of the
butter�y onto an image of a beach with transparency.

4.4.3.2.1.8 What's next?

In the next module, you will learn how to use a slider to continuously change the opacity of an image and
to draw that modi�ed image onto a background image.

4.4.3.2.1.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Using Alpha Transparency with Ericson's Media Library

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1759

• File: Java3112.htm
• Published: 05/13/12
• Revised: 02/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

4.4.3.2.1.10 Complete program listing

A complete listing of the program discussed in this module is shown in Listing 7 (p. 1764) below.
Listing 7 - Complete program listing.

/*File Prob06 Copyright 2008 R.G.Baldwin

Revised 12/31/08

***/

import java.awt.Color;

import java.awt.Graphics;

import java.awt.Image;

public class Prob06{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

Picture[] pictures = new Prob06Runner().run();

System.out.println(pictures[0]);

System.out.println(pictures[1]);

System.out.println(pictures[2]);

}//end main method

}//end class Prob06

//==//

class Prob06Runner{

public Prob06Runner(){//constructor

System.out.println("Dick Baldwin.");

}//end constructor

//--//

public Picture[] run(){

//Insert executable code here

Picture picA = new Picture("Prob06a.jpg");

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1760 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

picA.explore();

Picture picB = new Picture("Prob06b.jpg");

picB.addMessage("Dick Baldwin.",10,20);

picB.explore();

Picture picC = cropAndFlip(picA,4,5,80,105);

copyPictureWithCrop(picC,picB,122,70);

picB.show();

Picture[] output = {picA,picB,picC};

return output;

}//end run

//--//

//Crops a picture to the specified coordinate values and

// flips it around a vertical line at its center.

//Also makes it partially transparent

private Picture cropAndFlip(

Picture pic,int x1,int y1,int x2,int y2){

Picture output = new Picture(x2-x1+1,y2-y1+1);

int width = output.getWidth();

Pixel pixel = null;

Color color = null;

for(int col = x1;col < (x2+1);col++){

for(int row = y1;row < (y2+1);row++){

color = pic.getPixel(col,row).getColor();

pixel = output.getPixel(width-col+x1-1,row-y1);

pixel.setColor(color);

}//end inner loop

}//end outer loop

width = output.getWidth();

int height = output.getHeight();

pixel = null;

color = null;

for(int col = 0;col < width;col++){

for(int row = 0;row < height;row++){

int basicPixel = output.getBasicPixel(col,row);

basicPixel = basicPixel & 0x00FFFFFF;

basicPixel = basicPixel | 0x5F000000;

output.setBasicPixel(col,row,basicPixel);

}//end inner loop

}//end outer loop

return output;

}//end crop and flip

//--//

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1761

//Copies the source picture onto the destination

// picture with an offset on both axes.

private void copyPictureWithCrop(

Picture source,Picture dest,int xOff,

int yOff){

Graphics destGraphics = dest.getGraphics();

Image sourceImage = source.getImage();

destGraphics.drawImage(sourceImage,

xOff,

yOff,

null);

}//end copyPictureWithCrop method

}//end class Prob06Runner

-end-

4.4.3.2.2 Java3114 Java OOP Controlling Opacity with a Slider
416

4.4.3.2.2.1 Table of Contents

• Preface (p. 1766)

· Viewing tip (p. 1766)

* Figures (p. 1767)
* Listings (p. 1767)

• Preview (p. 1767)
• General background information (p. 1770)
• Discussion and sample code (p. 1772)
• Run the program (p. 1779)
• Summary (p. 1779)
• What's next? (p. 1779)
• Miscellaneous (p. 1779)
• Complete program listing (p. 1780)

4.4.3.2.2.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 417 .

4.4.3.2.2.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

416This content is available online at <http://cnx.org/content/m44912/1.8/>.
417http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1762 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.3.2.2.2.1.1 Figures

• Figure 1 (p. 1768) . Screen output at startup.
• Figure 2 (p. 1768) . Twenty-percent opacity.
• Figure 3 (p. 1769) . Eighty-percent opacity.

4.4.3.2.2.2.1.2 Listings

• Listing 1 (p. 1772) . Modi�cation of the SimplePicture class.
• Listing 2 (p. 1773) . Beginning of the class named Prob07Runner.
• Listing 3 (p. 1774) . Beginning of the constructor.
• Listing 4 (p. 1774) . Display the initial image.
• Listing 5 (p. 1776) . Display the butter�y at 50-percent opacity.
• Listing 6 (p. 1776) . The setOpacity method.
• Listing 7 (p. 1777) . The drawPictureOnPicture method.
• Listing 8 (p. 1778) . Begin the registration of an event handler on the slider.
• Listing 9 (p. 1779) . Draw the butter�y and repaint.
• Listing 10 (p. 1780) . Complete program listing.

4.4.3.2.2.3 Preview

The primary objective of this module is to illustrate how to use a slider to continuously change the opacity
of an image and to draw that image onto a background image.

Two approaches
This module builds on an earlier module involving transparency. In that module, you learned that there

are at least two ways to incorporate alpha transparency into Ericson's media library, The easiest way, which
is not necessarily the best way, is to make a relatively simple modi�cation to a constructor in Ericson's
SimplePicture class. That is the approach used in this module.

The second approach
The second approach is more complicated, but does not require the modi�cation of the classes in Ericson's

library. That is probably a better approach due simply to the fact that modi�cations to Ericson's library
are not required. However, that approach is not shown in this module.

Outside research
As with the earlier module, the program that I will explain in this module may require a signi�cant

amount of outside research on the part of the student in order to learn about:

• Alpha transparency
• A bu�ered image of type TYPE_INT_ARGB
• The ability to use Ericson's getBasicPixel and setBasicPixel methods,
• The use of the bitwise AND, OR, and left-shift operators.
• The use of the drawImage method of the Graphics class.

Modi�cation to the SimplePicture class
The student must modify the SimplePicture class to cause the bu�ered image used to store the image

to be TYPE_INT_ARGB instead of TYPE_INT_RGB , which is its normal type.
Generally speaking, this program:

• Instantiates a new visual object that extends the JFrame class and contains a JSlider object.
• Instantiates Picture objects from two image �les (beach and butter�y) along with some blank

Picture objects of the same size.
• De�nes a method named setOpacity that can be called to set the opacity of every pixel in a picture

to a speci�ed value.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1763

• De�nes a method named drawPictureOnPicture that can be called to draw one picture onto
another picture.

• Registers a ChangeEvent handler on the slider to:

· Extract a percent-opacity value from the slider based on the position of the thumb.
· Apply that opacity value to the butter�y image.
· Draw the modi�ed butter�y image on the beach image and display it.

Brief program speci�cations
Write a program named Prob07 that uses the class de�nition for the class named Prob07 in Listing

10 (p. 1780) along with Ericson's media library and the image �les named Prob07a.jpg 418 and Prob07b.jpg
419 to produce the two output images shown in Figure 1 (p. 1768) .

Figure 1 - Screen output at startup.

Two output images
Note that Figure 1 (p. 1768) actually consists of two output images, one positioned below the other.
Move the thumb to the left
When you move the thumb on the slider to the left, the butter�y becomes less opaque (more transparent)

as shown in Figure 2 (p. 1768) with total transparency at the extreme left end of the slider.
Figure 2 - Twenty-percent opacity.

418http://cnx.org/content/m44912/latest/Prob07a.jpg
419http://cnx.org/content/m44912/latest/Prob07b.jpg

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1764 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Move the thumb to the right
When you move the thumb on the slider to the right, the butter�y becomes more opaque (less transparent)

as shown in Figure 3 (p. 1769) with total opacity at the extreme right end of the slider.
Figure 3 - Eighty-percent opacity.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1765

De�ne new classes
You may de�ne new classes as necessary to cause your program to behave as required, but you may not

modify the class de�nition for the class named Prob07 given in Listing 10 (p. 1780) .

4.4.3.2.2.4 General background information

The image in a SimplePicture object is stored in an object of the Bu�eredImage class, which is a
class in the standard Sun Java library.

Image data formats
An examination of the documentation for the Bu�eredImage class shows that the red, green, blue,

and alpha values for each pixel can be formatted in about fourteen di�erent ways in an object of the
Bu�eredImage class.

No alpha data
Some of those formats, including the way that information is stored in a SimplePicture object, don't

include an alpha value.
Modi�cation of the SimplePicture class
One way to modify the SimplePicture class to force it to accommodate alpha transparency data is

to modify one of the constructors for the SimplePicture class as shown in Listing 1 (p. 1772) . Note the
change indicated by comments in Listing 1 . (There are probably other ways that you can modify the class
to achieve the same result as well.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1766 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1767

Listing 1 - Modi�cation of the SimplePicture class.

/**

* A constructor that takes the width and height desired

* for a picture and creates a buffered image of that

* size. This constructor doesn't show the picture.

*/

public SimplePicture(int width, int height){

//Disable the following statement

// bufferedImage = new BufferedImage(

// width, height, BufferedImage.TYPE_INT_RGB);

//Modify constructor to support alpha transparency.

bufferedImage = new BufferedImage(

width, height, BufferedImage.TYPE_INT_ARGB);

title = "None";

fileName = "None";

extension = "jpg";

setAllPixelsToAColor(Color.white);

}//end constructor

Table 4.273

Future Picture objects will accommodate alpha transparency
Having made this modi�cation, future objects instantiated from the SimplePicture class using this

constructor will accommodate alpha transparency. (The SimplePicture class is the superclass of the
Picture class.)

No complete listing of SimplePicture provided
Because of the simplicity of this modi�cation, a complete listing of the modi�ed SimplePicture class

will not be provided in this module.

4.4.3.2.2.5 Discussion and sample code

4.4.3.2.2.5.1 The class named Prob07

You can view the driver class named Prob07 at the beginning of the source code in Listing 10 (p. 1780) .
You are already familiar with the code in the main method of that class from earlier modules so I won't
spend any time explaining it.

Brie�y, the main method instantiates a new object of the class named Prob07Runner and calls the
run method on that object. When the run method returns, the GUI shown in Figure 1 (p. 1768) has
been displayed on the screen.

At that point, the program simply goes into an idle state and waits for the user to take some action that
causes an event to be �red. When an event is �red, it is handled and the program goes idle again waiting
for another event.

(Because there are images on the screen, the program does not actually terminate until the user forces
it to terminate.)

4.4.3.2.2.5.2 The class named Prob07Runner

Will explain in fragments

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1768 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

I will explain this program in fragments. A complete listing of the program is provided in Listing 10 (p.
1780) near the end of the module.

Beginning of the class named Prob07Runner
The class named Prob07Runner begins in Listing 2 (p. 1773) .

Listing 2 - Beginning of the class named Prob07Runner.

class Prob07Runner extends JFrame{

private JPanel mainPanel = new JPanel();

private JPanel titlePanel = new JPanel();

private JSlider slider = new JSlider();

private Picture background = new Picture("Prob07b.jpg");

private Picture butterfly = new Picture("Prob07a.jpg");

private int backgroundWidth = background.getWidth();

private int backgroundHeight = background.getHeight();

private int butterflyWidth = butterfly.getWidth();

private int butterflyHeight = butterfly.getHeight();

private Picture display =

new Picture(backgroundWidth,backgroundHeight);

private Picture tempPicture =

new Picture(butterflyWidth,butterflyHeight);

private Image image = null;

private Graphics graphics = null;

Table 4.274

Class extends JFrame
Note that this class extends JFrame . An object of this class forms the lower part of the image shown

in Figure 1 (p. 1768) that contains the slider.
The code in Listing 1 (p. 1772) is straightforward and shouldn't require an explanation.
When Listing 2 �nishes executing...
When the code in Listing 2 (p. 1773) has �nished executing, four new Picture objects have been

instantiated and referred to by the following reference variables:

• background - The beach scene shown in the background in Figure 1 (p. 1768) .
• butter�y - Contains an opaque image of the butter�y shown in Figure 1 (p. 1768) .
• display - Empty picture the same size as the beach scene.
• tempPicture - Empty picture the same size as the butter�y.

In addition, a pair of working variables named image and graphics of the types Image and Graphics
have been declared.

Finally, when the code in Listing 2 (p. 1773) has �nished executing, two new JPanel objects and
one new JSlider object have been instantiated and referred to by the variables named mainPanel ,
titlePanel , and slider .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1769

Beginning of the constructor
The beginning of the constructor is shown in Listing 3 (p. 1774) .

Listing 3 - Beginning of the constructor.

public Prob07Runner(){//constructor

//Do some initial setup.

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

slider.setMajorTickSpacing(10);

slider.setMinorTickSpacing(5);

slider.setPaintTicks(true);

slider.setPaintLabels(true);

mainPanel.setLayout(new BorderLayout());

titlePanel.add(new JLabel(

"Percent Opacity of Butterfly"));

mainPanel.add(titlePanel,BorderLayout.NORTH);

mainPanel.add(slider,BorderLayout.CENTER);

getContentPane().add(mainPanel);

setSize(backgroundWidth + 7,97);

setLocation(0,backgroundHeight + 25);

setVisible(true);

Table 4.275

Although it may be necessary for you to go to Sun's Java documentation to learn about the detailed
behavior of some of the methods that are called in Listing 3 (p. 1774) , the code in Listing 3 (p. 1774) is
straightforward and should not require further explanation.

Display the initial background image
Listing 4 (p. 1774) displays the initial background image.
Instantiating and destroying a lot of new Picture objects as the user moves the slider to change the

opacity would be very ine�cient. To avoid this ine�ciency, this program gets images from existing Picture
objects and draws them on existing Picture objects without modifying the originals.

Listing 4 - Display the initial image.

graphics = display.getGraphics();

graphics.drawImage(background.getImage(),0,0,null);

Table 4.276

Display the butter�y at 50-percent opacity
Listing 5 (p. 1776) calls the setOpacity and drawPictureOnPicture methods to set the opacity

of the butter�y and draw it onto the display with 50-percent opacity. The image of the butter�y is centered
on the background.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1770 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1771

Listing 5 - Display the butter�y at 50-percent opacity.

butterfly = setOpacity(butterfly,50);

drawPictureOnPicture(

butterfly,

display,

backgroundWidth/2 - butterflyWidth/2,

backgroundHeight/2 - butterflyHeight/2);

display.show();

Table 4.277

Put the constructor on hold
At this point, I will put the discussion of the constructor on hold and explain the setOpacity and

drawPictureOnPicture methods.
The setOpacity method
The setOpacity method is shown in its entirety in Listing 6 (p. 1776) .

Listing 6 - The setOpacity method.

private Picture setOpacity(

Picture pic,double percentOpacity){

int opacity = (int)(255*percentOpacity/100);

int opacityMask = opacity � 24;

for(int col = 0;col < butterflyWidth;col++){

for(int row = 0;row < butterflyHeight;row++){

//Get the pixel in basic int format.

int basicPixel = pic.getBasicPixel(col,row);

//Set the alpha value for the pixel.

basicPixel = basicPixel & 0x00FFFFFF;

basicPixel = basicPixel | opacityMask;

//Set the modified pixel into tempPicture.

tempPicture.setBasicPixel(col,row,basicPixel);

}//end inner loop

}//end outer loop

return tempPicture;

}//end setOpacity

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1772 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Table 4.278

This method copies an incoming picture into an existing temporary picture, setting the alpha value for
every pixel to a speci�ed value in the process. Then it returns the modi�ed picture object's reference where
it is saved in the reference variable named butter�y in Listing 5 (p. 1776) ,

A bitwise left-shift operation
The only thing in Listing 6 (p. 1776) that is new to this module is the use of a bitwise left-shift operation.
A 24-bit left shift
Listing 6 (p. 1776) converts the incoming percentOpacity value to an integer value ranging from 0

to 255. This value resides in the least signi�cant eight bits of an int variable named opacity .
Then Listing 6 (p. 1776) applies the bitwise left-shift operator (two left angle brackets) to shift

those eight bits into the eight most signi�cant bits and stores the result in another int variable named
opacityMask .

Apply the opacityMask to the pixels
A pair of nested for loops is used to set the alpha value of every pixel to the value of opacityMask

using an overall bit-masking methodology that I explained in an earlier module.
The drawPictureOnPicture method
After the alpha value for every pixel in the butter�y image has been set to the speci�ed opacity, Listing

5 (p. 1776) calls the method named drawPictureOnPicture to draw the modi�ed butter�y image on
the beach scene as shown in Figure 1 (p. 1768) .

The drawPictureOnPicture method is shown in its entirety in Listing 7 (p. 1777) .

Listing 7 - The drawPictureOnPicture method.

private void drawPictureOnPicture(

Picture source,Picture dest,int xOff,

int yOff){

Graphics destGraphics = dest.getGraphics();

Image sourceImage = source.getImage();

destGraphics.drawImage(sourceImage,

xOff,

yOff,

null);

}//end drawPictureOnPicture method

Table 4.279

This method draws the source picture onto the destination picture with an o�set on both axes. There is
nothing in Listing 7 (p. 1777) that I haven't explained in an earlier module.

Return to the explanation of the constructor
You are already familiar with the use of anonymous inner classes to create and register listener objects

on Java source objects. The slider is a source object.
Listing 8 (p. 1778) begins the registration of an anonymous ChangeEvent listener on the slider.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1773

Listing 8 - Begin the registration of an event handler on the slider.

slider.addChangeListener(

new ChangeListener(){

public void stateChanged(ChangeEvent e){

//Draw a new copy of the background on the

// display.

graphics = display.getGraphics();

graphics.drawImage(

background.getImage(),0,0,null);

Table 4.280

Restore the background image
Each time the slider �res a ChangeEvent , this event handler draws a new background image on the

display. This erases what was previously drawn there, restoring a pristine image of the beach scene.
Draw a partially opaque butter�y image on the background
Then it uses the current value of the slider to set the opacity of the butter�y image and draws it centered

on the display on top of the background image.
A series of events
The slider �res a series of ChangeEvents as the user moves the thumb on the slider. Listing 8 (p.

1778) begins the de�nition of the event handler method named stateChanged , which is registered on
the slider. This method is called each time the slider �res a ChangeEvent .

Listing 8 (p. 1778) draws a new copy of the beach background image on the Picture object referred to
by the reference variable named background . This image replaces the image that was previously drawn
there.

Draw the butter�y and repaint
Listing 9 (p. 1779) calls the setOpacity and drawPictureOnPicture methods to:

• Set the opacity of the butter�y to the value currently represented by the position of the thumb on the
slider. This is the value returned by the slider's getValue method.

• Draw the butter�y image on the background image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1774 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 9 - Draw the butter�y and repaint.

//Set the opacity of butterfly and copy it onto

// the display. Then repaint the display.

butterfly =

setOpacity(butterfly,slider.getValue());

drawPictureOnPicture(

butterfly,

display,

backgroundWidth/2 - butterflyWidth/2,

backgroundHeight/2 - butterflyHeight/2);

display.repaint();

}//end stateChanged

}//end new ChangeListener

);//end addChangeListener

//--//

}//end constructor

Table 4.281

Repaint the image
Then Listing 9 (p. 1779) calls the repaint method to cause the modi�ed image to be rendered onto

the computer screen.
The end of the program
Listing 9 (p. 1779) also signals the end of the constructor, the end of the class named Prob07Runner

, and the end of the program.

4.4.3.2.2.6 Run the program

I encourage you to copy the code from Listing 10 (p. 1780) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

4.4.3.2.2.7 Summary

In this module, you learned how to use a slider to continuously change the opacity of an image and draw
that image onto a background image.

4.4.3.2.2.8 What's next?

In the next module, you will learn how to use a slider to continuously change the threshold detection level
of an edge detector and to draw the edge-detected image on the screen.

4.4.3.2.2.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Controlling Opacity with a Slider

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1775

• File: Java3114.htm
• Published: 05/13/12
• Revised: 02/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

4.4.3.2.2.10 Complete program listing

A complete listing of the program discussed in this module is shown in Listing 10 (p. 1780) below.
Listing 10 - Complete program listing.

/*File Prob07 Copyright 2008 R.G.Baldwin

***/

import java.awt.Color;

import java.awt.Graphics;

import java.awt.Image;

import java.awt.BorderLayout;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JSlider;

import javax.swing.JLabel;

import javax.swing.event.ChangeListener;

import javax.swing.event.ChangeEvent;

public class Prob07{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

new Prob07Runner();

}//end main method

}//end class Prob07

//==//

class Prob07Runner extends JFrame{

private JPanel mainPanel = new JPanel();

private JPanel titlePanel = new JPanel();

private JSlider slider = new JSlider();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1776 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

private Picture background = new Picture("Prob07b.jpg");

private Picture butterfly = new Picture("Prob07a.jpg");

private int backgroundWidth = background.getWidth();

private int backgroundHeight = background.getHeight();

private int butterflyWidth = butterfly.getWidth();

private int butterflyHeight = butterfly.getHeight();

private Picture display =

new Picture(backgroundWidth,backgroundHeight);

private Picture tempPicture =

new Picture(butterflyWidth,butterflyHeight);

private Image image = null;

private Graphics graphics = null;

public Prob07Runner(){//constructor

//Do some initial setup.

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

slider.setMajorTickSpacing(10);

slider.setMinorTickSpacing(5);

slider.setPaintTicks(true);

slider.setPaintLabels(true);

mainPanel.setLayout(new BorderLayout());

titlePanel.add(new JLabel(

"Percent Opacity of Butterfly"));

mainPanel.add(titlePanel,BorderLayout.NORTH);

mainPanel.add(slider,BorderLayout.CENTER);

getContentPane().add(mainPanel);

setSize(backgroundWidth + 7,97);

setLocation(0,backgroundHeight + 25);

setVisible(true);

//Draw and display the initial image with 50-percent

// opacity. In order to avoid instantiating and

// destroying a lot of Picture objects, the

// procedure is to simply get images from existing

// picture objects and draw them on other existing

// picture objects.

graphics = display.getGraphics();

graphics.drawImage(background.getImage(),0,0,null);

//Set the opacity of butterfly and draw it onto the

// display. In this case, the opacity is set to

// 50-percent. The image of the butterfly is centered

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1777

// on the background.

butterfly = setOpacity(butterfly,50);

drawPictureOnPicture(

butterfly,

display,

backgroundWidth/2 - butterflyWidth/2,

backgroundHeight/2 - butterflyHeight/2);

display.show();

//--//

//Register an anonymous listener object on the slider.

//Each time the slider fires a ChangeEvent, this event

// handler draws a new background image on the

// display. This erases what was previously drawn

// there. Then it uses the current value of the slider

// to set the opacity of the butterfly image and

// draws it on the display on top of the background

// image. It is centered on the background image.

slider.addChangeListener(

new ChangeListener(){

public void stateChanged(ChangeEvent e){

//Draw a new copy of the background on the

// display.

graphics = display.getGraphics();

graphics.drawImage(

background.getImage(),0,0,null);

//Set the opacity of butterfly and copy it onto

// the display. Then repaint the display.

butterfly =

setOpacity(butterfly,slider.getValue());

drawPictureOnPicture(

butterfly,

display,

backgroundWidth/2 - butterflyWidth/2,

backgroundHeight/2 - butterflyHeight/2);

display.repaint();

}//end stateChanged

}//end new ChangeListener

);//end addChangeListener

//--//

}//end constructor

//--//

//This method copies an incoming picture into an

// existing temporary picture, setting the alpha value

// for every pixel to a specified value. Then it returns

// the modified temporary picture object.

private Picture setOpacity(

Picture pic,double percentOpacity){

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1778 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

int opacity = (int)(255*percentOpacity/100);

int opacityMask = opacity � 24;

for(int col = 0;col < butterflyWidth;col++){

for(int row = 0;row < butterflyHeight;row++){

//Get the pixel in basic int format.

int basicPixel = pic.getBasicPixel(col,row);

//Set the alpha value for the pixel.

basicPixel = basicPixel & 0x00FFFFFF;

basicPixel = basicPixel | opacityMask;

//Set the modified pixel into tempPicture.

tempPicture.setBasicPixel(col,row,basicPixel);

}//end inner loop

}//end outer loop

return tempPicture;

}//end setOpacity

//--//

//Draws the source picture onto the destination

// picture with an offset on both axes.

private void drawPictureOnPicture(

Picture source,Picture dest,int xOff,

int yOff){

Graphics destGraphics = dest.getGraphics();

Image sourceImage = source.getImage();

destGraphics.drawImage(sourceImage,

xOff,

yOff,

null);

}//end drawPictureOnPicture method

}//end class Prob07Runner

-end-

4.4.3.2.3 Java3116 Java OOP Controlling an Edge Detector with a Slider
420

4.4.3.2.3.1 Table of Contents

• Preface (p. 1784)

· Viewing tip (p. 1784)

* Figures (p. 1784)
* Listings (p. 1784)

• Preview (p. 1784)
• Discussion and sample code (p. 1787)
• Run the program (p. 1792)

420This content is available online at <http://cnx.org/content/m44913/1.7/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1779

• Summary (p. 1792)
• What's next? (p. 1792)
• Miscellaneous (p. 1792)
• Complete program listing (p. 1793)

4.4.3.2.3.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 421 .

4.4.3.2.3.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

4.4.3.2.3.2.1.1 Figures

• Figure 1 (p. 1784) . Contents of the �le named Prob08.jpg.
• Figure 2 (p. 1785) . Output images.

4.4.3.2.3.2.1.2 Listings

• Listing 1 (p. 1788) . Beginning of the class named Prob08Runner.
• Listing 2 (p. 1789) . Beginning of the constructor.
• Listing 3 (p. 1789) . Beginning of the edgeDetector method.
• Listing 4 (p. 1791) . Detect using adjacent pixels in each column.
• Listing 5 (p. 1792) . Register a ChangeEvent listener on the slider.
• Listing 6 (p. 1793) . Complete program listing.

4.4.3.2.3.3 Preview

An earlier module (see 3D Displays, Color Distance, and Edge Detection 422) explained how to implement
an edge detection algorithm for a �xed detection threshold.

The primary objective of this module is to illustrate how to use a slider to continuously change the
detection threshold of an edge detector and to draw the edge-detected image on the screen.

Brief program speci�cations
Write a program named Prob08 that uses the class de�nition for the class named Prob08 shown in

Listing 6 (p. 1793) and Ericson's media library along with the image �le named Prob08.jpg 423 (shown in
Figure 1 (p. 1784)) to produce the two graphic output images shown in Figure 2 (p. 1785) .

Figure 1 - Contents of the �le named Prob08.jpg.

421http://cnx.org/content/m44148/latest/
422http://www.developer.com/java/other/article.php/3798646/3D-Displays-Color-Distance-and-Edge-Detection.htm
423http://cnx.org/content/m44913/latest/Prob08.jpg

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1780 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Figure 2 - Output images.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1781

Note that Figure 2 (p. 1785) consists of two separate output images. The image containing the slider is
positioned directly below the image of the butter�y.

New classes
You may de�ne new classes as necessary to cause your program to behave as required, but you may not

modify the class de�nition for the class named Prob08 given in Listing 6 (p. 1793) .
The output images
The top image shown in Figure 2 (p. 1785) is an image of a butter�y to which an edge detection algorithm

has been applied.
The bottom image in Figure 2 (p. 1785) is a slider that is used to control the edge-detection threshold.
Detect by rows and by columns
The edge-detection algorithm performs edge detection on a Picture object by rows and also by columns.
All edges that are detected by processing adjacent pixels on a row are marked in red. All edges that are

detected by processing adjacent pixels on a column are marked in black.
If a pixel is determined to be on an edge using both approaches, it ends up being black. If an edge is not

detected, the corresponding pixel is marked in white.
Program behavior
At startup, the thumb on the slider is positioned at the 50-percent mark and the image has been edge-

detected using a threshold value of 50.
As you move the slider to the right, the threshold value increases up to a value of 100, which in turn

causes the amount of white area in the image to increase.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1782 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

As you move the slider to the left, the threshold value decreases down to a value of zero, which in turn
causes the amount of white area in the image to decrease.

The program must terminate and return control to the operating system when you click the large X in
the upper-right corner of the GUI containing the slider.

In addition to the output images described above, your program must display your name on the command-
line screen.

4.4.3.2.3.4 Discussion and sample code

4.4.3.2.3.4.1 The class named Prob08

You can view the driver class named Prob08 at the beginning of the source code in Listing 6 (p. 1793) .
You are already familiar with the code in the main method of that class from earlier modules so I won't
spend any time explaining it.

Brief description
Brie�y, the main method instantiates a new object of the class named Prob08Runner and calls the

run method on that object. When the run method returns, the GUI shown in Figure 2 (p. 1785) has
been displayed on the screen.

At that point, the program simply goes into an idle state and waits for the user to take some action that
causes an event to be �red. When an event is �red, it is handled and the program goes idle again waiting
for another event.

(Because there are images on the screen, the program does not terminate until the user forces it to
terminate.)

4.4.3.2.3.4.2 The class named Prob08Runner

Will explain in fragments
I will explain this program in fragments. A complete listing of the program is provided in Listing 6 (p.

1793) near the end of the module.
Beginning of the class named Prob08Runner
The class named Prob08Runner begins in Listing 1 (p. 1788) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1783

Listing 1 - Beginning of the class named Prob08Runner.

class Prob08Runner extends JFrame{

private JPanel mainPanel = new JPanel();

private JPanel titlePanel = new JPanel();

private JSlider slider = new JSlider();

private Picture butterfly =

new Picture("Prob08.jpg");

private int butterflyWidth =

butterfly.getWidth();

private int butterflyHeight =

butterfly.getHeight();

private Picture display =

new Picture(butterflyWidth,butterflyHeight);

private Pixel pix1;

private Pixel pix2;

private Pixel displayPixel;

private double distance = 0;

Table 4.282

There is nothing in Listing 1 (p. 1788) that I haven't explained in earlier modules, so I won't repeat
those explanations here.

Beginning of the constructor
The constructor begins in Listing 2 (p. 1789) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1784 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 2 - Beginning of the constructor.

public Prob08Runner(){//constructor

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

slider.setMajorTickSpacing(10);

slider.setMinorTickSpacing(5);

slider.setPaintTicks(true);

slider.setPaintLabels(true);

mainPanel.setLayout(new BorderLayout());

titlePanel.add(new JLabel(

"Edge Detection Threshold"));

mainPanel.add(titlePanel,BorderLayout.NORTH);

mainPanel.add(slider,BorderLayout.CENTER);

getContentPane().add(mainPanel);

setSize(butterflyWidth + 7,97);

setLocation(0,butterflyHeight + 25);

setVisible(true);

//Produce the initial display with a threshold

// value of 50, which matches the initial

// position of the pointer on the slider.

display = edgeDetector(butterfly,50);

display.show();

Table 4.283

Put the constructor on hold
The only thing that is new in Listing 2 (p. 1789) is the call to the method named edgeDetector . I

will put the explanation of the constructor on hold while I explain the method named edgeDetector .
Beginning of the edgeDetector method
The edgeDetector method begins in Listing 3 (p. 1789) .
This method performs edge detection on a Picture object by rows and also by columns.
As mentioned earlier, all edges that are detected by processing adjacent pixels on a row are marked in

red.
All edges that are detected by processing adjacent pixels on a column are marked in black.
If a pixel is determined to be on an edge using both approaches, it ends up being black.

Listing 3 - Beginning of the edgeDetector method.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1785

private Picture edgeDetector(

Picture picture,int threshold){

for(int row = 0;row < butterflyHeight - 1;row++){

for(int col = 0;col < butterflyWidth - 1;col++){

pix1 = picture.getPixel(col,row);

displayPixel = display.getPixel(col,row);

//First process two adjacent pixels on the

// same row.

pix2 = picture.getPixel(col + 1,row);

//Get and save the color distance between the

// two pixels.

distance = pix1.colorDistance(pix2.getColor());

//Compare the color distance to the threshold

// and set the color of the pixel in the

// display picture accordingly.

if(distance > threshold){

displayPixel.setColor(Color.RED);

}else{

displayPixel.setColor(Color.WHITE);

}//end else

Table 4.284

A pair of nested for loops
Listing 3 (p. 1789) shows the beginning of a pair of nested for loops that I used to detect the edges in

the image of the butter�y. The code in Listing 3 (p. 1789) detects edges using adjacent pixels on each row
and sets the color of the corresponding pixel in the output picture to red if an edge is detected.

(Note that the output picture referred to by display was instantiated as an instance variable in Listing
1 (p. 1788) .)

I explained an edge-detection algorithm in great detail in an earlier module titled 3D Displays, Color
Distance, and Edge Detection 424 . The code in Listing 3 (p. 1789) is essentially an implementation of that
algorithm where the detection threshold is an input parameter to the method.

Detect using adjacent pixels in each column
Listing 4 (p. 1791) detects edges using adjacent pixels on the columns.

424http://www.developer.com/java/other/article.php/3798646/3D-Displays-Color-Distance-and-Edge-Detection.htm

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1786 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 4 - Detect using adjacent pixels in each column.

//Now process two adjacent pixels in the same

// column using the same approach.

pix2 = picture.getPixel(col,row + 1);

distance = pix1.colorDistance(pix2.getColor());

//Compare the color distance to the threshold

// and change pixel color accordingly.

if(distance > threshold){

displayPixel.setColor(Color.BLACK);

}//end if

}//end inner loop

}//end outer loop

return display;

}//end edgeDetector

Table 4.285

If an edge is detected in Listing 4 (p. 1791) , the color of the corresponding pixel in the output picture
is set to black.

Return the output picture and terminate
The edgeDetector method returns a reference to the output picture and terminates in Listing 4 (p.

1791) .
(While writing this, I realized that because the variable named display is an instance variable, the

program would also work properly if the edgeDetector method were to return void.)
Returning to the constructor...
Returning to where we left o� in Listing 2 (p. 1789) , the show method is called on the output picture

referred to by display causing an image similar to that shown in Figure 2 (p. 1785) to be displayed.
Register a ChangeEvent listener on the slider
Listing 5 (p. 1792) registers an anonymous listener object on the slider. Each time the slider �res a

ChangeEvent , the method named stateChanged is executed.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1787

Listing 5 - Register a ChangeEvent listener on the slider.

slider.addChangeListener(

new ChangeListener(){

public void stateChanged(ChangeEvent e){

display = edgeDetector(

butterfly,slider.getValue());

display.repaint();

}//end stateChanged

}//end new ChangeListener

);//end addChangeListener

//--//

}//end constructor

//--//

}//end class Prob08Runner

Table 4.286

Call the edgeDetector method
The stateChanged method calls the edgeDetector method to get a new edge-detected image for

which the threshold is the current value of the slider.
Then the display is repainted showing the new image on the screen.
The end of the program
Listing 5 (p. 1792) also signals the end of the constructor, the end of the class, and the end of the

program.

4.4.3.2.3.5 Run the program

I encourage you to copy the code from Listing 6 (p. 1793) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

4.4.3.2.3.6 Summary

In this module, you learned how to use a slider to continuously change the threshold detection level of an
edge detector and to draw the edge-detected image on the screen.

4.4.3.2.3.7 What's next?

In the next module, you will learn how to use a slider to continuously change the size of an image and to
draw the scaled image onto a background image.

4.4.3.2.3.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Controlling an Edge Detector with a Slider

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1788 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

• File: Java3116.htm
• Published: 05/13/12
• Revised: 02/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

4.4.3.2.3.9 Complete program listing

A complete listing of the program discussed in this module is shown in Listing 6 (p. 1793) .
Listing 6 - Complete program listing.

/*File Prob08 Copyright 2008 R.G.Baldwin

*Revised 12/31/08

***/

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JSlider;

import javax.swing.JLabel;

import javax.swing.event.ChangeListener;

import javax.swing.event.ChangeEvent;

import java.awt.BorderLayout;

import java.awt.Color;

public class Prob08{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

new Prob08Runner();

}//end main method

}//end class Prob08

//==//

class Prob08Runner extends JFrame{

private JPanel mainPanel = new JPanel();

private JPanel titlePanel = new JPanel();

private JSlider slider = new JSlider();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1789

private Picture butterfly = new Picture("Prob08.jpg");

private int butterflyWidth = butterfly.getWidth();

private int butterflyHeight = butterfly.getHeight();

private Picture display =

new Picture(butterflyWidth,butterflyHeight);

private Pixel pix1;

private Pixel pix2;

private Pixel displayPixel;

private double distance = 0;

public Prob08Runner(){//constructor

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

slider.setMajorTickSpacing(10);

slider.setMinorTickSpacing(5);

slider.setPaintTicks(true);

slider.setPaintLabels(true);

mainPanel.setLayout(new BorderLayout());

titlePanel.add(new JLabel(

"Edge Detection Threshold"));

mainPanel.add(titlePanel,BorderLayout.NORTH);

mainPanel.add(slider,BorderLayout.CENTER);

getContentPane().add(mainPanel);

setSize(butterflyWidth + 7,97);

setLocation(0,butterflyHeight + 25);

setVisible(true);

//Produce the initial display with a threshold value

// of 50, which matches the initial position of the

// pointer on the slider.

display = edgeDetector(butterfly,50);

display.show();

//--//

//Register an anonymous listener object on the slider.

//Each time the slider fires a ChangeEvent, this event

// handler calls the edgeDetector method to get a new

// edge-detected image for which the threshold is the

// current value of the slider. Then the display is

// repainted showing the new image.

slider.addChangeListener(

new ChangeListener(){

public void stateChanged(ChangeEvent e){

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1790 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

display = edgeDetector(

butterfly,slider.getValue());

display.repaint();

}//end stateChanged

}//end new ChangeListener

);//end addChangeListener

//--//

}//end constructor

//--//

/*This method performs edge detection on a Picture

*object by rows and also by columns.

*All edges that are detected by processing adjacent

*pixels on a row are marked in red.

*All edges that are detected by processing adjacent

*pixels on a column are marked in black.

*If a pixel is determined to be on an edge using both

*approaches, it ends up being black.

*/

private Picture edgeDetector(

Picture picture,int threshold){

for(int row = 0;row < butterflyHeight - 1;row++){

for(int col = 0;col < butterflyWidth - 1;col++){

pix1 = picture.getPixel(col,row);

displayPixel = display.getPixel(col,row);

//First process two adjacent pixels on the same

// row.

pix2 = picture.getPixel(col + 1,row);

//Get and save the color distance between the two

// pixels.

distance = pix1.colorDistance(pix2.getColor());

//Compare the color distance to the threshold and

// set the color of the pixel in the display

// picture accordingly.

if(distance > threshold){

displayPixel.setColor(Color.RED);

}else{

displayPixel.setColor(Color.WHITE);

}//end else

//Now process two adjacent pixels in the same

// column using the same approach.

pix2 = picture.getPixel(col,row + 1);

distance = pix1.colorDistance(pix2.getColor());

//Compare the color distance to the threshold and

// change pixel color accordingly.

if(distance > threshold){

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1791

displayPixel.setColor(Color.BLACK);

}//end if

}//end inner loop

}//end outer loop

return display;

}//end edgeDetector

}//end class Prob08Runner

-end-

4.4.3.2.4 Java3118 Java OOP Controlling an Image-Scaling Program with a Slider
425

4.4.3.2.4.1 Table of Contents

• Preface (p. 1796)

· Viewing tip (p. 1796)

* Figures (p. 1796)
* Listings (p. 1797)

• Preview (p. 1797)
• General background information (p. 1799)
• Discussion and sample code (p. 1799)
• Run the program (p. 1801)
• Summary (p. 1801)
• What's next? (p. 1802)
• Miscellaneous (p. 1802)
• Complete program listing (p. 1802)

4.4.3.2.4.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 426 .

4.4.3.2.4.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

4.4.3.2.4.2.1.1 Figures

• Figure 1 (p. 1797) . Prob09a.jpg.
• Figure 2 (p. 1797) . Prob09b.jpg.
• Figure 3 (p. 1798) . Output images.

425This content is available online at <http://cnx.org/content/m44914/1.7/>.
426http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1792 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.3.2.4.2.1.2 Listings

• Listing 1 (p. 1800) . Register a listener object on the slider.
• Listing 2 (p. 1801) . The method named drawScaledPictureOnPicture.
• Listing 3 (p. 1802) . Complete program listing.

4.4.3.2.4.3 Preview

The primary objective of this module is to illustrate how to use a slider to continuously change the size of
an image and to draw the scaled image onto a background image.

Brief program speci�cations
Write a program named Prob09 that uses the class de�nition for the class named Prob09 shown

in Listing 3 (p. 1802) and Ericson's media library along with the image �les named Prob09a.jpg 427 (see
Figure 1 (p. 1797)) and Prob09b.jpg 428 (see Figure 2 (p. 1797)) to produce the graphic output images
shown in Figure 3 (p. 1798) .

Figure 1 - Prob09a.jpg.

Figure 2 - Prob09b.jpg.

427http://cnx.org/content/m44914/latest/Prob09a.jpg
428http://cnx.org/content/m44914/latest/Prob09b.jpg

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1793

Figure 3 - Output images.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1794 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.3.2.4.4 General background information

The overall structure of this program is very similar to a program that I explained in an earlier module titled
Controlling an Edge Detector with a Slider 429 . The only signi�cant di�erence between the two programs
is the code that is executed when the slider �res a ChangeEvent .

I will explain the code that is new and di�erent in this program and refer you back to the earlier module
for an explanation of the remainder of the code. You can view the entire program in Listing 3 (p. 1802)
near the end of the module.

4.4.3.2.4.5 Discussion and sample code

Register a listener object on the slider
The code in Listing 1 (p. 1800) registers an anonymous listener object on the slider.

429http://cnx.org/content/m44913/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1795

Listing 1 - Register a listener object on the slider.

slider.addChangeListener(

new ChangeListener(){

public void stateChanged(ChangeEvent e){

//Restore the background image of the butterfly.

graphics = display.getGraphics();

graphics.drawImage(

butterfly.getImage(),0,0,null);

drawScaledPictureOnPicture(beach,

display,

slider.getValue());

display.repaint();

}//end stateChanged

}//end new ChangeListener

);//end addChangeListener

Table 4.287

Each time the slider �res a ChangeEvent , the method named stateChanged is executed.
Behavior of the stateChanged method
The stateChanged method restores the background image of the butter�y. Then it calls the method

named drawScaledPictureOnPicture to draw a scaled version of the beach on top of the background
image using the slider value as the scale factor.

The slider value ranges from 0 to 100. This represents a scale factor as a percent of 1.0. In other words,
the beach image is never scaled to a size that is larger than the size of the original beach image.

The image of the beach is always aligned with the center of the contentPane of the JFrame .
When the drawScaledPictureOnPicture method returns, the repaint method is called to cause

the new image to be rendered on the computer screen.
The method named drawScaledPictureOnPicture
The method named drawScaledPictureOnPicture is shown in its entirety in Listing 2 (p. 1801) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1796 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 2 - The method named drawScaledPictureOnPicture.

private void drawScaledPictureOnPicture(

Picture source,

Picture dest,

double scaleFactor){

transform = new AffineTransform();

double translateX = dest.getWidth()/2

- source.getWidth()*scaleFactor/100/2;

double translateY = dest.getHeight()/2

- source.getHeight()*scaleFactor/100/2;;

transform.translate(translateX,translateY);

transform.scale(scaleFactor/100.0,scaleFactor/100.0);

//Get the Graphics2D object used to draw on the

// destination picture.

g2 = (Graphics2D)dest.getGraphics();

//Scale and draw the source image on the destination

// image.

g2.drawImage(source.getImage(),transform,null);

}//end drawScaledPictureOnPicture method

Table 4.288

Use an a�ne transform
This method uses an a�ne transform to �rst translate and then scale the source picture and draws the

scaled source picture onto the center of the destination picture.
I have published numerous tutorials that explain the use of A�ne transforms in Java, including Applying

A�ne Transforms to Picture Objects 430 . I won't repeat those explanations in this module, but will simply
refer you to the earlier tutorials.

Keywords for a Google search
You can �nd my other tutorials that explain A�ne transforms by using Google to search for the following

keywords:

richard baldwin java affine transform

4.4.3.2.4.6 Run the program

I encourage you to copy the code from Listing 3 (p. 1802) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

4.4.3.2.4.7 Summary

In this module, you learned how to use a slider to continuously change the size of an image and to draw the
scaled image onto a background image.

430http://www.dickbaldwin.com/java/Java358.htm

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1797

4.4.3.2.4.8 What's next?

In the next module, you will learn how to use a JSlider object along with A�ne Transforms to control the
rotation of an image.

4.4.3.2.4.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Controlling an Image-Scaling Program with a Slider
• File: Java3118.htm
• Published: 05/13/12
• Revised: 02/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

4.4.3.2.4.10 Complete program listing

A complete listing of the program discussed in this module is shown in Listing 3 (p. 1802) below.
Listing 3 - Complete program listing.

/*File Prob09 Copyright 2008 R.G.Baldwin

Revised 09/13/10

***/

import java.awt.geom.AffineTransform;

import java.awt.Graphics2D;

import java.awt.Color;

import java.awt.Graphics;

import java.awt.Image;

import java.awt.BorderLayout;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JSlider;

import javax.swing.JLabel;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1798 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

import javax.swing.event.ChangeListener;

import javax.swing.event.ChangeEvent;

public class Prob09{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

new Prob09Runner();

}//end main method

}//end class Prob09

//End program specifications.

//

//

/*--//

***/

class Prob09Runner extends JFrame{

private JPanel mainPanel = new JPanel();

private JPanel titlePanel = new JPanel();

private JSlider slider = new JSlider(0,100,0);

private Picture beach = new Picture("Prob09a.jpg");

private Picture butterfly = new Picture("Prob09b.jpg");

private int beachWidth = beach.getWidth();

private int beachHeight = beach.getHeight();

private Picture display =

new Picture(beachWidth,beachHeight);

private Image image = null;

private Graphics graphics = null;

private AffineTransform transform = null;

private Graphics2D g2 = null;

public Prob09Runner(){//constructor

System.out.println("Dick Baldwin");

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

beach.addMessage("Dick Baldwin",10,20);

butterfly.addMessage("Dick Baldwin",10,20);

slider.setMajorTickSpacing(10);

slider.setMinorTickSpacing(5);

slider.setPaintTicks(true);

slider.setPaintLabels(true);

mainPanel.setLayout(new BorderLayout());

titlePanel.add(new JLabel(

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1799

"Percent Size of Beach Image"));

mainPanel.add(titlePanel,BorderLayout.NORTH);

mainPanel.add(slider,BorderLayout.CENTER);

getContentPane().add(mainPanel);

//pack();

setSize(beachWidth + 7,97);

setTitle("Dick Baldwin");

setLocation(0,beachHeight + 25);

setVisible(true);

//Draw and display the background image of the

// butterfly.

graphics = display.getGraphics();

graphics.drawImage(butterfly.getImage(),0,0,null);

display.show();

//--//

//Register an anonymous listener object on the slider.

//Each time the slider fires a ChangeEvent, this event

// handler restores the background image of the

// butterfly. Then it draws a scaled version of the

// beach on top of the background image using the

// slider value, which ranges from 0 to 100 as the

// scale factor as a percent of 1.0. The image of the

// beach is always aligned with the center

// of the contentPane of the JFrame.

slider.addChangeListener(

new ChangeListener(){

public void stateChanged(ChangeEvent e){

//Restore the background image of the butterfly.

graphics = display.getGraphics();

graphics.drawImage(

butterfly.getImage(),0,0,null);

drawScaledPictureOnPicture(beach,

display,

slider.getValue());

display.repaint();

}//end stateChanged

}//end new ChangeListener

);//end addChangeListener

//--//

}//end constructor

//--//

//Scales and draws the source picture onto the center

// of the destination picture.

private void drawScaledPictureOnPicture(

Picture source,

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1800 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Picture dest,

double scaleFactor){

transform = new AffineTransform();

double translateX = dest.getWidth()/2

- source.getWidth()*scaleFactor/100/2;

double translateY = dest.getHeight()/2

- source.getHeight()*scaleFactor/100/2;;

transform.translate(translateX,translateY);

transform.scale(scaleFactor/100.0,scaleFactor/100.0);

//Get the Graphics2D object used to draw on the

// destination picture.

g2 = (Graphics2D)dest.getGraphics();

//Scale and draw the source image on the destination

// image.

g2.drawImage(source.getImage(),transform,null);

}//end drawScaledPictureOnPicture method

}//end class Prob09Runner

-end-

4.4.3.2.5 Java3120 Java OOP Controlling Image Rotation with a Slider and A�ne Transforms
431

4.4.3.2.5.1 Table of Contents

• Preface (p. 1805)

· Viewing tip (p. 1806)

* Figures (p. 1806)
* Listings (p. 1806)

• Preview (p. 1806)
• Discussion and sample code (p. 1810)
• Run the program (p. 1817)
• Summary (p. 1817)
• What's next? (p. 1817)
• Miscellaneous (p. 1817)
• Complete program listing (p. 1817)

4.4.3.2.5.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 432 .

431This content is available online at <http://cnx.org/content/m44915/1.7/>.
432http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1801

4.4.3.2.5.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

4.4.3.2.5.2.1.1 Figures

• Figure 1 (p. 1806) . Program output at startup.
• Figure 2 (p. 1808) . Program output for slider at zero.
• Figure 3 (p. 1809) . Program output for slider at 240.

4.4.3.2.5.2.1.2 Listings

• Listing 1 (p. 1811) . Beginning of the class named Prob10Runner.
• Listing 2 (p. 1812) . Beginning of the constructor for the Prob10Runner class.
• Listing 3 (p. 1813) . Construct the GUI for the slider.
• Listing 4 (p. 1813) . Rotate and display the butter�y.
• Listing 5 (p. 1814) . Register a ChangeListener on the slider.
• Listing 6 (p. 1815) . Beginning of the rotatePicture method.
• Listing 7 (p. 1815) . Set up the translation transform.
• Listing 8 (p. 1816) . Concatenate the transforms.
• Listing 9 (p. 1816) . Transform and draw the butter�y image.
• Listing 10 (p. 1817) . Complete program listing.

4.4.3.2.5.3 Preview

In this lecture, I will explain a program that uses A�ne Transforms to rotate an image by a speci�ed
angle around a speci�ed anchor point.

Then the program translates the image so as to center it in a JFrame object.
Speci�cation of the rotation angle
A JSlider is used to specify the rotation angle.
The range of the slider is from 0 to 360 degrees.
The position of the thumb on the slider speci�es a counter-clockwise rotation angle in degrees.
Program output at startup
The thumb on the slider is at 45 degrees when the program starts running.
This causes the initial rotation angle of the butter�y image to be 45 degrees counter-clockwise as shown

in Figure 1 (p. 1806) .
Figure 1 - Program output at startup.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1802 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Corners barely graze inner-edges of the frame's borders
Note that for the initial rotation angle shown in Figure 1 (p. 1806) , the corners of the image almost

touch the inner-edges of the borders on the frame.
If you run the program and rotate the image, you will see that the size of the frame is such that the corners

of the image barely graze the inner-edges for those cases where the diagonals of the image are horizontal and

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1803

vertical.
Program output for slider at zero degrees
Figure 2 (p. 1808) shows the program output when the thumb on the slider has been moved to zero

degrees at the far-left end of the slider.
Figure 2 - Program output for slider at zero.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1804 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Program output for slider at 240 degrees
Figure 3 (p. 1809) shows the result of positioning the thumb on the slider at 240 degrees.
Figure 3 - Program output for slider at 240.

Brief program speci�cations
Write a program named Prob10 that uses the Prob10 class de�nition shown in Listing 10 (p. 1817)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1805

and Ericson's media library along with the image �le named Prob10.jpg 433 to produce the graphic output
images shown in Figure 1 (p. 1806) through Figure 3 (p. 1809) .

The butter�y image rotates smoothly around its center as you move the slider back and forth.
The program must terminate and return control to the operating system when you click the large X in

the upper-right corner of the GUI containing the slider.
General background information
The overall structure of this program is very similar to programs that I explained in earlier lectures titled

• Controlling an Edge Detector with a Slider 434 , and
• Controlling an Image-Scaling Program with a Slider 435 .

The most signi�cant di�erence...
Is the code that is executed when the slider �res a ChangeEvent . There are a few other di�erences

as well.
New and di�erent code
I will explain the code that is new and di�erent in this program.
I will refer you back to the earlier lectures for an explanation of the remainder of the code.
You can view the entire program in Listing 10 (p. 1817) .

4.4.3.2.5.4 Discussion and sample code

Beginning of the class named Prob10Runner
The code in the main method in Listing 10 (p. 1817) instantiates a new object of the class named

Prob10Runner .
Listing 1 (p. 1811) shows the beginning of the class named Prob10Runner .
Listing 1 (p. 1811) declares several instance variables and initializes some of them.
I will refer back to some of these variables in later paragraphs.

433http://cnx.org/content/m44915/latest/Prob10.jpg
434http://cnx.org/content/m44913/latest
435http://cnx.org/content/m44914/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1806 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 1 - Beginning of the class named Prob10Runner.

class Prob10Runner extends JFrame{

private JPanel mainPanel = new JPanel();

private JPanel titlePanel = new JPanel();

//Instantiate a new slider setting the limits and the

// initial position of the thumb.

private JSlider slider = new JSlider(0,360,45);

private Picture butterfly = new Picture("Prob10.jpg");

private Picture background = null;

private int butterflyWidth = butterfly.getWidth();

private int butterflyHeight = butterfly.getHeight();

private Picture display = null;

private int displayWidth = 0;

private int displayHeight = 0;

private Image image = null;

private Graphics graphics = null;

private AffineTransform rotateTransform = null;

private AffineTransform translateTransform = null;

private Graphics2D g2 = null;

Table 4.289

Beginning of the constructor for the Prob10Runner class
Listing 2 (p. 1812) shows the beginning of the constructor for the class named Prob10Runner .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1807

Listing 2 - Beginning of the constructor for the Prob10Runner class.

public Prob10Runner(){//constructor

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

//Compute the minimum dimensions allowed for the

// display window that will contain the butterfly

// image rotated at any angle. This turns out to

// be a square with the length of each side equal

// to the diagonal length of the butterfly picture.

//The length of each side was increased by one

// pixel to guard against loss of precision when

// converting from double to int.

int diagonal = 1 + (int)(Math.sqrt(

butterflyWidth*butterflyWidth +

butterflyHeight*butterflyHeight));

//Instantiate the picture in which the rotated

// butterfly image will be displayed.

display = new Picture(diagonal,diagonal);

displayWidth = displayHeight = diagonal;

//This picture provides a white background the same

// size as the display picture.

background = new Picture(diagonal,diagonal);

Table 4.290

Not much that is new here
The only thing that might be considered new in Listing 2 (p. 1811) is the code that computes the

minimum dimensions for a display window that will contain the butter�y image rotated by any angle.
The rationale for this computation is explained in the comments.
Construct the GUI for the slider
The code in Listing 3 (p. 1813) constructs the GUI that contains the slider shown in Figure 1 (p. 1806) .
Although the code in Listing 3 (p. 1813) is a little tedious, there are no new concepts associated with

that code.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1808 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 3 - Construct the GUI for the slider.

//Construct the GUI for the slider.

slider.setMajorTickSpacing(60);

slider.setMinorTickSpacing(15);

slider.setPaintTicks(true);

slider.setPaintLabels(true);

mainPanel.setLayout(new BorderLayout());

titlePanel.add(new JLabel(

"Rotation Angle in Degrees"));

mainPanel.add(titlePanel,BorderLayout.NORTH);

mainPanel.add(slider,BorderLayout.CENTER);

getContentPane().add(mainPanel);

pack();//Adjust the size of the slider GUI.

//Compute an improved size and location for the

// GUI containing the slider.

setSize(displayWidth + 2 * getInsets().left,

mainPanel.getHeight() + slider.getHeight());

setLocation(0,displayHeight + getInsets().top

+ getInsets().bottom + 1);

setVisible(true);

Table 4.291

Rotate and display the butter�y
The code in Listing 4 (p. 1813) calls the method named rotatePicture , passing the initial value of

the thumb on the slider as a parameter to cause the initial display of the butter�y to be properly rotated.
Then Listing 4 (p. 1813) calls the show method on the display to cause the rotated butter�y image to

be displayed as shown in Figure 1 (p. 1806) .

Listing 4 - Rotate and display the butter�y.

rotatePicture(slider.getValue());

display.show();

Table 4.292

Register a ChangeListener on the slider
The code in Listing 5 (p. 1814) registers an anonymous ChangeListener object on the slider.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1809

Listing 5 - Register a ChangeListener on the slider.

slider.addChangeListener(

new ChangeListener(){

public void stateChanged(ChangeEvent e){

//Restore the background image of the display

// to all white.

graphics = display.getGraphics();

graphics.drawImage(

background.getImage(),0,0,null);

//Rotate the butterfly image, draw it on the

// display, and repaint the display on the

// screen..

rotatePicture(slider.getValue());

display.repaint();

}//end stateChanged

}//end new ChangeListener

);//end addChangeListener

//--//

}//end constructor

Table 4.293

Each time the slider �res a ChangeEvent , the stateChanged method in Listing 5 (p. 1814) is
executed.

The stateChanged method begins by restoring the background image of thedisplay.
Then the stateChanged method calls the rotatePicture method to draw a rotated version of

thebutter�y on top of the background image using theslider value, (which ranges from 0 to +360) , asthe
rotation angle in degrees.

The image of thebutter�y (see Figure 1 (p. 1806)) is always centered in the displaypicture.
Finally, the stateChanged method causes the display to be repainted to force the rotated image to

appear on the screen.
End of the constructor
Listing 5 (p. 1814) signals the end of the constructor for the class named Prob10Runner .
Beginning of the rotatePicture method
The rotatePicture method begins in Listing 6 (p. 1815) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1810 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 6 - Beginning of the rotatePicture method.

private void rotatePicture(double angle){

//Set up the rotation transform

rotateTransform = new AffineTransform();

//Negate the angle for counter-clockwise rotation.

rotateTransform.rotate(-Math.toRadians(angle),

butterflyWidth/2,

butterflyHeight/2);

Table 4.294

The rotatePicture method accepts a rotation angle in degrees as an incoming parameter.
The rotatePicture method

• rotates a butter�y image by that angle around its center,
• translates the rotated image, and
• draws the rotated image in the center of a display picture.

Set up the rotation transform
Listing 6 (p. 1815) begins by instantiating a new object of the A�neTransform class.
Then it calls the rotate method on the transform object to con�gure that object for use in rotating

the image of the butter�y.
Overloaded versions of the rotate method
There are several overloaded versions of the rotate method.
The version called in Listing 6 (p. 1815) requires three parameters:

• The rotation angle in radians
• The X coordinate of the anchor point (point around which the rotation will take place) .
• The Y coordinate of the anchor point.

A positive rotation value indicates a clockwise rotation.
Convert from degrees to radians
Listing 6 (p. 1815) converts the incoming angle in degrees to radians
The code in Listing 6 (p. 1815) applies a minus sign to convert the angle from a positive value to a

negative value for counter-clockwise rotation, and passes that value as the rotation parameter.
Specify the rotation anchor point
Listing 6 (p. 1815) also speci�es the center of the butter�y image as the anchor point.
Set up the translation transform
Listing 7 (p. 1815) sets up the translation transform that will be used to translate the rotated image to

the center of the new Picture object.

Listing 7 - Set up the translation transform.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1811

translateTransform = new AffineTransform();

translateTransform.translate(

(displayWidth - butterflyWidth)/2,

(displayHeight - butterflyHeight)/2);

Table 4.295

Listing 7 (p. 1815) instantiates a new A�neTransform object.
Then it calls the translate method to con�gure that object for use in translating (moving) the rotated

image of the butter�y.
The translation transform object will be concatenated with the rotation object from Listing 6 (p. 1815)

to produce an A�neTransform object that can rotate and translate , in that order.
Concatenate the transforms
Listing 8 (p. 1816) concatenates the A�neTransform object referred to by translateTransform

with the transform object referred to by rotateTransform .

Listing 8 - Concatenate the transforms.

translateTransform.concatenate(rotateTransform);

Table 4.296

The resulting composite transform
The concatenation in Listing 8 (p. 1816) results in an A�ne Transform object referred to by

translateTransform that will �rst rotate the image around its center and then translate the rotated image
to the center of the new Picture object.

The order of operations is very important
When rotating and translating images, it is important that the two operations be performed in the correct

order.
Otherwise, the results might not be what you want.
Transform and draw the butter�y
Listing 9 (p. 1816) applies the composite transform to the butter�y image and draws the transformed

image on the output picture as shown in Figure 1 (p. 1806) , Figure 2 (p. 1808) , and Figure 3 (p. 1809) .

Listing 9 - Transform and draw the butter�y image.

Graphics2D g2 = (Graphics2D)display.getGraphics();

g2.drawImage(butterfly.getImage(),

translateTransform,

null);

}//end rotatePicture

}//end class Prob10Runner

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1812 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Table 4.297

The end of the program
Listing 9 (p. 1816) also signals the end of the rotatePicture method, the end of the Prob10Runner

class, and the end of the program.

4.4.3.2.5.5 Run the program

I encourage you to copy the code from Listing 10 (p. 1817) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

4.4.3.2.5.6 Summary

In this lecture, you learned how to use a JSlider object along with A�ne Transforms to control the
rotation of an image.

4.4.3.2.5.7 What's next?

In the next module, you will learn how to open an image �le (speci�ed by a string in a text �eld) in a
PictureExplorer object.

4.4.3.2.5.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Controlling Image Rotation with a Slider and A�ne Transforms
• File: Java3120.htm
• Published: 09/07/12
• Revised: 02/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1813

4.4.3.2.5.9 Complete program listing

A complete listing of the program discussed in this lecture is shown in Listing 10 (p. 1817) below.
Listing 10 - Complete program listing.

/*File Prob10 Copyright 2008 R.G.Baldwin

Revised 09/14/10

***/

import java.awt.geom.AffineTransform;

import java.awt.Graphics2D;

import java.awt.Color;

import java.awt.Graphics;

import java.awt.Image;

import java.awt.BorderLayout;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JSlider;

import javax.swing.JLabel;

import javax.swing.event.ChangeListener;

import javax.swing.event.ChangeEvent;

public class Prob10{

public static void main(String[] args){

new Prob10Runner();

}//end main method

}//end class Prob10

/**/

class Prob10Runner extends JFrame{

private JPanel mainPanel = new JPanel();

private JPanel titlePanel = new JPanel();

//Instantiate a new slider setting the limits and the

// initial position of the thumb.

private JSlider slider = new JSlider(0,360,45);

private Picture butterfly = new Picture("Prob10.jpg");

private Picture background = null;

private int butterflyWidth = butterfly.getWidth();

private int butterflyHeight = butterfly.getHeight();

private Picture display = null;

private int displayWidth = 0;

private int displayHeight = 0;

private Image image = null;

private Graphics graphics = null;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1814 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

private AffineTransform rotateTransform = null;

private AffineTransform translateTransform = null;

private Graphics2D g2 = null;

public Prob10Runner(){//constructor

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

//Compute the minimum dimensions allowed for the

// display window that will contain the butterfly

// image rotated at any angle. This turns out to

// be a square with the length of each side equal

// to the diagonal length of the butterfly picture.

//The length of each side was increased by one

// pixel to guard against loss of precision when

// converting from double to int.

int diagonal = 1 + (int)(Math.sqrt(

butterflyWidth*butterflyWidth +

butterflyHeight*butterflyHeight));

//Instantiate the picture in which the rotated

// butterfly image will be displayed.

display = new Picture(diagonal,diagonal);

displayWidth = displayHeight = diagonal;

//This picture provides a white background the same

// size as the display picture.

background = new Picture(diagonal,diagonal);

//Construct the GUI for the slider.

slider.setMajorTickSpacing(60);

slider.setMinorTickSpacing(15);

slider.setPaintTicks(true);

slider.setPaintLabels(true);

mainPanel.setLayout(new BorderLayout());

titlePanel.add(new JLabel(

"Rotation Angle in Degrees"));

mainPanel.add(titlePanel,BorderLayout.NORTH);

mainPanel.add(slider,BorderLayout.CENTER);

getContentPane().add(mainPanel);

pack();//Adjust the size of the slider GUI.

//Compute an improved size and location for the

// GUI containing the slider.

setSize(displayWidth + 2 * getInsets().left,

mainPanel.getHeight() + slider.getHeight());

setLocation(0,displayHeight + getInsets().top

+ getInsets().bottom + 1);

setVisible(true);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1815

//Place the butterfly image in the display picture

// with a rotation angle specified by the initial

// position of the thumb on the slider.

rotatePicture(slider.getValue());

display.show();

//--//

//Register an anonymous listener object on the slider.

//Each time the slider fires a ChangeEvent, this event

// handler restores the background image of the

// display. Then it draws a rotated version of the

// butterfly on top of the background image using the

// slider value, which ranges from 0 to +360, as

// the rotation angle in degrees. The image of the

// butterfly is always centered in the display

// picture.

slider.addChangeListener(

new ChangeListener(){

public void stateChanged(ChangeEvent e){

//Restore the background image of the display

// to all white.

graphics = display.getGraphics();

graphics.drawImage(

background.getImage(),0,0,null);

//Rotate the butterfly image, draw it on the

// display, and repaint the display on the

// screen..

rotatePicture(slider.getValue());

display.repaint();

}//end stateChanged

}//end new ChangeListener

);//end addChangeListener

//--//

}//end constructor

//--//

//This method accepts a rotation angle in degrees. It

// rotates a butterfly image by that angle around its

// center, translates, and draws the rotated image in

// the center of a display picture.

private void rotatePicture(double angle){

//Set up the rotation transform

rotateTransform = new AffineTransform();

//Negate the angle for counter-clockwise rotation.

rotateTransform.rotate(-Math.toRadians(angle),

butterflyWidth/2,

butterflyHeight/2);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1816 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

//Set up the translation transform that will translate

// the rotated image to the center of the new Picture

// object.

translateTransform = new AffineTransform();

translateTransform.translate(

(displayWidth - butterflyWidth)/2,

(displayHeight - butterflyHeight)/2);

//Concatenate the two transforms so that the image

// will first be rotated around its center and then

// translated to the center of the new Picture object.

translateTransform.concatenate(rotateTransform);

//Get the graphics context of the display picture,

// apply the transform to the butterfly image, and

// draw the transformed picture on the display

// picture.

Graphics2D g2 = (Graphics2D)display.getGraphics();

g2.drawImage(butterfly.getImage(),

translateTransform,

null);

}//end rotatePicture

}//end class Prob10Runner

-end-

4.4.3.3 Part 3

4.4.3.3.1 Java3122 Java OOP Opening an Image File in a PictureExplorer Object
436

4.4.3.3.1.1 Table of Contents

• Preface (p. 1821)

· Viewing tip (p. 1821)

* Figures (p. 1822)
* Listings (p. 1822)

• Preview (p. 1822)
• Complete program listing (p. 1823)
• Will explain the code in fragments (p. 1825)
• Run the program (p. 1828)
• What's next? (p. 1828)
• Miscellaneous (p. 1828)

4.4.3.3.1.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

436This content is available online at <http://cnx.org/content/m44916/1.7/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1817

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 437 .

4.4.3.3.1.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

4.4.3.3.1.2.1.1 Figures

• Figure 1 (p. 1822) . Program output at startup.
• Figure 2 (p. 1822) . Screen shot after the image is loaded.

4.4.3.3.1.2.1.2 Listings

• Listing 1 (p. 1823) . Complete program listing.
• Listing 2 (p. 1825) . The driver class.
• Listing 3 (p. 1826) . Beginning of the Prob11Runner class.
• Listing 4 (p. 1827) . Beginning of the constructor.
• Listing 5 (p. 1827) . Beginning of anonymous listener class.
• Listing 6 (p. 1828) . Completion of the anonymous listener class.

4.4.3.3.1.3 Preview

This program demonstrates how to specify an image �le in a text �eld, and open the image in a new
PictureExplorer object.

Program output at startup
Figure 1 (p. 1822) shows the program output at startup.
Figure 1 - Program output at startup.

Pre-loaded image �le name
For convenience, the text �eld is pre-loaded with the name of an image �le that is located in the current

directory.
Press Enter to load the image
Pressing the Enter key while the text �eld has the focus will cause the image to be loaded into a

PictureExplorer object, and will cause the PictureExplorer object to be displayed as shown in Figure
2 (p. 1822) .

Figure 2 - Screen shot after the image is loaded.

437http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1818 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Control panel is relocated
Note in Figure 2 (p. 1822) that the control panel containing the text �eld has been automatically

relocated to a position immediately below the PictureExplorer object.
Another image �le in the current directory
Entering the path and name of any jpeg �le will cause that �le to be loaded into a new PictureExplorer

object.

4.4.3.3.1.4 Complete program listing

A complete listing of the program discussed in this lecture is shown in Listing 1 (p. 1823) below.
Listing 1 - Complete program listing.

/*File Prob11 Copyright 2012 R.G.Baldwin

The purpose of this program is to demonstrate the use of

a JTextField object to specify the name of an image file,

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1819

which is then loaded and displayed in a PictureExplorer

object.

The text field is pre-loaded with the name of an image

file that is in the current directory (Prob11a.jpg).

An image file named Prob11b.jpg is also in the current

directory and can be loaded and displayed by entering

the name in the text field.

Any image file on the disk can be loaded and displayed

by entering the path and name of the image file.

***/

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JTextField;

import javax.swing.JLabel;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.WindowConstants;

public class Prob11{

public static void main(String[] args){

new Prob11Runner();

}//end main method

}//end class Prob11

//==//

class Prob11Runner extends JFrame{

private Prob11Runner jFrameObj = null;

private PictureExplorer explorer = null;

private Picture pix;

private JPanel fileNamePanel = new JPanel();

private JTextField inputFileNameField =

new JTextField("Prob11a.jpg",20);

private String fileName = "no file specified";

//--//

public Prob11Runner(){//constructor

fileNamePanel.add(new JLabel("File name: "));

fileNamePanel.add(inputFileNameField);

//Add the fileNamePanel to the content pane, adjust

// to the correct size, and set the title.

getContentPane().add(fileNamePanel);

pack();

setTitle("Dick Baldwin");

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1820 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

//Make the GUI visible, set the focus, and establish

// a reference to the GUI object.

setVisible(true);

inputFileNameField.requestFocus();

jFrameObj = this;

//--//

//Register listeners on the user input field.

//--//

inputFileNameField.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent e){

fileName = inputFileNameField.getText();

pix = new Picture(fileName);

pix.addMessage("Dick Baldwin",10,20);

explorer = new PictureExplorer(pix);

//Set the location for the control GUI

// immediately below the PictureExplorer object,

// and set its default close operation.

setLocation(0,pix.getHeight() + 128);

jFrameObj.setDefaultCloseOperation(

WindowConstants.EXIT_ON_CLOSE);

}//end action performed

}//end newActionListener

);//end addActionListener

//--//

}//end constructor

//--//

}//end class Prob11Runner

4.4.3.3.1.5 Will explain the code in fragments

As usual, I will break the code down, and explain it in fragments.
The driver class
The driver class is shown in Listing 2 (p. 1825) .
There is nothing new in Listing 2 (p. 1825) .

Listing 2 - The driver class.

public class Prob11{

public static void main(String[] args){

new Prob11Runner();

}//end main method

}//end class Prob11

Table 4.298

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1821

Beginning of the Prob11Runner class
The Prob11Runner class begins in Listing 3 (p. 1826) .
Listing 3 (p. 1826) declares several instance variables that will be used later in the program, initializing

some of them.
Note that the class extends JFrame , so an object of the class "is a" JFrame object.

Listing 3 - Beginning of the Prob11Runner class.

class Prob11Runner extends JFrame{

private Prob11Runner jFrameObj = null;

private PictureExplorer explorer = null;

private Picture pix;

private JPanel fileNamePanel = new JPanel();

private JTextField inputFileNameField =

new JTextField("Prob11a.jpg",20);

private String fileName = "no file specified";

Table 4.299

Beginning of the constructor
The constructor for the Prob11Runner class begins in Listing 4 (p. 1827) .
The code in Listing 4 (p. 1827) performs the physical construction of the GUI show in Figure 1 (p. 1822)

.
The code in Listing 4 (p. 1827) saves a reference to the object so that it can be accessed later from within

a listener object.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1822 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 4 - Beginning of the constructor.

public Prob11Runner(){//constructor

fileNamePanel.add(new JLabel("File name: "));

fileNamePanel.add(inputFileNameField);

//Add the fileNamePanel to the content pane, adjust

// to the correct size, and set the title.

getContentPane().add(fileNamePanel);

pack();

setTitle("Dick Baldwin");

//Make the GUI visible, set the focus, and establish

// a reference to the GUI object.

setVisible(true);

inputFileNameField.requestFocus();

jFrameObj = this;

Table 4.300

Register a listener on the text �eld
Listing 5 (p. 1827) shows the beginning of code that instantiates an ActionListener object of an

anonymous listener class, and registers the listener object on the text �eld shown in Figure 1 (p. 1822) .

Listing 5 - Beginning of anonymous listener class.

inputFileNameField.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent e){

fileName = inputFileNameField.getText();

pix = new Picture(fileName);

pix.addMessage("Dick Baldwin",10,20);

explorer = new PictureExplorer(pix);

Table 4.301

Get image and create Picture object
Listing 5 (p. 1827) begins by getting the name of the image �le from the text �eld, using that image �le

to create a new Picture object, and adding a name in the upper-left corner of the picture.
Create new PictureExplorer object
Then Listing 5 (p. 1827) instantiates a new PictureExplorer object that encapsulates the Picture

object that was created from the image �le.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1823

Completion of the anonymous listener class
Listing 6 (p. 1828) shows the completion of the anonymous listener class, as well as the end of the

constructor, and the end of the class named Prob11Runner .

Listing 6 - Completion of the anonymous listener class.

setLocation(0,pix.getHeight() + 128);

jFrameObj.setDefaultCloseOperation(

WindowConstants.EXIT_ON_CLOSE);

}//end action performed

}//end newActionListener

);//end addActionListener

//--//

}//end constructor

//--//

}//end class Prob11Runner

Table 4.302

Relocate the GUI
Listing 6 (p. 1828) begins by setting the location of the GUI to a location that is immediately below the

PictureExplorer object.
Relocate the GUI (cont'd)
Note that the value of 128 pixels was experimentally determined to be the approximate di�erence between

the height of the PictureExplorer object and the height of the Picture object that it encapsulates.
(This di�erence may not be correct for di�erent display options on di�erent operating systems.)
Set the default close operation
Listing 6 (p. 1828) ends by setting the behavior of the X-button in the GUI to a value that will cause it

to terminate the program when the button is clicked.

4.4.3.3.1.6 Run the program

I encourage you to copy the code from Listing 1 (p. 1823) and download the image �le named Prob11a.jpg
438 . Compile the code and execute it. Experiment with the code, making changes, and observing the results
of your changes. Make certain that you can explain why your changes behave as they do.

4.4.3.3.1.7 What's next?

In the next module, you will learn how to extract color data from a selected pixel in a PictureExplorer
object, and how to display a color value in a text �eld. You will also learn how to disable the X-button in
the PictureExplorer object, and how to use a reference to the JFrame object that serves as a container
for the PictureExplorer object.

4.4.3.3.1.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

438http://cnx.org/content/m44916/latest/Prob11a.jpg

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1824 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

• Module name: Java OOP: Opening an Image File in a PictureExplorer Object
• File: Java3122.htm
• Published: 09/08/12
• Revised: 02/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.4.3.3.2 Java3124 Java OOP Extracting pixel color data from a PictureExplorer object
439

4.4.3.3.2.1 Table of Contents

• Preface (p. 1829)

· Viewing tip (p. 1830)

* Figures (p. 1830)
* Listings (p. 1830)

• Preview (p. 1830)
• Discussion and sample code (p. 1833)
• Run the program (p. 1837)
• Summary (p. 1837)
• What's next? (p. 1837)
• Miscellaneous (p. 1837)
• Complete program listings (p. 1838)

4.4.3.3.2.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 440 .

439This content is available online at <http://cnx.org/content/m44917/1.6/>.
440http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1825

4.4.3.3.2.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

4.4.3.3.2.2.1.1 Figures

• Figure 1 (p. 1830) . Program output at startup.
• Figure 2 (p. 1831) . Program output after clicking the button.

4.4.3.3.2.2.1.2 Listings

• Listing 1 (p. 1833) . Addition of getter methods.
• Listing 2 (p. 1834) . Disabled the call to setDefaultCloseOperation method.
• Listing 3 (p. 1834) . The driver class for Prob12.
• Listing 4 (p. 1834) . Beginning of the class named Prob12Runner.
• Listing 5 (p. 1835) . Beginning of the constructor.
• Listing 6 (p. 1835) . Construct a Picture object.
• Listing 7 (p. 1836) . Construct a PictureExplorer object.
• Listing 8 (p. 1836) . Set the size and location of the GUI control panel.
• Listing 9 (p. 1837) . Register a listener object on the button.
• Listing 10 (p. 1838) . Prob12.java.
• Listing 11 (p. 1840) . Modi�ed PictureExplorer.java.

4.4.3.3.2.3 Preview

In this module, I will show you how to extract color data from a selected pixel in a PictureExplorer
object, and how to display the value in a text �eld.

I will also show you how to disable the X-button in the PictureExplorer object, and how to get
and use a reference to the JFrame object that serves as a container for the PictureExplorer object.

Program output at startup
Figure 1 (p. 1830) shows a screen shot of the program output at startup.
Note that the text �eld in the red panel near the bottom contains all zeros.
Figure 1 - Program output at startup.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1826 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Program output after clicking the button
Figure 2 (p. 1831) shows the screen output after moving the PictureExplorer crosshair cursor to the

brown door immediately above the penguin, and clicking the button labeled "Get and Display Red Color
Value."

Figure 2 - Program output after clicking the button.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1827

The red color value
The text �eld near the bottom of Figure 2 (p. 1831) displays the red color value of the pixel at the

location of the crosshair cursor on the door in the image.
Compare this value with the value of the red color value displayed near the top of the PictureExplorer

object. You will see that they match.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1828 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.3.3.2.4 Discussion and sample code

Two source code �les are required for this program:

• The �le named Prob12.java
• A modi�ed version of Ericson's �le named PictureExplorer.java

A complete listing of Prob12.java is shown in Listing 10 (p. 1838) .
A complete listing of the modi�ed PictureExplorer.java �le is shown in Listing 11 (p. 1840) .
Modi�cations to PictureExplorer.java
The modi�cations that I made can be found by searching the source code in Listing 11 (p. 1840) for the

word "Baldwin".
The modi�cations were:

• I added a getter method to cause the red color value to be accessible from outside the PictureEx-
plorer object.

• I added a getter method that returns a reference to the JFrame object containing the Picture-
Explorer object.

• I disabled the call to the setDefaultCloseOperation method for the PictureExplorer object.

Addition of getter methods
The code for the each of the new getter methods is shown in Listing 1 (p. 1833) .
These two methods simply return values that already exist in the PictureExplorer object.

Listing 1 - Addition of getter methods.

//===Methods added by Baldwin on 05/15/12===============//

//Method to get the red color value as text.

public String getRValue(){

return rValue.getText();

}//end getRValue

//Method to get a reference to the JFrame containing

// the PictureExplorer object.

public JFrame getFrame(){

return pictureFrame;

}//end getFrame()

//===End methods added by Baldwin on 05/15/12===========//

Table 4.303

Disabled the call to setDefaultCloseOperation method
Comment indicators were used to disable the call to the setDefaultCloseOperation method as shown

in Listing 2 (p. 1834) .
This code was replaced by code that you will see later that causes the JFrame to do nothing when

the X-button on the PictureExplorer object is clicked.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1829

Listing 2 - Disabled the call to setDefaultCloseOperation method.

/*Disabled by Baldwin on 5/15/12

pictureFrame.setDefaultCloseOperation(

JFrame.DISPOSE_ON_CLOSE);

*/

Table 4.304

No more modi�cations
That concludes the discussion of modi�cations to Ericson's PictureExplorer source code.
The driver class named Prob12
The driver class is shown in Listing 3 (p. 1834) .
There is nothing new here.

Listing 3 - The driver class for Prob12.

public class Prob12{

public static void main(String[] args){

new Prob12Runner();

}//end main method

}//end class Prob12

Table 4.305

Beginning of the class named Prob12Runner
The class named Prob12Runner begins in Listing 4 (p. 1834) .
The code in Listing 4 (p. 1834) declares several instance variables and initializes some of them.

Listing 4 - Beginning of the class named Prob12Runner.

class Prob12Runner extends JFrame{

private JFrame explorerFrame = null;

private PictureExplorer explorer = null;

private Picture pix;

private JPanel controlPanel = new JPanel();

private JPanel colorPanel = new JPanel();

private JPanel buttonPanel = new JPanel();

private JTextField redField = new JTextField("000000");

private JButton getDataButton = new JButton(

"Get and Display Red Color Value");

private String fileName = "Prob12.jpg";

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1830 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Table 4.306

Beginning of the constructor
The constructor for the class named Prob12Runner begins in Listing 5 (p. 1835) .
The code in Listing 5 (p. 1835) performs the physical construction of the GUI control panel at the

bottom of Figure 1 (p. 1830) .
The �nal position of the GUI control panel will be established after the size of the PictureExplorer

object's JFrame is known.

Listing 5 - Beginning of the constructor.

controlPanel.setLayout(new GridLayout(2,1));

controlPanel.add(colorPanel);

controlPanel.add(buttonPanel);

colorPanel.setBackground(Color.RED);

colorPanel.add(new JLabel(

"Red pixel Color at Cursor: "));

colorPanel.add(redField);

buttonPanel.setBackground(Color.BLUE);

buttonPanel.add(getDataButton);

getContentPane().add(controlPanel);

setTitle("Dick Baldwin");

setVisible(true);

Table 4.307

Construct a Picture object
Listing 6 (p. 1835) creates a new Picture object, and adds a name to the picture before using it to

construct a PictureExplorer object.

Listing 6 - Construct a Picture object.

pix = new Picture(fileName);

pix.addMessage("Dick Baldwin",10,20);

Table 4.308

Construct a PictureExplorer object
Listing 7 (p. 1836) begins by constructing a new PictureExplorer object that encapsulates the

Picture object instantiated in Listing 6 (p. 1835) , and by saving a reference to the PictureExplorer
object in the instance variable named explorer .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1831

Listing 7 - Construct a PictureExplorer object.

explorer = new PictureExplorer(pix);

explorerFrame = explorer.getFrame();

explorerFrame.setDefaultCloseOperation(

WindowConstants.DO_NOTHING_ON_CLOSE);

Table 4.309

Get and use a reference to the JFrame object
Then Listing 7 (p. 1836) calls the PictureExplorer object's new getFrame method to get a

reference to the JFrame object that contains the PictureExplorer .
This reference is used in Listing 7 (p. 1836) to call the setDefaultCloseOperation method to cause

the JFrame to do nothing when the X-button on the JFrame is clicked.
The reference is also used in Listing 8 (p. 1836) to establish the size and location of the GUI control

panel.
Set the size and location of the GUI control panel
Now that the PictureExplorer object exists, Listing 8 (p. 1836) sets the size and location of the GUI

control panel as shown in Figure 1 (p. 1830) .

Listing 8 - Set the size and location of the GUI control panel.

//Set the size of the control GUI.

setSize(explorerFrame.getWidth(),110);

//Set the location for the control GUI

setLocation(0,explorerFrame.getHeight());

//Set the default close operation for the control GUI.

setDefaultCloseOperation(

WindowConstants.EXIT_ON_CLOSE);

Table 4.310

Note that it isn't necessary to guess about the actual height of the JFrame as was the case in an earlier
module. The reference to the JFrame object provides that information.

Set the default close operation for the control GUI
Finally, Listing 8 (p. 1836) sets the default close operation on the control GUI to cause the program to

terminate when the user clicks the X-button on the GUI.
Register a listener object on the button
Listing 9 (p. 1837) registers an ActionListener object on the button to cause it to call the Pic-

tureExplorer object's new getRValue method to get the red color value for the pixel at the current
PictureExplorer crosshair cursor position, and to display that value in the text �eld as shown in Figure
2 (p. 1831) when the user clicks the button.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1832 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 9 - Register a listener object on the button.

getDataButton.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent e){

redField.setText(explorer.getRValue());

}//end action performed

}//end newActionListener

);//end addActionListener

//--//

}//end constructor

}//end class Prob12Runner

Table 4.311

End of the program
Listing 9 (p. 1837) also signals the end of the constructor and the end of the class named Prob12Runner

.

4.4.3.3.2.5 Run the program

I encourage you to copy the code from Listing 10 (p. 1838) and Listing 11 (p. 1840) and download the image
�le named Prob12.jpg 441 . Compile the code and execute it. Experiment with the code, making changes,
and observing the results of your changes. Make certain that you can explain why your changes behave as
they do.

4.4.3.3.2.6 Summary

You learned how to extract color data from a selected pixel in a PictureExplorer object, and to display
the value in a text �eld.

You also learned how to disable the X-button in the PictureExplorer object, and how to use a
reference to the JFrame object that serves as a container for the PictureExplorer object.

4.4.3.3.2.7 What's next?

In the next module, you will learn how to handle document events on text �elds containing color values.
You will also learn how to create a color swatch.

4.4.3.3.2.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Extracting pixel color data from a PictureExplorer object
• File: Java3124.htm

441http://cnx.org/content/m44917/latest/Prob12.jpg

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1833

• Published: 09/08/12
• Revised: 02/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

4.4.3.3.2.9 Complete program listings

Complete listings of the source code discussed in this module are shown in Listing 10 (p. 1838) and Listing
11 (p. 1840) below.

Listing 10 - Prob12.java.

/*File Prob12 Copyright 2012 R.G.Baldwin

The purpose of this program is to demonstrate how to get

a color value from a PictureExplorer object and to display

it in JTextField object.

It also demonstrates how to access and use a reference

to a JFrame object that serves as the container for a

PictureExplorer object.

Finally, it demonstrates how to disable the X-button in

a PictureExplorer object.

Note that this program requires access to a modified

version of the PictureExplorier class.

***/

import javax.swing.JFrame;

import javax.swing.JButton;

import javax.swing.JPanel;

import javax.swing.JTextField;

import javax.swing.JLabel;

import javax.swing.WindowConstants;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.GridLayout;

import java.awt.Color;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1834 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

public class Prob12{

public static void main(String[] args){

new Prob12Runner();

}//end main method

}//end class Prob12

//==//

class Prob12Runner extends JFrame{

private JFrame explorerFrame = null;

private PictureExplorer explorer = null;

private Picture pix;

private JPanel controlPanel = new JPanel();

private JPanel colorPanel = new JPanel();

private JPanel buttonPanel = new JPanel();

private JTextField redField = new JTextField("000000");

private JButton getDataButton = new JButton(

"Get and Display Red Color Value");

private String fileName = "Prob12.jpg";

//--//

public Prob12Runner(){//constructor

controlPanel.setLayout(new GridLayout(2,1));

controlPanel.add(colorPanel);

controlPanel.add(buttonPanel);

colorPanel.setBackground(Color.RED);

colorPanel.add(new JLabel(

"Red pixel Color at Cursor: "));

colorPanel.add(redField);

buttonPanel.setBackground(Color.BLUE);

buttonPanel.add(getDataButton);

getContentPane().add(controlPanel);

setTitle("Dick Baldwin");

setVisible(true);

//Create a Picture object and add a name to

// the picture before using it to construct the

// PictureExplorer object.

pix = new Picture(fileName);

pix.addMessage("Dick Baldwin",10,20);

//Create a PictureExplorer object containing the

// picture and set its default close operation.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1835

explorer = new PictureExplorer(pix);

//Get a ref to the JFrame in the PictureExplorer

// object.

explorerFrame = explorer.getFrame();

explorerFrame.setDefaultCloseOperation(

WindowConstants.DO_NOTHING_ON_CLOSE);

//Set the size of the control GUI.

setSize(explorerFrame.getWidth(),110);

//Set the location for the control GUI immediately

// below the PictureExplorer object, and set its

// default close operation.

setLocation(0,explorerFrame.getHeight());

setDefaultCloseOperation(

WindowConstants.EXIT_ON_CLOSE);

//--//

//Register a listener object on the button.

//--//

getDataButton.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent e){

redField.setText(explorer.getRValue());

}//end action performed

}//end newActionListener

);//end addActionListener

//--//

}//end constructor

}//end class Prob12Runner

Listing 11 - Modi�ed PictureExplorer.java.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.awt.image.*;

import javax.swing.border.*;

/*

05/15/12

Modified by Baldwin to add getter methods to cause

the following values to be accessible from outside the

PictureExplorer object:

Red color value

Reference to the JFrame containing the PictureExplorer

object.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1836 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Also disabled the call to setDefaultCloseOperation

*/

/**

* Displays a picture and lets you explore the picture by displaying the x, y, red,

* green, and blue values of the pixel at the cursor when you click a mouse button or

* press and hold a mouse button while moving the cursor. It also lets you zoom in or

* out. You can also type in a x and y value to see the color at that location.

*

* Originally created for the Jython Environment for Students (JES).

* Modified to work with DrJava by Barbara Ericson

*

* Copyright Georgia Institute of Technology 2004

* @author Keith McDermottt, gte047w@cc.gatech.edu

* @author Barb Ericson ericson@cc.gatech.edu

*/

public class PictureExplorer implements MouseMotionListener, ActionListener, MouseListener

{

// current x and y index

private int xIndex = 0;

private int yIndex = 0;

//Main gui variables

private JFrame pictureFrame;

private JScrollPane scrollPane;

//information bar variables

private JLabel xLabel;

private JButton xPrevButton;

private JButton yPrevButton;

private JButton xNextButton;

private JButton yNextButton;

private JLabel yLabel;

private JTextField xValue;

private JTextField yValue;

private JLabel rValue;

private JLabel gValue;

private JLabel bValue;

private JLabel colorLabel;

private JPanel colorPanel;

// menu components

private JMenuBar menuBar;

private JMenu zoomMenu;

private JMenuItem twentyFive;

private JMenuItem fifty;

private JMenuItem seventyFive;

private JMenuItem hundred;

private JMenuItem hundredFifty;

private JMenuItem twoHundred;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1837

private JMenuItem fiveHundred;

/** The picture being explored */

private DigitalPicture picture;

/** The image icon used to display the picture */

private ImageIcon scrollImageIcon;

/** The image display */

private ImageDisplay imageDisplay;

/** the zoom factor (amount to zoom) */

private double zoomFactor;

/** the number system to use, 0 means starting at 0, 1 means starting at 1 */

private int numberBase=0;

/**

* Public constructor

* @param picture the picture to explore

*/

public PictureExplorer(DigitalPicture picture)

{

// set the fields

this.picture=picture;

zoomFactor=1;

// create the window and set things up

createWindow();

}

//===Methods added by Baldwin on 05/15/12===============//

//Method to get the red color value as text.

public String getRValue(){

return rValue.getText();

}//end getRValue

//Method to get a reference to the JFrame containing

// the PictureExplorer object.

public JFrame getFrame(){

return pictureFrame;

}//end getFrame()

//===End methods added by Baldwin on 05/15/12===========//

/**

* Changes the number system to start at one

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1838 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

*/

public void changeToBaseOne()

{

numberBase=1;

}

/**

* Set the title of the frame

*@param title the title to use in the JFrame

*/

public void setTitle(String title)

{

pictureFrame.setTitle(title);

}

/**

* Method to create and initialize the picture frame

*/

private void createAndInitPictureFrame()

{

pictureFrame = new JFrame(); // create the JFrame

pictureFrame.setResizable(true); // allow the user to resize it

pictureFrame.getContentPane().setLayout(new BorderLayout()); // use border layout

/*Disabled by Baldwin on 5/15/12

pictureFrame.setDefaultCloseOperation(

JFrame.DISPOSE_ON_CLOSE);

*/

pictureFrame.setTitle(picture.getTitle());

PictureExplorerFocusTraversalPolicy newPolicy = new PictureExplorerFocusTraversalPolicy();

pictureFrame.setFocusTraversalPolicy(newPolicy);

}

/**

* Method to create the menu bar, menus, and menu items

*/

private void setUpMenuBar()

{

//create menu

menuBar = new JMenuBar();

zoomMenu = new JMenu("Zoom");

twentyFive = new JMenuItem("25%");

fifty = new JMenuItem("50%");

seventyFive = new JMenuItem("75%");

hundred = new JMenuItem("100%");

hundred.setEnabled(false);

hundredFifty = new JMenuItem("150%");

twoHundred = new JMenuItem("200%");

fiveHundred = new JMenuItem("500%");

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1839

// add the action listeners

twentyFive.addActionListener(this);

fifty.addActionListener(this);

seventyFive.addActionListener(this);

hundred.addActionListener(this);

hundredFifty.addActionListener(this);

twoHundred.addActionListener(this);

fiveHundred.addActionListener(this);

// add the menu items to the menus

zoomMenu.add(twentyFive);

zoomMenu.add(fifty);

zoomMenu.add(seventyFive);

zoomMenu.add(hundred);

zoomMenu.add(hundredFifty);

zoomMenu.add(twoHundred);

zoomMenu.add(fiveHundred);

menuBar.add(zoomMenu);

// set the menu bar to this menu

pictureFrame.setJMenuBar(menuBar);

}

/**

* Create and initialize the scrolling image

*/

private void createAndInitScrollingImage()

{

scrollPane = new JScrollPane();

BufferedImage bimg = picture.getBufferedImage();

imageDisplay = new ImageDisplay(bimg);

imageDisplay.addMouseMotionListener(this);

imageDisplay.addMouseListener(this);

imageDisplay.setToolTipText("Click a mouse button on a pixel to see the pixel information");

scrollPane.setViewportView(imageDisplay);

pictureFrame.getContentPane().add(scrollPane, BorderLayout.CENTER);

}

/**

* Creates the JFrame and sets everything up

*/

private void createWindow()

{

// create the picture frame and initialize it

createAndInitPictureFrame();

// set up the menu bar

setUpMenuBar();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1840 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

//create the information panel

createInfoPanel();

//creates the scrollpane for the picture

createAndInitScrollingImage();

// show the picture in the frame at the size it needs to be

pictureFrame.pack();

pictureFrame.setVisible(true);

}

/**

* Method to set up the next and previous buttons for the

* pixel location information

*/

private void setUpNextAndPreviousButtons()

{

// create the image icons for the buttons

Icon prevIcon = new ImageIcon(SoundExplorer.class.getResource("leftArrow.gif"),

"previous index");

Icon nextIcon = new ImageIcon(SoundExplorer.class.getResource("rightArrow.gif"),

"next index");

// create the arrow buttons

xPrevButton = new JButton(prevIcon);

xNextButton = new JButton(nextIcon);

yPrevButton = new JButton(prevIcon);

yNextButton = new JButton(nextIcon);

// set the tool tip text

xNextButton.setToolTipText("Click to go to the next x value");

xPrevButton.setToolTipText("Click to go to the previous x value");

yNextButton.setToolTipText("Click to go to the next y value");

yPrevButton.setToolTipText("Click to go to the previous y value");

// set the sizes of the buttons

int prevWidth = prevIcon.getIconWidth() + 2;

int nextWidth = nextIcon.getIconWidth() + 2;

int prevHeight = prevIcon.getIconHeight() + 2;

int nextHeight = nextIcon.getIconHeight() + 2;

Dimension prevDimension = new Dimension(prevWidth,prevHeight);

Dimension nextDimension = new Dimension(nextWidth, nextHeight);

xPrevButton.setPreferredSize(prevDimension);

yPrevButton.setPreferredSize(prevDimension);

xNextButton.setPreferredSize(nextDimension);

yNextButton.setPreferredSize(nextDimension);

// handle previous x button press

xPrevButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {

xIndex--;

if (xIndex < 0)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1841

xIndex = 0;

displayPixelInformation(xIndex,yIndex);

}

});

// handle previous y button press

yPrevButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {

yIndex--;

if (yIndex < 0)

yIndex = 0;

displayPixelInformation(xIndex,yIndex);

}

});

// handle next x button press

xNextButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {

xIndex++;

if (xIndex >= picture.getWidth())

xIndex = picture.getWidth() - 1;

displayPixelInformation(xIndex,yIndex);

}

});

// handle next y button press

yNextButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {

yIndex++;

if (yIndex >= picture.getHeight())

yIndex = picture.getHeight() - 1;

displayPixelInformation(xIndex,yIndex);

}

});

}

/**

* Create the pixel location panel

* @param labelFont the font for the labels

* @return the location panel

*/

public JPanel createLocationPanel(Font labelFont) {

// create a location panel

JPanel locationPanel = new JPanel();

locationPanel.setLayout(new FlowLayout());

Box hBox = Box.createHorizontalBox();

// create the labels

xLabel = new JLabel("X:");

yLabel = new JLabel("Y:");

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1842 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

// create the text fields

xValue = new JTextField(Integer.toString(xIndex + numberBase),6);

xValue.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

displayPixelInformation(xValue.getText(),yValue.getText());

}

});

yValue = new JTextField(Integer.toString(yIndex + numberBase),6);

yValue.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

displayPixelInformation(xValue.getText(),yValue.getText());

}

});

// set up the next and previous buttons

setUpNextAndPreviousButtons();

// set up the font for the labels

xLabel.setFont(labelFont);

yLabel.setFont(labelFont);

xValue.setFont(labelFont);

yValue.setFont(labelFont);

// add the items to the vertical box and the box to the panel

hBox.add(Box.createHorizontalGlue());

hBox.add(xLabel);

hBox.add(xPrevButton);

hBox.add(xValue);

hBox.add(xNextButton);

hBox.add(Box.createHorizontalStrut(10));

hBox.add(yLabel);

hBox.add(yPrevButton);

hBox.add(yValue);

hBox.add(yNextButton);

locationPanel.add(hBox);

hBox.add(Box.createHorizontalGlue());

return locationPanel;

}

/**

* Create the color information panel

* @param labelFont the font to use for labels

* @return the color information panel

*/

private JPanel createColorInfoPanel(Font labelFont)

{

// create a color info panel

JPanel colorInfoPanel = new JPanel();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1843

colorInfoPanel.setLayout(new FlowLayout());

// get the pixel at the x and y

Pixel pixel = new Pixel(picture,xIndex,yIndex);

// create the labels

rValue = new JLabel("R: " + pixel.getRed());

gValue = new JLabel("G: " + pixel.getGreen());

bValue = new JLabel("B: " + pixel.getBlue());

// create the sample color panel and label

colorLabel = new JLabel("Color at location: ");

colorPanel = new JPanel();

colorPanel.setBorder(new LineBorder(Color.black,1));

// set the color sample to the pixel color

colorPanel.setBackground(pixel.getColor());

// set the font

rValue.setFont(labelFont);

gValue.setFont(labelFont);

bValue.setFont(labelFont);

colorLabel.setFont(labelFont);

colorPanel.setPreferredSize(new Dimension(25,25));

// add items to the color information panel

colorInfoPanel.add(rValue);

colorInfoPanel.add(gValue);

colorInfoPanel.add(bValue);

colorInfoPanel.add(colorLabel);

colorInfoPanel.add(colorPanel);

return colorInfoPanel;

}

/**

* Creates the North JPanel with all the pixel location

* and color information

*/

private void createInfoPanel()

{

// create the info panel and set the layout

JPanel infoPanel = new JPanel();

infoPanel.setLayout(new BorderLayout());

// create the font

Font largerFont = new Font(infoPanel.getFont().getName(),

infoPanel.getFont().getStyle(),14);

// create the pixel location panel

JPanel locationPanel = createLocationPanel(largerFont);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1844 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

// create the color informaiton panel

JPanel colorInfoPanel = createColorInfoPanel(largerFont);

// add the panels to the info panel

infoPanel.add(BorderLayout.NORTH,locationPanel);

infoPanel.add(BorderLayout.SOUTH,colorInfoPanel);

// add the info panel

pictureFrame.getContentPane().add(BorderLayout.NORTH,infoPanel);

}

/**

* Method to check that the current position is in the viewing area and if

* not scroll to center the current position if possible

*/

public void checkScroll()

{

// get the x and y position in pixels

int xPos = (int) (xIndex * zoomFactor);

int yPos = (int) (yIndex * zoomFactor);

// only do this if the image is larger than normal

if (zoomFactor > 1) {

// get the rectangle that defines the current view

JViewport viewport = scrollPane.getViewport();

Rectangle rect = viewport.getViewRect();

int rectMinX = (int) rect.getX();

int rectWidth = (int) rect.getWidth();

int rectMaxX = rectMinX + rectWidth - 1;

int rectMinY = (int) rect.getY();

int rectHeight = (int) rect.getHeight();

int rectMaxY = rectMinY + rectHeight - 1;

// get the maximum possible x and y index

int maxIndexX = (int) (picture.getWidth() * zoomFactor) - rectWidth - 1;

int maxIndexY = (int) (picture.getHeight() * zoomFactor) - rectHeight - 1;

// calculate how to position the current position in the middle of the viewing

// area

int viewX = xPos - (int) (rectWidth / 2);

int viewY = yPos - (int) (rectHeight / 2);

// reposition the viewX and viewY if outside allowed values

if (viewX < 0)

viewX = 0;

else if (viewX > maxIndexX)

viewX = maxIndexX;

if (viewY < 0)

viewY = 0;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1845

else if (viewY > maxIndexY)

viewY = maxIndexY;

// move the viewport upper left point

viewport.scrollRectToVisible(new Rectangle(viewX,viewY,rectWidth,rectHeight));

}

}

/**

* Zooms in the on picture by scaling the image.

* It is extremely memory intensive.

* @param factor the amount to zoom by

*/

public void zoom(double factor)

{

// save the current zoom factor

zoomFactor = factor;

// calculate the new width and height and get an image that size

int width = (int) (picture.getWidth()*zoomFactor);

int height = (int) (picture.getHeight()*zoomFactor);

BufferedImage bimg = picture.getBufferedImage();

// set the scroll image icon to the new image

imageDisplay.setImage(bimg.getScaledInstance(width, height, Image.SCALE_DEFAULT));

imageDisplay.setCurrentX((int) (xIndex * zoomFactor));

imageDisplay.setCurrentY((int) (yIndex * zoomFactor));

imageDisplay.revalidate();

checkScroll(); // check if need to reposition scroll

}

/**

* Repaints the image on the scrollpane.

*/

public void repaint()

{

pictureFrame.repaint();

}

//**//

// Event Listeners //

//**//

/**

* Called when the mouse is dragged (button held down and moved)

* @param e the mouse event

*/

public void mouseDragged(MouseEvent e)

{

displayPixelInformation(e);

}

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1846 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

/**

* Method to check if the given x and y are in the picture

* @param x the horiztonal value

* @param y the vertical value

* @return true if the x and y are in the picture and false otherwise

*/

private boolean isLocationInPicture(int x, int y)

{

boolean result = false; // the default is false

if (x >= 0 && x < picture.getWidth() &&

y >= 0 && y < picture.getHeight())

result = true;

return result;

}

/**

* Method to display the pixel information from the passed x and y but

* also converts x and y from strings

* @param xString the x value as a string from the user

* @param yString the y value as a string from the user

*/

public void displayPixelInformation(String xString, String yString)

{

int x = -1;

int y = -1;

try {

x = Integer.parseInt(xString);

x = x - numberBase;

y = Integer.parseInt(yString);

y = y - numberBase;

} catch (Exception ex) {

}

if (x >= 0 && y >= 0) {

displayPixelInformation(x,y);

}

}

/**

* Method to display pixel information for the passed x and y

* @param pictureX the x value in the picture

* @param pictureY the y value in the picture

*/

private void displayPixelInformation(int pictureX, int pictureY)

{

// check that this x and y is in range

if (isLocationInPicture(pictureX, pictureY))

{

// save the current x and y index

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1847

xIndex = pictureX;

yIndex = pictureY;

// get the pixel at the x and y

Pixel pixel = new Pixel(picture,xIndex,yIndex);

// set the values based on the pixel

xValue.setText(Integer.toString(xIndex + numberBase));

yValue.setText(Integer.toString(yIndex + numberBase));

rValue.setText("R: " + pixel.getRed());

gValue.setText("G: " + pixel.getGreen());

bValue.setText("B: " + pixel.getBlue());

colorPanel.setBackground(new Color(pixel.getRed(), pixel.getGreen(), pixel.getBlue()));

}

else

{

clearInformation();

}

// notify the image display of the current x and y

imageDisplay.setCurrentX((int) (xIndex * zoomFactor));

imageDisplay.setCurrentY((int) (yIndex * zoomFactor));

}

/**

* Method to display pixel information based on a mouse event

* @param e a mouse event

*/

private void displayPixelInformation(MouseEvent e)

{

// get the cursor x and y

int cursorX = e.getX();

int cursorY = e.getY();

// get the x and y in the original (not scaled image)

int pictureX = (int) (cursorX / zoomFactor + numberBase);

int pictureY = (int) (cursorY / zoomFactor + numberBase);

// display the information for this x and y

displayPixelInformation(pictureX,pictureY);

}

/**

* Method to clear the labels and current color and reset the

* current index to -1

*/

private void clearInformation()

{

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1848 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

xValue.setText("N/A");

yValue.setText("N/A");

rValue.setText("R: N/A");

gValue.setText("G: N/A");

bValue.setText("B: N/A");

colorPanel.setBackground(Color.black);

xIndex = -1;

yIndex = -1;

}

/**

* Method called when the mouse is moved with no buttons down

* @param e the mouse event

*/

public void mouseMoved(MouseEvent e)

{}

/**

* Method called when the mouse is clicked

* @param e the mouse event

*/

public void mouseClicked(MouseEvent e)

{

displayPixelInformation(e);

}

/**

* Method called when the mouse button is pushed down

* @param e the mouse event

*/

public void mousePressed(MouseEvent e)

{

displayPixelInformation(e);

}

/**

* Method called when the mouse button is released

* @param e the mouse event

*/

public void mouseReleased(MouseEvent e)

{

}

/**

* Method called when the component is entered (mouse moves over it)

* @param e the mouse event

*/

public void mouseEntered(MouseEvent e)

{

}

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1849

/**

* Method called when the mouse moves over the component

* @param e the mouse event

*/

public void mouseExited(MouseEvent e)

{

}

/**

* Method to enable all menu commands

*/

private void enableZoomItems()

{

twentyFive.setEnabled(true);

fifty.setEnabled(true);

seventyFive.setEnabled(true);

hundred.setEnabled(true);

hundredFifty.setEnabled(true);

twoHundred.setEnabled(true);

fiveHundred.setEnabled(true);

}

/**

* Controls the zoom menu bar

*

* @param a the ActionEvent

*/

public void actionPerformed(ActionEvent a)

{

if(a.getActionCommand().equals("Update"))

{

this.repaint();

}

if(a.getActionCommand().equals("25%"))

{

this.zoom(.25);

enableZoomItems();

twentyFive.setEnabled(false);

}

if(a.getActionCommand().equals("50%"))

{

this.zoom(.50);

enableZoomItems();

fifty.setEnabled(false);

}

if(a.getActionCommand().equals("75%"))

{

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1850 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

this.zoom(.75);

enableZoomItems();

seventyFive.setEnabled(false);

}

if(a.getActionCommand().equals("100%"))

{

this.zoom(1.0);

enableZoomItems();

hundred.setEnabled(false);

}

if(a.getActionCommand().equals("150%"))

{

this.zoom(1.5);

enableZoomItems();

hundredFifty.setEnabled(false);

}

if(a.getActionCommand().equals("200%"))

{

this.zoom(2.0);

enableZoomItems();

twoHundred.setEnabled(false);

}

if(a.getActionCommand().equals("500%"))

{

this.zoom(5.0);

enableZoomItems();

fiveHundred.setEnabled(false);

}

}

/**

* Test Main. It will ask you to pick a file and then show it

*/

public static void main(String args[])

{

Picture p = new Picture(FileChooser.pickAFile());

PictureExplorer test = new PictureExplorer(p);

}

/**

* Class for establishing the focus for the textfields

*/

private class PictureExplorerFocusTraversalPolicy

extends FocusTraversalPolicy {

/**

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1851

* Method to get the next component for focus

*/

public Component getComponentAfter(Container focusCycleRoot,

Component aComponent) {

if (aComponent.equals(xValue))

return yValue;

else

return xValue;

}

/**

* Method to get the previous component for focus

*/

public Component getComponentBefore(Container focusCycleRoot,

Component aComponent) {

if (aComponent.equals(xValue))

return yValue;

else

return xValue;

}

public Component getDefaultComponent(Container focusCycleRoot) {

return xValue;

}

public Component getLastComponent(Container focusCycleRoot) {

return yValue;

}

public Component getFirstComponent(Container focusCycleRoot) {

return xValue;

}

}

}

-end-

4.4.3.3.3 Java3126 Java OOP Handling document events on a text �eld and creating a color
swatch

442

4.4.3.3.3.1 Table of Contents

• Preface (p. 1857)

· Viewing tip (p. 1857)

* Figures (p. 1857)
* Listings (p. 1857)

• Preview (p. 1857)
• Discussion and sample code (p. 1859)
• Run the program (p. 1865)

442This content is available online at <http://cnx.org/content/m44921/1.7/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1852 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

• Summary (p. 1865)
• What's next? (p. 1865)
• Miscellaneous (p. 1865)
• Complete program listing (p. 1866)

4.4.3.3.3.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

4.4.3.3.3.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

4.4.3.3.3.2.1.1 Figures

• Figure 1 (p. 1857) . Program output at startup.
• Figure 2 (p. 1858) . Program output after clicking the button.
• Figure 3 (p. 1858) . Program output after entering color values.

4.4.3.3.3.2.1.2 Listings

• Listing 1 (p. 1859) . The driver class.
• Listing 2 (p. 1859) . Beginning of the class named Prob13Runner.
• Listing 3 (p. 1860) . Beginning of constructor for Prob13Runner.
• Listing 4 (p. 1861) . Continue the constructor.
• Listing 5 (p. 1862) . Register a listener object on the button.
• Listing 6 (p. 1863) . Beginning of DocumentListener on Red text �eld.
• Listing 7 (p. 1863) . The removeUpdate method.
• Listing 8 (p. 1864) . The insertUpdate method.
• Listing 9 (p. 1865) . The paintColorSwatch method.
• Listing 10 (p. 1866) . Complete program listing.

4.4.3.3.3.3 Preview

In this module, I will show you how to handle document events on text �elds containing color values.
I will also show you how to create a color swatch that displays the color indicated by the color values in

the Red, Green, and Blue text �elds.
Program output at startup
Figure 1 (p. 1857) shows the program output at startup.
Note that the color values in the Red, Green, and Blue text �elds are all zero, the color of the square at

the right end of the Green panel is black.
Recall that black is represented by Red, Green, and Blue color values of zero.
Figure 1 - Program output at startup.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1853

Program output after clicking the button
Figure 2 (p. 1858) shows the program output after clicking the button labeled "Set Green Color."
Figure 2 - Program output after clicking the button.

Note that in Figure 2 (p. 1858) ,

• the color values in the Red and Blue text �elds are zero,
• the color value in the Green text �eld is 255,
• the square (color swatch) at the right end of the green panel is green with a black outline
• the square is not transparent.

Recall that pure green is represented by Red and Blue color values of zero, with a Green color value of 255.
Program output after entering color values
Figure 3 (p. 1858) shows the program output after manually entering a value of 255 in the Red text �eld.
Note that

• the color values in the Red and Green text �elds are 255,
• the color value in the Blue text �eld is 0, and
• the square at the right end of the green panel is yellow with a black outline.

Figure 3 - Program output after entering color values.

Recall that pure yellow is represented by Red and Green color values of 255, with a Blue color value of
zero.

Color of square tracks color values in text �elds
The square (color swatch) always has a black outline as shown in Figure 3 (p. 1858) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1854 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

The color in the swatch always tracks the color values in the text �elds regardless of whether those values
are changed manually, or they are changed by program code.

4.4.3.3.3.4 Discussion and sample code

A complete listing of the program discussed in this module is provided in Listing 10 (p. 1866) .
Will explain in fragments
I will break this program down and explain it in fragments.
The driver class
The driver class named Prob13 is shown in Listing 1 (p. 1859) . There is nothing new here.

Listing 1 - The driver class.

public class Prob13{

public static void main(String[] args){

new Prob13Runner();

}//end main method

}//end class Prob13

Table 4.312

Beginning of the class named Prob13Runner
The class named Prob13Runner begins in Listing 2 (p. 1859) , which declares several instance

variables and initializes some of them.

Listing 2 - Beginning of the class named Prob13Runner .

class Prob13Runner extends JFrame{

private JPanel controlPanel = new JPanel();

private JPanel colorPanel = new JPanel();

private JPanel buttonPanel = new JPanel();

private JPanel colorIndicatorPanel = new JPanel();

private JTextField redField = new JTextField("000000");

private JTextField greenField =

new JTextField("000000");

private JTextField blueField = new JTextField("000000");

private int redInt = 0;

private int greenInt = 0;

private int blueInt = 0;

private JButton setColorButton =

new JButton("Set Green Color");

Table 4.313

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1855

Beginning of constructor for Prob13Runner
The constructor begins in Listing 3 (p. 1860) . The last two statements in Listing 3 (p. 1860) may be

new to you.
The JPanel referred to by colorIndicatorPanel is the color swatch shown in Figure 3 (p. 1858) .
The last two statements in Listing 3 (p. 1860) control the border color, and the size of the JPanel

(color swatch) object.

Listing 3 - Beginning of constructor for Prob13Runner.

public Prob13Runner(){//constructor

setDefaultCloseOperation(

WindowConstants.EXIT_ON_CLOSE);

controlPanel.setLayout(new GridLayout(2,1));

controlPanel.add(colorPanel);

controlPanel.add(buttonPanel);

colorPanel.setBackground(Color.GREEN);

colorPanel.add(new JLabel("Red = "));

colorPanel.add(redField);

colorPanel.add(new JLabel(" Green = "));

colorPanel.add(greenField);

colorPanel.add(new JLabel(" Blue = "));

colorPanel.add(blueField);

colorPanel.add(colorIndicatorPanel);

colorIndicatorPanel.setBorder(

new LineBorder(Color.black,1));

colorIndicatorPanel.setPreferredSize(

new Dimension(20,20));

Table 4.314

The constructor continues in Listing 4 (p. 1861) .
There is nothing new in Listing 4 (p. 1861) with the possible exception of the call to the method named

paintColorSwatch .
I will explain the method named paintColorSwatch later.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1856 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 4 - Continue the constructor.

buttonPanel.setBackground(Color.BLUE);

buttonPanel.add(setColorButton);

//Color the swatch for the first time.

paintColorSwatch();

//Add the controlPanel to the content pane, adjust to

// the correct size, and set the title.

getContentPane().add(controlPanel);

pack();

setTitle("Dick Baldwin");

//Make the GUI visible

setVisible(true);

Table 4.315

Register listeners on the user input components
This program registers event listener objects on four input components:
One component is the button at the bottom of Figure 3 (p. 1858) labeled Set Green Color.
The other three components are the three text �elds labeled Red , Green , and Blue shown in

Figure 3 (p. 1858) .
The three event listeners that are registered on the text �elds are very similar. Therefore, I will explain

only one of them. You can view the code for the other two in Listing 10 (p. 1866) .
Register a listener object on the button
Listing 5 (p. 1862) registers an ActionListener object on the JButton object referred to by setCol-

orButton .
You have seen code like this in numerous previous modules. Therefore, a detailed explanation of Listing

5 (p. 1862) should not be required here.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1857

Listing 5 - Register a listener object on the button.

setColorButton.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent e){

//Set the color to green.

redInt = 0;

greenInt = 255;

blueInt = 0;

//Show the color values in the text fields.

redField.setText("" + redInt);

greenField.setText("" + greenInt);

blueField.setText("" + blueInt);

}//end action performed

}//end new ActionListener

);//end addActionListener

Table 4.316

The DocumentListener interface
The DocumentListener interface can be described brie�y as follows:
"Interface for an observer to register to receive noti�cations of changes to a text document."
This interface is implemented by numerous classes including the JTextField class. As mentioned

earlier, the Red , Green , and Blue text �elds in Figure 3 (p. 1858) are objects of the JTextField
class and therefore implement the DocumentListener interface.

DocumentListener methods
The DocumentListener interface declares the follow three methods:

• changedUpdate

· Gives noti�cation that an attribute or set of attributes changed.

• insertUpdate

· Gives noti�cation that there was an insert into the document.

• removeUpdate

· Gives noti�cation that a portion of the document has been removed.

Only the insertUpdate and removeUpdate methods are of interest in this program. Therefore, the
changedUpdate method will be implemented as an empty method.

Beginning of DocumentListener
Listing 6 (p. 1863) shows the beginning of the de�nition, instantiation, and registration of a Docu-

mentListener object on the object of type Document that is encapsulated in the Red text �eld.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1858 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 6 - Beginning of DocumentListener on Red text �eld.

redField.getDocument().addDocumentListener(

new DocumentListener(){

public void changedUpdate(DocumentEvent e){

//Empty method - not needed

}//end changedUpdate

Table 4.317

Note that registration of the listener object in this case has an additional level of indirection (getDocu-
ment) as compared to the registration of the listener on the JButton in Listing 5 (p. 1862) . In other words,
the listener is not registered on the text �eld. Instead, it is registered on the document encapsulated in the
text �eld.

This listener will respond when the contents of the text �eld are modi�ed, either by the program, or by
the user.

(As explained earlier, the changedUpdate method is de�ned as an empty method.)
The removeUpdate method
Listing 7 (p. 1863) shows the removeUpdate method in its entirety.

Listing 7 - The removeUpdate method.

public void removeUpdate(DocumentEvent e){

try{

redInt = Integer.parseInt(

redField.getText());

if((redInt >= 0) && (redInt <= 255)){

paintColorSwatch();

}//end if

}catch(Exception ex){

//do nothing on exception

}//end catch

}//end removeUpdate

Table 4.318

Behavior of the removeUpdate method
Listing 7 (p. 1863) calls the static parseInt method of the Integer class to convert the String

contents of the Red text �eld into a value of type int .
The parseInt method can throw a NumberFormatException if the string does not contain a

parsable integer.
The possibility of a NumberFormatException , (which is a checked exception) requires that the

call to the parseInt method be enclosed in a try-catch block.
In this program, the catch block causes the removeUpdate method to do nothing if the

contents of the text �eld cannot be converted into an int , which causes a NumberFormatException
to be thrown

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1859

If a NumberFormatException exception is not thrown, the return value from the parseInt method
is stored in an instance variable named redInt .

If the value of redInt is between 0 and 255 inclusive, Listing 7 (p. 1863) calls the method named
paintColorSwatch , causing the color swatch to be repainted, using the Red value, along with the
Green and Blue values computed elsewhere.

The insertUpdate method
The insertUpdate method is shown in Listing 8 (p. 1864) .
The behavior of the insertUpdate method is essentially the same as the behavior of the remove-

Update method explained earlier. Therefore, an explanation of the insertUpdate method should not
be needed.

Listing 8 - The insertUpdate method.

public void insertUpdate(DocumentEvent e){

try{

redInt = Integer.parseInt(

redField.getText());

if((redInt >= 0) && (redInt <= 255)){

paintColorSwatch();

}//end if

}catch(Exception ex){

//do nothing on exception

}//end catch

}//end insertUpdate

//---//

}//end new DocumentListener

);//end addDocumentListener

Table 4.319

The end of the class de�nition
Listing 8 (p. 1864) also signals the end of the anonymous class de�nition that began in Listing 6 (p.

1863) .
The Green and Blue text �elds
The Green and Blue text �elds are processed using very similar DocumentListener objects as used

for the Red text �eld. You can view that code in Listing 10 (p. 1866) .
That ends the discussion of the constructor for the class named Prob13Runner .
The method named paintColorSwatch
There were earlier references to a method named paintColorSwatch . The code for the paintCol-

orSwatch method is shown in Listing 9 (p. 1865) .

Listing 9 - The paintColorSwatch method.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1860 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

private void paintColorSwatch(){

colorIndicatorPanel.setBackground(

new Color(redInt,greenInt,blueInt));

}//end paintColorSwatch

//--//

}//end class Prob13Runner

Table 4.320

The paintColorSwatch method sets the background color for the JPanel object that represents
the color swatch, using values of red, green, and blue that are computed elsewhere in the program.

The end of the program
Listing 9 (p. 1865) also signals the end of the class named Prob13Runner and the end of the program.

4.4.3.3.3.5 Run the program

I encourage you to copy the code from Listing 10 (p. 1866) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

4.4.3.3.3.6 Summary

In this lesson, you learned how to handle document events on text �elds containing color values. You also
learned how to create a color swatch.

4.4.3.3.3.7 What's next?

In the next module, you will learn how to use a JColorChooser object to specify a color in any one of �ve
di�erent ways.

4.4.3.3.3.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Handling document events on a text �eld and creating a color
swatch
• File: Java1326.htm
• Published: 09/11/12
• Revised: 02/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1861

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

4.4.3.3.3.9 Complete program listing

A complete listing of the source code discussed in this module is shown in Listing 10 (p. 1866) .
Listing 10 - Complete program listing.

/*File Prob13 Copyright 2012 R.G.Baldwin

This program handles document events on the contents of

text fields containing color values.

The values are used to create a color swatch that displays

the color indicated by the color values in the red, green,

and blue text fields.

***/

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JTextField;

import javax.swing.JLabel;

import javax.swing.WindowConstants;

import javax.swing.event.DocumentListener;

import javax.swing.event.DocumentEvent;

import javax.swing.border.LineBorder;

import java.awt.Color;

import java.awt.GridLayout;

import java.awt.Dimension;

public class Prob13{

public static void main(String[] args){

new Prob13Runner();

}//end main method

}//end class Prob13

//==//

class Prob13Runner extends JFrame{

private JPanel controlPanel = new JPanel();

private JPanel colorPanel = new JPanel();

private JPanel buttonPanel = new JPanel();

private JPanel colorIndicatorPanel = new JPanel();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1862 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

private JTextField redField = new JTextField("000000");

private JTextField greenField =

new JTextField("000000");

private JTextField blueField = new JTextField("000000");

private int redInt = 0;

private int greenInt = 0;

private int blueInt = 0;

private JButton setColorButton =

new JButton("Set Green Color");

//--//

public Prob13Runner(){//constructor

setDefaultCloseOperation(

WindowConstants.EXIT_ON_CLOSE);

controlPanel.setLayout(new GridLayout(2,1));

controlPanel.add(colorPanel);

controlPanel.add(buttonPanel);

colorPanel.setBackground(Color.GREEN);

colorPanel.add(new JLabel("Red = "));

colorPanel.add(redField);

colorPanel.add(new JLabel(" Green = "));

colorPanel.add(greenField);

colorPanel.add(new JLabel(" Blue = "));

colorPanel.add(blueField);

colorPanel.add(colorIndicatorPanel);

colorIndicatorPanel.setBorder(

new LineBorder(Color.black,1));

colorIndicatorPanel.setPreferredSize(

new Dimension(20,20));

buttonPanel.setBackground(Color.BLUE);

buttonPanel.add(setColorButton);

//Color the swatch for the first time.

paintColorSwatch();

//Add the controlPanel to the content pane, adjust to

// the correct size, and set the title.

getContentPane().add(controlPanel);

pack();

setTitle("Dick Baldwin");

//Make the GUI visible

setVisible(true);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1863

//--//

//Register listeners on the user input components.

//--//

setColorButton.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent e){

//Set the color to green.

redInt = 0;

greenInt = 255;

blueInt = 0;

//Show the color values in the text fields.

redField.setText("" + redInt);

greenField.setText("" + greenInt);

blueField.setText("" + blueInt);

}//end action performed

}//end new ActionListener

);//end addActionListener

//--//

//Register a document listener on the red text field.

// This listener will respond when the contents of

// the text field are modified either by the program

// or by the user.

redField.getDocument().addDocumentListener(

new DocumentListener(){

public void changedUpdate(DocumentEvent e){

//Empty method - not needed

}//end changedUpdate

public void removeUpdate(DocumentEvent e){

try{

redInt = Integer.parseInt(

redField.getText());

if((redInt >= 0) && (redInt <= 255)){

paintColorSwatch();

}//end if

}catch(Exception ex){

//do nothing on exception

}//end catch

}//end removeUpdate

public void insertUpdate(DocumentEvent e){

try{

redInt = Integer.parseInt(

redField.getText());

if((redInt >= 0) && (redInt <= 255)){

paintColorSwatch();

}//end if

}catch(Exception ex){

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1864 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

//do nothing on exception

}//end catch

}//end insertUpdate

}//end new DocumentListener

);//end addDocumentListener

//--//

//Register a document listener on the green text

// field. Essentially the same as the above.

greenField.getDocument().addDocumentListener(

new DocumentListener(){

public void changedUpdate(DocumentEvent e){}

public void removeUpdate(DocumentEvent e){

try{

greenInt = Integer.parseInt(

greenField.getText());

if((greenInt >= 0) && (greenInt <= 255))

{

paintColorSwatch();

}//end if

}catch(Exception ex){

//do nothing on exception

}//end catch

}//end removeUpdate

public void insertUpdate(DocumentEvent e){

try{

greenInt = Integer.parseInt(

greenField.getText());

if((greenInt >= 0) && (greenInt <= 255))

{

paintColorSwatch();

}//end if

}catch(Exception ex){

//do nothing on exception

}//end catch

}//end insertUpdate

}//end new DocumentListener

);//end addDocumentListener

//--//

//Register a document listener on the blue text

// field. Essentially the same as the above.

blueField.getDocument().addDocumentListener(

new DocumentListener(){

public void changedUpdate(DocumentEvent e){}

public void removeUpdate(DocumentEvent e){

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1865

try{

blueInt = Integer.parseInt(

blueField.getText());

if((blueInt >= 0) && (blueInt <= 255)){

paintColorSwatch();

}//end if

}catch(Exception ex){

//do nothing on exception

}//end catch

}//end removeUpdate

public void insertUpdate(DocumentEvent e){

try{

blueInt = Integer.parseInt(

blueField.getText());

if((blueInt >= 0) && (blueInt <= 255)){

paintColorSwatch();

}//end if

}catch(Exception ex){

//do nothing on exception

}//end catch

}//end insertUpdate

}//end new DocumentListener

);//end addDocumentListener

//--//

}//end constructor

//--//

//The purpose of this method is to color a swatch

// located next to the RGB color values.

private void paintColorSwatch(){

colorIndicatorPanel.setBackground(

new Color(redInt,greenInt,blueInt));

}//end paintColorSwatch

//--//

}//end class Prob13Runner

-end-

4.4.3.3.4 Java3128 Java OOP Using a JColorChooser object
443

4.4.3.3.4.1 Table of Contents

• Preface (p. 1871)

· Viewing tip (p. 1871)

* Figures (p. 1871)
* Listings (p. 1871)

443This content is available online at <http://cnx.org/content/m44923/1.6/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1866 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

• Preview (p. 1871)
• Discussion and sample code (p. 1874)
• Run the program (p. 1877)
• Summary (p. 1877)
• What's next? (p. 1878)
• Miscellaneous (p. 1878)
• Complete program listing (p. 1878)

4.4.3.3.4.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

4.4.3.3.4.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

4.4.3.3.4.2.1.1 Figures

• Figure 1 (p. 1872) . Program output at startup.
• Figure 2 (p. 1872) . Program output after clicking the Choose Color button.
• Figure 3 (p. 1873) . Program output after selecting a reddish color and clicking the OK button.
• Figure 4 (p. 1874) . Program output after clicking the Darker button.
• Figure 5 (p. 1876) . The showDialog method.

4.4.3.3.4.2.1.2 Listings

• Listing 1 (p. 1875) . Event handler for the Choose Color button.
• Listing 2 (p. 1875) . Show the JColorChooser object.
• Listing 3 (p. 1877) . Darkening the color.
• Listing 4 (p. 1878) . Complete program listing.

4.4.3.3.4.3 Preview

In this module, you will learn how to use a JColorChooser object to specify a color in any one of �ve
di�erent ways:

• Swatches
• HSV
• HSL
• RGB
• CMYK

The details regarding the �ve di�erent ways are not explained. Instead, an understanding of the �ve ways
for specifying a color is left as an exercise for the student.

This module concentrates on the programming aspects of the color chooser as opposed to the aesthetic
aspects of the color chooser.

You will also learn how to create brighter and darker shades of a given color.
What is a JColorChooser object?
According to the Java documentation,

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1867

"JColorChooser provides a pane of controls designed to allow a user to manipulate and select a color."
Program output at startup
A complete listing of the program discussed in this module is provided in Listing 4 (p. 1878) near the

end of the module.
Figure 1 (p. 1872) shows the program output at startup.
The program output is a GUI containing

• three text �elds, one each for red, green, and blue color values
• three labels that identify the contents of each text �eld
• a button labeled Choose Color
• two buttons labeled Brighter and Darker
• a square color swatch whose color re�ects the color speci�ed by the color component values in

the text �elds

Figure 1 - Program output at startup.

Program output after clicking the Choose Color button.
Figure 2 (p. 1872) shows the result of clicking the Choose Color button shown in Figure 1 (p. 1872) .
The bottom image in Figure 2 (p. 1872) is an object of the JColorChooser class.
(The color chooser object doesn't actually appear below the GUI as shown in Figure 2 (p. 1872)

. Instead, it appears in the upper-left corner of the screen and hides the GUI. I manually dragged it down
below the GUI to produce this image.)

Figure 2 - Program output after clicking the Choose Color button.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1868 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

The initial color selection
Note in Figure 2 (p. 1872) that the selected color when the color chooser appears matches the color of

the square color swatch in Figure 1 (p. 1872) (black)
Program output after selecting a reddish color and clicking the OK button.
Figure 3 (p. 1873) shows the result of

• selecting a reddish color in the color chooser, and
• clicking the OK button in the color chooser.

Figure3 - Program output after selecting a reddish color and clicking the OK button.

New color in the GUI
Note in Figure 3 (p. 1873) that

• the color selected in the color chooser now appears in the square color swatch in Figure 3 (p. 1873)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1869

• the color swatch in Figure 3 (p. 1873) has a black border
• the color values in the three text �elds describe the color showing in the swatch

(The color in the swatch is based on the three color values in the text �elds.)
Program output after clicking the Darker button.
Figure 4 (p. 1874) shows the result of clicking the Darker button once.
Figure 4 - Program output after clicking the Darker button.

A darker color
The color swatch in Figure 4 (p. 1874) shows a darker version of the color swatch shown in Figure 3 (p.

1873) .
The numeric color values in Figure 4 (p. 1874) describe the color in the color swatch, and are lower than

the corresponding color values in Figure 3 (p. 1873)
A brighter color
Although not demonstrated here, the color in the swatch could be made brighter by clicking the Brighter

button.
If you click the Darker button enough times, the color will go to black. Similarly, if you click the

Brighter button enough times, the color will go to white.

4.4.3.3.4.4 Discussion and sample code

A complete listing of the program is provided in Listing 4 (p. 1878) .
Much of the code in this program is very similar to code that I explained in earlier modules. Therefore,

I won't repeat those explanations here. Instead, I will concentrate on the code that is new and di�erent.
Given that caveat, I will skip all the way down to the event handler for the Choose Color button.
Event handler for the Choose Color button
Listing 1 (p. 1875) de�nes, instantiates, and registers an ActionListener object on the Choose

Color button.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1870 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Listing 1 - Event handler for the Choose Color button.

chooseButton.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent e){

Color selColor = JColorChooser.showDialog(

chooseButton,"Choose color",new Color(

redInt,greenInt,blueInt));

if(selColor != null){

//Don't change the color if the user cancels

// out.

redField.setText("" + selColor.getRed());

greenField.setText("" + selColor.getGreen());

blueField.setText("" + selColor.getBlue());

}//end if

}//end action performed

}//end new ActionListener

);//end addActionListener

Table 4.321

Show the JColorChooser object
Listing 2 (p. 1875) shows the code, (extracted from Listing 1 (p. 1875)) that causes the color

chooser to appear on the screen.

Listing 2 - Show the JColorChooser object.

Color selColor = JColorChooser.showDialog(

chooseButton,

"Choose color",

new Color(redInt,greenInt,blueInt));

Table 4.322

Call the static showDialog method
Listing 2 (p. 1875) calls the static showDialog method of the JColorChooser class.
Figure 5 (p. 1876) provides information for the showDialog method.

Figure 5 - The showDialog method.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1871

public static Color showDialog(

Component component,

String title,

Color initialColor)

throws HeadlessException

Shows a modal color-chooser dialog and blocks

until the dialog is hidden. If the user presses

the "OK" button, then this method hides/disposes

the dialog and returns the selected color. If

the user presses the "Cancel" button or closes

the dialog without pressing "OK", then this

method hides/disposes the dialog and returns null.

Parameters:

component - the parent Component for the dialog

title - the String containing the dialog's title

initialColor - the initial Color set when the

color-chooser is shown

Returns:

the selected color or null if the user opted out

Table 4.323

A straightforward explanation
The behavior of the dialog is explained in Figure 5 (p. 1876) and shouldn't require further explanation.
Parameters to the showDialog method
A comparison of Listing 2 (p. 1875) and Figure 5 (p. 1876) shows how the color chooser is integrated

into the program.
Perhaps the most important aspects of that integration are the third parameter and the return value

.
The third parameter
The third parameter is an anonymous Color object that matches the color speci�ed by the text �elds

in the GUI, which determine the color of the swatch.
Thus, the initial color for the color chooser matches the color of the swatch in the GUI when the color

chooser �rst appears.
The return value
The return value from the color chooser is a reference to an object of type Color , which is saved in a

variable named selColor .
Processing the return value
Returning to the code in Listing 1 (p. 1875) ,

• if the return value is not null,
• the color components of the return value are converted to strings and
• stored in the red, green, and blue text �elds.

What happens next?
You learned in an earlier module that if the values stored in any of the three text �elds changes for any

reason, DocumentListener objects registered on the three text �elds cause the color of the swatch to
change to match the new values of the color components.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1872 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Thus, the color that is chosen by the user from the color chooser modi�es the values in the text �elds
causing the color of the swatch in the GUI to match the chosen color.

Darkening and brightening the color
Listing 3 (p. 1877) shows an ActionListener object being registered on the button labeled Darker

in Figure 1 (p. 1872) .

Listing 3 - Darkening the color.

darkerButton.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent e){

Color color = new Color(

redInt,greenInt,blueInt).darker();

redField.setText("" + color.getRed());

greenField.setText("" + color.getGreen());

blueField.setText("" + color.getBlue());

}//end action performed

}//end newActionListener

);//end addActionListener

Table 4.324

The darkening action listener
This code creates a new Color object that matches the color values in the three text �elds.
Then it calls the darker method on that Color object causing its color to be darkened.
Then it extracts the color components from the darker Color object and stores those values in the text

�elds.
This, in turn, causes the color swatch to change to match the new color values.
A brightening event handler
A similar event handler is registered on the button labeled Brighter in Figure 1 (p. 1872) .
This code, which you can view in Listing 4 (p. 1878) calls the brighter method instead of the darker

method on the Color object.
End of story
That concludes the explanation of material that is new and di�erent in this program.

4.4.3.3.4.5 Run the program

I encourage you to copy the code from Listing 4 (p. 1878) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

4.4.3.3.4.6 Summary

In this module, you will learned how to use a JColorChooser object to specify a color in any one of �ve
di�erent ways.

You also learned how to create brighter and darker shades of a given color.

4.4.3.3.4.7 What's next?

In the next module, you will learn how to write an editor program that you can use to modify the colors in
an image on a pixel-by-pixel basis.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1873

4.4.3.3.4.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Using a JColorChooser object
• File: Java3128.htm
• Published: 09/11/12
• Revised: 02/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

4.4.3.3.4.9 Complete program listing

A complete listing of the source code discussed in this module is shown in Listing 4 (p. 1878) .
Listing 4 - Complete program listing.

/*File Prob14 Copyright 2012 R.G.Baldwin

Old material:

This program services document events on the contents of

text fields containing color values.

The values are used to create a color swatch that displays

the color indicated by the color values in the red, green,

and blue text fields.

New material:

Demonstrates how to create and use a JColorChooser dialog.

Also demonstrates use of the darker and brighter methods.

Also demonstrates how to cause JTextField objects to be

non-editable.

***/

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JButton;

import javax.swing.JFrame;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1874 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

import javax.swing.JPanel;

import javax.swing.JTextField;

import javax.swing.JLabel;

import javax.swing.WindowConstants;

import javax.swing.event.DocumentListener;

import javax.swing.event.DocumentEvent;

import javax.swing.border.LineBorder;

import java.awt.Color;

import java.awt.GridLayout;

import java.awt.Dimension;

import javax.swing.JColorChooser;

public class Prob14{

public static void main(String[] args){

new Prob14Runner();

}//end main method

}//end class Prob14

//==//

class Prob14Runner extends JFrame{

private JPanel controlPanel = new JPanel();

private JPanel colorPanel = new JPanel();

private JPanel buttonPanel = new JPanel();

private JPanel colorIndicatorPanel = new JPanel();

private JTextField redField = new JTextField("000000");

private JTextField greenField =

new JTextField("000000");

private JTextField blueField = new JTextField("000000");

private int redInt = 0;

private int greenInt = 0;

private int blueInt = 0;

private JButton chooseButton =

new JButton("Choose Color");

private JButton brighterButton =

new JButton("Brighter");

private JButton darkerButton = new JButton("Darker");

//--//

public Prob14Runner(){//constructor

setDefaultCloseOperation(

WindowConstants.EXIT_ON_CLOSE);

controlPanel.setLayout(new GridLayout(2,1));

controlPanel.add(colorPanel);

controlPanel.add(buttonPanel);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1875

colorPanel.setBackground(Color.GREEN);

colorPanel.add(new JLabel("Red = "));

colorPanel.add(redField);

colorPanel.add(new JLabel(" Green = "));

colorPanel.add(greenField);

colorPanel.add(new JLabel(" Blue = "));

colorPanel.add(blueField);

colorPanel.add(colorIndicatorPanel);

redField.setEditable(false);

greenField.setEditable(false);

blueField.setEditable(false);

colorIndicatorPanel.setBorder(

new LineBorder(Color.black,1));

colorIndicatorPanel.setPreferredSize(

new Dimension(20,20));

buttonPanel.setBackground(Color.BLUE);

buttonPanel.add(chooseButton);

buttonPanel.add(brighterButton);

buttonPanel.add(darkerButton);

//Color the swatch for the first time.

paintColorSwatch();

//Add the controlPanel to the content pane, adjust to

// the correct size, and set the title.

getContentPane().add(controlPanel);

pack();

setTitle("Dick Baldwin");

//Make the GUI visible

setVisible(true);

//--//

//Register listeners on the user input components.

//--//

chooseButton.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent e){

Color selColor = JColorChooser.showDialog(

chooseButton,"Choose color",new Color(

redInt,greenInt,blueInt));

if(selColor != null){

//Don't change the color if the user cancels

// out.

redField.setText("" + selColor.getRed());

greenField.setText(

"" + selColor.getGreen());

blueField.setText("" + selColor.getBlue());

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1876 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

}//end if

}//end action performed

}//end new ActionListener

);//end addActionListener

//--//

darkerButton.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent e){

Color color = new Color(

redInt,greenInt,blueInt).darker();

redField.setText("" + color.getRed());

greenField.setText("" + color.getGreen());

blueField.setText("" + color.getBlue());

}//end action performed

}//end newActionListener

);//end addActionListener

//--//

brighterButton.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent e){

Color color = new Color(

redInt,greenInt,blueInt).brighter();

redField.setText("" + color.getRed());

greenField.setText("" + color.getGreen());

blueField.setText("" + color.getBlue());

}//end action performed

}//end newActionListener

);//end addActionListener

//--//

//Register a document listener on the red text field.

// This listener will respond when the contents of

// the text field are modified either by the program

// or by the user.

redField.getDocument().addDocumentListener(

new DocumentListener(){

public void changedUpdate(DocumentEvent e){

//Empty method - not needed

}//end changedUpdate

public void removeUpdate(DocumentEvent e){

try{

redInt = Integer.parseInt(

redField.getText());

if((redInt >= 0) && (redInt <= 255)){

paintColorSwatch();

}//end if

}catch(Exception ex){

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1877

//do nothing on exception

}//end catch

}//end removeUpdate

public void insertUpdate(DocumentEvent e){

try{

redInt = Integer.parseInt(

redField.getText());

if((redInt >= 0) && (redInt <= 255)){

paintColorSwatch();

}//end if

}catch(Exception ex){

//do nothing on exception

}//end catch

}//end insertUpdate

}//end new DocumentListener

);//end addDocumentListener

//--//

//Register a document listener on the green text

// field. Essentially the same as the above.

greenField.getDocument().addDocumentListener(

new DocumentListener(){

public void changedUpdate(DocumentEvent e){}

public void removeUpdate(DocumentEvent e){

try{

greenInt = Integer.parseInt(

greenField.getText());

if((greenInt >= 0) && (greenInt <= 255))

{

paintColorSwatch();

}//end if

}catch(Exception ex){

//do nothing on exception

}//end catch

}//end removeUpdate

public void insertUpdate(DocumentEvent e){

try{

greenInt = Integer.parseInt(

greenField.getText());

if((greenInt >= 0) && (greenInt <= 255))

{

paintColorSwatch();

}//end if

}catch(Exception ex){

//do nothing on exception

}//end catch

}//end insertUpdate

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1878 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

}//end new DocumentListener

);//end addDocumentListener

//--//

//Register a document listener on the blue text

// field. Essentially the same as the above.

blueField.getDocument().addDocumentListener(

new DocumentListener(){

public void changedUpdate(DocumentEvent e){}

public void removeUpdate(DocumentEvent e){

try{

blueInt = Integer.parseInt(

blueField.getText());

if((blueInt >= 0) && (blueInt <= 255)){

paintColorSwatch();

}//end if

}catch(Exception ex){

//do nothing on exception

}//end catch

}//end removeUpdate

public void insertUpdate(DocumentEvent e){

try{

blueInt = Integer.parseInt(

blueField.getText());

if((blueInt >= 0) && (blueInt <= 255)){

paintColorSwatch();

}//end if

}catch(Exception ex){

//do nothing on exception

}//end catch

}//end insertUpdate

}//end new DocumentListener

);//end addDocumentListener

//--//

}//end constructor

//--//

//The purpose of this method is to color a swatch

// located next to the RGB color values.

private void paintColorSwatch(){

colorIndicatorPanel.setBackground(

new Color(redInt,greenInt,blueInt));

}//end paintColorSwatch

//--//

//The purpose of this method is to absorb any exceptions

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1879

// that may be thrown by the parseInt method in order

// to avoid having the program abort. In the event that

// an exception is thrown, this method simply returns an

// int value of 0;

private int goParseInt(String string){

int result = 0;

try{

result = Integer.parseInt(string);

}catch(Exception e){

result = 0;

}//end catch

return result;

}//end goParseInt

//--//

}//end class Prob14Runner

-end-

4.4.3.3.5 Java3130 Java OOP A Pixel Color Editor
444

4.4.3.3.5.1 Table of Contents

• Preface (p. 1884)

· Viewing tip (p. 1885)

* Figures (p. 1885)
* Listings (p. 1885)

• Preview (p. 1885)
• Discussion and sample code (p. 1888)
• Run the program (p. 1893)
• Summary (p. 1893)
• Miscellaneous (p. 1893)
• Complete program listing (p. 1894)

4.4.3.3.5.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 445 .

4.4.3.3.5.2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

444This content is available online at <http://cnx.org/content/m44926/1.6/>.
445http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1880 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.3.3.5.2.1.1 Figures

• Figure 1 (p. 1885) . Program output at startup.
• Figure 2 (p. 1886) . Program output after zooming the image.
• Figure 3 (p. 1887) . Program output after changing the pixel color to yellow.

4.4.3.3.5.2.1.2 Listings

• Listing 1 (p. 1889) . Code for methods that were added.
• Listing 2 (p. 1889) . Modi�ed setDefaultCloseOperation method.
• Listing 3 (p. 1890) . Beginning of ActionListener registered on update button.
• Listing 4 (p. 1890) . Convert zoom factor to type String.
• Listing 5 (p. 1891) . Set pixel color in original image.
• Listing 6 (p. 1891) . Create and populate a new PictureExplorer object.
• Listing 7 (p. 1892) . Call the mousePressed method.
• Listing 8 (p. 1893) . Set the zoom state.
• Listing 9 (p. 1894) . Complete listing of Prob15.
• Listing 10 (p. 1901) . Complete listing of modi�ed PictureExplorer class.

4.4.3.3.5.3 Preview

In this module, you will learn how to write an editor program that you can use to modify the colors in an
image on a pixel-by-pixel basis.

Such a program could be useful, for example, for manually correcting "red eye" problems in digital
images.

Program output at startup
Figure 1 (p. 1885) shows the program output at startup.
The output consists of

• an Ericson PictureExplorer object displaying an image of a penguin, and
• a color manipulation GUI similar to those discussed in earlier modules.

Figure 1 - Program output at startup.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1881

Program output after zooming the image
Figure 2 (p. 1886) shows the program output after placing the PictureExplorer cursor on the

penguin's nose, and zooming the PictureExplorer image by 500%
If you look carefully, you should be able to see the crosshair cursor on the penguin's nose.
Figure 2 - Program output after zooming the image.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1882 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Program output after changing the pixel color to yellow
Figure 3 (p. 1887) shows the result of selecting the color yellow with the GUI, and clicking the button

labeled Update Pixel Color
If you look carefully, you should see that the pixel next to the crosshair cursor on the penguin's nose has

changed from black to yellow.
Figure 3 - Program output after changing the pixel color to yellow.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1883

4.4.3.3.5.4 Discussion and sample code

This program requires modi�cations to Ericson's PictureExplorer class. I will deal with that issue �rst.
A complete listing of the modi�ed version of the PictureExplorer class is shown in Listing 10 (p.

1901) .
Changes to Ericson's PictureExplorer class
The PictureExplorer class was modi�ed to add getter methods to cause the following values to be

accessible from outside the object:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1884 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

• int xIndex
• int yIndex
• double zoomFactor
• JFrame pictureFrame

Also the call to the setDefaultCloseOperation method was disabled.
Code for methods that were added
Listing 1 (p. 1889) shows the code for the methods that were added to the PictureExplorer class.

Listing 1 - Code for methods that were added.

//Method to get the xIndex value.

public int getXIndex(){

return xIndex;

}//end getXIndex

//Method to get the yIndex value.

public int getYIndex(){

return yIndex;

}//end getYIndex

//Method to get the zoomFactor value.

public double getZoomFactor(){

return zoomFactor;

}//end getZoomFactor

//Method to get a reference to the frame

public JFrame getFrame(){

return pictureFrame;

}//end getFrame()

Table 4.325

Modi�ed setDefaultCloseOperation method
Listing 2 (p. 1889) shows the modi�ed version of the setDefaultCloseOperation method.
Note the parameter that is passed to the method when it is called.

Listing 2 - Modi�ed setDefaultCloseOperation method.

explorerFrame.setDefaultCloseOperation(

WindowConstants.DO_NOTHING_ON_CLOSE);

Table 4.326

Similar to previous code
Much of the code in this program is similar to code that I explained in earlier modules, and I won't

repeat those explanations.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1885

I will skip down to the event handler registered on the button labeled Update Pixel Color in Figure
1 (p. 1885) . That code begins in Listing 3 (p. 1890) .

Listing 3 - Beginning of ActionListener registered on update button.

updateButton.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent e){

//Get properties of PictureExplorer object.

xIndex = explorer.getXIndex();

yIndex = explorer.getYIndex();

zoomFactor = explorer.getZoomFactor();

Table 4.327

Important to preserve properties
The only thing that changes when you click the update button is the color of the pixel at the crosshair

cursor.
Therefore, the program must preserve the state of the explorer object including such items as the zoom

factor and the location of crosshair cursor.
Listing 3 (p. 1890) gets and saves the property values that determine the state of the explorer object.
Convert zoom factor to String
The getZoomFactor method returns the zoom factor as type double . However, we need the zoom

factor as type String . The code in Listing 4 (p. 1890) converts the zoom factor to type String .

Listing 4 - Convert zoom factor to type String.

//Save zoom factor as a string.

String zoomString = "100%";

if(zoomFactor == 0.25){

zoomString = "25%";

}else if(zoomFactor == 0.50){

zoomString = "50%";

}else if(zoomFactor == 0.75){

zoomString = "75%";

}else if(zoomFactor == 1.0){

zoomString = "100%";

}else if(zoomFactor == 1.5){

zoomString = "150%";

}else if(zoomFactor == 2.0){

zoomString = "200%";

}else if(zoomFactor == 5.0){

zoomString = "500%";

}else{

zoomString = "100%";//in case no match

}//end else

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1886 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Table 4.328

Set pixel color in original image
The code in Listing 5 (p. 1891)

• creates a new Color object based on the values in the text �elds of Figure 3 (p. 1887) , and
• changes the color of the corresponding pixel in the original image to the new color.

At this point, the color of the pixel in the original image has been modi�ed.

Listing 5 - Set pixel color in original image.

Color newColor = new Color(

redInt,greenInt,blueInt);

pix.getPixel(xIndex,yIndex).setColor(newColor);

Table 4.329

Create and populate a new PictureExplorer object
Listing 6 (p. 1891) begins by disposing of the original PictureExplorer object. Then Listing 6 (p.

1891) creates a new PictureExplorer object containing the modi�ed image.
Finally Listing 6 (p. 1891) calls the setDefaultCloseOperation on the JFrame that houses the

PictureExplorer object disabling the X-button in the upper-right corner.

Listing 6 - Create and populate a new PictureExplorer object.

//Dispose of the existing explorer and create a

// new one.

explorerFrame.dispose();

explorer = new PictureExplorer(pix);

//Get reference to the new frame

explorerFrame = explorer.getFrame();

explorerFrame.setDefaultCloseOperation(

WindowConstants.DO_NOTHING_ON_CLOSE);

Table 4.330

Set the state of the PictureExplorer object
You will probably need to study the event handling code in the PictureExplorer class to fully

understand the remaining code in this discussion.
When you click the image in the PictureExplorer object, a MouseListener object registered on

the PictureExplorer object calls the mousePressed method belonging to that object
Simulate a physical click
We can simulate a physical click on that image by calling the same method from outside the Picture-

Explorer object.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1887

Call the mousePressed method
Listing 7 (p. 1892) calls the mousePressed method on the PictureExplorer object passing the

crosshair coordinates as parameters. Other parameters are also passed to satisfy the requirements of the
mousePressed method.

(I will leave it as an exercise for the student to investigate those other parameters.)

Listing 7 - Call the mousePressed method.

//Now set the state of the new explorer.

//Simulate a mouse pressed event in the picture

// to set the cursor and the text in the

// coordinate fields.

explorer.mousePressed(new MouseEvent(

new JButton("dummy component"),

MouseEvent.MOUSE_PRESSED,

(long)0,

0,

xIndex,

yIndex,

0,

false));

Table 4.331

PictureExplorer object handles crosshair cursor
The code in Ericson's mousePressed method takes care of all the requirements that result from setting

the location of the crosshair cursor, such as setting the coordinate values in the PictureExplorer object's
text �elds shown in Figure 3 (p. 1887) .

Set the zoom state
Manually selecting a zoom level from the Zoom menu in the PictureExplorer object causes the

actionPerformed method belonging to an ActionListener object registered on the PictureExplorer
object to be executed.

As before, we can simulate the manual selection of a Zoom menu value by calling that actionPer-
formed method from outside the object.

Set the zoom state
Listing 8 (p. 1893) calls Ericson's actionPerformed method, passing the String representation of

the zoom factor as a parameter.
(I will leave it as an exercise for the student to investigate the other parameters.)

Listing 8 - Set the zoom state.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1888 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

//Simulate an action event on the zoom menu to

// set the zoom.

explorer.actionPerformed(new ActionEvent(

explorer,

ActionEvent.ACTION_PERFORMED,

zoomString));

}//end actionPerformed

}//end newActionListener

);//end addActionListener

Table 4.332

Conclusion of discussion
That concludes the discussion of the ActionListener object registered on the button labeled Update

Pixel Color in Figure 1 (p. 1885) .
It also concludes the discussion of the program.

4.4.3.3.5.5 Run the program

I encourage you to copy the code from Listing 9 (p. 1894) and Listing 10 (p. 1901) and download the image
�le named Prob15.jpg 446 . Compile the code and execute it. Experiment with the code, making changes,
and observing the results of your changes. Make certain that you can explain why your changes behave as
they do.

4.4.3.3.5.6 Summary

In this module, you learned how to write an editor program that you can use to modify the colors in an
image on a pixel-by-pixel basis.

4.4.3.3.5.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: A Pixel Color Editor
• File: Java3130.htm
• Published: 09/11/12
• Revised: 02/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

446http://cnx.org/content/m44926/latest/Prob15.jpg

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1889

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

4.4.3.3.5.8 Complete program listing

Complete listings of the source code discussed in this module are shown in Listing 9 (p. 1894) and Listing
10 (p. 1901) below.

Listing 9 - Complete listing of Prob15.

/*File Prob15 Copyright 2012 R.G.Baldwin

The purpose of this program is demonstrate one way to

change the color of a pixel in a Picture object that is

encapsulated in a PictureExplorer object.

The pixel to be modified is selected by placing the

cursor in the PictureExplorer object.

***/

import java.awt.event.MouseEvent;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JTextField;

import javax.swing.JLabel;

import javax.swing.WindowConstants;

import javax.swing.event.DocumentListener;

import javax.swing.event.DocumentEvent;

import javax.swing.border.LineBorder;

import java.awt.Color;

import java.awt.GridLayout;

import java.awt.Dimension;

import javax.swing.JColorChooser;

public class Prob15{

public static void main(String[] args){

new Prob15Runner();

}//end main method

}//end class Prob15

//==//

class Prob15Runner extends JFrame{

private Prob15Runner jFrameObj = null;

private PictureExplorer explorer = null;

private Picture pix;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1890 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

private JFrame explorerFrame;

private JPanel controlPanel = new JPanel();

private JPanel colorPanel = new JPanel();

private JPanel buttonPanel = new JPanel();

private JPanel colorIndicatorPanel = new JPanel();

private JTextField redField = new JTextField("000000");

private JTextField greenField =

new JTextField("000000");

private JTextField blueField = new JTextField("000000");

private int redInt = 0;

private int greenInt = 0;

private int blueInt = 0;

//Copies of properties of the PictureExplorer object

private int xIndex = 0;

private int yIndex = 0;

private double zoomFactor = 0;

private JButton chooseButton =

new JButton("Choose Color");

private JButton updateButton =

new JButton("Update Pixel Color");

//--//

public Prob15Runner(){//constructor

pix = new Picture("Prob15.jpg");

pix.addMessage("Dick Baldwin",10,20);

explorer = new PictureExplorer(pix);

explorerFrame = explorer.getFrame();

explorerFrame.setDefaultCloseOperation(

WindowConstants.DO_NOTHING_ON_CLOSE);

//Set the location for the control GUI

// immediately below the PictureExplorer object,

// and set its default close operation.

setLocation(0,pix.getHeight() + 128);

setDefaultCloseOperation(

WindowConstants.EXIT_ON_CLOSE);

controlPanel.setLayout(new GridLayout(2,1));

controlPanel.add(colorPanel);

controlPanel.add(buttonPanel);

colorPanel.setBackground(Color.GREEN);

colorPanel.add(new JLabel("Red = "));

colorPanel.add(redField);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1891

colorPanel.add(new JLabel(" Green = "));

colorPanel.add(greenField);

colorPanel.add(new JLabel(" Blue = "));

colorPanel.add(blueField);

colorPanel.add(colorIndicatorPanel);

redField.setEditable(false);

greenField.setEditable(false);

blueField.setEditable(false);

colorIndicatorPanel.setBorder(

new LineBorder(Color.black,1));

colorIndicatorPanel.setPreferredSize(

new Dimension(20,20));

buttonPanel.setBackground(Color.BLUE);

buttonPanel.add(chooseButton);

buttonPanel.add(updateButton);

// buttonPanel.add(darkerButton);

//Color the swatch for the first time.

paintColorSwatch();

//Add the controlPanel to the content pane, adjust to

// the correct size, and set the tiele.

getContentPane().add(controlPanel);

pack();

setTitle("Dick Baldwin");

//Make the GUI visible

setVisible(true);

//--//

//Register listeners on the user input components.

//--//

chooseButton.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent e){

Color selColor = JColorChooser.showDialog(

chooseButton,"Choose color",new Color(

redInt,greenInt,blueInt));

if(selColor != null){

//Don't change the color if the user cancels

// out.

redField.setText("" + selColor.getRed());

greenField.setText(

"" + selColor.getGreen());

blueField.setText("" + selColor.getBlue());

}//end if

}//end action performed

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1892 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

}//end new ActionListener

);//end addActionListener

//--//

updateButton.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent e){

//Get properties of PictureExplorer object.

xIndex = explorer.getXIndex();

yIndex = explorer.getYIndex();

zoomFactor = explorer.getZoomFactor();

//Save zoom factor as a string.

String zoomString = "100%";

if(zoomFactor == 0.25){

zoomString = "25%";

}else if(zoomFactor == 0.50){

zoomString = "50%";

}else if(zoomFactor == 0.75){

zoomString = "75%";

}else if(zoomFactor == 1.0){

zoomString = "100%";

}else if(zoomFactor == 1.5){

zoomString = "150%";

}else if(zoomFactor == 2.0){

zoomString = "200%";

}else if(zoomFactor == 5.0){

zoomString = "500%";

}else{

zoomString = "100%";//in case no match

}//end else

Color newColor = new Color(

redInt,greenInt,blueInt);

pix.getPixel(xIndex,yIndex).setColor(newColor);

//Dispose of the existing explorer and create a

// new one.

explorerFrame.dispose();

explorer = new PictureExplorer(pix);

//Get reference to the new frame

explorerFrame = explorer.getFrame();

explorerFrame.setDefaultCloseOperation(

WindowConstants.DO_NOTHING_ON_CLOSE);

//Now set the state of the new explorer.

//Simulate a mouse pressed event in the picture

// to set the cursor and the text in the

// coordinate fields.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1893

explorer.mousePressed(new MouseEvent(

new JButton("dummy component"),

MouseEvent.MOUSE_PRESSED,

(long)0,

0,

xIndex,

yIndex,

0,

false));

//Simulate an action event on the zoom menu to

// set the zoom.

explorer.actionPerformed(new ActionEvent(

explorer,

ActionEvent.ACTION_PERFORMED,

zoomString));

}//end actionPerformed

}//end newActionListener

);//end addActionListener

//--//

//Register a document listener on the red text field.

// This listener will respond when the contents of

// the text field are modified either by the program

// or by the user.

redField.getDocument().addDocumentListener(

new DocumentListener(){

public void changedUpdate(DocumentEvent e){

//Empty method - not needed

}//end changedUpdate

public void removeUpdate(DocumentEvent e){

try{

redInt = Integer.parseInt(

redField.getText());

if((redInt >= 0) && (redInt <= 255)){

paintColorSwatch();

}//end if

}catch(Exception ex){

//do nothing on exception

}//end catch

}//end removeUpdate

public void insertUpdate(DocumentEvent e){

try{

redInt = Integer.parseInt(

redField.getText());

if((redInt >= 0) && (redInt <= 255)){

paintColorSwatch();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1894 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

}//end if

}catch(Exception ex){

//do nothing on exception

}//end catch

}//end insertUpdate

}//end new DocumentListener

);//end addDocumentListener

//--//

//Register a document listener on the green text

// field. Essentially the same as the above.

greenField.getDocument().addDocumentListener(

new DocumentListener(){

public void changedUpdate(DocumentEvent e){}

public void removeUpdate(DocumentEvent e){

try{

greenInt = Integer.parseInt(

greenField.getText());

if((greenInt >= 0) && (greenInt <= 255))

{

paintColorSwatch();

}//end if

}catch(Exception ex){

//do nothing on exception

}//end catch

}//end removeUpdate

public void insertUpdate(DocumentEvent e){

try{

greenInt = Integer.parseInt(

greenField.getText());

if((greenInt >= 0) && (greenInt <= 255))

{

paintColorSwatch();

}//end if

}catch(Exception ex){

//do nothing on exception

}//end catch

}//end insertUpdate

}//end new DocumentListener

);//end addDocumentListener

//--//

//Register a document listener on the blue text

// field. Essentially the same as the above.

blueField.getDocument().addDocumentListener(

new DocumentListener(){

public void changedUpdate(DocumentEvent e){}

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1895

public void removeUpdate(DocumentEvent e){

try{

blueInt = Integer.parseInt(

blueField.getText());

if((blueInt >= 0) && (blueInt <= 255)){

paintColorSwatch();

}//end if

}catch(Exception ex){

//do nothing on exception

}//end catch

}//end removeUpdate

public void insertUpdate(DocumentEvent e){

try{

blueInt = Integer.parseInt(

blueField.getText());

if((blueInt >= 0) && (blueInt <= 255)){

paintColorSwatch();

}//end if

}catch(Exception ex){

//do nothing on exception

}//end catch

}//end insertUpdate

}//end new DocumentListener

);//end addDocumentListener

//--//

}//end constructor

//--//

//The purpose of this method is to color a swatch

// located next to the RGB color values.

private void paintColorSwatch(){

colorIndicatorPanel.setBackground(

new Color(redInt,greenInt,blueInt));

}//end paintColorSwatch

//--//

//The purpose of this method is to absorb any exceptions

// that may be thrown by the parseInt method in order

// to avoid having the program abort. In the event that

// an exception is thrown, this method simply returns an

// int value of 0;

private int goParseInt(String string){

int result = 0;

try{

result = Integer.parseInt(string);

}catch(Exception e){

result = 0;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1896 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

}//end catch

return result;

}//end goParseInt

//--//

}//end class Prob15Runner

Listing 10 - Complete listing of modi�ed PictureExplorer class.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.awt.image.*;

import javax.swing.border.*;

/*

05/16/12 Modified by Baldwin to add getter methods to

cause the following values to be accessible from

outside the object:

int xIndex

int yIndex

double zoomFactor

JFrame pictureFrame

Also disabled the call to setDefaultCloseOperation

*/

/**

* Displays a picture and lets you explore the picture by displaying the x, y, red,

* green, and blue values of the pixel at the cursor when you click a mouse button or

* press and hold a mouse button while moving the cursor. It also lets you zoom in or

* out. You can also type in a x and y value to see the color at that location.

*

* Originally created for the Jython Environment for Students (JES).

* Modified to work with DrJava by Barbara Ericson

*

* Copyright Georgia Institute of Technology 2004

* @author Keith McDermottt, gte047w@cc.gatech.edu

* @author Barb Ericson ericson@cc.gatech.edu

*/

public class PictureExplorer implements MouseMotionListener, ActionListener, MouseListener

{

// current x and y index

private int xIndex = 0;

private int yIndex = 0;

//Main gui variables

private JFrame pictureFrame;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1897

private JScrollPane scrollPane;

//information bar variables

private JLabel xLabel;

private JButton xPrevButton;

private JButton yPrevButton;

private JButton xNextButton;

private JButton yNextButton;

private JLabel yLabel;

private JTextField xValue;

private JTextField yValue;

private JLabel rValue;

private JLabel gValue;

private JLabel bValue;

private JLabel colorLabel;

private JPanel colorPanel;

// menu components

private JMenuBar menuBar;

private JMenu zoomMenu;

private JMenuItem twentyFive;

private JMenuItem fifty;

private JMenuItem seventyFive;

private JMenuItem hundred;

private JMenuItem hundredFifty;

private JMenuItem twoHundred;

private JMenuItem fiveHundred;

/** The picture being explored */

private DigitalPicture picture;

/** The image icon used to display the picture */

private ImageIcon scrollImageIcon;

/** The image display */

private ImageDisplay imageDisplay;

/** the zoom factor (amount to zoom) */

private double zoomFactor;

/** the number system to use, 0 means starting at 0, 1 means starting at 1 */

private int numberBase=0;

/**

* Public constructor

* @param picture the picture to explore

*/

public PictureExplorer(DigitalPicture picture)

{

// set the fields

this.picture=picture;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1898 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

zoomFactor=1;

// create the window and set things up

createWindow();

}

//===Methods added by Baldwin on 05/16/12===============//

//Method to get the xIndex value.

public int getXIndex(){

return xIndex;

}//end getXIndex

//Method to get the yIndex value.

public int getYIndex(){

return yIndex;

}//end getYIndex

//Method to get the zoomFactor value.

public double getZoomFactor(){

return zoomFactor;

}//end getZoomFactor

//Method to get a reference to the frame

public JFrame getFrame(){

return pictureFrame;

}//end getFrame()

//===End methods added by Baldwin on 05/16/12===========//

/**

* Changes the number system to start at one

*/

public void changeToBaseOne()

{

numberBase=1;

}

/**

* Set the title of the frame

*@param title the title to use in the JFrame

*/

public void setTitle(String title)

{

pictureFrame.setTitle(title);

}

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1899

/**

* Method to create and initialize the picture frame

*/

private void createAndInitPictureFrame()

{

pictureFrame = new JFrame(); // create the JFrame

pictureFrame.setResizable(true); // allow the user to resize it

pictureFrame.getContentPane().setLayout(new BorderLayout()); // use border layout

//Disabled by Baldwin on 05/16/12

//pictureFrame.setDefaultCloseOperation(

// JFrame.DISPOSE_ON_CLOSE);

pictureFrame.setTitle(picture.getTitle());

PictureExplorerFocusTraversalPolicy newPolicy = new PictureExplorerFocusTraversalPolicy();

pictureFrame.setFocusTraversalPolicy(newPolicy);

}

/**

* Method to create the menu bar, menus, and menu items

*/

private void setUpMenuBar()

{

//create menu

menuBar = new JMenuBar();

zoomMenu = new JMenu("Zoom");

twentyFive = new JMenuItem("25%");

fifty = new JMenuItem("50%");

seventyFive = new JMenuItem("75%");

hundred = new JMenuItem("100%");

hundred.setEnabled(false);

hundredFifty = new JMenuItem("150%");

twoHundred = new JMenuItem("200%");

fiveHundred = new JMenuItem("500%");

// add the action listeners

twentyFive.addActionListener(this);

fifty.addActionListener(this);

seventyFive.addActionListener(this);

hundred.addActionListener(this);

hundredFifty.addActionListener(this);

twoHundred.addActionListener(this);

fiveHundred.addActionListener(this);

// add the menu items to the menus

zoomMenu.add(twentyFive);

zoomMenu.add(fifty);

zoomMenu.add(seventyFive);

zoomMenu.add(hundred);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1900 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

zoomMenu.add(hundredFifty);

zoomMenu.add(twoHundred);

zoomMenu.add(fiveHundred);

menuBar.add(zoomMenu);

// set the menu bar to this menu

pictureFrame.setJMenuBar(menuBar);

}

/**

* Create and initialize the scrolling image

*/

private void createAndInitScrollingImage()

{

scrollPane = new JScrollPane();

BufferedImage bimg = picture.getBufferedImage();

imageDisplay = new ImageDisplay(bimg);

imageDisplay.addMouseMotionListener(this);

imageDisplay.addMouseListener(this);

imageDisplay.setToolTipText("Click a mouse button on a pixel to see the pixel information");

scrollPane.setViewportView(imageDisplay);

pictureFrame.getContentPane().add(scrollPane, BorderLayout.CENTER);

}

/**

* Creates the JFrame and sets everything up

*/

private void createWindow()

{

// create the picture frame and initialize it

createAndInitPictureFrame();

// set up the menu bar

setUpMenuBar();

//create the information panel

createInfoPanel();

//creates the scrollpane for the picture

createAndInitScrollingImage();

// show the picture in the frame at the size it needs to be

pictureFrame.pack();

pictureFrame.setVisible(true);

}

/**

* Method to set up the next and previous buttons for the

* pixel location information

*/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1901

private void setUpNextAndPreviousButtons()

{

// create the image icons for the buttons

Icon prevIcon = new ImageIcon(SoundExplorer.class.getResource("leftArrow.gif"),

"previous index");

Icon nextIcon = new ImageIcon(SoundExplorer.class.getResource("rightArrow.gif"),

"next index");

// create the arrow buttons

xPrevButton = new JButton(prevIcon);

xNextButton = new JButton(nextIcon);

yPrevButton = new JButton(prevIcon);

yNextButton = new JButton(nextIcon);

// set the tool tip text

xNextButton.setToolTipText("Click to go to the next x value");

xPrevButton.setToolTipText("Click to go to the previous x value");

yNextButton.setToolTipText("Click to go to the next y value");

yPrevButton.setToolTipText("Click to go to the previous y value");

// set the sizes of the buttons

int prevWidth = prevIcon.getIconWidth() + 2;

int nextWidth = nextIcon.getIconWidth() + 2;

int prevHeight = prevIcon.getIconHeight() + 2;

int nextHeight = nextIcon.getIconHeight() + 2;

Dimension prevDimension = new Dimension(prevWidth,prevHeight);

Dimension nextDimension = new Dimension(nextWidth, nextHeight);

xPrevButton.setPreferredSize(prevDimension);

yPrevButton.setPreferredSize(prevDimension);

xNextButton.setPreferredSize(nextDimension);

yNextButton.setPreferredSize(nextDimension);

// handle previous x button press

xPrevButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {

xIndex--;

if (xIndex < 0)

xIndex = 0;

displayPixelInformation(xIndex,yIndex);

}

});

// handle previous y button press

yPrevButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {

yIndex--;

if (yIndex < 0)

yIndex = 0;

displayPixelInformation(xIndex,yIndex);

}

});

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1902 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

// handle next x button press

xNextButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {

xIndex++;

if (xIndex >= picture.getWidth())

xIndex = picture.getWidth() - 1;

displayPixelInformation(xIndex,yIndex);

}

});

// handle next y button press

yNextButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {

yIndex++;

if (yIndex >= picture.getHeight())

yIndex = picture.getHeight() - 1;

displayPixelInformation(xIndex,yIndex);

}

});

}

/**

* Create the pixel location panel

* @param labelFont the font for the labels

* @return the location panel

*/

public JPanel createLocationPanel(Font labelFont) {

// create a location panel

JPanel locationPanel = new JPanel();

locationPanel.setLayout(new FlowLayout());

Box hBox = Box.createHorizontalBox();

// create the labels

xLabel = new JLabel("X:");

yLabel = new JLabel("Y:");

// create the text fields

xValue = new JTextField(Integer.toString(xIndex + numberBase),6);

xValue.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

displayPixelInformation(xValue.getText(),yValue.getText());

}

});

yValue = new JTextField(Integer.toString(yIndex + numberBase),6);

yValue.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

displayPixelInformation(xValue.getText(),yValue.getText());

}

});

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1903

// set up the next and previous buttons

setUpNextAndPreviousButtons();

// set up the font for the labels

xLabel.setFont(labelFont);

yLabel.setFont(labelFont);

xValue.setFont(labelFont);

yValue.setFont(labelFont);

// add the items to the vertical box and the box to the panel

hBox.add(Box.createHorizontalGlue());

hBox.add(xLabel);

hBox.add(xPrevButton);

hBox.add(xValue);

hBox.add(xNextButton);

hBox.add(Box.createHorizontalStrut(10));

hBox.add(yLabel);

hBox.add(yPrevButton);

hBox.add(yValue);

hBox.add(yNextButton);

locationPanel.add(hBox);

hBox.add(Box.createHorizontalGlue());

return locationPanel;

}

/**

* Create the color information panel

* @param labelFont the font to use for labels

* @return the color information panel

*/

private JPanel createColorInfoPanel(Font labelFont)

{

// create a color info panel

JPanel colorInfoPanel = new JPanel();

colorInfoPanel.setLayout(new FlowLayout());

// get the pixel at the x and y

Pixel pixel = new Pixel(picture,xIndex,yIndex);

// create the labels

rValue = new JLabel("R: " + pixel.getRed());

gValue = new JLabel("G: " + pixel.getGreen());

bValue = new JLabel("B: " + pixel.getBlue());

// create the sample color panel and label

colorLabel = new JLabel("Color at location: ");

colorPanel = new JPanel();

colorPanel.setBorder(new LineBorder(Color.black,1));

// set the color sample to the pixel color

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1904 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

colorPanel.setBackground(pixel.getColor());

// set the font

rValue.setFont(labelFont);

gValue.setFont(labelFont);

bValue.setFont(labelFont);

colorLabel.setFont(labelFont);

colorPanel.setPreferredSize(new Dimension(25,25));

// add items to the color information panel

colorInfoPanel.add(rValue);

colorInfoPanel.add(gValue);

colorInfoPanel.add(bValue);

colorInfoPanel.add(colorLabel);

colorInfoPanel.add(colorPanel);

return colorInfoPanel;

}

/**

* Creates the North JPanel with all the pixel location

* and color information

*/

private void createInfoPanel()

{

// create the info panel and set the layout

JPanel infoPanel = new JPanel();

infoPanel.setLayout(new BorderLayout());

// create the font

Font largerFont = new Font(infoPanel.getFont().getName(),

infoPanel.getFont().getStyle(),14);

// create the pixel location panel

JPanel locationPanel = createLocationPanel(largerFont);

// create the color informaiton panel

JPanel colorInfoPanel = createColorInfoPanel(largerFont);

// add the panels to the info panel

infoPanel.add(BorderLayout.NORTH,locationPanel);

infoPanel.add(BorderLayout.SOUTH,colorInfoPanel);

// add the info panel

pictureFrame.getContentPane().add(BorderLayout.NORTH,infoPanel);

}

/**

* Method to check that the current position is in the viewing area and if

* not scroll to center the current position if possible

*/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1905

public void checkScroll()

{

// get the x and y position in pixels

int xPos = (int) (xIndex * zoomFactor);

int yPos = (int) (yIndex * zoomFactor);

// only do this if the image is larger than normal

if (zoomFactor > 1) {

// get the rectangle that defines the current view

JViewport viewport = scrollPane.getViewport();

Rectangle rect = viewport.getViewRect();

int rectMinX = (int) rect.getX();

int rectWidth = (int) rect.getWidth();

int rectMaxX = rectMinX + rectWidth - 1;

int rectMinY = (int) rect.getY();

int rectHeight = (int) rect.getHeight();

int rectMaxY = rectMinY + rectHeight - 1;

// get the maximum possible x and y index

int maxIndexX = (int) (picture.getWidth() * zoomFactor) - rectWidth - 1;

int maxIndexY = (int) (picture.getHeight() * zoomFactor) - rectHeight - 1;

// calculate how to position the current position in the middle of the viewing

// area

int viewX = xPos - (int) (rectWidth / 2);

int viewY = yPos - (int) (rectHeight / 2);

// reposition the viewX and viewY if outside allowed values

if (viewX < 0)

viewX = 0;

else if (viewX > maxIndexX)

viewX = maxIndexX;

if (viewY < 0)

viewY = 0;

else if (viewY > maxIndexY)

viewY = maxIndexY;

// move the viewport upper left point

viewport.scrollRectToVisible(new Rectangle(viewX,viewY,rectWidth,rectHeight));

}

}

/**

* Zooms in the on picture by scaling the image.

* It is extremely memory intensive.

* @param factor the amount to zoom by

*/

public void zoom(double factor)

{

// save the current zoom factor

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1906 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

zoomFactor = factor;

// calculate the new width and height and get an image that size

int width = (int) (picture.getWidth()*zoomFactor);

int height = (int) (picture.getHeight()*zoomFactor);

BufferedImage bimg = picture.getBufferedImage();

// set the scroll image icon to the new image

imageDisplay.setImage(bimg.getScaledInstance(width, height, Image.SCALE_DEFAULT));

imageDisplay.setCurrentX((int) (xIndex * zoomFactor));

imageDisplay.setCurrentY((int) (yIndex * zoomFactor));

imageDisplay.revalidate();

checkScroll(); // check if need to reposition scroll

}

/**

* Repaints the image on the scrollpane.

*/

public void repaint()

{

pictureFrame.repaint();

}

//**//

// Event Listeners //

//**//

/**

* Called when the mouse is dragged (button held down and moved)

* @param e the mouse event

*/

public void mouseDragged(MouseEvent e)

{

displayPixelInformation(e);

}

/**

* Method to check if the given x and y are in the picture

* @param x the horiztonal value

* @param y the vertical value

* @return true if the x and y are in the picture and false otherwise

*/

private boolean isLocationInPicture(int x, int y)

{

boolean result = false; // the default is false

if (x >= 0 && x < picture.getWidth() &&

y >= 0 && y < picture.getHeight())

result = true;

return result;

}

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1907

/**

* Method to display the pixel information from the passed x and y but

* also converts x and y from strings

* @param xString the x value as a string from the user

* @param yString the y value as a string from the user

*/

public void displayPixelInformation(String xString, String yString)

{

int x = -1;

int y = -1;

try {

x = Integer.parseInt(xString);

x = x - numberBase;

y = Integer.parseInt(yString);

y = y - numberBase;

} catch (Exception ex) {

}

if (x >= 0 && y >= 0) {

displayPixelInformation(x,y);

}

}

/**

* Method to display pixel information for the passed x and y

* @param pictureX the x value in the picture

* @param pictureY the y value in the picture

*/

private void displayPixelInformation(int pictureX, int pictureY)

{

// check that this x and y is in range

if (isLocationInPicture(pictureX, pictureY))

{

// save the current x and y index

xIndex = pictureX;

yIndex = pictureY;

// get the pixel at the x and y

Pixel pixel = new Pixel(picture,xIndex,yIndex);

// set the values based on the pixel

xValue.setText(Integer.toString(xIndex + numberBase));

yValue.setText(Integer.toString(yIndex + numberBase));

rValue.setText("R: " + pixel.getRed());

gValue.setText("G: " + pixel.getGreen());

bValue.setText("B: " + pixel.getBlue());

colorPanel.setBackground(new Color(pixel.getRed(), pixel.getGreen(), pixel.getBlue()));

}

else

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1908 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

{

clearInformation();

}

// notify the image display of the current x and y

imageDisplay.setCurrentX((int) (xIndex * zoomFactor));

imageDisplay.setCurrentY((int) (yIndex * zoomFactor));

}

/**

* Method to display pixel information based on a mouse event

* @param e a mouse event

*/

private void displayPixelInformation(MouseEvent e)

{

// get the cursor x and y

int cursorX = e.getX();

int cursorY = e.getY();

// get the x and y in the original (not scaled image)

int pictureX = (int) (cursorX / zoomFactor + numberBase);

int pictureY = (int) (cursorY / zoomFactor + numberBase);

// display the information for this x and y

displayPixelInformation(pictureX,pictureY);

}

/**

* Method to clear the labels and current color and reset the

* current index to -1

*/

private void clearInformation()

{

xValue.setText("N/A");

yValue.setText("N/A");

rValue.setText("R: N/A");

gValue.setText("G: N/A");

bValue.setText("B: N/A");

colorPanel.setBackground(Color.black);

xIndex = -1;

yIndex = -1;

}

/**

* Method called when the mouse is moved with no buttons down

* @param e the mouse event

*/

public void mouseMoved(MouseEvent e)

{}

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1909

/**

* Method called when the mouse is clicked

* @param e the mouse event

*/

public void mouseClicked(MouseEvent e)

{

displayPixelInformation(e);

}

/**

* Method called when the mouse button is pushed down

* @param e the mouse event

*/

public void mousePressed(MouseEvent e)

{

displayPixelInformation(e);

}

/**

* Method called when the mouse button is released

* @param e the mouse event

*/

public void mouseReleased(MouseEvent e)

{

}

/**

* Method called when the component is entered (mouse moves over it)

* @param e the mouse event

*/

public void mouseEntered(MouseEvent e)

{

}

/**

* Method called when the mouse moves over the component

* @param e the mouse event

*/

public void mouseExited(MouseEvent e)

{

}

/**

* Method to enable all menu commands

*/

private void enableZoomItems()

{

twentyFive.setEnabled(true);

fifty.setEnabled(true);

seventyFive.setEnabled(true);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1910 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

hundred.setEnabled(true);

hundredFifty.setEnabled(true);

twoHundred.setEnabled(true);

fiveHundred.setEnabled(true);

}

/**

* Controls the zoom menu bar

*

* @param a the ActionEvent

*/

public void actionPerformed(ActionEvent a)

{

if(a.getActionCommand().equals("Update"))

{

this.repaint();

}

if(a.getActionCommand().equals("25%"))

{

this.zoom(.25);

enableZoomItems();

twentyFive.setEnabled(false);

}

if(a.getActionCommand().equals("50%"))

{

this.zoom(.50);

enableZoomItems();

fifty.setEnabled(false);

}

if(a.getActionCommand().equals("75%"))

{

this.zoom(.75);

enableZoomItems();

seventyFive.setEnabled(false);

}

if(a.getActionCommand().equals("100%"))

{

this.zoom(1.0);

enableZoomItems();

hundred.setEnabled(false);

}

if(a.getActionCommand().equals("150%"))

{

this.zoom(1.5);

enableZoomItems();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1911

hundredFifty.setEnabled(false);

}

if(a.getActionCommand().equals("200%"))

{

this.zoom(2.0);

enableZoomItems();

twoHundred.setEnabled(false);

}

if(a.getActionCommand().equals("500%"))

{

this.zoom(5.0);

enableZoomItems();

fiveHundred.setEnabled(false);

}

}

/**

* Test Main. It will ask you to pick a file and then show it

*/

public static void main(String args[])

{

Picture p = new Picture(FileChooser.pickAFile());

PictureExplorer test = new PictureExplorer(p);

}

/**

* Class for establishing the focus for the textfields

*/

private class PictureExplorerFocusTraversalPolicy

extends FocusTraversalPolicy {

/**

* Method to get the next component for focus

*/

public Component getComponentAfter(Container focusCycleRoot,

Component aComponent) {

if (aComponent.equals(xValue))

return yValue;

else

return xValue;

}

/**

* Method to get the previous component for focus

*/

public Component getComponentBefore(Container focusCycleRoot,

Component aComponent) {

if (aComponent.equals(xValue))

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1912 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

return yValue;

else

return xValue;

}

public Component getDefaultComponent(Container focusCycleRoot) {

return xValue;

}

public Component getLastComponent(Container focusCycleRoot) {

return yValue;

}

public Component getFirstComponent(Container focusCycleRoot) {

return xValue;

}

}

}

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1913

4.4.3.4 Practice Programs

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1914 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.3.4.1 Java OOP: ITSE 2317 Practice Programs 1
447

4.4.3.4.1.1 ITSE2317 - Java Programming (Intermediate) - Practice Test 1

• Java and Media Library Version Requirements (p. 1919)
• Input Image Files (p. 1919)
• Solution source code �les (p. 1919)
• Output Images (p. 1919)
• New Classes (p. 1919)
• Hints (p. 1920)
• Testing Your Programs (p. 1920)
• Program Speci�cations (p. 1920)

· Program 1 (p. 1920)
· Program 2 (p. 1921)
· Program 3 (p. 1923)
· Program 4 (p. 1925)
· Program 5 (p. 1927)

• Miscellaneous Information (p. 1930)

4.4.3.4.1.1.1 Java and Media Library Version Requirements

Your programs must be compatible with Sun's Standard Edition JDK Version 1.7 or later.
Some of the programs on this test require you to use the Guzdial-Ericson multimedia class library. You

will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 448 .

4.4.3.4.1.1.2 Input Image Files

Links are provided within the individual program speci�cations for downloading zip �les that contain any
image �les that may be required to write, compile, and test your programs.

4.4.3.4.1.1.3 Solution source code �les

The downloadable zip �les mentioned above also contains source code �les for the programming solutions.
You can compile and execute those programs using procedures described in Java OOP: The Guzdial-Ericson
Multimedia Class Library 449 .

4.4.3.4.1.1.4 Output Images

Your output image(s) must match my output image(s) in every respect including color, size, position, etc.
Don't forget to display your name in the output image(s) as shown.

4.4.3.4.1.1.5 New Classes

You may de�ne new classes and add import directives as needed to cause your programs to behave as
required, but you may not modify the class de�nitions for the given classes named ProbXX when such class
de�nitions are provided.

447This content is available online at <http://cnx.org/content/m44264/1.5/>.
448http://cnx.org/content/m44148/latest/
449http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1915

4.4.3.4.1.1.6 Hints

For some of the programs, you may �rst need to deduce the algorithm used to transform the input image
into the output image, and then write a working program that implements that algorithm. In some cases,
you may need to compare numeric color values for corresponding pixels in the input and output images in
order to deduce the algorithm.

You can obtain those color values using the following procedure:

1. Click the download link for the zip �les that contain input image �les and solution source code �les.
Use the capabilities of your browser to download and save the contents of those zip �les.

2. If necessary, replace calls to the show method in my source code with calls to the explore method
to force the program to display the output images in a PictureExplorer window.

3. Compile and run the source code.
4. Write, compile, and run a simple Java program that will display each input image �le in a Picture-
Explorer window.

5. Use the input and output PictureExplorer windows to compare the input and output color values
on a pixel by pixel basis.

You may �nd other useful hints in my online tutorials and slides for this course.

4.4.3.4.1.1.7 Testing Your Programs

You can compile and execute your program by following the instructions given at Java OOP: The Guzdial-
Ericson Multimedia Class Library 450 .

4.4.3.4.1.1.8 Program Speci�cations

4.4.3.4.1.1.8.1 Program 1

Listing 1 - Write the Java application described below.
/*File Prob01 Copyright 2012 R.G.Baldwin
Write a program named Prob01 that uses the class de�nition shown below and Ericson's media library

along with the image �le named Prob01.jpg to produce the graphic output image shown in Figure 1 (p.
1921) below.

Click here 451 to download a zip �le containing the required image �le along with the source code for a
solution.

Contrary to the general instructions given above, you may not de�ne any new classes to cause your
program to behave as required.

You must copy and modify (if necessary) the media classes named World.java, Turtle.java, and Simple-
Turtle.java to cause your program to produce the required output. Don't forget to compile these classes
after you modify them.

In addition to the output image, your program must produce the following output on the command- line
screen, and must substitute your name for mine wherever my name appears both in the image and on the
command-line screen:

Dick Baldwin

Picture, filename Prob01.jpg height 274 width 365

Dick Baldwin

Dick Baldwin

Dick Baldwin

Dick Baldwin

***/

450http://cnx.org/content/m44148/latest/
451http://cnx.org/content/m44264/latest/Prob01solution.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1916 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

public class Prob01{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

World mars = new World(200,250);

Turtle joe = new Turtle(mars);

joe.forward();

Turtle bill = new Turtle(mars);

bill.moveTo(50,125);

Turtle sue = new Turtle(mars);

sue.moveTo(150,125);

Turtle tom = new Turtle(mars);

tom.moveTo(100,225);

}//end main method

}//end class Prob01

//End program specifications.

Figure 1 - Required output images for Prob01.

4.4.3.4.1.1.8.2 Program 2

Listing 2 - Write the Java application described below.
/*File Prob02 Copyright 2012 R.G.Baldwin
Write a program named Prob02 that uses the class de�nition shown below and Ericson's media library

to produce the graphic output image shown in Figure 2 (p. 1922) below.
Click here 452 to download a zip �le containing source code for a solution.

452http://cnx.org/content/m44264/latest/Prob02solution.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1917

Contrary to the general instructions given above, you may not de�ne any new classes to cause your
program to behave as required.

You must copy and modify (if necessary) the media classes named Turtle.java, and SimpleTurtle.java to
cause your program to produce the required output. Don't forget to compile these classes after you modify
them.

In addition to the output image, your program must produce the following output on the command- line
screen, and must substitute your name for mine wherever my name appears both in the image and on the
command-line screen:

Dick Baldwin

My name is Joe the turtle.

***/

import java.awt.Color;

public class Prob02{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

World mars = new World(200,300);

Turtle joe = new Turtle(mars,"Joe");

joe.moveTo(20,280);

joe.setInfoColor(Color.WHITE);

joe.setShowInfo(true);

System.out.println(joe);

}//end main method

}//end class Prob02

//End program specifications.

Figure 2 - Required output images for Prob02.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1918 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.3.4.1.1.8.3 Program 3

Listing 3 - Write the Java application described below.
/*File Prob03 Copyright 2012 R.G.Baldwin
Write a program named Prob03 that uses Ericson's media library to produce the graphic output images

shown in Figure 3 (p. 1923) and Figure 4 (p. 1924) below.
Click here 453 to download a zip �le containing the source code for a solution.
The image shown in Figure 3 (p. 1923) is the image that appears on the screen when the program starts

running. The image shown in Figure 4 (p. 1924) is what you should see when you click the button at the
bottom of the world.

You must copy and modify (if necessary) the media class named World.java, to cause your program to
produce the required output with the required behavior. Don't forget to compile that class after you modify
it.

This program adds a JButton object to the SOUTH location of the World object as shown in Figure 3
(p. 1923) .

The program initially displays an empty white world. When the user clicks the button, the world's
background color changes to blue, a turtle appears in the center of the World, and the student's name
appears near the top of the world.

Figure 3 - The �rst of two required output images for Prob03.

453http://cnx.org/content/m44264/latest/Prob03solution.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1919

Figure 4 - The second of two required output images for Prob03.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1920 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.3.4.1.1.8.4 Program 4

Listing 4 - Write the Java application described below.
/*File Prob04 Copyright 2012 R.G.Baldwin
Write a program named Prob04 that uses Ericson's media library to produce the graphic output images

shown in Figure 5 (p. 1926) , Figure 6 (p. 1926) , and Figure 7 (p. 1927) below.
Click here 454 to download a zip �le containing the source code for a solution.
Figure 5 (p. 1926) shows the image that appears on the screen when the program starts running. Figure

6 (p. 1926) shows what you should see after you have clicked the button at the bottom of the world one
time. Figure 6 (p. 1926) shows what you should see after you have clicked the button sixteen times.

You must copy and modify the media classes named World.java and SimplePicture.java, to cause your
program to produce the required output with the required behavior. Don't forget to compile those classes
after you modify them.

This program adds a JButton object to the SOUTH location of the World object as shown in Figure 5
(p. 1926) .

The following description is intended to guide you in writing your program. However, you must run my
version of the program and replicate it exactly. I recommend that you run the two programs side-by-side
and compare their appearance and behavior each time you click both programs.

454http://cnx.org/content/m44264/latest/Prob04solution.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1921

The program initially displays an empty white world with a button at the bottom. When the user clicks
the button, the world's background color changes to green, a turtle appears in the bottom right of the World,
and the student's name appears near the top of the world in blue. The turtle has a blue body and a red
shell.

When you click the button again, the background changes to yellow, the student's name changes to red,
and the turtle changes to a red body with a blue shell. The turtle turns 90 degrees left and moves forward
100 pixels plus the value of a click counter. As a result, the turtle leaves a blue trail.

On the next click, the colors revert to the same as before, the turtle turns 90 degrees left and moves
forward 100 pixels plus the value of the click counter leaving a red trail.

This cycle repeats on each click with the turtle's trail drawing a square spiral of increasing size with red
lines on the top and bottom of the spiral and blue lines on the right and left of the spiral.

Figure 5 - Required output image for Prob04.

Figure 6 - Required output image for Prob04.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1922 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Figure 7 - Required output image for Prob04.

4.4.3.4.1.1.8.5 Program 5

Listing 5 - Write the Java application described below.
/*File Prob05 Copyright 2012 R.G.Baldwin
Write a program named Prob05 that uses Ericson's media library to produce the graphic output image

shown in Figure 8 (p. 1928) , Figure 9 (p. 1928) , and Figure 10 (p. 1929) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1923

Click here 455 to download a zip �le containing the source code for a solution.
Figure 8 (p. 1928) shows the image that appears on the screen when the program starts running. Figure

9 (p. 1928) shows what you should see after you have entered numeric values into the angle and distance
�elds and have clicked the Move button. Figure 10 (p. 1929) is similar to what you should see after doing
the above several times for di�erent numeric values.

You must copy and modify the media class named World.java to cause your program to produce the
required output with the required behavior. Don't forget to compile World.java after you modify it.

This program adds two buttons, two labels, and two text �elds to form a GUI at the bottom of the World
object.

If you enter numeric values into the angle and distance �elds and then click the Move button, the turtle
will turn by that angle in degrees and move by that distance in pixels.

The program must terminate and return control to the operating system when you click the Quit button.
Note that the GUI at the bottom of the World object is comprised of AWT components instead of Swing

components.
Figure 8 - Required output image for Prob05.

Figure 9 - Required output image for Prob05.

455http://cnx.org/content/m44264/latest/Prob05solution.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1924 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Figure 10 - Required output image for Prob05.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1925

4.4.3.4.1.2 Miscellaneous Information

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: ITSE 2317 Practice Test 1
• File: PracticeTest01.htm
• Published: August 9, 2012
• Revised: 02/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1926 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1927

4.4.3.4.2 Java OOP: ITSE 2317 Practice Programs 2
456

4.4.3.4.2.1 ITSE2317 - Java Programming (Intermediate) - Practice Test 2

• Java and Media Library Version Requirements (p. 1932)
• Input Image Files (p. 1932)
• Solution source code �les (p. 1932)
• Output Images (p. 1932)
• New Classes (p. 1932)
• Hints (p. 1933)
• Testing Your Programs (p. 1933)
• Program Speci�cations (p. 1933)

· Program 1 (p. 1933)
· Program 2 (p. 1936)
· Program 3 (p. 1937)
· Program 4 (p. 1938)
· Program 5 (p. 1940)

• Miscellaneous Information (p. 1942)

4.4.3.4.2.1.1 Java and Media Library Version Requirements

Your programs must be compatible with Sun's Standard Edition JDK Version 1.7 or later.
Some of the programs on this test require you to use the Guzdial-Ericson multimedia class library. You

will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 457 .

4.4.3.4.2.1.2 Input Image Files

Links are provided within the individual program speci�cations for downloading zip �les that contain any
image �les that may be required to write, compile, and test your programs.

4.4.3.4.2.1.3 Solution source code �les

The downloadable zip �les mentioned above also contains source code �les for the programming solutions.
You can compile and execute those programs using procedures described in Java OOP: The Guzdial-Ericson
Multimedia Class Library 458 .

4.4.3.4.2.1.4 Output Images

Your output image(s) must match my output image(s) in every respect including color, size, position, etc.
Don't forget to display your name in the output image(s) as shown.

4.4.3.4.2.1.5 New Classes

You may de�ne new classes and add import directives as needed to cause your programs to behave as
required, but you may not modify the class de�nitions for the given classes named ProbXX when such class
de�nitions are provided.

456This content is available online at <http://cnx.org/content/m44265/1.6/>.
457http://cnx.org/content/m44148/latest/
458http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1928 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.3.4.2.1.6 Hints

For some of the programs, you may �rst need to deduce the algorithm used to transform the input image
into the output image, and then write a working program that implements that algorithm. In some cases,
you may need to compare numeric color values for corresponding pixels in the input and output images in
order to deduce the algorithm.

You can obtain those color values using the following procedure:

1. Click the download link for the zip �les that contain input image �les and solution source code �les.
Use the capabilities of your browser to download and save the contents of those zip �les.

2. If necessary, replace calls to the show method in my source code with calls to the explore method
to force the program to display the output images in a PictureExplorer window.

3. Compile and run the source code.
4. Write, compile, and run a simple Java program that will display each input image �le in a Picture-
Explorer window.

5. Use the input and output PictureExplorer windows to compare the input and output color values
on a pixel by pixel basis.

You may �nd other useful hints in my online tutorials and slides for this course.

4.4.3.4.2.1.7 Testing Your Programs

You can compile and execute your program by following the instructions given at Java OOP: The Guzdial-
Ericson Multimedia Class Library 459 .

4.4.3.4.2.1.8 Program Speci�cations

4.4.3.4.2.1.8.1 Program 1

Listing 1 - Write the Java application described below.
/*File Prob01 Copyright 2012 R.G.Baldwin
Write a program named Prob01 that uses the class de�nition shown below and Ericson's media library

along with the image �les named Prob01a.jpg and Prob01b.jpg to produce the graphic output images shown
in Figure 1 (p. 1934) , Figure 2 (p. 1934) , and Figure 3 (p. 1935) below.

Click here 460 to download a zip �le containing the required image �les along with the source code for a
solution.

Just in case you haven't noticed it, the image in Figure 3 (p. 1935) contains a partially transparent image
of a butter�y superimposed and centered on the beach image.

In order to write this program, you must modify the class from Ericson's media library named SimplePic-
ture. Your modi�cations must make it possible for you to display a partially transparent image on top of
another image with the background image showing through. The degree of transparency can range from
being completely transparent at one extreme to being totally opaque at the other extreme. In this case,
the butter�y image is about 37-percent opaque. Don't forget to compile the SimplePicture class after you
modify it.

You will probably need to do some outside research in order to write this program. For example, you
will need to learn about the following topics and probably some other topics as well:

• Alpha transparency
• Bu�eredImage objects of TYPE_INT_ARGB
• The representation of a pixel as type int.
• Bit manipulation of pixels.

459http://cnx.org/content/m44148/latest/
460http://cnx.org/content/m44265/latest/Prob01solution.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1929

• The drawImage method of the Graphics class.

In addition to the output images described above, your program must produce the following output on the
command-line screen, and must substitute your name for mine wherever my name appears both in the images
and on the command-line screen:

Dick Baldwin.

Dick Baldwin

Picture, filename Prob01a.jpg height 118 width 100

Picture, filename Prob01b.jpg height 240 width 320

Picture, filename None height 101 width 77

***/

import java.awt.Color;

import java.awt.Graphics;

import java.awt.Image;

public class Prob01{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

Picture[] pictures = new Prob01Runner().run();

System.out.println(pictures[0]);

System.out.println(pictures[1]);

System.out.println(pictures[2]);

}//end main method

}//end class Prob01

//End program specifications.

Figure 1 - The �rst of three required output images for Prob01.

Figure 2 - The second of three required output images for Prob01.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1930 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Figure 3 - The third of three required output images for Prob01.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1931

4.4.3.4.2.1.8.2 Program 2

Listing 2 - Write the Java application described below.
/*File Prob02 Copyright 2012 R.G.Baldwin
Write a program named Prob02 that uses Ericson's media library along with the image �les named

Prob02a.jpg and Prob02b.jpg to produce the graphic output images shown in Figure 4 (p. 1936) below.
Click here 461 to download a zip �le containing the required image �les along with the source code for a

solution.
The top image shown in Figure 4 (p. 1936) is a beach scene with a partially opaque butter�y superimposed

on the beach scene. The bottom image is a slider that is used to control the percent opacity of the butter�y
image.

At startup, the slider is positioned at the 50-percent mark and the opacity of the butter�y is 50 percent.
As you move the slider to the right, the butter�y becomes more opaque, becoming totally opaque when

the slider is positioned at 100 percent. As you move the slider to the left, the butter�y becomes less opaque,
becoming totally transparent when the slider is positioned at 0 percent.

In order to write this program, you must modify the class from Ericson's media library named SimplePic-
ture. Your modi�cations must make it possible for you to display a partially transparent image on top of
another image with the background image showing through.

Your modi�cation must also make it possible to display your name in the dark blue banner at the top of
the image of the beach scene.

The program must terminate and return control to the operating system when you click the large X in
the upper- right corner of the GUI containing the slider.

In order to improve the responsiveness and memory utilization of the program, you should instantiate
all of the Picture objects that the program needs at startup, and should not instantiate additional Picture
objects when handling events �red by the slider.

Figure 4 - Required output images for Prob02.

461http://cnx.org/content/m44265/latest/Prob02solution.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1932 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.3.4.2.1.8.3 Program 3

Listing 3 - Write the Java application described below.
/*File Prob03 Copyright 2012 R.G.Baldwin
Write a program named Prob03 that uses Ericson's media library along with the image �le named

Prob3.jpg to produce the graphic output images shown in Figure 5 (p. 1938) below.
Click here 462 to download a zip �le containing the required image �le along with the source code for a

solution.
The top image shown in Figure 5 (p. 1938) is an image of a butter�y to which an edge detection algorithm

has been applied. The bottom image is a slider that is used to control the edge-detection threshold.
The edge-detection algorithm performs edge detection on a Picture object by rows and also by columns.

All edges that are detected by processing adjacent pixels on a row are marked in red. All edges that are
detected by processing adjacent pixels on a column are marked in black. If a pixel is determined to be on
an edge using both approaches, it ends up being black. If an edge is not detected, the corresponding pixel
is marked in white.

At startup, the slider is positioned at the 50-percent mark and the image has been edge-detected using
a threshold value of 50. As you move the slider to the right, the threshold increases up to a value of 100,
which in turn causes the amount of white area in the image to increase. As you move the slider to the left,

462http://cnx.org/content/m44265/latest/Prob03solution.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1933

the threshold decreases down to a value of zero, which in turn causes the amount of white area in the image
to decrease.

The program must terminate and return control to the operating system when you click the large X in
the upper- right corner of the GUI containing the slider.

Figure 5 - Required output images for Prob03.

4.4.3.4.2.1.8.4 Program 4

Listing 4 - Write the Java application described below.
/*File Prob04 Copyright 2012 R.G.Baldwin
Write a program named Prob04 that uses Ericson's media library along with the image �les named

Prob04a.jpg and Prob04b.jpg to produce the graphic output images shown in Figure 6 (p. 1939) and Figure
7 (p. 1939) below.

Click here 463 to download a zip �le containing the required image �les along with the source code for a
solution.

The top image shown in Figure 6 (p. 1939) is a butter�y image. The image immediately below that one
is a slider that is used to control a scale factor that is applied to an image of a beach.

At startup, the slider is positioned at the zero-percent mark (at the far left) and the beach image is too
small to be seen in the upper-left corner of the butter�y image.

463http://cnx.org/content/m44265/latest/Prob04solution.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1934 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

As you move the slider to the right, an image of a beach emerges from the upper-left corner covering the
image of the butter�y.

Figure 7 (p. 1939) shows the result of moving the slider to the 50-percent mark.
The size of the beach image increases and decreases smoothly as you move the slider back and forth. The

upper- left corner of the beach image is always in the upper- left corner of the butter�y image. The butter�y
becomes completely covered by the beach image when the slider is positioned at 100 percent (the far right)
.

The program must terminate and return control to the operating system when you click the large X in
the upper- right corner of the GUI containing the slider.

Figure 6 - Required output images for Prob04.

Figure 7 - Required output image for Prob04.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1935

4.4.3.4.2.1.8.5 Program 5

Listing 5 - Write the Java application described below.
/*File Prob05 Copyright 2012 R.G.Baldwin
Write a program named Prob05 that uses Ericson's media library along with the image �le named

Prob05.jpg to produce the graphic output images shown in Figure 8 (p. 1941) and Figure 9 (p. 1941) below.
Click here 464 to download a zip �le containing the required image �le along with the source code for a

solution.
The top image in Figure 8 (p. 1941) is a butter�y image. The image of the butter�y can be rotated in

its picture by any angle ranging from -360 degrees to +360 degrees.
The image immediately below that one is a slider that is used to control the rotation angle that is applied

to the butter�y image.
At startup, the slider is positioned at the zero-degrees mark (in the center) and the butter�y image is

displayed with no rotation. As you move the slider to the right, the butter�y image rotates clockwise around
its center through an angle that can be as large as 360 degrees.

Figure 9 (p. 1941) shows the result of moving the slider to the +120-degree mark.
As you move the slider to the left, the butter�y image rotates counter-clockwise around its center through

an angle that can be as large as -360 degrees.

464http://cnx.org/content/m44265/latest/Prob05solution.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1936 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

The butter�y image rotates smoothly around its center as you move the slider back and forth.
The program must terminate and return control to the operating system when you click the large X in

the upper- right corner of the GUI containing the slider.
Figure 8 - Required output image for Prob05.

Figure 9 - Required output image for Prob05.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1937

4.4.3.4.2.2 Miscellaneous Information

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: ITSE 2317 Practice Test 2

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1938 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

• File: PracticeTest02.htm
• Published: August 10, 2012
• Revised: 02/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1939

4.4.3.4.3 Java OOP: ITSE 2317 Practice Programs 3
465

4.4.3.4.3.1 ITSE2317 - Java Programming (Intermediate) - Practice Test 3

• Java and Media Library Version Requirements (p. 1944)
• Input Image Files (p. 1944)
• Solution source code �les (p. 1944)
• Output Images (p. 1944)
• Hints (p. 1944)
• Testing Your Programs (p. 1945)
• Program Speci�cations (p. 1945)

· Program 1 (p. 1945)
· Program 2 (p. 1946)
· Program 3 (p. 1947)
· Program 4 (p. 1948)
· Program 5 (p. 1949)

• Miscellaneous Information (p. 1950)

4.4.3.4.3.1.1 Java and Media Library Version Requirements

Your programs must be compatible with Sun's Standard Edition JDK Version 1.7 or later.
Some of the programs on this test require you to use the Guzdial-Ericson multimedia class library. You

will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 466 .

4.4.3.4.3.1.2 Input Image Files

Links are provided within the individual program speci�cations for downloading zip �les that contain any
image �les that may be required to write, compile, and test your programs.

4.4.3.4.3.1.3 Solution source code �les

The downloadable zip �les mentioned above also contains source code �les for the programming solutions.
You can compile and execute those programs using procedures described in Java OOP: The Guzdial-Ericson
Multimedia Class Library 467 .

4.4.3.4.3.1.4 Output Images

Your output image(s) must match my output image(s) in every respect including color, size, position, etc.
Don't forget to display your name in the output image(s) as shown.

4.4.3.4.3.1.5 Hints

For some of the programs, you may �rst need to deduce the algorithm used to transform the input image
into the output image, and then write a working program that implements that algorithm. In some cases,
you may need to compare numeric color values for corresponding pixels in the input and output images in
order to deduce the algorithm.

You can obtain those color values using the following procedure:

465This content is available online at <http://cnx.org/content/m44262/1.5/>.
466http://cnx.org/content/m44148/latest/
467http://cnx.org/content/m44148/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1940 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

1. Click the download link for the zip �les that contain input image �les and solution source code �les.
Use the capabilities of your browser to download and save the contents of those zip �les.

2. If necessary, replace calls to the show method in my source code with calls to the explore method
to force the program to display the output images in a PictureExplorer window.

3. Compile and run the source code.
4. Write, compile, and run a simple Java program that will display each input image �le in a Picture-
Explorer window.

5. Use the input and output PictureExplorer windows to compare the input and output color values
on a pixel by pixel basis.

You may �nd other useful hints in my online tutorials and slides for this course.

4.4.3.4.3.1.6 Testing Your Programs

You can compile and execute your program by following the instructions given at Java OOP: The Guzdial-
Ericson Multimedia Class Library 468 .

4.4.3.4.3.1.7 Program Speci�cations

4.4.3.4.3.1.7.1 Program 1

Listing 1 - Write the Java application described below.
/*File Prob01 Copyright 2012 R.G.Baldwin
Write a program named Prob01 that uses Ericson's media library along with the image �le named

Prob01a.jpg to produce the graphic output image shown in Figure 1 (p. 1945) below.
Click here 469 to download a zip �le containing the required image �le along with the source code for a

solution.
When the program �rst starts running, only the GUI containing the text �eld is visible. When you type

the �le name into the text �eld and press Enter, the image of the penguin appears and the GUI moves to
a position below the image of the penguin. The program terminates and returns control to the operating
system when you click the X in the upper-right corner of the GUI.

Figure 1 - Required output images for Prob01.

468http://cnx.org/content/m44148/latest/
469http://cnx.org/content/m44262/latest/Prob01solution.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1941

4.4.3.4.3.1.7.2 Program 2

Listing 2 - Write the Java application described below.
/*File Prob02 Copyright 2012 R.G.Baldwin
Write a program named Prob02 that uses Ericson's media library along with the image �le named

Prob02.jpg to produce the graphic output images shown in Figure 2 (p. 1947) below.
Click here 470 to download a zip �le containing the required image �le along with the source code for a

solution.
Whenever you click the button in the GUI in the lower image, the green color component value at the

location of the crosshair cursor in the upper image is displayed in the text �eld in the GUI.

470http://cnx.org/content/m44262/latest/Prob02solution.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1942 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

Figure 2 - Required output images for Prob02.

4.4.3.4.3.1.7.3 Program 3

Listing 3 - Write the Java application described below.
/*File Prob03 Copyright 2012 R.G.Baldwin
Write a program named Prob03 that uses Ericson's media library to produce the graphic output image

shown in Figure 3 (p. 1948) below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1943

Click here 471 to download a zip �le containing the source code for a solution.
Whenever you click the button in the GUI, the square in the upper right turns from black to yellow with

a black border and the RGB color values for the color yellow appear in the three text �elds.
Figure 3 - Required output image for Prob03.

4.4.3.4.3.1.7.4 Program 4

Listing 4 - Write the Java application described below.
/*File Prob04 Copyright 2012 R.G.Baldwin
Write a program named Prob04 that uses Ericson's media library to produce the graphic output images

shown in Figure 4 (p. 1948) below.
Click here 472 to download a zip �le containing the source code for a solution.
Whenever you click the "Choose Color" button in the GUI in the upper image, the color chooser dialog

shown in the lower image appears. When you select a color and click the OK button, the color chooser dialog
disappears and that color appears in the square in the upper right portion of the GUI. In addition, the red,
green, and blue color component values for that color appear in the corresponding text �elds.

Whenever you click the "Brighter" and "Darker" buttons, the color displayed in the square becomes
brighter or darker and the color values in the text �elds change accordingly.

Figure 4 - Required output images for Prob04.

471http://cnx.org/content/m44262/latest/Prob03solution.zip
472http://cnx.org/content/m44262/latest/Prob04solution.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1944 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.3.4.3.1.7.5 Program 5

Listing 5 - Write the Java application described below.
/*File Prob05 Copyright 2012 R.G.Baldwin
Write a program named Prob05 that uses Ericson's media library along with the image �le named

Prob05.jpg to produce the graphic output images shown in Figure 5 (p. 1949) below.
Click here 473 to download a zip �le containing the required image �le along with the source code for a

solution.
The color in the square in the upper right of the GUI in the lower image is governed by the color values

in the red, green, and blue text �elds.
Whenever you click the button in the GUI, the pixel at the crosshair cursor in the upper image is changed

to re�ect the color in the square in the GUI. This can best be seen when the upper image is zoomed to 500%.
Figure 5 - Required output image for Prob05.

473http://cnx.org/content/m44262/latest/Prob05solution.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1945

4.4.3.4.3.2 Miscellaneous Information

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: ITSE 2317 Practice Test 3
• File: PracticeTest03.htm

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1946 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

• Published: August 9, 2012
• Revised: 02/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1947

4.4.4 Review Event Handling

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1948 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.4.1 Jy0037: Review Event Handling
474

4.4.4.1.1 Table of Contents

• Preface (p. 1953)
• Questions (p. 1953)

· 1 (p. 1953) , 2 (p. 1953) , 3 (p. 1953) , 4 (p. 1954) , 5 (p. 1954) , 6 (p. 1954) , 7 (p. 1954) , 8
(p. 1954) , 9 (p. 1954) , 10 (p. 1954) , 11 (p. 1954) , 12 (p. 1954) , 13 (p. 1955) , 14 (p. 1955)
, 15 (p. 1955) , 16 (p. 1955) , 17 (p. 1957) , 18 (p. 1958) , 19 (p. 1958) , 20 (p. 1959) , 21 (p.
1960) , 22 (p. 1961) , 23 (p. 1961) , 24 (p. 1963) , 25 (p. 1964) , 26 (p. 1965) , 27 (p. 1965) , 28
(p. 1965) , 29 (p. 1966) , 30 (p. 1968) , 31 (p. 1969) , 32 (p. 1970) , 33 (p. 1971) , 34 (p. 1973)
, 35 (p. 1974) , 36 (p. 1975) , 37 (p. 1976)

• Listings (p. 1978)
• Answers (p. 1980)
• Miscellaneous (p. 1984)

4.4.4.1.2 Preface

This module contains a non-exhaustive set of review questions and answers keyed to the material in the
Event Handling sub-collection. The questions are heavily weighted toward the tutorials listed in Jy0035:
Java OOP: Preface to Event Handling 475 and the seven modules that begin with Java OOP: The AWT and
Swing, A Preview 476 in the sub-collection titled Essence of OOP .

The questions and the answers in this module are connected by hyperlinks to make it easy for you to
navigate from the question to the answer and back again.

These questions are similar to many of the questions on the online Blackboard test for Event Handling in
ITSE 2317. When you take the test in the testing center, you will only have access to the computer screen, a
pencil, and a sheet of scratch paper. You might bene�t by limiting yourself to only those tools as you study
this material to get used to working under those limitations.

4.4.4.1.3 Questions

4.4.4.1.3.1 Question 1 .

True or False: AWT is the abbreviation for Abstract Windows Toolkit .
Answer 1 (p. 1984)

4.4.4.1.3.2 Question 2

True or False: GUI is the abbreviation for the Graphical User Interface.
Answer 2 (p. 1984)

4.4.4.1.3.3 Question 3

True or False: There are two primary packages that are used for GUI programming in Java SE 7.

• java.awt.*
• com.sun.java.swing.*

Answer 3 (p. 1983)

474This content is available online at <http://cnx.org/content/m47927/1.6/>.
475http://cnx.org/content/m47842/latest/?collection=col11441/latest
476http://cnx.org/content/m44331/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1949

4.4.4.1.3.4 Question 4

True or False: When it was released, Swing was a replacement for the AWT.
Answer 4 (p. 1983)

4.4.4.1.3.5 Question 5

True or False: A callback mechanism is a mechanism where a method in one object asks a method in
another object to "call me back" or "notify me" when an interesting event happens.

Answer 5 (p. 1983)

4.4.4.1.3.6 Question 6

True or False: Many di�erent objects may ask one object to notify them when the interesting event happens.
This is sometimes referred to as unicasting .

Answer 6 (p. 1983)

4.4.4.1.3.7 Question 7

True or False: API is an abbreviation for Application Programming Interface.
Answer 7 (p. 1983)

4.4.4.1.3.8 Question 8

Given: The event model that has been in use since Java version 1.1 is sometimes called the Delegation Event
Model and is sometimes called the JavaBeans Event Model. (It may be called by other names as well.)
Although there was an earlier model, the Delegation Event Model is the event model to which the questions
in this review module apply.

True or False: The event model makes use of event sources and event listeners .
Answer 8 (p. 1983)

4.4.4.1.3.9 Question 9

True or False: An event listener is an object that has the ability to determine when an interesting event
has occurred, and to notify source objects of the occurrence of the event.

Answer 9 (p. 1983)

4.4.4.1.3.10 Question 10

True or False: A listener object is an instance of a class (or instance of a subclass of a class) that
implements a speci�c listener interface .

Answer 10 (p. 1983)

4.4.4.1.3.11 Question 11

True or False: A number of listener interfaces are de�ned where each interface declares the methods ap-
propriate for a speci�c class of events. Thus, there is natural pairing of classes of events and interface
de�nitions.

Answer 11 (p. 1983)

4.4.4.1.3.12 Question 12

True or False: There is a class of mouse events that includes most of the events normally associated with
mouse action and there is a matching source de�nition that is used to de�ne a listener class for those events.

Answer 12 (p. 1983)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1950 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.4.1.3.13 Question 13

True or False: A listener object can be registered on a source object to be noti�ed of the occurrence of all
events of the speci�c class for which the listener object is designed.

Answer 13 (p. 1982)

4.4.4.1.3.14 Question 14

True or False: Once a listener object is registered to be noti�ed of all events of the speci�c class for which the
listener object is designed, the occurrence of such an event will automatically invoke the matching method
in the listener object. The code in the body of the method is designed by the programmer to perform the
desired action when the event occurs.

Answer 14 (p. 1982)

4.4.4.1.3.15 Question 15

True or False: In many cases, the same goal can be achieved by either implementing a listener interface or
extending a corresponding adapter class.

Answer 15 (p. 1982)

4.4.4.1.3.16 Question 16

True or False: The program shown below will compile and run successfully. When it starts running, it
displays a small window and also displays the following on the command-line screen:

WProc1 windowActivated test msg
WProc1 windowOpened test msg
Whenever the small window loses the focus, the following is displayed on the command-line screen:
WProc1 windowDeactivated test msg
Whenever the small window gains the focus, the following is displayed on the command-line screen:
WProc1 windowActivated test msg
Whenever the user clicks the X-button, the small window disappears and the following is displayed on

the command-line screen.
WProc1 windowClosing test msg
WProc1 windowDeactivated test msg
WProc1 windowClosed test msg
Listing 1 . Question 16.

/*File Q16.java

**/

import java.awt.*;

import java.awt.event.*;

public class Q16 {

public static void main(String[] args){

GUI gui = new GUI();//instantiate a GUInterface object

}//end main

}//end class Q16

//===//

class GUI{

public GUI(){//constructor

//Create a new Frame object

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1951

Frame displayWindow = new Frame();

displayWindow.setSize(300,200);

displayWindow.setTitle("Q16");

WProc1 winProcCmd1 = new WProc1(displayWindow);

displayWindow.addWindowListener(winProcCmd1);

displayWindow.setVisible(true);

}//end constructor

}//end class GUI definition

//===//

class WProc1 implements WindowListener{

Frame displayWindowRef;

WProc1(Frame windowIn){//constructor

this.displayWindowRef = windowIn;

}//end constructor

public void windowClosed(WindowEvent e){

System.out.println("WProc1 windowClosed test msg");

}//end windowClosed()

public void windowIconified(WindowEvent e){

System.out.println("WProc1 windowIconified test msg");

}//end windowIconified()

public void windowOpened(WindowEvent e){

System.out.println("WProc1 windowOpened test msg");

}//end windowOpened()

public void windowClosing(WindowEvent e){

System.out.println("WProc1 windowClosing test msg");

displayWindowRef.dispose();//generate WindowClosed

}//end windowClosing()

public void windowDeiconified(WindowEvent e){

System.out.println(

"WProc1 windowDeiconified test msg");

}//end windowDeiconified()

public void windowActivated(WindowEvent e){

System.out.println("WProc1 windowActivated test msg");

}//end windowActivated()

public void windowDeactivated(WindowEvent e){

System.out.println(

"WProc1 windowDeactivated test msg");

}//end windowDeactivated()

}//end class WProc1

//===//

Answer 16 (p. 1982)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1952 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.4.1.3.17 Question 17

True or False: The program shown below will compile and run successfully. When it starts running, it
displays a small window and doesn't display anything on the command-line screen.

Whenever the small window is iconi�ed to the system try, the following is displayed on the command-line
screen:

******** WProc2 windowIconi�ed test msg
Whenever the small window is deiconi�ed from the system try, the following is displayed on the command-

line screen:
******** WProc2 windowDeiconi�ed test msg
Nothing happens when the user clicks the X-button. The program does not terminate and does not

return control to the operating system.
Listing 2 . Question 17.

/*File Q17.java Copyright 1997, R.G.Baldwin

**/

import java.awt.*;

import java.awt.event.*;

public class Q17 {

public static void main(String[] args){

GUI gui = new GUI();//instantiate a GUInterface object

}//end main

}//end class Q17

//===//

class GUI{

public GUI(){//constructor

//Create a new Frame object

Frame displayWindow = new Frame();

displayWindow.setSize(300,200);

displayWindow.setTitle("Q17");

WProc2 winProcCmd2 = new WProc2();

displayWindow.addWindowListener(winProcCmd2);

displayWindow.setVisible(true);

}//end constructor

}//end class GUI definition

//===//

class WProc2 extends WindowAdapter{

public void windowIconified(WindowEvent e){

System.out.println(

"******** WProc2 windowIconified test msg");

}//end windowIconified()

public void windowDeiconified(WindowEvent e){

System.out.println(

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1953

"******** WProc2 windowDeiconified test msg");

}//end windowDeiconified()

}//end class WProc2

Answer 17 (p. 1982)

4.4.4.1.3.18 Question 18

True or False: The default layout manager for a Frame object is FlowLayout .
Answer 18 (p. 1982)

4.4.4.1.3.19 Question 19

True or False: The program shown below displays a small Frame object on the computer screen. When the
user clicks the mouse inside the Frame object, the mouse coordinates are displayed near the mouse pointer.

When the user clicks the X-button in the upper right corner of the Frame, the program terminates and
returns control to the operating system.

Listing 3 . Question 19.

/*File Q19.java

*/

import java.awt.*;

import java.awt.event.*;

public class Q19 {

public static void main(String[] args){

GUI gui = new GUI();

}//end main

}//end class Q19

//---

class MyFrame extends Frame{

int clickX;

int clickY;

public void paint(Graphics g){

g.drawString(

"" + clickX + ", " + clickY, clickX, clickY);

}//end paint()

}//end class MyFrame

//---

class GUI {

public GUI(){//constructor

MyFrame displayWindow = new MyFrame();

displayWindow.setSize(300,300);

displayWindow.setTitle("Q19");

displayWindow.setVisible(true);

displayWindow.addWindowListener(new WProc1());

displayWindow.addMouseListener(

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1954 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

new MProc1(displayWindow));

}//end constructor

}//end class GUI definition

//---

class MProc1 extends MouseAdapter{

MyFrame refToWin; //save a reference to the window here

MProc1(MyFrame inWin){//constructor

refToWin = inWin;//save ref to window

}//end constructor

public void mousePressed(MouseEvent e){

refToWin.clickX = e.getX();

refToWin.clickY = e.getY();

refToWin.repaint();

}//end mousePressed()

}//end class MProc1

//---

class WProc1 extends WindowAdapter{

public void windowClosed(WindowEvent e){

System.exit(0);

}//end windowClosed()

}//end class Wproc1

Answer 19 (p. 1982)

4.4.4.1.3.20 Question 20

True or False: The program shown below will compile and run successfully. When it starts running, it
displays a small JFrame window and doesn't display anything on the command-line screen.

Whenever the small window is iconi�ed to the system try, the following is displayed on the command-line
screen:

******** WProc2 windowIconi�ed test msg
Whenever the small window is deiconi�ed from the system try, the following is displayed on the command-

line screen:
******** WProc2 windowDeiconi�ed test msg
When the user clicks the X-button, the program terminates and returns control to the operating system.
Listing 4 . Question 20.

/*File Q20.java

**/

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class Q20 {

public static void main(String[] args){

GUI gui = new GUI();//instantiate a GUInterface object

}//end main

}//end class Q20

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1955

//===//

class GUI{

public GUI(){//constructor

JFrame displayWindow = new JFrame();

displayWindow.setSize(300,200);

displayWindow.setTitle("Q20");

//Following is available in recent Java versions

displayWindow.setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE);

displayWindow.addWindowListener(new WProc2());

displayWindow.setVisible(true);

}//end constructor

}//end class GUI definition

//===//

class WProc2 extends WindowAdapter{

public void windowIconified(WindowEvent e){

System.out.println(

"******** WProc2 windowIconified test msg");

}//end windowIconified()

public void windowDeiconified(WindowEvent e){

System.out.println(

"******** WProc2 windowDeiconified test msg");

}//end windowDeiconified()

}//end class WProc2

//===//

Answer 20 (p. 1982)

4.4.4.1.3.21 Question 21

True or False: The program shown below displays a small JFrame object on the computer screen. When the
user clicks the mouse inside the JFrame object, the mouse coordinates are displayed near the mouse pointer.
Old coordinates are erased and new coordinates are displayed with each successive mouse click.

When the user clicks the X-button in the upper right corner of the Frame, the program terminates and
returns control to the operating system.

Listing 5 . Question 21.

/*File Q21.java

**/

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class Q21 {

public static void main(String[] args){

GUI gui = new GUI();//instantiate a GUI

}//end main

}//end class Q21

//===//

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1956 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

class MyFrame extends JFrame{

int clickX;

int clickY;

public void paint(Graphics g){

g.drawString(

"" + clickX + ", " + clickY, clickX, clickY);

}//end paint()

}//end class MyFrame

//===//

class GUI {

public GUI(){//constructor

MyFrame displayWindow = new MyFrame();

displayWindow.setSize(300,300);

displayWindow.setTitle("Q21");

displayWindow.setVisible(true);

displayWindow.setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE);

displayWindow.addMouseListener(

new MouseProc(displayWindow));

}//end constructor

}//end class GUI definition

//===//

class MouseProc extends MouseAdapter{

MyFrame refToWin; //save a reference to the source here

MouseProc(MyFrame inWin){//constructor

refToWin = inWin;//save ref to window

}//end constructor

public void mousePressed(MouseEvent e){

refToWin.clickX = e.getX();

refToWin.clickY = e.getY();

refToWin.repaint();

}//end mousePressed()

}//end class MouseProc

//===//

Answer 21 (p. 1982)

4.4.4.1.3.22 Question 22

True or False: There must always be a one-to-one correspondence between source objects and listener objects.
Answer 22 (p. 1981)

4.4.4.1.3.23 Question 23

True or False: The program shown below displays two small Frame objects side-by-side on the computer
screen. Clicking inside either Frame object causes the mouse coordinates to be displayed in that Frame

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1957

object relative to the upper-left corner of the Frame object.
Clicking the X-button on either Frame object causes that Frame object to disappear from the computer

screen. Clicking the X-button on both Frame objects causes both Frame objects to disappear and causes
the program to terminate returning control to the operating system.

Listing 6 . Question 23.

/*File Q23.java

*/

//===//

import java.awt.*;

import java.awt.event.*;

public class Q23 {

public static void main(String[] args){

GUI gui = new GUI();

}//end main

}//end class Q23

//===//

class MyFrame extends Frame{

int xCoor;

int yCoor;

MyFrame(){//constructor

setTitle("Q3");

setSize(200,200);

}//end constructor

public void paint(Graphics g){

g.drawString("" + xCoor + ", " + yCoor, xCoor, yCoor);

}//end paint()

}//end class MyFrame

//===//

class GUI {

public GUI(){//constructor

MyFrame myFrame1 = new MyFrame();

myFrame1.setVisible(true);

MyFrame myFrame2 = new MyFrame();

myFrame2.setLocation(201,0);

myFrame2.setVisible(true);

WProc1 winProcCmd1 = new WProc1();

myFrame1.addWindowListener(winProcCmd1);

myFrame2.addWindowListener(winProcCmd1);

MouseProc mouseProcCmd = new MouseProc();

myFrame1.addMouseListener(mouseProcCmd);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1958 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

myFrame2.addMouseListener(mouseProcCmd);

}//end constructor

}//end class GUI definition

//===//

class MouseProc extends MouseAdapter{

public void mousePressed(MouseEvent e){

((MyFrame)e.getComponent()).xCoor = e.getX();

((MyFrame)e.getSource()).yCoor = e.getY();

e.getComponent().repaint();

}//end mousePressed()

}//end class MouseProc

//===//

class WProc1 extends WindowAdapter{

public void windowClosing(WindowEvent e){

System.exit(0);

}//end windowClosing()

}//end class WProc1

//===//

Answer 23 (p. 1981)

4.4.4.1.3.24 Question 24

True or False: The program shown below displays a small JFrame with a red background. Two overlapping
buttons appear in front of the red background. One button is green and the other button is yellow.

At startup, the green button is in front of and partially hides the yellow button. If you click the frontmost
button, the two buttons swap positions front to back. In other words, clicking the green button when it is
in front brings the yellow button to the front. Clicking the yellow button when it is in front brings the green
button to the front. Clicking the button in the back does not cause the buttons to swap positions.

Clicking the X-button causes the program to terminate and return control to the operating system.
Listing 7 . Question 24.

/*File Q24

**/

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

class Q24 extends JFrame{//subclass JFrame

JLayeredPane theLayeredPane;

JButton greenButton;

JButton yellowButton;

public static void main(String[] args){

new Q24();

}//end main

//---//

Q24(){//constructor

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1959

theLayeredPane = this.getLayeredPane();

int frameWidth = 300;

int frameHeight = 100;

JTextField redTextField = new JTextField("");

redTextField.setBackground(Color.red);

this.getContentPane().add(redTextField,"Center");

greenButton = new JButton(

"greenButton on Layered Pane");

greenButton.setBackground(Color.green);

greenButton.setBounds(10,10,240,40);

greenButton.addActionListener(new MyActionListener());

theLayeredPane.add(greenButton,new Integer(1));

yellowButton = new JButton(

"yellowButton on Layered Pane");

yellowButton.setBackground(Color.yellow);

yellowButton.setBounds(40,20,240,40);

yellowButton.addActionListener(new MyActionListener());

theLayeredPane.add(yellowButton,new Integer(-29999));

//Set title, size, and visibility of JFrame object.

this.setTitle("Q24");

this.setSize(frameWidth,frameHeight);

this.setVisible(true);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}//end constructor

//===//

class MyActionListener implements ActionListener{

public void actionPerformed(ActionEvent e){

if(e.getActionCommand().equals(

"greenButton on Layered Pane")){

theLayeredPane.setLayer(greenButton,-29999);

theLayeredPane.setLayer(yellowButton,1);

}else{

theLayeredPane.setLayer(greenButton,1);

theLayeredPane.setLayer(yellowButton,-29999);

}//end else

}//end actionPerformed()

}//end class MyActionListener

//===//

}//end class Q24

//===//

Answer 24 (p. 1981)

4.4.4.1.3.25 Question 25

True or False: The MouseMotionListener interface declares three methods:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1960 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

• public abstract void mouseDragged(MouseEvent e)
• public abstract void mouseMoved(MouseEvent e)
• public abstract void mousePressed(MouseEvent e)

Answer 25 (p. 1981)

4.4.4.1.3.26 Question 26

True or False: The mouseDragged method is invoked when a mouse button is pressed on a component
and then dragged.

Answer 26 (p. 1981)

4.4.4.1.3.27 Question 27

True or False: The mouseMoved method is invoked when the mouse is moved on a component with no
buttons down.

Answer 27 (p. 1981)

4.4.4.1.3.28 Question 28

True or False: This program displays a small Frame object on the computer screen. When you hold down a
mouse button and move your mouse pointer into the client area of the Frame, the coordinates of the mouse
pointer appear directly above the pointer. As you move the mouse pointer around in the client area while
holding the button down, the coordinates of the pointer continue to be displayed above the pointer.

If you release the mouse button while moving the mouse in the client area, the coordinates of the point
where you released the button appear and remain there until you press the mouse button, at which time the
coordinates of the mouse pointer resume being displayed.

Clicking the X-button terminates the program and returns control to the operating system.
Listing 8 . Question 28.

/*File Q28.java from lesson 92

**/

import java.awt.*;

import java.awt.event.*;

public class Q28 {

public static void main(String[] args){

GUI gui = new GUI();

}//end main

}//end class Q28

//===

class MyFrame extends Frame{

int xCoor;

int yCoor;

MyFrame(String name){//constructor

this.setTitle("Q28");

this.setSize(300,200);

this.setName(name);

}//end constructor

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1961

public void paint(Graphics g){

g.drawString("" + xCoor + ", " + yCoor, xCoor, yCoor);

}//end paint()

}//end class MyFrame

//==

class GUI {

public GUI(){//constructor

MyFrame myFrame1 = new MyFrame("Frame1");

myFrame1.setVisible(true);

myFrame1.addWindowListener(new WProc1());

MyMouseMotionProcessor mouseMotionProc =

new MyMouseMotionProcessor(myFrame1);

myFrame1.addMouseMotionListener(mouseMotionProc);

}//end constructor

}//end class GUI definition

//===

class MyMouseMotionProcessor extends MouseMotionAdapter{

MyFrame refToFrame1; //save references to the Frame

MyMouseMotionProcessor(MyFrame inFrame1){

refToFrame1 = inFrame1;

}// end constructor

public void mouseMoved(MouseEvent e){

refToFrame1.xCoor = e.getX();

refToFrame1.yCoor = e.getY();

refToFrame1.repaint();

}//end mouseMoved()

}//end class MyMouseMotionProcessor

//===

class WProc1 extends WindowAdapter{

public void windowClosing(WindowEvent e){

System.exit(0);

}//end windowClosing()

}//end class WProc1

//===

Answer 28 (p. 1981)

4.4.4.1.3.29 Question 29

True or False: The program shown below displays a Frame object on the computer screen. The Frame object
contains a single large Button object labeled Whistle.

When the user clicks the Whistle button, the program displays the following text on the command-line
screen.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1962 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

I am whistling, Tweet Tweet Tweet
When the user clicks the X-button, the program terminates returning control to the operating system.
Listing 9 . Question 29.

/*File Q29.java Copyright 1997, R.G.Baldwin

**/

import java.awt.*;

import java.awt.event.*;

public class Q29 {

void whistle() {System.out.println(

"I am whistling, Tweet Tweet Tweet");}

//---

static public void main(String[] args){

Q29 app = new Q29();

GUI gui = app.new GUI();

}//end main()

//---

//The GUI class is defined inside the Q29 class and is

// an inner-class of Q29.

class GUI extends Frame{

public GUI(){//constructor for GUI inner-class

this.setTitle("Q29");

Button whistleButton;

this.add(whistleButton =

new Button("Whistle"),"Center");

//---

//Instantiates two anonymous objects of types

// ActionListener and WindowAdapter. registers them

// for handling

// events on the Button object and the Frame object.

//Begin statement -----------------------------------

whistleButton.addActionListener(

new ActionListener(){//anonymous class definition

public void actionPerformed(ActionEvent e){

whistle();//call the whistle() method

}//end actionPerformed()

}//end ActionListener

);//end addActionListener()

//End statement -------------------------------------

//Begin statement -----------------------------------

this.addWindowListener(

new WindowAdapter(){//anonymous class definition

public void windowClosing(WindowEvent e){

System.exit(0);//terminate the program

}//end windowClosing()

}//end WindowAdapter

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1963

);//end addWindowListener

//End statement -------------------------------------

//---

//Set frame size and make it visible.

this.setSize(300,100);

this.setVisible(true);

}//end GUI constructor

}//end class GUI

}//end class Q29

//===

Answer 29 (p. 1980)

4.4.4.1.3.30 Question 30

True or False: The program shown below displays a small Frame object with a white background. A Button
object and a Label object are placed in the Frame. The Label is on the left and the Button is on the right.
The two are lined up horizontally and the pair is centered left-to-right in the Frame.

The Button is labeled "Button" and the Label is labeled "Initial Text".
When you click the Button, the text in the Label changes to "Ouch".
When you click the X-button, the program terminates and returns control to the operating system.
Listing 10 . Question 30.

/*File Q30.java

**/

import java.awt.*;

import java.awt.event.*;

public class Q30 extends Frame {

Label myLabel;

//---//

static public void main(String[] args){

Q30 app = new Q30();

}//end main()

//---//

public Q30(){//constructor

this.setTitle("Q30");

this.setLayout(new FlowLayout());

Button myButton;

this.add(myButton = new Button("Button"));

this.add(myLabel = new Label("Initial Text"));

//---//

myButton.addActionListener(

new //instantiate anonymous object of the class

ActionListener(){//anonymous class definition

public void actionPerformed(ActionEvent e){

myLabel.setText("Ouch");

}//end actionPerformed()

}//end ActionListener class definition

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1964 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

);//end addActionListener() statement

this.addWindowListener(

new WindowAdapter(){//anonymous class definition

public void windowClosing(WindowEvent e){

System.exit(0);//terminate the program

}//end windowClosing()

}//end WindowAdapter

);//end addWindowListener

//---

this.setSize(300,100);

this.setVisible(true);

}//end Q30 constructor

}//end class Q30

//===

Answer 30 (p. 1980)

4.4.4.1.3.31 Question 31

True or False: The program shown below displays a JSlider centered in a JFrame. The JSlider is calibrated
to extend from -100 on the left end to 100 on the right end with 0 at the center. There is a tick mark every
10 units and every other tick mark is labeled, including -100, 0, and 100.

When you move the thumb on the slider, the value of the current position of the thumb is displayed on
the command-line screen. Old values are not erased when a new value is displayed.

When you click the X-button, the program terminates and returns control to the operating system.
Listing 11 . Question 31.

/*File Q31

***/

import javax.swing.JFrame;

import javax.swing.JSlider;

import javax.swing.event.ChangeListener;

import javax.swing.event.ChangeEvent;

import java.awt.BorderLayout;

public class Q31{

public static void main(String[] args){

new Q31gui();

}//end main method

}//end class Q31

//==//

class Q31gui extends JFrame{

private JSlider slider = new JSlider(-100,100);

public Q31gui(){//constructor

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

slider.setMajorTickSpacing(20);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1965

slider.setMinorTickSpacing(10);

slider.setPaintTicks(true);

slider.setPaintLabels(true);

getContentPane().add(slider);

setSize(300,100);

setTitle("Q31");

setVisible(true);

//--//

slider.addChangeListener(

new ChangeListener(){

public void stateChanged(ChangeEvent e){

System.out.print(" " + slider.getValue());

}//end stateChanged

}//end new ChangeListener

);//end addChangeListener

//--//

}//end constructor

//--//

}//end class Q31gui

Answer 31 (p. 1980)

4.4.4.1.3.32 Question 32

True or False: The program shown below displays a small JFrame object on the computer screen. Each time
the user clicks the mouse inside the JFrame object, the mouse coordinates are displayed near the mouse
pointer and the old mouse coordinates from the previous click are erased.

When the user clicks the X-button in the upper right corner of the Frame, the program terminates and
returns control to the operating system.

Listing 12 . Question 32.

/*File Q32.java Copyright 2002 R.G.Baldwin

**/

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class Q32 {

public static void main(String[] args){

new Q32gui();

}//end main

}//end class Q32

//===//

class Q32gui {

public Q32gui(){//constructor

JFrame theFrame = new JFrame();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1966 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

theFrame.setSize(200,200);

theFrame.setTitle("Q32");

DisplaySpace displayWindow = new DisplaySpace();

theFrame.getContentPane().add(displayWindow,"Center");

theFrame.setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE);

theFrame.setVisible(true);

displayWindow.addMouseListener(

new MProc1(displayWindow));

}//end constructor

//===//

class DisplaySpace extends JPanel{

int clickX;

int clickY;

public void paintComponent(Graphics g){

super.paintComponent(g);

g.drawString(

"" + clickX + ", " + clickY, clickX, clickY);

}//end paintComponent

}//end class DisplaySpace

//===//

class MProc1 extends MouseAdapter{

DisplaySpace refToWin;

MProc1(DisplaySpace inWin){//constructor

refToWin = inWin;//save ref to window

}//end constructor

public void mousePressed(MouseEvent e){

refToWin.clickX = e.getX();

refToWin.clickY = e.getY();

refToWin.repaint();//display coordinate information

}//end mousePressed()

}//end class MProc1

}//end GUI class

//===//

Answer 32 (p. 1980)

4.4.4.1.3.33 Question 33

True or False: The program shown below displays a small JFrame object on the computer screen. Each time
the user clicks the mouse inside the JFrame object, the mouse coordinates are displayed near the mouse
pointer and the old mouse coordinates from the previous click are erased.

When the user clicks the X-button in the upper right corner of the Frame, the program terminates and
returns control to the operating system.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1967

Listing 13 . Question 33.

/*File Q33.java

**/

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class Q33 {

public static void main(String[] args){

new Q33gui();

}//end main

}//end class Q33

//===//

class Q33gui extends JFrame{

public Q33gui(){//constructor

setSize(200,200);

setTitle("Q33");

getContentPane().add(new DisplaySpace(),"Center");

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setVisible(true);

}//end constructor

}//end Q33gui

//===//

class DisplaySpace extends JPanel{

int clickX;

int clickY;

DisplaySpace(){

addMouseListener(

new MouseAdapter(){//anonymous class definition

public void onMouseEvent(MouseEvent e){

clickX = e.getX();

clickY = e.getY();

repaint();

}//end onMouseEvent()

}//end MouseAdapter

);//end addMouseListener()

}//end constructor

//---//

public void paintComponent(Graphics g){

super.paintComponent(g);

g.drawString(

"" + clickX + ", " + clickY, clickX, clickY);

}//end paintComponent

}//end class DisplaySpace

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1968 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

//===//

Answer 33 (p. 1980)

4.4.4.1.3.34 Question 34

True or False: The program shown below displays a small Frame object on the computer screen. Each
time the user clicks the mouse inside the Frame object, the mouse coordinates are displayed near the mouse
pointer and the old mouse coordinates from the previous click are erased.

When the user clicks the X-button in the upper right corner of the Frame, the program terminates and
returns control to the operating system.

Listing 14 . Question 34.

/*File Q34.java

*/

import java.awt.*;

import java.awt.event.*;

public class Q34 {

public static void main(String[] args){

GUI gui = new GUI();

}//end main

}//end class Q34

//---//

class GUI extends Frame{

int clickX;

int clickY;

public GUI(){//constructor

setSize(150,150);

setTitle("Q34");

setVisible(true);

addWindowListener(

new WindowAdapter(){//anonymous class definition

public void windowClosing(WindowEvent e){

System.exit(0);

}//end windowClosing

}//end WindowAdapter

);//end addWindowListener()

addMouseListener(

new MouseAdapter(){//anonymous class definition

public void mousePressed(MouseEvent e){

clickX = e.getX();

clickY = e.getY();

repaint();

}//end mousePressed()

}//end MouseAdapter

);//end addMouseListener()

}//end constructor

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1969

//---//

public void paint(Graphics g){

g.drawString(

"" + clickX + ", " + clickY, clickX, clickY);

}//end paint

}//end class GUI

//---//

Answer 34 (p. 1980)

4.4.4.1.3.35 Question 35

True or False: The program shown below displays a small JFrame object on the computer screen.
When you move your mouse pointer around inside the client area of the frame, without pressing either

mouse button, the coordinates of the mouse pointer appear directly above the pointer. In this case, the
coordinates are displayed using black characters.

When you move your mouse pointer around inside the client area of the frame, while pressing either
mouse button, the coordinates of the mouse pointer appear directly above the pointer. In this case, the
coordinates are displayed using red characters.

When you click X-button in the upper right corner of the frame, the program terminates and control is
returned to the operating system.

Listing 15 . Question 35.

/*File Q35.java

**/

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class Q35 {

public static void main(String[] args){

new Q35gui();

}//end main

}//end class Q35

//===//

class Q35gui extends JFrame{

public Q35gui(){//constructor

setSize(200,200);

setTitle("Q35");

getContentPane().add(new DisplaySpace(),"Center");

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setVisible(true);

}//end constructor

}//end Q35gui

//===//

class DisplaySpace extends JPanel{

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1970 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

int clickX;

int clickY;

DisplaySpace(){

addMouseMotionListener(

new MouseMotionAdapter(){//anonymous class definition

public void mouseMoved(MouseEvent e){

setForeground(Color.RED);

clickX = e.getX();

clickY = e.getY();

repaint();

}//end mouseMoved

public void mouseDragged(MouseEvent e){

setForeground(Color.BLACK);

clickX = e.getX();

clickY = e.getY();

repaint();

}//end mouseDragged

}//end MouseAdapter

);//end addMouseMotionListener()

}//end constructor

//---//

public void paintComponent(Graphics g){

super.paintComponent(g);

g.drawString(

"" + clickX + ", " + clickY, clickX, clickY);

}//end paintComponent

}//end class DisplaySpace

//===//

Answer 35 (p. 1980)

4.4.4.1.3.36 Question 36

True or False: The program shown below displays a small JFrame object containing two JButton objects
and a JLabel object. The JLabel has a green background and blue letters. The captions on the two JButton
objects are Top and Bottom.

The three objects are displayed vertically in the JFrame. The Top JButton appears at the top of the
column of objects. The Bottom JButton appears at the bottom of the column. The JLabel appears between
the two JButton objects.

At startup, the JLabel displays the word Top. When you click the Bottom button, the word in the
JLabel changes to Bottom. When you click the Top button, the word in the JLabel changes to Top. When
you click X-button on the JFrame, the program terminates and returns control to the operating system.

Listing 16 . Question 36.

/*File Q36.java

**/

import java.awt.Color;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

import java.awt.BorderLayout;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1971

import javax.swing.JFrame;

import javax.swing.JButton;

import javax.swing.JLabel;

public class Q36{

public static void main(String[] args){

JFrame aFrame = new Q36gui();

}//end main

}//end class Q36

//===//

class Q36gui extends JFrame implements ActionListener{

JButton button1 = new JButton("Top");

JButton button2 = new JButton("Bottom");

JLabel label = new JLabel("Top");

//---//

public Q36gui(){//constructor

this.setTitle("Q36");

this.getContentPane().add(button1,BorderLayout.NORTH);

label.setBackground(Color.GREEN);

label.setForeground(Color.BLUE);

label.setOpaque(true);

this.getContentPane().add(label,BorderLayout.CENTER);

this.getContentPane().add(button2,BorderLayout.SOUTH);

button1.addActionListener(this);

button2.addActionListener(this);

this.setSize(150,100);

this.setVisible(true);

this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}//end constructor

//---//

public void actionPerformed(ActionEvent e){

if(e.getActionCommand().indexOf("Top") != -1)

label.setText("Top");

else

label.setText("Bottom");

}//end actionPerformed()

}//end class Q36gui

//===//

Answer 36 (p. 1980)

4.4.4.1.3.37 Question 37

True or False: The program shown below displays a small Frame object containing two Button objects and
a Label object. The Label has a green background and blue letters. The captions on the two Button objects
are Top and Bottom.

The three objects are displayed vertically in the Frame. The Top Button appears at the top of the column

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1972 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

of objects. The Bottom Button appears at the bottom of the column. The Label appears between the two
Button objects.

At startup, the Label displays the word Top. When you click the Bottom button, the word in the Label
changes to Bottom. When you click the Top button, the word in the Label changes to Top. When you click
X-button on the Frame, the program terminates and returns control to the operating system.

Listing 17 . Question 37.

/*File Q37.java Copyright 2002 R.G.Baldwin

**/

import java.awt.Color;

import java.awt.Frame;

import java.awt.Button;

import java.awt.Label;

import java.awt.BorderLayout;

import java.awt.event.ActionListener;

import java.awt.event.WindowListener;

import java.awt.event.WindowEvent;

import java.awt.event.ActionEvent;

public class Q37{

public static void main(String[] args){

Frame aFrame = new Q37gui();

}//end main

}//end class Q37

//===//

class Q37gui extends Frame

implements WindowListener, ActionListener{

Button button1 = new Button("Top");

Button button2 = new Button("Bottom");

Label label = new Label("Top");

//---//

public Q37gui(){//constructor

this.setTitle("Q37");

add(button1,BorderLayout.NORTH);

label.setBackground(Color.GREEN);

label.setForeground(Color.BLUE);

add(label,BorderLayout.CENTER);

add(button2,BorderLayout.SOUTH);

button1.addActionListener(this);

button2.addActionListener(this);

this.setSize(150,100);

this.setVisible(true);

this.addWindowListener(this);

}//end constructor

//---//

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1973

public void windowClosing(WindowEvent e){

//terminate the program when the window is closed

System.exit(0);

}//end windowClosing

//---//

public void windowOpened(WindowEvent e){}//dummy

public void windowClosed(WindowEvent e){}//dummy

public void windowIconified(WindowEvent e){}//dummy

public void windowDeiconified(WindowEvent e){}//dummy

public void windowActivated(WindowEvent e){}//dummy

public void windowDeactivated(WindowEvent e){}//dummy

//---//

public void actionPerformed(ActionEvent e){

if(e.getActionCommand().indexOf("Top") != -1)

label.setText("Top");

else

label.setText("Bottom");

}//end actionPerformed()

}//end class Q37gui

//===//

Answer 37 (p. 1980)

4.4.4.1.4 Listings

• Listing 1 (p. 1955) . Question 16.
• Listing 2 (p. 1957) . Question 17.
• Listing 3 (p. 1958) . Question 19.
• Listing 4 (p. 1959) . Question 20.
• Listing 5 (p. 1960) . Question 21.
• Listing 6 (p. 1962) . Question 23.
• Listing 7 (p. 1963) . Question 24.
• Listing 8 (p. 1965) . Question 28.
• Listing 9 (p. 1967) . Question 29.
• Listing 10 (p. 1968) . Question 30.
• Listing 11 (p. 1969) . Question 31.
• Listing 12 (p. 1970) . Question 32.
• Listing 13 (p. 1972) . Question 33.
• Listing 14 (p. 1973) . Question 34.
• Listing 15 (p. 1974) . Question 35.
• Listing 16 (p. 1975) . Question 36.
• Listing 17 (p. 1977) . Question 37.

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the computer screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1974 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1975

4.4.4.1.5 Answers

4.4.4.1.5.1 Answer 37

True. Note that the GUI object is both a source of action events and a listener for action events �red by
the buttons.

Back to Question 37 (p. 1976)

4.4.4.1.5.2 Answer 36

True. Note that the GUI object is both a source of action events and a listener for action events �red by
the buttons.

Back to Question 36 (p. 1975)

4.4.4.1.5.3 Answer 35

False. The red and black colors are reversed. Otherwise, the statement would be true.
Back to Question 35 (p. 1974)

4.4.4.1.5.4 Answer 34

True. This program uses anonymous inner classes to de�ne and instantiate a mouse event handler and a
window event handler.

Back to Question 34 (p. 1973)

4.4.4.1.5.5 Answer 33

False. The code in the anonymous mouse event handler class calls a method named onMouseEvent . It
should call a method named mousePressed instead, in which case the program would behave as described.

Back to Question 33 (p. 1971)

4.4.4.1.5.6 Answer 32

True.
Back to Question 32 (p. 1970)

4.4.4.1.5.7 Answer 31

True.
Back to Question 31 (p. 1969)

4.4.4.1.5.8 Answer 30

False. The Button and the Label are lined up horizontally with the Button on the Left and the Label on
the right. The FlowLayout manager places components from left to right in the order that they are added
to the container. The Button was added before the Label. See Java094.

Back to Question 30 (p. 1968)

4.4.4.1.5.9 Answer 29

True. See Java094.
Back to Question 29 (p. 1966)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1976 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.4.1.5.10 Answer 28

False. The description of the mouse button is reversed. When you move your mouse pointer into the client
area of the Frame without pressing a mouse button, the coordinates of the mouse pointer appear directly
above the pointer. As you move the mouse pointer around in the client area, the coordinates of the pointer
continue to be displayed above the pointer.

If you press one of the mouse buttons while moving the mouse in the client area, the coordinates of the
point where you pressed the button appear and remain there until you release the mouse button, at which
time the coordinates of the mouse pointer resume being displayed.

Clicking the X-button terminates the program and returns control to the operating system.
See Java092.
Back to Question 28 (p. 1965)

4.4.4.1.5.11 Answer 27

True. See Java092.
Back to Question 27 (p. 1965)

4.4.4.1.5.12 Answer 26

True. See Java092.
Back to Question 26 (p. 1965)

4.4.4.1.5.13 Answer 25

False. The MouseMotionListener interface declares only the following two methods. The mouse-
Pressed method is declared in the MouseListener interface. See Java092.

• public abstract void mouseDragged(MouseEvent e)
• public abstract void mouseMoved(MouseEvent e)

Back to Question 25 (p. 1964)

4.4.4.1.5.14 Answer 24

True. See Java087.
Back to Question 24 (p. 1963)

4.4.4.1.5.15 Answer 23

False. Clicking the X-button on either Frame object causes both Frame objects to disappear, terminating
the program, and returning control to the operating system. See Java082.

Back to Question 23 (p. 1961)

4.4.4.1.5.16 Answer 22

False. Multiple listener objects can be, and often are registered on a single source object. Similarly, a single
listener object can be registered on multiple source objects. In many, but not all such cases, the listener
object must be able to identify which source �red the event in order to take the appropriate action. However,
in some situations, the appropriate action is independent of the identity of the source. See Java082.

Back to Question 22 (p. 1961)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1977

4.4.4.1.5.17 Answer 21

False. Although new coordinates are displayed with each mouse click, the old coordinates are not erased.
See Java081.

Back to Question 21 (p. 1960)

4.4.4.1.5.18 Answer 20

True. See Java 081. Note, however that the setDefaultCloseOperation method probably did not exist
when Java081 was written. When used as shown in the code for this question, that method causes the
program to terminate and return control to the operating system when the user clicks the X-button. Four
di�erent default actions can be speci�ed for the X-button:

• DO_NOTHING_ON_CLOSE
• HIDE_ON_CLOSE
• DISPOSE_ON_CLOSE
• EXIT_ON_CLOSE

Back to Question 20 (p. 1959)

4.4.4.1.5.19 Answer 19

False. In order for this to be true, it would be necessary to override the WindowClosing method instead of
the WindowClosed method. See Java080.

Back to Question 19 (p. 1958)

4.4.4.1.5.20 Answer 18

False: The default layout manager for a Frame object is BorderLayout . See Java080.
Back to Question 18 (p. 1958)

4.4.4.1.5.21 Answer 17

True. See Java080.
Back to Question 17 (p. 1957)

4.4.4.1.5.22 Answer 16

True. See Java080.
Back to Question 16 (p. 1955)

4.4.4.1.5.23 Answer 15

True. See Java080.
Back to Question 15 (p. 1955)

4.4.4.1.5.24 Answer 14

True. See Java080.
Back to Question 14 (p. 1955)

4.4.4.1.5.25 Answer 13

True. See Java080.
Back to Question 13 (p. 1955)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1978 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.4.4.1.5.26 Answer 12

False. There is a class of mouse events that includes most of the events normally associated with mouse
action and there is a matching interface de�nition that is used to de�ne a listener class for those events.
See Java080.

Back to Question 12 (p. 1954)

4.4.4.1.5.27 Answer 11

True. See Java080.
Back to Question 11 (p. 1954)

4.4.4.1.5.28 Answer 10

True. See Java080.
Back to Question 10 (p. 1954)

4.4.4.1.5.29 Answer 9

False. An event source is an object that has the ability to determine when an interesting event has
occurred, and to notify listener objects of the occurrence of the event. See Java080.

Back to Question 9 (p. 1954)

4.4.4.1.5.30 Answer 8

True. See Java080.
Back to Question 8 (p. 1954)

4.4.4.1.5.31 Answer 7

True.
Back to Question 7 (p. 1954)

4.4.4.1.5.32 Answer 6

False. This is multicasting . The one-to-one case is often referred to as unicasting. See Java077.
Back to Question 6 (p. 1954)

4.4.4.1.5.33 Answer 5

True. See Java077.
Back to Question 5 (p. 1954)

4.4.4.1.5.34 Answer 4

False. It is very important to understand that Swing is an extension of, and not a replacement for the AWT.
Therefore, as students, we cannot simply skip over an understanding of the AWT and move on to Swing.
The AWT is the foundation for Swing. See Java073.

Back to Question 4 (p. 1954)

4.4.4.1.5.35 Answer 3

False. com.sun.java.swing.* was the package for Swing in JDK 1.1.6. However, sometime between then and
the release of Java SE 7, the package containing Swing components was changed to javax.swing.*

Back to Question 3 (p. 1953)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1979

4.4.4.1.5.36 Answer 2

True. See Java073.
Back to Question 2 (p. 1953)

4.4.4.1.5.37 Answer 1

True. See Java073.
Back to Question 1 (p. 1953)

4.4.4.1.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Jy0037: Review Event Handling
• File: Jy0037.htm
• Published: 10/30/13
• Revised: 02/06/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4.5 JavaServer Pages (JSP)

4.5.1 Java4309-Links to JSP Learning Resources
477

Revised: Thu May 12 14:41:22 CDT 2016
This page is included in the following Books:

• ITSE2317 - Java Programming (Intermediate) 478

• Object-Oriented Programming (OOP) with Java 479

477This content is available online at <http://cnx.org/content/m61616/1.5/>.
478http://cnx.org/contents/Rl23r3Lw
479http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1980 CHAPTER 4. ITSE2317 - JAVA PROGRAMMING (INTERMEDIATE)

4.5.1.1 Table of contents

• Preface (p. 1985)
• Links to Chapters (p. 1985)
• Miscellaneous (p. 1985)

4.5.1.2 Preface

• This is the main page for links to JSP content that is part of the course named ITSE2317 - Java
Programming (Intermediate) at Austin Community College in Austin, TX.

• The material in the chapters is sequential and is designed for progressive study. Most chapters contain
material that references concepts and code covered in prior chapters.

• Assignments and the section exam are located in Blackboard.

4.5.1.3 Links to Chapters

01 - Getting Started with JSP 480

02 - Web Programming Model 481

03 - HTML and CSS Fundamentals 482

04 - JSP Fundamentals 483

05 - Form Processing with JSP 484

06 - Working with Java Classes 485

07 - Cookies with JSP 486

08 - Sessions with JSP 487

09 - Assessment Questions 488

4.5.1.4 Miscellaneous

Due to the dynamic nature of the material, the content at the links above is periodically updated and the
links themselves may change. While you are welcome to print the pages, I recommend bookmarking THIS
MAIN PAGE for future reference and NOT the subordinate links. The links to the resources may change
but they will always be kept up-to-date on this main page. Since the links may change, by bookmarking
this main page, you will have access to the current content and working links.

I hope you enjoy the course.
@author R.L. Martinez, Ph.D.
-end-

480http://cnx.org/contents/jEyAkJu_
481http://cnx.org/contents/riOgoqnB
482http://cnx.org/contents/Oum90SUG
483http://cnx.org/contents/CdSQAZxI
484http://cnx.org/contents/g4GPUUCV
485http://cnx.org/contents/OHerrIEe
486http://cnx.org/contents/LCeZtvOr
487http://cnx.org/contents/E9VbZ0de
488http://cnx.org/contents/rWAd5VT0

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

Chapter 5

INEW 2338 Advanced Java (Web)

5.1 Preface

5.1.1 Java4510: Preface to INEW 2338
1

Revised: Thu Jun 02 14:40:19 CDT 2016
This page is included in the following Books:

• INEW2338 - Advanced Java Programming 2

• Object-Oriented Programming (OOP) with Java 3

5.1.1.1 Table of Contents

• Welcome (p. 1987)
• Programming Oldies but Goodies (p. 1988)
• Downloads (p. 1988)
• Miscellaneous (p. 1988)

5.1.1.2 Welcome

Welcome to the course material for INEW2338 - Advanced Java Programming , which I teach at
Austin Community College 4 in Austin, TX.

Information about the course
The college website for this course is: http://www.austincc.edu/baldwin/ 5

The prerequisite for the course is ITSE2317 - Java Programming (Intermediate) 6 or department approval.
Each semester, the course covers three major topics :

• Network Programming
• Search Engines OR Servlets OR JSON
• Java EE and Frameworks

1This content is available online at <http://cnx.org/content/m48259/1.10/>.
2http://cnx.org/contents/yWyT-uhM
3http://cnx.org/contents/-2RmHFs_
4http://www.austincc.edu/
5http://www.austincc.edu/baldwin/
6http://cnx.org/contents/Rl23r3Lw

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1981

1982 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Note: Although only one of the topics Search Engines , Servlets , or JSON is covered in the
course in any particular semester, all three are important. The course material in the Blackboard
course management program will indicate which topic is covered in the current semester.

Students are encouraged to study all three topics for their own educational purposes in order to
enhance their prospects of landing a job as a Java programmer.

5.1.1.3 Programming Oldies but Goodies

While much of the material required to succeed in this course is contained in the modules in this book, a
large amount of relevant material is also contained in the collection titled Programming Oldies But Goodies
7 , which is a work in process. The material in that collection has not yet been converted to the cnxml
format required by OpenStax. Instead, the material in that collection is still in its original html format.

You would do well to familiarize yourself with that material as well.

5.1.1.4 Downloads

I encourage you to take advantage of the download options that OpenStax has to o�er in order to customize
this material for use in your organized courses or for personal self study.

5.1.1.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4510: Preface to INEW 2338
• File: Java4510.htm
• Published: 12/17/13

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from OpenStax, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I neither
receive compensation for those sales nor do I know who does receive compensation. If you purchase
such a book, please be aware that it is a copy of a module that is freely available on OpenStax and
that it was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

7http://cnx.org/contents/1J-75Flv

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1983

5.2 Network Programming

5.2.1 Java4610-Preface
8

5.2.1.1 Table of Contents

• Discussion (p. 1989)
• What's next? (p. 1989)
• Miscellaneous (p. 1989)

5.2.1.2 Discussion

This module serves as the preface to a sub-collection of modules on network programming. The modules in
this sub-collection are designed for teaching INEW 2338 Advanced Java (Web) at Austin Community
College in Austin, TX.

5.2.1.3 What's next?

The next module is titled Java4620: General Information .
As you might surmise from the title, it deals with such topics as communication protocols, clients, servers,

IP, TCP, ports, etc.

5.2.1.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4610-Preface
• File: Java4610.htm
• Published: 03/02/14
• Revised 12/26/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

8This content is available online at <http://cnx.org/content/m49532/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1984 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.2.2 Java4620: General Information
9

5.2.2.1 Table of Contents

• Preface (p. 1990)
• Introduction (p. 1990)
• Background Information (p. 1991)

· Communication Protocol (p. 1991)
· Network Layers (p. 1991)
· Clients and Servers (p. 1992)
· IP, TCP, and, UDP (p. 1992)

* IP (p. 1992)
* TCP (p. 1992)
* UDP (p. 1992)

· IP Addresses (p. 1993)
· Domain Names (p. 1993)
· What is Your IP Address? (p. 1993)
· Ports (p. 1994)
· Firewalls (p. 1994)
· Proxy Servers (p. 1994)
· Standards and Protocols (p. 1995)
· URL (p. 1995)

• Socket Classes and the URL Class (p. 1996)

· Socket Programming (p. 1996)
· URL Programming (p. 1997)

• A local area network (p. 1998)
• The operating system (p. 1998)
• What's Next? (p. 1998)
• Miscellaneous (p. 1998)

5.2.2.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX. More speci�cally, it is one in a sub-collection of modules
designed for teaching network programming in that course. The purpose of this module is to introduce the
student to various aspects of network programming that will be incorporated into future modules.

5.2.2.3 Introduction

One of the Java books on my bookshelf makes the following analogy (or one very similar) . Just because
you may know how to speak conversational French doesn't mean that you know how to interpret an autopsy
report written in French. In order to interpret the autopsy report, you must also know a good deal about
the meaning of the medical terms used in such reports.

A similar situation exist for networking. It isn't very di�cult to learn how to use the Java programming
language to implement some network operations. However, in order to achieve depth in this area, you
probably also need to know something about the many other technical aspects of networking.

This is not a new �eld, and many good books have been written on the technical details of networking.
you are referred to one or more of those books to gain an in-depth knowledge of networking. In particular,
I would refer you to Java Network Programming 10 by Elliotte Rusty Harold.

9This content is available online at <http://cnx.org/content/m49533/1.2/>.
10http://shop.oreilly.com/product/0636920028420.do

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1985

In addition there are many other books that contain excellent sections on network programming. I would
recommend that you take a look at the following:

• Exploring Java by Patrick Niemeyer and Joshua Peck
• Just Java 1.1 and Beyond by Peter van der Linden
• Java Primer Plus by Tyma, Torok, and Downing
• Java How to Program by Deitel and Deitel

These books have been around for a long time, so you should be able to �nd a used copy online for a
reasonable price.

For the most part, this and the next few modules will be restricted to how you can use the programming
capabilities of Java to write and execute network programs and won't attempt to go into overall network
programming in depth. However, a minimal amount of background information will be required, so we will
attempt to provide that background in this module. Subsequent modules will use this background along with
the network programming capabilities of Java to write some simple, but interesting networking programs.

5.2.2.4 Background Information

For our purposes, a network is a group of computers and other devices that are connected in some fashion
for the purpose of exchanging data.

Each of the devices on the network can be thought of as a node , and each node has a unique address.
The manner in which addresses are assigned will vary from one type of network to another, but in all cases,
the address of each device must be unique so as to distinguish it from the other devices.

Addresses are numeric quantities that are easy for computers to work with, but are not easy for humans
to remember. Therefore, some networks also provide names that humans can more easily remember than
numbers.

Modern networks transfer data using a concept known as packet switching . This means that the data
are encapsulated into packets that are transferred from the source to the destination. It is necessary to
extract the data from one or more packets at the destination and use it to reconstruct the original message.

5.2.2.4.1 Communication Protocol

In order for two or more computers connected to a network to be able to exchange data in an orderly manner,
they must adhere to a mutually acceptable communication protocol. The protocol de�nes the rules by which
they communicate.

Teaching your children to say please and thank you involves teaching them something about a protocol.
If they occasionally forget to say please, however, they will probably get the cookie anyway.

If a computer protocol requires the participating computers to say please, and they forget to say
please, they probably won't get the cookie.

There are many protocols available. For example, the HTTP protocol de�nes how web browsers and servers
communicate and the SMTP protocol de�nes how email is transferred (we will write programs that imple-
ment part of the HTTP protocol) .

Note here that I have been discussing application protocols that operate at the surface level. We will
also be making mention of lower-level protocols that operate below the application level. Fortunately, as
high-level Java programmers, we don't have to be too concerned about the lower-level protocols. We'll let
the systems people worry about them.

5.2.2.4.2 Network Layers

Networks are logically separated into layers ranging from the Application Layer at the top to the
Physical Layer at the bottom. The technical details of network layering are beyond the scope of this

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1986 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

module. Fortunately, you will be able to write useful network programs using Java without understanding
the details of network layering.

The Application Layer is the layer that delivers data to the user. The layers below that are involved
with getting data from the Application Layer at one end of the conversation to the Application Layer at
the other end. For the most part, we will be concerned only with the Application Layer .

5.2.2.4.3 Clients and Servers

In these modules, we will be concerned with networked communications that involve client computers and
a server computers. How do we know which is which?

For the purposes of our studies, it will be su�cient to say that the client always initiates the
conversation, and the server waits and listens for a client to initiate a conversation.

5.2.2.4.4 IP, TCP, and UDP

We need to know something about the following acronyms:

• IP
• TCP
• UDP

5.2.2.4.4.1 IP

IP , which stands for Internet Protocol , is the protocol that will be involved below the Application
Layer to move our data between a client and a server. Beyond knowing that it exists, we probably don't
need to concern ourselves with the fact that IP is being used

In fact, in some situations, some other protocol could be used to move our data between a client and a
server. As long as it works, we really don't care too much.

In a nutshell, IP is a network protocol that moves packets of data from a source to a destination. As the
name implies, this is the protocol normally used on the Internet.

5.2.2.4.4.2 TCP

It is sometimes important to be able to have con�dence that all packets that make up a message arrive at
the destination undamaged and in proper order.

The Transmission Control Protocol (TCP) was added to IP to give each end of a connection the
ability to acknowledge receipt of IP packets and to request retransmission of corrupted or lost packets.
Also TCP makes it possible to put the packets back together at the destination in the same order that
they were sent.

Therefore, you will often hear people using both acronyms in the same breath, as in TCP/IP . The
two work together to provide a reliable method of encapsulating a message into data packets, sending the
packets to a destination, and reconstructing the message from the packets at the destination.

5.2.2.4.4.3 UDP

Sometimes it may not be critically important that all the packets arrive at the destination or that they
arrive in the proper order. Further, sometimes, you may not want to incur the time delays and overhead
cost associated with those guarantees.

For example, if one computer is sending date and time information to another computer every 100
milliseconds, and the data in the packets is displayed on a digital clock as it is received, you might prefer

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1987

that each packet make the trip as quickly as possible even if that means that occasionally a packet will be
lost or damaged.

The User Datagram Protocol (UDP) is available to support this type of operation. UDP is often
referred to as an unreliable protocol because there is no guarantee that a series of packets will arrive in the
right order, or that they will arrive at all.

As Java programmers, we have the choice of TCP or UDP , and we need to know enough about the
characteristics of each to be able to make informed choices between them.

5.2.2.4.5 IP Addresses

We don't really need to know very much about IP to be able to use it, but we do need to know about the
addressing scheme used in IP .

Every computer attached to an IP network has a unique address, typically consisting of four bytes or
32 bits (IPv4 11) .

Thirty-two bits are su�cient to de�ne a large number of unique addresses, but the manner in which
addresses are allocated is wasteful, and many of the addresses that have been allocated are not being used.

E�orts are underway to expand the number of possible unique addresses to a much larger number. The
planned number is the number of unique addresses that can be represented with a 128-bit address. The new
scheme is known as IPv6 12 .

For human consumption, we usually convert the value of each of the bytes to an unsigned decimal value
and display them connected by periods to make them easier to remember. For example, as near as I can tell,
as of this writing, the IP address of www.austincc.edu 13 (the college where I teach) is 206.77.150.222
.

5.2.2.4.6 Domain Names

What do I mean by www.austincc.edu 14 ?
Even though we can do some tricks to make the numeric IP addresses easier to remember, humans

don't do a very good job of remembering long strings of numbers. Humans remember words and names
better. Therefore, most IP addresses have a corresponding name known as a domain name . The domain
name for the IP address 206.77.150.222 is www.austincc.edu 15 .

The Domain Name System (DNS) was developed to translate between IP addresses and domain names.
Whenever you log your browser onto the internet and attempt to connect to a server using its domain name,
the browser �rst communicates with a DNS server to learn the corresponding numeric IP address. The
numeric IP address (and not the domain name) is encapsulated into the data packets and used by the
internet protocol to route those packets from the source to the destination.

(You should also be able to enter 206.77.150.222 into the address �eld of your browser and access
the college where I teach.)

We will learn how to use the Java InetAddress class to �nd the domain name corresponding to an IP
address, and to �nd the IP address corresponding to a domain name.

5.2.2.4.7 What is Your IP Address?

Do you have an IP address and a domain name ?
If (like me) you use a commercial Internet Service Provider (ISP) for your Internet service at home,

you probably don't have a �xed IP address or a �xed domain name . Rather, the ISP has a block of

11http://en.wikipedia.org/wiki/IPv6
12http://en.wikipedia.org/wiki/IPv6
13http://www.austincc.edu
14http://www.austincc.edu
15http://www.austincc.edu

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1988 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

IP addresses reserved. When you subscribe to the ISP, the ISP temporarily assigns an IP address to you.
That IP address may or may not change over time, but probably will change unless you pay the extra fee
for a �xed IP address.

On the other hand, I currently pay for server space from a company in North Carolina under the domain
name www.dickbaldwin.com 16 . My domain has an IP address of 98.129.229.162 . For as long as I
continue to pay the bill, that domain name and that IP address will be assigned to me for use as my personal
website.

I suppose that the company could change the IP address at some point provided that they make
certain that all of the domain name servers get updated to re�ect the new IP address that
corresponds to the domain name.

5.2.2.4.8 Ports

Each server computer that you may connect to will be logically organized into ports . These are not physical
ports in the sense of the VGA or HDMI port on the back of your computer. Rather, they are simply logical
sub-addresses which you provide to the operating system on the server so that the operating system can
cause the appropriate server software to "answer the call." We will write a simple server software package
that will service several di�erent ports on independent threads in a future module.

One of the Java books on my bookshelf refers to the IP address as being analogous to the telephone
number of a company and the port to be analogous to the employee's telephone extension within that
company. (At least that is how telephone systems in companies were organized when I was working in
industry.)

Theoretically, there are 65,535 available ports. Port numbers between 1 and 1023 are prede�ned to be used
for certain standard services. For example, if you want to connect with server software that communicates
using the HTTP protocol, you would normally connect to port 80 on the server of interest.

Similarly, if you want to connect to a port that will tell you the time, you should connect to port 13,
assuming that you can �nd a server somewhere that is willing to support port 13. If you want to connect
to a port that will simply echo whatever you send to it (usually for test purposes) , you should connect to
port 7. We will write Java applications that connect to all of these ports.

In the interest of brevity, I am not going to provide a complete list of ports and their services. However,
you should be able to �nd all the information you might need about port numbers and the services they
support by starting your favorite search engine and searching for " well known ports 17 "".

5.2.2.4.9 Firewalls

You may have heard about �rewalls . A �rewall is the common name given to the equipment and
associated software that is used to insulate the network inside of a company from the Internet at large
outside the company. Typically, the �rewall will restrict the degree to which computers inside the company
can communicate with the Internet for security and other reasons.

5.2.2.4.10 Proxy Servers

You may also have heard about proxy servers . A proxy server acts as an interface between computers
inside the company and the Internet at large.

Oftentimes the proxy server will have the ability to cache web pages for limited periods of time. For
example, if ten people inside the company attempt to connect to the same Internet server and download the
same web page within a (hopefully) short period of time, that page may be saved on the proxy server on
the �rst attempt and then delivered to the next nine people without re-acquiring it from the outside web

16http://www.dickbaldwin.com
17http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1989

server. This can signi�cantly improve delivery time and reduce network tra�c into and out of the company.
It can also result in the delivery of stale pages in some cases.

5.2.2.4.11 Standards and Protocols

At some point, you may be interested in obtaining technical information about Internet stan-
dards and protocol speci�cations. A good place to start looking for such information is
http://www.w3.org/pub/WWW/Protocols/ 18 .

5.2.2.4.12 URL

URL is an acronym for Uniform Resource Locator . (It is also the name of a class in Java.) A URL
is a pointer to a particular resource at a particular location on the Internet. A URL speci�es the following:

• the protocol used to access the server (such as http)
• the name of the server
• the port on the server (optional)
• the path and name of a speci�c �le on the server (sometimes optional)
• the anchor or reference point within the �le (optional)

Sometimes the name of the �le can be omitted, in which case an HTTP browser will usually append the �le
name index.html to the speci�ed path and try to load that �le. For example, as of this writing, you can
connect to my home page on the HTTP server at Austin Community College using either of the following
URLs:

• http://www.austincc.edu/baldwin/ 19

• http://www.austincc.edu/baldwin/index.html 20

In addition to specifying the name of the �le of interest, it is also sometimes possible to specify an anchor
or reference that has been established inside the �le. The anchor is identi�ed by the text following the #
character in the URL.

For example, as of this writing, the following URL will take you to a speci�c location inside one of my
modules on Java servlets.

http://cnx.org/content/m48518/latest/#Images 21

(Note the #Images at the end of the URL. That is commonly known as the anchor .)
The general syntax of a URL is as follows:
protocol://hostname[:port]/path/�lename#ref
The port is optional, and is not normally required if you are accessing a server that provides the required

service on a standard port. The browser (or other software being used to connect) should know which port
supports the speci�ed protocol and should connect to that port by default.

You could �ll in the optional port number and use the following URL to access the same location in my
servlets module, but that would simply require you to do some extra typing.

http://cnx.org:80/content/m48518/latest/#Images 22

However, if you were to change the 80 to a 25, you would not be able to connect and successfully
communicate with the server because the server does not support the HTTP protocol on port 25. In fact,
here is the text of the Firefox error message that resulted from me doing that:

"This address is restricted This address uses a network port which is normally used for purposes
other than Web browsing. Firefox has canceled the request for your protection."

18http://www.w3.org/pub/WWW/Protocols/
19http://www.austincc.edu/baldwin/
20http://www.austincc.edu/baldwin/index.html
21http://cnx.org/content/m48518/latest/#Images
22http://cnx.org:80/content/m48518/latest/#Images

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1990 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

The Google Chrome browser simply provided the following error message when I attempted to do that.

"This webpage is not available."

When I clicked a "More" button on the Chrome error message, this is what I got:

"The webpage at http://cnx.org:25/content/m48518/latest/#Images might be temporarily down
or it may have moved permanently to a new web address. Error code: ERR_UNSAFE_PORT"

Note, however, that we will be properly addressing port 8080 on a particular server in some future modules.
Since 8080 is not a standard port, it will be necessary for us to enter the port number following a colon in
order to access the material on the server.

5.2.2.5 Socket Classes and the URL Class

Java provides at least two di�erent approaches for doing network programming (and possibly more) , insofar
as the web is concerned. The two approaches are associated with

• The Socket , DatagramSocket , and ServerSocket classes
• The URL, URLEncoder, and URLConnection classes.

5.2.2.5.1 Socket Programming

Socket programming primarily makes use of two socket classes named Socket and DatagramSocket along
with the ServerSocket class. The �rst two socket classes represent TCP and UDP communications
respectively.

Generally, the two socket classes are used to implement both clients and servers , while the Server-
Socket class is only used to implement servers . We will see several examples of socket programming in
this series of modules.

Socket programming provides a low-level approach by which you can connect two computers for the
exchange of data. One of those is generally considered to be the client while the other is considered to be
the server .

Although the distinction between client and server is becoming less clear each day, there is one funda-
mental distinction that is inherent in the Java programming language.

The client initiates conversations with servers, while servers block and wait for a client to initiate
a conversation.

The governing application-level protocol will determine what happens after the connection is made and the
conversation has begun. The fact that the two computers can connect doesn't necessarily mean that they
can communicate. In order to communicate, they must implement some mutually acceptable application
protocol

For example, the fact that I can dial a telephone number for a telephone located in France doesn't mean
that I can communicate with the person who answers the phone. I don't know how to speak the French
language. Unless the person who answers the phone speaks English, very little communication is likely to
take place.

Socket programming has been around for quite a while in the Unix world. Java simply makes it easier
by encapsulating much of the complexity of socket programming into classes, and allowing you to approach
the task on an object-oriented basis.

On the other hand, according to some authors, some of the generality and capability that Unix socket
programmers have enjoyed has been lost in the encapsulation process.

Basically, socket programming makes it possible for you to cause data to �ow in a full-duplex mode
between a client and a server. This data �ow can be viewed in almost exactly the same way that we view
data �ow to and from a disk: as a stream of bytes.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1991

As with most stream data processing, the system is responsible for moving the bytes from the source to
the destination. It is the responsibility of the programmer to assign meaning to those bytes.

Assigning meaning takes on a special signi�cance for socket programming. In particular, as mentioned
above, it is the responsibility of the programmer to implement a mutually acceptable communication protocol
at the application level to cause the data to �ow in an orderly manner.

An application protocol is a set of rules by which the programs in the two computers can carry on a
conversation and transfer data in the process. For example, we will also write a program that implements a
very abbreviated form of the HTTP protocol to download web pages from a server and display them.

We will also write a program that functions as an (abbreviated) HTTP server to deliver web pages to
a client and also supports the echo protocol for both TCP and UDP programming.

Each of these programs will involve adherence to a fairly simple protocol. (At least the part that we
implement will be fairly simple) .

In addition, we will also write a program that obtains the date and time from another computer. In this
case, the protocol will be about as simple as it can possibly be. The client will simply make the connection
and listen for a string containing the date and time. This will be sort of like dialing the local time service,
except that we won't have to listen to an advertisement before getting the time.

The bottom line is that with socket programming, it is easy to write code that will cause a stream of
bytes to �ow in both directions between a client and a server. This is no more di�cult than causing a stream
of bytes to �ow in both directions between memory and a �le on a disk.

However, getting the bytes to �ow is the easy part. Beyond that, you must do all of the programming to
implement an application protocol that is understood by both the client and the server.

5.2.2.5.2 URL Programming

URL programming occurs at a higher level than socket programming, and in theory represents a very powerful
idea.

In theory, by using the URL class, you can open a connection to a resource on the web, speci�ed by
a URL object, and simply call the getContent method on that URL object. The content of the
resource will then be magically downloaded and will appear as an object on the client machine, even if it
requires an application protocol that didn't exist when you wrote the program, and contains content that
you didn't understand when you wrote the program.

This description may be a bit of an overstatement, but it is pretty close to the claims being made. This
is a powerful idea, which may or may not bear fruit in the future.

If fully implemented by browsers, the idea means that you can place new and unusual material on a web
site along with special content handlers and protocol handlers. Then a cooperating browser will use those
special handlers to move that material from the web site to the client and interpret its content once it gets
there without a requirement to install software (such as plug-ins) on the client computer on a permanent
basis.

Here is what Peter van der Linden has to say about this topic in his excellent book titled Just Java 1.1
and Beyond:

"If a browser doesn't recognize a media type, it should be able to download the code to process
it from the same place it got the �le. If they ever get this working, it will be ... a good thing."

Is it working, or will they ever get it working? I don't know. If it depends on cooperation among all the
major players, including the major browser vendors - probably not. Therefore, I don't plan to spend much
time on the topic of protocol and content handlers until I see some evidence that it is working to such an
extent that it is practically useful.

That is not to say that you couldn't use the capability right now if you were developing an intranet and
wanted the clients to have access to new and unusual content. It would be necessary for you to provide the
appropriate protocol and content handlers, and it would probably be necessary for the clients to run Java
applications written by you instead of standard browsers to access the data.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1992 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Also, the URL class provides an alternative way to connect one computer to another and transfer
data on a stream basis, so we will see some examples of retrieving data from a server by obtaining a URL
connection, and then opening and servicing I/O streams between the client and the server. We will see some
sample programs that make use of this technique, but we will also see that it is somewhat redundant with
the socket programming approach.

5.2.2.6 A local area network

This is part of a sub-collection of modules designed for teaching network programming. Therefore, you may
�nd some of the modules more meaningful if you are able to connect two or more computers in a local area
network and run the sample programs across the network.

However, it is possible to simulate a network inside a single computer. If you are unable to create an
actual network, you should be able to run all of the sample programs by simulating a network in your single
computer.

5.2.2.7 The operating system

While the capabilities of Java are generally independent of the operating system in use, the manner in
which an individual computer must be con�gured for network operation is generally not independent of the
operating system.

In those cases where these modules provide instructions for con�guring the computer, those instructions
will assume a Windows operating system. If you are using a di�erent operating system, you will need to
translate those instructions into your operating system.

5.2.2.8 What's Next?

We will learn how to use the Java InetAddress class to �nd the domain name corresponding to an IP
address, and to �nd the IP address corresponding to a domain name in our sample program in the next
module.

5.2.2.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4620: General Information
• File: Java4620.htm
• Published: 03/02/14
• Revised 12/26/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1993

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1994 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.2.3 Java4620r-Review
23

5.2.3.1 Table of Contents

• Preface (p. 2000)
• Questions (p. 2000)

· 1 (p. 2000) , 2 (p. 2000) , 3 (p. 2000) , 4 (p. 2000) , 5 (p. 2001) , 6 (p. 2001) , 7 (p. 2001) , 8
(p. 2001) , 9 (p. 2001) , 10 (p. 2001) , 11 (p. 2001) , 12 (p. 2002) , 13 (p. 2002) , 14 (p. 2002)
, 15 (p. 2002) , 16 (p. 2002) , 17 (p. 2002) , 18 (p. 2002) , 19 (p. 2003) , 20 (p. 2003) , 21 (p.
2003) , 22 (p. 2003) , 23 (p. 2003) , 24 (p. 2003)

• Answers (p. 2005)
• Miscellaneous (p. 2008)

5.2.3.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4620: General Infor-
mation 24 in the Network Programming sub-collection.

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

5.2.3.3 Questions

5.2.3.3.1 Question 1

True or False?
A network is a group of computers and other devices that are connected in some fashion for the purpose

of exchanging data.
Go to answer 1 (p. 2008)

5.2.3.3.2 Question 2

True or False?
Each of the devices on the network can be thought of as a node , and each node has the same address.
Go to answer 2 (p. 2008)

5.2.3.3.3 Question 3

True or False?
Modern networks transfer data using a concept known as packet switching .
Go to answer 3 (p. 2008)

5.2.3.3.4 Question 4

True or False?
In order for two or more computers connected to a network to be able to exchange data in an orderly

manner, each computer must use a di�erent protocol. The protocol de�nes the rules by which they commu-
nicate.

Go to answer 4 (p. 2008)

23This content is available online at <http://cnx.org/content/m49577/1.3/>.
24http://cnx.org/content/m49533/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1995

5.2.3.3.5 Question 5

True or False?
The HTTP protocol de�nes how web browsers and servers communicate and the SMTP protocol de�nes

how some email is transferred
Go to answer 5 (p. 2007)

5.2.3.3.6 Question 6

True or False?
IP is an acronym that stands for Interconnection Protocol.
Go to answer 6 (p. 2007)

5.2.3.3.7 Question 7

True or False?
IP is a network protocol that moves packets of data from a source to a destination. As the name

implies, this is the protocol normally used on the Internet.
Go to answer 7 (p. 2007)

5.2.3.3.8 Question 8

True or False?
The Transmission Control Protocol (TCP) was added to IP to give each end of a connection the

ability to acknowledge receipt of IP packets and to request retransmission of corrupted or lost packets.
Also TCP makes it possible to put the packets back together at the destination in the same order that
they were sent.

Go to answer 8 (p. 2007)

5.2.3.3.9 Question 9

True or False?
TCP and IP work together to provide a reliable method of encapsulating a message into data packets,

sending the packets to a destination, and reconstructing the message from the packets at the destination.
Go to answer 9 (p. 2007)

5.2.3.3.10 Question 10

True or False?
The User Datagram Protocol (UDP) is even more reliable than TCP/IP in guaranteeing that a

series of packets will arrive in the right order. However, UDP involves a high level of overhead and the
data transfer rate may be slow.

Go to answer 10 (p. 2007)

5.2.3.3.11 Question 11

True or False?
Every computer attached to an IP network has a unique address, typically consisting of four bytes or

32 bits. E�orts are underway to expand the number of possible unique addresses to a much larger number.
The planned number is the number of unique addresses that can be represented with a 128-bit address.

Go to answer 11 (p. 2007)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1996 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.2.3.3.12 Question 12

True or False?
For human consumption, we usually convert the value of each of the IP address bytes to an unsigned

decimal value and display them connected by periods to make them easier to remember. For example, a
typical IP address might be 206.77.150.222 .

Go to answer 12 (p. 2007)

5.2.3.3.13 Question 13

True or False?
Most IP addresses have a corresponding name known as a domain name .
Go to answer 13 (p. 2007)

5.2.3.3.14 Question 14

True or False?
The Domain Name of a destination server is encapsulated into data packets and used by the internet

protocol to route those packets from the source to the destination.
Go to answer 14 (p. 2007)

5.2.3.3.15 Question 15

True or False?
The Java InetAddress class can often be used to �nd the domain name corresponding to an IP

address, and to �nd the IP address corresponding to a domain name.
Go to answer 15 (p. 2006)

5.2.3.3.16 Question 16

True or False?
Each server computer that you may connect to will be logically organized into ports . Theoretically,

there are a large number of available ports. A subset of those port numbers are prede�ned to be used for
certain standard services. For example, if you want to connect with a public server that communicates using
the HTTP protocol, you would normally connect to port 80 on the server of interest.

Go to answer 16 (p. 2006)

5.2.3.3.17 Question 17

True or False?
A �rewall is the common name given to the equipment and associated software that is used to improve

the communication speed of computers inside of a company with the Internet at large outside the company.
Go to answer 17 (p. 2006)

5.2.3.3.18 Question 18

True or False?
A proxy server is the common name given to the equipment and associated software that is used to

insulate the network inside of a company from the Internet at large outside the company. Typically, the
�rewall will restrict the degree to which computers inside the company can communicate with the Internet
for security and other reasons.

Go to answer 18 (p. 2006)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1997

5.2.3.3.19 Question 19

True or False?
URL is an acronym for Uniform Resource Locator . (It is also the name of a class in Java.) A

URL is a pointer to a particular resource at a particular location on the Internet.
Go to answer 19 (p. 2006)

5.2.3.3.20 Question 20

True or False?
A URL speci�es the following:

• the protocol used to access the server (such as http)
• the name of the server
• the port on the server (optional)
• the path and name of a speci�c �le on the server (sometimes optional)
• the anchor or reference point within the �le (optional)

Go to answer 20 (p. 2006)

5.2.3.3.21 Question 21

True or False?
Java provides at least two di�erent approaches for doing network programming (and possibly more) ,

insofar as the web is concerned. The two approaches are associated with

• The Connector , DatagramConnector , and ServerConnector classes
• The URL, URLEncoder, and URLConnection classes.

Go to answer 21 (p. 2006)

5.2.3.3.22 Question 22

True or False?
The two socket classes named Socket and DatagramSocket represent TCP and UDP commu-

nications respectively.
Go to answer 22 (p. 2005)

5.2.3.3.23 Question 23

True or False?
Generally, the Socket and DatagramSocket classes are used to implement both clients and

servers , while the ServerSocket class is only used to implement servers .
Go to answer 23 (p. 2005)

5.2.3.3.24 Question 24

True or False?
Although the distinction between client and server is becoming less clear each day, there is one funda-

mental distinction that is inherent in the Java programming language.

The server initiates conversations with clients, while clients block and wait for a server to initiate
a conversation.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1998 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Go to answer 24 (p. 2005)
What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

1999

5.2.3.4 Answers

5.2.3.4.1 Answer 24

False.
Although the distinction between client and server is becoming less clear each day, there is one funda-

mental distinction that is inherent in the Java programming language.

The client initiates conversations with servers, while servers block and wait for a client to initiate
a conversation.

Go back to Question 24 (p. 2003)

5.2.3.4.2 Answer 23

True.
Go back to Question 23 (p. 2003)

5.2.3.4.3 Answer 22

True.
Go back to Question 22 (p. 2003)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2000 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.2.3.4.4 Answer 21

False.
Java provides at least two di�erent approaches for doing network programming (and possibly more) ,

insofar as the web is concerned. The two approaches are associated with

• The Socket , DatagramSocket , and ServerSocket classes
• The URL, URLEncoder, and URLConnection classes.

Go back to Question 21 (p. 2003)

5.2.3.4.5 Answer 20

True.
Go back to Question 20 (p. 2003)

5.2.3.4.6 Answer 19

True.
Go back to Question 19 (p. 2003)

5.2.3.4.7 Answer 18

False. A proxy server is often used to improve the communication speed of computers inside of a company
with the Internet at large outside the company. For example, if ten people inside the company attempt to
connect to the same Internet server and download the same web page within a (hopefully) short period of
time, that page may be saved on the proxy server on the �rst attempt and then delivered to the next nine
people without re-acquiring it from the outside web server. This can signi�cantly improve delivery time and
reduce network tra�c into and out of the company.

Go back to Question 18 (p. 2002)

5.2.3.4.8 Answer 17

False. A �rewall is the common name given to the equipment and associated software that is used to insulate
the network inside of a company from the Internet at large outside the company. Typically, the �rewall will
restrict the degree to which computers inside the company can communicate with the Internet for security
and other reasons.

Go back to Question 17 (p. 2002)

5.2.3.4.9 Answer 16

True.
Go back to Question 16 (p. 2002)

5.2.3.4.10 Answer 15

True.
Go back to Question 15 (p. 2002)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2001

5.2.3.4.11 Answer 14

False. The Domain Name System (DNS) was developed to translate between IP addresses and domain
names. Whenever you log your browser onto the internet and attempt to connect to a server using its domain
name, the browser �rst communicates with a DNS server to learn the corresponding numeric IP address.
The numeric IP address (and not the domain name) is encapsulated into the data packets and used by
the internet protocol to route those packets from the source to the destination.

Go back to Question 14 (p. 2002)

5.2.3.4.12 Answer 13

True.
Go back to Question 13 (p. 2002)

5.2.3.4.13 Answer 12

True.
Go back to Question 12 (p. 2002)

5.2.3.4.14 Answer 11

True.
Go back to Question 11 (p. 2001)

5.2.3.4.15 Answer 10

False. The User Datagram Protocol (UDP) is often referred to as an unreliable protocol because there
is no guarantee that a series of packets will arrive in the right order, or that they will arrive at all.

Go back to Question 10 (p. 2001)

5.2.3.4.16 Answer 9

True.
Go back to Question 9 (p. 2001)

5.2.3.4.17 Answer 8

True.
Go back to Question 8 (p. 2001)

5.2.3.4.18 Answer 7

True.
Go back to Question 7 (p. 2001)

5.2.3.4.19 Answer 6

False. IP is an acronym that stands for Internet Protocol.
Go back to Question 6 (p. 2001)

5.2.3.4.20 Answer 5

True.
Go back to Question 5 (p. 2001)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2002 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.2.3.4.21 Answer 4

False. In order for two or more computers connected to a network to be able to exchange data in an orderly
manner, they must adhere to a mutually acceptable communication protocol. The protocol de�nes the rules
by which they communicate.

Go back to Question 4 (p. 2000)

5.2.3.4.22 Answer 3

True.
Go back to Question 3 (p. 2000)

5.2.3.4.23 Answer 2

False. Each of the devices on the network can be thought of as a node , and each node has a unique
address.

Go back to Question 2 (p. 2000)

5.2.3.4.24 Answer 1

True.
Go back to Question 1 (p. 2000)

5.2.3.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4620r-Review
• File: Java4620r.htm
• Published: 03/08/14
• Revised 12/26/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2003

5.2.4 Java4630: The InetAddress Class
25

5.2.4.1 Table of Contents

• Preface (p. 2009)

· Viewing tip (p. 2009)

* Figures (p. 2009)
* Listings (p. 2009)

• General background information (p. 2010)
• Discussion and sample code (p. 2010)
• Run the program (p. 2019)
• What's next? (p. 2019)
• Miscellaneous (p. 2019)
• Complete program listing (p. 2019)

5.2.4.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX. More speci�cally, it is one in a sub-collection of modules
designed for teaching network programming in that course. The purpose of this module is to introduce the
student to the InetAddress class that can be used to deal with IP addresses and domain names .

5.2.4.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

5.2.4.2.1.1 Figures

• Figure 1 (p. 2012) . Program output.
• Figure 2 (p. 2013) . The list of Google IP addresses.
• Figure 3 (p. 2014) . The IP Address for my localhost.
• Figure 4 (p. 2015) . Name and IP address of my localhost.
• Figure 5 (p. 2016) . Canonical host name for Google.
• Figure 6 (p. 2018) . Google host name using reverse lookup.

5.2.4.2.1.2 Listings

• Listing 1 (p. 2012) . Beginning of the program.
• Listing 2 (p. 2013) . Display the Google InetAddress objects.
• Listing 3 (p. 2014) . Get InetAddress object for localhost.
• Listing 4 (p. 2015) . Extract name and IP address of my localhost.
• Listing 5 (p. 2016) . Get and display canonical host name for Google.
• Listing 6 (p. 2017) . Do a reverse lookup on Google.
• Listing 7 (p. 2018) . End of the program.
• Listing 8 (p. 2019) . Complete program listing.

25This content is available online at <http://cnx.org/content/m49534/1.5/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2004 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.2.4.3 General background information

Every computer attached to an IP network has a unique 32-bit or 128-bit IP address.
For human consumption, we usually convert each of the bytes in the IP address to an unsigned decimal

value and display them connected by periods to make them easier to remember. As of this writing, the IP
address of www.austincc.edu 26 (the college where I teach) is 206.77.150.222.

The domain name
What do we mean when we speak of www.austincc.edu 27 ?
Each IP address can have a corresponding name known as a domain name . The domain name for

the IP address 206.77.150.222 is www.austincc.edu 28 .
For example, I can enter either the IP address or the domain name into the address �eld of my browser

and use it to connect to the ACC web site.
The Domain Name System (DNS)
The Domain Name System (DNS) was developed to translate between IP addresses and domain names.

Whenever you log your browser onto the internet and attempt to connect to a server using its domain name
, the browser �rst communicates with a DNS server to learn the corresponding numeric IP address. The
numeric IP address is encapsulated into the data packets and used by the internet protocol to route those
packets from the source to the destination.

The InetAddress class
We will learn how to use methods of the Java InetAddress class to �nd the IP address corresponding

to a domain name in this module.
We will learn how to �nd the canonical host name for a given domain name.
We will learn how to obtain information about the localhost .
We will learn how to do a reverse lookup to �nd the canonical host name associated with an IP address.
Methods of the InetAddress class
The InetAddress class provides several static methods that return a reference to an object of type

InetAddress . You can use those methods to deal with and to manipulate IP addresses and domain names.
For example, the static getByName(String host) method returns a reference to an InetAddress

object representing the host whose domain name is passed as a parameter to the method. The resulting
object can be used to determine the IP address and the canonical host name of the host.

There is a problem with this, however. As I will explain later, many hosts have multiple IP addresses.
To accommodate this, the InetAddress class provides a method named getAllByName(String host)
that can be used to get an array of references to InetAddress objects representing IP addresses assigned
to the host.

The getLocalHost method returns a reference to an InetAddress object representing the local host
computer.

There are also a variety of methods that can be called on an InetAddress object to get information
about the host that is represented by that object.

5.2.4.4 Discussion and sample code

I will present and explain a program named Java4630a that illustrates various aspects of the InetAddress
class in this module.

I will explain the program in fragments. A complete listing of the program is provided in Listing 8 (p.
2019) .

The program output
The program produces the screen output shown in Figure 1 (p. 2012) when run on my computer.

However, the information regarding the LocalHost will be di�erent when you run this program on your
computer.

26http://www.austincc.edu
27http://www.austincc.edu
28http://www.austincc.edu

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2005

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2006 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Figure 1 - Program output.

Get and display InetAddress(es) of Google URL

www.google.com/173.194.115.17

www.google.com/173.194.115.18

www.google.com/173.194.115.19

www.google.com/173.194.115.20

www.google.com/173.194.115.16

Get and display current InetAddress of LocalHost

dell8700/192.168.2.16

Extract and display current name of LocalHost

dell8700

Extract and display current address of LocalHost

192.168.2.16

Display canonical host name for Google

dfw06s39-in-f17.1e100.net

Display Google name using reverse lookup.

dfw06s39-in-f17.1e100.net

dfw06s39-in-f17.1e100.net

Table 5.1

I will refer to this output in context as I explain the various elements of the program.
Beginning of the program
This is a very simple program consisting solely of the main method in a class named Java4630a .

The program begins in Listing 1 (p. 2012) .

Listing 1 - Beginning of the program.

import java.net.*;

class Java4630a{

public static void main(String[] args){

try{

System.out.println(

"Get and display InetAddress(es) of Google URL");

InetAddress[] addresses =

InetAddress.getAllByName("www.google.com");

Table 5.2

Domain names and IP addresses

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2007

There is not necessarily a one-to-one correspondence between IP addresses and domain names. In fact
there can be a many-to-one correspondence between the two.

Every computer on the Internet must have a unique IP address, but multiple computers can have (or can
respond to) the same domain name. For example, if the domain name, www.google.com 29 , were required to
apply to a single computer, that computer would require an enormous amount of bandwidth and processing
power to accommodate all of the search requests that are made to that domain name every second of every
day.

The getAllByName method
The InetAddress class provides a static method named getAllByName that takes the domain

name of a host as an incoming parameter and returns an array containing references to one or more objects of
type InetAddress . Each object contains an IP address and some other information related to the domain
name. The set of InetAddress objects in the array contain all of the IP addresses that are currently
assigned to that domain name.

Get all for Google
The code in Listing 1 (p. 2012) calls the getAllByName method passing the domain name for Google

as a parameter. It receives a reference to an array containing references to one or more InetAddress
objects. The set of InetAddress objects encapsulate a list of �ve IP addresses that are currently assigned
to Google.

Display the InetAddress objects
Listing 2 (p. 2013) contains a for loop that displays the toString version of the information

encapsulated in each of the InetAddress objects.

Listing 2 - Display the Google InetAddress objects.

for(int cnt=0; cnt<addresses.length;cnt++){
System.out.println(addresses[cnt]);

}//end for loop

Table 5.3

Figure 2 (p. 2013) shows the output produced by Listing 1 (p. 2012) and Listing 2 (p. 2013) .

Figure 2 - The list of Google IP addresses.

Get and display InetAddress(es) of Google URL

www.google.com/173.194.115.83

www.google.com/173.194.115.84

www.google.com/173.194.115.80

www.google.com/173.194.115.81

www.google.com/173.194.115.82

Table 5.4

Everything to the left of the slash in the last �ve lines of Figure 2 (p. 2013) shows the domain name.
Everything to the right of the slash shows the IP addresses. Note that there are duplicate domain names
but there are no duplicate IP addresses.

29http://www.google.com

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2008 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Why only �ve IP addresses?
I was surprised that there are only �ve IP addresses in the list. Surely Google needs more than �ve

front-end computers to handle the thousands of incoming requests that it receives every second of every day.
Upon further investigation I noticed that if I run the same program over and over, I am likely to get

di�erent sets of �ve IP addresses on di�erent runs. This suggests that in some fashion, the getAllByName
method limits the number of InetAddress objects to only �ve of the potentially hundreds of IP addresses
that are assigned to a particular host. However, this is not mentioned in the Oracle documentation. The
documentation states:

"Given the name of a host, returns an array of its IP addresses, based on the con�gured name
service on the system."

There is clearly more going on here than I understand.
The localhost
The computer that you are using to read this module online also has an IP address and a name. The IP

address, the name, and perhaps some other things as well are grouped together under something commonly
referred to as localhost . In other words, the IP address of your localhost is the IP address of the computer
that you are using to read this module.

Get InetAddress object for localhost
The code in Listing 3 (p. 2014) calls the static getLocalHost method of the InetAddress class to

get a reference to an InetAddress object representing the computer that I was using when I wrote this
module.

Then it passes that object's reference to the println method causing the overridden toString method
belonging the InetAddress object to be executed.

Listing 3 - Get InetAddress object for localhost.

System.out.println();//blank line

System.out.println("Get and display current " +

"InetAddress of LocalHost");

InetAddress address = InetAddress.getLocalHost();

System.out.println(address);

Table 5.5

The screen output for localhost
The string returned by the overridden toString method of the InetAddress object is shown by the

second line in Figure 3 (p. 2014) .

Figure 3 - The IP Address for my localhost.

Get and display current InetAddress of LocalHost

dell8700/192.168.2.16

Table 5.6

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2009

Everything to the left of the slash is the name of the computer. Everything to the right of the slash is
the IP address.

A local area network
Note that this is not the IP address by which the world sees my computer on the Internet. Instead, this

is one of several computers on a local area network. This is the address that was assigned to this computer
by the network router.

I can �nd the IP address that my cable modem presents to the world by entering the following text into
the Google search box without the quotation marks: "get ip address"

As you can see, the second line in Figure 3 (p. 2014) contains both the name and the IP address separated
by a slash character.

Extract name and IP address of my localhost
Assume that you have a reference to an InetAddress object and for some reason you need to extract

the name and IP address as separate String objects. (We will need to do this in a future module.) The
InetAddress class provides two methods that allow you to do that.
The code in Listing 4 (p. 2015) calls the getHostName and the getHostAddress methods on the

reference to the InetAddress object and displays the strings returned by those methods.

Listing 4 - Extract name and IP address of my localhost.

System.out.println();//blank line

System.out.println("Extract and display current " +

"name of LocalHost");

System.out.println(address.getHostName());

System.out.println();//blank line

System.out.println("Extract and display current " +

"address of LocalHost");

System.out.println(address.getHostAddress());

Table 5.7

The code in Listing 4 (p. 2015) produces the output shown in Figure 4 (p. 2015) .

Figure 4 - Name and IP address of my localhost.

Extract and display current name of LocalHost

dell8700

Extract and display current address of LocalHost

192.168.2.16

Table 5.8

But, we already knew the answer
Of course, we already knew what the output would be based on the toString output in Figure 3 (p.

2014) . The di�erence is that in Figure 3 (p. 2014) , we only have that information as part of something

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2010 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

that is displayed on the screen. The code in Listing 4 (p. 2015) gives us that same information in the form
of String objects that we can use for some purpose other than simply looking at the information on the
screen. (See googleAddress in Listing 6 (p. 2017) for example.)

Canonical host name
The documentation describes the method named getCanonicalHostName partially as follows:

"Gets the fully quali�ed domain name for this IP address. Best e�ort method, meaning we may
not be able to return the FQDN depending on the underlying system con�guration."

One online description for a canonical host name reads as follows:

"A host machine on a network can be identi�ed by several di�erent names. However, each host
must have one o�cial hostname. All other hostnames are considered aliases of the canonical
hostname"

Get and display canonical host name for Google
Returning now to Google, the code in Listing 5 (p. 2016) gets and displays the canonical hostname for

Google.

Listing 5 - Get and display canonical host name for Google.

System.out.println(

"Display canonical host name for Google");

//Get InetAddress containing one of Google's

// IP addresses.

address = InetAddress.getByName("www.google.com");

System.out.println(address.getCanonicalHostName());

Table 5.9

The code in Listing 5 (p. 2016) begins by getting a reference to one of the InetAddress objects that
represent www.google.com 30 . Then the getCanonicalHostName method is called on that object to get
and display the canonical host name. The code in Listing 5 (p. 2016) produces the output shown in Figure
5 (p. 2016) .

Figure 5 - Canonical host name for Google.

Display canonical host name for Google

dfw06s39-in-f17.1e100.net

Table 5.10

As you can see, this canonical host name wouldn't mean much to a human observer.
Other canonical host names
Here is a list of some canonical host names that can be obtained using code similar to that shown in

Figure 5 (p. 2016) . Try pasting them into your browser's address window and pressing the Enter key to see
which ones access the sites that you expect and which ones don't .

30http://www.google.com

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2011

• www.google.com 31 : dfw06s39-in-f17.1e100.net
• www.amazon.com 32 : (No canonical host name was returned.)
• www.yahoo.com 33 : ir2.fp.vip.bf1.yahoo.com
• www.dickbaldwin.com 34 : (No canonical host name was returned.)
• www.whitehouse.gov 35 : (No canonical host name was returned.)
• www.healthcare.gov 36 : a23-207-26-194.deploy.static.akamaitechnologies.com
• www.austincc.edu 37 : m20677150222.austincc.edu
• www.ebay.com 38 : www.ebay.com
• www.facebook.com 39 : edge-star-shv-02-dfw1.facebook.com
• www.twitter.com 40 : (No canonical host name was returned.)
• www.foxnews.com 41 : a96-17-203-72.deploy.akamaitechnologies.com
• www.cbsnews.com 42 : a96-17-203-90.deploy.akamaitechnologies.com

Reverse lookup
At one point in the history of Java, it was possible to call the getByName method passing the IP

address as a string to do a reverse lookup on an IP address. The method would return the domain name
to which the IP address was assigned. However, this changed around Java version 1.4 and some additional
code is now required to do a reverse lookup.

Do a reverse lookup on Google
Listing 6 (p. 2017) does a reverse lookup on Google by passing one of the IP addresses to the getBy-

Name method and then calling the following methods on the InetAddress object that is returned:

• getHostName
• getCanonicalHostName

Listing 6 - Do a reverse lookup on Google.

System.out.println(

"Display Google name using reverse lookup.");

String googleAddress = address.getHostAddress();

System.out.println(InetAddress.getByName(

googleAddress).getHostName());

System.out.println(InetAddress.getByName(

googleAddress).getCanonicalHostName());

Table 5.11

The code in Listing 6 (p. 2017) produces the output shown in Figure 6 (p. 2018) .

31http://www.google.com
32http://www.amazon.com
33http://www.yahoo.com
34http://www.dickbaldwin.com
35http://www.whitehouse.gov
36http://www.healthcare.gov
37http://www.austincc.edu
38http://www.ebay.com
39http://www.facebook.com
40http://www.twitter.com
41http://www.foxnews.com
42http://www.cbsnews.com

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2012 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Figure 6 - Google host name using reverse lookup.

Display Google name using reverse lookup.

dfw06s39-in-f17.1e100.net

dfw06s39-in-f17.1e100.net

Table 5.12

The canonical host name
To me, the most interesting thing in Figure 6 (p. 2018) is that both methods return the canonical host

name. Neither method returns the domain name.
Although it isn't shown here, calling the getHostName method on one of the InetAddress objects

contained in the addresses array in Listing 1 (p. 2012) returns the domain name or www.google.com 43

. Calling the getCanonicalHostName on the same InetAddress object returns the canonical name
shown in Figure 5 (p. 2016) .

Apparently when you create an InetAddress object on the basis of the domain name, the object knows
both the domain name and the canonical host name. However, when you create an InetAddress object
using the IP address, the only name that it knows is the canonical host name.

The InetAddress class also has a method named getByAddress that apparently provides
the same behavior when the IP address is converted to an array of bytes and passed to the method
in that format. However, I haven't tested that method.

Can you access the site with the canonical host name
With respect to Google, the canonical host name, the domain name, or one of the IP addresses can be

used in your browser address �eld to access the site.
However, for those websites in the above list (p. 2016) that have a canonical name that ends with

akamaitechnologies.com , it appears that you cannot use either the canonical name or the IP address to
access the web site. (I will leave it as an exercise for the student to investigate this further.)

The end of the program
The code in Listing 7 (p. 2018) takes care of the administrative details necessary to properly end the

program.

Listing 7 - End of the program.

}catch(UnknownHostException e){

e.printStackTrace();

}//end catch

}//end main

}//end class Java4630a

Table 5.13

43http://www.google.com

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2013

5.2.4.5 Run the program

I encourage you to copy the code from Listing 8 (p. 2019) . Compile the code and execute it while you are
connected to the Internet. Experiment with the code, making changes, and observing the results of your
changes. Make certain that you can explain why your changes behave as they do.

5.2.4.6 What's next?

The next module will deal with the URL class and the URLEncoder class.

5.2.4.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4630: The InetAddress Class
• File: Java4630.htm
• Published: 03/02/14
• Revised: 02/07/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

5.2.4.8 Complete program listing

Listing 8 - Complete program listing.

/*File Java4630a.java Copyright 1998, R.G.Baldwin

Revised 01/03/14

This program exercises several of the methods of the

InetAddress class.

**/

import java.net.*;

public class Java4630a{

public static void main(String[] args){

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2014 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

try{

System.out.println(

"Get and display InetAddress(es) of Google URL");

InetAddress[] addresses =

InetAddress.getAllByName("www.google.com");

for(int cnt=0; cnt<addresses.length;cnt++){
System.out.println(addresses[cnt]);

}//end for loop

System.out.println();//blank line

System.out.println("Get and display current " +

"InetAddress of LocalHost");

InetAddress address = InetAddress.getLocalHost();

System.out.println(address);

System.out.println();//blank line

System.out.println("Extract and display current " +

"name of LocalHost");

System.out.println(address.getHostName());

System.out.println();//blank line

System.out.println("Extract and display current " +

"address of LocalHost");

System.out.println(address.getHostAddress());

System.out.println();//blank line

System.out.println(

"Display canonical host name for Google");

//Get InetAddress containing one of Google's

// IP addresses.

address = InetAddress.getByName("www.google.com");

System.out.println(address.getCanonicalHostName());

System.out.println(

"Display Google name using reverse lookup.");

String googleAddress = address.getHostAddress();

System.out.println(InetAddress.getByName(

googleAddress).getHostName());

System.out.println(InetAddress.getByName(

googleAddress).getCanonicalHostName());

}catch(UnknownHostException e){

e.printStackTrace();

}//end catch

}//end main

}//end class Java4630a

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2015

5.2.5 Java4630r-Review
44

5.2.5.1 Table of Contents

• Preface (p. 2021)
• Questions (p. 2021)

· 1 (p. 2021) , 2 (p. 2021) , 3 (p. 2021) , 4 (p. 2021) , 5 (p. 2022) , 6 (p. 2022) , 7 (p. 2022)

• Answers (p. 2023)
• Miscellaneous (p. 2024)

5.2.5.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4630: The InetAddress
Class 45 in the Network Programming sub-collection.

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

5.2.5.3 Questions

5.2.5.3.1 Question 1

True or False?
The Java InetAddress class can be used to �nd the IP address corresponding to a domain name .
Go to answer 1 (p. 2024)

5.2.5.3.2 Question 2

True or False?
Many hosts have multiple IP addresses. To accommodate this, the InetAddress class provides a

method named getByName that can be used to get an array of references to InetAddress objects
representing IP addresses assigned to the host.

Go to answer 2 (p. 2024)

5.2.5.3.3 Question 3

True or False?
The getByName method of the InetAddress class returns a reference to an InetAddress object

representing the host whose domain name is passed as a parameter to the method.
Go to answer 3 (p. 2024)

5.2.5.3.4 Question 4

True or False?
The getLocalHost method of the InetAddress class returns a reference to an array of InetAddress

objects representing all of the computers on the local area network.
Go to answer 4 (p. 2023)

44This content is available online at <http://cnx.org/content/m49562/1.3/>.
45http://cnx.org/content/m49534/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2016 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.2.5.3.5 Question 5

True or False?
There is a one-to-one correspondence between IP addresses and domain names.
Go to answer 5 (p. 2023)

5.2.5.3.6 Question 6

True or False?
Every computer on the Internet must have a unique IP address, but multiple computers can have (or

can respond to) the same domain name.
Go to answer 6 (p. 2023)

5.2.5.3.7 Question 7

True or False?
The computer that you are using to read this module online also has an IP address and a name. The IP

address, the name, and perhaps some other things as well are grouped together under something commonly
referred to as localhost . In other words, the IP address of your localhost is the IP address of the computer
that you are using to read this module.

Go to answer 7 (p. 2023)
What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2017

5.2.5.4 Answers

5.2.5.4.1 Answer 7

True.
Go back to Question 7 (p. 2022)

5.2.5.4.2 Answer 6

True.
Go back to Question 6 (p. 2022)

5.2.5.4.3 Answer 5

False. There is not necessarily a one-to-one correspondence between IP addresses and domain names. In
fact there can be a many-to-one correspondence between the two.

Go back to Question 5 (p. 2022)

5.2.5.4.4 Answer 4

False. The getLocalHost method of the InetAddress class returns a reference to an InetAddress
object representing the local host computer.

Go back to Question 4 (p. 2021)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2018 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.2.5.4.5 Answer 3

True.
Go back to Question 3 (p. 2021)

5.2.5.4.6 Answer 2

False. Many hosts have multiple IP addresses. To accommodate this, the InetAddress class provides a
method named getAllByName that can be used to get an array of references to InetAddress objects
representing all (or at least some) of the IP addresses assigned to the host.

Go back to Question 2 (p. 2021)

5.2.5.4.7 Answer 1

True.
Go back to Question 1 (p. 2021)

5.2.5.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4630r-Review
• File: Java4630r.htm
• Published: 03/08/14
• Revised 12/26/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

5.2.6 Java4640: The URL Class and the URLEncoder Class
46

5.2.6.1 Table of Contents

• Preface (p. 2025)

· Viewing tip (p. 2025)

46This content is available online at <http://cnx.org/content/m49535/1.5/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2019

* Figures (p. 2025)
* Listings (p. 2025)

• General background information (p. 2026)
• Discussion and sample code (p. 2026)

· The program Java4640a (p. 2027)
· The program Java4640d (p. 2032)

• Run the programs (p. 2035)
• What's next? (p. 2035)
• Miscellaneous (p. 2035)
• Complete program listings (p. 2035)

5.2.6.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX. More speci�cally, it is one in a sub-collection of modules
designed for teaching network programming in that course. The purpose of this module is to introduce the
student to the URL class and the URLEncoder class.

5.2.6.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

5.2.6.2.1.1 Figures

• Figure 1 (p. 2026) . General syntax of a URL.
• Figure 2 (p. 2027) . Screen output from the program named Java4640a.
• Figure 3 (p. 2029) . Program output for string-parameter constructor.
• Figure 4 (p. 2030) . Building an absolute URL.
• Figure 5 (p. 2031) . An encoded string.
• Figure 6 (p. 2032) . Encoding rules.
• Figure 7 (p. 2033) . Program output.

5.2.6.2.1.2 Listings

• Listing 1 (p. 2028) . The method named display.
• Listing 2 (p. 2028) . Beginning of the program named Java4640a.
• Listing 3 (p. 2029) . Building an absolute URL.
• Listing 4 (p. 2031) . The URLEncoder.encode method.
• Listing 5 (p. 2033) . Beginning of the program named Java4640d.
• Listing 6 (p. 2034) . Open a connection to the URL.
• Listing 7 (p. 2034) . Read and display the data.
• Listing 8 (p. 2035) . The program named Java4640a.
• Listing 9 (p. 2038) . The program named Java4640d.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2020 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.2.6.3 General background information

What is a URL?
URL is an acronym for Uniform Resource Locator. It is also the name of a class in Java, which is the

primary topic for this module.
A URL is a pointer to a particular resource at a particular location on the Internet. As you learned in

an earlier module, a URL speci�es the following :

• protocol used to access the server (such as http),
• name of the server,
• port on the server (optional)
• path and name of a speci�c �le on the server (sometimes optional)
• anchor or reference within the �le (optional)

Sometimes the name of the �le can be omitted, in which case an HTTP server may append the �le name
index.html to the speci�ed path and try to load that �le. For example, we will write a simple HTTP
server in a future module that will attempt to deliver a �le named index.html if the name of the �le is
omitted from the URL.

In addition to specifying the name of the �le of interest, it is also sometimes possible to specify an anchor
or reference that has been established inside the �le. An example of how to take advantage of this capability
was provided in an earlier module.

General syntax of a URL
The general syntax of a URL is shown in Figure 1 (p. 2026) .

Figure 1 - General syntax of a URL.

protocol://hostname[:port]/path/filename#ref

Table 5.14

The port number is optional, and is not normally required if you are accessing a server that provides the
required service on a standard port.

Two ways to do network programming
Java provides at least two di�erent ways to do network programming. The two ways are associated with

socket classes and URL classes. The socket classes will be the topic of future modules. This module is
concerned primarily with the URL class.

A higher level approach
URL programming occurs at a higher level than socket programming, and in theory represents some

very powerful ideas. The powerful ideas represented by the advanced features of the URL class require an
understanding of the development of protocol handlers and content handlers. I discussed this in some detail
in an earlier module titled Java4620: General Information , and won't repeat that discussion here.

A mundane alternative
In addition to supporting the advanced concepts discussed in the earlier module, the URL class also

provides a relatively mundane alternative way to connect one computer to another and transfer data on a
stream basis. This module is primarily based on this capability.

5.2.6.4 Discussion and sample code

I will explain the programs named Java4640a and Java4640d in fragments. Complete listings of both
programs are provided in Listing 8 (p. 2035) and Listing 9 (p. 2038) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2021

5.2.6.4.1 The program Java4640a

This program exercises four of the constructors and six of the methods of the URL class.
The program also illustrates the use of the URLEncoder class to convert a string containing spaces

and other such characters into a UTF-8 encoded string format.
Screen output from the program named Java4640a
The output from the program is shown in Figure 2 (p. 2027) . I will refer to portions of this output

while discussing the program.

Figure 2 - Screen output from the program named Java4640a.

Use simple string constructor for host URL

http www.austincc.edu -1 null

http://www.austincc.edu

Use simple string constructor for host plus file

http www.austincc.edu -1 /baldwin null

http://www.austincc.edu/baldwin

Use strings for protocol, host, and file

http www.austincc.edu -1 /baldwin null

http://www.austincc.edu/baldwin

Use strings for protocol host, and file

and int for port

http www.austincc.edu 80 /baldwin null

http://www.austincc.edu:80/baldwin

Construct absolute URL from host URL and relative URL

http www.austincc.edu -1 /baldwin/Index.html null

http://www.austincc.edu/baldwin/Index.html

Now use URLEncoder to create UTF-8 encoded String

http://space .tilde∼.plus+.com
http%3A%2F%2Fspace+.tilde%7E.plus%2B.com

Table 5.15

The method named display
The code in Listing 1 (p. 2028) is a method named display that I wrote to illustrate some of the

methods of the URL class, and also to serve the practical needs of displaying information contained in a
URL object.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2022 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Listing 1 - The method named display.

void display(URL url){//method to display parts of URL

System.out.print(url.getProtocol() + " ");

System.out.print(url.getHost() + " ");

System.out.print(url.getPort() + " ");

System.out.print(url.getFile() + " ");

System.out.println(url.getRef());

//Now display entire URL as a string.

System.out.println(url.toString());

System.out.println();

}//end display

Table 5.16

This method receives a reference to a URL object as a parameter and displays its component parts
separated by space characters. Then it uses the overridden toString method of the URL class to display
the contents of the URL object as a single String object.

The parts of the URL
As you can see from Listing 1 (p. 2028) , there is a method available for extracting each of the parts of

a URL that were identi�ed in the above list (p. 2026) .
Beginning of the program named Java4640a
Now that we know what the display method does, we can examine the code in the main method of

the class.
Listing 2 (p. 2028) shows the beginning of the program named Java4640a and the beginning of the

main method.

Listing 2 - Beginning of the program named Java4640a.

import java.net.*;

import java.io.*;

class Java4640a{

public static void main(String[] args){

Java4640a obj = new Java4640a();

try{

System.out.println(

"Use simple string constructor for host URL");

obj.display(new URL("http://www.austincc.edu"));

Table 5.17

Listing 2 (p. 2028) illustrates the instantiation of a URL object using the version of the constructor
that expects to receive the URL in string format. (I will ignore the exception handling code from these
discussions for brevity.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2023

Listing 2 (p. 2028) begins by instantiating an object of the controlling class that can be used to access
the display method. Then it instantiates a new URL object using the string-parameter version of the
constructor and passes that object to the display method.

As described above, the display method accesses each component part of the URL object and displays
them separated by spaces. Then it displays the URL object using the overridden toString method.

Program output for string-parameter constructor
The code in Listing 2 (p. 2028) produced the output shown in Figure 3 (p. 2029) .

Figure 3 - Program output for string-parameter constructor.

Use simple string constructor for host URL

http www.austincc.edu -1 null

http://www.austincc.edu

Table 5.18

The -1 in Figure 3 (p. 2029) indicates that there was no port speci�cation, and the null indicates that
there was no �le name speci�cation in the URL passed to the constructor for the URL object.

The code fragment in Listing 2 (p. 2028) is followed by code that constructs the URL object using other
overloaded versions of the constructor. Each overloaded version requires the URL information in di�erent
formats. You can view that code in Listing 8 (p. 2035) .

Building an absolute URL
I will to skip that code and move down to a more interesting case as shown by the fragment in Listing 3

(p. 2029) .

Listing 3 - Building an absolute URL.

System.out.println("Construct absolute URL from " +

"host URL and relative URL");

URL baseURL = new URL(

"http://www.austincc.edu/baldwin/hello.html");

obj.display(new URL(baseURL,"/baldwin/Index.html"));

Table 5.19

Listing 3 (p. 2029) uses a URL constructor that requires two parameters: a URL object and a String
object. Here is part of the somewhat cryptic description of this constructor from the Oracle documentation.

"Creates a URL by parsing the given spec within a speci�ed context. The new URL is created
from the given context URL and the spec argument as described in RFC2396 "Uniform Resource
Identi�ers : Generic * Syntax" : "

What does this mean?
Let me try to explain this constructor in my own words (with some help from Elliotte Rusty Harold) .

You can use this constructor to build an absolute URL from a relative URL .
Assume, for example, that you have written your own method to display HTML �les the way that they

are displayed by a browser rather than simply as a text �le. Such �les often contain links to relative URL's

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2024 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

. In such a case, the link would be provided simply as a path and �le name under the assumption that the
path and �le name can be found relative to the base URL containing the HTML �le.

According to Java Network Programming by Elliotte Rusty Harold,

"In this case, you use the URL to the document that contains the link to provide the missing
information."

The construction process
The code in Listing 3 (p. 2029) constructs a base URL object pointing to
"http://www.austincc.edu/baldwin/hello.html"
Then it uses the version of the constructor currently under discussion to combine that base URL object

with a relative URL given by
"/baldwin/Index.html"
This produces the URL object displayed in Figure 4 (p. 2030) .

Figure 4 - Building an absolute URL.

Construct absolute URL from host URL and relative URL

http www.austincc.edu -1 /baldwin/Index.html null

http://www.austincc.edu/baldwin/Index.html

Table 5.20

Hopefully this example illustrates how the constructor can combine a base URL object with a relative
URL to produce a new URL object that is an absolute pointer to the relative URL.

The URLEncoder class
There is one more issue that we need to examine before leaving this program: the URLEncoder class.

This class is provided to help deal with problems arising from spaces, special characters, non-alphanumeric
characters, etc. , that some operating systems may allow in �le names but which may not be allowed in a
URL.

If you need to create a URL object using a URL string that has these problems, you should �rst use the
encode method of the URLEncoder class to convert it into an acceptable URL string.

The URLEncoder.encode method
This class provides a static method named encode that encodes a string representation of a URL into

an acceptable format.

(Technically I believe it is correct to say that the format produced in Listing 4 is "application/x-
www-form-urlencoded" and the binary encoding is UTF-8.)

The encode method returns a String object that is a cleaned-up version of the original string.
Listing 4 (p. 2031) calls the encode method to encode a string that was purposely constructed to

contain several unsafe characters. It displays both the raw string and the encoded string for comparison.

Listing 4 - The URLEncoder.encode method.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2025

System.out.println("Now use URLEncoder to create " +

"UTF-8 encoded String");

System.out.println("http://space .tilde∼.plus+.com");
System.out.println(URLEncoder.encode(

"http://space .tilde∼.plus+.com","UTF-8"));

Table 5.21

The encoded output
The output from the code in Listing 4 (p. 2031) is shown in Figure 5 (p. 2031) .

Figure 5 - An encoded string.

Now use URLEncoder to create UTF-8 encoded String

http://space .tilde∼.plus+.com
http%3A%2F%2Fspace+.tilde%7E.plus%2B.com

Table 5.22

The encoded version doesn't mean a lot to a human, but it is a format that is acceptable across a wide
variety of computers. In case you are interested, the encoding rules are shown in Figure 6 (p. 2032) .

The ASCII characters 'a' through 'z', 'A' through 'Z', and '0' through '9' remain the same.
The space character ' ' is converted into a plus sign '+'.
All other characters are converted into the 3-character string "%xy", where xy is the two-digit hexadecimal

representation of the lower 8-bits of the character.

The ASCII characters 'a' through 'z', 'A' through 'Z', and '0' through '9' remain the same.
The space character ' ' is converted into a plus sign '+'.
All other characters are converted into the 3-character string "%xy", where xy is the two-digit hexadecimal

representation of the lower 8-bits of the character.

The ASCII characters 'a' through 'z', 'A' through 'Z', and '0' through '9' remain the same.
The space character ' ' is converted into a plus sign '+'.
All other characters are converted into the 3-character string "%xy", where xy is the two-digit hexadecimal

representation of the lower 8-bits of the character.

The ASCII characters 'a' through 'z', 'A' through 'Z', and '0' through '9' remain the same.
The space character ' ' is converted into a plus sign '+'.
All other characters are converted into the 3-character string "%xy", where xy is the two-digit hexadecimal

representation of the lower 8-bits of the character.

The ASCII characters 'a' through 'z', 'A' through 'Z', and '0' through '9' remain the same.
The space character ' ' is converted into a plus sign '+'.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2026 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

All other characters are converted into the 3-character string "%xy", where xy is the two-digit hexadecimal
representation of the lower 8-bits of the character.

Figure 6 - Encoding rules.

To convert a String, each character is examined in turn:
The ASCII characters 'a' through 'z', 'A' through 'Z', and '0' through '9' remain the same.
The space character ' ' is converted into a plus sign '+'.
All other characters are converted into the 3-character string "%xy", where xy is the two-digit hexadecimal
representation of the lower 8-bits of the character.

Table 5.23

Elliotte Rusty Harold provides a URLDecoder class in his Java Network Programming book that
takes a URL string in the format shown above and converts it back to its String representation.

5.2.6.4.2 The program Java4640d

Now it is time to put some of what you have learned to work with a program named Java4640d . Once
again, I will explain this program in fragments. A complete listing is provided in Listing 9 (p. 2038) .

This program illustrates using a URL object to connect to a URL and to read a �le from that URL as
an input stream. As we will see later, we can and will do the same thing using sockets in future modules.

Your computer must be online for this program to run properly. Otherwise, it will throw an exception
of type UnknownHostException .

Program output
The output from the program is a display of the contents of the �le named page1.html in a raw text

format. Thus, all of the HTML tags are visible.

(Of course, you can modify the program to download and display a di�erent �le on the same or
a di�erent website.)

As of January 2014, the output for the beginning of the �le was as shown in Figure 7 (p. 2033) . (The �le
is much longer than that shown.)

(I may modify the contents of this �le from time to time, so if you compile and run this program
later, you may get di�erent results.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2027

Figure 7 - Program output.

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Mozilla/4.7 [en] (WinNT; I) [Netscape]">
<title>Java and JavaScript Programming, by Richard G Baldwin</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#FF0000" lang="EN-US">

<h1>
Baldwin's Test Page 1</h1>
Click here
to view page 2

<p>Note: The material on this page is not intended to be of any particular

value. This file is posted for the purpose of testing HTTP network

programs only.

<p>The following red bar is a centered gif file.

<center>
<p><img SRC="red_thick_line_1.gif" BORDER=0 id="_x0000_i1025" height=9 width=300

></center>

<center>
<h2>
The following is a centered two-column table</h2></center>

Table 5.24

The beginning of the program
The program begins in Listing 5 (p. 2033) .

Listing 5 - Beginning of the program named Java4640d.

import java.net.*;

import java.io.*;

class Java4640d{

public static void main(String[] args){

String dataLine;

try{

//Get a URL object

URL url = new URL(

"http://www.austincc.edu/baldwin/page1.html");

Table 5.25

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2028 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

As before, I will ignore the exception-handling code while discussing this program.
Create a URL object
As you saw in the previous program, the URL class has several di�erent constructors, each of which can

create a new URL object on the basis of URL information provided as parameters to the constructor. The
constructors di�er in terms of how the URL information is provided.

Listing 5 (p. 2033) creates a URL object that points to the �le named page1.html in the directory
named baldwin on the server at Austin Community College where I teach.

No port was speci�ed
The URL object will not contain a port speci�cation because I didn't provide a port number. Later when

we use one of the methods of the URL class along with this URL object to make a connection to the server,
the connection will, by default, be made to port 80 which is the standard port for servers that support the
HTTP protocol.

In other words, when the port is not provided (the URL object contains a port number of -1) , the
connection method of the URL class will use the protocol portion of the URL to decide which port to connect
to.

Open a connection to the URL
Once you have a URL object, there are a number of things that you can do with it. One of the things

you can do with it is to open input and output streams that will be connected to the server software that
is monitoring the port of interest.

The code in Listing 6 (p. 2034) opens a connection to the URL described by this URL object and returns
an input stream object for reading data from the connection. This is the point where the port number
defaults on the basis of the protocol speci�cation in the URL object.

Listing 6 - Open a connection to the URL.

BufferedReader htmlPage =

new BufferedReader(new InputStreamReader(

url.openStream()));

Table 5.26

Be aware that only a small portion of the statement in Listing 6 (p. 2034) has to do with URL processing.
The remainder of the statement has to do with the more complex topic of I/O stream processing.

Read and display the data
The remaining code in this program, as shown in Listing 7 (p. 2034) , is completely straightforward.

Data is read from the stream one line at a time and displayed as it is read. The readLine method returns
null when there is no more data to be read from the stream and the program terminates.

Listing 7 - Read and display the data.

while((dataLine = htmlPage.readLine()) != null){

System.out.println(dataLine);

}//end while loop

Table 5.27

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2029

Not complicated at all
As you can see, it is very easy to write a program that will connect to an HTTP server and download the

contents of a speci�ed �le. There are lots of things that you do by using this as a starting point. A common
assignments given to students is to add a little more knowledge and code to this and to write a crawler that
will crawl the web searching for some speci�ed �le contents.

5.2.6.5 Run the programs

I encourage you to copy the code from Listing 8 (p. 2035) and Listing 9 (p. 2038) .Compile the code and
execute it. Experiment with the code, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

5.2.6.6 What's next?

The next module in the series will deal with the URLConnection class.

5.2.6.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4640: The URL Class and the URLEncoder Class
• File: Java4640.htm
• Published: 03/02/14
• Revised: 02/07/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

5.2.6.8 Complete program listings

Listing 8 - The program named Java4640a.

/*File Java4640a.java Copyright 1998, R.G.Baldwin Revised 01/05/14

This program exercises four of the constructors and

six of the methods of the URL class.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2030 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

The program also illustrates the use of the URLEncoder

class to convert a string containing spaces and other

such characters into UTF-8 format.

**/

import java.net.*;

import java.io.*;

class Java4640a{

public static void main(String[] args){

Java4640a obj = new Java4640a();

try{

System.out.println(

"Use simple string constructor for host URL");

obj.display(new URL("http://www.austincc.edu"));

System.out.println("Use simple string constructor " +

"for host plus file");

obj.display(new URL(

"http://www.austincc.edu/baldwin"));

System.out.println(

"Use strings for protocol, host, and file");

obj.display(new URL(

"http","www.austincc.edu","/baldwin"));

System.out.println("Use strings for protocol " +

"host, and file\n and int for port");

obj.display(new URL(

"http","www.austincc.edu",80,"/baldwin"));

System.out.println("Construct absolute URL from " +

"host URL and relative URL");

URL baseURL = new URL(

"http://www.austincc.edu/baldwin/hello.html");

obj.display(new URL(baseURL,"/baldwin/Index.html"));

System.out.println("Now use URLEncoder to create " +

"UTF-8 encoded String");

System.out.println("http://space .tilde∼.plus+.com");
System.out.println(URLEncoder.encode(

"http://space .tilde∼.plus+.com","UTF-8"));
}catch(MalformedURLException |

UnsupportedEncodingException e){

e.printStackTrace();

}//end catch

}//end main

//---//

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2031

void display(URL url){//method to display parts of URL

System.out.print(url.getProtocol() + " ");

System.out.print(url.getHost() + " ");

System.out.print(url.getPort() + " ");

System.out.print(url.getFile() + " ");

System.out.println(url.getRef());

//Now display entire URL as a string.

System.out.println(url.toString());

System.out.println();

}//end display

}//end class Java4640a

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2032 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Listing 9 - The program named Java4640d.

/*File Java4640d.java Copyright 1998, R.G.Baldwin Revised 01/06/14

Illustrates connecting to a URL and reading a file from

that URL as an input stream.

Computer must be online for this program to run properly.

Otherwise, it will throw an exception of type

UnknownHostException.

**/

import java.net.*;

import java.io.*;

class Java4640d{

public static void main(String[] args){

String dataLine;

try{

//Get a URL object

URL url = new URL(

"http://www.austincc.edu/baldwin/page1.html");

//Open a connection to this URL and return an

// input stream for reading from the connection.

BufferedReader htmlPage =

new BufferedReader(new InputStreamReader(

url.openStream()));

//Read and display file one line at a time.

while((dataLine = htmlPage.readLine()) != null){

System.out.println(dataLine);

}//end while loop

}//end try

catch(Exception e){

e.printStackTrace();

}//end catch

}//end main

}//end class Java4640d

Table 5.28

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2033

5.2.7 Java4640r-Review
47

5.2.7.1 Table of Contents

• Preface (p. 2039)
• Questions (p. 2039)

· 1 (p. 2039) , 2 (p. 2039) , 3 (p. 2039) , 4 (p. 2040) , 5 (p. 2040)

• Answers (p. 2041)
• Miscellaneous (p. 2042)

5.2.7.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4640: The URL Class
and the URLEncoder Class 48 in the Network Programming sub-collection.

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

5.2.7.3 Questions

5.2.7.3.1 Question 1

True or False?
Java provides at least two di�erent ways to do network programming. The two ways are associated with

socket classes and URL classes.
Go to answer 1 (p. 2041)

5.2.7.3.2 Question 2

True or False?
Socket programming occurs at a higher level than URL programming
Go to answer 2 (p. 2041)

5.2.7.3.3 Question 3

True or False?
An object of the URL class provides a method for extracting each of the following parts of a URL:

• protocol used to access the server (such as http),
• name of the server,
• port on the server (optional)
• path and name of a speci�c �le on the server (sometimes optional)
• anchor or reference within the �le (optional)

Go to answer 3 (p. 2041)

47This content is available online at <http://cnx.org/content/m49558/1.3/>.
48http://cnx.org/content/m49535/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2034 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.2.7.3.4 Question 4

True or False?
The URLEncoder class is provided to help deal with problems arising from spaces, special characters,

non-alphanumeric characters, etc. , that some operating systems may allow in �le names but which may
not be allowed in a URL.

Go to answer 4 (p. 2041)

5.2.7.3.5 Question 5

True or False?
Once you have a URL object connected to a server, you can open input and output streams that will

be connected to the server software that is monitoring the port of interest.
Go to answer 5 (p. 2041)
What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2035

5.2.7.4 Answers

5.2.7.4.1 Answer 5

True.
Go back to Question 5 (p. 2040)

5.2.7.4.2 Answer 4

True.
Go back to Question 4 (p. 2040)

5.2.7.4.3 Answer 3

True.
Go back to Question 3 (p. 2039)

5.2.7.4.4 Answer 2

False. URL programming occurs at a higher level than socket programming.
Go back to Question 2 (p. 2039)

5.2.7.4.5 Answer 1

True.
Go back to Question 1 (p. 2039)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2036 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.2.7.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4640r-Review
• File: Java4640r.htm
• Published: 03/08/14
• Revised 12/26/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

5.2.8 Java4650: The URLConnection Class
49

5.2.8.1 Table of Contents

• Preface (p. 2042)

· Viewing tip (p. 2043)

* Figures (p. 2043)
* Listings (p. 2043)

• General background information (p. 2043)
• Discussion and sample code (p. 2043)
• Run the program (p. 2046)
• What's next? (p. 2046)
• Miscellaneous (p. 2046)
• Complete program listing (p. 2046)

5.2.8.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX. More speci�cally, it is one in a sub-collection of modules
designed for teaching network programming in that course. The purpose of this module is to introduce the
student to the URLConnection class.

49This content is available online at <http://cnx.org/content/m49537/1.4/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2037

5.2.8.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

5.2.8.2.1.1 Figures

• Figure 1 (p. 2044) . Partial program output.

5.2.8.2.1.2 Listings

• Listing 1 (p. 2045) . Beginning of the program.
• Listing 2 (p. 2045) . Get a URLConnection object.
• Listing 3 (p. 2045) . Get information about the URL.
• Listing 4 (p. 2046) . The program named Java4650a.

5.2.8.3 General background information

I don't plan to say very much about the URLConnection class. It is an abstract class that can be
extended , and it has a protected constructor that takes a URL object as a parameter.

It has variables or �elds that contain useful information about a connection.
It has many methods that can be used to examine and manipulate an object of the class in a variety of

di�erent ways.
If you plan to use the URL class for the higher-lever capabilities that it o�ers, and you plan to write

content handlers and protocol handlers , you will probably need to become very familiar with this class.
In that case, you will probably want to get a copy of a good Java networking book, such as Java Network
Programming , by Elliotte Rusty Howard, and study the use of this class in depth.

My objective here is simply to make you aware of the existence of the class and its many methods, and to
provide some examples of how you can get and use an object of the class to obtain higher-level information
about a connection.

5.2.8.4 Discussion and sample code

This program illustrates connecting to a URL and creating a URLConnection object.
The program uses the URLConnection object to obtain and display some of the "higher level"

information about the UR L:

• the URL
• the date last modi�ed
• the content type

The computer must be online for this program to run properly. Otherwise, it will throw an exception of type
UnknownHostException .

Partial program output
Figure 1 (p. 2044) shows part of the output from the program. The �rst three lines of output correspond

to the items in the above list (p. 2043) , and are the items that we will be primarily interested in for this
module.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2038 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Figure 1 - Partial program output.

http://www.austincc.edu/baldwin/page1.html

Tue Apr 17 23:16:17 CDT 2001

text/html; charset=iso-8859-1

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Mozilla/4.7 [en] (WinNT; I) [Netscape]">
<title>Java and JavaScript Programming, by Richard G Baldwin</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#FF0000" lang="EN-US">

<h1>
Baldwin's Test Page 1</h1>
Click here
to view page 2

<p>Note: The material on this page is not intended to be of any particular

value. This file is posted for the purpose of testing HTTP network

programs only.

<p>The following red bar is a centered gif file.

<center>
<p><img SRC="red_thick_line_1.gif" BORDER=0 id="_x0000_i1025" height=9 width=300

></center>

Table 5.29

The program named Java4650a
I will explain this program in fragments. A complete listing of the program is provided in Listing 4 (p.

2046) .
The URLConnection class is abstract , and therefore cannot be instantiated directly. However, it

can be extended , and it has a protected constructor that requires a URL object as a parameter.
A common way to get a URLConnection object is to call a method on a URL object that returns

an object of a subclass of the URLConnection class. That is the case in the sample program for this
module.

I will ignore the exception handling code in the discussion of this program.
All of the code in the sample program is contained in the main method of the controlling class.
Beginning of the program
The beginning of the program and the beginning of the main method is shown in Listing 1 (p. 2045) .

Listing 1 - Beginning of the program.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2039

import java.net.*;

import java.io.*;

import java.util.*;

class Java4650a{

public static void main(String[] args){

String dataLine;

try{

//Get a URL object

URL url = new URL(

"http://www.austincc.edu/baldwin/page1.html");

Table 5.30

Get a URL object
The code at the bottom of Listing 1 (p. 2045) instantiates a URL object. This is essentially the same

code that you saw in an earlier module, but you need to see it again here in order to understand the code
that follows it.

URLConnection object
The code in Listing 2 (p. 2045) gets a URLConnection object by calling the openConnection

method on the URL object instantiated earlier.

Listing 2 - Get a URLConnection object.

URLConnection urlConnection = url.openConnection();

Table 5.31

Get information about the URL
The code in Listing 3 (p. 2045) calls three methods on the URLConnection object to obtain three of

the higher-level informational aspects of the URL:

• the URL
• the date that the �le was last modi�ed
• the content type of the �le

Listing 3 - Get information about the URL.

System.out.println(urlConnection.getURL());

Date lastModified = new Date(

urlConnection.getLastModified());

System.out.println(lastModified);

System.out.println(urlConnection.getContentType());

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2040 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Table 5.32

The result of these three inquiries is shown as the �rst three lines of text in Figure 1 (p. 2044) .
The remaining code
Following this, the program uses the URL object to get an input stream and to display the contents of

the �le. However, this essentially duplicates a portion of the program in an earlier module, so I won't discuss
it further here.

5.2.8.5 Run the program

I encourage you to copy the code from Listing 4 (p. 2046) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

5.2.8.6 What's next?

In the next module, I will show you how to download a simple HTML �le and to render it in a way that is
similar to how it would be rendered in a browser.

5.2.8.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4650: The URLConnection Class
• File: Java4650.htm
• Published: 03/02/14
• Revised: 02/07/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

5.2.8.8 Complete program listing

Listing 4 - The program named Java4650a.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2041

/*File Java4650a.java Copyright 1998, R.G.Baldwin

Revised 01/05/14

Illustrates connecting to a URL and creating a

URLConnection object.

Uses the URL object to obtain and display

the URL, the date last modified, and the content type.

Also uses the URLConnection object to obtain an

input stream object. Then uses this object to read and

display the file.

**/

import java.net.*;

import java.io.*;

import java.util.*;

class Java4650a{

public static void main(String[] args){

String dataLine;

try{

//Get a URL object

URL url = new URL(

"http://www.austincc.edu/baldwin/page1.html");

//Open a connection to the URL and get a

// URLConnection object.

URLConnection urlConnection = url.openConnection();

//Use the connection to get and display the URL

System.out.println(urlConnection.getURL());

//Use the connection to get and display the date last

// modified.

Date lastModified = new Date(

urlConnection.getLastModified());

System.out.println(lastModified);

//Use the connection to get and display the content

// type.

System.out.println(urlConnection.getContentType());

//Use the connection to get an InputStream object.

// Use the InputStream object to instantiate a

// DataInputStream object.

BufferedReader htmlPage =

new BufferedReader(new InputStreamReader(

url.openStream()));

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2042 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

//Use the DataInputStream object to read and display

// the file one line at a time.

while((dataLine = htmlPage.readLine()) != null){

System.out.println(dataLine);

}//end while loop

}//end try

catch(Exception e){

e.printStackTrace();

}//end catch

}//end main

}//end class Java4650a

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2043

5.2.9 Java4650r-Review
50

5.2.9.1 Table of Contents

• Preface (p. 2049)
• Questions (p. 2049)

· 1 (p. 2049) , 2 (p. 2049) , 3 (p. 2049) , 4 (p. 2049) , 5 (p. 2050)

• Answers (p. 2051)
• Miscellaneous (p. 2052)

5.2.9.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4650: The URLCon-
nection Class 51 in the Network Programming sub-collection.

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

5.2.9.3 Questions

5.2.9.3.1 Question 1

True or False?
The URLConnection class is an abstract class that can be extended . It has a protected

constructor that takes a URL object as a parameter.
Go to answer 1 (p. 2052)

5.2.9.3.2 Question 2

True or False?
The URLConnection class can be instantiated directly.
Go to answer 2 (p. 2051)

5.2.9.3.3 Question 3

True or False?
A common way to get a URLConnection object is to call a method on a URL object that returns

an object of a subclass of the URLConnection class.
Go to answer 3 (p. 2051)

5.2.9.3.4 Question 4

True or False?
The method named openConnection can be called on a URL object to get a reference to an object

of a class that is a subclass of the URLConnection class.
Go to answer 4 (p. 2051)

50This content is available online at <http://cnx.org/content/m49573/1.3/>.
51http://cnx.org/content/m49537/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2044 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.2.9.3.5 Question 5

True or False?
Three methods can be called on a URLConnection object to obtain the following three informational

aspects of the URL:

• the URL
• the date that the �le was last modi�ed
• the content type of the �le

Go to answer 5 (p. 2051)
What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2045

5.2.9.4 Answers

5.2.9.4.1 Answer 5

True.
Go back to Question 5 (p. 2050)

5.2.9.4.2 Answer 4

True.
Go back to Question 4 (p. 2049)

5.2.9.4.3 Answer 3

True.
Go back to Question 3 (p. 2049)

5.2.9.4.4 Answer 2

False. The URLConnection class is abstract , and therefore cannot be instantiated directly. However,
it can be extended , and it has a protected constructor that requires a URL object as a parameter.

Go back to Question 2 (p. 2049)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2046 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.2.9.4.5 Answer 1

True.
Go back to Question 1 (p. 2049)

5.2.9.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4650r-Review
• File: Java4650r.htm
• Published: 03/08/14
• Revised 12/26/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

5.2.10 Java4655: A Rendering Web Browser
52

5.2.10.1 Table of Contents

• Preface (p. 2053)

· Viewing tip (p. 2053)

* Figures (p. 2053)
* Listings (p. 2053)

• Discussion and sample code (p. 2053)

· A skeleton program - Java4655c (p. 2053)
· The program named Java4655b (p. 2059)
· The program named Java4655a (p. 2062)
· What's missing? (p. 2064)

• Run the program (p. 2064)
• What's next? (p. 2065)
• Miscellaneous (p. 2065)
• Complete program listing (p. 2065)

52This content is available online at <http://cnx.org/content/m49542/1.4/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2047

5.2.10.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX. More speci�cally, it is one in a sub-collection of modules
designed for teaching network programming in that course. The purpose of this module is to show students
how to use Java Swing to render a web page in a JFrame object.

5.2.10.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

5.2.10.2.1.1 Figures

• Figure 1 (p. 2058) . JFrame output from the program named Java4655c.
• Figure 2 (p. 2059) . Command line output from the program named Java4655c.
• Figure 3 (p. 2061) . JFrame output from the program named Java4655b.
• Figure 4 (p. 2063) . JFrame output from the program named Java4655a.

5.2.10.2.1.2 Listings

• Listing 1 (p. 2054) . Beginning of the program named Java4655c.
• Listing 2 (p. 2054) . The method named runner.
• Listing 3 (p. 2055) . Beginning of the class named Java4655cHtmlHandler.
• Listing 4 (p. 2056) . Open the URL object in a JEditorPane object.
• Listing 5 (p. 2056) . Register a hyperlink listener.
• Listing 6 (p. 2057) . Display the JEditorPane.
• Listing 7 (p. 2057) . The hyperlinkUpdate method.
• Listing 8 (p. 2060) . The constructor for the Java4655bHtmlHandler class.
• Listing 9 (p. 2061) . The HyperlinkEvent handler for Java4655b.
• Listing 10 (p. 2063) . Scrolling code in Java4655a.
• Listing 11 (p. 2065) . The program named Java4655c.
• Listing 12 (p. 2067) . The program named Java4655b.
• Listing 13 (p. 2069) . The program named Java4655a.

5.2.10.3 Discussion and sample code

In an earlier module, you learned how to connect to a website and cause a raw text version of a �le to be
downloaded and displayed. However, the display of raw HTML text isn't very useful, which is why rendering
web browsers were invented.

In this module, you will learn how to connect to a website and cause an HTML �le to be downloaded
and rendered in a JFrame object. We will develop a program that makes it possible to follow hyperlinks
much as you would expect with a commercial web browser.

5.2.10.3.1 A skeleton program - Java4655c

I will begin this explanation with a skeleton program that illustrates four important aspects of rendering a
webpage in a Swing JFrame object :

• Getting a URL object that is connected to a webpage.
• Opening the URL object in a JEditorPane object.
• Displaying the JEditorPane in a rendered format.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2048 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

• Handling hyperlink events on the JEditorPane .

(Note that there are alternatives to the �rst two items in the above list, which we will see later.)
To keep the code simple, two important aspects of webpage rendering will be omitted from this program:

• Scrolling large web pages.
• Following hyperlinks.

These capabilities will be added to other programs later in this module.
Beginning of the program named Java4655c
I will explain this program in fragments. A complete listing of the program is provided in Listing 11 (p.

2065) .
Listing 1 (p. 2054) shows the beginning of the program.

Listing 1 - Beginning of the program named Java4655c.

import javax.swing.*;

import javax.swing.event.*;

import javax.swing.text.html.*;

import java.net.*;

import java.awt.*;

class Java4655c{

public static void main(String[] args){

new Java4655c().runner(

"http://www.austincc.edu/baldwin");

}//end main

Table 5.33

There is nothing new in Listing 1 (p. 2054) . This code simply calls a method named runner passing a
string description of a URL as a parameter.

The method named runner
The method named runner is shown in Listing 2 (p. 2054) .

Listing 2 - The method named runner.

void runner(String webSiteLink){

try{

//Create a new URL object from the website string

URL website = new URL(webSiteLink);

//Instantiate an overall web page handler

new Java4655cHtmlHandler(website);

}catch(Exception e){

e.printStackTrace();

}//end catch

}//end runner

}//end class Java4655c

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2049

Table 5.34

Listing 2 (p. 2054) begins by getting a URL object that is connected to the speci�ed webpage to satisfy
the �rst item in the above list (p. 2053) .

Then Listing 2 (p. 2054) instantiates a new object of the class named Java4655cHtmlHandler passing
the URL object's reference as a parameter to the constructor. From this point forward, the behavior of the
program will be controlled by the object of the Java4655cHtmlHandler class.

Listing 2 (p. 2054) also signals the end of the class named Java4655c .
Beginning of the class named Java4655cHtmlHandler
The beginning of the class named Java4655cHtmlHandler and the beginning of the constructor for

that class is shown in Listing 3 (p. 2055)

Listing 3 - Beginning of the class named Java4655cHtmlHandler.

class Java4655cHtmlHandler extends JFrame

implements HyperlinkListener{

//Constructor

public Java4655cHtmlHandler(URL website) {

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setTitle("Copyright 2014, R.G.Baldwin");

Table 5.35

There is nothing new or unusual in Listing 3 (p. 2055) with the possible exception of the fact that the
class implements the interface named HyperlinkListener . This has two important rami�cations:

• The class must provide concrete implementations of all the methods declared in the interface.
• An object of the class can serve as a listener for events of type HyperlinkEvent .

As you will see later, the HyperlinkListener interface declares only one method and it is named
hyperlinkUpdate . The method receives one incoming parameter of type HyperlinkEvent .

The hyperlinkUpdate method
The documentation for the hyperlinkUpdate method is rather sparse, stating only that the method

is "Called when a hypertext link is updated" and that the incoming parameter represents "the event
responsible for the update."

As you will see later, an event occurs whenever the user touches a hyperlink in the webpage with the
mouse. The HyperlinkEvent object encapsulates information identifying the event as being one of the
following types:

• ENTERED
• EXITED
• ACTIVATED

I will pursue the three types of hyperlink events in more detail later.
Open the URL object in a JEditorPane object
Listing 4 (p. 2056) opens the URL object in a JEditorPane object to satisfy the second item in the

above list (p. 2053) .

(I will ignore the exception handling code while explaining this program.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2050 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Listing 4 - Open the URL object in a JEditorPane object.

try{

if(website != null) {

//Create a JEditorPane containing the web page.

JEditorPane html = new JEditorPane(website);

html.setEditable(false);

Table 5.36

Fortunately, the online documentation 53 for the JEditorPane is fairly detailed. I will refer you to
that documentation for more information.

The JEditorPane constructor
Listing 4 (p. 2056) calls an overloaded JEditorPane constructor that is described in the documentation

as follows:

"Creates a JEditorPane based on a speci�ed URL for input."

(Note that there is another constructor that would allow us to create the JEditorPane object
passing a URL string to the constructor. Had I used that constructor, it wouldn't have been necessary to
create the URL object. For illustration, I will use that constructor in a later program in this module.)

Documentation snippets
There are a couple of snippets from that documentation that are particularly important to this module.

The �rst snippet is:

"Some kinds of content may provide hyperlink support by generating hyperlink events. The
HTML EditorKit will generate hyperlink events if the JEditorPane is not editable (JEditor-
Pane.setEditable(false); has been called)."

Since we are de�nitely interested in hyperlink events, Listing 4 (p. 2056) calls the setEditable method
on the new JEditorPane object passing false as a parameter.

A second snippet that will be important later in this module reads:

"The setPage method can be used to initialize the component from a URL."

We will use this capability later to cause a hyperlink event handler to follow a link in a webpage when we
click on the hyperlink.

Register a hyperlink listener
Listing 5 (p. 2056) uses standard Java event handling code to register a hyperlink listener object on the

JEditorPane object. As I mentioned earlier, this object is suitable for use as a listener object.

Listing 5 - Register a hyperlink listener.

html.addHyperlinkListener(this);

Table 5.37

53http://docs.oracle.com/javase/7/docs/api/javax/swing/JEditorPane.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2051

I will explain the hyperlink listener code shortly.
Display the JEditorPane
Listing 6 (p. 2057) uses standard Swing code to display the JEditorPane in a JFrame object.

There is nothing new or interesting about this code so I won't discuss it further.

Listing 6 - Display the JEditorPane.

this.getContentPane().add(html);

this.setSize(669,669);

this.setVisible(true);

}//end if

}catch(Exception e){

e.printStackTrace();

}//end catch

}//end constructor

Table 5.38

Listing 6 (p. 2057) also signals the end of the constructor for the class named Java4655cHtmlHandler
.

The event handler method
Listing 7 (p. 2057) shows the event handler method named hyperlinkUpdate in its entirety.

Listing 7 - The hyperlinkUpdate method.

public void hyperlinkUpdate(HyperlinkEvent e) {

if (e.getEventType() ==

HyperlinkEvent.EventType.ENTERED){

System.out.println("ENTERED");

}else if (e.getEventType() ==

HyperlinkEvent.EventType.EXITED){

System.out.println("EXITED");

}else if (e.getEventType() ==

HyperlinkEvent.EventType.ACTIVATED){

System.out.println("ACTIVATED");

}//end if

}//end hyperlinkUpdate method

//--//

}//end class Java4655cHtmlHandler

Table 5.39

This hyperlink event handler simply displays the type of event on the command-line screen as the mouse
pointer touches hyperlinks on the webpage. The possible types of events and the actions that cause them
are as follows:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2052 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

• ENTERED - touch a hyperlink with the mouse
• EXITED - move the mouse pointer away from a touched hyperlink
• ACTIVATED - click a hyperlink with the mouse

The code in Listing 7 (p. 2057) is straightforward and shouldn't require further explanation.
Listing 7 (p. 2057) also signals the end of the class named Java4655cHtmlHandler .
The program output
Figure 1 (p. 2058) shows the output that you should see if you compile and run this program. Note

however that the content of this page changes each semester so you may see something a little di�erent.
Figure 1 - JFrame output from the program named Java4655c.

As I mentioned earlier, this program doesn't allow scrolling for web pages that are too large to �t in the
JEditorPane . As you can see in Figure 1 (p. 2058) , the webpage simply spills outside the viewing area.
We will deal with that later in this module.

This program also doesn't support link following. If you touch or click a link, the code in Listing 7 (p.
2057) simply reports that fact on the command line screen. We will also deal with that later in this module.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2053

Figure 2 (p. 2059) shows the result of moving the mouse around inside the hyperlinks in Figure 1 (p.
2058) and �nally clicking on one of those links to create an ACTIVATED event.

Figure 2 - Command line output from the program named Java4655c.

Now that you know the basics, we can put some meat on the skeleton.

5.2.10.3.2 The program named Java4655b

This program is similar to the previous program except that it allows you to follow hyperlinks. However, I
will continue to defer scrolling until later in the module.

Once again, I will explain this program in fragments. However, rather than to explain the complete
program, I will explain only those things that are signi�cantly di�erent from the previous program.

A complete listing of the program is provided in Listing 12 (p. 2067) .
The constructor for the Java4655bHtmlHandler class
Listing 8 (p. 2060) shows the beginning of the Java4655bHtmlHandler class including the entire

constructor.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2054 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Listing 8 - The constructor for the Java4655bHtmlHandler class.

class Java4655bHtmlHandler extends JFrame

implements HyperlinkListener{

JEditorPane html;

//Constructor

public Java4655bHtmlHandler(String websiteString) {

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setTitle("Copyright 2014, R.G.Baldwin");

try{

if(websiteString != null) {

html = new JEditorPane(websiteString);

html.setEditable(false);

html.addHyperlinkListener(this);

this.getContentPane().add(html,BorderLayout.CENTER);

this.setSize(669,669);

this.setVisible(true);

}//end if

}catch(Exception e){

e.printStackTrace();

}//end catch

}//end constructor

Table 5.40

Di�erences from the previous program
One di�erence between the code in Listing 8 (p. 2060) and the corresponding code in the previous

program is that this version requires the website to be speci�ed as a String instead of a URL (p. 2056) .
Another di�erence is that this version declares the JEditorPane reference as an instance variable to

make it accessible to the HyperlinkEvent handler discussed below.
The HyperlinkEvent handler
Listing 9 (p. 2061) shows the HyperlinkEvent handler in its entirety.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2055

Listing 9 - The HyperlinkEvent handler for Java4655b.

public void hyperlinkUpdate(HyperlinkEvent e) {

if (e.getEventType() ==

HyperlinkEvent.EventType.ACTIVATED){

//Ignore ENTERED and EXITED events and process only

// ACTIVATED events.

if (e instanceof HTMLFrameHyperlinkEvent) {

//Ignore events in HTML frames

System.out.println(

"HTML Frame events are ignored");

} else {

try {

//Display page defined by the HyperlinkEvent.

html.setPage(e.getURL());

} catch (Exception ex) {

ex.printStackTrace();

}//end catch

}//end else

}//end if

}//end hyperlinkUpdate method

Table 5.41

This code makes it possible to follow links by clicking the hyperlinks in the HTML page that is displayed.
Note that only ACTIVATED events are processed and even those events are not processed if they are
contained in an HTML frame.

Following links
The code in Listing 9 (p. 2061) is straightforward. The statement that causes the program to follow links

is the call to the setPage method passing a URL as a parameter. The documentation for this message
reads "Sets the current URL being displayed."

The URL to be displayed is obtained by calling the getURL method on the incoming HyperlinkEvent
object. The documentation for this method simply reads "Gets the URL that the link refers to."

As you can see, therefore, writing a simple browser that will access a web page and follow links is not
di�cult. The output from running this program is shown in Figure 3 (p. 2061) .

Figure 3 - JFrame output from the program named Java4655b.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2056 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Scrolling
You should be able to run the program and follow the links from one page to the next. We are still

missing something, however. If you click on a link to an anchor that is on the same page but not visible in
the JFrame , nothing happens. This is because this version of the program is incapable of scrolling to and
displaying that location on the page. Our next task will be to correct that issue.

5.2.10.3.3 The program named Java4655a

Scrolling code in Java4655a
Listing 13 (p. 2069) provides a complete listing of a program that incorporates scrolling. The only

di�erence between this program and the previous program is shown in Listing 10 (p. 2063) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2057

Listing 10 - Scrolling code in Java4655a.

if(websiteString != null) {

html = new JEditorPane(websiteString);

html.setEditable(false);

html.addHyperlinkListener(this);

JScrollPane scroller = new JScrollPane();

JViewport vp = scroller.getViewport();

vp.add(html);

this.getContentPane().add(

scroller,BorderLayout.CENTER);

this.setSize(669,669);

this.setVisible(true);

}//end if

Table 5.42

The code in Listing 10 (p. 2063) that provides scrolling has nothing to do with network programming so
I will leave it up to the student to �nd an explanation of this code somewhere else 54 on the web.

Figure 4 (p. 2063) shows the initial output from running this program. Note the vertical scroll bar on
the right side of the image.

Figure 4 - JFrame output from the program named Java4655a.

54http://docs.oracle.com/javase/tutorial/uiswing/components/scrollpane.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2058 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.2.10.3.4 What's missing?

There are at least three features that we would need to add to turn this program into a simple but functional
web browser.

• A way for the user to enter the website of interest and to change it at will.
• A "Back" button.
• A "Forward" button.

Adding these features is not particularly di�cult, but I will leave it as an exercise for the student to add
these features and convert this program into a functional web browser.

5.2.10.4 Run the program

I encourage you to copy the code from Listing 11 (p. 2065) , Listing 12 (p. 2067) , and Listing 13 (p. 2069)
. Compile the code and execute it. Experiment with the code, making changes, and observing the results of

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2059

your changes. Make certain that you can explain why your changes behave as they do.

5.2.10.5 What's next?

The next module will introduce sockets for network programming.

5.2.10.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4655: A Rendering Web Browser
• File: Java4655.htm
• Published: 03/02/14
• Revised: 02/07/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

5.2.10.7 Complete program listing

Listing 11 - The program named Java4655c.

/*File Java4655c.java

Copyright 2014, R.G.Baldwin

Rev 01/07/14

This is a skeleton program that illustrates how to load

a web page into a JEditorPane and illustrates how to

identify the three types of hyperlink events:

ENTERED

EXITED

ACTIVATED

**/

import javax.swing.*;

import javax.swing.event.*;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2060 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

import javax.swing.text.html.*;

import java.net.*;

import java.awt.*;

class Java4655c{

public static void main(String[] args){

new Java4655c().runner(

"http://www.austincc.edu/baldwin");

}//end main

//---//

void runner(String webSiteLink){

try{

//Create a new URL object from the website string

URL website = new URL(webSiteLink);

//Instantiate an overall web page handler

new Java4655cHtmlHandler(website);

}catch(Exception e){

e.printStackTrace();

}//end catch

}//end runner

}//end class Java4655c

//===//

class Java4655cHtmlHandler extends JFrame

implements HyperlinkListener{

//Constructor

public Java4655cHtmlHandler(URL website) {

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setTitle("Copyright 2014, R.G.Baldwin");

try{

if(website != null) {

//Create a JEditorPane containing the web page.

JEditorPane html = new JEditorPane(website);

html.setEditable(false);

//Register a listener to listen for hyperlink

// events.

html.addHyperlinkListener(this);

//Display the JEditorPane

this.getContentPane().add(html);

this.setSize(669,669);

this.setVisible(true);

}//end if

}catch(Exception e){

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2061

e.printStackTrace();

}//end catch

}//end constructor

//---//

//This hyperlink event listener simply displays the

// type of event on the command-line screen.

public void hyperlinkUpdate(HyperlinkEvent e) {

if (e.getEventType() ==

HyperlinkEvent.EventType.ENTERED){

System.out.println("ENTERED");

}else if (e.getEventType() ==

HyperlinkEvent.EventType.EXITED){

System.out.println("EXITED");

}else if (e.getEventType() ==

HyperlinkEvent.EventType.ACTIVATED){

System.out.println("ACTIVATED");

}//end if

}//end hyperlinkUpdate method

//--//

}//end class Java4655cHtmlHandler

Listing 12 - The program named Java4655b.

/*File Java4655b.java

Copyright 2014, R.G.Baldwin

Rev 01/05/14

This is a simple web browser that can follow links.

Uses website string to create JEditPane object.

Ignores ENTERED and EXITED hyperlink events. Uses

ACTIVATED events to follow links.

Ignores links in HTML frames.

**/

import javax.swing.*;

import javax.swing.event.*;

import javax.swing.text.html.*;

import java.net.*;

import java.awt.*;

class Java4655b{

public static void main(String[] args){

new Java4655b().runner("http://www.dickbaldwin.com");

}//end main

//---//

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2062 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

void runner(String websiteString){

try{

//Pass the website string to the constructor

new Java4655bHtmlHandler(websiteString);

}catch(Exception e){

e.printStackTrace();

}//end catch

}//end runner

}//end class Java4655b

//===//

//This version of the website handler requires the website

// to be specified as a String instead of a URL.

class Java4655bHtmlHandler extends JFrame

implements HyperlinkListener{

JEditorPane html;

//Constructor

public Java4655bHtmlHandler(String websiteString) {

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setTitle("Copyright 2014, R.G.Baldwin");

try{

if(websiteString != null) {

html = new JEditorPane(websiteString);

html.setEditable(false);

html.addHyperlinkListener(this);

this.getContentPane().add(html,BorderLayout.CENTER);

this.setSize(669,669);

this.setVisible(true);

}//end if

}catch(Exception e){

e.printStackTrace();

}//end catch

}//end constructor

//---//

public void hyperlinkUpdate(HyperlinkEvent e) {

if (e.getEventType() ==

HyperlinkEvent.EventType.ACTIVATED){

//Ignore ENTERED and EXITED events and process only

// ACTIVATED events.

if (e instanceof HTMLFrameHyperlinkEvent) {

//Ignore events in HTML frames

System.out.println(

"HTML Frame events are ignored");

} else {

try {

//Display page defined by the HyperlinkEvent.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2063

html.setPage(e.getURL());

} catch (Exception ex) {

ex.printStackTrace();

}//end catch

}//end else

}//end if

}//end hyperlinkUpdate method

//--//

}//end class Java4655bHtmlHandler

Listing 13 - The program named Java4655a.

/*File Java4655a.java

Copyright 2014, R.G.Baldwin

Rev 01/05/14

This is a simple web browser that can follow

links.

It ignores links in HTML frames.

**/

import javax.swing.*;

import javax.swing.event.*;

import javax.swing.text.html.*;

import java.net.*;

import java.awt.*;

class Java4655a{

public static void main(String[] args){

new Java4655a().runner("http://www.dickbaldwin.com");

}//end main

//---//

void runner(String websiteString){

try{

new Java4655aHtmlHandler(websiteString);

}catch(Exception e){

e.printStackTrace();

}//end catch

}//end runner

}//end class Java4655a

//===//

class Java4655aHtmlHandler extends JFrame

implements HyperlinkListener{

JEditorPane html;

//Constructor

public Java4655aHtmlHandler(String websiteString) {

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2064 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setTitle("Copyright 2014, R.G.Baldwin");

try{

if(websiteString != null) {

html = new JEditorPane(websiteString);

html.setEditable(false);

html.addHyperlinkListener(this);

JScrollPane scroller = new JScrollPane();

JViewport vp = scroller.getViewport();

vp.add(html);

this.getContentPane().add(

scroller,BorderLayout.CENTER);

this.setSize(669,669);

this.setVisible(true);

}//end if

}catch(Exception e){

e.printStackTrace();

}//end catch

}//end constructor

//---//

public void hyperlinkUpdate(HyperlinkEvent e) {

if (e.getEventType() ==

HyperlinkEvent.EventType.ACTIVATED){

//Ignore ENTERED and EXITED events and process only

// ACTIVATED events.

if (e instanceof HTMLFrameHyperlinkEvent) {

//Ignore events in HTML frames

System.out.println(

"HTML Frame events are ignored");

} else {

try {

//Display page defined by the HyperlinkEvent.

html.setPage(e.getURL());

} catch (Exception ex) {

ex.printStackTrace();

}//end catch

}//end else

}//end if

}//end hyperlinkUpdate method

//--//

}//end class Java4655aHtmlHandler

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2065

5.2.11 Java4660: Sockets
55

5.2.11.1 Table of Contents

• Preface (p. 2071)

· Viewing tip (p. 2071)

* Figures (p. 2071)
* Listings (p. 2071)

• General background information (p. 2072)
• Discussion and sample code (p. 2073)

· Simple TCP/IP services (p. 2073)
· Echo program (p. 2074)
· Date/time program (p. 2077)
· Simple browser program (p. 2079)

• Run the programs (p. 2081)
• Miscellaneous (p. 2081)
• Complete program listings (p. 2082)

5.2.11.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX. More speci�cally, it is one in a sub-collection of modules
designed for teaching network programming in that course. The purpose of this module is to introduce the
student to the Socket class.

5.2.11.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

5.2.11.2.1.1 Figures

• Figure 1 (p. 2074) . Successful daytime query.
• Figure 2 (p. 2075) . Output for a successful echo test.
• Figure 3 (p. 2078) . Daytime program output.
• Figure 4 (p. 2081) . Output from the simple browser program.

5.2.11.2.1.2 Listings

• Listing 1 (p. 2075) . Beginning of the program named Java4660a.
• Listing 2 (p. 2075) . Instantiate a Socket object.
• Listing 3 (p. 2076) . Get I/O stream objects.
• Listing 4 (p. 2076) . Send a line of text to the server and display the echo.
• Listing 5 (p. 2077) . Beginning of the program named Java4660b.
• Listing 6 (p. 2078) . Get an input stream.
• Listing 7 (p. 2078) . Read and display incoming data.
• Listing 8 (p. 2079) . Beginning of the program named Java4660c.
• Listing 9 (p. 2079) . Create input and output streams.

55This content is available online at <http://cnx.org/content/m49539/1.6/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2066 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

• Listing 10 (p. 2080) . Send a GET command.
• Listing 11 (p. 2080) . Read and display text from the server.
• Listing 12 (p. 2082) . The program named Java4660a.
• Listing 13 (p. 2083) . The program named Java4660b.
• Listing 14 (p. 2084) . The program named Java4660c.

5.2.11.3 General background information

Sockets in Java come in at least three varieties that are implemented by the following Java classes

• Socket
• DatagramSocket
• ServerSocket

The �rst two socket classes represent TCP and UDP communications respectively.
Generally, these two socket classes are used to implement both clients and servers, while the Server-

Socket class is only used to implement servers.
This module will concentrate on the use of the Socket class. The DatagramSocket class will be

covered a future module. In the meantime, you can read about the DatagramSocket class and other
interesting topics in my earlier publications at:

• Network Programming - Server Sockets 56

• Network Programming - Datagram Clients 57

• Network Programming - Datagram Servers 58

• Network Programming - Stubs, Skeletons, and Remote Objects 59

• Wireless Home Security and Java 60

In addition, you may �nd a great deal of useful information in my older publications that are accessible at
Programming Oldies But Goodies 61 .

A low-level mechanism
Socket programming provides a low-level mechanism by which you can connect two computers for the

exchange of data. One of those is generally considered to be the client while the other is considered to be
the server .

The client initiates a connection with a server. Servers wait for a clients to initiate connections.
A mutually acceptable application protocol
The governing protocol will determine what happens after the connection is made. In order for two

computers to communicate e�ectively, they must each implement some mutually acceptable application
protocol.

Data �ow
Socket programming makes it possible for you to cause data to �ow in a full-duplex mode between a

client and a server . This data �ow can be viewed in almost exactly the same way that we view data �ow
to and from a disk: as a stream of bytes.

As with most stream data processing, the system is responsible for moving the bytes from the source to
the destination. It is the responsibility of the programmer to assign meaning to those bytes.

An application protocol
Assigning meaning takes on a special signi�cance for socket programming. In particular, as mentioned

above, it is the responsibility of the programmer to implement a mutually acceptable communication protocol,

56http://cnx.org/content/m45602/latest/Java562.htm
57http://cnx.org/content/m45602/latest/Java564.htm
58http://cnx.org/content/m45602/latest/Java566.htm
59http://cnx.org/content/m45602/latest/Java568.htm
60http://cnx.org/content/m45605/latest/Java734.htm#Sockets15
61http://cnx.org/content/col11478/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2067

at the application level, to cause the data to �ow in an orderly manner. Some of the bytes are used to
implement the protocol, and some of the bytes are used to transfer data.

An application protocol is a set of rules by which the programs in the two computers can carry on a
conversation and transfer data in the process.

The HTTP protocol
For example, we will write a very abbreviated form of the HTTP protocol to download a web page from

a server and to display it as raw text.
This program will involve adherence to a fairly simple protocol. (At least the part that we implement

will be simple.)
The daytime protocol
We will also write a program that obtains the date and time from the same or another computer. In this

case, the protocol is about as simple as it can possibly be. The client will simply make the connection and
listen for a string containing the date and time. In this case, the client isn't even required to make a request.

The echo protocol
We will write another program that sends a line of text to a computer and receives an echo of that text.

This protocol is only slightly more complicated than the daytime protocol in that it is necessary to sent text
to the other computer in order to elicit a response.

The application protocol is the hard part
It is easy to use sockets to write code that will cause a stream of bytes to �ow in both directions between

a client and a server . This is no more di�cult than causing a stream of bytes to �ow in both directions
between memory and a �le on a disk.

Getting the bytes to �ow is the easy part. Beyond that, you must do all of the programming to implement
an application protocol that is understood by both the client and the server . Often that is the more
di�cult part.

5.2.11.4 Discussion and sample code

5.2.11.4.1 Simple TCP/IP services

This discussion applies to the Windows operating system only. If you are using a di�erent operating system
you will need to do the necessary research to translate this information for use with your operating system.

See Windows 7 Simple TCP/IP Services - What and How? 62 for more detailed information on this
topic.

A simple server
Windows and some other operating systems make it possible to cause a computer to act as a simple

server to deliver the following services:

• Echo on port 7
• Daytime on port 13
• Quote of the Day on port 17
• Character generator on port 19
• Discard on port 9

This module will be concerned with only the �rst two. However, to use any of them, you must con�gure
your computer to support all of them.

Con�guring your computer
Do the following to con�gure your computer to support these services.
In Windows 7, Vista, and possibly older versions of the Windows operating system, do the following:

• Open the Control Panel
• Select Programs and Features

62http://www.windowsnetworking.com/articles-tutorials/windows-7/Windows-7-Simple-TCPIP-Services-What-How.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2068 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

• Select Turn Windows features on or o�
• Scroll down to Simple TCPIP services and check the box
• Also check the box for Telnet Client
• Click OK and follow the directions

On some computers, this may take a long time to complete. (It took more than 15 minutes on an older
laptop computer that I own.) .

Test using telnet
When the process is complete, open a command line window and enter the following:
telnet localhost 13
You should see something like the contents of Figure 1 (p. 2074) if your computer is supporting simple

TCP/IP services.

Figure 1 - Successful daytime query.

5:27:30 PM 1/10/2014

Connection to host lost.

Table 5.43

You can use localhost to do a query on the same machine or you can do a query on the name of some
other properly con�gured computer on a local area network.

(You can also use the name of the same computer in place of localhost to do a query on the same
computer.)

Opening ports on the �rewall
In the case of accessing another computer on the network, in addition to the procedure described above

(p. 2073) , you may also need to open the required ports in the Windows �rewall or perhaps a �rewall that
is being managed by other software running on that computer.

(The ports of interest are shown in the above list (p. 2073) .)

I won't attempt to explain how to open and close ports in the �rewall. The Windows Help and Support
feature explains how to open and close ports in the Windows �rewall. If the �rewall is being managed by
another program, the documentation for that program should explain how to open and close ports.

5.2.11.4.2 Echo program

This program implements a client that performs a simple echo test by sending a line of text to the echo port
(port 7) on a server (or on the same computer) .

Overview
The program begins by instantiating a String object containing the name of an echo server that is

being used to test the program (localhost as the program is shown in Listing 1 (p. 2075)) . This is followed
by the declaration and initialization of an int variable containing the standard echo port number (7) .

Than the program gets a socket connection to port 7 on the server as shown in Listing 2 (p. 2075) ..
Following this, the program gets input and output streams from the socket and wraps them in the

Reader and Writer classes as shown in Listing 3 (p. 2076) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2069

Once the connection is made and the input and output streams are ready to use, the program sends a
line of text to the echo port on the speci�ed server as shown in Listing 4 (p. 2076) . This causes the server
to send the same line of text back to the client.

The program reads the line of text that is received and displays it in the command-line window.
Finally, the program closes the socket and terminates.
The program output
Assuming that you select a computer that supports echo processing on port 7, the output from this

program should be as shown in Figure 2 (p. 2075) .

Figure 2 - Output for a successful echo test.

echo: This is an echo test

Table 5.44

Beginning of the program named Java4660a
I will discuss this program in fragments. (I will ignore exception handling code.) A complete listing

of the program is provided in Listing 12 (p. 2082) . The beginning of the program is shown in Listing 1 (p.
2075) .

Listing 1 - Beginning of the program named Java4660a.

import java.net.*;

import java.io.*;

import java.util.*;

class Java4660a{

public static void main(String[] args){

String server = "localhost";

int port = 7; //echo port

Table 5.45

Listing 1 (p. 2075) declares and initializes two local variables to specify the server and the port. We will
use these variables later.

Instantiate a Socket object
Listing 2 (p. 2075) shows the key statement in this program insofar as learning new material is concerned.

Listing 2 - Instantiate a Socket object.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2070 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Socket socket = new Socket(server,port);

Table 5.46

The statement in Listing 2 (p. 2075) establishes a connection with the speci�ed port on the speci�ed
server by instantiating a new object of type Socket .

Once this object exists, it is possible to use it to communicate with the server on the speci�ed port using
the protocol prescribed for the service being delivered on that port.

The constructor for this class throws two di�erent types of exceptions so you will need to wrap this
statement in a try/catch block. The two types of exceptions are:

• UnknownHostException
• IOException

Get I/O stream objects
Once you have a Socket object, you can use that object to open input and output streams that allow

you to transfer data between the client and the server using the code shown in Listing 3 (p. 2076) .

Listing 3 - Get I/O stream objects.

BufferedReader inputStream =

new BufferedReader(new InputStreamReader(

socket.getInputStream()));

PrintWriter outputStream =

new PrintWriter(new OutputStreamWriter(

socket.getOutputStream()),true);

Table 5.47

Note that the true parameter in the last line of Listing 3 (p. 2076) causes the output stream to �ush
automatically. Proper �ushing is an important aspect of socket programming.

Send a line of text to the server and display the echo
The code in Listing 4 (p. 2076) uses the outputStream created above to send a line of text to the

server, and then uses the inputStream created above to capture and display the echo that is returned
from the server.

Listing 4 - Send a line of text to the server and display the echo.

//Send line of text to the server

outputStream.println("This is an echo test");

//Get echoed line back from server and display it

System.out.println("echo: "+inputStream.readLine());

//Close the socket

socket.close();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2071

Table 5.48

Then Listing 4 (p. 2076) closes the socket.
You can view the remainder of the program in Listing 12 (p. 2082) .
The essence of socket programming
That's really about all there is to socket programming from the client viewpoint.
Beyond this, the programming complexity associated with socket programming results from the require-

ment to implement an application protocol that will successfully communicate with the server.

5.2.11.4.3 Date/time program

This program implements a client that gets the date and time from the daytime port (13) on a server
that supports that port.

This program is even simpler than the previous one, because it isn't necessary to send anything to the
server to get the desired result. All that is necessary to cause the server to send the information is to make
the connection.

This program gets and displays the date and time on the server at " localhost ". However, you can
modify the program to access another computer in your network if you choose to do so. It is not likely that
you will �nd a server on the Internet at large that still supports the daytime port, but you can try.

The program also displays the current date and time in Austin, TX (or wherever the program happens
to be run) for comparison.

Beginning of the program named Java4660b
As usual, I will explain this program in fragments. A complete listing is provided in Listing 13 (p. 2083)

.
As shown in Listing 5 (p. 2077) , program begins by instantiating a String object containing the name

of the server being used to test the program.

Listing 5 - Beginning of the program named Java4660b.

import java.net.*;

import java.io.*;

import java.util.*;

class Sockets04{

public static void main(String[] args){

String server = "localhost";

int port = 13; //daytime port

try{

//Get a socket, connected to the specified server

// on the specified port.

Socket socket = new Socket(server,port);

Table 5.49

This is followed by the declaration and initialization of an int variable identifying the standard daytime
port: port 13.

Than the program gets a socket connection to port 13 on the speci�ed server.
Get an input stream

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2072 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Following this, the program gets an input stream from the socket and wraps it in the reader classes as
shown in Listing 6 (p. 2078) .

Listing 6 - Get an input stream.

//Get an input stream from the socket

BufferedReader inputStream =

new BufferedReader(new InputStreamReader(

socket.getInputStream()));

Table 5.50

This program doesn't need an output stream because the client doesn't send anything to the server. As
mentioned earlier, simply connecting is su�cient to trigger the server to send the date and time.

Read and display incoming data
After the connection is made via the socket and the input stream is ready to use, the client reads a line

of incoming text as shown in Listing 7 (p. 2078) . This line of text contains the date and time sent by the
server.

Listing 7 - Read and display incoming data.

System.out.println("Current time at " + server);

System.out.println(inputStream.readLine());

System.out.println("Current time in Austin, TX:");

System.out.println(new Date());

//Close the socket

socket.close();

Table 5.51

Daytime program output
The program displays this line of text, and also gets and displays the date and time on the local system

using the Date class for comparison.
Figure 3 (p. 2078) shows the output for one run of the program.

Figure 3 - Daytime program output.

Current time at localhost

8:29:56 AM 1/12/2014

Current time in Austin, TX:

Sun Jan 12 08:29:56 CST 2014

Table 5.52

Then the program closes the socket and terminates.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2073

5.2.11.4.4 Simple browser program

The next program is an extremely simple web browser program. More correctly, the next program is a simple
HTTP client implemented using sockets. A complete listing of the program is provided in Listing 14 (p.
2084) .

The program implements just enough of the HTTP protocol to make it capable of getting a �le from an
HTTP server. Considerably more programming e�ort would be required to turn it into a useful browser.

Beginning of the program named Java4660c
As shown in Listing 8 (p. 2079) , the program begins by de�ning the name of a server and the number

of the HTTP port on that server. Although the standard port number for HTTP servers is port 80, this
program is written to access a Tomcat server as localhost using port 8080.

Listing 8 - Beginning of the program named Java4660c.

import java.net.*;

import java.io.*;

class Java4660c{

public static void main(String[] args){

String server = "localhost";

int port = 8080; //http port on localhost

try{

//Get a socket, connected to the specified server

// on the specified port.

Socket socket = new Socket(server,port);

Table 5.53

Then the program opens a socket to the speci�ed server on the speci�ed port.
Create input and output streams
As shown in Listing 9 (p. 2079) , the program creates input and output stream objects for transferring

data between the client and the server .

Listing 9 - Create input and output streams.

//Get an input stream from the socket

BufferedReader inputStream =

new BufferedReader(new InputStreamReader(

socket.getInputStream()));

//Get an output stream to the socket. Note

// that this stream will autoflush.

PrintWriter outputStream =

new PrintWriter(new OutputStreamWriter(

socket.getOutputStream()),true);

Table 5.54

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2074 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

The output stream will auto�ush , which is critical. If the output stream isn't �ushed, the server will
not respond properly. (Presumably it may not receive all of the data until the stream is �ushed.)

Send a GET command
The HTTP protocol provides several di�erent commands or requests that the client can send to the

server. This program implements only the GET command. This is a request by the client to �nd and
download a speci�ed �le.

Then, as shown in Listing 10 (p. 2080) , acting as an HTTP client, the program sends a GET
command to the server specifying a particular path and �le name. The GET command is part of the
HTTP application protocol.

Listing 10 - Send a GET command.

outputStream.println("GET /Java4570b.jsp");

Table 5.55

Fetch and send
This causes the server to attempt to fetch the speci�ed �le and send it to the client. If the server is being

properly supported on the speci�c port, it will send something, although that something could be an error
message.

Note that the request includes not only the �le name, but also the path to that �le relative to the
directory that the HTTP server software considers to be the pseudo-root . This is probably not the actual
root directory on the server computer, but rather is a logical root.

The server software is willing to access and deliver �les from directories relative to this pseudo-root .
Note that the request is actually made by printing a line of text on the stream that is connected to the

server.
Read and display text from the server
Finally as shown in Listing 11 (p. 2080) , the program reads lines of text from the input stream and

displays them on the standard output device.

Listing 11 - Read and display text from the server.

//Declare a String to read lines into.

String line = null;

//Loop reading and displaying lines until null

// is received.

while((line = inputStream.readLine()) != null)

System.out.println(line);

//Close the socket

socket.close();

Table 5.56

Output from the simple browser program
In this particular case, the output was as shown in Figure 4 (p. 2081) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2075

Figure 4 - Output from the simple browser program.

<html>
<head><title>Java4570b</title></head>
<body>

<form method='get'

action='http://localhost:8080/Java4570b.jsp'>
<p>Enter a name and press the button</p>
<p>Name: <input type='text' name='firstName'/></p>
<input type='submit' value='Submit Name'/>

Your session ID and list of names is:

Empty

</form></body></html>

Table 5.57

A curious result
The requested �le was a JSP �le consisting of JSP tags embedded in HTML code. Curiously, only the

HTML code was returned by the server. (I suppose it is also possible that the JSP tags were returned but
were not displayed by the program for some reason.)

In any event, I will leave it as an exercise for those students who may be interested to research the matter.
As I mentioned earlier:

"Getting the bytes to �ow is the easy part. Beyond that, you must do all of the programming
to implement an application protocol that is understood by both the client and the server .
Often that is the more di�cult part."

When there are no more lines to be read, a null is received. This causes the client to exit the input loop and
to close the socket.

5.2.11.5 Run the programs

I encourage you to copy the code from Listing 12 (p. 2082) , Listing 13 (p. 2083) , and Listing 14 (p. 2084)
. Compile the code and execute it. Experiment with the code, making changes, and observing the results of
your changes. Make certain that you can explain why your changes behave as they do.

5.2.11.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4660: Sockets
• File: Java4660.htm

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2076 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

• Published: 03/02/14
• Revised: 02/07/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

5.2.11.7 Complete program listings

Listing 12 - The program named Java4660a.

/*File Java4660a.java Copyright 1998, R.G.Baldwin

Revised 01/10/14

This program performs a simple echo test with localhost

by sending a line of text to the echo port, port 7.

The computer must have been previously configured to

support the echo port.

The output from this program is:

echo: This is an echo test

**/

import java.net.*;

import java.io.*;

import java.util.*;

class Java4660a{

public static void main(String[] args){

String server = "localhost";

int port = 7; //echo port

try{

//Get a socket, connected to the specified server

// on the specified port.

Socket socket = new Socket(server,port);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2077

//Get an input stream from the socket

BufferedReader inputStream =

new BufferedReader(new InputStreamReader(

socket.getInputStream()));

//Get an output stream to the socket. Note

// that this stream will autoflush.

PrintWriter outputStream =

new PrintWriter(new OutputStreamWriter(

socket.getOutputStream()),true);

//Send line of text to the server

outputStream.println("This is an echo test");

//Get echoed line back from server and display it

System.out.println("echo: "+inputStream.readLine());

//Close the socket

socket.close();

}//end try

catch(Exception e){

e.printStackTrace();

}//end catch

}//end main

}//end class Java4660a

Listing 13 - The program named Java4660b.

/*File Sockets04.java Copyright 1998, R.G.Baldwin

Revised 01/10/14

This program gets and displays the date and time on the

server at "localhost".

It also displays the current date and time in Austin,

TX, or wherever the program happens to be run.

The computer must have been previously configured to

support the daytime port.

One output from this program was:

Current time at localhost

2:39:55 PM 1/10/2014

Current time in Austin, TX:

Fri Jan 10 14:39:55 CST 2014

**/

import java.net.*;

import java.io.*;

import java.util.*;

class Sockets04{

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2078 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

public static void main(String[] args){

String server = "localhost";

int port = 13; //daytime port

try{

//Get a socket, connected to the specified server

// on the specified port.

Socket socket = new Socket(server,port);

//Get an input stream from the socket

BufferedReader inputStream =

new BufferedReader(new InputStreamReader(

socket.getInputStream()));

System.out.println("Current time at " + server);

System.out.println(inputStream.readLine());

System.out.println("Current time in Austin, TX:");

System.out.println(new Date());

//Close the socket

socket.close();

}//end try

catch(Exception e){

e.printStackTrace();

}//end catch UnknownHostException

}//end main

}//end class Sockets04

Listing 14 - The program named Java4660c.

/*File Java4660c.java Copyright 1998, R.G.Baldwin

Revised 01/10/14

This program is a simple http client (web browser)

implemented using sockets.

The program implements just enough of the http protocol

to make it capable of getting an html page from an

http server.

The program, acting as an http client, sends a GET

command to the server specifying a particular path and

file name.

The server is a Tomcat server operating as localhost

on port 8080.

As of 01/10/14, the output from this program was as

follows.

<html>
<head><title>Java4570b</title></head>

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2079

<body>

<form method='get'

action='http://localhost:8080/Java4570b.jsp'>
<p>Enter a name and press the button</p>
<p>Name: <input type='text' name='firstName'/></p>
<input type='submit' value='Submit Name'/>

Your session ID and list of names is:

Empty

</form></body></html>
**/

import java.net.*;

import java.io.*;

class Java4660c{

public static void main(String[] args){

String server = "localhost";

int port = 8080; //http port on localhost

try{

//Get a socket, connected to the specified server

// on the specified port.

Socket socket = new Socket(server,port);

//Get an input stream from the socket

BufferedReader inputStream =

new BufferedReader(new InputStreamReader(

socket.getInputStream()));

//Get an output stream to the socket. Note

// that this stream will autoflush.

PrintWriter outputStream =

new PrintWriter(new OutputStreamWriter(

socket.getOutputStream()),true);

//Send a GET command to the server

outputStream.println("GET /Java4570b.jsp");

//Declare a String to read lines into.

String line = null;

//Loop reading and displaying lines until null

// is received.

while((line = inputStream.readLine()) != null)

System.out.println(line);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2080 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

//Close the socket

socket.close();

}//end try

catch(Exception e){

e.printStackTrace();

}//end catch

}//end main

}//end class Java4660c

//===//

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2081

5.2.12 Java4660r-Review
63

5.2.12.1 Table of Contents

• Preface (p. 2087)
• Questions (p. 2087)

· 1 (p. 2087) , 2 (p. 2087) , 3 (p. 2087) , 4 (p. 2087) , 5 (p. 2088)

• Answers (p. 2089)
• Miscellaneous (p. 2090)

5.2.12.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4660: Sockets 64 in
the Network Programming sub-collection.

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

5.2.12.3 Questions

5.2.12.3.1 Question 1

True or False?
Sockets in Java come in at least three varieties that are implemented by the following Java classes

• Connector
• DatagramConnector
• ServerConnector

Go to answer 1 (p. 2090)

5.2.12.3.2 Question 2

True or False?
The Socket and DatagramSocket classes represent TCP and UDP communications respectively.
Go to answer 2 (p. 2089)

5.2.12.3.3 Question 3

True or False?
Generally, the ServerSocket class is used to implement both clients and servers, while the Socket

and DatagramSocket classes are only used to implement servers
Go to answer 3 (p. 2089)

5.2.12.3.4 Question 4

True or False?
Socket programming provides a low-level mechanism by which you can connect two computers for the

exchange of data.
Go to answer 4 (p. 2089)

63This content is available online at <http://cnx.org/content/m49571/1.3/>.
64http://cnx.org/content/m49539/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2082 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.2.12.3.5 Question 5

True or False?
Socket programming makes it possible for you to cause data to �ow in a full-duplex mode between a

client and a server . This data �ow can be viewed in almost exactly the same way that we view data �ow
to and from a disk: as a stream of bytes.

Go to answer 5 (p. 2089)
What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2083

5.2.12.4 Answers

5.2.12.4.1 Answer 5

True.
Go back to Question 5 (p. 2088)

5.2.12.4.2 Answer 4

True.
Go back to Question 4 (p. 2087)

5.2.12.4.3 Answer 3

False. Generally, the Socket and DatagramSocket classes are used to implement both clients and
servers, while the ServerSocket class is only used to implement servers

Go back to Question 3 (p. 2087)

5.2.12.4.4 Answer 2

True.
Go back to Question 2 (p. 2087)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2084 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.2.12.4.5 Answer 1

False. Sockets in Java come in at least three varieties that are implemented by the following Java classes

• Socket
• DatagramSocket
• ServerSocket

Go back to Question 1 (p. 2087)

5.2.12.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4660r-Review
• File: Java4660r.htm
• Published: 03/08/14
• Revised 12/26/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

5.3 Search Engines

5.3.1 Java4585: Getting Started with Search Engines
65

5.3.1.1 Table of Contents

• Preface (p. 2091)
• Servlets, search engines, or JSON (p. 2091)
• Search engines (p. 2091)
• Miscellaneous (p. 2091)

65This content is available online at <http://cnx.org/content/m55646/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2085

5.3.1.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX. The purpose of this module is to get you started with Search
Engines.

5.3.1.3 Servlets, search engines, or JSON

As explained in the page titled Java4510: Preface to INEW 2338 66 , only one of the topics Search Engines
, Servlets , or JSON is covered in the course in any particular semester. However, all three are important.
The course material in the Blackboard course management program indicates which topic is covered in the
current semester.

Students are encouraged to study all three topics for their own educational purposes in order to enhance
their prospects of landing a job as a Java programmer.

5.3.1.4 Search engines

An understanding of search engines is a valuable skill for a programming student to acquire. Furthermore,
it is practical for an instructor to assess a student's understanding of and ability to develop a web search
engine written in Java. This assessment can be based solely on practical programming assignments along
with a written test.

The search-engine assignments can be written and tested on any computer capable of running the Java
Standard Edition development kit (including the computers in the on-campus labs) with no requirement
to install any special software.

The ability to develop a rudimentary search engine doesn't require any knowledge of Java programming
beyond that which the student should already have acquired in this and the prerequisite courses. However, it
does require the student to do independent research into the syntax and structure of HTML web pages and
to combine that knowledge with prior knowledge of Java programming. Thus, this search-engine competency
requirement tests the student's ability to apply prior Java programming knowledge to a very useful real-world
scenario � search engines.

Students will be provided the source code for a rudimentary Java web crawler that can be used as a
starting point for the development of the search engine required for each assignment. Students who have
completed the prerequisite courses should have no di�culty understanding the code in that program. It will
be the responsibility of the student to modify and upgrade the web crawler program in such a way as to
satisfy the speci�cations for each programming assignment.

Students will also be provided links to several online search-engine resources along with review questions
and answers for use in preparing for the written test.

5.3.1.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4585: Getting Started with Search Engines
• File: Java4585.htm
• Published: 05/17/15
• Revised: 06/02/16

66http://cnx.org/contents/yWyT-uhM:boF3E5Bs

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2086 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2087

5.3.2 Java4590r-Review for search engines
67

5.3.2.1 Table of contents

• Preface (p. 2093)
• Questions (p. 2093)

· 1 (p. 2093) , 2 (p. 2093) , 3 (p. 2093) , 4 (p. 2093) , 5 (p. 2094) , 6 (p. 2094) , 7 (p. 2094) , 8
(p. 2094) , 9 (p. 2094) , 10 (p. 2094) , 11 (p. 2094) , 12 (p. 2094) , 13 (p. 2095) , 14 (p. 2095) ,
15 (p. 2095)

• Answers (p. 2096)
• Miscellaneous (p. 2098)

5.3.2.2 Preface

This module is one in a collection of modules designed for teaching INEW2338 Advanced Java Programming
at Austin Community College in Austin, TX.

This module contains review questions and answers on search engines along with hyperlinks to online
material from which those questions and answers were derived.

The questions and the answers in this module are connected by hyperlinks to make it easy for you to
navigate from the question to the answer and back again.

5.3.2.3 Questions

5.3.2.3.1 Question 1

True or False? The robots lockout standard , also known as the robots lockout protocol or
robots.txt protocol , is a standard used by websites to communicate with web crawlers and other web
robots.

Go to answer 1 (p. 2098)

5.3.2.3.2 Question 2

True or False? The robots exclusion standard speci�es the instruction format to be used to inform the
robot about which areas of the website should not be processed or scanned.

Go to answer 2 (p. 2098)

5.3.2.3.3 Question 3

True or False? All robots cooperate with the robots exclusion standard including email harvesters,
spambots and malware robots that scan for security vulnerabilities.

Go to answer 3 (p. 2098)

5.3.2.3.4 Question 4

True or False? When a site owner wishes to give instructions to web robots they place a text �le called
robots.txt in the root of the web site hierarchy (e.g. https://www.example.com/robots.txt). This text �le
contains the instructions in a speci�c format. Robots that choose to follow the instructions try to fetch this
�le and read the instructions before fetching any other �le from the web site. If this �le doesn't exist, web
robots assume that the web owner wishes to provide no speci�c instructions, and crawl the entire site.

Go to answer 4 (p. 2098)

67This content is available online at <http://cnx.org/content/m55520/1.1/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2088 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.3.2.3.5 Question 5

True or False? Marking an area of a site "out of bounds" with robots.txt guarantees exclusion of all web
robots.

Go to answer 5 (p. 2098)

5.3.2.3.6 Question 6

True or False? To cause a webpage to perform better in search engine listings, the most important content
should be in Flash �les.

Go to answer 6 (p. 2097)

5.3.2.3.7 Question 7

True or False? Search engines have two major functions:

1. crawling and building an index, and
2. providing search users with a ranked list of the websites they've determined are the most relevant.

Go to answer 7 (p. 2097)

5.3.2.3.8 Question 8

True or False? The link structure of the web serves to bind all of the pages together. Links allow the search
engines' automated robots, called "crawlers" or "spiders," to reach the many billions of interconnected
documents on the web. Once the engines �nd these pages, they decipher the code from them and store
selected pieces in massive databases, to be recalled later when needed for a search query.

Go to answer 8 (p. 2097)

5.3.2.3.9 Question 9

True or False? Search Engine Optimization (SEO) is the process of a�ecting the visibility of a website or a
web page in a search engine's unpaid results - often referred to as "natural," "organic," or "earned" results.

Go to answer 9 (p. 2097)

5.3.2.3.10 Question 10

True or False? When a person performs an online search, the search engine begins crawling the web and
returning a list of all connected hyperlinks that are encountered.

Go to answer 10 (p. 2097)

5.3.2.3.11 Question 11

True or False? Search engines typically assume that the more popular a site, page, or document, the more
valuable the information it contains must be

Go to answer 11 (p. 2097)

5.3.2.3.12 Question 12

True or False? The prototype for the Google search engine was developed at MIT.
Go to answer 12 (p. 2097)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2089

5.3.2.3.13 Question 13

True or False? One of the main contributions to improved search engine performance, developed by Brin
and Page, was PageRank .

Go to answer 13 (p. 2096)

5.3.2.3.14 Question 14

True or False? PageRank is an algorithm used by Google Search to rank websites in their search
engine results. PageRank was named after Larry Page, one of the founders of Google. PageRank is a way of
measuring the importance of website pages. According to Google: PageRank works by counting the number
and quality of links to a page to determine a rough estimate of how important the website is. The underlying
assumption is that more important websites are likely to receive more links from other websites

Go to answer 14 (p. 2096)

5.3.2.3.15 Question 15

True or False? PageRank is the only algorithm used by Google to order search engine results.
Go to answer 15 (p. 2096)
What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2090 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.3.2.4 Answers

5.3.2.4.1 Answer 15

False. PageRank is not the only algorithm used by Google to order search engine re-
sults, but it is the �rst algorithm that was used by the company, and it is the best-known. (See
http://en.wikipedia.org/wiki/PageRank 68 .)

Go back to Question 15 (p. 2095)

5.3.2.4.2 Answer 14

True. (See http://en.wikipedia.org/wiki/PageRank 69 .)
Go back to Question 14 (p. 2095)

5.3.2.4.3 Answer 13

True. (See http://en.wikipedia.org/wiki/Search_engine_optimization 70 .)
Go back to Question 13 (p. 2095)

68http://en.wikipedia.org/wiki/PageRank
69http://en.wikipedia.org/wiki/PageRank
70http://en.wikipedia.org/wiki/Search_engine_optimization

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2091

5.3.2.4.4 Answer 12

False. The prototype for the Google search engine was developed by Sergy Brin and Lawrence Page at
Stanford. (See The Anatomy of a Large-Scale Hypertextual Web Search Engine 71 .) Apparently that
prototype search engine was known as "Backrub".

Go back to Question 12 (p. 2094)

5.3.2.4.5 Answer 11

True. (See http://moz.com/beginners-guide-to-seo/how-search-engines-operate 72 .)
Go back to Question 11 (p. 2094)

5.3.2.4.6 Answer 10

False. When a person performs an online search, the search engine scours its corpus of billions of documents,
(which was created earlier by crawling and indexing web sites) and does two things: �rst, it returns only
those results that are relevant or useful to the searcher's query; second, it ranks those results according to
the popularity of the websites serving the information. It is both relevance and popularity that the process
of Search Engine Optimization is meant to in�uence. (See http://moz.com/beginners-guide-to-seo/how-
search-engines-operate 73 .)

Go back to Question 10 (p. 2094)

5.3.2.4.7 Answer 9

True. (See http://en.wikipedia.org/wiki/Search_engine_optimization 74 .)
Go back to Question 9 (p. 2094)

5.3.2.4.8 Answer 8

True. (See http://moz.com/beginners-guide-to-seo/how-search-engines-operate 75 .)
Go back to Question 8 (p. 2094)

5.3.2.4.9 Answer 7

True. (See http://moz.com/beginners-guide-to-seo/how-search-engines-operate 76 .)
Go back to Question 7 (p. 2094)

5.3.2.4.10 Answer 6

False. To cause a webpage to perform better in search engine listings, the most important content should
be in HTML text format. Images, Flash �les, Java applets, and other non-text content are often ignored
or devalued by search engine crawlers. The easiest way to ensure that the words and phrases you display
to your visitors are visible to search engines is to place them in the HTML text on the page. (See
http://moz.com/beginners-guide-to-seo/basics-of-search-engine-friendly-design-and-development 77 .)

Go back to Question 6 (p. 2094)

71http://infolab.stanford.edu/∼backrub/google.html
72http://moz.com/beginners-guide-to-seo/how-search-engines-operate
73http://moz.com/beginners-guide-to-seo/how-search-engines-operate
74http://en.wikipedia.org/wiki/Search_engine_optimization
75http://moz.com/beginners-guide-to-seo/how-search-engines-operate
76http://moz.com/beginners-guide-to-seo/how-search-engines-operate
77http://moz.com/beginners-guide-to-seo/basics-of-search-engine-friendly-design-and-development

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2092 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.3.2.4.11 Answer 5

False. Despite the use of the terms "allow" and "disallow", the robots exclusion standard
is purely advisory. It relies on the cooperation of the web robot, so that marking an area of a
site "out of bounds" with robots.txt does not guarantee exclusion of all web robots. (See
http://en.wikipedia.org/wiki/Robots_exclusion_standard 78 .)

Go back to Question 5 (p. 2094)

5.3.2.4.12 Answer 4

True. (See http://en.wikipedia.org/wiki/Robots_exclusion_standard 79 .)
Go back to Question 4 (p. 2093)

5.3.2.4.13 Answer 3

False. Not all robots cooperate with the standard including email harvesters, spambots and malware robots
that scan for security vulnerabilities. (See http://en.wikipedia.org/wiki/Robots_exclusion_standard 80 .)

Go back to Question 3 (p. 2093)

5.3.2.4.14 Answer 2

True. (See http://en.wikipedia.org/wiki/Robots_exclusion_standard 81 .)
Go back to Question 2 (p. 2093)

5.3.2.4.15 Answer 1

False. The robots exclusion standard , also known as the robots exclusion protocol or
robots.txt protocol , is a standard used by websites to communicate with web crawlers and other web
robots. (See http://en.wikipedia.org/wiki/Robots_exclusion_standard 82)

Go back to Question 1 (p. 2093)

5.3.2.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4590r-Review for search engines
• File: Java4590r.htm
• Published: 05/04/15

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

78http://en.wikipedia.org/wiki/Robots_exclusion_standard
79http://en.wikipedia.org/wiki/Robots_exclusion_standard
80http://en.wikipedia.org/wiki/Robots_exclusion_standard
81http://en.wikipedia.org/wiki/Robots_exclusion_standard
82http://en.wikipedia.org/wiki/Robots_exclusion_standard

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2093

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

5.4 Servlets

5.4.1 Java4530: Getting Started with Servlets
83

5.4.1.1 Table of Contents

• Preface (p. 2099)

· Servlets, search engines, or JSON (p. 2099)
· Getting started (p. 2100)
· Viewing tip (p. 2100)

* Figures (p. 2100)
* Listings (p. 2100)

• General background information (p. 2100)

· Test for a successful connection on localhost (p. 2100)
· Upgrading your Java development environment (p. 2102)

• Discussion and sample code (p. 2102)
• What's next? (p. 2104)
• Miscellaneous (p. 2104)
• Complete program listings (p. 2106)

5.4.1.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX. The purpose of this module is to get you started writing,
deploying, and testing Java servlets.

5.4.1.2.1 Servlets, search engines, or JSON

As explained in the page titled Java4510: Preface to INEW 2338 84 , only one of the topics Search Engines
, Servlets , or JSON is covered in the course in any particular semester. However, all three are important.
The course material in the Blackboard course management program indicates which topic is covered in the
current semester.

Students are encouraged to study all three topics for their own educational purposes in order to enhance
their prospects of landing a job as a Java programmer.

83This content is available online at <http://cnx.org/content/m48509/1.7/>.
84http://cnx.org/contents/yWyT-uhM:boF3E5Bs

• Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2094 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.4.1.2.2 Getting started

If you haven't done so already, I strongly recommend that you study the following two modules before
continuing with this module:

Java4307: Servlets and JSP 85

• Java4308: Deploying JSP and Servlets 86

While studying Java4308 87 , I recommend that you download, install on your local machine, and test the
Apache Tomcat web server. Eventually students enrolled in this course will deploy and test their servlet
programs on a web server operated by the college. However, the �rst several modules in this sub-collection
will expect students to deploy and test servlets on a local web server.

5.4.1.2.3 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

5.4.1.2.3.1 Figures

• Figure 1 (p. 2100) . Web server test.
• Figure 2 (p. 2102) . Inew2338_050.java.
• Figure 3 (p. 2103) . Inew2338_051.java.
• Figure 4 (p. 2103) . Inew2338_052.jsp.

5.4.1.2.3.2 Listings

• Listing 1 (p. 2106) . Inew2338_050.java.
• Listing 2 (p. 2106) . Inew2338_051.java.
• Listing 3 (p. 2108) . Inew2338_052.jsp.

5.4.1.3 General background information

5.4.1.3.1 Test for a successful connection on localhost

Assuming that you have properly installed the Tomcat web server on your machine, you should be able to
start the server and point your browser to http://localhost:8080/ to see something similar to Figure 1
(p. 2100) in your browser.

Figure 1 - Web server test.

85http://cnx.org/content/m48284/latest/?collection=col11441/latest
86http://cnx.org/content/m48488/latest/?collection=col11441/latest
87http://cnx.org/content/m48488/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2095

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2096 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

If you don't see that, you should probably rectify the problem before continuing.
While you are there, stop and examine the page showing in your browser window. It is packed with

information regarding Tomcat, including documentation and the source code for numerous servlet and JSP
examples.

5.4.1.3.2 Upgrading your Java development environment

In Java4308 88 , I showed you how to upgrade your Java development environment to include two jar �les
named

• servlet.jar
• server.jar

I also explained that only the �rst one may actually be required, but since they are both small, there is no
harm in having both of them on your machine.

I showed you how to create a batch �le for compiling your servlet. The batch �le that I provided includes
these jar �les on the classpath. This has the e�ect of making the following packages, among others, available
to your compiler. This is a requirement for writing and compiling servlets and JSP.

• javax.servlet
• javax.servlet.http
• javax.servlet.jsp

You should make certain that you can successfully compile, deploy, and access the sample servlet that I
provided in Java4308 89 before continuing with this module.

5.4.1.4 Discussion and sample code

Before leaving this module, lets make absolutely certain that everything is working by creating, compiling,
deploying, and accessing two servlets and one JSP.

Using what you learned in Java4308 90 , create compile and deploy the two servlets shown in Listing 1
(p. 2106) and Listing 2 (p. 2106) . Then create and deploy the JSP shown in Listing 3 (p. 2108) .

Start your server and point your browser to http://localhost:8080/Inew2338_050 in order to see
Figure 2 (p. 2102) in your browser.

Figure 2 - Inew2338_050.java.

88http://cnx.org/content/m48488/latest/#Set_up_the_Java_Development_Kit
89http://cnx.org/content/m48488/latest/#Set_up_the_Java_Development_Kit
90http://cnx.org/content/m48488/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2097

Point your browser to http://localhost:8080/Inew2338_051 in order to see Figure 3 (p. 2103) in
your browser.

Figure 3 - Inew2338_051.java.

Point your browser to http://localhost:8080/Inew2338_052.jsp in order to see Figure 4 (p. 2103)
in your browser.

Figure 4 - Inew2338_052.jsp.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2098 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.4.1.5 What's next?

If those tests were successful, your system is ready for you to move on to the next module and begin learning
the programming details required to create Java servlets.

5.4.1.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4530: Getting Started with Servlets
• File: Java4530.htm
• Published: 12/19/13
• Revised: 06/02/16

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2099

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2100 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.4.1.7 Complete program listings

Listing 1 - Inew2338_050.java.

/*File Inew2338_050.java,

Copyright 2004, R.G.Baldwin

The servlet produces the following text in the

browser window in large red letters.

Hello Big Red World

**/

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Inew2338_050 extends HttpServlet{

public void doGet(HttpServletRequest req,

HttpServletResponse res)

throws ServletException,

IOException{

res.setContentType("text/html");

PrintWriter out = res.getWriter();

out.println("<HTML>");
out.println(

"<HEAD><TITLE>Inew2338_050</TITLE></HEAD>");
out.println("<BODY>");

out.println("<h1 align=\"center\">"
+"");

out.println("Hello Big Red World");

out.println("</h1>");

out.println("</BODY></HTML>");
}//end doGet()

}//end class Inew2338_050

Table 5.58

Listing 2 - Inew2338_051.java.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2101

/*File Inew2338_051.java

Copyright 2004, R.G.Baldwin

The servlet produces the following text in the

browser window in large green letters.

Hello Big Green World

**/

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Inew2338_051 extends HttpServlet{

public void doGet(HttpServletRequest req,

HttpServletResponse res)

throws ServletException,

IOException{

res.setContentType("text/html");

PrintWriter out = res.getWriter();

out.println("<HTML>");
out.println(

"<HEAD><TITLE>Inew2338_051</TITLE></HEAD>");
out.println("<BODY>");

out.println("<h1 align=\"center\">"
+"");

out.println("Hello Big Green World");

out.println("</h1>");

out.println("</BODY></HTML>");
}//end doGet()

}//end class Inew2338_051

Table 5.59

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2102 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Listing 3 - Inew2338_052.jsp.

<!--File Inew2338_052.jsp -->

<html>
<title>My title</title>

<body>
<H1>My JSP Page</H1>
<H2>Hello, JSP world!</H2>

<% for (int i=0; i<6; i++) { %>

<%= i %>

<% }//end for loop %>

<H3>Isn't this fun</H3>

</body>
</html>

Table 5.60

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2103

5.4.2 Java4530r-Review
91

5.4.2.1 Table of Contents

• Preface (p. 2109)
• Questions (p. 2109)

· 1 (p. 2109) , 2 (p. 2109)

• Answers (p. 2111)
• Miscellaneous (p. 2111)

5.4.2.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4530: Getting Started
with Servlets 92 in the Servlets sub-collection.

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

5.4.2.3 Questions

5.4.2.3.1 Question 1

True or False?
Assuming that you have properly installed the Tomcat web server on your local machine, you should be

able to start the server and point your browser to http://localhost:80/ to see the Tomcat startup screen
in your browser.

Go to answer 1 (p. 2111)

5.4.2.3.2 Question 2

True or False?
Including the following packages on your classpath is a requirement for writing and compiling servlets

and JSP.

• javax.servlet
• javax.servlet.http
• javax.servlet.jsp

Go to answer 2 (p. 2111)
What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

91This content is available online at <http://cnx.org/content/m49581/1.2/>.
92http://cnx.org/content/m48509/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2104 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2105

5.4.2.4 Answers

5.4.2.4.1 Answer 2

True.
Go back to Question 2 (p. 2109)

5.4.2.4.2 Answer 1

False. Assuming that you have properly installed the Tomcat web server on your local machine, you should
be able to start the server and point your browser to http://localhost:8080/ to see the Tomcat startup
screen in your browser. (Note the port number.)

Go back to Question 1 (p. 2109)

5.4.2.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4530r-Review
• File: Java4530r.htm
• Published: 03/10/14
• Revised 12/26/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

5.4.3 Java4535: Introduction to Servlet Code
93

5.4.3.1 Table of Contents

• Preface (p. 2112)

· Viewing tip (p. 2112)

* Figures (p. 2112)
* Listings (p. 2112)

93This content is available online at <http://cnx.org/content/m48518/1.4/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2106 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

• General background information (p. 2112)
• Discussion and sample code (p. 2113)

· The program named Servlet01.java (p. 2113)
· Interesting code fragments (p. 2113)
· But wait, there's more (p. 2116)

• What's next? (p. 2120)
• Miscellaneous (p. 2120)
• Complete program listing (p. 2121)

5.4.3.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX.

5.4.3.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

5.4.3.2.1.1 Figures

• Figure 1 (p. 2113) . Output from Servlet01.java.

5.4.3.2.1.2 Listings

• Listing 1 (p. 2113) . Import directives.
• Listing 2 (p. 2114) . Beginning of the class de�nition.
• Listing 3 (p. 2114) . Beginning of the overridden doGet method.
• Listing 4 (p. 2115) . Preparing to return a response.
• Listing 5 (p. 2115) . Construct and return an HTML �le.
• Listing 6 (p. 2121) . Servlet01.java.

5.4.3.3 General background information

Servlets are modules that run inside request/response-oriented servers, such as Java-enabled web servers,
and extend them in some manner. For example, a servlet might be responsible for taking data in an HTML
order-entry form and applying the business logic used to update a company's order database.

Servlets are to servers what applets are to browsers. The Servlet API, which you use to write servlets,
assumes nothing about how a servlet is loaded, the server environment in which the servlet runs, or the
protocol used to transmit data to and from the user. This allows servlets to be embedded in many di�erent
web servers.

Servlets are an e�ective substitute for CGI scripts. They provide a way to generate dynamic documents
that is both easier to write and faster to run. They also address the problem of doing server-side programming
with platform-speci�c APIs.

In some ways, a servlet is similar to an applet. An applet is a chunk of Java code that executes under
control of a browser. A servlet is a chunk of Java code that executes under control of a server program.

You must run your servlet under the control of a Java-enabled server program. The �rst few modules in
this sub-collection will use the Apache Tomcat 94 server for that purpose.

Please note that the use of servlets is not restricted to HTTP servers. However, the discussion in this
lesson and most of the follow-on modules will generally apply only to HTTP servers.

94http://cnx.org/content/m48488/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2107

5.4.3.4 Discussion and sample code

5.4.3.4.1 The program named Servlet01.java

In this module, I will discuss servlets using a sample servlet program named Servlet01.java as a guide.
A complete listing of the program is shown in Listing 6 (p. 2121) .

This program will illustrate some, but not all of material that I will discuss in this module. The purpose
of this program is to illustrate a very simple servlet and to serve as a vehicle for discussion of various aspects
of servlets.

The servlet produces the screen output in the browser shown in Figure 1 (p. 2113) .
Figure 1 - Output from Servlet01.java.

5.4.3.4.2 Interesting code fragments

Import directives
I will explain the program code in fragments. The �rst fragment in Listing 1 (p. 2113) shows the import

directives necessary to support servlet programming.

Listing 1 - Import directives.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

Table 5.61

The Servlet interface
All servlets must implement the Servlet interface. You can implement it directly. However, it is

more common to implement it indirectly by extending a class that implements the interface (such as
HttpServlet).

The Servlet interface declares methods for managing the servlet and its communications with clients.
You will need to override some or all of those methods when you write your servlet.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2108 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Listing 2 (p. 2114) shows the beginning of the controlling class for the servlet. Note that the servlet
class extends HttpServlet . By extending the HttpServlet class, the servlet implements the Servlet
interface indirectly.

Listing 2 - Beginning of the class de�nition.

public class Servlet01 extends HttpServlet{

Table 5.62

Request and response objects
Two object references are passed to a servlet when it called by a client:

• ServletRequest - encapsulates the communication from the client to the server.
• ServletResponse - encapsulates the communication from the servlet back to the client

Access to these objects can be accomplished in more than one way. This servlet overrides the doGet
method, which receives references to the two objects as incoming parameters.

The overridden doGet method
The beginning of the overridden doGet method is shown in Listing 3 (p. 2114) .

Listing 3 - Beginning of the overridden doGet method.

public void doGet(HttpServletRequest req,

HttpServletResponse res)

throws ServletException, IOException{

Table 5.63

Note that the doGet method throws an exception of type ServletException . In this servlet, some
of the code inside the doGet method also throws an IOException , which is not handled inside the
method. Thus, it is declared in the method signature.

Browser commands and servlet methods
A Java-enabled server provide a method corresponding to each of the commands that an HTTP client

can send to its server. When the server receives a command from the client, the corresponding method is
called on the servlet.

As the servlet programmer, you override some or all of those methods to provide the desired behavior.
The doGet method and the HTTP GET command
The doGet method corresponds to the HTTP GET command. If you don't override the method,

the default implementation reports an HTTP BAD_REQUEST error when the browser sends a GET
command.

Overriding the doGet method to support the GET command also automatically supports the HTTP
HEAD command.

(The HEAD command is a GET command that returns no body in the response. It just
returns the requested header �elds.)

The fundamental purpose of the GET command makes it possible for the client to get something
from the server. When you override the doGet method, you should

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2109

• Read data from the request
• Construct the proper headers in the response
• Gain access to either the writer or the output stream (depending on whether the material to be

returned is text or binary data)
• Write the response data

Responding to the request
The headers should include content type and encoding. The content type must be set before the writer

is accessed.
This servlet constructs and returns a simple HTML �le containing formatted text. Listing 4 (p. 2115)

shows the use of setContentType method of the response object to set the content type being returned
before accessing the writer. Then the getWriter method of the response object is used to get access to
the output stream.

Listing 4 - Preparing to return a response.

res.setContentType("text/html");

PrintWriter out = res.getWriter()

Table 5.64

You will need to do some research on your own to learn about the di�erent content types that can be
returned by a servlet.

The PrintWriter object referred to by out is used to construct output text in Listing 5 (p. 2115) .
Construct and return an HTML �le
That brings us to the fragment in Listing 5 (p. 2115) , which constructs and returns the various elements

of an HTML page and then terminates the doGet method.

Listing 5 - Construct and return an HTML �le.

out.println("<html>");
out.println("<head><title>Servlet01</title></head>");
out.println("<body>");

out.println("<h1 align=\"center\">"
+"");

out.println("Hello Big Red World");

out.println("</h1>");

out.println("</body></html>");
}//end doGet()

}//end class Servlet01

Table 5.65

Constructing the HTML code

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2110 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

The code in Listing 5 (p. 2115) constructs a series of String objects and passes them as parameters
to the println method of the PrintWriter object referred to by out . The content of the String
objects is raw HTML code.

A tedious process: Constructing raw HTML code as a series of Java String objects can be
a very tedious and error-prone process, due particularly to the frequent need to use the backslash
escape character for quotation marks inside the strings. (All attribute values in HTML must be
surrounded by quotation marks.)

This is one of the arguments for the use of JSP that you learned about in the prerequisite course
95 .. One of the bene�ts of JSP is that it can greatly reduce the amount of raw HTML code that
you must construct to send back a typical HTML web page.

If you have written any raw HTML code, you will probably recognize the construction of the HTML code
in Listing 5 (p. 2115) (and you may also recognize the HTML code as being vintage 1999 when the servlet
program was written) .

If you haven't written any HTML, you will need to do a little research on your own to learn about the
various parts of an HTML page. At this level, it is fairly simple.

(An HTML element often consists of text content surrounded by opening and closing tags of a
particular type. Elements can also be nested inside of other elements creating a hierarchical tree
of elements.)

The content between the opening and closing body tags in Listing 5 (p. 2115) represents the real
information content of the page. The rest is mostly formatting information.

This body content in Listing 5 (p. 2115) says to

• Set the text to style h1 (which is a maximum size header).
• Center it on the page.
• Set the color to hexadecimal FF0000, which is the color value for pure red (in a red, green, blue color

system) .

Most (but not all) HTML elements, such as the body element, require an opening tag and a closing tag.
Thus, most tag types come in pairs.

An HTML page is pure text with the various elements specifying how the browser is to interpret and
display that text. (The text can also refer to other �les such as image �les and cause the content of those
�les to be included in the rendered output produced by the browser.)

The Java code in this servlet simply prints the requisite HTML text to the output stream referred to by
out . Recall from Listing 4 (p. 2115) that the reference to the output stream was obtained by calling the
getWriter method on the HttpServerResponse object. That object takes care of transporting the
text back to the client browser.

5.4.3.4.3 But wait, there's more

Usually in most modules, when I complete the discussion of the last sample program, that is the end of
the module. In this module, however, there are several other important topics that I want to discuss before
ending the module.

The ServletRequest object
One of the incoming objects to the servlet is of type ServletRequest . This is not the name of a

class. Instead, this is a type de�ned by an interface of the same name. This interface declares more than 30
methods by which the servlet can extract incoming information from the object. This framework provides
the servlet's only access to incoming data.

95http://cnx.org/content/m48057/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2111

The data provided by the ServletRequest o object includes parameter names and values, attributes,
and an input stream.

Interfaces that extend ServletRequest can provide additional protocol-speci�c data. For example,
HTTP data is provided by the interface HttpServletRequest , which extends ServletRequest .
(Recall from Listing 3 (p. 2114) t that the doGet method receives a reference to an HttpServletRequest
object as an incoming parameter.)

Su�ce it to say that it is possible for the servlet to obtain a great deal of information in order to carry
out its duties. (I will refer you to the online documentation 96 for more information about the available
methods.)

The ServletResponse object
The other incoming object to the servlet is an object of type ServletResponse . This is also a type

de�ned by an interface of the same name. This interface declares more than 15 methods by which the servlet
can return data to the client.

The content type
Recall that Listing 4 (p. 2115) calls the setContentType m method on the response object to set

the type of the data being returned by this servlet to "text/html". It is also possible to set the character
encoding in a call to setContentType with something like

text/html;charset=UTF-8
The rules for doing that are fairly complicated, so you would do well to consult the Java documentation

for the setContentType method before trying to deal with that possibility.
Persistence
We have discussed the classes and interfaces that make up a basic Servlet. HTTP servlets have additional

objects that provide session-tracking capabilities. The servlet writer can use these APIs to maintain state
between the servlet and the client that persists across multiple connections during some time period.

The servlet life cycle
Servlets have a prescribed life cycle. Servers load and run servlets. Servers accept requests from clients,

and may use their servlets to return data to the clients.
Servers can also remove servlets. So, the stages of a servlet's life cycle are:

• The servlet is loaded and initialized.
• The servlet is used to satisfy client requests.
• The servlet is removed or unloaded.

A server runs the servlet's init method when it loads the servlet. Most servlets are run in multi-threaded
servers. However, there are no concurrency issues during servlet initialization. The server calls the init
method when it loads the servlet, and does not call it again unless it is reloading the servlet.

The server cannot reload a servlet until after it has removed the servlet by calling the destroy method.
Initialization is allowed to complete before client requests are handled or the servlet is destroyed.

A practical problem
This can be a problem when you are developing a servlet and repeatedly testing it with a server. Once

the servlet is initially loaded from the class �le, for some servers simply providing a new class �le does not
cause the server to remove the old version of the servlet and load the new version. (This appears to be the
case with the Apache Tomcat 97 server that we will be using for some of these modules.)

With the Apache Tomcat 98 server , you must stop and restart the server to cause it to load the new
version of a servlet. (It may be possible to use some feature of the administration tool to force the server
to remove an old version and load a new version of a servlet without stopping and restarting the server but
I have never investigated that possibility.)

The second stage

96http://docs.oracle.com/javaee/7/api/
97http://cnx.org/content/m48509/latest/?collection=col11441/latest
98http://cnx.org/content/m48488/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2112 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

The second stage in the life of the servlet begins after the servlet has been loaded and initialized. At that
point, the server may call upon the servlet to respond to client requests. In so doing, the servlet handles
client requests by processing them in its service method, which is called by the server. Normally, the
service request from each client is run in a separate thread by the servlet.

Generic versus HTTP servlets
If you are writing a generic servlet, you will probably override the service method. However, if you

are writing servlets to be used with HTTP servers, you probably won't need to override service . The
service method of the HttpServlet class handles the setup and dispatches the request to methods such
as doGet and doPost . When writing HTTP servlets, you will normally extend the HttpServlet
class and override the doXXX methods instead of overriding the service method.

Multithreaded operation
Servlets can process requests from multiple clients concurrently in a multithreaded manner. This means

that the service methods should be written to be thread safe. One description that I have seen for how to
write a thread-safe method is to:

Use the fewest possible number of instance variables, and synchronize access to them if you use
them.

Single-threaded operation
In some cases and for some reason known only to you, you may decide to prevent your servlet from

processing concurrent client requests. In this case, you should cause your servlet to implement the Sin-
gleThreadModel interface. This interface guarantees that no two threads will execute the servlet's service
methods concurrently. Implementing the interface does not require writing any extra methods. Merely
declaring that the servlet implements the interface is su�cient to prevent the server from making concurrent
calls to the service method.

(This may not make you popular with the server administrator because it could cause your
single-threaded servlet to become a bottleneck.)

The third stage
The third and last stage of a servlet's life cycle is removal. When a server removes a servlet, it runs

the servlet's destroy method. This method is run only once. The server will not run it again until after
it reloads and reinitializes the servlet. When the destroy method runs, other threads might be running
service requests. If it is necessary to access shared resources while doing cleanup, that access should be
synchronized.

The javax.servlet.Servlet interface
Servlets must implement the javax.servlet.Servlet interface. For writing servlets that run under

control of servers that use the HTTP protocol, the most common way to write servlets is to extend the
javax.servlet.http.HttpServlet class which is a way to indirectly implement the Servlet interface.

The HttpServlet class implements the Servlet interface by extending the GenericServlet base
class, and provides a framework for handling the HTTP protocol.

Four methods
For servlets that extend the HttpServlet class, the following four methods may be overridden to cause

your servlet to interact with the client.

• doGet - for handling GET, conditional GET and HEAD requests
• doPost - for handling POST requests
• doPut - for handling PUT requests
• doDelete - for handling DELETE requests

You may need to do some outside research on the HTTP protocol to learn about the nature of each type of
client request listed above. You may also want to go back and review Java4350: Form Processing with JSP
99 for information regarding the di�erences between the HTML GET and POST methods.

99http://cnx.org/content/m48085/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2113

By default, if called but not overridden, these methods return a BAD_REQUEST (400) error.
The servlet discussed earlier used the doGet method to handle GET requests.
Di�erences between doGet and doPost
I will describe a couple of di�erences between the two methods that you may �nd useful. Assume there

is a servlet named Java4550a on a localhost web server. You can execute that servlet by typing the
following address into the address �eld of the browser and pressing the Enter key :

http://localhost:8080/Java4550a
First consider the contents of the browser's address window. When an HTML page calls the doGet

method of a servlet named Java4550a , you will often see something like the following in the address
window:

http://localhost:8080/Java4550a?�rstName=Dick...
As you can see, some information has been appended onto the end of the address with the ? character

being used to separate the two.
However, if the HTML page calls the doPost method of the same servlet, this is what you should see:
http://localhost:8080/Java4550a

(Note that some browsers don't display the http:// portion of the address.)

In other words, with the doPost method, no visible information is appended onto the actual address as is
the case with the doGet method.

It is probably also safe to say that the doGet method is the default. By this, I mean that if you enter
address given above (p. 2119) into the browser's address �eld and press the Enter key, the doGet method
(and not the doPost method) belonging to the servlet named Java4550a will be called.

(The same is true if you put this address into a simple hyperlink when creating a web page.)

If you want to manually enter an address into the address �eld and cause the doPost method to be called,
you must �nd some other way to do it.

Arguments
Each of the methods requires two arguments. The �rst, a reference to an HttpServletRequest object,

encapsulates the data from the client. The second, a reference to an HttpServletResponse object
encapsulates the response to the client.

The HttpServletRequest object provides a large number of methods that the servlet can use to
obtain information about the request.

Similarly, the HttpServletResponse object provides a large number of methods that the servlet can
use to return data to the client.

The init and destroy methods
You may also �nd that you need to override the init and destroy methods in your servlet. Recall

that each of these methods is called only once. The init method is called when the server loads the servlet
class. The destroy method is called when the server removes the servlet class.

Overriding the init method
The servlet should use the init method to prepare the resources it manages and to make the servlet ready

to handle client requests. It can do this without regard for multi-threading issues because it is guaranteed
that there is only a single thread running during initialization. If the init method is unable to run to a
successful completion, it should throw an UnavailableException object.

The init method receives a ServletCon�g object as a parameter. For reasons that I won't bother
to discuss here, the overridden init method should call super.init and pass this con�guration object as
a parameter. If you are curious as to the reasons, you can look it up in the documentation.

Overriding the destroy method
Overriding the destroy method is more problematic, particularly if it is necessary to deal with resources

that may be shared by service threads that are still running when the server decides to remove the servlet
and call its destroy method. I'm going to punt on this one, and suggest that if you �nd yourself in this

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2114 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

situation, you should �nd a good book with an example similar to your situation and use that example for
guidance.

The getServletInfo method
Some applications may want to display information about a servlet, such as a short description of the

purpose of the servlet, its author, and perhaps its version number. The Servlet API provides a method
named getServletInfo to return this kind of information about the servlet. By default, this method
returns null. You can override this method to return a String containing information about your servlet.

5.4.3.5 What's next?

The next module in the series will take on forms and databases.

5.4.3.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4535: Introduction to Servlet Code
• File: Java4535.htm
• Published: 12/20/13
• Revised: 01/31/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2115

5.4.3.7 Complete program listing

Listing 6 - Servlet01.java.

/*File Servlet01.java, Copyright 1999, R.G.Baldwin

The purpose of this program is to illustrate a very

simple servlet.

The servlet produces the following text in the browser

window in large red letters.

Hello Big Red World

**/

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Servlet01 extends HttpServlet{

public void doGet(HttpServletRequest req,

HttpServletResponse res)

throws ServletException, IOException{

//Establish the type of output

res.setContentType("text/html");

//Get an output stream

PrintWriter out = res.getWriter();

//Construct an html page to return to the client

out.println("<html>");
out.println("<head><title>Servlet01</title></head>");
out.println("<body>");

out.println("<h1 align=\"center\">"
+"");

out.println("Hello Big Red World");

out.println("</h1>");

out.println("</body></html>");
}//end doGet()

}//end class Servlet01

Table 5.66

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2116 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.4.4 Java4535r-Review
100

5.4.4.1 Table of Contents

• Preface (p. 2122)
• Questions (p. 2122)

· 1 (p. 2122) , 2 (p. 2122) , 3 (p. 2122) , 4 (p. 2122) , 5 (p. 2123) , 6 (p. 2123) , 7 (p. 2123) , 8
(p. 2123) , 9 (p. 2123) , 10 (p. 2123) , 11 (p. 2124) , 12 (p. 2124) , 13 (p. 2124) , 14 (p. 2124) ,
15 (p. 2124) , 16 (p. 2124) , 17 (p. 2125)

• Answers (p. 2126)
• Miscellaneous (p. 2128)

5.4.4.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4535: Introduction
to Servlet Code 101 in the Servlets sub-collection.

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

5.4.4.3 Questions

5.4.4.3.1 Question 1

True or False?
Servlets are programming modules that run inside request/response-oriented servers, such as Java-

enabled web servers, and extend them in some manner.
Go to answer 1 (p. 2128)

5.4.4.3.2 Question 2

True or False?
You can run servlet programs on any server that supports the HTTP protocol.
Go to answer 2 (p. 2128)

5.4.4.3.3 Question 3

True or False?
The use of servlets is restricted to HTTP servers.
Go to answer 3 (p. 2128)

5.4.4.3.4 Question 4

True or False?
The following import directives, as a minimum, are necessary to support servlet programming:

• import java.io.*;
• import javax.servlet.*;
• import javax.servlet.http.*;

Go to answer 4 (p. 2128)

100This content is available online at <http://cnx.org/content/m49594/1.2/>.
101http://cnx.org/content/m48518/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2117

5.4.4.3.5 Question 5

True or False?
All servlets must implement the JavaServlet interface. You can implement it directly. However, it

is more common to implement it indirectly by extending a class that implements the interface (such as
HttpJavaServlet).

Go to answer 5 (p. 2128)

5.4.4.3.6 Question 6

True or False?
The Servlet interface declares methods for managing the servlet and its communications with clients.

You will need to override some or all of those methods when you write your servlet.
Go to answer 6 (p. 2127)

5.4.4.3.7 Question 7

True or False?
Object references of the following types are passed to a servlet when it called by a client:

• JavaServletRequest - encapsulates the communication from the client to the server.
• JavaServletResponse - encapsulates the communication from the servlet back to the client

Go to answer 7 (p. 2127)

5.4.4.3.8 Question 8

True or False?
For an HTTP servlet, the doGet method receives references to two objects of the following types as

incoming parameters:

• HttpServletRequest
• HttpServletResponse

Go to answer 8 (p. 2127)

5.4.4.3.9 Question 9

True or False?
A Java-enabled server provide a method to support each of the commands that an HTTP client can send

to its server. When the server receives a command from the client, the corresponding method is called on
the servlet.

As the servlet programmer, you override some or all of those methods to provide the desired behavior.
Go to answer 9 (p. 2127)

5.4.4.3.10 Question 10

True or False?
The doGet method corresponds to the HTTP POST command. If you don't override the method,

the default implementation reports an HTTP BAD_REQUEST error when the browser sends a POST
command.

Go to answer 10 (p. 2127)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2118 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.4.4.3.11 Question 11

True or False?
Overriding the doGet method to support the GET command also automatically supports the HTTP

HEAD command.
Go to answer 11 (p. 2127)

5.4.4.3.12 Question 12

True or False?
The fundamental purpose of the GET command makes it possible for the client to get something

from the server. When you override the doGet method, you should, as a minimum:

• Read data from the request
• Construct the proper headers in the response
• Gain access to either the writer or the output stream (depending on whether the material to be

returned is text or binary data)
• Write the response data

Go to answer 12 (p. 2127)

5.4.4.3.13 Question 13

True or False?
The headers that you create in your overridden doGet method should include content type and

encoding. The content type must be set before the writer is accessed. The setContentType method of
the response object can be called to set the content type. The getWriter method of the response object
can be called to get access to the output stream.

Go to answer 13 (p. 2127)

5.4.4.3.14 Question 14

True or False?
The class de�nition for an HTTP servlet extends the JavaHttpServlet class.
Go to answer 14 (p. 2127)

5.4.4.3.15 Question 15

True or False?
Servlets typically process requests from multiple clients concurrently in a multithreaded manner. How-

ever, it is possible to write servlets that are restricted to single-threaded operation by implementing the
SingleThreadModel interface.

Go to answer 15 (p. 2126)

5.4.4.3.16 Question 16

True or False?
When writing a servlet for multi-threaded operation, you should use the fewest possible number of

instance variables, and synchronize access to them if you use them.
Go to answer 16 (p. 2126)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2119

5.4.4.3.17 Question 17

True or False?
For servlets that extend the HttpServlet class, the following methods may be overridden to cause

your servlet to interact with the client.

• doGet - for handling GET, conditional GET and HEAD requests
• doPost - for handling POST requests
• doPut - for handling PUT requests
• doDelete - for handling DELETE requests
• doTerminate - for terminating the servlet and returning control to the browser

Go to answer 17 (p. 2126)
What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2120 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.4.4.4 Answers

5.4.4.4.1 Answer 17

False.
For servlets that extend the HttpServlet class, the following four methods may be overridden to cause

your servlet to interact with the client.

• doGet - for handling GET, conditional GET and HEAD requests
• doPost - for handling POST requests
• doPut - for handling PUT requests
• doDelete - for handling DELETE requests

Go back to Question 17 (p. 2125)

5.4.4.4.2 Answer 16

True.
Go back to Question 16 (p. 2124)

5.4.4.4.3 Answer 15

True.
Go back to Question 15 (p. 2124)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2121

5.4.4.4.4 Answer 14

False. The class de�nition for an HTTP servlet extends the HttpServlet class.
Go back to Question 14 (p. 2124)

5.4.4.4.5 Answer 13

True.
Go back to Question 13 (p. 2124)

5.4.4.4.6 Answer 12

True.
Go back to Question 12 (p. 2124)

5.4.4.4.7 Answer 11

True.
Go back to Question 11 (p. 2124)

5.4.4.4.8 Answer 10

False. The doGet method corresponds to the HTTP GET command. If you don't override the method,
the default implementation reports an HTTP BAD_REQUEST error when the browser sends a GET
command.

Go back to Question 10 (p. 2123)

5.4.4.4.9 Answer 9

True.
Go back to Question 9 (p. 2123)

5.4.4.4.10 Answer 8

True.
Go back to Question 8 (p. 2123)

5.4.4.4.11 Answer 7

False.
Object references of the following types are passed to a servlet when it called by a client:

• ServletRequest - encapsulates the communication from the client to the server.
• ServletResponse - encapsulates the communication from the servlet back to the client

Go back to Question 7 (p. 2123)

5.4.4.4.12 Answer 6

True.
Go back to Question 6 (p. 2123)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2122 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.4.4.4.13 Answer 5

False. All servlets must implement the Servlet interface. You can implement it directly. However, it is
more common to implement it indirectly by extending a class that implements the interface (such as
HttpServlet).

Go back to Question 5 (p. 2123)

5.4.4.4.14 Answer 4

True.
Go back to Question 4 (p. 2122)

5.4.4.4.15 Answer 3

False. The use of servlets is not restricted to HTTP servers.
Go back to Question 3 (p. 2122)

5.4.4.4.16 Answer 2

False. You must run your servlet under the control of a Java-enabled server program. Not all HTTP servers
support Java servlets.

Go back to Question 2 (p. 2122)

5.4.4.4.17 Answer 1

True.
Go back to Question 1 (p. 2122)

5.4.4.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4535r-Review
• File: Java4535r.htm
• Published: 03/10/14
• Revised 12/26/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2123

5.4.5 Java4550: Session Tracking using Hidden Fields
102

5.4.5.1 Table of Contents

• Preface (p. 2129)

· Viewing tip (p. 2129)

* Figures (p. 2129)
* Listings (p. 2129)

• General background information (p. 2130)
• Discussion and sample code (p. 2131)

· The servlet program (p. 2131)

* Interesting code fragments (p. 2134)
* Tedious and error prone (p. 2140)

· The JSP program (p. 2140)

* Interesting code fragments (p. 2140)

• Run the programs (p. 2142)
• Miscellaneous (p. 2143)
• Complete program listings (p. 2143)

5.4.5.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX. The purpose of this module is to explain session tracking using
hidden �elds, and to compare a servlet with a JSP to accomplish the same objective.

5.4.5.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

5.4.5.2.1.1 Figures

• Figure 1 (p. 2131) . The servlet user interface at startup.
• Figure 2 (p. 2132) . Browser display for Tom, Dick, and Harry.
• Figure 3 (p. 2133) . Hidden �elds in the servlet output.

5.4.5.2.1.2 Listings

• Listing 1 (p. 2134) . Beginning of the servlet class.
• Listing 2 (p. 2135) . Get and save the hidden values from the browser page.
• Listing 3 (p. 2135) . Get and save user input data.
• Listing 4 (p. 2137) . Begin constructing the HTML output data.
• Listing 5 (p. 2137) . Begin the HTML code for an HTML form.
• Listing 6 (p. 2138) . An input �eld and a submit button.
• Listing 7 (p. 2138) . Beginning of the list of names.
• Listing 8 (p. 2139) . Display the historical data and also save it on the browser.
• Listing 9 (p. 2139) . Display most recent value and also store it on the browser.

102This content is available online at <http://cnx.org/content/m48550/1.5/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2124 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

• Listing 10 (p. 2140) . Create basic web page structure.
• Listing 11 (p. 2141) . A JSP scriptlet.
• Listing 12 (p. 2141) . The body of the for loop.
• Listing 13 (p. 2142) . Another scriptlet.
• Listing 14 (p. 2142) . Another JSP expression tag.
• Listing 15 (p. 2142) . Terminating scriptlet and HTML code.
• Listing 16 (p. 2143) . The servlet program named Java4550a.java.
• Listing 17 (p. 2146) . The JSP program named Java4550a.jsp.

5.4.5.3 General background information

A stateless protocol
The HTTP protocol is a relatively simple request/response protocol that does not retain historical in-

formation from one client request to the next. In other words, each request is a new start insofar as the
HTTP server is concerned. (HTTP is sometimes referred to as a "stateless" protocol.) However, historical
information can be very important. The maintenance of historical information is often referred to as "session
tracking."

Session tracking
Session tracking is very important for many web applications including web commerce and web games.

Therefore, this and the next several modules will show you some of the ways that you can accomplish session
tracking using servlets and JSP.

Web commerce
Perhaps the most common example of the need for session tracking is with a web commerce application

involving a shopping cart. The customer (client) downloads various pages from a vendor catalog, selecting
items, and placing them in a shopping cart. At some point, the customer decides either to purchase the
items or abandon the shopping trip.

If the customer decides to purchase the items in the cart, the web application must have a record of all
the items in the cart. Furthermore, that record must be associated with that particular customer so that
the sale can be consummated.

Insofar as the HTTP protocol is concerned, each time the customer views a di�erent page in the catalog,
all information regarding previously viewed pages is forgotten. The HTTP protocol doesn't save state
information regarding an ongoing session by that customer involving multiple pages. It is the responsibility
of the application to track the session involving that client (customer) .

In the case of the shopping cart application, it is also the responsibility of the application to keep track
of the items in the cart associated with that customer.

Session tracking using hidden �elds
There are several di�erent ways to accomplish session tracking with a servlet. This module will illustrate

one of those ways, which is commonly known as hidden �elds . Other ways will be illustrated in future
modules

Some session tracking schemes maintain historical information over many user sessions on a website.
Others schemes are more limited. The scheme that I will explain in this module is generally limited to one
session consisting of multiple requests.

This scheme is probably not useful for large scale web commerce. However, it might be useful for an
online game where the user makes a move and then clicks a submit button. The computer needs to
remember the entire history of the game, but needn't necessarily remember the history if the user leaves the
website by closing the browser page.

A servlet and a JSP
I will explain two di�erent programs that accomplish the same purpose. One of the programs is a servlet.

The other program is a JSP. You will see that the JSP version is physically easier to write than the servlet
version. However, you probably need to understand the servlet version in order to understand the JSP

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2125

version. The two also di�er in that the servlet is capable of determining the name of the server on which it
is running but the JSP does not have that capability.

5.4.5.4 Discussion and sample code

I will discuss both programs in fragments. A complete listing of the servlet program named Java4550a.java
is provided in Listing 16 (p. 2143) . A complete listing of the JSP program named Java4550a.jsp is
provided in Listing 17 (p. 2146) .

5.4.5.4.1 The servlet program

The program output
Each time the servlet is called by a browser, it creates and displays an HTML form on the browser screen

similar to that shown in Figure 1 (p. 2131) .
Figure 1 - The servlet user interface at startup.

The HTML form displays:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2126 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

• An input text �eld through which the client can submit a name
• A submit button
• A list of previously submitted names

A new request
Each time the user clicks the submit button, the contents of the Name �eld are sent to the server

and the server views that as a new request. The server does not remember historical information from one
request to the next.

However, this servlet provides a mechanism by which a historical list of Name values from a sequence
of requests is saved and displayed in the area identi�ed as Empty in Figure 1 (p. 2131) .

Tom, Dick, and Harry
For example, Figure 2 (p. 2132) shows the browser display after the names Tom, Dick, and Harry have

been sent to the server in three separate requests. (Note the list of names near the left-center of Figure 2
(p. 2132) .) The name Joe has been entered into the text �eld in Figure 2 (p. 2132) but the user has not
yet clicked the submit button to send it to the server. Therefore, that name does not appear on the list.

Figure 2 - Browser display for Tom, Dick, and Harry.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2127

The GET method
In this servlet, requests are sent from the browser to the server using the GET method. (The POST

method could also have been used.) Each time the browser makes a GET request of the server, an HTML
form is created by the servlet and sent back to the browser.

Hidden �elds
Hidden �elds are added to the form each time it is created by the servlet. One hidden �eld contains

the name submitted for that GET request. Other hidden �elds contain each of the names submitted by
each previous GET request during the current session. In other words, the hidden �elds on each successive
form match those of the previous form plus a new hidden �eld for the new name submitted with that GET
request.

Raw HTML code
Figure 3 (p. 2133) shows the HTML code returned to the browser following the sending of Tom, Dick,

and Harry to the server in three separate requests. The three hidden �elds are shown at the bottom.
Figure 3 - Hidden �elds in the servlet output.

The term dell8700 on the fourth line of Figure 3 (p. 2133) is the name of the computer on which the
server that serviced the request was running.

If the user enters another name into the text �eld and clicks the submit button

• The new name will be sent to the servlet.
• This historical data will also be sent to the servlet.
• The new name will be appended onto the list.
• The new list will be sent back to the browser.

Save historical data in an HTML form
With this approach, the historical data is saved by embedding it in the new HTML form that is returned

to the browser. There is no requirement to save the historical data in a database or in the server's �le system.
Note however, that the data will be lost if the user shuts down the browser or shuts down the computer.
However, because of the browser cache, it is sometimes possible for the user to navigate to other web sites
and then return to the same web page using the Back button and �nd that the historical data is still there.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2128 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Simple, reliable, and easy to implement
This approach has been used by web programmers for many years in those cases where it will get the

job done. The approach is reliable and easy to implement. It places no special requirements on the server
software (other than the ability to support Java servlets) and it is compatible with all browsers that support
HTML forms.

5.4.5.4.1.1 Interesting code fragments

The doGet method
The code in Listing 1 (p. 2134) shows the beginning of the controlling class and the beginning of the

doGet method for the servlet.

Listing 1 - Beginning of the servlet class.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.net.*;

public class Java4550a extends HttpServlet{

public void doGet(HttpServletRequest req,

HttpServletResponse res)

throws ServletException, IOException{

//Get and display name of localhost

InetAddress inetAddress = InetAddress.getLocalHost();

String hostName = inetAddress.getHostName();

System.out.println(hostName);

Table 5.67

The name of the server
Without getting into the details as to why, I will tell you that the last three lines of code in Listing 1

(p. 2134) , (in conjunction with the import directive for java.net.*) cause the name of the computer
on which the server is running to be saved in the variable named hostName and to be displayed on the
Tomcat server console. You should have learned enough about the class named InetAddress earlier in
this course to understand what is going on here without further explanation.

This is very important information for students enrolled in this course because this or something like it
will be required for many of the programming assignments.

Two incoming parameters
Recall from previous modules that the doGet method receives two parameters. One parameter named

req is a reference to an object of the interface type HttpServletRequest that contains all of the
information sent by the browser when the request was made. The other parameter named res is a
reference to an object of the interface type HttpServletResponse that collects output information and
sends it back to the browser.

Both of those objects contain numerous methods that can be used to access incoming information (req
) or to send information back to the browser (res) . We will see several of those methods being used
shortly.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2129

A bit of technical trivia: HttpServletRequest and HttpServletResponse are
interfaces, not classes. In general, we don't know the names of the classes from which the objects
referred to by the incoming parameters were instantiated. And, we don't really care because we
only plan to call methods on those objects that are declared in the interfaces that the objects
implement.

However, just as a matter of technical trivia, it appears that those classes have the following names
on my system:

org.apache.catalina.connector.RequestFacade

org.apache.catalina.connector.ResponseFacade

Multiple �elds with the same name
An HTML form can have multiple �elds with the same name. As you saw in Figure 3 (p. 2133) , the

hidden �elds are all named item . The code in Listing 2 (p. 2135) calls the getParameterValues
method on the request object to get the values stored in all of the hidden �elds named item .

Listing 2 - Get and save the hidden values from the browser page.

String[] items = req.getParameterValues("item");

Table 5.68

The getParameterValues method receives the �eld name item as a String parameter and
returns an array of String objects, containing all of the values with matching names contained in the
request object, or null if the �eld name does not exist.

Those values are saved in the String array named items shown in Listing 2 (p. 2135) . As you will
see later, this is data that was saved from previous requests.

Get and save user input data
Listing 3 (p. 2135) calls the getParameter method on the request object to get and save the value

submitted by the browser in the �eld named �rstName . (See the input element on the sixth line
in Figure 3 (p. 2133) .) This is also the text �eld shown in Figure 2 (p. 2132) .

Listing 3 - Get and save user input data.

String name = req.getParameter("firstName");

Table 5.69

The getParameter method receives the name of a request parameter and returns the value cor-
responding to that request parameter as a String , or null if the parameter does not exist. (Recall that
the data is transmitted to the server as name::value pairs.)

Begin constructing the HTML output data
At this point in the process, all of the incoming data has been saved in a variable named name and an

array named items . The time has come to construct the raw HTML code and send it back to the client.
Listing 4 (p. 2137) begins that process by

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2130 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

• Telling the browser how to interpret the data ("text/html").
• Getting on output stream on the response object on which to print the output data.
• Constructing the �rst few lines of HTML text.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2131

Listing 4 - Begin constructing the HTML output data.

//Establish the type of output

res.setContentType("text/html");

//Get an output stream

PrintWriter out = res.getWriter();

//Construct an html form and send it back to the client

out.println("<html>");
out.println("<head><title>Java4550a</title></head>");
out.println("<body>");

Table 5.70

Create raw HTML code for the form
Listing 5 (p. 2137) begins the construction of the HTML form that is to be returned to the browser. This

code creates the �rst in a series of HTML statements necessary to support the input �eld and the submit
button. (You may need to refer to earlier modules that discussed the format of an HTML form in order to
understand the next few fragments.)

Listing 5 - Begin the HTML code for an HTML form.

out.println("<form method='get' action="

+ "\"http://" + hostName + ":8080/Java4550a\">");

Table 5.71

The code in Listing 5 (p. 2137) uses the name of the computer on which the server is running (
hostName) that was obtained and saved earlier to construct the action element of the HTML form.
This causes the servlet to be suitable for running in a server on an computer with any name. It also makes
it possible to access the servlet from other computers on the local area network provided those computers
know the name of the computer on which the server is running.

Once again, this is very important information for students enrolled in this course.
This code produced the term dell8700 in Figure 3 (p. 2133) because the server was running on a

computer named dell8700 when the screen shot was taken.
This fragment results in HTML code that causes a GET request to be sent to the HTTP server

containing �eld data as a parameter whenever the user presses the submit button
The input �eld and the submit button
Listing 7 (p. 2138) places a line of instructional text on the browser screen.
It also creates the HTML code necessary to place an input �eld and a submit button on the form that

will be displayed on the screen as shown in Figure 1 (p. 2131) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2132 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Listing 6 - An input �eld and a submit button.

out.println("<p>Enter a name and press the button</p>");
out.println("<p>Name: <input type=\"text\" name="

+ "\"firstName\"/></p>");
out.println("<input type=\"submit\" value="

+ "\"Submit Name\"/>")

Table 5.72

The list of names
Listing 7 (p. 2138) provides a line of introductory text for the list of names to be displayed on the screen.

The �rst time the form appears on the screen, the value stored in the name variable is null, and the word
Empty is displayed as shown in Figure 1 (p. 2131) . Later on after multiple requests, the list will be
populated as shown in Figure 2 (p. 2132) .

Listing 7 - Beginning of the list of names.

out.println("<p>Your list of names is:
");
if(name == null){

out.println("Empty</p>");
}//end if

Table 5.73

Create new hidden �elds for historical data
Listing 2 (p. 2135) retrieved all of the data in the hidden �elds on the form and saved that data in a

String array named items .
If that array contains data, the code in Listing 8 (p. 2139) performs two actions using the data from

each of the elements in the array:

• Display the historical data stored in those element of the array.
• Create new hidden �elds in the HTML output form under construction and place the data values from

the array in those hidden �elds.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2133

Listing 8 - Display the historical data and also save it on the browser.

if(items != null){

for(int i = 0; i < items.length; i++){

//Display names previously saved in hidden fields

out.println(items[i] + "
");
//Save the names in hidden fields on form currently

// under construction.

out.println("<input type=\"hidden\" name=\"item\" "

+ "value=\"" + items[i] + "\">");
}//end for loop

}//end if

Table 5.74

Limited persistence
Thus, the historical data is passed forward from the hidden �elds of one HTML form to the hidden �elds

of the next HTML form. All of the historical data resides on the HTML form in the browser cache in the
client computer. However, that is not a location that provides long-term persistence, so this scheme for
session tracking has limited persistence.

Create new hidden �eld for new data
Listing 3 (p. 2135) retrieved the �eld value submitted by the browser and saved that value in a variable

named name .
If that variable contains data, the fragment in Listing 9 (p. 2139) performs two actions using the data

stored in the variable.

• Display the value at the end of the list of names.
• Create a new hidden �eld in the HTML output form under construction and place the value from the

variable in that hidden �eld.

Listing 9 - Display most recent value and also store it on the browser.

if(name != null){

//Display name submitted with current GET request

out.println(name + "
");
//Save name submitted with current GET request in a

// hidden field on the form currently under

// construction

out.println("<input type=\"hidden\" name=\"item\" "

+ "value=\"" + name + "\">");
}//end if

Table 5.75

Thus, for each new request by the browser, one additional hidden �eld is added to the HTML form under
construction. The new hidden �eld contains the �eld value submitted by the browser.

The remaining servlet code
The remainder of the code for the servlet is typical of what you have seen before and can be viewed in

the complete listing of the servlet in Listing 16 (p. 2143) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2134 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.4.5.4.1.2 Tedious and error prone

Writing raw HTML code is not fun even under the best of circumstances. That is why I use a WYSIWYG
HTML editor for authoring these modules.

Even for this very simple servlet, the process of constructing the output HTML code using Java println
statements was very tedious and error prone. Much of the di�culty arises from the fact that Java strings
must be enclosed in matching double quotes and all HTML attribute values must also be enclosed in matching
double or single quotes. As you can see from Listing 16 (p. 2143) , the requirement to escape double quotes
inside Java strings with the backslash character can lead to some very confusing code. (I suppose it might
be less confusing if I were to use single quotes instead of double quotes on HTML attribute values. I will try
that in the next module.)

In any event, the next section presents a JSP version of the same servlet. JSP intermingles HTML code
with Java code and greatly reduces the amount of HTML code that must be constructed using Java println
statements in a servlet. If you are unfamiliar with JSP, you can learn about it in the modules that begin at
Java4305: Preface to JSP 103 .

5.4.5.4.2 The JSP program

A complete listing of the JSP version of this program is provided in Listing 17 (p. 2146) . I found this
JSP version much easier to write than the servlet version discussed above. Admittedly, however, I wrote the
servlet version �rst, so that probably helped to make it easier to write the JSP version.

I wrote all of the HTML code using Microsoft Expression Web 4, which provides both a WYSIWYG
capability and a raw HTML editing capability. Once I con�rmed that the HTML code was correct and valid,
I went back and inserted the JSP tags containing the Java code.

As mentioned earlier, the JSP does not get and use the name of the computer on which it is running.
Instead it uses the generic name localhost, which limits the ability to access the JSP from another computer
on the network.

5.4.5.4.3 Interesting code fragments

Once again, I will discuss this program in fragments. A complete listing of the program is provided in Listing
17 (p. 2146) .

Create basic web page structure
Listing 10 (p. 2140) shows the HTML code that is roughly equivalent to the Java code in Listing 4 (p.

2137) through Listing 7 (p. 2138) . This code creates the HTML header and the basic structure of the web
page shown in Figure 1 (p. 2131) .

Listing 10 - Create basic web page structure.

<html>
<head><title>Java4550a</title></head>
<body>

<form method="get" action="http://localhost:8080/Java4550a.jsp">
<p>Enter a name and press the button</p>
<p>Name: <input type="text" name="firstName"/></p>
<input type="submit" value="Submit Name"/>
<p>Your list of names is:

103http://cnx.org/content/m48057/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2135

Table 5.76

A JSP scriptlet
Listing 11 (p. 2141) is a scriptlet containing pure Java code. It begins by getting the data from the

request object. Then it deals with the situation where nothing has been entered into the text �eld in Figure
1 (p. 2131) , reporting that the list is empty. It ends with the beginning of a for loop that is executed
when the array is not empty. Recall that in JSP, Java code blocks can begin in one scriptlet and end in
another scriptlet later in the page. That is what is happening here.

Listing 11 - A JSP scriptlet.

<%
String[] items = request.getParameterValues("item");

response.setContentType("text/html");

String name = request.getParameter("firstName");

if(name == null){

out.println("Empty");

}//end if

if(items != null){

for(int i = 0; i < items.length; i++){

%>

Table 5.77

The body of the for loop
Listing 12 (p. 2141) contains the body of the for loop that began in Listing 11 (p. 2141) . This is a

combination of a JSP expression tag and raw HTML code to display the new value and also to create and
populate a hidden �eld in the output.

Listing 12 - The body of the for loop.

<%= items[i] %>

<input type="hidden" name="item" value="<%=items[i]%>"/>

Table 5.78

Another scriptlet
Listing 13 (p. 2142) is another scriptlet containing pure Java code. This scriptlet terminates the for

loop and the if statement that began in Listing 11 (p. 2141) . It also begins a new if statement to display
the new input value and also to create and populate the last hidden �eld containing the newly received input
value.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2136 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Listing 13 - Another scriptlet.

<%
}//end for loop

}//end if

if(name != null){

%>

Table 5.79

Another JSP expression tag
Listing 14 (p. 2142) contains another JSP expression tag that displays the new input value. Listing 14

(p. 2142) also creates and populates the last hidden �eld with the new input value.

Listing 14 - Another JSP expression tag.

<%= name %>

<input type="hidden" name="item" value="<%=name%>"/>

Table 5.80

Terminating scriptlet and HTML code
Finally, Listing 15 (p. 2142) shows a scriptlet containing a curly bracket to terminate the if statement

that began in Listing 13 (p. 2142) along with raw HTML code to terminate the HTML page.

Listing 15 - Terminating scriptlet and HTML code.

<%
}//end if

%>
</p></form></body></html>

Table 5.81

5.4.5.5 Run the programs

I encourage you to copy the code from Listing 16 (p. 2143) and Listing 17 (p. 2146) Deploy the programs
on your own server. Experiment with the code, making changes, and observing the results of your changes.
Make certain that you can explain why your changes behave as they do.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2137

5.4.5.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4550: Session Tracking using Hidden Fields
• File: Java4550.htm
• Published: 12/22/13
• Revised: 02/07/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

5.4.5.7 Complete program listings

Listing 16 - The servlet program named Java4550a.java.

/*File Java4550a.java, Copyright 1999, R.G.Baldwin

Rev 01/04/14

The purpose of this program is to illustrate session

tracking through the use of hidden fields.

Each time the submit button is pressed, this servlet

creates a web page and sends it back to the browser.

The new web page contains the historical data for the

session in hidden fields in the web page.

The following is a typical web page after the names

Tom, Dick, and Harry have been entered.:

The program also detects the name of the server that it

is running on and uses that name to construct the action

element of a form. In the output shown below, the

servlet was running on a computer named dell8700.

<html>
<head><title>Java4550a</title></head>
<body>

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2138 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

<form method="get" action="http://dell8700:8080/Java4550a">
<p>Enter a name and press the button</p>
<p>Name: <input type="text" name="firstName"/></p>
<input type="submit" value="Submit Name"/>
<p>Your list of names is:

Tom

<input type="hidden" name="item" value="Tom">
Dick

<input type="hidden" name="item" value="Dick">
Harry

<input type="hidden" name="item" value="Harry">
</form></body></html>

**/

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.net.*;

public class Java4550a extends HttpServlet{

public void doGet(HttpServletRequest req,

HttpServletResponse res)

throws ServletException, IOException{

//Get and display name of localhost

InetAddress inetAddress = InetAddress.getLocalHost();

String hostName = inetAddress.getHostName();

System.out.println(hostName);

//An array for getting and saving the values contained

// in the hidden fields named item.

String[] items = req.getParameterValues("item");

//Get the submitted name for the current GET request

String name = req.getParameter("firstName");

//Establish the type of output

res.setContentType("text/html");

//Get an output stream

PrintWriter out = res.getWriter();

//Construct an html form and send it back to the client

out.println("<html>");
out.println("<head><title>Java4550a</title></head>");
out.println("<body>");

out.println("<form method='get' action="

+ "\"http://" + hostName + ":8080/Java4550a\">");

out.println("<p>Enter a name and press the button</p>");

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2139

out.println("<p>Name: <input type=\"text\" name="

+ "\"firstName\"/></p>");
out.println("<input type=\"submit\" value="

+ "\"Submit Name\"/>");
out.println("<p>Your list of names is:
");
if(name == null){

out.println("Empty</p>");
}//end if

if(items != null){

for(int i = 0; i < items.length; i++){

//Display names previously saved in hidden fields

out.println(items[i] + "
");
//Save the names in hidden fields on form currently

// under construction.

out.println("<input type=\"hidden\" name=\"item\" "

+ "value=\"" + items[i] + "\">");
}//end for loop

}//end if

if(name != null){

//Display name submitted with current GET request

out.println(name + "
");
//Save name submitted with current GET request in a

// hidden field on the form currently under

// construction

out.println("<input type=\"hidden\" name=\"item\" "

+ "value=\"" + name + "\">");
}//end if

out.println("</form></body></html>");

}//end doGet()

}//end class Java4550a

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2140 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Listing 17 - The JSP program named Java4550a.jsp.

<html>
<head><title>Java4550a</title></head>
<body>

<form method="get" action="http://localhost:8080/Java4550a.jsp">
<p>Enter a name and press the button</p>
<p>Name: <input type="text" name="firstName"/></p>
<input type="submit" value="Submit Name"/>
<p>Your list of names is:

<%
String[] items = request.getParameterValues("item");

response.setContentType("text/html");

String name = request.getParameter("firstName");

if(name == null){

out.println("Empty");

}//end if

if(items != null){

for(int i = 0; i < items.length; i++){

%>
<%= items[i] %>

<input type="hidden" name="item" value="<%=items[i]%>"/>
<%

}//end for loop

}//end if

if(name != null){

%>
<%= name %>

<input type="hidden" name="item" value="<%=name%>"/>
<%
}//end if

%>
</p></form></body></html>

Table 5.82

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2141

5.4.6 Java4550r-Review
104

5.4.6.1 Table of Contents

• Preface (p. 2147)
• Questions (p. 2147)

· 1 (p. 2147) , 2 (p. 2147) , 3 (p. 2147) , 4 (p. 2147) , 5 (p. 2148) , 6 (p. 2148) , 7 (p. 2148)

• Answers (p. 2149)
• Miscellaneous (p. 2150)

5.4.6.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4550: Session Tracking
using Hidden Fields 105 in the Servlets sub-collection.

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

5.4.6.3 Questions

5.4.6.3.1 Question 1

True or False?
The HTTP protocol is a very sophisticated protocol that retains historical information from one client

request to the next.
Go to answer 1 (p. 2150)

5.4.6.3.2 Question 2

True or False?
The maintenance of historical information during communications on the web is often referred to as

"session tracking."
Go to answer 2 (p. 2150)

5.4.6.3.3 Question 3

True or False?
There are several di�erent ways to accomplish session tracking with a servlet. One of those ways is

commonly known as hidden �elds .
Go to answer 3 (p. 2150)

5.4.6.3.4 Question 4

True or False?
The hidden �elds approach to session tracking has a very long persistence (days, months, years) and

maintains historical information over many user sessions on a website.
Go to answer 4 (p. 2149)

104This content is available online at <http://cnx.org/content/m49590/1.2/>.
105http://cnx.org/content/m48550/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2142 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.4.6.3.5 Question 5

True or False?
An HTTP server does not remember historical information from one request to the next.
Go to answer 5 (p. 2149)

5.4.6.3.6 Question 6

True or False?
Servlet code can call the getParameter method on the incoming request object to get a reference to

a String array object containing the String values of all incoming hidden �elds whose name matches
the String passed as a parameter to the method.

Go to answer 6 (p. 2149)

5.4.6.3.7 Question 7

True or False?
Servlet code can call the getParameter method on the incoming request object to get a reference to a

String object containing the String value of an incoming hidden �eld whose name matches the String
passed as a parameter to the method. You should only use this method when you are sure the parameter
has only one value. Otherwise, the results may not be what you intended.

Go to answer 7 (p. 2149)
What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2143

5.4.6.4 Answers

5.4.6.4.1 Answer 7

True.
Go back to Question 7 (p. 2148)

5.4.6.4.2 Answer 6

False. Servlet code can call the getParameterValues method on the incoming request object to get a
reference to a String array object containing the String values of all incoming hidden �elds whose name
matches the String passed as a parameter to the method.

Go back to Question 6 (p. 2148)

5.4.6.4.3 Answer 5

True.
Go back to Question 5 (p. 2148)

5.4.6.4.4 Answer 4

False. The hidden �elds approach to session tracking is generally limited to one session consisting of multiple
requests.

Go back to Question 4 (p. 2147)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2144 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.4.6.4.5 Answer 3

True.
Go back to Question 3 (p. 2147)

5.4.6.4.6 Answer 2

True.
Go back to Question 2 (p. 2147)

5.4.6.4.7 Answer 1

False. The HTTP protocol is a relatively simple request/response protocol that does not retain historical
information from one client request to the next.

Go back to Question 1 (p. 2147)

5.4.6.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4550r-Review
• File: Java4550r.htm
• Published: 03/10/14
• Revised 12/26/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

5.4.7 Java4560: Session Tracking using URL Rewriting
106

5.4.7.1 Table of Contents

• Preface (p. 2151)

· Viewing tip (p. 2151)

* Figures (p. 2151)

106This content is available online at <http://cnx.org/content/m48551/1.5/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2145

* Listings (p. 2151)

• General background information (p. 2152)
• Discussion and sample code (p. 2153)

· The servlet program (p. 2153)

* Interesting code fragments (p. 2155)

· The JSP program (p. 2159)

* Interesting code fragments (p. 2159)

• Run the programs (p. 2162)
• Miscellaneous (p. 2162)
• Complete program listings (p. 2163)

5.4.7.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX. The purpose of this module is to explain session tracking using
URL rewriting, and to compare a servlet with a JSP to accomplish the same objective.

5.4.7.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

5.4.7.2.1.1 Figures

• Figure 1 (p. 2152) . The URL for hidden �elds.
• Figure 2 (p. 2153) . Servlet output screen.
• Figure 3 (p. 2155) . HTML code created by servlet.

5.4.7.2.1.2 Listings

• Listing 1 (p. 2155) . Beginning of the doGet method.
• Listing 2 (p. 2156) . Get and save URL parameters named item.
• Listing 3 (p. 2156) . Construct the new parameter string.
• Listing 4 (p. 2157) . Concatenate current date and time to new parameter string.
• Listing 5 (p. 2157) . Begin creation of the HTML page.
• Listing 6 (p. 2157) . Construct the hyperlink.
• Listing 7 (p. 2158) . Introductory text.
• Listing 8 (p. 2158) . Display date and time history.
• Listing 9 (p. 2158) . Display the current date and time.
• Listing 10 (p. 2159) . Import necessary packages.
• Listing 11 (p. 2159) . Get data from the old parameter string.
• Listing 12 (p. 2160) . Construct a new parameter string.
• Listing 13 (p. 2160) . Concatenate current date and time to the parameter string.
• Listing 14 (p. 2160) . Create the hyperlink.
• Listing 15 (p. 2162) . Display the list of dates.
• Listing 16 (p. 2163) . The servlet named Java4560a.java
• Listing 17 (p. 2165) . The JSP program named Java4560b.jsp.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2146 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.4.7.3 General background information

A stateless protocol
You learned in earlier modules that the HTTP protocol is a relatively simple request/response protocol

that does not retain historical information from one client request to the next. You also learned that historical
information can be very important, and the maintenance of historical information is often referred to as
"session tracking."

Session tracking
Because session tracking is very important for many web applications, an earlier module 107 along with

this and the next several modules will show you some of the ways that you can accomplish session tracking
using servlets and JSP.

Session tracking using URL rewriting
There are several di�erent ways to accomplish session tracking with a servlet. The earlier module 108

explained session tracking using hidden �elds. This module will illustrate how to accomplish session tracking
using URL rewriting.

Limited persistence
You learned in the earlier module 109 that the session tracking scheme using hidden �elds is generally

limited to one session consisting of multiple requests. You also learned that the scheme is probably not useful
for large scale web commerce. However, it might be useful for an online game where the user makes a move
and then clicks a submit button. The computer needs to remember the entire history of the game, but
needn't necessarily remember the history if the user leaves the website by closing the browser page.

The same holds true for session tracking using URL rewriting. Session tracking using URL rewriting
provides only limited persistence. While this may seem like a major downside, there is at least one upside
for both schemes.

Comparison with cookies
A future module will explain session tracking using cookies. Cookies probably provide the most commonly

used scheme for session tracking because cookies can provide persistence over long periods of time. However,
there is also a downside to cookies. The user can disable cookies in the browser, which completely defeats
the use of cookies for session tracking.

Therefore, if your online game uses cookies for session tracking and the user disables cookies, then you
game won't work in that browser. As far as I know, it is not possible for the user to prevent session tracking
using either hidden �elds or URL rewriting.

A servlet and a JSP
I will explain two di�erent programs that accomplish the same objective in this module. One of the

programs is a servlet. The other program is a JSP. You probably need to understand the servlet version in
order to really understand the JSP version.

The URL window with hidden �elds
If you observed the URL window in your browser while running the hidden-�eld servlet in the earlier

module 110 , you probably noticed that after several cycles, the window containing the URL looked something
like Figure 1 (p. 2152) .

Figure 1 - The URL for hidden �elds.

What you see in Figure 1 (p. 2152) is the standard way that HTML forms pass parameters to their
HTTP servers using the GET method.

A parameter string

107http://cnx.org/content/m48550/latest/?collection=col11441/latest
108http://cnx.org/content/m48550/latest/?collection=col11441/latest
109http://cnx.org/content/m48550/latest/?collection=col11441/latest
110http://cnx.org/content/m48550/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2147

When the user clicks the submit button, a string containing the names and values (name::value pairs
again) for all of the �elds is created and concatenated onto the URL. The string of parameter values is
joined to the URL with a "?" character. The individual parameters are separated from one another with
the ampersand character.

Recall that for the servlet in the earlier module 111 , the �eld named �rstName was the visible �eld
in which the user entered a name. The �elds named item were hidden �elds that were created and
populated with historical data when the servlet generated the HTML form for return to the client. You can
see parameters with both of these names in Figure 1 (p. 2152) .

The parameters are accessible by the servlet
It doesn't really matter how these parameter names and values come to be concatenated onto the URL.

As far as the servlet is concerned, their values are accessible using the methods getParameter() and
getParameterValues() .

This suggests that in some cases, it might be bene�cial for the servlet to save the historical data by
concatenating it onto a URL referenced in the HTML page before returning the page to the client. That is
one of the ways that URL rewriting can be used to implement session tracking.

5.4.7.4 Discussion and sample code

As I mentioned earlier, I will present a servlet and a JSP program where both are designed to achieve the
same objective. This will make it possible for you to compare the two programming styles.

Both programs are designed to illustrate the concept of URL rewriting and are not intended to have any
practical value in their own right.

I will explain both programs in fragments. A complete listing of the servlet named Java4560.java
is provided in Listing 16 (p. 2163) . A complete listing of the JSP program named Java4560b.jsp is
provided in Listing 17 (p. 2165) .

5.4.7.4.1 The servlet program

The servlet named Java4560a.java illustrates session tracking using URL rewriting. In this servlet,
parameters containing the historical data are added to the servlet's URL each time the servlet generates a
new HTML page. The updated URL is included as a hyperlink in the new web page.

The servlet output
Each time the servlet is called, it creates and displays an HTML page on the client screen similar to that

shown in Figure 2 (p. 2153) .
Figure 2 - Servlet output screen.

111http://cnx.org/content/m48550/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2148 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

The page displays:

• A hyperlink to the servlet URL labeled Click Here
• A list of the dates and times on which the user previously called the servlet by clicking on the hyperlink.

A get request
Each time the user clicks the hyperlink, the client sends a GET request to the server. The GET request

calls the servlet, which determines the current date and time in milliseconds relative to January 1, 1970. An
HTML page is created and sent back to the client.

Update the parameter string
The current date and time in milliseconds is added as a parameter named item to the servlet URL

referenced by the hyperlink in the newly-created HTML page. In addition to the current date and time, the
values of the previous dates and times on which the user called the servlet are retrieved from the incoming
URL parameter string and appended to the new URL parameter string.

In other words, the parameter string values for each successive URL that is generated match those of the
previous URL. In addition, a new parameter value is added that represents the current date and time.

Embed historical data in the web page
In a manner similar to session tracking using hidden �elds, the historical data is saved by embedding it

in the new HTML page that is returned to the client. There is no requirement to save the historical data in

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2149

a database or in the server's �le system.
Figure 3 (p. 2155) shows the HTML source code that corresponds to the web page shown in Figure 2 (p.

2153) .
Figure 3 - HTML code created by servlet.

The URL parameter string
The most interesting thing in Figure 3 (p. 2155) is the content of Line 4. (Note that Line 4 is wrapped

and appears as three physical lines in Figure 3 (p. 2155) .) Each large numeric value that you see in
Line 4 is the number of milliseconds since January 1, 1970 for a particular date and time. These values in
milliseconds are translated into actual dates and times and shown in Lines 6 through 9.

No special software requirements
This approach places no special requirements on the server software other than the ability to support

Java servlets. The approach should be compatible with all browsers that support hyperlinks.

5.4.7.4.1.1 Interesting code fragments

Beginning of the doGet method
As mentioned earlier, I will explain this program in fragments. Listing 1 (p. 2155) shows the beginning

of the controlling class and the beginning of the doGet method. You have seen code like this before, so I
won't discuss it further.

Listing 1 - Beginning of the doGet method.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2150 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Java4560a extends HttpServlet{

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException{

Table 5.83

Get and save URL parameters named item
An HTTP URL can have multiple parameters with the same name. In this case, all of the parameters

are named item . Listing 2 (p. 2156) gets the values stored in all of the parameters named item and
saves them in a String array named items .

(Each time the servlet is called, the size of the list of parameters increases by one.)
The fragment also instantiates and initializes a String object used later to construct a new parameter

string for the URL.

Listing 2 - Get and save URL parameters named item.

String parameters = "?";

String[] items = request.getParameterValues("item");

Table 5.84

Construct the new parameter string
Listing 3 (p. 2156) uses the parameter values from the old parameter string to construct a new parameter

string. The new parameter string will later be concatenated to the URL for the servlet.
Listing 3 - Construct the new parameter string.

Concatenate current date and time to new parameter string
Listing 4 (p. 2157) gets the current date and time in milliseconds and saves it in a long variable named

theDate . Then it concatenates the current date and time in milliseconds onto the new parameter string
that was constructed in Listing 3 (p. 2156) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2151

Listing 4 - Concatenate current date and time to new parameter string.

long theDate = new Date().getTime();

parameters = parameters + "item=" + theDate;

Table 5.85

Begin creation of the HTML page
Listing 5 (p. 2157) begins the creation of the output HTML page. You have seen code like this before,

so I won't discuss it further at this point.

Listing 5 - Begin creation of the HTML page.

//Establish the type of output

response.setContentType("text/html");

//Get an output stream

PrintWriter out = response.getWriter();

//Construct an HTML page and send it back to the client

out.println("<html>");
out.println("<head><title>Java4560a</title></head>");
out.println("<body>");

Table 5.86

Construct the new hyperlink
Listing 6 (p. 2157) constructs the hyperlink containing the URL for the servlet. Note that the hyperlink

references a URL that includes the parameter string constructed above.
If you compile and run this servlet, you may need to substitute the name of your server in place of my

server.

Listing 6 - Construct the hyperlink.

out.println("<a href='http://localhost:8080/Java4560a"

+ parameters + "'>Click Here")

Table 5.87

Introductory text
Listing 7 (p. 2158) provides a line of introductory text for the list of dates and times to be displayed on

the screen.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2152 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Listing 7 - Introductory text.

out.println("

Your list of times is:
");

Table 5.88

Display date and time history
Listing 2 (p. 2156) retrieved all of the data in the incoming URL parameters and saved that data in a

String array named items .
If that array contains data, Listing 8 (p. 2158) displays the date and time for each element in the array.
The parameter values in milliseconds are �rst converted from String to long . Each of the long

values is then used to instantiate a new Date object, which is displayed in the format shown in Figure 2
(p. 2153) .

Listing 8 - Display date and time history.

if(items != null){

for(int i = 0; i < items.length; i++){

long millis = Long.parseLong(items[i]);

out.println("" + new Date(millis) + "
");
}//end for loop

}//end if

Table 5.89

(Hopefully you already understand the relationship between the overridden toString method
of the Date class and the format resulting from passing a Date object's reference to the
println method. If not, see Ap0005: Preface to OOP Self-Assessment 112 and the modules
following that one.)

Display the current date and time
Listing 4 (p. 2157) obtained the current date and time in milliseconds and saved it in a variable named

theDate . Listing 9 (p. 2158) uses that value to instantiate and display a new Date object re�ecting
the current date and time.

Listing 9 - Display the current date and time.

out.println("" + new Date(theDate) + "
");
out.println("</body></html>");//finish HTML page

Table 5.90

Listing 9 (p. 2158) also creates the HTML code necessary to �nish the HTML page.

112http://cnx.org/content/m45252/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2153

5.4.7.4.2 The JSP program

I will also discuss the JSP program named Java4560b.jsp in fragments. A complete listing of the program
is provided in Listing 17 (p. 2165) .

5.4.7.4.2.1 Interesting code fragments

Import necessary packages
Listing 10 (p. 2159) shows the necessary import directives plus the beginning of the HTML page.

Listing 10 - Import necessary packages.

<%@ page import='java.util.*,java.io.*' %>

<html>
<head><title>Java4560b</title></head>
<body>

Table 5.91

There's nothing new in Listing 10 (p. 2159) with the possible exception of the format of the import
directives. The format is di�erent from the format used in regular Java code. (See Listing 1 (p. 2155) .)

Some packages are imported automatically
Recall from Java4307: Servlets and JSP 113 that it is not necessary to import javax.servlet and

javax.servlet.http . Those two packages are automatically imported by the JSP container on the server.
No page directive import settings are required for using the classes de�ned in these packages.

Get data from the old parameter string
Listing 11 (p. 2159) shows the beginning of a scriptlet containing pure Java code.

Listing 11 - Get data from the old parameter string.

<%
String parameters = "?";

String[] items = request.getParameterValues("item");

Table 5.92

The code in Listing 11 (p. 2159) declares and initializes a String that will be used later to construct
a new parameter string.

Listing 11 (p. 2159) also gets and saves the values of all of the parameters from the old parameter string
named "item" .

Construct a new parameter string
Listing 12 (p. 2160) constructs a new parameter string containing the names and values of all the

parameters named "item" in the old parameter string. (A parameter for the current date and time will
be concatenated later.)

113http://cnx.org/content/m48284/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2154 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Listing 12 - Construct a new parameter string.

Concatenate current date and time to the parameter string
Listing 13 (p. 2160) gets the current date and time in milliseconds and concatenates it to the new

parameter string with the name "item" .

Listing 13 - Concatenate current date and time to the parameter string.

long theDate = new Date().getTime();

parameters = parameters + "item=" + theDate;

response.setContentType("text/html");

%%>

Table 5.93

Listing 13 (p. 2160) also sets the output content type to "text/html" .
Finally, Listing 13 (p. 2160) signals the end of the scriptlet that began in Listing 11 (p. 2159) .
Create the hyperlink
Listing 14 (p. 2160) uses a JSP expression tag along with raw HTML code to create the hyperlink

shown near the top of the page in Figure 2 (p. 2153) .
Listing 14 - Create the hyperlink.

Listing 14 (p. 2160) also uses raw HTML code to create the line of text that appears immediately above
the list of dates in Figure 2 (p. 2153) .

Display the list of dates
Listing 15 (p. 2162) shows another scriptlet containing pure Java code. The �rst six lines of code display

the historical date and time information. The next line of code displays the current date and time.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2155

Listing 15 - Display the list of dates.

<%
if(items != null){

for(int i = 0; i < items.length; i++){

long millis = Long.parseLong(items[i]);

out.println("" + new Date(millis) + "
");
}//end for loop

}//end if

out.println("" + new Date(theDate) + "
");
out.println("</body></html>");

%%>

Table 5.94

The last line of code creates the HTML elements necessary to �nish the page.
A choice
I could have broken this scriptlet into two or more scriptlets using raw HTML code in between to display

the material. However, I decided that it was simpler in this case to use Java println statements to display
the material than it would have been to break it up and use interspersed HTML code.

5.4.7.5 Run the programs

I encourage you to copy the code from Listing 16 (p. 2163) and Listing 17 (p. 2165) . Install the programs
on your server and run them. Experiment with the code, making changes, and observing the results of your
changes. Make certain that you can explain why your changes behave as they do.

5.4.7.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4560: Session Tracking using URL Rewriting
• File: Java4560.htm
• Published: 12/23/13
• Revised: 01/31/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2156 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

5.4.7.7 Complete program listings

I recognize that the code in Listing 16 (p. 2163) may be di�cult to read. Note, however that if you have
di�culty reading it, you can reconstruct the entire program from the code fragments provided earlier. You
might also try zooming with your browser to see if that makes it easier to read.

Listing 16 - The servlet named Java4560a.java.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2157

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2158 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Listing 17 - The JSP program named Java4560b.jsp.

-end-

5.4.8 Java4570: Session Tracking using Cookies
114

5.4.8.1 Table of Contents

• Preface (p. 2166)

· Viewing tip (p. 2166)

114This content is available online at <http://cnx.org/content/m48571/1.4/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2159

* Figures (p. 2166)
* Listings (p. 2166)

• General background information (p. 2167)

· Program output (p. 2167)
· What are cookies? (p. 2168)
· The Java Cookie class (p. 2169)

• Discussion and sample code (p. 2170)

· The servlet program (p. 2170)

* Interesting code fragments (p. 2171)

· The JSP program (p. 2175)

• Run the programs (p. 2175)
• Miscellaneous (p. 2175)
• Complete program listing (p. 2176)

5.4.8.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX. The purpose of this module is to explain session tracking using
cookies, and to compare a servlet with a JSP to accomplish the same objective.

If you haven't already done so, I strongly recommend that you study Java4370: Cookies with JSP 115

before continuing with this module. Dr. Martinez explains many aspects of cookies in that module. Most
of those aspects apply to both JSP and servlets and many of them won't be repeated in this module.

5.4.8.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

5.4.8.2.1.1 Figures

• Figure 1 (p. 2167) . Output from the servlet program.
• Figure 2 (p. 2167) . Output from the JSP program.
• Figure 3 (p. 2170) . Description of the Cookie constructor.

5.4.8.2.1.2 Listings

• Listing 1 (p. 2171) . Beginning of the doGet method.
• Listing 2 (p. 2171) . Construct a unique session ID.
• Listing 3 (p. 2172) . Get all of the cookies into an array of type Cookie.
• Listing 4 (p. 2172) . Get and save submitted value.
• Listing 5 (p. 2172) . Create a new session ID cookie.
• Listing 6 (p. 2173) . Create, name, and populate a new Cookie object.
• Listing 7 (p. 2174) . Familiar code.
• Listing 8 (p. 2174) . Get and display cookie names and values.
• Listing 9 (p. 2175) . Display currently submitted �eld value.
• Listing 10 (p. 2176) . The servlet program named Java4570a.java.
• Listing 11 (p. 2178) . The JSP program named Java4570b.jsp.

115http://cnx.org/content/m48091/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2160 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.4.8.3 General background information

5.4.8.3.1 Program output

I will explain a servlet program and present a comparable JSP program in this module. The purpose is to
show you how to write servlets that use cookies for session tracking and to make it possible to compare a
servlet and a JSP that both achieve the same objective.

The servlet output
Figure 1 (p. 2167) shows the output produced by requesting the servlet from the localhost server using

the Chrome browser and then submitting the names Tom, Dick, and Harry using the input text �eld and
the submit button. I will refer back to this Figure later while explaining the servlet code.

Figure 1 - Output from the servlet program.

The JSP output
Figure 2 (p. 2167) shows the output produced by requesting the JSP from the localhost server using the

Firefox browser and then submitting the names Tom, Dick, and Harry using the input text �eld and the
submit button. I will refer back to this Figure later while explaining the JSP code.

Figure 2 - Output from the JSP program.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2161

(The main di�erence between Figure 1 (p. 2167) and Figure 2 (p. 2167) is the line that begins with
JSESSIONID in Figure 2 (p. 2167) . Also Figure 1 (p. 2167) is displayed in a Chrome browser and Figure
2 (p. 2167) is displayed in a Firefox browser.)

5.4.8.3.2 What are cookies?

Cookies are information that is created by a web application and stored on the client machine by the
browser. Under certain conditions, this information is sent to the HTTP server whenever a request is sent
from the client to the server.

Used for session tracking
Cookies are widely used by various server-side programming techniques for session tracking. Java provides

classes and methods designed to allow you to use cookies in your servlets.
Which server receives a cookie?
By default, cookies are sent only to the host that caused them to be saved. Methods can be called to set

attributes for each cookie that determine which servers will receive the cookie. For example, the setDomain
method can be used to specify a domain pattern indicating which servers should receive a cookie.

By default, cookies are sent to the page that set the cookie and to all the pages in that directory or under
that directory. This also can be modi�ed by calling the setPath method on the cookie.

What is the life expectancy of a cookie?

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2162 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Also by default, a cookie expires when the browser exits. The setMaxAge method can be called to
override the default and specify the maximum age of the cookie in seconds. The cookie will expire when the
maximum age has been reached. The parameter to this method is an int so the maximum age of a cookie
can be a very large number of seconds. (The maximum positive value of Java type int is 2,147,483,647.
If I did the arithmetic correctly, that is about 68 years.)

Comments in a cookie
The setComment method can be used to provide a comment with the cookie. The browser may elect

to make this information available to the user.
Name and value of a cookie
The constructor sets the name and value of a cookie when the Cookie object is instantiated. The

setValue method can be used to assign a new value to the cookie after it is instantiated.
Other attributes
There are a few other attributes that can be set as well. You can read about them in the Java(TM) EE

7 116 documentation.
Cookies can be disabled
CAUTION: The user can disable cookies in most, and perhaps all browsers. As a result, the user can

defeat session tracking using cookies.
Therefore, unless you can be certain that all of your clients will operate with cookies enabled, the use

of cookies for session tracking may not be satisfactory in all cases. (The fallback position may be the
less-persistent Hidden Fields and/or URL Rewriting methods of session tracking.)

5.4.8.3.3 The Java Cookie class

The Cookie class represents a cookie that can be used for session management with the HTTP protocol.
Cookies are used to cause user agents such as web browsers to store small amounts of state associated

with a user's web browsing activities.
Applications
Common applications for cookies include:

• Storing user preferences
• Automating low security user signon facilities, and
• Helping collect data used for "shopping cart" applications.

Names, values, and attributes
Each cookie has a name and a single value (a name::value pair) . As mentioned earlier, it may have

optional attributes, including:

• A comment presented to the user
• Path and domain quali�ers to specify which hosts can see the cookie
• A maximum age, and
• A version.

Sending cookies to the browser
In the Java API, cookies are saved one at a time into such HTTP response headers, using the addCookie

method.
According to the Java documentation 117 , The browser is expected to support 20 cookies for each web

server, 300 cookies total, and may limit cookie size to 4 KB each.
Servers assign cookies, using �elds added to HTTP response headers.
Retrieving cookies from the browser
Cookies are passed from the browser to the server using �elds added to HTTP request headers.

116http://docs.oracle.com/javaee/7/api/index.html?javax/servlet/http/Cookie.html
117http://docs.oracle.com/javaee/7/api/index.html?javax/servlet/http/Cookie.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2163

In the Java API, HTTP cookies are retrieved using the getCookies method. This method returns all
of the cookies found in the request sent by the client.

Description of the Cookie constructor
An abbreviated description of the constructor for the Cookie class is shown in Figure 3 (p. 2170) .

Figure 3 - Description of the Cookie constructor.

public Cookie(String name, String value)
Constructs a cookie with the speci�ed name and value.
The name of a cookie cannot be changed once the cookie has been created.
The value can be anything the server chooses to send. The cookie's value can be changed after creation
with the setValue method.
Parameters:

• name - the name of the cookie
• value - the value of the cookie

Table 5.95

5.4.8.4 Discussion and sample code

5.4.8.4.1 The servlet program

The name of the servlet program is Java4570 I will discuss this program in fragments. A complete listing
of the program is provided in Listing 10 (p. 2176) .

Displays an HTML form
Each time the servlet is called, it displays an HTML form on the client screen as shown in Figure 1 (p.

2167) . The form contains:

• An input �eld for submitting a name
• A submit button
• A list of previously submitted names
• Some static text

A unique session ID
The �rst time the servlet is called by a given browser, code written into the servlet creates a unique

session ID and stores it in a cookie on the browser. This session ID is not used for any purpose in this
sample program. It is included in the servlet simply to show how to create and save a unique session ID.

A cookie containing the submitted value
Each time the servlet is called, it creates a cookie containing the �eld value submitted by the user and

stores it on the browser.
When the servlet is called, it gets all of the cookie information stored on the browser and displays that

information on the client screen as shown in Figure 1 (p. 2167) . The display includes the unique session ID
and all of the �eld values submitted by the user during that session.

The maximum age of the cookies
The cookie containing the session ID is deleted when the browser is exited.
The maximum age for all of the other cookies is set to 60 seconds. Therefore, if you submit some names,

wait more than 60 seconds, and then submit some more names, the �rst batch of names submitted will have
expired and will have disappeared from the list.

The lifetime of a session

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2164 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

A session doesn't end just because the user visits another page. If the user returns to the Java4570
servlet without exiting the browser, the cookies written by Java4570 that have not yet expired will
continue to exist on the browser and the session will continue.

Also, if the user exits and then restarts the browser and calls the servlet, the cookies that have not yet
expired will continue to exist and will be displayed when the server responds to the request. Thus, a session
being tracked by cookies with a long maximum age can persist over long periods of time, even when the
computer has been shut down and restarted. (Many web sites will remember you on the same computer
using the same browser over days, months, and even years.)

5.4.8.4.1.1 Interesting code fragments

Beginning of the doGet method
Listing 1 (p. 2171) shows the beginning of the controlling class and the beginning of the doGet method.

You have seen code like this before, so I won't discuss it further in this module.

Listing 1 - Beginning of the doGet method.

public class Java4570a extends HttpServlet{

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException{

Table 5.96

Construct a unique session ID
Listing 2 (p. 2171) constructs a unique session ID that is later written into a cookie on the browser.

Listing 2 - Construct a unique session ID.

String uid = new java.rmi.server.UID().toString();

String sessionID = java.net.URLEncoder.encode(uid);

Table 5.97

A UID object
The �rst step is to get a String representation of a UID object. According to the documentation,

the UID class is an "Abstraction for creating identi�ers that are unique with respect to the host on which
it is generated."

Some cleanup is required
The second step is to call the encode method of the URLEncoder class to convert the string

into a MIME format called the "x-www-form-urlencoded" format. This ensures that the identi�er can be
reliably transmitted between the server and the client and that it will contain only those characters that are
acceptable for saving in a cookie (see documentation on the setValue method of the Cookie class
for more information) .

To convert the String , each character is examined and modi�ed as follows:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2165

• The ASCII characters 'a' through 'z', 'A' through 'Z', and '0' through '9' remain the same.
• The space character is converted into a plus sign '+'.
• All other characters are converted into the 3-character string "%xy", where xy is the two-digit hex-

adecimal representation of the lower 8-bits of the character.

A typical session identi�er created by this process might appear as follows:
1cce64%3Ad69878ccf0%3A-7�9
Get all of the cookies into an array of type Cookie
Listing 3 (p. 2172) calls the getCookies method of the incoming HttpServletRequest object to

get and save the cookies submitted by the browser. The values of the cookies will be displayed later.

Listing 3 - Get all of the cookies into an array of type Cookie.

Cookie[] cookies = request.getCookies();

Table 5.98

Get and save submitted value
As in the sample programs in earlier modules, Listing 4 (p. 2172) gets and saves the �eld value submitted

by the client.

Listing 4 - Get and save submitted value.

String name = request.getParameter("firstName");

response.setContentType("text/html");

Table 5.99

Listing 4 (p. 2172) also establishes the type of output.
Create a new session ID cookie
Because cookies are sent to the browser using HTTP headers, they should be added to the response

before you send any content.
If no cookies were submitted by the client with the request, this is interpreted by this servlet to be the

beginning of the session. A new Cookie object is instantiated containing the session ID value created
above along with the name of the cookie: sessionID .

Then the cookie is sent to the client's browser by calling the addCookie method on the outgoing
HttpServletResponse object as shown in Listing 5 (p. 2172) .

Listing 5 - Create a new session ID cookie.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2166 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

if(cookies == null){

Cookie newCookie = new Cookie("sessionID",sessionID);

response.addCookie(newCookie);

}//end if

PrintWriter out = response.getWriter();

Table 5.100

Listing 5 (p. 2172) also gets an output stream using code that you have seen in earlier modules.
Create, name, and populate a new Cookie object
Listing 6 (p. 2173) instantiates a Cookie object containing the �eld value submitted by the client and

sends that cookie back to the browser for storage.

Listing 6 - Create, name, and populate a new Cookie object.

if(name != null){

String cookieName = "" + new Date().getTime();

Cookie newCookie = new Cookie(cookieName, name);

newCookie.setMaxAge(60);

response.addCookie(newCookie);

}//end if

Table 5.101

Unique names for cookies
Unless delineated by path information, each cookie needs a unique name in addition to its value. Assuming

that successive calls to this servlet will be separated in time by at least one millisecond, unique names can
be created by using the current date and time in milliseconds. That mechanism was used in Listing 6 (p.
2173) to create unique cookie names. The getTime method of the Date class returns the date and time
in milliseconds represented by a Date object. The Date object in Listing 6 (p. 2173) encapsulates the
current date and time. You can see those times represented in milliseconds in the list of cookies in Figure 1
(p. 2167) .

On the other hand, a servlet that creates two or more Cookie objects could easily create more than one
cookie during each one-millisecond interval. In that case, you should probably use something like the code
in Listing 2 (p. 2171) to create unique cookie names.

Familiar code
Listing 7 (p. 2174) contains code that is very similar to code discussed in earlier modules, so I won't

discuss it further here. The fragment is being included here for continuity.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2167

Listing 7 - Familiar code.

//Construct an html form and send it back to the client

out.println("<html>");
out.println("<head><title>Java4570a</title></head>");
out.println("<body>");

//Substitute the name of your server in

// the following statement.

out.println("<form method='get' action="

+ "'http://localhost:8080/Java4570a'>");
out.println("<p>Enter a name and press the button</p>");
out.println("<p>Name: <input type='text' name="

+ "'firstName'/></p>");
out.println("<input type='submit' value="

+ "'Submit Name'/>");
out.println(

"

Your session ID and list of names is:
");
if(name == null){

out.println("Empty
");
}//end if

Table 5.102

Get and display cookie names and values
Listing 8 (p. 2174) calls the getName and getValue methods of the Cookie class to get and

display the names and values of each of the cookies saved earlier in the array of cookies.
The �rst value displayed should be the session ID that was stored in the �rst cookie saved. The remaining

items in the list should be the �eld input values previously submitted by the user each time the servlet was
called but not including the �eld input value for this invocation of the servlet.

Listing 8 - Get and display cookie names and values.

if(cookies != null){

for(int i = 0; i < cookies.length; i++){

out.println(cookies[i].getName() + ":" +

cookies[i].getValue() + "
");
}//end for loop

}//end if

Table 5.103

The output from Listing 8 (p. 2174) is shown by the sessionID line and the lines for Tom and Dick in
Figure 1 (p. 2167) . (The output from Listing 8 (p. 2174) does not include the line for Harry.) The large
numeric values to the left of Tom and Dick are the cookie names based on the number of milliseconds since
January 1, 1970.

Display currently submitted �eld value

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2168 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Listing 9 (p. 2175) displays the �eld value (Harry) submitted by the user for the current invocation of
the servlet. This value is displayed at the end of the list as shown in Figure 1 (p. 2167) . Note that there is
no cookie name associated with Harry in Figure 1 (p. 2167) . This value was not extracted from a named
cookie for display. However, it will be displayed with a cookie name if the user calls the servlet again with
a new �eld value before the cookie with the value Harry expires.

Listing 9 - Display currently submitted �eld value.

if(name != null){

out.println(name + "
");
}//end if

Table 5.104

The remaining code is typical of what you have seen in earlier modules. You can view that code in Listing
10 (p. 2176) .

5.4.8.4.2 The JSP program

If you understand the explanation of the servlet code given above and you have understood the explanations
of JSP code provided in earlier modules, you should have no di�culty understanding the JSP code provided
in Listing 11 (p. 2178) . Therefore, I won't bore you with a detailed explanation of that code. The JSP
code is provided simply for comparison with the servlet code.

However, there is one point that is worth noting. If you compare Figure 2 (p. 2167) showing the JSP
output with Figure 1 (p. 2167) showing the servlet output, you will see that the JSP output contains an
extra cookie named JSESSIONID . This is a unique session ID value that is automatically created by
the JSP container. When writing servlets, you need to take the necessary steps to create a unique session
ID. However, when writing JSP, that task is handled automatically for you so there is no need to create your
own unique session ID.

5.4.8.5 Run the programs

I encourage you to copy the code from Listing 10 (p. 2176) and Listing 11 (p. 2178) . Install the programs
on your server. Experiment with the code, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

5.4.8.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4570: Session Tracking using Cookies
• File: Java4570.htm
• Revised: 02/07/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2169

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

5.4.8.7 Complete program listing

Listing 10 - The servlet program named Java4570a.java.

/*File Java4570a.java, Copyright 1999, R.G.Baldwin

Rev 12/24/13

The purpose of this program is to illustrate session

tracking through the use of cookies.

Each time the servlet is called, it displays an html

form on the client screen. The form contains:

An input field for submitting a name

A submit button

A list of previously submitted names

The first time the servlet is called, it creates a

unique session ID and stores it in a cookie on the browser.

Each time the servlet is called, it creates a cookie

containing the name submitted by the user and stores it

on the browser.

***/

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Java4570a extends HttpServlet{

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException{

//Get a unique ID to be used to construct a session ID

String uid = new java.rmi.server.UID().toString();

//Encode any special characters that may be in the uid

// to construct the session ID

String sessionID = java.net.URLEncoder.encode(uid);

//Get and save the cookies submitted with the request

Cookie[] cookies = request.getCookies();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2170 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

//Get the submitted name for the current get request

String name = request.getParameter("firstName");

//Establish the type of output

response.setContentType("text/html");

//If no cookies were submitted with the request,

// create and add a cookie containing the session ID

if(cookies == null){

Cookie newCookie = new Cookie("sessionID",sessionID);

response.addCookie(newCookie);

}//end if

//Get an output stream

PrintWriter out = response.getWriter();

if(name != null){

String cookieName = "" + new Date().getTime();

Cookie newCookie = new Cookie(cookieName, name);

newCookie.setMaxAge(60);

response.addCookie(newCookie);

}//end if

//Construct an html form and send it back to the client

out.println("<html>");
out.println("<head><title>Java4570a</title></head>");
out.println("<body>");

//Substitute the name of your server in

// the following statement.

out.println("<form method='get' action="

+ "'http://localhost:8080/Java4570a'>");
out.println("<p>Enter a name and press the button</p>");
out.println("<p>Name: <input type='text' name="

+ "'firstName'/></p>");
out.println("<input type='submit' value="

+ "'Submit Name'/>");
out.println(

"

Your session ID and list of names is:
");
if(name == null){

out.println("Empty
");
}//end if

//Display the session ID and the values of the

// cookies that have been saved.

if(cookies != null){

for(int i = 0; i < cookies.length; i++){

out.println(cookies[i].getName() + ":" +

cookies[i].getValue() + "
");
}//end for loop

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2171

}//end if

//Display name submitted with current get request

if(name != null){

out.println(name + "
");
}//end if

out.println("</form></body></html>");

}//end doGet()

}//end class Java4570a

Listing 11 - The JSP program named Java4570b.jsp.

<%@ page import='java.util.*,java.io.*' %>

<html>
<head><title>Java4570b</title></head>
<body>

<%
String uid = new java.rmi.server.UID().toString();

String sessionID = java.net.URLEncoder.encode(uid);

Cookie[] cookies = request.getCookies();

String name = request.getParameter("firstName");

response.setContentType("text/html");

if(cookies == null){

Cookie newCookie = new Cookie("sessionID",sessionID);

response.addCookie(newCookie);

}//end if

if(name != null){

String cookieName = "" + new Date().getTime();

Cookie newCookie = new Cookie(cookieName, name);

newCookie.setMaxAge(60);

response.addCookie(newCookie);

}//end if

%>

<form method='get'

action='http://localhost:8080/Java4570b.jsp'>
<p>Enter a name and press the button</p>
<p>Name: <input type='text' name='firstName'/></p>
<input type='submit' value='Submit Name'/>

Your session ID and list of names is:

<%

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2172 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

if(name == null){

out.println("Empty
");
}//end if

if(cookies != null){

for(int i = 0; i < cookies.length; i++){

out.println(cookies[i].getName() + ":" +

cookies[i].getValue() + "
");
}//end for loop

}//end if

if(name != null){

out.println(name + "
");
}//end if

%>
</form></body></html>

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2173

5.4.9 Java4570r-Review
118

5.4.9.1 Table of Contents

• Preface (p. 2180)
• Questions (p. 2180)

· 1 (p. 2180) , 2 (p. 2180) , 3 (p. 2180) , 4 (p. 2180) , 5 (p. 2181) , 6 (p. 2181) , 7 (p. 2181) , 8
(p. 2181) , 9 (p. 2181) , 10 (p. 2181) , 11 (p. 2181) , 12 (p. 2182) , 13 (p. 2182)

• Answers (p. 2183)
• Miscellaneous (p. 2185)

5.4.9.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4570: Session Tracking
using Cookies 119 in the Servlets sub-collection.

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

5.4.9.3 Questions

5.4.9.3.1 Question 1

True or False?
Cookies are information that is created by a web application and stored on the HTTP server. Under

certain conditions, this information is retrieved and used by the HTTP server whenever a request is sent
from the client to the server.

Go to answer 1 (p. 2184)

5.4.9.3.2 Question 2

True or False?
Cookies are widely used by various server-side programming techniques for session tracking. Java provides

classes and methods designed to allow you to use cookies in your servlets.
Go to answer 2 (p. 2184)

5.4.9.3.3 Question 3

True or False?
Any HTTP server can obtain cookies from a browser regardless of the server that created the cookie.
Go to answer 3 (p. 2184)

5.4.9.3.4 Question 4

True or False?
By default, a cookie expires 24 hours after it is created.
Go to answer 4 (p. 2184)

118This content is available online at <http://cnx.org/content/m49593/1.2/>.
119http://cnx.org/content/m48571/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2174 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.4.9.3.5 Question 5

True or False?
The setMaxAge method can be called to override the default and specify the maximum age of a cookie

in minutes. The cookie will expire when the maximum age has been reached.
Go to answer 5 (p. 2184)

5.4.9.3.6 Question 6

True or False?
The setMaxAge method can be called to override the default and specify the maximum age of a cookie

in seconds. The parameter to the setMaxAge method is an int so the maximum age of a cookie can be
years.

Go to answer 6 (p. 2184)

5.4.9.3.7 Question 7

True or False?
The setComment method can be used to provide a comment with the cookie. The browser may elect

to make this information available to the user.
Go to answer 7 (p. 2184)

5.4.9.3.8 Question 8

True or False?
The constructor sets the name and value of a cookie when the Cookie object is instantiated. The

setValue method can be used to assign a new value to the cookie after it is instantiated.
Go to answer 8 (p. 2184)

5.4.9.3.9 Question 9

True or False?
The JavaCookie class represents a cookie that can be used for session management with the HTTP

protocol.
Go to answer 9 (p. 2184)

5.4.9.3.10 Question 10

True or False?
Each cookie has a name and a single value (a name::value pair) . It may have optional attributes,

including:

• A comment
• Path and domain quali�ers to specify which hosts can see the cookie
• AA maximum age
• A version.

Go to answer 10 (p. 2183)

5.4.9.3.11 Question 11

True or False?
Servers assign cookies, using �elds added to HTTP response headers. In the Java API, cookies are

saved one at a time into HTTP response headers, using the addCookie method.
Go to answer 11 (p. 2183)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2175

5.4.9.3.12 Question 12

True or False?
Cookies are passed from the browser to the server using �elds added to HTTP request headers.
In the Java API, HTTP cookies are retrieved, one at a time, using the getCookies method.
Go to answer 12 (p. 2183)

5.4.9.3.13 Question 13

True or False?
Because cookies are sent to the browser using HTTP headers, they should be added to the response

before you send any content.
Go to answer 13 (p. 2183)
What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2176 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.4.9.4 Answers

5.4.9.4.1 Answer 13

True.
Go back to Question 13 (p. 2182)

5.4.9.4.2 Answer 12

False.
Cookies are passed from the browser to the server using �elds added to HTTP request headers.
In the Java API, HTTP cookies are retrieved using the getCookies method. This method returns all

of the cookies found in the request sent by the client.
Go back to Question 12 (p. 2182)

5.4.9.4.3 Answer 11

True.
Go back to Question 11 (p. 2181)

5.4.9.4.4 Answer 10

True.
Go back to Question 10 (p. 2181)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2177

5.4.9.4.5 Answer 9

False. The Cookie class represents a cookie that can be used for session management with the HTTP
protocol.

Go back to Question 9 (p. 2181)

5.4.9.4.6 Answer 8

True.
Go back to Question 8 (p. 2181)

5.4.9.4.7 Answer 7

True.
Go back to Question 7 (p. 2181)

5.4.9.4.8 Answer 6

True.
Go back to Question 6 (p. 2181)

5.4.9.4.9 Answer 5

False. The setMaxAge method can be called to override the default and specify the maximum age of a
cookie in seconds. The cookie will expire when the maximum age has been reached.

Go back to Question 5 (p. 2181)

5.4.9.4.10 Answer 4

False. By default, a cookie expires when the browser exits
Go back to Question 4 (p. 2180)

5.4.9.4.11 Answer 3

False.
By default, cookies are sent only to the host that caused them to be saved. Methods can be called to set

attributes for each cookie that determine which servers will receive the cookie. For example, the setDomain
method can be used to specify a domain pattern indicating which servers should receive a cookie.

By default, cookies are sent to the page that set the cookie and to all the pages in that directory or under
that directory. This also can be modi�ed by calling the setPath method on the cookie.

Go back to Question 3 (p. 2180)

5.4.9.4.12 Answer 2

True.
Go back to Question 2 (p. 2180)

5.4.9.4.13 Answer 1

False. Cookies are information that is created by a web application and stored on the client machine by
the browser. Under certain conditions, this information is sent to the HTTP server whenever a request is
sent from the client to the server.

Go back to Question 1 (p. 2180)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2178 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.4.9.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4570r-Review
• File: Java4570r.htm
• Published: 03/10/14
• Revised: 12/26/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

5.4.10 Java4580: Session Tracking using the Session Tracking API
120

5.4.10.1 Table of Contents

• Preface (p. 2185)

· Viewing tip (p. 2186)

* Figures (p. 2186)
* Listings (p. 2186)

• General background information (p. 2186)

· Introduction (p. 2186)
· Program output (p. 2187)
· The HttpSession Interface (p. 2193)

• Discussion and sample code (p. 2196)
• Run the program (p. 2203)
• Miscellaneous (p. 2204)
• Complete program listing (p. 2204)

5.4.10.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX. The purpose of this module is to explain session tracking using
a servlet and the session tracking API .

120This content is available online at <http://cnx.org/content/m48579/1.6/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2179

5.4.10.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

5.4.10.2.1.1 Figures

• Figure 1 (p. 2187) . Output from access #1.
• Figure 2 (p. 2187) . Output from access #2.
• Figure 3 (p. 2188) . Output from access #3.
• Figure 4 (p. 2189) . Output from access #4.
• Figure 5 (p. 2190) . Output from access #5.
• Figure 6 (p. 2191) . Output from access #6.
• Figure 7 (p. 2192) . Output from access #7.

5.4.10.2.1.2 Listings

• Listing 1 (p. 2194) . Beginning of the doGet method.
• Listing 2 (p. 2194) . Get the session object.
• Listing 3 (p. 2197) . Get an output stream.
• Listing 4 (p. 2198) . A hit counter.
• Listing 5 (p. 2198) . Insert a Date object into the session.
• Listing 6 (p. 2199) . An object of type MyClass.
• Listing 7 (p. 2199) . Display information about the session.
• Listing 8 (p. 2200) . Display information about the objects.
• Listing 9 (p. 2202) . The inner class named MyClass.
• Listing 10 (p. 2204) . The servlet named Java4580a.java.

5.4.10.3 General background information

5.4.10.3.1 Introduction

This is the fourth in a series of modules designed to show you how to implement session tracking using
servlets. As mentioned earlier, the purpose of this module is to illustrate session tracking using the session
tracking API .

Earlier modules have illustrated three di�erent ways to implement session tracking with servlets

• hidden �elds
• URL rewriting
• cookies

A higher-level approach to session tracking
The servlet programs in those earlier modules were written at a fairly low level. The session tracking

API allows you to program at a somewhat higher level. Before you get too excited, however, be aware that
this may or may not be the answer to your needs. In some cases, depending on the server involved, you
may �nd that the session tracking API relies exclusively on cookies. If that is the case with your server and
if your clients don't allow cookies, then the API may not meet your needs. You may �nd yourself back at
square one � hidden �elds or URL rewriting .

The HttpSession interface
The capability that I have referred to as the session tracking API is primarily based on the HttpSession

interface that I will discuss later. It also includes some other interfaces and classes as well.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2180 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.4.10.3.2 Program output

Figure 1 (p. 2187) through Figure 7 (p. 2192) show the output produced by the servlet named Java4580a
for each of the �rst seven times it is accessed by the same browser. You might just want to glance over these
Figures now. I will refer back to them and explain their meaning throughout the discussion of the servlet.

Figure 1 - Output from access #1.

Figure 2 - Output from access #2.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2181

Figure 3 - Output from access #3.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2182 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Figure 4 - Output from access #4.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2183

Figure 5 - Output from access #5.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2184 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Figure 6 - Output from access #6.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2185

Figure 7 - Output from access #7.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2186 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.4.10.3.3 The HttpSession Interface

I will explain the code in this servlet in fragments. A complete listing of the servlet is provided in Listing
10 (p. 2204) .

Beginning of the doGet method
Listing 1 (p. 2194) shows typical code for beginning the de�nition of a servlet class and for beginning

the de�nition of the doGet method. You have seen code like this in earlier modules so I won't discuss it
further in this module.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2187

Listing 1 - Beginning of the doGet method.

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Java4580a extends HttpServlet{

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException{

Table 5.105

Get the session object
I will continue the discussion with the code fragment shown in Listing 2 (p. 2194) , where request is a

reference to the standard object of type HttpServletRequest passed to the doGet method that begins
in Listing 1 (p. 2194) .

Listing 2 - Get the session object.

HttpSession session = request.getSession(true);

Table 5.106

An object of type HttpSession
The call to the getSession method in Listing 2 (p. 2194) returns a reference to an object of the

interface type HttpSession . As you can see, the reference is saved in the local variable named session
.

The HttpSession object provides an association (a session) between an HTTP client and an HTTP
server. This association, or session, persists over multiple connections and/or requests during a given time
period. Sessions are used to maintain state and user identity across multiple page requests.

How is the session maintained?
Apparently the manner in which the association between the client and the server (the session) is

maintained varies from one server to the next. One books states,

"A session can be maintained either by using cookies or by URL rewriting."

Another book states that the minimum requirement for servers is to maintain the session using cookies, and
that the server may optionally support URL rewriting as well. There are inferences in other books to the
e�ect that some servers may not support URL rewriting.

The HttpSession object
The HttpSession object returned by the code in Listing 2 (p. 2194) behaves as a container for the

storage of:

• Information about the session

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2188 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

• Data (objects) that persist from one call to the servlet to the next call to the servlet by the same
client.

Client ID is transparent
The requirement to maintain the identi�cation of each individual client is transparent to the programmer.

That information is encapsulated in the HttpSession object and the process that backs it up.
The lifetime of a session
An HttpSession object represents an ongoing session with a particular client. The actual lifetime of

a session isn't clear in the books that I have read.
The books seems to imply that the session can remain active over long periods of time. However, on my

local Tomcat server, the session ends when the browser is terminated. The behavior is similar to that which
occurs with the default behavior 121 of cookies that expire when the browser exits.

(Recall however, the setMaxAge method can be called on a cookie to cause it to persist
beyond the current active period of the browser. Browsers save long-life cookies from one active
period to the next. There may be some way to accomplish that using the session tracking API
as well but that is speculation on my part.)

On my server, the session continues until

• The client exits the browser
• The servlet purposely invalidates the session
• The server invalidates the session due to timeout or other condition

Maintaining session state
All that the programmer has to do to maintain session state is to put objects into the HttpSession

object, and to get objects from the HttpSession object.
The programmer can also get information about the session from the HttpSession object as well.
Name::value pairs
Data objects are stored in the HttpSession object using a dictionary-like interface. Each object stored

in the HttpSession object is stored under a String name. Data objects are retrieved under the name
associated with the object. (This is another case of using name::value pairs.)

The fact that the data objects may actually be stored on the client machine (possibly in cookies) is
transparent to the programmer.

Is the data stored in cookies?
With my local Tomcat server, the fact that the data objects are being stored in cookies on the client

machine can be veri�ed by setting the browser preferences to disallow the use of cookies. This results in the
counter value that I will explain later never progressing beyond that shown in Figure 1 (p. 2187) . This
indicates that the servlet is unable to establish a session when cookies are disabled.

Events
If you instantiate your data objects from classes of your own design, you can process events that are

generated whenever the object is put in or removed from the HttpSession object. In order to be able to
receive events, your classes must implement the HttpSessionBindingListener interface.

(I also believe, but am not certain, that in order for the objects instantiated from your classes
to be eligible for being saved in the session object, your classes must implement the Serializable
interface. This makes it possible to decompose an object into a stream of bytes and to reconstruct
those bytes into an object later.)

Event handlers
When a data object of a class that implements the HttpSessionBindingListener interface is put into

the HttpSession object, the following method is called on the data object:

121http://cnx.org/content/m48571/latest/#What_are_cookies

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2189

valueBound(HttpSessionBindingEvent e)
When a data object of a class that implements the HttpSessionBindingListener interface is removed

from the HttpSession object, the following method is called on the data object:
valueUnbound(HttpSessionBindingEvent e)
No registration is required
Unlike the typical case in Java programming, no special registration of the event listener is required.

Simply implementing the interface on the object is su�cient to cause it to receive events when it is put into
or removed from the HttpSession object. You can de�ne those two methods to provide whatever behavior
may be needed when the events occur.

The isNew method
An implementation of HttpSession represents the server's view of the session. The server considers

a session to be new until the client has joined it. Until the client joins the session, the isNew method
returns true.

A value of true can indicate one of the following three cases:

• The client does not yet know about the session
• The session has not yet begun
• The client chooses not to join the session.

The third case will occur if the server supports only cookies and the client chooses to reject cookies sent by
the server (the client has disabled cookies on the browser) .

URL rewriting
According to the some books, the third case will not commonly occur, if the server supports URL

rewriting. However, according to one of my books, even if the server supports URL rewriting, that capability
is not freely available. The programmer must provide special programming constructs to take advantage of
URL rewriting.

In any event, it is the responsibility of the programmer to design the application to account for situations
where a client has not joined a session.

5.4.10.4 Discussion and sample code

Now that you have the background information under your belt, let's take a look at a sample program.
The name of the servlet that I will explain in this module is Java4580a . As mentioned earlier, I will

explain this program in fragments. A complete listing is provided in Listing 10 (p. 2204) .
Beginning of the servlet program
The program begins in the typical manner shown earlier in Listing 1 (p. 2194) . Then the program gets a

valid HttpSession object for the current request from the client as shown by the call to the getSession
method in Listing 2 (p. 2194) .

What does Oracle have to say?
Here is some of what Oracle has to say about the getSession method, where create is the name of

the boolean parameter passed to the method:

"Returns the current HttpSession associated with this request or, if there is no current
session and create is true, returns a new session. If create is false and the request
has no valid HttpSession , this method returns null. To make sure the session is properly
maintained, you must call this method before the response is committed."

Apparently the server identi�es the �rst request of the session by the fact that the browser doesn't send a
cookie (or the URL hasn't been rewritten) , but that is just speculation on my part.

Get an output stream
An output stream is needed in order for the servlet to send content to the client browser. An output

stream object is created and saved in the session object, thus making it available for as long as the session
is active.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2190 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

You are already familiar with the �rst statement in Listing 3 (p. 2197) , so nothing more needs to be
said about that statement.

Retrieve the stream object from the session object
Beyond that, the code in Listing 3 (p. 2197) begins by attempting to retrieve an output stream object

from the session object.
If the call to the getValue method on the session object returns null, this indicates that an output

stream has not yet been created and saved in the session object. In that case, an output stream object is
created and put into the session object where it will be available on subsequent requests to the servlet.

A reference to the new output stream is also saved in the local variable named out so that it will be
available during the remainder of the doGet method. This is what happens at the beginning of a new
session with a speci�c browser.

Listing 3 - Get an output stream.

response.setContentType("text/html");

PrintWriter out = (PrintWriter)session.getValue("out");

if(out == null){

//First request from this client

out = response.getWriter();

session.putValue("out",out);

}//end if

//Create HTML page header

out.println("<html>");
out.println("<head><title>Java4580a</title></head>");
out.println("<body>");

Table 5.107

An output stream already exists
If the call to the getValue method in Listing 3 (p. 2197) returns an output stream, a reference to

the output stream is saved in the local variable named out . This is what happens in the second and
subsequent calls to the servlet during an ongoing session with a speci�c browser.

Create the HTML header text
Once the output stream is available, the code in Listing 3 (p. 2197) uses it to create the normal header

text on the outgoing HTML page.
A hit counter
Listing 4 (p. 2198) instantiates a hit counter object and stores it in the session object under the name "

counter ". If the session doesn't have a counter , one is created and its value is initialized to 1. If the
session already has a counter , it is incremented by 1. Then the new or incremented counter is put in
the session, replacing the one that was already there.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2191

Listing 4 - A hit counter.

Integer cnt = (Integer)session.getValue("counter");

if(cnt == null) cnt = new Integer(1);

else cnt = new Integer(cnt.intValue() + 1);

session.putValue("counter",cnt);

Table 5.108

Note that because an object of the Integer class is immutable, the only way to increment the counter
is to create a new Integer object to replace the existing one.

The putValue and getValue methods
Listing 4 (p. 2198) also illustrates the putValue and getValue methods. These methods are used

to store and retrieve objects from the session object. The putValue() method requires two parameters:

• an object to be stored
• the String name under which the object is to be stored

The getValue method requires the String name of the object to retrieve.
Insert a Date object into the session
As shown in Listing 5 (p. 2198) , each time the servlet is called, a new Date object containing the

current date and time is instantiated and stored in the session object.

Listing 5 - Insert a Date object into the session.

Date theDate = new Date();

long millis = theDate.getTime();

String strMillis = "" + millis;

session.putValue(strMillis,theDate);

Table 5.109

Each Date object is stored under a name created by converting the current date and time in milliseconds
to a String . Thus, the amount of data stored in the session object increases with each call to the servlet.

(Note that if the servlet is called twice by the same client within one millisecond, this naming
scheme will fail due to duplicate names being created and put into the session object.)

An object of type MyClass
When the value of the hit counter is 1, an object of type MyClass is instantiated and stored in the

session object under the name MyClassObj . This is shown in Listing 6 (p. 2199) . Note in particular
that a reference to the output stream object is passed to the constructor for the MyClass object. You
will see why later.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2192 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Listing 6 - An object of type MyClass.

if(cnt.intValue() == 1)

session.putValue("MyClassObj", new MyClass(out));

if(cnt.intValue() == 4) session.removeValue("MyClassObj");

Table 5.110

Also as shown in Listing 6 (p. 2199) , this object is removed from the session object when the value of
the hit counter is 4.

An HttpSessionBindingEvent event happens when the object is put into the session object and
happens again when the object is removed from the session object.

Event handling
The object of type MyClass is a listener for events of type HttpSessionBindingEvent . Therefore,

it receives an event noti�cation when it is put into the session object, and receives another event noti�cation
when it is removed from the session object. Information about the two events is displayed on the client
screen when the events occur.

The text at the top of Figure 1 (p. 2187) was produced when the MyClass object was put into the
session. The text at the top of Figure 4 (p. 2189) was produced when the object was removed from the
session. More information about that text will be provided later during the discussion of the class named
MyClass .

Display information about the session
The code in Listing 7 (p. 2199) displays several pieces of information about the session each time the

servlet is called. This information is obtained from the session object by calling various methods on the
session object. The information is then mixed with standard HTML code and displayed on the client screen
as shown in Figure 1 (p. 2187) through Figure 7 (p. 2192) .

Listing 7 - Display information about the session.

out.println("<p>Session Characteristics:
");
out.println("New Session: " + session.isNew()+ "
");
out.println("Session ID: " + session.getId()+ "
");
out.println("Session Context: "

+ session.getSessionContext()+ "
");
out.println("Creation Time: "

+ new Date(session.getCreationTime()) + "
");
out.println("Last Accessed: "

+ new Date(session.getLastAccessedTime()) + "</p>");

Table 5.111

Display information about the objects
The code in Listing 8 (p. 2200) displays information about each of the objects stored in the session

object each time the servlet is called. Note that the order of the display of objects doesn't seem to follow
any particular pattern.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2193

Listing 8 - Display information about the objects.

out.println("<p>Session Data:
");
String[] names = session.getValueNames();

for(int i = 0; i < names.length; i++){

out.println(names[i] + ": "

+ session.getValue(names[i]) + "
");
}//end for loop

//Finish off the HTML page

out.println("</p></body></html>");
}//end doGet()

Table 5.112

The code in Listing 8 (p. 2200) calls the getValueNames method to create a String array containing
the names of each of the objects currently stored in the session object. A for loop then iterates on that
array, calling the getValue method on each name to get and display each of the objects stored in the
session object.

(The code in Listing 8 (p. 2200) also �nishes o� the web page and signals the end of the doGet
method.)

The information that is displayed
The following information about the objects is displayed in Figure 1 (p. 2187) through Figure 3 (p. 2188)

:

• counter information
• information about each of the Date objects
• information about the output stream object
• information about the object of type MyClass .

Beginning with Figure 4 (p. 2189) , the MyClass object is no longer contained in the session object when
the list is constructed, so only information about the �rst three items in the above list (p. 2200) is displayed.

Miscellaneous things worthy of note
In Figure 1 (p. 2187) , you see three types of information being displayed:

• Event
• Session Characteristics
• Session Data

The Event output resulted from the fact that the object of type MyClass was put into the session
object. This caused the valueBound method to be called.

The Session Characteristics show that the creation time and the time last accessed are equal, and
the session is a new session.

The Session Characteristics also show the Session ID which has been automatically created for
this session and the Session Context , which is peculiar to the Tomcat server being used. Neither of
these will change for the duration of the session.

The Session Data in Figure 1 (p. 2187) shows information on one counter object, one Date object,
one output stream object, and one object of type MyClass .

Figure 1 (p. 2187) through Figure 7 (p. 2192) all show the same Session ID and the same Session
Context .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2194 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

(Note that unlike the servlet code in earlier modules, I did not write the code that created the
session ID.)

In Figure 2 (p. 2187) and Figure 3 (p. 2188) , you see only two types of information being displayed:

• Session Characteristics
• Session Data

There is no event output in these two Figures because the object of type MyClass is neither put into nor
removed from the session during these calls to the servlet.

Beginning with Figure 2 (p. 2187) , the New Session value shows false. In other words, the session
is no longer new.

Beginning with Figure 3 (p. 2188) , the Last Accessed time di�ers from the Creation Time .
The entire sequence of Figures show a sequence of seven calls to the servlet. Hence, the value of the

counter increases by one in each succeeding Figure. Also, the number of objects in the list increases by one
during each of the �rst three Figures.

Figure 4 (p. 2189) shows the screen output for the fourth call to the servlet. This is the call where the
MyClass object was removed from the session object. Hence an Event occurred showing that the
valueUnbound method was called.

The Session Data consists of one counter object, one output stream object, and four Date objects.
The MyClass object no longer appears in the list because it was removed from the session object before
the list was constructed.

Finally, Figure 7 (p. 2192) shows the screen output for the seventh call to the servlet. There is no Event
output and the Session Characteristics are the same as before except for the time last accessed.

The Session Data consists of one counter object, one output stream object, and seven Date objects.
The inner class named MyClass
The code in Listing 9 (p. 2202) de�nes an inner class named MyClass . It could have been implemented

as a top-level class but I elected to make it an inner class (actually a member class 122) .

122http://cnx.org/content/m44347/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2195

Listing 9 - The inner class named MyClass.

class MyClass implements HttpSessionBindingListener,

Serializable{

PrintWriter localOut;//local copy of output stream to client

public MyClass(PrintWriter out){//constructor

//Save a local copy of the output stream to the client.

localOut = out;

}//end constructor

public String toString(){

return "This is a MyClass object";

}//end toString()

//This method is called when the object is put into

// the session.

public void valueBound(HttpSessionBindingEvent e){

localOut.println("<p>Event
");
localOut.println("In valueBound method
");
//Returns the name of the object as identified when

// put into the session

localOut.println("Name = " +e.getName() + "</p>");
}//end valueBound()

//This method is called when the object is removed

// from the session.

public void valueUnbound(HttpSessionBindingEvent e){

localOut.println("<p>Event
");
localOut.println("In valueUnbound method
");
localOut.println("Name = " +e.getName() + "</p>");

}//end valueUnbound()

}//end inner class named MyClass

}//end class Java4580a

Table 5.113

Deploying the servlet
When this program is compiled, it produces the following two class �les:

• Java4580a.class
• Java4580a$MyClass.class

The second class �le results from the compilation of the member class.
I mention this as a reminder that it is necessary to copy both of these class �les in order to deploy the

servlet onto a web server. Note however that when deploying on my local Tomcat server, only the information
about the top level class must be entered into the �le named web.xml .

A MyClass object

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2196 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

An object of the class named MyClass is instantiated and put into the session object during the �rst
call to the servlet when the hit counter equals one. (See Listing 6 (p. 2199) .) The object is removed
during the fourth call to the servlet when the hit counter equals four. (Again, see Listing 6 (p. 2199) .)

A listener object
Because the class implements the HttpSessionBindingListener interface, an object of the class is a

listener for events of type HttpSessionBindingEvent . An event of this type occurs when the object is
put into the session object. Another event of this type occurs when the object is removed from the session
object.

Event handler methods
The method named valueBound is called when the object is put into the session object. The method

named valueUnbound is called when the object is removed from the session object.
No registration necessary
Unlike typical Java event programming, it is not necessary to register the listener on a source. Simply

implementing the HttpSessionBindingListener interface is su�cient to cause the object to be noti�ed
of the events when an object of the class is put into or removed from the session object.

An object of type HttpSessionBindingEvent
When an event occurs, the event handler methods named valueBound and valueUnbound receive

a reference to an object of type HttpSessionBindingEvent as a parameter.
In this program, the event handlers call the getName method on the event objects to display informa-

tion about the events on the client screen when the events occur. This is shown in Figure 1 (p. 2187) and
Figure 4 (p. 2189) . Several other methods are available to be called on the event object including:

• getName
• getSession
• getValue
• getSource

An overridden toString method
In addition to the two event handler methods, the MyClass class also overrides the toString method.

Note that the string returned by the overridden toString method is displayed in Figure 1 (p. 2187) through
Figure 3 (p. 2188) to represent the MyClass object that is contained in the session object.

Event handler behavior
My objective was to display the name returned by the getName method on the browser screen for

each event as shown by the third line in Figure 1 (p. 2187) and the third line in Figure 4 (p. 2189) . In
order to accomplish this, the code in the event handler methods need access to the output stream object.
This was accomplished by

• passing a reference to the output stream object to the MyClass constructor
• saving that reference in an instance variable of the MyClass object
• using that reference inside the event handler methods to send content to the browser

Standard source-listener event handling
Except for the fact that there is no requirement to register the event listener object on a source, this is

straightforward source-listener event handling material that you should already be familiar with.
The code in Listing 9 (p. 2202) also signals the end of the class named Java4590a .

5.4.10.5 Run the program

I encourage you to copy the code from Listing 10 (p. 2204) . Compile the code and deploy it on your server.
Experiment with the code, making changes, and observing the results of your changes. Make certain that
you can explain why your changes behave as they do.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2197

5.4.10.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4580: Session Tracking using the Session Tracking API
• File: Java4580.htm
• Published: 12/30/13
• Revised: 02/07/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

5.4.10.7 Complete program listing

Listing 10 - The servlet named Java4580a.java.

/*File Java4580a.java, Copyright 1999, R.G.Baldwin

Revised 12/30/13

This servlet illustrates use of the session tracking API.

A variety of different aspects of session tracking using

the API are illustrated.

***/

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Java4580a extends HttpServlet{

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException{

//Get the session associated with this request,

HttpSession session = request.getSession(true);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2198 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

response.setContentType("text/html");

//Get the output stream from the session object.

// If this is the first call to servlet, create an output

// stream and save it in the session object.

PrintWriter out = (PrintWriter)session.getValue("out");

if(out == null){

//First request from this client

out = response.getWriter();

session.putValue("out",out);

}//end if

//Create HTML page header

out.println("<html>");
out.println("<head><title>Java4580a</title></head>");
out.println("<body>");

//Create a hit counter for this servlet

Integer cnt = (Integer)session.getValue("counter");

if(cnt == null) cnt = new Integer(1);

else cnt = new Integer(cnt.intValue() + 1);

session.putValue("counter",cnt);

//Add a new Date object each time the servlet i called

Date theDate = new Date();

long millis = theDate.getTime();

String strMillis = "" + millis;

session.putValue(strMillis,theDate);

//When the hit counter is 1, instantiate a new object of

// type MyClass and put it in the session. Pass

// a reference to the output stream to the constructor.

//Remove the object from the session when the value

// of the hit counter is 4.

if(cnt.intValue() == 1)

session.putValue("MyClassObj", new MyClass(out));

if(cnt.intValue() == 4) session.removeValue("MyClassObj");

//Display information about the session.

out.println("<p>Session Characteristics:
");
out.println("New Session: " + session.isNew()+ "
");
out.println("Session ID: " + session.getId()+ "
");
out.println("Session Context: "

+ session.getSessionContext()+ "
");
out.println("Creation Time: "

+ new Date(session.getCreationTime()) + "
");
out.println("Last Accessed: "

+ new Date(session.getLastAccessedTime()) + "</p>");

//Display information about all of the objects currently in

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2199

// the session. Note that the session now contains a

// PrintWriter object that was not in the session in the

// original version of the servlet named Java4580a.

out.println("<p>Session Data:
");
String[] names = session.getValueNames();

for(int i = 0; i < names.length; i++){

out.println(names[i] + ": "

+ session.getValue(names[i]) + "
");
}//end for loop

//Finish off the HTML page

out.println("</p></body></html>");
}//end doGet()

//==//

//This is an inner class. In the original version, this

class MyClass implements HttpSessionBindingListener,

Serializable{

PrintWriter localOut;//local copy of output stream to client

public MyClass(PrintWriter out){//constructor

//Save a local copy of the output stream to the client.

localOut = out;

}//end constructor

public String toString(){

return "This is a MyClass object";

}//end toString()

//This method is called when the object is put into

// the session.

public void valueBound(HttpSessionBindingEvent e){

localOut.println("<p>Event
");
localOut.println("In valueBound method
");
//Returns the name of the object as identified when

// put into the session

localOut.println("Name = " +e.getName() + "</p>");
}//end valueBound()

//This method is called when the object is removed

// from the session.

public void valueUnbound(HttpSessionBindingEvent e){

localOut.println("<p>Event
");
localOut.println("In valueUnbound method
");
localOut.println("Name = " +e.getName() + "</p>");

}//end valueUnbound()

}//end inner class named MyClass

}//end class Java4580a

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2200 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.4.11 Java4580r-Review
123

5.4.11.1 Table of Contents

• Preface (p. 2207)
• Questions (p. 2207)

· 1 (p. 2207) , 2 (p. 2207) , 3 (p. 2207) , 4 (p. 2208)

• Answers (p. 2209)
• Miscellaneous (p. 2210)

5.4.11.2 Preface

This module is one in a collection of modules designed for teaching INEW 2338 Advanced Java (Web)
at Austin Community College in Austin, TX.

This module contains review questions and answers keyed to the module titled Java4580: Session Tracking
using the Session Tracking API 124 in the Servlets sub-collection.

Once you study that module, you should be able to answer the review questions in this module.
The questions and the answers in this module are connected by hyperlinks to make it easy for you to

navigate from the question to the answer and back again.

5.4.11.3 Questions

5.4.11.3.1 Question 1

True or False?
The session tracking API allows you to program at a somewhat higher level than when programming

for

• hidden �elds
• URL rewriting
• cookies

Go to answer 1 (p. 2209)

5.4.11.3.2 Question 2

True or False?
In some cases, depending on the server involved, the session tracking API may rely exclusively on

cookies "under the hood."
Go to answer 2 (p. 2209)

5.4.11.3.3 Question 3

True or False?
The session tracking API is primarily based on the JavaHttpSession interface. It also includes some

other interfaces and classes as well.
Go to answer 3 (p. 2209)

123This content is available online at <http://cnx.org/content/m49586/1.2/>.
124http://cnx.org/content/m48579/latest/?collection=col11441/latest

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2201

5.4.11.3.4 Question 4

True or False?
A call to the getSession method of the incoming request object returns a reference to an object of the

interface type HttpSession .
The HttpSession object provides an association (a session) between an HTTP client and an HTTP

server. This association, or session, persists over multiple connections and/or requests during a given time
period. Sessions can be used to maintain state and user identity across multiple page requests.

Go to answer 4 (p. 2209)
What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2202 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.4.11.4 Answers

5.4.11.4.1 Answer 4

True.
Go back to Question 4 (p. 2208)

5.4.11.4.2 Answer 3

False. The session tracking API is primarily based on the HttpSession interface. It also includes some
other interfaces and classes as well.

Go back to Question 3 (p. 2207)

5.4.11.4.3 Answer 2

True.
Go back to Question 2 (p. 2207)

5.4.11.4.4 Answer 1

True.
Go back to Question 1 (p. 2207)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2203

5.4.11.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java4580r-Review
• File: Java4580r.htm
• Published: 03/10/14
• Revised: 12/26/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

5.5 JSON

5.5.1 Json0195: Preface to JSON
125

Revised: Thu Jun 02 18:43:34 CDT 2016
This page is included in the following Books:

• INEW2338 - Advanced Java Programming 126

• Object-Oriented Programming (OOP) with Java 127

5.5.1.1 Table of contents

• Table of contents (p. 2210)
• Servlets, search engines, or JSON (p. 2211)
• Miscellaneous (p. 2211)

125This content is available online at <http://cnx.org/content/m61773/1.1/>.
126http://cnx.org/contents/yWyT-uhM
127http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2204 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.1.2 Servlets, search engines, or JSON

As explained in the page titled Java4510: Preface to INEW 2338 128 , only one of the topics Search Engines
, Servlets , or JSON is covered in the course in any particular semester. However, all three are important.
The course material in the Blackboard course management program indicates which topic is covered in the
current semester.

Students are encouraged to study all three topics for their own educational purposes in order to enhance
their prospects of landing a job as a Java programmer.

5.5.1.3 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Json0195: Preface to JSON
• File: Json0195.htm
• Published: 06/02/16

Short summary:

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

5.5.2 Json0200: The What and Why of JSON
129

Revised: Sun Jul 03 10:16:32 CDT 2016
This page is included in the following Books:

• The json-simple Java Library 130 .
• INEW2338 - Advanced Java Programming 131

• Object-Oriented Programming (OOP) with Java 132

128http://cnx.org/contents/yWyT-uhM:boF3E5Bs
129This content is available online at <http://cnx.org/content/m61717/1.5/>.
130http://cnx.org/contents/5sRB9gpG
131http://cnx.org/contents/yWyT-uhM
132http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2205

5.5.2.1 Table of contents

• Table of contents (p. 2212)
• Preface (p. 2212)

· What is JSON? (p. 2212)
· Why should you care about JSON? (p. 2213)
· Not a book about JSON (p. 2214)
· Viewing tip (p. 2215)

• Background information (p. 2215)

· A lightweight text-based data interchange format (p. 2215)
· Typical operation (p. 2215)
· A real-world analogy (p. 2215)

* A playscape object (p. 2215)
* No longer an object (p. 2215)
* Reassemble the parts (p. 2215)
* Streamlined procedures (p. 2216)

• Online references (p. 2216)
• Miscellaneous (p. 2216)

5.5.2.2 Preface

5.5.2.2.1 What is JSON?

The online document titled Introducing JSON 133 begins as follows:

"JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for humans
to read and write. It is easy for machines to parse and generate. It is based on a subset of the
JavaScript Programming Language, Standard ECMA-262 3rd Edition - December 1999. JSON is
a text format that is completely language independent but uses conventions that are familiar to
programmers of the C-family of languages, including C, C++, C#, Java, JavaScript, Perl, Python,
and many others. These properties make JSON an ideal data-interchange language."

Similarly, the online document titled Java API for JSON Processing: An Introduction to JSON 134 begins
as follows:

JSON (JavaScript Object Notation) is a lightweight, text-based, language-independent data ex-
change format that is easy for humans and machines to read and write. JSON can represent
two structured types: objects and arrays. An object is an unordered collection of zero or more
name/value pairs. An array is an ordered sequence of zero or more values. The values can be
strings, numbers, booleans, null, and these two structured types.

It is important to note that even though JSON is based on JavaScript syntax, JASON is not JavaScript nor
is it any other programming language. In fact, it is not a programming language at all. As stated above,
JSON is simply "a lightweight, text-based, language-independent data exchange format" � nothing more
and nothing less.

Figure 1 (p. 2212) shows a JSON text string containing name/value pairs as well as nested arrays.

Figure 1. Example JSON text.

133http://www.json.org/
134http://www.oracle.com/technetwork/articles/java/json-1973242.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2206 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

{

"game":

[

{"cards":

[

"2-club","3-heart","4-diamond","5-spade"

],

"name":"Tom"

},

{"cards":

[

"4-heart","5-heart","6-club","7-diamond"

],

"name":"Joe"

}

]

}

(This JSON text will be used in a Java program in a future module.)

5.5.2.2.2 Why should you care about JSON?

This book is being written and published under the following assumptions:

• You are interested in Java programming.
• You are interested in web development involving Java programming.
• At some point in the future, you may become interested in Big Data 135 .
• At some point in the future, you may become interested in NoSQL 136 databases such as MongoDB

137 and Couchbase 138 .

As stated in the InfoWorld 139 article of August 25, 2014:

"Web developers love JSON (JavaScript Object Notation). Like XML, it's a human-readable
format for transmitting data, except it's a whole lot easier to work with than XML. ... Several
NoSQL databases � including the wildly successful MongoDB 140 and Couchbase 141 � store data
in JSON documents natively."

According to How JSON and Big Data Will Shape the Internet of Things 142 , the author writes:

"To answer the question of why JSON would be the most widely used format for the Internet
of Things, one only need look at the rapid development of Raspberry Pi, which started a little
over two-and-a-half years ago, and has gained massive traction worldwide. This credit-card sized
microcomputer is extensible, and a recent project called RaZberry has turned it into a device
capable of controlling your home automation through - you guessed it - a JSON interface. With

135https://en.wikipedia.org/wiki/Big_data
136https://en.wikipedia.org/wiki/NoSQL
137https://www.mongodb.com/
138http://www.couchbase.com/
139http://www.infoworld.com/article/2608805/database/big-databases-jump-on-the-json-bandwagon.html
140https://www.mongodb.com/
141http://www.couchbase.com/
142http://news.sys-con.com/node/2881856

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2207

future development of the Internet of Things, the proliferation of JSON as the preferred data
delivery mechanism will only increase.

Even more interesting is how this data can be fed into a Big Data cluster to perform predictive
modeling and analytics. Just over a year ago, Google BigQuery 143 added support for JSON 144

and explicitly mentions how sensor data and its attributes can be measured as a consequence. With
time, it is only inevitable that developers in other Big Data ecosystems will use JSON when setting
up their clusters to perform analytics from the various source data from the Internet of Things."

According to the aforementioned Google BigQuery 145 support for JSON 146 article:

"JSON is the data format of the web. JSON is used to power most modern websites, is a native
format for many NoSQL databases hosting top web applications, and provides the primary data
format in many REST APIs. Google BigQuery, our cloud service for ad-hoc analytics on big data,
has now added support for JSON and the nested/repeated structure inherent in the data format."

I could go on providing similar quotations, but the bottom line is that if you anticipate your Java program-
ming career taking you into the world of Big Data 147 or into The Internet of Things 148 at some point in the
future, you probably need to learn how to write Java programs that parse, generate, transform, and query
JSON.

5.5.2.2.3 Not a book about JSON

This book is not intended to teach you about JSON. There are numerous tutorials on the web that you can
access for that purpose (see Online references (p. 2216)) . This book is intended to teach you how to use
the json-simple 149 Java library, (which is one of several available libraries), to parse, generate, transform,
and query JSON.

The page at http://www.json.org/ 150 lists more than two dozen Java libraries that have been created for
processing JSON data. After conducting an informal review of web pages that discuss the various libraries, I
decided to concentrate on the json-simple 151 library in this book. For example, here is the conclusion from
the article titled A Review of 5 Java JSON Libraries 152 :

"If you are looking for a simple lightweight Java library that reads and writes JSON, and supports
Streams, JSON.simple is probably a good match. It does what it says on the box in 12 classes, and
works on legacy (1.4) JREs. "

This conclusion is similar to conclusions that I found on several other websites. However, you should not
take my selection of json-simple 153 for this book as a recommendation for the json-simple 154 library as
compared to other libraries that are available. Once you have a basic understanding of how to process JSON
using Java and the json-simple 155 library, you should conduct your own review to identify the library that
best suits your needs.

143https://cloud.google.com/bigquery/
144https://developers.googleblog.com/2012/10/got-big-json-bigquery-expands-data.html
145https://cloud.google.com/bigquery/
146https://developers.googleblog.com/2012/10/got-big-json-bigquery-expands-data.html
147https://en.wikipedia.org/wiki/Big_data
148https://en.wikipedia.org/wiki/Internet_of_Things
149https://code.google.com/archive/p/json-simple/
150http://www.json.org/
151https://code.google.com/archive/p/json-simple/
152http://www.rojotek.com/blog/2009/05/07/a-review-of-5-java-json-libraries/
153https://code.google.com/archive/p/json-simple/
154https://code.google.com/archive/p/json-simple/
155https://code.google.com/archive/p/json-simple/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2208 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.2.2.4 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view Figure 1 (p. 2212) while you are reading about it.

5.5.2.3 Background information

JSON is an acronym for JavaScript Object Notation . Don't be fooled by the name however. Although
JSON is based on JavaScript object syntax, it is not JavaScript nor is it any programming language. As
stated earlier, JSON is simply a lightweight, text-based, language-independent data interchange format �
nothing more and nothing less.

5.5.2.3.1 A lightweight text-based data interchange format

Similar to XML, JSON is a general purpose data interchange format that is supported by Java, PHP,
JavaScript, and other programming languages. JSON is a standard that describes how ordered lists and
unordered maps, strings, boolean values, and numbers can be represented as text in a string.

Similar to but less complex than XML, JSON provides a way to pass structured information between
di�erent computing environments using the same or di�erent languages.

5.5.2.3.2 Typical operation

Typically a data construct, (such as an object for example) , in one programming environment will be
transformed into a JSON string. That string will be transported to another programming environment where
it will be transformed into a data construct, (such as a hash table for example) , that is suitable for use in
that programming environment

5.5.2.3.3 A real-world analogy

Consider the following analogous situation. A young family has a large playscape for their children in their
back yard. They need to move to another house across town. In order to save money, they rent a small
truck and do the entire move themselves.

5.5.2.3.3.1 A playscape object

The playscape can be thought of as an object with certain properties such as swing and slide .
It is too large to �t into the truck so the adults disassemble it into a well-organized package of boards,

chains, bolts, nuts, etc. They are very careful to label each part and to create some drawings showing the
organization of the parts for use later.

5.5.2.3.3.2 No longer an object

In that disassembled state, it can no longer be thought of as an object with properties of swing and slide
. Instead, it is simply a well-organized and documented package of parts. The package of parts is analogous
to a JSON string. The playscape object has been transformed into a well-organized package of parts.

5.5.2.3.3.3 Reassemble the parts

After the parts are transported to the new location, they are reassembled into an object with properties of
swing and slide .

This is what we do with JSON. We disassemble an object (or other data construct) into a JSON string:
a well-organized package of parts. Later on, and possibly in an entirely di�erent programming environment,
we reassemble the parts into a data construct suitable for use in the new programming environment.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2209

5.5.2.3.3.4 Streamlined procedures

Java, JavaScript, PHP, and other programming languages provide streamlined procedures for transforming
a data construct into a JSON string and for transforming a JSON string into a suitable data construct. As
an example, the toJASONString method can be used to transform a Java object of type JSONObject
into a JSON string. The parse method of the Java JSONValue class can be used to transform a JSON
string into a JSONObject object. Other methods or functions are available to accomplish the same
purposes in other languages such as JavaScript 156 .

5.5.2.4 Online references

There are many good online JSON references. Here are a few:

• Introducing JSON 157

• The json-simple library 158

• JSON: The Fat-Free Alternative to XML 159

• Java API for JSON Processing: An Introduction to JSON 160

• JSON with PHP 161

• JSON tutorial for beginners learn how to program part 1 JavaScript (video) 162

• JSON in JavaScript 163

• JSON: What It Is, How It Works, How to Use It 164

5.5.2.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Json0200: The What and Why of JSON
• File: Json0200.htm
• Published: 05/29/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

156http://cnx.org/contents/05TSs4zg:NDKm3u1b
157http://www.json.org/
158https://code.google.com/archive/p/json-simple/
159http://www.json.org/xml.html
160http://www.oracle.com/technetwork/articles/java/json-1973242.html
161http://www.tutorialspoint.com/json/json_php_example.htm
162http://www.youtube.com/watch?v=wbB3lVyUvAM
163http://www.json.org/js.html
164http://www.copterlabs.com/blog/json-what-it-is-how-it-works-how-to-use-it/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2210 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2211

5.5.3 Json0200R: Review
165

Revised: Fri Jun 03 14:06:45 CDT 2016
This page is included in the following Books:

• The json-simple Java Library 166 .
• INEW2338 - Advanced Java Programming 167

• Object-Oriented Programming (OOP) with Java 168

5.5.3.1 Table of Contents

• Table of Contents (p. 2218)
• Preface (p. 2218)
• Questions (p. 2219)

· Question 1 (p. 2219)
· Question 2 (p. 2219)
· Question 3 (p. 2219)
· Question 4 (p. 2219)
· Question 5 (p. 2219)
· Question 6 (p. 2219)
· Question 7 (p. 2219)
· Question 8 (p. 2219)

• Figure index (p. 2220)
• Answers (p. 2221)

· Answer 8 (p. 2221)
· Answer 7 (p. 2221)
· Answer 6 (p. 2221)
· Answer 5 (p. 2222)
· Answer 4 (p. 2222)
· Answer 3 (p. 2222)
· Answer 2 (p. 2222)
· Answer 1 (p. 2222)

• Figures (p. 2222)
• Miscellaneous (p. 2223)

5.5.3.2 Preface

This is a page from the book titled The json-simple Java Library . The book explains how to use
the json-simple Java library to generate, transform, and query JSON text. This page provides review
questions and answers for the page titled Json0200 The What and Why of JSON 169 . Once you study that
page, you should be able to answer the review questions in this page.

The questions and the answers in this page are connected by hyperlinks to make it easy for you to
navigate from the question to the answer and back again.

The Figures and Listings (if any) are grouped together. It is recommend that when a question or an
answer refers to a Figure or a Listing, that you open it in a new window to make it easy to view it while
reading the question or the answer.

165This content is available online at <http://cnx.org/content/m61776/1.1/>.
166http://cnx.org/contents/5sRB9gpG
167http://cnx.org/contents/yWyT-uhM
168http://cnx.org/contents/-2RmHFs_
169http://cnx.org/contents/5sRB9gpG:A-LhzKT_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2212 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.3.3 Questions

5.5.3.3.1 Question 1 .

True or False? JSON is an acronym for "Java Object Names."
Go to answer 1 (p. 2222)

5.5.3.3.2 Question 2

True or False? JSON is based on a subset of the JavaScript Programming Language.
Go to answer 2 (p. 2222)

5.5.3.3.3 Question 3

True or False? JSON is a text format that is language independent but uses conventions that are familiar
to programmers of the C-family of languages including C, C++, C#, Java, JavaScript, Perl, Python, Visual
Basic, and many others.

Go to answer 3 (p. 2222)

5.5.3.3.4 Question 4

True or False? JSON is part of the JavaScript programming language.
Go to answer 4 (p. 2222)

5.5.3.3.5 Question 5

True or False? JSON can represent three structured types: objects, arrays, and conditionals.
Go to answer 5 (p. 2222)

5.5.3.3.6 Question 6

True or False? Figure 1 (p. 2222) shows a JSON text string containing name/value pairs as well as nested
arrays.

Go to answer 6 (p. 2221)

5.5.3.3.7 Question 7

True or False? JSON is important in the implementation of Big Data 170 NoSQL 171 databases such as
MongoDB 172 and Couchbase 173 .

Go to answer 7 (p. 2221)

5.5.3.3.8 Question 8

True or False? This book is intended to teach you about JSON.
Go to answer 8 (p. 2221)

170https://en.wikipedia.org/wiki/Big_data
171https://en.wikipedia.org/wiki/NoSQL
172https://www.mongodb.com/
173http://www.couchbase.com/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2213

5.5.3.4 Figure index

• Figure 1 (p. 2222)

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2214 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.3.5 Answers

5.5.3.5.1 Answer 8

False. This book is not intended to teach you about JSON. There are numerous tutorials on the web that
you can access for that purpose. This book is intended to teach you how to use the json-simple 174 Java
library, (which is one of several available libraries), to parse, generate, transform, and query JSON.

Go back to Question 8 (p. 2219)

5.5.3.5.2 Answer 7

True. According to the InfoWorld 175 article of August 25, 2014, "Several NoSQL databases � including the
wildly successful MongoDB 176 and Couchbase 177 � store data in JSON documents natively."

Go back to Question 7 (p. 2219)

5.5.3.5.3 Answer 6

True.
Go back to Question 6 (p. 2219)

174https://code.google.com/archive/p/json-simple/
175http://www.infoworld.com/article/2608805/database/big-databases-jump-on-the-json-bandwagon.html
176https://www.mongodb.com/
177http://www.couchbase.com/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2215

5.5.3.5.4 Answer 5

False. According to the online document titled Java API for JSON Processing: An Introduction to JSON
178 , "JSON can represent two structured types: objects and arrays. An object is an unordered collection of
zero or more name/value pairs. An array is an ordered sequence of zero or more values. The values can be
strings, numbers, booleans, null, and these two structured types."

Go back to Question 5 (p. 2219)

5.5.3.5.5 Answer 4

False. It is important to note that even though JSON is based on JavaScript syntax, JASON is not JavaScript
nor is it any other programming language. In fact, it is not a programming language at all. JSON is simply
"a lightweight, text-based, language-independent data exchange format" � nothing more and nothing less.

Go back to Question 4 (p. 2219)

5.5.3.5.6 Answer 3

False. Visual Basic is not based on the C-family of languages. Visual Basic is based on the BASIC program-
ming language that came into existence 179 in 1964. The C programming language came into existence 180

independently in 1972.
Go back to Question 3 (p. 2219)

5.5.3.5.7 Answer 2

True.
Go back to Question 2 (p. 2219)

5.5.3.5.8 Answer 1

False. According to the online document titled Introducing JSON 181 . "JSON (JavaScript Object Notation)
is a ...".

Go back to Question 1 (p. 2219)

5.5.3.6 Figures

This section contains Figures that may be referred to by one or more questions or answers. These Figures
may also be helpful as reference material for answering the questions.

Figure 1.

{

"game":

[

{"cards":

[

"2-club","3-heart","4-diamond","5-spade"

],

"name":"Tom"

},

{"cards":

178http://www.oracle.com/technetwork/articles/java/json-1973242.html
179http://time.com/69316/basic/
180https://www.le.ac.uk/users/rjm1/cotter/page_06.htm
181http://www.json.org/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2216 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

[

"4-heart","5-heart","6-club","7-diamond"

],

"name":"Joe"

}

]

}

5.5.3.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Json0200R: Review
• File: Json0200R.htm
• Published: 06/03/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

5.5.4 Json0205: Getting Started
182

Revised: Thu Jun 02 19:21:59 CDT 2016
This page is included in the following Books:

• The json-simple Java Library 183 .
• INEW2338 - Advanced Java Programming 184

• Object-Oriented Programming (OOP) with Java 185

182This content is available online at <http://cnx.org/content/m61718/1.4/>.
183http://cnx.org/contents/5sRB9gpG
184http://cnx.org/contents/yWyT-uhM
185http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2217

5.5.4.1 Table of contents

• Table of contents (p. 2224)
• Preface (p. 2224)

· Viewing tip (p. 2224)

* Figures (p. 2224)
* Listings (p. 2224)

• The json-simple library (p. 2224)

· Download the library (p. 2224)
· Library documentation (p. 2225)
· Install the library (p. 2225)
· Test your installation (p. 2225)

• Miscellaneous (p. 2226)

5.5.4.2 Preface

This is a page from the book titled The json-simple Java Library . The book explains how to use the
json-simple Java library to generate, transform, and query JSON text. This page explains how to get
started using the library.

5.5.4.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

5.5.4.2.1.1 Figures

• Figure 1 (p. 2226) . Output from test program.

5.5.4.2.1.2 Listings

• Listing 1 (p. 2225) . Java test program.
• Listing 2 (p. 2225) . Sample batch �le.

5.5.4.3 The json-simple library

5.5.4.3.1 Download the library

As of May 2016, the library can be downloaded in a jar �le named json-simple-1.1.1.jar 186 . The name of
the jar �le may be expected to change over time as new versions are released.

186https://code.google.com/archive/p/json-simple/downloads

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2218 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.4.3.2 Library documentation

Also as of May 2016, a �le named json_simple-1.1-all.zip , which contains source code for the library,
can be downloaded from that same page. See the contents of that zip �le for a copy of the license covering
the material in the library.

I used the source code from that �le to create a documentation package for version 1.1, which you can
download here 187 . Download and extract the contents of the �le named docs.zip into an empty folder
and open the �le named index.html in your browser to view the documentation in standard javadoc
format.

5.5.4.3.3 Install the library

To use the library, you need to download the latest version of the jar �le, store it somewhere on your system,
and put it on your classpath. The instructions on this page apply to Windows 7. If you are using some other
operating system, you will need to adjust the instructions to make them compatible with your operating
system.

5.5.4.3.4 Test your installation

Create a Java source code �le named Code containing the code shown in Listing 1 (p. 2225) and store it
in a folder somewhere on your system.

Listing 1 . Java test program.

/**

Tested with Java 8, Windows 7, and

json-simple-1.1.1.jar

***/

import org.json.simple.ItemList;

class Code{

public static void main(String[] args){

System.out.println("ItemList: " + new ItemList().

getClass().getSuperclass());

}//end main

}//end class code

Assuming that you have downloaded the jar �le and stored it in a folder named json-simple in the root
directory of your C drive, create a batch �le containing the commands shown in Listing 2 (p. 2225) and
store the batch �le in the same folder as the source code �le named Code .

Listing 2 . Sample batch �le.

echo off

rem Sets the classpath, compiles, and runs Code.java.

del *.class

javac -cp .;C:\json-simple\json-simple-1.1.1.jar Code.java

187http://cnx.org/content/m61718/latest/docs.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2219

java -cp .;C:\json-simple\json-simple-1.1.1.jar Code

pause

Double-click the batch �le. Assuming that you have a compatible version of the Java Development Kit
installed on your system, your test program should be compiled and executed, producing the output shown
in Figure 1 (p. 2226) on your computer screen.

Figure 1. Output from test program.

ItemList: class java.lang.Object

Press any key to continue . . .

By way of explanation, the code in Listing 1 (p. 2225) instantiates a new object of the class named ItemList
from the JSON library. Then it gets and displays the superclass of that class, which is the class named
Object . In other words, the JSON library class named ItemList extends the standard class named
Object .

If you were able to produce the output shown in Figure 1 (p. 2226) , you are ready to start generating,
transforming, and querying JSON text using Java and the json-simple Java library.

5.5.4.4 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Json0205: Getting Started
• File: Json0205.htm
• Published: 05/30/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : : I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2220 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.5 Json0205R: Review
188

Revised: Fri Jun 03 14:54:03 CDT 2016
This page is included in the following Books:

• The json-simple Java Library 189 .
• INEW2338 - Advanced Java Programming 190

• Object-Oriented Programming (OOP) with Java 191

5.5.5.1 Table of Contents

• Table of Contents (p. 2227)
• Preface (p. 2227)
• Questions (p. 2227)

· Question 1 (p. 2227)
· Question 2 (p. 2227)

• Answers (p. 2229)

· Answer 2 (p. 2229)
· Answer 1 (p. 2229)

• Miscellaneous (p. 2229)

5.5.5.2 Preface

This is a page from the book titled The json-simple Java Library . The book explains how to use
the json-simple Java library to generate, transform, and query JSON text. This page provides review
questions and answers for the page titled Json0205: Getting Started 192 . Once you study that page, you
should be able to answer the review questions in this page.

The questions and the answers in this page are connected by hyperlinks to make it easy for you to
navigate from the question to the answer and back again.

5.5.5.3 Questions

5.5.5.3.1 Question 1 .

True or False? To use the library, you need to download the latest version of the jar �le, store it somewhere
on your system, and put it on your operating system's path environment variable.

Go to answer 1 (p. 2229)

5.5.5.3.2 Question 2

True or False? The json-simple library class named ItemList extends the standard Java class named
ArrayList .

Go to answer 2 (p. 2229)
What is the meaning of the following two images?

188This content is available online at <http://cnx.org/content/m61777/1.1/>.
189http://cnx.org/contents/5sRB9gpG
190http://cnx.org/contents/yWyT-uhM
191http://cnx.org/contents/-2RmHFs_
192http://cnx.org/contents/5sRB9gpG:9MswajcY

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2221

These images were inserted here simply to insert some space between the questions and the answers to
keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2222 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.5.4 Answers

5.5.5.4.1 Answer 2

False. The json-simple library class named ItemList extends the standard Java class named Object
.

Go back to Question 2 (p. 2227)

5.5.5.4.2 Answer 1

False. To use the library, you need to download the latest version of the jar �le, store it somewhere on your
system, and put it on your operating system's classpath environment variable.

Go back to Question 1 (p. 2227)

5.5.5.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Json0205R: Review
• File: Json0205R.htm
• Published: 06/03/16

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2223

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

5.5.6 Json0210: Structure of the json-simple Java Library
193

Revised: Thu Jun 02 19:23:22 CDT 2016
This page is included in the following Books:

• The json-simple Java Library 194 .
• INEW2338 - Advanced Java Programming 195

• Object-Oriented Programming (OOP) with Java 196

5.5.6.1 Table of contents

• Table of contents (p. 2230)
• Preface (p. 2230)

· Viewing tip (p. 2231)

* Figures (p. 2231)
* Listings (p. 2231)

• General background information (p. 2231)
• Discussion and sample code (p. 2231)
• What you can expect (p. 2232)
• Run the program (p. 2232)
• Complete program listing (p. 2232)
• Miscellaneous (p. 2233)

5.5.6.2 Preface

This is a page from the book titled The json-simple Java Library . The book explains how to use the
json-simple Java library to generate, transform, and query JSON text. This page explains the inheritance
structure of the json-simple Java library and how it �ts into the standard Java library.

193This content is available online at <http://cnx.org/content/m61723/1.3/>.
194http://cnx.org/contents/5sRB9gpG
195http://cnx.org/contents/yWyT-uhM
196http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2224 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.6.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

5.5.6.2.1.1 Figures

• Figure 1 (p. 2231) . Inheritance hierarchy.

5.5.6.2.1.2 Listings

• Listing 1 (p. 2232) . Program named Code.java.

5.5.6.3 General background information

The earlier page titled Json0205: Getting Started 197 provided a download link for a standard javadoc
documentation package for version 1.1 of the json-simple Java library. That documentation package
shows that the library contains the following packages:

• org.json.simple
• org.json.simple.parser

Those packages contain the following classes and interfaces with the interfaces shown in Italics :

• ContainerFactory
• ContentHandler
• ItemList
• JSONArray
• JSONAware
• JSONObject
• JSONParser
• JSONStreamAware
• JSONValue
• ParseException
• Yytoken

The jar �le also contains a class named Yylex in the org.json.simple.parser package that
did not show up in the documentation. It didn't show up in the documentation because it is
package-private and therefore not intended for our direct use. It is used internally by code in the
class named JSONParser .

5.5.6.4 Discussion and sample code

Listing 1 (p. 2232) provides the code for a Java program that establishes the position in the class hierarchy
of each of the classes (p. 2231) in the json-simple library by displaying the superclass of each of those
classes. Figure 1 (p. 2231) shows the screen output produced by this program.

Figure 1. Inheritance hierarchy.

197http://cnx.org/contents/5sRB9gpG:9MswajcY

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2225

ItemList: class java.lang.Object

JSONArray: class java.util.ArrayList

JSONObject: class java.util.HashMap

JSONParser: class java.lang.Object

JSONValue: class java.lang.Object

ParseException: class java.lang.Exception

Yytoken: class java.lang.Object

The class named ParseException extends the standard class named Exception as you might expect.
Four of the classes extend the class named Object , which is not particularly surprising. New classes

extend the Object class by default unless they are de�ned to purposely extend some other class.
The most important thing shown in Figure 1 (p. 2231) is that the JSONArray class extends the

standard ArrayList class and the JSONObject class extends the standard HashMap class. These
standard classes are part of the Java Collections Framework .

This illustrates one of the most important features of the json-simple library. The library maximizes
the use of standard classes from the Java Collections Framework . Once you have a reference to an object of
the JSONArray class or an object of the JSONObject class, you have access to all of the polymorphic
features provided by that framework. You also have access to the methods de�ned by those two classes and
the classes de�ned by their superclasses. Therefore, if you are already skilled at programming within the
collections framework, it is a small step to add JSON programming to your skill set.

5.5.6.5 What you can expect

This book will explain how to use the following classes:

• JSONObject
• JSONValue
• JSONParser
• JSONArray
• ParseException

An investigation into the use of the other classes and interfaces will be left as "an exercise for the student"
.

5.5.6.6 Run the program

I encourage you to copy the code from Listing 1 (p. 2232) . Execute the code and con�rm that you get
the same results as those shown in Figure 1 (p. 2231) . Experiment with the code, making changes, and
observing the results of your changes. Make certain that you can explain why your changes behave as they
do.

5.5.6.7 Complete program listing

Listing 1 (p. 2232) provides the source code for the program named Code.java .

Listing 1 . Program named Code.java.

/**

Copyright 2016, R.G.Baldwin

Establishes the position of each of the json-simple classes in the

class hierarchy by getting and displaying the superclass of each

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2226 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

class.

Produces the following output:

ItemList: class java.lang.Object

JSONArray: class java.util.ArrayList

JSONObject: class java.util.HashMap

JSONParser: class java.lang.Object

JSONValue: class java.lang.Object

ParseException: class java.lang.Exception

Yytoken: class java.lang.Object

Tested with Java 8, Windows 7, and json-simple-1.1.1.jar

**/

import org.json.simple.JSONObject;

import org.json.simple.JSONArray;

import org.json.simple.JSONValue;

import org.json.simple.ItemList;

import org.json.simple.JSONAware;

import org.json.simple.parser.JSONParser;

import org.json.simple.parser.ParseException;

import org.json.simple.parser.Yytoken;

class Code{

public static void main(String[] args){

System.out.println("ItemList: " +

new ItemList().getClass().getSuperclass());

System.out.println("JSONArray: " +

new JSONArray().getClass().getSuperclass());

System.out.println("JSONObject: " +

new JSONObject().getClass().getSuperclass());

System.out.println("JSONParser: " +

new JSONParser().getClass().getSuperclass());

System.out.println("JSONValue: " +

new JSONValue().getClass().getSuperclass());

System.out.println("ParseException: " +

new ParseException(ParseException.ERROR_UNEXPECTED_CHAR).

getClass().getSuperclass());

System.out.println("Yytoken: " +

new Yytoken(Yytoken.TYPE_COLON,":").

getClass().getSuperclass());

}//end main

}//end class code

5.5.6.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2227

• Module name: Json0210: Structure of the json-simple Java Library
• File: Json0210.htm
• Published: 05/30/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2228 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.7 Json0210R: Review
198

Revised: Fri Jun 03 17:21:17 CDT 2016
This page is included in the following Books:

• The json-simple Java Library 199 .
• INEW2338 - Advanced Java Programming 200

• Object-Oriented Programming (OOP) with Java 201

5.5.7.1 Table of Contents

• Table of Contents (p. 2235)
• Preface (p. 2235)
• Questions (p. 2236)

· Question 1 (p. 2236)
· Question 2 (p. 2236)
· Question 3 (p. 2236)
· Question 4 (p. 2236)
· Question 5 (p. 2236)
· Question 6 (p. 2236)
· Question 7 (p. 2236)
· Question 8 (p. 2237)
· Question 9 (p. 2237)
· Question 10 (p. 2237)

• Answers (p. 2238)

· Answer 10 (p. 2238)
· Answer 9 (p. 2238)
· Answer 8 (p. 2238)
· Answer 7 (p. 2239)
· Answer 6 (p. 2239)
· Answer 5 (p. 2239)
· Answer 4 (p. 2239)
· Answer 3 (p. 2239)
· Answer 2 (p. 2239)
· Answer 1 (p. 2239)

• Miscellaneous (p. 2239)

5.5.7.2 Preface

This is a page from the book titled The json-simple Java Library . The book explains how to use
the json-simple Java library to generate, transform, and query JSON text. This page provides review
questions and answers for the page titled Json0210: Structure of the json-simple Java Library 202 . Once
you study that page, you should be able to answer the review questions in this page.

The questions and the answers in this page are connected by hyperlinks to make it easy for you to
navigate from the question to the answer and back again.

198This content is available online at <http://cnx.org/content/m61778/1.1/>.
199http://cnx.org/contents/5sRB9gpG
200http://cnx.org/contents/yWyT-uhM
201http://cnx.org/contents/-2RmHFs_
202http://cnx.org/contents/5sRB9gpG:_u3ZKIdD

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2229

5.5.7.3 Questions

5.5.7.3.1 Question 1 .

True or False? Version 1.1 of the json-simple Java library contains the following packages:

• org.json.simple
• org.json.simple.parser

Go to answer 1 (p. 2239)

5.5.7.3.2 Question 2

True or False? Version 1.1 of the json-simple Java library contains the public classes shown below

• ItemList
• JSONArray
• JSONObject
• JSONParser
• JSONValue
• ParseException
• Object
• Yytoken

Go to answer 2 (p. 2239)

5.5.7.3.3 Question 3

True or False? Version 1.1 of the json-simple Java library contains a class named Yylex in the
org.json.simple.parser package that is declared to be package-private .

Go to answer 3 (p. 2239)

5.5.7.3.4 Question 4

True or False? Despite its name, the JSONArray class is not really an array. Instead, it is a List .
Go to answer 4 (p. 2239)

5.5.7.3.5 Question 5

True or False? Objects of the JSONArray class contain unordered data.
Go to answer 5 (p. 2239)

5.5.7.3.6 Question 6

True or False? Other than the JSONObject class and the JSONArray class, all of the classes in
version 1.1 of the json-simple Java library extend the Object class.

Go to answer 6 (p. 2239)

5.5.7.3.7 Question 7

True or False? The JSONObject class extends the standard Java TreeSet class.
Go to answer 7 (p. 2239)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2230 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.7.3.8 Question 8

True or False? An object of the JSONObject class maps keys or names to values .
Go to answer 8 (p. 2238)

5.5.7.3.9 Question 9

True or False? An object of the JSONObject class can contain duplicate keys but cannot contain duplicate
values.

Go to answer 9 (p. 2238)

5.5.7.3.10 Question 10

True or False? An object of the JSONObject class is an unordered collection.
Go to answer 10 (p. 2238)
What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2231

5.5.7.4 Answers

5.5.7.4.1 Answer 10

True. An object of the JSONObject class extends the HashMap class and implements the Map
interface. According to the Oracle documentation, "The order of a map is de�ned as the order in which
the iterators on the map's collection views return their elements. Some map implementations, like the
TreeMap class, make speci�c guarantees as to their order; others, like the HashMap class, do not."

Go back to Question 10 (p. 2237)

5.5.7.4.2 Answer 9

False. The JSONObject class implements the Map interface. According to the Oracle documentation,
"A map cannot contain duplicate keys; each key can map to at most one value."

Go back to Question 9 (p. 2237)

5.5.7.4.3 Answer 8

True. JSON documentation often speaks of name/value pairs. However, the JSONObject class extends
the standard Java HashMap class, which implements the Map interface. According to the Oracle Java
documentation, an object that implements the Map interface is "An object that maps keys to values."
Therefore, it is probably acceptable to use the terms name/value and key/value interchangeably.

Go back to Question 8 (p. 2237)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2232 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.7.4.4 Answer 7

False. The JSONObject class extends the standard Java HashMap class.
Go back to Question 7 (p. 2236)

5.5.7.4.5 Answer 6

True.
Go back to Question 6 (p. 2236)

5.5.7.4.6 Answer 5

False. Because the JSONArray class extends the ArrayList class, which implements the List interface,
it is "An ordered collection (also known as a sequence). The user of this interface has precise control over
where in the list each element is inserted. The user can access elements by their integer index (position in
the list), and search for elements in the list."

Go back to Question 5 (p. 2236)

5.5.7.4.7 Answer 4

True. The JSONArray class extends the standard ArrayList class, which implements the List
interface.

Go back to Question 4 (p. 2236)

5.5.7.4.8 Answer 3

True.
Go back to Question 3 (p. 2236)

5.5.7.4.9 Answer 2

False. Version 1.1 of the json-simple Java library does not contain a class named Object .
Go back to Question 2 (p. 2236)

5.5.7.4.10 Answer 1

True.
Go back to Question 1 (p. 2236)

5.5.7.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Json0210R: Review
• File: Json0210R.htm
• Published: 06/03/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2233

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

5.5.8 Json0215: Encoding JSON Strings
203

Revised: Thu Jun 02 19:24:40 CDT 2016
This page is included in the following Books:

• The json-simple Java Library 204 .
• INEW2338 - Advanced Java Programming 205

• Object-Oriented Programming (OOP) with Java 206

5.5.8.1 Table of contents

• Table of contents (p. 2240)
• Preface (p. 2240)

· Viewing tip (p. 2241)

* Figures (p. 2241)
* Listings (p. 2241)

• General background information (p. 2241)
• Discussion and sample code (p. 2241)

· Create ArrayList containers (p. 2241)
· Create and populate a JSONObject object (p. 2242)
· Create and populate two more JSONObject objects (p. 2242)
· Encode the data into JSON strings (p. 2243)
· Display the JSON strings (p. 2243)
· The end of the program (p. 2244)

• Run the program (p. 2244)
• Complete program listing (p. 2244)
• Miscellaneous (p. 2245)

5.5.8.2 Preface

This is a page from the book titled The json-simple Java Library . The book explains how to use the
json-simple Java library to generate, transform, and query JSON text. This page explains how to use the
JSONObject class to encode key/value pairs into JSON strings.

203This content is available online at <http://cnx.org/content/m61724/1.4/>.
204http://cnx.org/contents/5sRB9gpG
205http://cnx.org/contents/yWyT-uhM
206http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2234 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.8.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

5.5.8.2.1.1 Figures

• Figure 1 (p. 2243) . The screen output.

5.5.8.2.1.2 Listings

• Listing 1 (p. 2241) . Create ArrayList containers.
• Listing 2 (p. 2242) . Create and populate a JSONObject object.
• Listing 3 (p. 2242) . Create and populate two more JSONObject objects.
• Listing 4 (p. 2243) . Encode the data into JSON strings.
• Listing 5 (p. 2243) . Display the JSON strings.
• Listing 6 (p. 2244) . The program named Code.java.

5.5.8.3 General background information

As you learned in the earlier page titled Json0210: Structure of the json-simple Java Library 207 , the class
named JSONObject extends the standard Java class named HashMap . Therefore, once you have an
object of the class named JSONObject , you can call any of the methods de�ned in or inherited into the
JSONObject class on that object.
In the sample program that follows, we will use the put method that is inherited from the HashMap

class to populate the object with key/value pairs. We will use the toJSONString method that is de�ned
in the JSONObject class to transform the populated object into a JSON string.

5.5.8.4 Discussion and sample code

The program named Code (see Listing 6 (p. 2244)) constructs three JSONObject objects, populates
the objects with key/value pairs, and saves the JSONObject objects in an ArrayList object. (Actually
it saves references to the JSONObject objects in the ArrayList object.)

Then it transforms each JSONObject object into a JSON string. At this point, the JSON strings
could be written to an output stream and transferred to a di�erent programming environment. However, to
keep the program simple, the program simply saves the JSON strings in a second ArrayList object for
later display.

Then the program displays the JSON strings for comparison with the code that populated the JSONOb-
ject objects in the �rst place.

5.5.8.4.1 Create ArrayList containers

A complete listing of the program named Code is provided in Listing 6 (p. 2244) near the end of the page.
I will discuss and explain the code in fragments. The �rst fragment is shown in Listing 1 (p. 2241) .

Listing 1 . Create ArrayList containers.

import org.json.simple.JSONObject;

import java.util.ArrayList;

import java.util.Iterator;

207http://cnx.org/contents/5sRB9gpG:_u3ZKIdD

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2235

class Code {

public static void main(String[] args){

//Create a container for several JSON objects.

ArrayList <JSONObject> listA = new ArrayList<JSONObject>();
//Create a container for several JSON strings

ArrayList <String> listB = new ArrayList<String>();

The code in Listing 1 (p. 2241) instantiates two objects of the class named ArrayList to serve as containers
for the JSONObject objects and the JSON strings. This is plain vanilla Java code. There is nothing new
here.

5.5.8.4.2 Create and populate a JSONObject object

Listing 2 (p. 2242) creates and populates the �rst JSONObject object with key/value pairs. The keys are
"name", "age", and "student" respectively. The value types are String , int , and boolean respectively.

Listing 2 . Create and populate a JSONObject object.

listA.add(new JSONObject());

listA.get(0).put("name","Joe");

listA.get(0).put("age",21);

listA.get(0).put("student",true);

The code in Listing 2 (p. 2242) begins by instantiating a new object of the JSONObject class and adding
its reference into the �rst element (0) of the ArrayList object. Then it calls the get method on the
ArrayList object three times in succession to gain access to the JSONObject . Each time it gains
access to the JSONObject object, it calls the put method inherited from the HashMap class to
store a key/value pair in the JSONObject object.

Note that the data stored in the JSONObject object is an unordered collection. As you will
see later, the order in which the key/value pairs are extracted from the object using an iterator is
unrelated to the order in which the key/value pairs are stored in the object.

5.5.8.4.3 Create and populate two more JSONObject objects

Listing 3 (p. 2242) repeats the process two more times to create, populate, and save two more JSONObject
objects. Note that one of these objects is populated in a di�erent order than is the case in Listing 2 (p.
2242) .

Listing 3 . Create and populate two more JSONObject objects.

//Create and populate the second JSONObject.

listA.add(new JSONObject());

listA.get(1).put("student",false);

listA.get(1).put("name","Sue");

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2236 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

listA.get(1).put("age",32);

//Create and populate the third JSONObject

listA.add(new JSONObject());

listA.get(2).put("name","Tom");

listA.get(2).put("age",19);

listA.get(2).put("student",true);

5.5.8.4.4 Encode the data into JSON strings

Listing 4 (p. 2243) uses an Iterator to gain access to each populated JSONObject object. Each time
it gains access to an object, it calls the toJSONString method that is de�ned in the JSONObject
class to transform the object into a JSON string.

At this point, the program could write the JSON strings into an output stream for transfer to some other
programming environment. However as mentioned earlier, to keep the program simple, the program saves
the JSON strings as elements in a second ArrayList object.

Listing 4 . Encode the data into JSON strings.

Iterator<JSONObject> iteratorA = listA.iterator();

while (iteratorA.hasNext()){

listB.add(iteratorA.next().toJSONString());

}//end while loop

5.5.8.4.5 Display the JSON strings

Listing 5 (p. 2243) uses an Iterator to access and display each of the JSON strings that are stored in the
ArrayList object.

Listing 5 . Display the JSON strings.

Iterator<String> iteratorB = listB.iterator();

while (iteratorB.hasNext()){

System.out.println(iteratorB.next());

}//end while loop

}//end main

}//end class Code

The screen output is shown in Figure 1 (p. 2243) .

Figure 1. The screen output.

{"student":true,"name":"Joe","age":21}

{"student":false,"name":"Sue","age":32}

{"student":true,"name":"Tom","age":19}

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2237

The format for each line of text that you see in Figure 1 (p. 2243) is the format that you would expect
for a JSON string that doesn't include array data. (See Introducing JSON 208 for more details regarding
format.)

Brie�y, each key is separated from its value by a colon (:) . Each key/value pair is separated from its
neighbors by a comma (,) . The JSON string begins with a left brace ({) and ends with a right brace
(}) . Keys are surrounded by double quotation characters. Values may or may not be separated by double
quotation characters, depending on their type. Some characters inside of values, such as double quotation
characters and backslash characters must be escaped with a backslash character (\" and \\) but that is
not shown by this program.

Note that the display order for the key/value pairs shown in Figure 1 (p. 2243) does not match the order
in which the objects were populated in Listing 2 (p. 2242) and Listing 3 (p. 2242) . A HashMap does not
impose an ordering on its contents and does not guarantee that the ordering will remain constant over time.

5.5.8.4.6 The end of the program

Listing 5 (p. 2243) also signals the end of the main method and the end of the program.

5.5.8.5 Run the program

I encourage you to copy the code from Listing 6 (p. 2244) . Execute the code and con�rm that you get
the same results as those shown in Figure 1 (p. 2243) . Experiment with the code, making changes, and
observing the results of your changes. Make certain that you can explain why your changes behave as they
do.

5.5.8.6 Complete program listing

A complete listing of the program named Code.java is provided in Listing 6 (p. 2244) .

Listing 6. The program named Code.java.

/**

Copyright 2016 R.G.Baldwin

Constructs three JSONObject objects and saves them in an ArrayList.

Transforms each JSONObject object into a String object and saves the

strings in a second ArrayList object.

Displays the strings.

Tested with Java 8, Win 7, and json-simple-1.1.1.jar.

**/

import org.json.simple.JSONObject;

import java.util.ArrayList;

import java.util.Iterator;

class Code {

public static void main(String[] args){

//Create a container for several JSON objects.

ArrayList <JSONObject> listA = new ArrayList<JSONObject>();

208http://www.json.org/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2238 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

//Create a container for several JSON strings

ArrayList <String> listB = new ArrayList<String>();

//Create and populate the first JSONObject with unordered

// key/value pairs.

listA.add(new JSONObject());

listA.get(0).put("name","Joe");

listA.get(0).put("age",21);

listA.get(0).put("student",true);

//Create and populate the second JSONObject. Note that the object

// is populated in a different order than above.

listA.add(new JSONObject());

listA.get(1).put("student",false);

listA.get(1).put("name","Sue");

listA.get(1).put("age",32);

//Create and populate the third JSONObject

listA.add(new JSONObject());

listA.get(2).put("name","Tom");

listA.get(2).put("age",19);

listA.get(2).put("student",true);

//Transform the three JSON objects into JSON strings and save

// them in ListB. Could write them to disk for transfer to a

// different programming environment at this point.

Iterator<JSONObject> iteratorA = listA.iterator();

while (iteratorA.hasNext()){

listB.add(iteratorA.next().toJSONString());

}//end while loop

//Display the JSON strings currently stored in listB. Note that

// the display order does not necessarily match the order in

// which the original objects were populated.

Iterator<String> iteratorB = listB.iterator();

while (iteratorB.hasNext()){

System.out.println(iteratorB.next());

}//end while loop

}//end main

}//end class Code

5.5.8.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Json0215: Encoding JSON Strings
• File: Json0215.htm

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2239

• Published: 05/31/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2240 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.9 Json0215R: Review
209

Revised: Sat Jun 04 12:48:39 CDT 2016
This page is included in the following Books:

• The json-simple Java Library 210 .
• INEW2338 - Advanced Java Programming 211

• Object-Oriented Programming (OOP) with Java 212

5.5.9.1 Table of Contents

• Table of Contents (p. 2247)
• Preface (p. 2247)
• Questions (p. 2247)

· Question 1 (p. 2247)
· Question 2 (p. 2248)
· Question 3 (p. 2248)

• Figure index (p. 2248)
• Listing index (p. 2248)
• Answers (p. 2249)

· Answer 3 (p. 2249)
· Answer 2 (p. 2249)
· Answer 1 (p. 2249)

• Figures (p. 2249)
• Listings (p. 2250)
• Miscellaneous (p. 2251)

5.5.9.2 Preface

This is a page from the book titled The json-simple Java Library . The book explains how to use
the json-simple Java library to generate, transform, and query JSON text. This page provides review
questions and answers for the page titled Json0215: Encoding JSON Strings 213 . Once you study that page,
you should be able to answer the review questions in this page.

The questions and the answers in this page are connected by hyperlinks to make it easy for you to
navigate from the question to the answer and back again.

The �gures and listings (if any) are grouped together. It is recommend that when a question or an
answer refers to a �gure or a listing, that you open it in a new window to make it easy to view it while
reading the question or the answer.

5.5.9.3 Questions

5.5.9.3.1 Question 1 .

True or False? Once you have an object of the class named JSONObject , you can call any of the methods
de�ned in the HashMap class on that object.

Go to answer 1 (p. 2249)

209This content is available online at <http://cnx.org/content/m61779/1.1/>.
210http://cnx.org/contents/5sRB9gpG
211http://cnx.org/contents/yWyT-uhM
212http://cnx.org/contents/-2RmHFs_
213http://cnx.org/contents/5sRB9gpG:16t-k2Np

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2241

5.5.9.3.2 Question 2

True or False? The code shown in Listing 1 (p. 2250) produced the screen output shown in Figure 1 (p.
2250) .

Go to answer 2 (p. 2249)

5.5.9.3.3 Question 3

True or False? The code shown in Listing 3 (p. 2251) produced the screen output shown in Figure 3 (p.
2250) .

Go to answer 3 (p. 2249)

5.5.9.4 Figure index

• Figure 1 (p. 2250)
• Figure 2 (p. 2250)
• Figure 3 (p. 2250)

5.5.9.5 Listing index

• Listing 1 (p. 2250)
• Listing 2 (p. 2250)
• Listing 3 (p. 2251)

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2242 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

This image was also inserted for the purpose of inserting space between the questions and the answers.

5.5.9.6 Answers

5.5.9.6.1 Answer 3

True. The code in Listing 3 (p. 2251) uses the get method inherited from the HashMap class to get
and display the values associated with the keys "name", "age", and "student".

Go back to Question 3 (p. 2248)

5.5.9.6.2 Answer 2

False. The code in Listing 1 (p. 2250) produced the output with the compiler error message shown in Figure
2 (p. 2250) . The output shown in in Figure 1 (p. 2250) was produced by the code shown in Listing 2 (p.
2250) . Note the call to the toJSONString method of the JSONObject class to extract the information
from the JSONObject object and encode it into a JSON string.

Go back to Question 2 (p. 2248)

5.5.9.6.3 Answer 1

True. The class named JSONObject extends the standard Java class named HashMap . Therefore,
the JSONObject class inherits all of the methods de�ned in the HashMap class.

Go back to Question 1 (p. 2247)

5.5.9.7 Figures

This section contains Figures that may be referred to by one or more questions or answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2243

Figure 1

{"student":true,"name":"Joe","age":21}

Figure 2

Code01.java:20: error: no suitable method found for get(no arguments)

String jsonString = jsonObject.get();

Figure 3

Joe

21

true

5.5.9.8 Listings

This section contains Listings that may be referred to by one or more questions or answers.

Listing 1

import org.json.simple.JSONObject;

class Code01 {

public static void main(String[] args){

JSONObject jsonObject= new JSONObject();

jsonObject.put("name","Joe");

jsonObject.put("age",21);

jsonObject.put("student",true);

String jsonString = jsonObject.get();

System.out.println(jsonString);

}//end main

}//end class Code01

Listing 2

import org.json.simple.JSONObject;

class Code02 {

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2244 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

public static void main(String[] args){

JSONObject jsonObject= new JSONObject();

jsonObject.put("name","Joe");

jsonObject.put("age",21);

jsonObject.put("student",true);

String jsonString = jsonObject.toJSONString();

System.out.println(jsonString);

}//end main

}//end class Code02

Listing 3

import org.json.simple.JSONObject;

class Code03 {

public static void main(String[] args){

JSONObject jsonObject= new JSONObject();

jsonObject.put("name","Joe");

jsonObject.put("age",21);

jsonObject.put("student",true);

System.out.println(jsonObject.get("name"));

System.out.println(jsonObject.get("age"));

System.out.println(jsonObject.get("student"));

}//end main

}//end class Code03

5.5.9.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Json0215R: Review
• File: Json0215R.htm
• Published: 06/04/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2245

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

5.5.10 Json0220: Decoding JSON Strings
214

Revised: Thu Jun 02 19:25:56 CDT 2016
This page is included in the following Books:

• The json-simple Java Library 215 .
• INEW2338 - Advanced Java Programming 216

• Object-Oriented Programming (OOP) with Java 217

5.5.10.1 Table of contents

• Table of contents (p. 2252)
• Preface (p. 2252)

· Viewing tip (p. 2253)

* Figures (p. 2253)
* Listings (p. 2253)

• General background information (p. 2253)
• Discussion and sample code (p. 2253)

· Decode and display using the JSONValue class (p. 2254)
· The method named decodeC (p. 2254)
· Display contents of JSONObject objects (p. 2254)
· Decode and display using the JSONParser class (p. 2255)
· The method named decodeD (p. 2256)
· The end of the program (p. 2256)

• Run the program (p. 2257)
• Complete program listing (p. 2257)
• Miscellaneous (p. 2259)

5.5.10.2 Preface

This is a page from the book titled The json-simple Java Library . The book explains how to use the
json-simple Java library to generate, transform, and query JSON text. This page explains how to decode
JSON strings using the parse methods of the JSONValue and JSONParser classes.

214This content is available online at <http://cnx.org/content/m61725/1.3/>.
215http://cnx.org/contents/5sRB9gpG
216http://cnx.org/contents/yWyT-uhM
217http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2246 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.10.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

5.5.10.2.1.1 Figures

• Figure 1 (p. 2255) . Program output.

5.5.10.2.1.2 Listings

• Listing 1 (p. 2254) . Decode and display using the JSONValue class.
• Listing 2 (p. 2254) . The method named decodeC.
• Listing 3 (p. 2255) . The display method.
• Listing 4 (p. 2255) . Decode and display using the JSONParser class.
• Listing 5 (p. 2256) . The method named decodeD.
• Listing 6 (p. 2257) . The program named Code.java.

5.5.10.3 General background information

As mentioned in the Preface (p. 2252) , this page deals with the classes named JSONValue and
JSONParser . Each of these classes extends the Object class and provides various methods for
processing JSON data. The page also exposes you to the class named ParseException .

All of the methods in the JSONValue class are static methods. Methods in this class are available
to deal with JSON input data in both the string format and the JSONObject format.

None of the methods in the JSONParser class are static methods. In general the methods in this
class are designed to deal only with input data in the string format.

Both classes provide several overloaded parse methods that can be used to parse input JSON text from
di�erent sources into the JSONObject format.

The sample program that follows will use the parse method from both classes to parse JSON strings
into JSONObject objects.

5.5.10.4 Discussion and sample code

The program named Code (see Listing 6 (p. 2257)) consists of some old code and some new code. The
program begins just like the program that I explained in the earlier page titled Json0215: Encoding JSON
Strings 218 . The beginning portion of the program is used solely to create JSON data in string format and
to store the individual strings as elements in an ArrayList object.

This code constructs three JSONObject objects and saves them in an ArrayList object. Then it
transforms each JSONObject object into a String object and saves the strings in a second ArrayList
object. The new code decodes the strings into JSONObject objects using a parse method from the
JSONValue class and saves them in a third ArrayList object.

Then the new code decodes the strings into JSONObject objects using a parse method from the
JSONParser class and saves them in a fourth ArrayList object.

The contents of both lists of JSONObject objects are displayed on the computer screen after they are
populated with decoded data from the JSON strings.

218http://cnx.org/contents/5sRB9gpG:16t-k2Np

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2247

5.5.10.4.1 Decode and display using the JSONValue class

I will explain this program in fragments, and will begin at the point where the new code begins. The �rst
fragment is shown in Listing 1 (p. 2254) .

Listing 1 . Decode and display using the JSONValue class.

//Create a container for decoded JSON strings.

ArrayList <JSONObject> listC = new ArrayList<JSONObject>();

//Decode and display JSON strings using the parse method of the

// JSONValue class

System.out.println("Decode using JSONValue class");

decodeC(listB,listC);

display(listC);

System.out.println();//blank line

Immediately prior to the code in Listing 1 (p. 2254) , three JSON strings are stored as elements in an
ArrayList object referred to as listB .

Listing 1 (p. 2254) begins by instantiating a new ArrayList object, referred to as listC that will
receive the decoded versions of the JSON strings as type JSONObject objects. Then Listing 1 (p. 2254)
calls the method named decodeC passing the list of JSON strings and the empty list as parameters.

5.5.10.4.2 The method named decodeC

The method named decodeC is shown in its entirety in Listing 2 (p. 2254) .

Listing 2 . The method named decodeC.

static void decodeC(ArrayList input,ArrayList output){

String temp = null;

Iterator<String> iterator = input.iterator();

while (iterator.hasNext()){

temp = iterator.next();

output.add(JSONValue.parse(temp));

}//end while loop

}//end decodeC

This method decodes a list of JSON strings into JSONObject objects using a static parse method of
the JSONValue class. The resulting JSONObject objects are added to the empty ArrayList object
received as an incoming parameter. When the method returns, that list contains one JSONObject object
for each JSON string contained in the incoming ArrayList object.

5.5.10.4.3 Display contents of JSONObject objects

Returning now to the code in Listing 1 (p. 2254) , the next statement calls the display method passing the
now-populated listC as a parameter. At this point, the JSONObject objects stored in listC contain
the information that was extracted from the JSON strings by the parse method of the JSONValue
class.

The display method is shown in its entirety in Listing 3 (p. 2255) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2248 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Listing 3 . The display method.

static void display(ArrayList input){

JSONObject temp = null;

Iterator<JSONObject> iterator = input.iterator();

while (iterator.hasNext()){

temp = iterator.next();

System.out.print("Name: " + temp.get("name"));

System.out.print(" Age: " + temp.get("age"));

System.out.println(" Is student? " + temp.get("student"));

}//end while loop

}//end display

This method uses the get method inherited from the HashMap class to get and display the values in a
list of JSONObject objects for a known set of keys. This is plain-vanilla Java code and shouldn't require
further explanation. The results of this call to the display method are shown in the top half of Figure 1
(p. 2255) .

Figure 1. Program output.

Decode using JSONValue class

Name: Joe Age: 21 Is student? true

Name: Sue Age: 32 Is student? false

Name: Tom Age: 19 Is student? true

Decode using JSONParser class

Name: Joe Age: 21 Is student? true

Name: Sue Age: 32 Is student? false

Name: Tom Age: 19 Is student? true

The contents of the JSON strings for this same data were displayed in Figure 1 219 of the earlier page titled
Json0215: Encoding JSON Strings 220 .

If you compare the output in the top half of Figure 1 (p. 2255) above with the JSON string data on the
earlier page, you will see that they match.

You could also make the comparison with the data in the code in the early portion of Listing 6 (p.
2257) .

5.5.10.4.4 Decode and display using the JSONParser class

Returning to the main method, the code in Listing 4 (p. 2255) calls the decodeD method passing the
list of JSON strings along with an empty ArrayList object for the purpose of decoding the JSON strings
using a parse method of the JSONParser class.

Listing 4 . Decode and display using the JSONParser class.

219http://cnx.org/contents/5sRB9gpG:16t-k2Np#Figure_1
220http://cnx.org/contents/5sRB9gpG:16t-k2Np

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2249

//Create another container for decoded JSON strings.

ArrayList <JSONObject> listD = new ArrayList<JSONObject>();

//Decode and display JSON strings using the parse method of the

// JSONParser class

System.out.println("Decode using JSONParser class");

decodeD(listB,listD);

display(listD);

System.out.println();//blank line

}//end main

Then the code in Listing 4 (p. 2255) calls the display method to display the results, producing the text
in the bottom half of Figure 1 (p. 2255) .

As you can see, the results in the top and bottom halves of Figure 1 (p. 2255) match, indicating that
both approaches produced the same results.

5.5.10.4.5 The method named decodeD

The method named decodeD is shown in its entirety in Listing 5 (p. 2256) .

Listing 5 . The method named decodeD.

static void decodeD(ArrayList input,ArrayList output){

JSONParser parser = new JSONParser();

String temp = null;

Iterator<String> iterator = input.iterator();

while (iterator.hasNext()){

temp = iterator.next();

try{

//ParseException; must be caught or declared to be thrown.

output.add(parser.parse(temp));

}catch(ParseException pex){

pex.printStackTrace();

}//end catch

}//end while loop

}//end decodeD

This method decodes a list of JSON strings into JSONObject objects using a parse method of the
JSONParser class. This code is only slightly more complicated than the code shown earlier in Listing 2
(p. 2254) that uses a parse method of the JSONValue class.

The additional complexity is due mainly to the fact that the parse method throws a checked exception
named ParseException . Because it is a checked exception, it must either be caught or declared to be
thrown by the method. I elected to catch it in this program and to simply call the printStackTrace
method (inherited from the Throwable class) in the catch block. However, the ParseException class
provides some other methods that can be called to elaborate on the nature of the error if desired.

5.5.10.4.6 The end of the program

Returning to the main method in Listing 4 (p. 2255) , there is nothing more to do, so the last line in
Listing 4 (p. 2255) signals the end of the program.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2250 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.10.5 Run the program

I encourage you to copy the code from Listing 6 (p. 2257) . Execute the code and con�rm that you get
the same results as those shown in Figure 1 (p. 2255) . Experiment with the code, making changes, and
observing the results of your changes. Make certain that you can explain why your changes behave as they
do.

5.5.10.6 Complete program listing

A complete listing of the program named Code is provided in Listing 6 (p. 2257) .

Listing 6 . The program named Code.java.

/**

Copyright 2016 R.G.Baldwin

OLD CODE:

Constructs three JSONObject objects and saves them in an ArrayList.

Transforms each JSONObject object into a String object and saves the

strings in a second ArrayList object.

NEW CODE:

Decodes the strings into JSONObjects using the JSONValue parse method

and saves them in a third ArrayList object.

Decodes the strings into JSONObjects using the JSONParser class

and saves them in a fourth ArrayList object.

Displays both sets of decoded JSON strings.

Tested with Java 8, Win 7, and json-simple-1.1.1.jar.

**/

import org.json.simple.JSONObject;

import org.json.simple.JSONValue;

import org.json.simple.parser.JSONParser;

import org.json.simple.parser.ParseException;

import java.util.ArrayList;

import java.util.Iterator;

class Code {

public static void main(String[] args){

//OLD CODE:

//Create a container for several JSON objects.

ArrayList <JSONObject> listA = new ArrayList<JSONObject>();
//Create a container for several JSON strings

ArrayList <String> listB = new ArrayList<String>();

//Create and populate the first JSONObject with unordered

// key/value pairs.

listA.add(new JSONObject());

listA.get(0).put("name","Joe");

listA.get(0).put("age",21);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2251

listA.get(0).put("student",true);

//Create and populate the second JSONObject. Note that the object

// is populated in a different order than above.

listA.add(new JSONObject());

listA.get(1).put("student",false);

listA.get(1).put("name","Sue");

listA.get(1).put("age",32);

//Create and populate the third JSONObject

listA.add(new JSONObject());

listA.get(2).put("name","Tom");

listA.get(2).put("age",19);

listA.get(2).put("student",true);

//Transform the three JSON objects into JSON strings and save

// them in ListB. Could write them to disk for transfer to a

// different programming environment at this point.

Iterator<JSONObject> iteratorA = listA.iterator();

while (iteratorA.hasNext()){

listB.add(iteratorA.next().toJSONString());

}//end while loop

//NEW CODE BEGINS HERE

//Create a container for decoded JSON strings.

ArrayList <JSONObject> listC = new ArrayList<JSONObject>();

//Decode and display JSON strings using the parse method of the

// JSONValue class

System.out.println("Decode using JSONValue class");

decodeC(listB,listC);

display(listC);

System.out.println();//blank line

//Create another container for decoded JSON strings.

ArrayList <JSONObject> listD = new ArrayList<JSONObject>();

//Decode and display JSON strings using the parse method of the

// JSONParser class

System.out.println("Decode using JSONParser class");

decodeD(listB,listD);

display(listD);

System.out.println();//blank line

}//end main

//---//

//Decode a list of JSON strings into JSONObject objects using the

// parse method of the JSONValue class

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2252 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

static void decodeC(ArrayList input,ArrayList output){

String temp = null;

Iterator<String> iterator = input.iterator();

while (iterator.hasNext()){

temp = iterator.next();

output.add(JSONValue.parse(temp));

}//end while loop

}//end decodeC

//---//

//Decode a list of JSON strings into JSONObject objects using the

// parse method of the JSONParser class

static void decodeD(ArrayList input,ArrayList output){

JSONParser parser = new JSONParser();

String temp = null;

Iterator<String> iterator = input.iterator();

while (iterator.hasNext()){

temp = iterator.next();

try{

//ParseException; must be caught or declared to be thrown.

output.add(parser.parse(temp));

}catch(ParseException pex){

pex.printStackTrace();

}//end catch

}//end while loop

}//end decodeD

//---//

//Display the values in a list of JSONObject objects for a known

// set of keys.

static void display(ArrayList input){

JSONObject temp = null;

Iterator<JSONObject> iterator = input.iterator();

while (iterator.hasNext()){

temp = iterator.next();

System.out.print("Name: " + temp.get("name"));

System.out.print(" Age: " + temp.get("age"));

System.out.println(" Is student? " + temp.get("student"));

}//end while loop

}//end display

//---//

}//end class Code

5.5.10.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Json0220: Decoding JSON Strings

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2253

• File: Json0220.htm
• Published: 05/31/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2254 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.11 Json0220R: Review
221

Revised: Sat Jun 04 16:17:01 CDT 2016
This page is included in the following Books:

• The json-simple Java Library 222 .
• INEW2338 - Advanced Java Programming 223

• Object-Oriented Programming (OOP) with Java 224

5.5.11.1 Table of Contents

• Table of Contents (p. 2261)
• Preface (p. 2262)
• Questions (p. 2262)

· Question 1 (p. 2262)
· Question 2 (p. 2262)
· Question 3 (p. 2262)
· Question 4 (p. 2262)
· Question 5 (p. 2262)
· Question 6 (p. 2263)
· Question 7 (p. 2263)
· Question 8 (p. 2263)
· Question 9 (p. 2263)
· Question 10 (p. 2263)
· Question 11 (p. 2263)

• Figure index (p. 2263)
• Listing index (p. 2263)
• Answers (p. 2265)

· Answer 11 (p. 2265)
· Answer 10 (p. 2265)
· Answer 9 (p. 2265)
· Answer 8 (p. 2265)
· Answer 7 (p. 2266)
· Answer 6 (p. 2266)
· Answer 5 (p. 2266)
· Answer 4 (p. 2266)
· Answer 3 (p. 2266)
· Answer 2 (p. 2266)
· Answer 1 (p. 2266)

• Figures (p. 2266)
• Listings (p. 2269)
• Miscellaneous (p. 2273)

221This content is available online at <http://cnx.org/content/m61780/1.2/>.
222http://cnx.org/contents/5sRB9gpG
223http://cnx.org/contents/yWyT-uhM
224http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2255

5.5.11.2 Preface

This is a page from the book titled The json-simple Java Library . The book explains how to use
the json-simple Java library to generate, transform, and query JSON text. This page provides review
questions and answers for the page titled Json0220: Decoding JSON Strings 225 . Once you study that page,
you should be able to answer the review questions in this page.

The questions and the answers in this page are connected by hyperlinks to make it easy for you to
navigate from the question to the answer and back again.

When a question or an answer provides a link to a �gure or a listing, you should open that link in a new
window to make it easy to view while reading the question or the answer.

NOTE:

With respect to the screen output shown on this page, ignore the possibility of output or lack of
output similar to the following:

Note: Code99.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

5.5.11.3 Questions

5.5.11.3.1 Question 1 .

True or False? The only way to decode or parse a JSON string with the json-simple library is by using
the parse method belonging to an object of the class named JSONParser .

Go to answer 1 (p. 2266)

5.5.11.3.2 Question 2

True or False? Decoding or parsing a JSON string with the json-simple library requires the use of the
parse method belonging to either an object of the class named JSONParser or an object of the class
named JSONValue .

Go to answer 2 (p. 2266)

5.5.11.3.3 Question 3

True or False? The parse method belonging to the class named JSONParser can be called without the
requirement to instantiate an object of the class.

Go to answer 3 (p. 2266)

5.5.11.3.4 Question 4

True or False? The parse methods of the JSONValue and JSONParser classes return an object of
class JSONString .

Go to answer 4 (p. 2266)

5.5.11.3.5 Question 5

True or False? The code in Listing 1 (p. 2269) produces the screen output shown in Figure 1 (p. 2266) .
Go to answer 5 (p. 2266)

225http://cnx.org/contents/5sRB9gpG:GHIZVlcF

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2256 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.11.3.6 Question 6

True or False? The code in Listing 2 (p. 2269) produces the screen output shown in Figure 3 (p. 2267) .
Go to answer 6 (p. 2266)

5.5.11.3.7 Question 7

True or False? The code in Listing 3 (p. 2270) produces the screen output shown in Figure 5 (p. 2267) .
Go to answer 7 (p. 2266)

5.5.11.3.8 Question 8

True or False? The code in Listing 4 (p. 2270) produces the screen output shown in Figure 6 (p. 2268) .
Go to answer 8 (p. 2265)

5.5.11.3.9 Question 9

True or False? The code in Listing 5 (p. 2271) produces the screen output shown in Figure 7 (p. 2268) .
Go to answer 9 (p. 2265)

5.5.11.3.10 Question 10

True or False? The code in Listing 6 (p. 2271) produces the screen output shown in Figure 9 (p. 2268) .
Go to answer 10 (p. 2265)

5.5.11.3.11 Question 11

True or False? The code in Listing 7 (p. 2272) produces the screen output shown in Figure 11 (p. 2268) .
Go to answer 11 (p. 2265)

5.5.11.4 Figure index

• Figure 1 (p. 2266)
• Figure 2 (p. 2267)
• Figure 3 (p. 2267)
• Figure 4 (p. 2267)
• Figure 5 (p. 2267)
• Figure 6 (p. 2268)
• Figure 7 (p. 2268)
• Figure 8 (p. 2268)
• Figure 9 (p. 2268)
• Figure 10 (p. 2268)
• Figure 11 (p. 2268)

5.5.11.5 Listing index

• Listing 1 (p. 2269)
• Listing 2 (p. 2269)
• Listing 3 (p. 2270)
• Listing 4 (p. 2270)
• Listing 5 (p. 2271)
• Listing 6 (p. 2271)
• Listing 7 (p. 2272)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2257

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2258 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.11.6 Answers

5.5.11.6.1 Answer 11

True.
Go back to Question 11 (p. 2263)

5.5.11.6.2 Answer 10

False. The code in Listing 6 (p. 2271) produces the screen output with the errors shown in Figure 10 (p.
2268) .

Go back to Question 10 (p. 2263)

5.5.11.6.3 Answer 9

False. The code in Listing 5 (p. 2271) produces the screen output shown in Figure 8 (p. 2268) . The parse
method is not static in the JSONParser class.

Go back to Question 9 (p. 2263)

5.5.11.6.4 Answer 8

True.
Go back to Question 8 (p. 2263)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2259

5.5.11.6.5 Answer 7

True. Even though it is not necessary to instantiate an object of a class to call a static method belonging
to that class, it is possible to instantiate an object of the JSONValue class and to call the static
parse method on that object.

Go back to Question 7 (p. 2263)

5.5.11.6.6 Answer 6

False. The code in Listing 2 (p. 2269) produces the screen output with the compiler errors shown in Figure
4 (p. 2267) . The return value from the parse method must be cast from type Object to type
JSONObject to store it in a variable of type JSONObject .

Go back to Question 6 (p. 2263)

5.5.11.6.7 Answer 5

False. The code in Listing 1 (p. 2269) produces the screen output with the compiler errors shown in Figure
2 (p. 2267) . The json-simple library does not de�ne a class named JSONString .

Go back to Question 5 (p. 2262)

5.5.11.6.8 Answer 4

False. The json-simple library does not de�ne a class named JSONString . Both parse methods
return a reference of type java.lang.Object . However, it is actually a reference to an object of the class
JSONObject , which is a subclass of Object several levels down. The reference must be downcast to
type JSONObject in order to call some of the methods de�ned in the JSONObject class or to store
the object's reference in a variable of type JSONObject .

Go back to Question 4 (p. 2262)

5.5.11.6.9 Answer 3

False. The parse method belonging to the class named JSONParser is not declared static .
Therefore, it is an instance method . Instance methods can only be called on an object instantiated from
the class.

Go back to Question 3 (p. 2262)

5.5.11.6.10 Answer 2

False. The parse method that is de�ned in the class named JSONValue is a static method. Static
methods belonging to a class can be called without the requirement to instantiate an object of the class.

Go back to Question 2 (p. 2262)

5.5.11.6.11 Answer 1

False. The class named JSONValue also de�nes a method named parse that can be used to decode or
parse a JSON string.

Go back to Question 1 (p. 2262)

5.5.11.7 Figures

This section contains Figures that may be referred to by one or more questions or answers.

Figure 1

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2260 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Joe

21

Figure 2

Code01.java:8: error: cannot find symbol

import org.json.simple.JSONString;

^

symbol: class JSONString

location: package org.json.simple

Code01.java:20: error: cannot find symbol

JSONString jsonString02 = JSONValue.parse(jsonString0101);

^

symbol: class JSONString

location: class Code01

Code01.java:20: error: cannot find symbol

JSONString jsonString02 = JSONValue.parse(jsonString0101);

^

symbol: variable jsonString0101

location: class Code01

Note: Code01.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

3 errors

Error: Could not find or load main class Code01

Figure 3

Joe

21

Figure 4

Code02.java:19: error: incompatible types: Object cannot be converted to JSONObj

ect

JSONObject jsonObj02 = JSONValue.parse(jsonString);

^

Note: Code02.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

1 error

Error: Could not find or load main class Code02

Figure 5

Joe

21

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2261

Figure 6

Joe

21

Figure 7

Joe

21

Figure 8

Code05.java:19: error: non-static method parse(String) cannot be referenced from

a static context

JSONObject jsonObj02 = (JSONObject)JSONParser.parse(jsonString);

^

Note: Code05.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

1 error

Error: Could not find or load main class Code05

Figure 9

Joe

21

Figure 10

Code06.java:19: error: unreported exception ParseException; must be caught or de

clared to be thrown

JSONObject jsonObj02 = (JSONObject)(new JSONParser().parse(jsonString));

^

Note: Code06.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

1 error

Error: Could not find or load main class Code06

Figure 11

Joe

21

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2262 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.11.8 Listings

This section contains Listings that may be referred to by one or more questions or answers.

Listing 1

/**

Copyright 2016 R.G.Baldwin

Tested with Java 8, Win 7, and json-simple-1.1.1.jar.

**/

import org.json.simple.JSONObject;

import org.json.simple.JSONValue;

import org.json.simple.JSONString;

class Code01 {

public static void main(String[] args){

JSONObject jsonObj01 = new JSONObject();

jsonObj01.put("name","Joe");

jsonObj01.put("age",21);

String jsonString01 = jsonObj01.toJSONString();

JSONString jsonString02 = JSONValue.parse(jsonString0101);

System.out.println(jsonString02.get("name"));

System.out.println(jsonString02.get("age"));

}//end main

}//end class Code01

Listing 2

/**

Copyright 2016 R.G.Baldwin

Tested with Java 8, Win 7, and json-simple-1.1.1.jar.

**/

import org.json.simple.JSONObject;

import org.json.simple.JSONValue;

class Code02 {

public static void main(String[] args){

JSONObject jsonObj01 = new JSONObject();

jsonObj01.put("name","Joe");

jsonObj01.put("age",21);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2263

String jsonString = jsonObj01.toJSONString();

JSONObject jsonObj02 = JSONValue.parse(jsonString);

System.out.println(jsonObj02.get("name"));

System.out.println(jsonObj02.get("age"));

}//end main

}//end class Code02

Listing 3

/**

Copyright 2016 R.G.Baldwin

Tested with Java 8, Win 7, and json-simple-1.1.1.jar.

**/

import org.json.simple.JSONObject;

import org.json.simple.JSONValue;

class Code03 {

public static void main(String[] args){

JSONObject jsonObj01 = new JSONObject();

jsonObj01.put("name","Joe");

jsonObj01.put("age",21);

String jsonString = jsonObj01.toJSONString();

JSONObject jsonObj02 =

(JSONObject)(new JSONValue().parse(jsonString));

System.out.println(jsonObj02.get("name"));

System.out.println(jsonObj02.get("age"));

}//end main

}//end class Code03

Listing 4

/**

Copyright 2016 R.G.Baldwin

Tested with Java 8, Win 7, and json-simple-1.1.1.jar.

**/

import org.json.simple.JSONObject;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2264 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

import org.json.simple.JSONValue;

class Code04 {

public static void main(String[] args){

JSONObject jsonObj01 = new JSONObject();

jsonObj01.put("name","Joe");

jsonObj01.put("age",21);

String jsonString = jsonObj01.toJSONString();

JSONObject jsonObj02 = (JSONObject)JSONValue.parse(jsonString);

System.out.println(jsonObj02.get("name"));

System.out.println(jsonObj02.get("age"));

}//end main

}//end class Code04

Listing 5

/**

Copyright 2016 R.G.Baldwin

Tested with Java 8, Win 7, and json-simple-1.1.1.jar.

**/

import org.json.simple.JSONObject;

import org.json.simple.parser.JSONParser;

class Code05 {

public static void main(String[] args){

JSONObject jsonObj01 = new JSONObject();

jsonObj01.put("name","Joe");

jsonObj01.put("age",21);

String jsonString = jsonObj01.toJSONString();

JSONObject jsonObj02 = (JSONObject)JSONParser.parse(jsonString);

System.out.println(jsonObj02.get("name"));

System.out.println(jsonObj02.get("age"));

}//end main

}//end class Code05

Listing 6

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2265

/**

Copyright 2016 R.G.Baldwin

Tested with Java 8, Win 7, and json-simple-1.1.1.jar.

**/

import org.json.simple.JSONObject;

import org.json.simple.parser.JSONParser;

class Code06 {

public static void main(String[] args){

JSONObject jsonObj01 = new JSONObject();

jsonObj01.put("name","Joe");

jsonObj01.put("age",21);

String jsonString = jsonObj01.toJSONString();

JSONObject jsonObj02 =

(JSONObject)(new JSONParser().parse(jsonString));

System.out.println(jsonObj02.get("name"));

System.out.println(jsonObj02.get("age"));

}//end main

}//end class Code06

Listing 7

/**

Copyright 2016 R.G.Baldwin

Tested with Java 8, Win 7, and json-simple-1.1.1.jar.

**/

import org.json.simple.JSONObject;

import org.json.simple.parser.JSONParser;

import org.json.simple.parser.ParseException;

class Code07 {

public static void main(String[] args) throws ParseException{

JSONObject jsonObj01 = new JSONObject();

jsonObj01.put("name","Joe");

jsonObj01.put("age",21);

String jsonString = jsonObj01.toJSONString();

JSONObject jsonObj02 =

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2266 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

(JSONObject)(new JSONParser().parse(jsonString));

System.out.println(jsonObj02.get("name"));

System.out.println(jsonObj02.get("age"));

}//end main

}//end class Code07

5.5.11.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Json0220R: Review
• File: Json0220R.htm
• Published: 06/04/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

5.5.12 Json0225: Encoding JSON Arrays
226

Revised: Thu Jun 02 19:27:08 CDT 2016
This page is included in the following Books:

• The json-simple Java Library 227 .
• INEW2338 - Advanced Java Programming 228

• Object-Oriented Programming (OOP) with Java 229

226This content is available online at <http://cnx.org/content/m61731/1.2/>.
227http://cnx.org/contents/5sRB9gpG
228http://cnx.org/contents/yWyT-uhM
229http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2267

5.5.12.1 Table of contents

• Table of contents (p. 2274)
• Preface (p. 2274)

· Viewing tip (p. 2274)

* Figures (p. 2274)
* Listings (p. 2274)

• General background information (p. 2275)
• Discussion and sample code (p. 2275)

· Beginning of the class and the main method (p. 2275)
· Instantiate and populate a JSONArray object (p. 2275)
· Populate hashMapA with a key/value pair (p. 2276)
· Create and populate another similar JSON object (p. 2276)
· Put the players in the game (p. 2276)
· Write the JSON string to an output �le (p. 2277)
· The end of the program (p. 2277)
· The contents of the output �le (p. 2277)
· Decoded output data (p. 2278)

• Run the program (p. 2278)
• Complete program listing (p. 2279)
• Miscellaneous (p. 2280)

5.5.12.2 Preface

This is a page from the book titled The json-simple Java Library . The book explains how to use the
json-simple Java library to generate, transform, and query JSON text. This page explains how to encode
JSON array data using the JSONArray class. It also shows how to write an encoded JSON string to an
output text �le for transport to a di�erent programming environment.

5.5.12.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

5.5.12.2.1.1 Figures

• Figure 1 (p. 2277) . Pretti�ed version of output �le contents.
• Figure 2 (p. 2278) . Beginning of output �le contents.
• Figure 3 (p. 2278) . Decoded output data.

5.5.12.2.1.2 Listings

• Listing 1 (p. 2275) . Beginning of the class and the main method.
• Listing 2 (p. 2275) . Instantiate and populate a JSONArray object.
• Listing 3 (p. 2276) . Populate hashMapA.
• Listing 4 (p. 2276) . Create and populate another similar JSON object.
• Listing 5 (p. 2276) . Put the players in the game.
• Listing 6 (p. 2277) . Write the JSON string to an output �le.
• Listing 7 (p. 2279) . The program named Code.java.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2268 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.12.3 General background information

As you learned in the page titled Json0210: Structure of the json-simple Java Library 230 , the JSONArray
class extends the standard Java ArrayList class. Once you have an object of the JSONArray class,
you have access to all of the methods de�ned in and inherited into the JSONArray class.

The sample program that follows will use the JSONArray class to construct a JSON string containing
nested arrays and will then write the string to an output �le suitable for transport to a di�erent programming
environment.

A later page in this book will read the JSON string from the �le and decode it into its component parts.

5.5.12.4 Discussion and sample code

The program named Code (see Listing 7 (p. 2279)) creates a JSON string and writes it to an output
�le. The json string contains an array, which in turn contains two nested arrays.

5.5.12.4.1 Beginning of the class and the main method

I will discuss and explain the program in fragments. The �rst fragment is shown in Listing 1 (p. 2275) .

Listing 1 . Beginning of the class and the main method.

import org.json.simple.JSONObject;

import org.json.simple.JSONArray;

import java.io.PrintWriter;

import java.io.File;

import java.io.IOException;

class Code{

public static void main(String[] args){

//Create a json object. which is a subclass

// of the Java HashMap class.

JSONObject hashMapA = new JSONObject();

//Populate the json object with a key/value

// pair.

hashMapA.put("name","Tom");

There is nothing new in Listing 1 (p. 2275) so that code shouldn't require further explanation. Note however,
that the name "Tom" will become signi�cant in a later discussion.

5.5.12.4.2 Instantiate and populate a JSONArray object

The code in Listing 2 (p. 2275) instantiates and populates a JSONArray object.

Listing 2 . Instantiate and populate a JSONArray object.

JSONArray arrayListA = new JSONArray();

arrayListA.add("2-club");

arrayListA.add("3-heart");

230http://cnx.org/contents/5sRB9gpG:_u3ZKIdD

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2269

arrayListA.add("4-diamond");

arrayListA.add("5-spade");

Previous pages in this book have constructed JSON strings using a subclass of the Java HashMap class
� (the JSONObject class) . It is worth noting that JSON strings constructed in that manner are
unordered. However, JSON arrays constructed using the JSONArray class, which is a subclass of the
ArrayList class, are ordered lists.

The program that I will explain in this page is intended to represent the beginning state of a two-person
card game where each player receives four cards. The code in Listing 2 (p. 2275) constructs a list of the
cards that will be dealt to one of the players.

5.5.12.4.3 Populate hashMapA with a key/value pair

The code in Listing 3 (p. 2276) populates the JSONObject object referred to as hashMapA with a
key/value pair where the key is "cards" and the value is an object of the JSONArray class containing a
list of strings naming speci�c playing cards.

Listing 3 . Populate hashMapA.

hashMapA.put("cards",arrayListA);

Note that hashMapA already contained a key/value pair identifying one of the players in the game named
"Tom" (see Listing 1 (p. 2275)). Thus the code in Listing 1 (p. 2275) through Listing 3 (p. 2276) can be
though of as "dealing" the cards identi�ed in Listing 2 (p. 2275) to the player named "Tom".

5.5.12.4.4 Create and populate another similar JSON object

Listing 4 (p. 2276) creates and populates a second list of playing cards and deals them to the second player
in the game whose name is "Joe".

Listing 4 . Create and populate another similar JSON object.

JSONObject hashMapB = new JSONObject();

hashMapB.put("name","Joe");

JSONArray arrayListB = new JSONArray();

arrayListB.add("4-heart");

arrayListB.add("5-heart");

arrayListB.add("6-club");

arrayListB.add("7-diamond");

hashMapB.put("cards",arrayListB);

5.5.12.4.5 Put the players in the game

Now that the players have been created and have received their cards, it is time to put them in the game.
Listing 5 (p. 2276) begins by adding the two players and their card arrays to a new object of type

JSONArray . This results in nested arrays.

Listing 5 . Put the players in the game.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2270 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

JSONArray arrayListC = new JSONArray();

arrayListC.add(hashMapA);

arrayListC.add(hashMapB);

JSONObject hashMapC = new JSONObject();

hashMapC.put("game",arrayListC);

Then Listing 5 (p. 2276) creates a new JSONObject object to represent the game and populates it with
a key/value pair where the key is "game" and the value is the array containing the two players and their
card arrays.

5.5.12.4.6 Write the JSON string to an output �le

Listing 6 (p. 2277) calls the writeJSONString method on the JSONObject object to encode the
object into a JSON string and write it to an output �le named junk.json .

Listing 6 . Write the JSON string to an output �le.

try{

PrintWriter out =

new PrintWriter(new File("junk.json"));

hashMapC.writeJSONString(out);

out.flush();

}catch(IOException ex){

ex.printStackTrace();

}//end catch

}//end main

}//end class Code

Note that the output �le is simply a text �le with the extension .json . Thus it can be read by any program
that is capable of reading plain text �les.

5.5.12.4.7 The end of the program

Listing 6 (p. 2277) also signals the end of the main method and the end of the program.

5.5.12.4.8 The contents of the output �le

Figure 1 (p. 2277) shows a "pretti�ed" version of the contents of the output �le.

Figure 1. Pretti�ed version of output �le contents.

{"game":

[

{

"cards":

[

"2-club","3-heart","4-diamond","5-spade"

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2271

],

"name":"Tom"

},

{

"cards":

[

"4-heart","5-heart","6-club","7-diamond"

],

"name":"Joe"

}

]

}

The actual contents of the �le do not contain line breaks and indentation as shown in Figure 1 (p. 2277) .
Those cosmetic features were added manually to Figure 1 (p. 2277) to make it easier for you to correlate
the output with the code shown earlier. Instead, the actual �le consists simply of a string of characters that
begins as shown in Figure 2 (p. 2278) .

Figure 2. Beginning of output �le contents.

{"game":[{"cards":["2-club","3-heart","4-diamond","5-spade"],...

5.5.12.4.9 Decoded output data

As mentioned earlier, a later page in this book will read the JSON string from the �le and decode it into its
component parts. Figure 3 (p. 2278) shows a preview of what you will see on that page.

Figure 3. Decoded output data.

First Player's Name: Tom

First Player's cards

2-club

3-heart

4-diamond

5-spade

Second Player's Name: Joe

Second Player's cards

4-heart

5-heart

6-club

7-diamond

Figure 3 (p. 2278) shows the JSON string decoded and formatted into a display that is representative of the
intent of the string � to encapsulate information about the players and their cards in a game of cards.

5.5.12.5 Run the program

I encourage you to copy the code from Listing 7 (p. 2279) . Execute the code and con�rm that your output
�le matches that shown in Figure 2 (p. 2278) . Experiment with the code, making changes, and observing
the results of your changes. Make certain that you can explain why your changes behave as they do.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2272 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.12.6 Complete program listing

Listing 7 (p. 2279) provides a complete listing of the program named Code.java .

Listing 7 . The program named Code.java.

/**

Copyright: R.G.Baldwin 2016

Revised: 06/01/16

Creates a json string and writes it to an output

file. The json string contains an array, which in

turn contains two arrays.

Tested with Java 8, Windows 7, and

json-simple-1.1.1.

**/

import org.json.simple.JSONObject;

import org.json.simple.JSONArray;

import java.io.PrintWriter;

import java.io.File;

import java.io.IOException;

class Code{

public static void main(String[] args){

//Create a json object. which is a subclass

// of the Java HashMap class.

JSONObject hashMapA = new JSONObject();

//Populate the json object with a key/value

// pair.

hashMapA.put("name","Tom");

//Create and populate a json array, which is

// a subclass of the Java ArrayList class.

JSONArray arrayListA = new JSONArray();

arrayListA.add("2-club");

arrayListA.add("3-heart");

arrayListA.add("4-diamond");

arrayListA.add("5-spade");

//Populate the json object with a key/value

// pair where the value is an array.

hashMapA.put("cards",arrayListA);

//Create and populate another similar json

// object.

JSONObject hashMapB = new JSONObject();

hashMapB.put("name","Joe");

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2273

JSONArray arrayListB = new JSONArray();

arrayListB.add("4-heart");

arrayListB.add("5-heart");

arrayListB.add("6-club");

arrayListB.add("7-diamond");

hashMapB.put("cards",arrayListB);

//Create another json array and populate

// it with the two json objects created

// earlier.

JSONArray arrayListC = new JSONArray();

arrayListC.add(hashMapA);

arrayListC.add(hashMapB);

//Create another json object and populate

// it with a key/value pair where the value

// is the array from above.

JSONObject hashMapC = new JSONObject();

hashMapC.put("game",arrayListC);

try{

//Encode the HashMap object into a

// json String and write it to an output

// file. Note that it is simply a text file

// with a different extension.

PrintWriter out =

new PrintWriter(new File("junk.json"));

hashMapC.writeJSONString(out);

out.flush();

}catch(IOException ex){

ex.printStackTrace();

}//end catch

}//end main

}//end class Code

5.5.12.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Json0225: Encoding JSON Arrays
• File: Json0225.htm
• Published: 06/01/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2274 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2275

5.5.13 Json0225R: Review
231

Revised: Sun Jun 05 10:59:02 CDT 2016
This page is included in the following Books:

• The json-simple Java Library 232 .
• INEW2338 - Advanced Java Programming 233

• Object-Oriented Programming (OOP) with Java 234

5.5.13.1 Table of Contents

• Table of Contents (p. 2282)
• Preface (p. 2282)
• Questions (p. 2283)

· Question 1 (p. 2283)
· Question 2 (p. 2283)
· Question 3 (p. 2283)
· Question 4 (p. 2283)
· Question 5 (p. 2283)
· Question 6 (p. 2283)
· Question 7 (p. 2283)

• Figure index (p. 2283)
• Listing index (p. 2284)
• Answers (p. 2285)

· Answer 7 (p. 2285)
· Answer 6 (p. 2285)
· Answer 5 (p. 2285)
· Answer 4 (p. 2285)
· Answer 3 (p. 2286)
· Answer 2 (p. 2286)
· Answer 1 (p. 2286)

• Figures (p. 2286)
• Listings (p. 2287)
• Miscellaneous (p. 2291)

5.5.13.2 Preface

This is a page from the book titled The json-simple Java Library . The book explains how to use
the json-simple Java library to generate, transform, and query JSON text. This page provides review
questions and answers for the page titled Json0225: Encoding JSON Arrays 235 . Once you study that page,
you should be able to answer the review questions in this page.

The questions and the answers in this page are connected by hyperlinks to make it easy for you to
navigate from the question to the answer and back again.

When a question or an answer provides a link to a �gure or a listing, you should open that link in a new
window to make it easy to view while reading the question or the answer.

231This content is available online at <http://cnx.org/content/m61781/1.1/>.
232http://cnx.org/contents/5sRB9gpG
233http://cnx.org/contents/yWyT-uhM
234http://cnx.org/contents/-2RmHFs_
235http://cnx.org/contents/5sRB9gpG:6KpbQ6Wn

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2276 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

NOTE:

With respect to the screen output shown on this page, ignore the presence or absence of output
similar to the following:

Note: Code99.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

5.5.13.3 Questions

5.5.13.3.1 Question 1 .

True or False? The JSONArray class extends the standard Java HashMap class.
Go to answer 1 (p. 2286)

5.5.13.3.2 Question 2

True or False? The JSONArray class represents a true Java array. The elements in a JSONArray
object can be accessed using the square bracket ([]) notation commonly associated with Java arrays.

Go to answer 2 (p. 2286)

5.5.13.3.3 Question 3

True or False? The code in Listing 1 (p. 2287) produces the screen output shown in Figure 1 (p. 2286) .
Go to answer 3 (p. 2286)

5.5.13.3.4 Question 4

True or False? The code in Listing 2 (p. 2288) produces the screen output shown in Figure 3 (p. 2287) .
Go to answer 4 (p. 2285)

5.5.13.3.5 Question 5

True or False? The code in Listing 3 (p. 2289) produces the screen output shown in Figure 5 (p. 2287) .
Go to answer 5 (p. 2285)

5.5.13.3.6 Question 6

True or False? The code in Listing 4 (p. 2289) produces the screen output shown in Figure 6 (p. 2287) .
Go to answer 6 (p. 2285)

5.5.13.3.7 Question 7

True or False? The code in Listing 5 (p. 2290) produces the screen output shown in Figure 8 (p. 2287) .
Go to answer 7 (p. 2285)

5.5.13.4 Figure index

• Figure 1 (p. 2286)
• Figure 2 (p. 2286)
• Figure 3 (p. 2287)
• Figure 4 (p. 2287)
• Figure 5 (p. 2287)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2277

• Figure 6 (p. 2287)
• Figure 7 (p. 2287)
• Figure 8 (p. 2287)

5.5.13.5 Listing index

• Listing 1 (p. 2287)
• Listing 2 (p. 2288)
• Listing 3 (p. 2289)
• Listing 4 (p. 2289)
• Listing 5 (p. 2290)

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2278 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.13.6 Answers

5.5.13.6.1 Answer 7

True. As a subclass of the ArrayList class, an object of the JSONArray class allows duplicate elements.
Go back to Question 7 (p. 2283)

5.5.13.6.2 Answer 6

False. The code in Listing 4 (p. 2289) produces the screen output shown in Figure 7 (p. 2287) .
Go back to Question 6 (p. 2283)

5.5.13.6.3 Answer 5

True. The JSONArray class provides two overloaded versions of the method named toJSONString .
One is an instance method and the other is a static method. On a side note, this is also true of the class
named JSONObject .

Go back to Question 5 (p. 2283)

5.5.13.6.4 Answer 4

False. The code in Listing 2 (p. 2288) produces the screen output shown in Figure 4 (p. 2287) . Unlike an
object of the JSONObject class, an object of the JSONArray class is an ordered list. By this we
mean that the user has precise control over where in the list each element is inserted. The user can access
elements by their integer index (position in the list) .

Go back to Question 4 (p. 2283)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2279

5.5.13.6.5 Answer 3

False. The code in Listing 1 (p. 2287) produces the screen output with the errors shown in Figure 2 (p.
2286) . The JSONArray class neither de�nes nor inherits a method named put .

Go back to Question 3 (p. 2283)

5.5.13.6.6 Answer 2

False. The JSONArray class extends the ArrayList class, which implements the List interface.
Therefore, an object of the JSONArray class is a list and is not an array. For example, the elements in a
JSONArray object cannot be accessed using the square bracket ([]) notation commonly associated with
Java arrays. Instead, the elements are accessed using the add and get methods declared in the List
interface and inherited from the ArrayList class.

Go back to Question 2 (p. 2283)

5.5.13.6.7 Answer 1

False. The JSONArray class extends the standard Java ArrayList class.
Go back to Question 1 (p. 2283)

5.5.13.7 Figures

This section contains Figures that may be referred to by one or more questions or answers.

Figure 1

[{"Name":"Tom"},{"Age":21},{"Student":true}]

Figure 2

Code01.java:22: error: cannot find symbol

array.put(jsonObj01);

^

symbol: method put(JSONObject)

location: variable array of type JSONArray

Code01.java:23: error: cannot find symbol

array.put(jsonObj02);

^

symbol: method put(JSONObject)

location: variable array of type JSONArray

Code01.java:24: error: cannot find symbol

array.put(jsonObj03);

^

symbol: method put(JSONObject)

location: variable array of type JSONArray

Note: Code01.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

3 errors

Error: Could not find or load main class Code01

Press any key to continue . . .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2280 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Figure 3

[{"Name":"Tom"},{"Age":21},{"Student":true}]

Figure 4

[{"Name":"Tom"},{"Student":true},{"Age":21}]

Figure 5

[{"Name":"Tom"},{"Age":21},{"Student":true}]

[{"Name":"Tom"},{"Age":21},{"Student":true}]

Figure 6

{"person":[{"Student":true},{"Age":21},{"Name":"Tom"}]}

Figure 7

[{"Student":true},{"Age":21},{"Name":"Tom"}]

Figure 8

{"person":[{"Name":"Tom"},{"Age":21},{"Name":"Tom"}]}

5.5.13.8 Listings

This section contains Listings that may be referred to by one or more questions or answers.

Listing 1

/**

Copyright: R.G.Baldwin 2016

Tested with Java 8, Windows 7, and

json-simple-1.1.1.

**/

import org.json.simple.JSONObject;

import org.json.simple.JSONArray;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2281

class Code01{

public static void main(String[] args){

JSONObject jsonObj01 = new JSONObject();

jsonObj01.put("Name","Tom");

JSONObject jsonObj02 = new JSONObject();

jsonObj02.put("Age",21);

JSONObject jsonObj03 = new JSONObject();

jsonObj03.put("Student",true);

JSONArray array = new JSONArray();

array.put(jsonObj01);

array.put(jsonObj02);

array.put(jsonObj03);

System.out.println(array.toJSONString());

}//end main

}//end class Code01

Listing 2

/**

Copyright: R.G.Baldwin 2016

Tested with Java 8, Windows 7, and

json-simple-1.1.1.

**/

import org.json.simple.JSONObject;

import org.json.simple.JSONArray;

class Code02{

public static void main(String[] args){

JSONObject jsonObj01 = new JSONObject();

jsonObj01.put("Name","Tom");

JSONObject jsonObj02 = new JSONObject();

jsonObj02.put("Age",21);

JSONObject jsonObj03 = new JSONObject();

jsonObj03.put("Student",true);

JSONArray array = new JSONArray();

array.add(0,jsonObj01);

array.add(1,jsonObj03);

array.add(2,jsonObj02);

System.out.println(array.toJSONString());

}//end main

}//end class Code02

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2282 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Listing 3

/**

Copyright: R.G.Baldwin 2016

Tested with Java 8, Windows 7, and

json-simple-1.1.1.

**/

import org.json.simple.JSONObject;

import org.json.simple.JSONArray;

class Code03{

public static void main(String[] args){

JSONObject jsonObj01 = new JSONObject();

jsonObj01.put("Name","Tom");

JSONObject jsonObj02 = new JSONObject();

jsonObj02.put("Age",21);

JSONObject jsonObj03 = new JSONObject();

jsonObj03.put("Student",true);

JSONArray array = new JSONArray();

array.add(jsonObj01);

array.add(jsonObj02);

array.add(jsonObj03);

System.out.println(JSONArray.toJSONString(array));

System.out.println(array.toJSONString());

}//end main

}//end class Code03

Listing 4

/**

Copyright: R.G.Baldwin 2016

Tested with Java 8, Windows 7, and

json-simple-1.1.1.

**/

import org.json.simple.JSONObject;

import org.json.simple.JSONArray;

class Code04{

public static void main(String[] args){

JSONObject jsonObj01 = new JSONObject();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2283

jsonObj01.put("Name","Tom");

JSONObject jsonObj02 = new JSONObject();

jsonObj02.put("Age",21);

JSONObject jsonObj03 = new JSONObject();

jsonObj03.put("Student",true);

JSONArray array = new JSONArray();

array.add(jsonObj03);

array.add(jsonObj02);

array.add(jsonObj01);

JSONObject jsonObj04 = new JSONObject();

jsonObj04.put("person",array);

System.out.println(array.toJSONString());

}//end main

}//end class Code04

Listing 5

/**

Copyright: R.G.Baldwin 2016

Tested with Java 8, Windows 7, and

json-simple-1.1.1.

**/

import org.json.simple.JSONObject;

import org.json.simple.JSONArray;

class Code05{

public static void main(String[] args){

JSONObject jsonObj01 = new JSONObject();

jsonObj01.put("Name","Tom");

JSONObject jsonObj02 = new JSONObject();

jsonObj02.put("Age",21);

JSONObject jsonObj03 = new JSONObject();

jsonObj03.put("Student",true);

JSONArray array = new JSONArray();

array.add(jsonObj01);

array.add(jsonObj02);

array.add(jsonObj01);

JSONObject jsonObj04 = new JSONObject();

jsonObj04.put("person",array);

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2284 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

System.out.println(jsonObj04.toJSONString());

}//end main

}//end class Code05

5.5.13.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Json0225R: Review
• File: Json0225R.htm
• Published: 06/05/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

5.5.14 Json0230: Decoding JSON Arrays
236

Revised: Thu Jun 02 19:28:45 CDT 2016
This page is included in the following Books:

• The json-simple Java Library 237 .
• INEW2338 - Advanced Java Programming 238

• Object-Oriented Programming (OOP) with Java 239

236This content is available online at <http://cnx.org/content/m61744/1.3/>.
237http://cnx.org/contents/5sRB9gpG
238http://cnx.org/contents/yWyT-uhM
239http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2285

5.5.14.1 Table of contents

• Table of contents (p. 2292)
• Preface (p. 2292)

· Viewing tip (p. 2292)

* Figures (p. 2292)
* Listings (p. 2292)

• General background information (p. 2293)
• Discussion and sample code (p. 2293)

· Read the �le containing the JSON string (p. 2293)
· Display the JSON string (p. 2293)
· Access the game array (p. 2294)
· Get information about the �rst player (p. 2294)
· Display �rst player's cards (p. 2294)
· Get and display information about the second player (p. 2295)
· The end of the program (p. 2296)

• Run the program (p. 2296)
• Complete program listing (p. 2296)
• Miscellaneous (p. 2298)

5.5.14.2 Preface

This is a page from the book titled The json-simple Java Library . The book explains how to use the
json-simple Java library to generate, transform, and query JSON text. This page explains how to read a
JSON string containing nested array data from a �le, decode it, and display its component parts.

5.5.14.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

5.5.14.2.1.1 Figures

• Figure 1 (p. 2294) . Screen shot of raw JSON string.
• Figure 2 (p. 2294) . Display �rst player's name.
• Figure 3 (p. 2295) . The �rst player's cards.
• Figure 4 (p. 2295) . Information about the second player.

5.5.14.2.1.2 Listings

• Listing 1 (p. 2293) . Read the �le containing the JSON string.
• Listing 2 (p. 2293) . Display the JSON string.
• Listing 3 (p. 2294) . Access the game array.
• Listing 4 (p. 2294) . Get information about the �rst player.
• Listing 5 (p. 2294) . Display �rst player's cards.
• Listing 6 (p. 2295) . Get and display information about the second player.
• Listing 7 (p. 2296) . The program named Code.java.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2286 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.14.3 General background information

You learned how to encode JSON data containing nested arrays and how to write the encoded JSON string
to an output �le in the page titled Json0225: Encoding JSON Arrays 240 . The program that I will discuss
and explain in the next section will read that �le from the disk, decode it, and display its component parts.

5.5.14.4 Discussion and sample code

The program named Code (see Listing 7 (p. 2296)) reads and parses an input �le named junk.json ,
The �le contains a JSON string with nested array data.

5.5.14.4.1 Read the �le containing the JSON string

I will discuss and explain this program in fragments. The �rst fragment is shown in Listing 1 (p. 2293) .

Listing 1 . Read the �le containing the JSON string.

class Code{

public static void main(String[] args){

//Instantiate a JSONObject object, which is a subclass of the

// Java HashMap class.

JSONObject jsonMap = null;

try{

//Read json string from a file and parse it into a HashMap.

jsonMap =

(JSONObject)(JSONValue.parse(new FileReader("junk.json")));

}catch(IOException ex){

ex.printStackTrace();

}//end catch

The code in Listing 1 (p. 2293) shows the beginning of the class and the beginning of the main method.
This code reads the JSON string from the input �le named junk.json and parses the data into an object
of type JSONObject .

There is nothing new in Listing 1 (p. 2293) so the code shouldn't need further explanation. When the
code in Listing 1 (p. 2293) has �nished executing, all of the information from the JSON string in the �le is
encapsulated in the object of type JSONObject referred to as jsonMap .

5.5.14.4.2 Display the JSON string

The code in Listing 2 (p. 2293) displays the raw JSON string followed by a blank line.

Listing 2 . Display the JSON string.

System.out.println("json string: " + jsonMap);

System.out.println();//blank line

This code produces the screen output shown by the screen shot in Figure 1 (p. 2294) .

240http://cnx.org/contents/5sRB9gpG:6KpbQ6Wn

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2287

Figure 1. Screen shot of raw JSON string.

json string: {"game":[{"cards":["2-club","3-heart","4-diamond","5-spade"],"name"

:"Tom"},{"cards":["4-heart","5-heart","6-club","7-diamond"],"name":"Joe"}]}

Note that the line break in Figure 1 (p. 2294) was inserted by the operating system while displaying the
string in the command-line window. The line break does not exist in the data in the �le.

5.5.14.4.3 Access the game array

Listing 3 (p. 2294) calls the get method inherited from the HashMap class to get the game array into
an object of type JSONArray , which is a subclass of the ArrayList class.

Listing 3 . Access the game array.

JSONArray gameArrayList = (JSONArray)jsonMap.get("game");

5.5.14.4.4 Get information about the �rst player

Recall that a JSONArray object is an ordered list as a subclass of the ArrayList class. The get
method inherited from the ArrayList class can be used to access elements in the list on the basis of a
zero-based index. At this point, information about the �rst player is stored in the list as an object of type
JSONObject . (It is actually stored as type Object and must be downcast to type JSONObject
in order to do much with it.)

Listing 4 (p. 2294) begins by accessing the element at an index value of zero, which is the object
containing information about the �rst player.

Listing 4 . Get information about the �rst player.

JSONObject firstPlayerMap = (JSONObject)gameArrayList.get(0);

System.out.println("First Player's Name: " +

firstPlayerMap.get("name"));

Then Listing 4 (p. 2294) uses the get method inherited from the HashMap class to get and display the
value associated with the key "name". This produces the screen output shown in Figure 2 (p. 2294) .

Figure 2. Display �rst player's name.

First Player's Name: Tom

5.5.14.4.5 Display �rst player's cards

Listing 5 (p. 2294) begins by using the get method of the HashMap class to access the JSONArray
object that is the value for the key "cards".

Listing 5 . Display �rst player's cards.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2288 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

JSONArray firstPlayerCardsList =

(JSONArray)firstPlayerMap.get("cards");

System.out.println("First Player's cards");

Iterator<String> iterator = firstPlayerCardsList.iterator();

while (iterator.hasNext()) {

System.out.println(iterator.next());

}//end while loop

Then Listing 5 (p. 2294) uses an iterator to iterate through the JSONArray object and to display each
of the cards in the array, (which is actually a list at this point) . This code produces the output shown in
Figure 3 (p. 2295) .

Figure 3. The �rst player's cards.

First Player's cards

2-club

3-heart

4-diamond

5-spade

5.5.14.4.6 Get and display information about the second player

Listing 6 (p. 2295) uses similar code to get and display information about the second player.

Listing 6 . Get and display information about the second player.

System.out.println();

JSONObject secondPlayerMap = (JSONObject)gameArrayList.get(1);

System.out.println("Second Player's Name: " +

secondPlayerMap.get("name"));

JSONArray secondPlayerCardsList =

(JSONArray)secondPlayerMap.get("cards");

System.out.println("Second Player's cards");

iterator = secondPlayerCardsList.iterator();

while (iterator.hasNext()) {

System.out.println(iterator.next());

}//end while loop

}//end main

}//end class Code

This code produces the screen output shown in Figure 4 (p. 2295) .

Figure 4. Information about the second player.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2289

Second Player's Name: Joe

Second Player's cards

4-heart

5-heart

6-club

7-diamond

5.5.14.4.7 The end of the program

Listing 6 (p. 2295) signals the end of the main method and the end of the program.

5.5.14.5 Run the program

Click here 241 to download a zip �le containing a JSON data �le named junk.json that can be used to
experiment with this program.

I encourage you to copy the code from Listing 7 (p. 2296) . Execute the code and con�rm that you get
the same results as those shown in Figure 1 (p. 2294) through Figure 4 (p. 2295) . Experiment with the
code, making changes, and observing the results of your changes. Make certain that you can explain why
your changes behave as they do.

5.5.14.6 Complete program listing

A complete listing of the program named Code is provided in Listing 7 (p. 2296) .

Listing 7 . The program named Code.java.

/**

Copyright: R.G.Baldwin 2016

Revised: 06/01/16

Reads a json string from a file, parses, and

displays some of its parts.

Tested with Java 8, Windows 7, and

json-simple-1.1.1.

**/

import org.json.simple.JSONObject;

import org.json.simple.JSONArray;

import org.json.simple.JSONValue;

import java.io.IOException;

import java.io.FileReader;

import java.util.*;

class Code{

public static void main(String[] args){

//Instantiate a JSONObject object, which is a subclass of the

241http://cnx.org/content/m61744/latest/JsonFile.zip

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2290 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

// Java HashMap class.

JSONObject jsonMap = null;

try{

//Read json string from a file and parse it into a HashMap.

jsonMap =

(JSONObject)(JSONValue.parse(new FileReader("junk.json")));

}catch(IOException ex){

ex.printStackTrace();

}//end catch

//Get and display the json string

System.out.println("json string: " + jsonMap);

System.out.println();//blank line

//Get the game array into an ArrayList object.

JSONArray gameArrayList = (JSONArray)jsonMap.get("game");

//Get and display info about the first player.

JSONObject firstPlayerMap = (JSONObject)gameArrayList.get(0);

System.out.println("First Player's Name: " +

firstPlayerMap.get("name"));

JSONArray firstPlayerCardsList =

(JSONArray)firstPlayerMap.get("cards");

System.out.println("First Player's cards");

Iterator<String> iterator = firstPlayerCardsList.iterator();

while (iterator.hasNext()) {

System.out.println(iterator.next());

}//end while loop

//Get and display info about the second player.

System.out.println();

JSONObject secondPlayerMap = (JSONObject)gameArrayList.get(1);

System.out.println("Second Player's Name: " +

secondPlayerMap.get("name"));

JSONArray secondPlayerCardsList =

(JSONArray)secondPlayerMap.get("cards");

System.out.println("Second Player's cards");

iterator = secondPlayerCardsList.iterator();

while (iterator.hasNext()) {

System.out.println(iterator.next());

}//end while loop

}//end main

}//end class Code

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2291

5.5.14.7 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Json0230: Decoding JSON Arrays
• File: Json0230.htm
• Published: 06/01/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2292 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

5.5.15 Json0230R: Review
242

Revised: Tue Jun 07 10:33:04 CDT 2016
This page is included in the following Books:

• The json-simple Java Library 243 .
• INEW2338 - Advanced Java Programming 244

• Object-Oriented Programming (OOP) with Java 245

5.5.15.1 Table of Contents

• Table of Contents (p. 2299)
• Preface (p. 2299)
• Questions (p. 2300)

· Question 1 (p. 2300)
· Question 2 (p. 2300)
· Question 3 (p. 2300)
· Question 4 (p. 2300)

• Figure index (p. 2300)
• Listing index (p. 2300)
• Answers (p. 2302)

· Answer 4 (p. 2302)
· Answer 3 (p. 2302)
· Answer 2 (p. 2302)
· Answer 1 (p. 2302)

• Figures (p. 2302)
• Listings (p. 2303)
• Miscellaneous (p. 2307)

5.5.15.2 Preface

This is a page from the book titled The json-simple Java Library . The book explains how to use
the json-simple Java library to generate, transform, and query JSON text. This page provides review
questions and answers for the page titled Json0230: Decoding JSON Arrays 246 . Once you study that page,
you should be able to answer the review questions in this page.

The questions and the answers in this page are connected by hyperlinks to make it easy for you to
navigate from the question to the answer and back again.

When a question or an answer provides a link to a �gure or a listing, you should open that link in a new
window to make it easy to view while reading the question or the answer.

NOTE:

With respect to the screen output shown on this page, ignore the presence or absence of output
similar to the following:

242This content is available online at <http://cnx.org/content/m61783/1.1/>.
243http://cnx.org/contents/5sRB9gpG
244http://cnx.org/contents/yWyT-uhM
245http://cnx.org/contents/-2RmHFs_
246http://cnx.org/contents/5sRB9gpG:swjjfzjR

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2293

Note: Code99.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

5.5.15.3 Questions

5.5.15.3.1 Question 1 .

True or False? The code in Listing 1 (p. 2303) produces the screen output shown in Figure 1 (p. 2302) .
Go to answer 1 (p. 2302)

5.5.15.3.2 Question 2

True or False? The code in Listing 2 (p. 2304) produces the screen output shown in Figure 3 (p. 2302) .
Go to answer 2 (p. 2302)

5.5.15.3.3 Question 3

True or False? The code in Listing 3 (p. 2305) produces the screen output shown in Figure 5 (p. 2303) .
Go to answer 3 (p. 2302)

5.5.15.3.4 Question 4

True or False? The code in Listing 4 (p. 2306) produces the screen output shown in Figure 7 (p. 2303) .
Go to answer 4 (p. 2302)

5.5.15.4 Figure index

• Figure 1 (p. 2302)
• Figure 2 (p. 2302)
• Figure 3 (p. 2302)
• Figure 4 (p. 2302)
• Figure 5 (p. 2303)
• Figure 6 (p. 2303)
• Figure 7 (p. 2303)

5.5.15.5 Listing index

• Listing 1 (p. 2303)
• Listing 2 (p. 2304)
• Listing 3 (p. 2305)
• Listing 4 (p. 2306)

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2294 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2295

5.5.15.6 Answers

5.5.15.6.1 Answer 4

True.
Go back to Question 4 (p. 2300)

5.5.15.6.2 Answer 3

False. The code in Listing 3 (p. 2305) produces the screen output with the error shown in Figure 6 (p. 2303)
.

Go back to Question 3 (p. 2300)

5.5.15.6.3 Answer 2

False. The code in Listing 2 (p. 2304) produces the screen output with the error shown in Figure 4 (p. 2302)
.

Go back to Question 2 (p. 2300)

5.5.15.6.4 Answer 1

False. The code in Listing 1 (p. 2303) produces the screen output with the error shown in Figure 2 (p. 2302)
.

Go back to Question 1 (p. 2300)

5.5.15.7 Figures

This section contains Figures that may be referred to by one or more questions or answers.

Figure 1

Tom

Figure 2

Code01.java:36: error: incompatible types: Object cannot be converted to String

String temp02 = temp01.get("Name");

^

Note: Code01.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

1 error

Error: Could not find or load main class Code01

Figure 3

Tom

21

Figure 4

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2296 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

Code02.java:40: error: incompatible types: String cannot be converted to Long

Long temp04 = (String)(temp03.get("Age"));

^

Note: Code02.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

1 error

Error: Could not find or load main class Code02

Figure 5

Tom

21

true

Figure 6

Code03.java:44: error: incompatible types: String cannot be converted to Boolean

Boolean temp06 = (String)(temp05.get("Student"));

^

Note: Code03.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

1 error

Error: Could not find or load main class Code03

Figure 7

Tom

21

true

5.5.15.8 Listings

This section contains Listings that may be referred to by one or more questions or answers.

Listing 1

/**

Copyright: R.G.Baldwin 2016

Tested with Java 8, Windows 7, and

json-simple-1.1.1.

**/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2297

import org.json.simple.JSONObject;

import org.json.simple.JSONArray;

import org.json.simple.JSONValue;

class Code01{

public static void main(String[] args){

JSONObject jsonObj01 = new JSONObject();

jsonObj01.put("Name","Tom");

JSONObject jsonObj02 = new JSONObject();

jsonObj02.put("Age",21);

JSONObject jsonObj03 = new JSONObject();

jsonObj03.put("Student",true);

JSONArray array01 = new JSONArray();

array01.add(jsonObj01);

array01.add(jsonObj02);

array01.add(jsonObj03);

JSONObject jsonObj04 = new JSONObject();

jsonObj04.put("person",array01);

String jsonString = jsonObj04.toJSONString();

JSONObject jsonObj05 = (JSONObject)(JSONValue.parse(jsonString));

JSONArray array02 = (JSONArray)(jsonObj05.get("person"));

JSONObject temp01 = (JSONObject)(array02.get(0));

String temp02 = temp01.get("Name");

System.out.println(temp02);

}//end main

}//end class Code01

Listing 2

/**

Copyright: R.G.Baldwin 2016

Tested with Java 8, Windows 7, and

json-simple-1.1.1.

**/

import org.json.simple.JSONObject;

import org.json.simple.JSONArray;

import org.json.simple.JSONValue;

class Code02{

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2298 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

public static void main(String[] args){

JSONObject jsonObj01 = new JSONObject();

jsonObj01.put("Name","Tom");

JSONObject jsonObj02 = new JSONObject();

jsonObj02.put("Age",21);

JSONObject jsonObj03 = new JSONObject();

jsonObj03.put("Student",true);

JSONArray array01 = new JSONArray();

array01.add(jsonObj01);

array01.add(jsonObj02);

array01.add(jsonObj03);

JSONObject jsonObj04 = new JSONObject();

jsonObj04.put("person",array01);

String jsonString = jsonObj04.toJSONString();

JSONObject jsonObj05 = (JSONObject)(JSONValue.parse(jsonString));

JSONArray array02 = (JSONArray)(jsonObj05.get("person"));

JSONObject temp01 = (JSONObject)(array02.get(0));

String temp02 = (String)(temp01.get("Name"));

System.out.println(temp02);

JSONObject temp03 = (JSONObject)(array02.get(1));

Long temp04 = (String)(temp03.get("Age"));

System.out.println(temp04);

}//end main

}//end class Code02

Listing 3

/**

Copyright: R.G.Baldwin 2016

Tested with Java 8, Windows 7, and

json-simple-1.1.1.

**/

import org.json.simple.JSONObject;

import org.json.simple.JSONArray;

import org.json.simple.JSONValue;

class Code03{

public static void main(String[] args){

JSONObject jsonObj01 = new JSONObject();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2299

jsonObj01.put("Name","Tom");

JSONObject jsonObj02 = new JSONObject();

jsonObj02.put("Age",21);

JSONObject jsonObj03 = new JSONObject();

jsonObj03.put("Student",true);

JSONArray array01 = new JSONArray();

array01.add(jsonObj01);

array01.add(jsonObj02);

array01.add(jsonObj03);

JSONObject jsonObj04 = new JSONObject();

jsonObj04.put("person",array01);

String jsonString = jsonObj04.toJSONString();

JSONObject jsonObj05 = (JSONObject)(JSONValue.parse(jsonString));

JSONArray array02 = (JSONArray)(jsonObj05.get("person"));

JSONObject temp01 = (JSONObject)(array02.get(0));

String temp02 = (String)(temp01.get("Name"));

System.out.println(temp02);

JSONObject temp03 = (JSONObject)(array02.get(1));

Long temp04 = (Long)(temp03.get("Age"));

System.out.println(temp04);

JSONObject temp05 = (JSONObject)(array02.get(2));

Boolean temp06 = (String)(temp05.get("Student"));

System.out.println(temp06);

}//end main

}//end class Code03

Listing 4

/**

Copyright: R.G.Baldwin 2016

Tested with Java 8, Windows 7, and

json-simple-1.1.1.

**/

import org.json.simple.JSONObject;

import org.json.simple.JSONArray;

import org.json.simple.JSONValue;

class Code04{

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2300 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

public static void main(String[] args){

JSONObject jsonObj01 = new JSONObject();

jsonObj01.put("Name","Tom");

JSONObject jsonObj02 = new JSONObject();

jsonObj02.put("Age",21);

JSONObject jsonObj03 = new JSONObject();

jsonObj03.put("Student",true);

JSONArray array01 = new JSONArray();

array01.add(jsonObj01);

array01.add(jsonObj02);

array01.add(jsonObj03);

JSONObject jsonObj04 = new JSONObject();

jsonObj04.put("person",array01);

String jsonString = jsonObj04.toJSONString();

JSONObject jsonObj05 = (JSONObject)(JSONValue.parse(jsonString));

JSONArray array02 = (JSONArray)(jsonObj05.get("person"));

JSONObject temp01 = (JSONObject)(array02.get(0));

String temp02 = (String)(temp01.get("Name"));

System.out.println(temp02);

JSONObject temp03 = (JSONObject)(array02.get(1));

Long temp04 = (Long)(temp03.get("Age"));

System.out.println(temp04);

JSONObject temp05 = (JSONObject)(array02.get(2));

Boolean temp06 = (Boolean)(temp05.get("Student"));

System.out.println(temp06);

}//end main

}//end class Code04

5.5.15.9 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Json0230R: Review
• File: Json0230R.htm
• Published: 06/07/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2301

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

5.6 Frameworks

5.6.1 Java4710: INEW 2338 - Java EE 7 and Frameworks
247

5.6.1.1 Table of Contents

• Preface (p. 2308)
• Links to Chapters (p. 2308)
• Miscellaneous (p. 2309)

5.6.1.2 Preface

• This is the main page for links to content on Java EE 7 and Frameworks that are part of the course
named INEW 2338, Advanced Java at Austin Community College in Austin, TX.

• The material in the chapters is sequential and is designed for progressive study. Most chapters contain
material that references concepts and code in prior chapters.

• Assignments and the section exam are located in Blackboard.

5.6.1.3 Links to Chapters

01 - JDK-WildFly-NetBeans Setup Local248

02 - WildFly Setup Remote249

03 - First Servlet250

04 - JSF Tags251

05 - JSF Template Demo252

06 - PrimeFaces Component Suite253

247This content is available online at <http://cnx.org/content/m49764/1.9/>.
248http://www.titantraining.com/coursecontent/inew2338/01-jdk-wild�y-netbeans-setup-local.pdf
249http://www.titantraining.com/coursecontent/inew2338/02-wild�y-setup-remote.pdf
250http://www.titantraining.com/coursecontent/inew2338/03-FirstServlet.pdf
251http://www.titantraining.com/coursecontent/inew2338/04-JSFTags.pdf
252http://www.titantraining.com/coursecontent/inew2338/05-TemplateDemo.pdf
253http://www.titantraining.com/coursecontent/inew2338/06-ComponentSuite.pdf

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2302 CHAPTER 5. INEW 2338 ADVANCED JAVA (WEB)

07a - MySQL Installer254

07b - XAMPP Setup255

08 - Database Setup256

09 - MySQL in WildFly Setup Local257

10 - MySQL in WildFly Setup Remote258

11 - JSF and JDBC259

12 - JSF-MVC and Spring-MVC260

13 - Glossary261

5.6.1.4 Miscellaneous

Due to the dynamic nature of the material, the content at the links above is periodically updated and the
links themselves may change. While you are welcome to print the pages, I recommend bookmarking this
main page for future reference. Since the links may change, by bookmarking this main page, you will have
access to the current content and working links.

I hope you enjoy the course.

@author R.L. Martinez, Ph.D.

254http://www.titantraining.com/coursecontent/inew2338/07a-MySQLInstaller.pdf
255http://www.titantraining.com/coursecontent/inew2338/07b-XAMPPSetup.pdf
256http://www.titantraining.com/coursecontent/inew2338/08-DatabaseSetup.pdf
257http://www.titantraining.com/coursecontent/inew2338/09-mysql-in-wild�y-setup-local.pdf
258http://www.titantraining.com/coursecontent/inew2338/10-mysql-in-wild�y-setup-remote.pdf
259http://www.titantraining.com/coursecontent/inew2338/11-JSFandJDBC.pdf
260http://www.titantraining.com/coursecontent/inew2338/12-JSFMVCandSpringMVC.pdf
261http://www.titantraining.com/coursecontent/inew2338/13-Glossary.pdf

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

Chapter 6

GAME 2302 - Mathematical
Applications for Game Development

6.1 Jy0040: GAME2302: Mathematical Applications for Game
Development1

6.1.1 Table of Contents

• Welcome (p. 2311)
• Miscellaneous (p. 2311)

6.1.2 Welcome

Click the link to view the course material for GAME 2302 Mathematical Applications for Game Development
2 , which I teach at Austin Community College in Austin, TX.

O�cial information about the course
The college website for this course is: http://www.austincc.edu/baldwin/ 3 .
As of December 2012, the description for this course reads:
"GAME 2302 - Mathematical Applications for Game Development
Presents applications of mathematics and science in game and simulation programming. Includes the

utilization of matrix and vector operations, kinematics, and Newtonian principles in games and simulations.
Also covers code optimization."

6.1.3 Miscellaneous

This section contains a variety of miscellaneous information.

note: Housekeeping material

• Module name: GAME2302: Mathematical Applications for Game Development
• File: Jy0040.htm
• Published: 01/17/13

1This content is available online at <http://cnx.org/content/m45680/1.2/>.
2http://cnx.org/content/col11450
3http://www.austincc.edu/baldwin/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2303

2304
CHAPTER 6. GAME 2302 - MATHEMATICAL APPLICATIONS FOR GAME

DEVELOPMENT

note: Disclaimers:: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

Chapter 7

OOP Self-Assessment

7.1 Ap0005: Preface to OOP Self-Assessment1

Revised: Fri Apr 08 22:51:58 CDT 2016
This page is included in the following Books:

• Java OOP Self-Assessment 2

• Object-Oriented Programming (OOP) with Java 3

7.1.1 Welcome

Welcome to my group of modules titled Java OOP Self-Assessment .
This is a self-assessment test designed to help you determine how much you know about object-oriented

programming (OOP) using Java.
In addition to being a self-assessment test, it is also a major learning tool. Each module consists of about

ten to twenty questions with answers and explanations on two or three speci�c topics. In many cases, the
explanations are extensive. You may �nd those explanations to be very educational in your journey towards
understanding OOP using Java.

To give you some idea of the scope of this self-assessment test, when you can successfully answer most of
the questions in modules Ap0010 4 through Ap0140 5 , your level of knowledge will be roughly equivalent to
that of a student who has successfully completed an AP Computer Science course in a U.S. high school up
to but not including data structures. This is based on my interpretation of the College Board's Computer
Science A Course Description 6 .

7.1.2 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Ap0005: Preface to OOP Self-Assessment
• File: Ap0005.htm

1This content is available online at <http://cnx.org/content/m45252/1.8/>.
2http://cnx.org/contents/1CVBGBJj
3http://cnx.org/contents/-2RmHFs_
4http://cnx.org/content/m45284
5http://cnx.org/content/m45302
6http://apcentral.collegeboard.com/apc/public/repository/ap-computer-science-course-description.pdf

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2305

2306 CHAPTER 7. OOP SELF-ASSESSMENT

• Published: 11/28/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

7.2 Ap0010: Self-assessment, Primitive Types7

Revised: Fri Apr 08 23:47:01 CDT 2016
This page is included in the following Books:

• Java OOP Self-Assessment 8

• Object-Oriented Programming (OOP) with Java 9

7.2.1 Table of Contents

• Preface (p. 2315)
• Questions (p. 2315)

· 1 (p. 2315) , 2 (p. 2316) , 3 (p. 2316) , 4 (p. 2316) , 5 (p. 2317) , 6 (p. 2317) , 7 (p. 2318) , 8
(p. 2319) , 9 (p. 2319) , 10 (p. 2320)

• Programming challenge questions (p. 2321)

· 11 (p. 2321) , 12 (p. 2321) , 13 (p. 2322) , 14 (p. 2323) , 15 (p. 2325) , 16 (p. 2326) , 17 (p.
2326) , 18 (p. 2327)

• Listings (p. 2328)
• Miscellaneous (p. 2329)
• Answers (p. 2329)

7This content is available online at <http://cnx.org/content/m45284/1.9/>.
8http://cnx.org/contents/1CVBGBJj
9http://cnx.org/contents/-2RmHFs_

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2307

7.2.2 Preface

This module is part of a self-assessment test designed to help you determine how much you know about
object-oriented programming using Java.

Questions and answers
The test consists of a series of questions (p. 2315) with answers (p. 2329) and explanations of the

answers.
The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the

question to the answer and back.
Programming challenge questions
The module also contains a section titled Programming challenge questions (p. 2321) . This section

provides speci�cations for one or more programs that you should be able to write once you understand the
answers to all of the questions. (Note that it is not always possible to con�ne the programming knowledge
requirement to this and earlier modules. Therefore, you may occasionally need to refer ahead to future
modules in order to write the programs.)

Unlike the other questions, solutions are not provided for the Programming challenge questions .
However, in most cases, the speci�cations will describe the output that your program should produce.

Listings
I recommend that you open another copy of this document in a separate browser window and use the

links to under Listings (p. 2328) to easily �nd and view the listings while you are reading about them.

7.2.3 Questions

7.2.3.1 Question 1 .

What output is produced by the program in Listing 1 (p. 2315) ?

• A. Compiler error
• B. Runtime error
• C. Hello World
• D. Goodbye Cruel World

Listing 1 . Question 1.

public class Ap001{

public static void main(

String args[]){

new Worker().hello();

}//end main()

}//end class definition

class Worker{

public void hello(){

System.out.println("Hello World");

}//end hello()

}//end class definition

Table 7.1

Answer and Explanation (p. 2334)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2308 CHAPTER 7. OOP SELF-ASSESSMENT

7.2.3.2 Question 2 .

What is the largest (algebraic) value of type int?

• A. 32767
• B. 2147483647
• C. -2147483647
• D. -32768

Answer and Explanation (p. 2333)

7.2.3.3 Question 3 .

What is the smallest (algebraic) value of type int?

• A. -2147483648
• B. -2147483647
• C. 32767
• D. -32768

Answer and Explanation (p. 2333)

7.2.3.4 Question 4 .

What two values are displayed by the program in Listing 2 (p. 2316) ?

• A. -2147483648
• B. 1.7976931348623157E308
• C. -2147483647
• D. 4.9E-324

Listing 2 . Question 4.

public class Ap003{

public static void main(

String args[]){

new Worker().printDouble();

}//end main()

}//end class definition

class Worker{

public void printDouble(){

System.out.println(

Double.MAX_VALUE);

System.out.println(

Double.MIN_VALUE);

}//end printDouble()

}//end class definition

Table 7.2

Answer and Explanation (p. 2332)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2309

7.2.3.5 Question 5 .

What output is produced by the program in Listing 3 (p. 2317) ?

• A. true
• B. false
• C. 1
• D. 0

Listing 3 . Question 5.

public class Ap004{

public static void main(

String args[]){

new Worker().printBoolean();

}//end main()

}//end class definition

class Worker{

private boolean myVar;

public void printBoolean(){

System.out.println(myVar);

}//end printBoolean()

}//end class definition

Table 7.3

Answer and Explanation (p. 2332)

7.2.3.6 Question 6 .

What output is produced by the program shown in Listing 4 (p. 2318) ?

• A. Compiler Error
• B. Runtime Error
• C. true
• D. false

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2310 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 4 . Question 6.

public class Ap005{

public static void main(

String args[]){

new Worker().printBoolean();

}//end main()

}//end class definition

class Worker{

public void printBoolean(){

boolean myVar;

System.out.println(myVar);

}//end printBoolean()

}//end class definition

Table 7.4

Answer and Explanation (p. 2331)

7.2.3.7 Question 7 .

What output is produced by the program shown in Listing 5 (p. 2318) ?

• A. Compiler Error
• B. Runtime Error
• C. true
• D. false

Listing 5 . Question 7.

public class Ap006{

public static void main(

String args[]){

new Worker().printBoolean();

}//end main()

}//end class definition

class Worker{

public void printBoolean(){

boolean myVar = true;

myVar = false;

System.out.println(myVar);

}//end printBoolean()

}//end class definition

Table 7.5

Answer and Explanation (p. 2331)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2311

7.2.3.8 Question 8 .

The plus (+) character can be used to perform numeric addition in Java. What output is produced by the
program shown in Listing 6 (p. 2319) ?

• A. Compiler Error
• B. Runtime Error
• C. true
• D. 2
• E. 1

Listing 6 . Question 8.

public class Ap007{

public static void main(

String args[]){

new Worker().printBoolean();

}//end main()

}//end class definition

class Worker{

public void printBoolean(){

boolean myVar = true;

System.out.println(1 + myVar);

}//end printBoolean()

}//end class definition

Table 7.6

Answer and Explanation (p. 2330)

7.2.3.9 Question 9 .

The plus (+) character can be used to perform numeric addition in Java. What output is produced by the
program shown in Listing 7 (p. 2320) ?

• A. Compiler Error
• B. Runtime Error
• C. 6
• D. 6.0

Listing 7 . Question 9.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2312 CHAPTER 7. OOP SELF-ASSESSMENT

public class Ap008{

public static void main(

String args[]){

new Worker().printMixed();

}//end main()

}//end class definition

class Worker{

public void printMixed(){

double x = 3;

int y = 3;

System.out.println(x+y);

}//end printMixed()

}//end class definition

Table 7.7

Answer and Explanation (p. 2330)

7.2.3.10 Question 10 .

The slash (/) character can be used to perform numeric division in Java. What output is produced by the
program shown in Listing 8 (p. 2320) ?

• A. Compiler Error
• B. Runtime Error
• C. 0.33333334
• D. 0.3333333333333333

Listing 8 . Question 10.

public class Ap009{

public static void main(

String args[]){

new Worker().printMixed();

}//end main()

}//end class definition

class Worker{

public void printMixed(){

System.out.println(1.0/3);

}//end printMixed()

}//end class definition

Table 7.8

Answer and Explanation (p. 2329)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2313

7.2.4 Programming challenge questions

7.2.4.1 Question 11

Write the program described in Listing 9 (p. 2321) .

Listing 9 . Question 11.

/*File Ap0010a1.java Copyright 2012, R.G.Baldwin

Instructions to student:

This program refuses to compile without errors.

Make the necessary corrections to cause the program to

compile and run successfully to produce the output shown

below:

ITSE

2321

**/

public class Ap0010a1{

public static void main(String args[]){

System.out.println("ITSE");

new Worker().doIt();

}//end main()

}//end class definition

//===//

Class Worker{

public void doIt(){

System.out.println("2321");

}//end doIt()

}//end class definition

//===//

Table 7.9

7.2.4.2 Question 12

Write the program described in Listing 10 (p. 2322) .

Listing 10 . Question 12.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2314 CHAPTER 7. OOP SELF-ASSESSMENT

/*File Ap0010b1.java Copyright 2012, R.G.Baldwin

Instructions to student:

Beginning with the code fragment shown below, write a

method named doIt that:

1. Receives and displays an incoming parameter of type int.

The result should be similar to the following but the

values should be different each time the program is

run.

484495695

484495695

**/

//Student is not expected to understand import directives

// at this point.

import java.util.Random;

import java.util.Date;

public class Ap0010b1{

public static void main(String args[]){

//Create a random number for testing. Student is not

// expected to understand how this works at this point.

Random random = new Random(new Date().getTime());

int intVar = random.nextInt();

//Student should understand the following

int var = intVar;

System.out.println(var);

new Worker().doIt(var);

}//end main()

}//end class definition

//===//

class Worker{

//---//

//Student: insert the method named doIt between these

// lines.

//---//

}//end class definition

//===//

Table 7.10

7.2.4.3 Question 13

Write the program described in Listing 11 (p. 2323) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2315

Listing 11 . Question 13.

/*File Ap0010c1.java Copyright 2012, R.G.Baldwin

Instructions to student:

Beginning with the code fragment shown below, write a

method named doIt that returns the largest value of type

int as type float.

The result should be 2.14748365E9

**/

public class Ap0010c1{

public static void main(String args[]){

float val = new Worker().doIt();

System.out.println(val);

}//end main()

}//end class definition

//===//

class Worker{

//---//

//Insert the method named doIt between these lines.

//---//

}//end class definition

//===//

Table 7.11

7.2.4.4 Question 14

Write the program described in Listing 12 (p. 2324) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2316 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 12 . Question 14.

/*File Ap0010d1.java Copyright 2012, R.G.Baldwin

Instructions to student:

Beginning with the code fragment shown below, write a

method named doIt that:

1. Receives an incoming parameter of type double.

2. Converts that value to type int.

3. Returns the int

The result should be similar to the following but the

values should be different each time the program is

run.

6.672032181818181E8

667203218

**/

//Student is not expected to understand import directives

// at this point.

import java.util.Random;

import java.util.Date;

public class Ap0010d1{

public static void main(String args[]){

//Create a random number for testing. Student is not

// expected to understand how this works at this point.

Random random = new Random(new Date().getTime());

int intVar = random.nextInt();

//Student should understand the following

double var = intVar/1.1;

System.out.println(var);

System.out.println(new Worker().doIt(var));

}//end main()

}//end class definition

//===//

class Worker{

//---//

//Student: insert the method named doIt between these

// lines.

//---//

}//end class definition

//===//

Table 7.12

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2317

7.2.4.5 Question 15

Write the program described in Listing 13. (p. 2325)

Listing 13 . Question 15.

/*File Ap0010e1.java Copyright 2012, R.G.Baldwin

Instructions to student:

This program refuses to compile without errors.

Make the necessary corrections to cause the program to

compile and run successfully to produce an output similar

to that shown below. Note that the values should be

different each time the program is

run.

-1.30240579E8

-1.30240579E8

**/

//Student is not expected to understand import directives

// at this point.

import java.util.Random;

import java.util.Date;

public class Ap0010e1{

public static void main(String args[]){

//Create a random number for testing. Student is not

// expected to understand how this works at this point.

Random random = new Random(new Date().getTime());

double doubleVar = random.nextInt()/1.0;

//Student should understand the following

double var = doubleVar;

System.out.println(doubleVar);

new Worker().doIt(doubleVar);

}//end main()

}//end class definition

//===//

class Worker{

public void doIt(double val){

int var = val;

System.out.println(var);

}//end doIt()

}//end class definition

//===//

Table 7.13

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2318 CHAPTER 7. OOP SELF-ASSESSMENT

7.2.4.6 Question 16

Write the program described in Listing 14 (p. 2326) .

Listing 14 . Question 16.

/*File Ap0010f1.java Copyright 2012, R.G.Baldwin

Instructions to student:

Beginning with the code shown below, modify the

code in the method named doIt so that the program

displays

3.3333333333333335 instead of 3

Then modify the method again so that the program displays

3.3333333 instead of 3

**/

public class Ap0010f1{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class definition

//===//

class Worker{

public void doIt(){

System.out.println(10/3);

}//end doIt()

}//end class definition

//===//

Table 7.14

7.2.4.7 Question 17

Write the program described in Listing 15 (p. 2327) .

Listing 15 . Question 17.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2319

/*File Ap0010g1.java Copyright 2012, R.G.Baldwin

Instructions to student:

Beginning with the code shown below, modify the

code in the method named doIt so that the program

displays

2048 instead of 2730

Did you notice anything particularly interesting about the

values involved?

**/

public class Ap0010g1{

public static void main(String args[]){

new Worker().doIt(16384);

}//end main()

}//end class definition

//===//

class Worker{

public void doIt(int val){

System.out.println(val/6);

}//end doIt()

}//end class definition

//===//

Table 7.15

7.2.4.8 Question 18

Write the program described in Listing 16 (p. 2328) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2320 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 16 . Question 18.

/*File Ap0010h1.java Copyright 2012, R.G.Baldwin

Instructions to student:

This program refuses to compile without errors.

Make the necessary corrections to cause the program to

compile and run successfully to produce the output shown

below:

false

**/

public class Ap0010h1{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class definition

//===//

class Worker{

public void doIt(){

boolean var;

System.out.println(var);

}//end doIt()

}//end class definition

//===//

Table 7.16

7.2.5 Listings

• Listing 1 (p. 2315) . Question 1.
• Listing 2 (p. 2316) . Question 4.
• Listing 3 (p. 2317) . Question 5.
• Listing 4 (p. 2318) . Question 6.
• Listing 5 (p. 2318) . Question 7.
• Listing 6 (p. 2319) . Question 8.
• Listing 7 (p. 2320) . Question 9.
• Listing 8 (p. 2320) . Question 10.
• Listing 9 (p. 2321) . Question 11.
• Listing 10 (p. 2322) . Question 12.
• Listing 11 (p. 2323) . Question 13.
• Listing 12 (p. 2324) . Question 14.
• Listing 13 (p. 2325) . Question 15.
• Listing 14 (p. 2326) . Question 16.
• Listing 15 (p. 2327) . Question 17.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2321

• Listing 16 (p. 2328) . Question 18.
• Listing 17 (p. 2335) . Answer 1.

7.2.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Ap0010: Self-assessment, Primitive types
• File: Ap0010.htm
• Originally published: December 17, 2001
• Published at cnx.org: 12/01/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

7.2.7 Answers

7.2.7.1 Answer 10 .

D. 0.3333333333333333

7.2.7.1.1 Explanation 10

Divide �oating type by integer type
This program divides the literal �oating value of 1.0 by the literal integer value of 3 (no decimal point

is speci�ed in the integer literal value) .
Automatic conversion from narrow to wider type
To begin with, whenever division is performed between a �oating type and an integer type, the integer

type is automatically converted (sometimes called promoted) to a �oating type and �oating arithmetic is
performed.

What is the actual �oating type, �oat or double?
The real question here is, what is the type of the literal shown by 1.0 (with a decimal point separating

the 1 and the 0) . Is it a double or a �oat ?
Type double is the default
By default, a literal �oating value is treated as a double .
The result is type double

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2322 CHAPTER 7. OOP SELF-ASSESSMENT

Consequently, this program divides a double type by an integer type, producing a result of type
double . This is somewhat evident in the output, which shows about 17 digits plus a decimal point in
the result. (Recall that the maximum value for a �oat shown earlier had only about eight digits plus the
decimal point and the exponent.)

How can you create literals of type �oat?
What if you don't want your literal �oating value to be treated as a double , but would prefer that it

be treated as a �oat instead.
You can usually force this to be the case by adding a su�x of either F or f to the end of the literal value

(as in 1.0F) . If you were to modify this program to cause it to divide 1.0F by 3, the output would be
0.33333334 with only nine digits in the result.

Back to Question 10 (p. 2320)

7.2.7.2 Answer 9 .

D. 6.0

7.2.7.2.1 Explanation 9

Declare and initialize two local variables
This program declares and initializes two local variables, one of type double and the other of type

int . Each variable is initialized with the integer value 3.
Automatic conversion to �oating type double
However, before the value of 3 is stored in the double variable, it is automatically converted to type

double .
Automatic conversion in mixed-type arithmetic
Numeric addition is performed on the two variables. Whenever addition is performed between a �oating

type and an integer type, the integer type is automatically converted to a �oating type and �oating arithmetic
is performed.

A �oating result
This produces a �oating result. When this �oating result is passed to the println method for display,

a decimal point and a zero are displayed to indicate a �oating type, even though in this case, the fractional
part of the result is zero.

Back to Question 9 (p. 2319)

7.2.7.3 Answer 8 .

A. Compiler Error

7.2.7.3.1 Explanation 8

Initialize boolean variable to true
This program declares and initializes a boolean variable with the value true . Then it attempts to

add the literal value 1 to the value stored in the boolean variable named myVar .
Arithmetic with boolean values is not allowed
As mentioned earlier, unlike C++, boolean types in Java cannot participate in arithmetic expressions.
Therefore, this program will not compile. The compiler error produced by this program under JDK 1.3

reads partially as follows:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2323

Ap007.java:13: operator + cannot be applied to int,boolean

System.out.println(1 + myVar);

Table 7.17

Back to Question 8 (p. 2319)

7.2.7.4 Answer 7 .

D. false

7.2.7.4.1 Explanation 7

Format for variable initialization
This program declares a local boolean variable and initializes it to the value true . All variables,

local or otherwise, can be initialized in this manner provided that the expression on the right of the equal
sign evaluates to a value that is assignment compatible with the type of the variable. (I will have more to
say about assignment compatibility in a future module) .

Value is changed before display
However, before calling the println method to display the initial value of the variable, the program

uses the assignment operator (=) to assign the value false to the variable. Thus, when it is displayed, the
value is false .

Back to Question 7 (p. 2318)

7.2.7.5 Answer 6 .

A. Compiler Error

7.2.7.5.1 Explanation 6

A local boolean variable
In this program, the primitive variable named myVar is a local variable belonging to the method

named printBoolean .
Local variables are not automatically initialized
Unlike instance variables, if you fail to initialize a local variable, the variable is not automatically initial-

ized.
Cannot access value from uninitialized local variable
If you attempt to access and use the value from an uninitialized local variable before you assign a value

to it, you will get a compiler error. The compiler error produced by this program under JDK 1.3 reads
partially as follows:

Ap005.java:13: variable myVar might not have been initialized

System.out.println(myVar);

Table 7.18

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2324 CHAPTER 7. OOP SELF-ASSESSMENT

Must initialize or assign value to all local variables
Thus, the programmer is responsible for either initializing all local variables, or assigning a value to them

before attempting to access their value with code later in the program. The good news is that the system
won't allow you to compute with garbage left over in memory occupied by variables, either local variables
or member variables.

Back to Question 6 (p. 2317)

7.2.7.6 Answer 5 .

B. false

7.2.7.6.1 Explanation 5

The boolean type
In this program, the primitive variable named myVar is an instance variable of the type boolean .
What is an instance variable?
An instance variable is a variable that is declared inside a class, outside of all methods and constructors

of the class, and is not declared static. Every object instantiated from the class has one. That is why it is
called an instance variable.

Cannot use uninitialized variables in Java
One of the great things about Java is that it is not possible to make the mistake of using variables that

have not been initialized.
Can initialize when declared
All Java variables can be initialized when they are declared.
Member variables are automatically initialized
If the programmer doesn't initialize the variables declared inside the class but outside of a method (often

referred to as member variables as opposed to local variables) , they are automatically initialized to a default
value. The default value for a boolean variable is false.

Did you know the boolean default value?
I wouldn't be overly concerned if you had selected the answer A. true, because I wouldn't necessarily

expect you to memorize the default initialization value.
Great cause for concern
However, I would be very concerned if you selected either C. 1 or D. 0.
Java has a true boolean type
Unlike C++, Java does not represent true and false by the numeric values of 1 and 0. (At least the

numeric values that represent true and false are not readily accessible by the programmer.)
Thus, you cannot include boolean types in arithmetic expressions, as is the case in C++.
Back to Question 5 (p. 2317)

7.2.7.7 Answer 4 .

• B. 1.7976931348623157E308
• D. 4.9E-324

7.2.7.7.1 Explanation 4

Floating type versus integer type
If you missed this one, shame on you!
I didn't expect you to memorize the maximum and minimum values represented by the �oating type

double, but I did expect you to be able to distinguish between the display of a �oating value and the display
of an integer value.

Both values are positive

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2325

Note that both of the values given above are positive values.
Unlike the integer types discussed earlier, the constants named MAX_VALUE and MIN_VALUE

don't represent the ends of a signed number range for type double . Rather, they represent the largest
and smallest (non-zero) values that can be expressed by the type.

An indication of granularity
MIN_VALUE is an indication of the degree of granularity of values expressed as type double .

Any double value can be treated as either positive or negative.
Two �oating types are available
Java provides two �oating types: �oat and double . The double type provides the greater range,

or to use another popular terminology, it is the wider of the two.
What is the value range for a �oat?
In case you are interested, using the same syntax as above, the value range for type �oat is from 1.4E-45

to 3.4028235E38
Double is often the default type
There is another thing that is signi�cant about type double . In many cases where a value is automat-

ically converted to a �oating type, it is converted to type double rather than to type �oat. This will come
up in future modules.

Back to Question 4 (p. 2316)

7.2.7.8 Answer 3 .

A. -2147483648

7.2.7.8.1 Explanation 3

Could easily have guessed
As a practical matter, you had one chance in two of guessing the correct answer to this question, already

having been given the value of the largest algebraic value for type int.
And the winner is ...
Did you answer B. -2147483647? � WRONG
If so, you may be wondering why the most negative value isn't equal to the negative version of the most

positive value?
A twos-complement characteristic
Without going into the details of why, it is a well-known characteristic of binary twos-complement notation

that the value range extends one unit further in the negative direction than in the positive direction.
What about the other two values?
Do the values of -32768 and 32767 in the set of multiple-choice answers to this question represent anything

in particular?
Yes, they represent the extreme ends of the value range for a 16-bit binary number in twos-complement

notation.
Does Java have a 16-bit integer type?
Just in case you are interested, the short type in Java is represented in 16-bit binary twos-complement

signed notation, so this is the value range for type short.
What about type byte?
Similarly, a value of type byte is represented in 8-bit binary twos-complement signed notation, with a

value range extending from -128 to 127.
Back to Question 3 (p. 2316)

7.2.7.9 Answer 2 .

B. 2147483647

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2326 CHAPTER 7. OOP SELF-ASSESSMENT

7.2.7.9.1 Explanation 2

First question on types
This is the �rst question on Java types in this group of self-assessment modules.
32-bit signed twos-complement integers
In Java, values of type int are stored as 32-bit signed integers in twos-complement notation.
Can you calculate the values?
There are no unsigned integer types in Java, as there are in C++. If you are handy with binary notation,

you could calculate the largest positive value that can be stored in 32 bits in twos-complement notation.
See documentation for the Integer class
Otherwise, you can visit the documentation 10 for the Integer class, which provides a symbolic constant

(public static �nal variable) named MAX_VALUE . The description of MAX_VALUE reads as follows:
"The largest value of type int. The constant value of this �eld is 2147483647."
Back to Question 2 (p. 2316)

7.2.7.10 Answer 1 .

C. Hello World

7.2.7.10.1 Explanation 1

The answer to this �rst question is intended to be easy. The purpose of the �rst question is to introduce you
to the syntax that will frequently be used for program code in this group of self-assessment modules.

The controlling class and the main method
In this example, the class named Ap001 is the controlling class . It contains a method named main

, with a signature that matches the required signature for the main method. When the user executes this
program, the Java virtual machine automatically calls the method named main in the controlling class.

Create an instance of Worker
The main method uses the new operator along with the default constructor for the class named

Worker to create a new instance of the class named Worker (an object of the Worker class) . This is
often referred to as instantiating an object.

A reference to an anonymous object
The combination of the new operator and the default constructor for the Worker class returns a

reference to the new object. In this case, the object is instantiated as an anonymous object , meaning that
the object's reference is not saved in a named reference variable. (Instantiation of a non-anonymous object
will be illustrated later.)

Call hello method on Worker object
The main method contains a single executable statement.
As soon as the reference to the new object is returned, the single statement in the main method calls

the hello method on that reference.
Output to standard output device
This causes the hello method belonging to the new object (of the class named Worker) to execute.

The code in the hello method calls the println method on the static variable of the System class
named out .

Lots of OOP embodied in the hello method
I often tell my students that I can tell a lot about whether a student really understands object-oriented

programming in Java by asking them to explain everything that they know about the following statement:
System.out.println("Hello World");
I would expect the answer to consume about ten to �fteen minutes if the student really understands Java

OOP.
The one-minute version

10http://cnx.org/content/m45117

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2327

When the virtual machine starts a Java application running, it automatically instantiates an I/O stream
object linked to the standard output device (normally the screen) and stores a reference to that object in
the static variable named out belonging to the class named System .

Call the println instance method on out
Calling the println method on that reference, and passing a literal string ("Hello World") to that

method causes the contents of the literal String object to be displayed on the standard output device.
Display Hello World on the screen
In this case, this causes the words Hello World to be displayed on the standard output device. This is

the answer to the original question.
Time for main method to terminate
When the hello method returns, the main method has nothing further to do, so it terminates. When

the main method terminates in a Java application, the application terminates and returns control to the
operating system. This causes the system prompt to reappear.

A less-cryptic form
A less cryptic form of this program is shown in Listing 17 (p. 2335) .

Listing 17 . Answer 1.

public class Ap002{

public static void main(

String args[]){

Worker refVar = new Worker();

refVar.hello();

}//end main()

}//end class definition

class Worker{

public void hello(){

System.out.println("Hello World");

}//end hello()

}//end class definition

Table 7.19

Decompose single statement into two statements
In this version, the single statement in the earlier version of the main method is replaced by two

statements.
A non-anonymous object
In the class named Ap002 shown in Listing 2 (p. 2316) , the object of the class named Worker is

not instantiated anonymously. Rather, a new object of the Worker class is instantiated and the object's
reference is stored in (assigned to) the named reference variable named refVar .

Call hello method on named reference
Then the hello method is called on that reference in a separate statement.
Produces the same result as before
The �nal result is exactly the same as before. The only di�erence is that a little more typing is required

to create the source code for the second version.
Will often use anonymous objects
In order to minimize the amount of typing required, I will probably use the anonymous form of instanti-

ation whenever appropriate in these modules.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2328 CHAPTER 7. OOP SELF-ASSESSMENT

Now that you understand the framework ...
Now that you understand the framework for the program code, I can present more speci�c questions.

Also, the explanations will usually be shorter.
Back to Question 1 (p. 2315)
-end-

7.3 Ap0020: Self-assessment, Assignment and Arithmetic
Operators11

7.3.1 Table of Contents

• Preface (p. 2336)
• Questions (p. 2337)

· 1 (p. 2337) , 2 (p. 2337) , 3 (p. 2338) , 4 (p. 2339) , 5 (p. 2340) , 6 (p. 2341) , 7 (p. 2342) , 8
(p. 2342) , 9 (p. 2343) , 10 (p. 2344) , 11 (p. 2344) , 12 (p. 2345) , 13 (p. 2346) , 14 (p. 2346) ,
15 (p. 2347)

• Programming challenge questions (p. 2348)

· 16 (p. 2348) , 17 (p. 2348) , 18 (p. 2349) , 19 (p. 2350) , 20 (p. 2351) , 21 (p. 2352) , 22 (p.
2353)

• Listings (p. 2354)
• Miscellaneous (p. 2355)
• Answers (p. 2355)

7.3.2 Preface

This module is part of a self-assessment test designed to help you determine how much you know about
object-oriented programming using Java.

Questions and answers
The test consists of a series of questions (p. 2337) with answers (p. 2355) and explanations of the

answers.
The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the

question to the answer and back.
Programming challenge questions
The module also contains a section titled Programming challenge questions (p. 2348) . This section

provides speci�cations for one or more programs that you should be able to write once you understand the
answers to all of the questions. (Note that it is not always possible to con�ne the programming knowledge
requirement to this and earlier modules. Therefore, you may occasionally need to refer ahead to future
modules in order to write the programs.)

Unlike the other questions, solutions are not provided for the Programming challenge questions .
However, in most cases, the speci�cations will describe the output that your program should produce.

Listings
I recommend that you open another copy of this document in a separate browser window and use the

links to under Listings (p. 2354) to easily �nd and view the listings while you are reading about them.

11This content is available online at <http://cnx.org/content/m45286/1.6/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2329

7.3.3 Questions

7.3.3.1 Question 1 .

What output is produced by the program shown in Listing 1 (p. 2337) ?

• A. Compiler Error
• B. Runtime Error
• C. 3.0
• D. 4.0
• E. 7.0

Listing 1 . Listing for Question 1.

public class Ap010{

public static void main(

String args[]){

new Worker().doAsg();

}//end main()

}//end class definition

class Worker{

public void doAsg(){

double myVar;

myVar = 3.0;

myVar += 4.0;

System.out.println(myVar);

}//end doAsg()

}//end class definition

Table 7.20

Answer and Explanation (p. 2363)

7.3.3.2 Question 2

What output is produced by the program shown in Listing 2 (p. 2338) ?

• A. Compiler Error
• B. Runtime Error
• C. 2.147483647E9
• D. 2.14748365E9

Listing 2 . Listing for Question 2.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2330 CHAPTER 7. OOP SELF-ASSESSMENT

public class Ap011{

public static void main(

String args[]){

new Worker().doAsg();

}//end main()

}//end class definition

class Worker{

public void doAsg(){

double myDoubleVar;

//Integer.MAX_VALUE = 2147483647

int myIntVar = Integer.MAX_VALUE;

myDoubleVar = myIntVar;

System.out.println(myDoubleVar);

}//end doAsg()

}//end class definition

Table 7.21

Answer and Explanation (p. 2362)

7.3.3.3 Question 3

What output is produced by the following program?

• A. Compiler Error
• B. Runtime Error
• C. 2147483647
• D. 2.147483647E9

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2331

Listing 3 . Listing for Question 3.

public class Ap012{

public static void main(

String args[]){

new Worker().doAsg();

}//end main()

}//end class definition

class Worker{

public void doAsg(){

//Integer.MAX_VALUE = 2147483647

double myDoubleVar =

Integer.MAX_VALUE;

int myIntVar;

myIntVar = myDoubleVar;

System.out.println(myIntVar);

}//end doAsg()

}//end class definition

Table 7.22

Answer and Explanation (p. 2362)

7.3.3.4 Question 4

What output is produced by the program shown in Listing 4 (p. 2340) ?

• A. Compiler Error
• B. Runtime Error
• C. 2147483647
• D. 2.147483647E9

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2332 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 4 . Listing for Question 4.

public class Ap013{

public static void main(

String args[]){

new Worker().doAsg();

}//end main()

}//end class definition

class Worker{

public void doAsg(){

//Integer.MAX_VALUE = 2147483647

double myDoubleVar =

Integer.MAX_VALUE;

int myIntVar;

myIntVar = (int)myDoubleVar;

System.out.println(myIntVar);

}//end doAsg()

}//end class definition

Table 7.23

Answer and Explanation (p. 2361)

7.3.3.5 Question 5

What output is produced by the program shown in Listing 5 (p. 2341) ?

• A. Compiler Error
• B. Runtime Error
• C. 4.294967294E9
• D. 4294967294

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2333

Listing 5 . Listing for Question 5.

public class Ap014{

public static void main(

String args[]){

new Worker().doMixed();

}//end main()

}//end class definition

class Worker{

public void doMixed(){

//Integer.MAX_VALUE = 2147483647

int myIntVar = Integer.MAX_VALUE;

System.out.println(2.0 * myIntVar);

}//end doMixed()

}//end class definition

Table 7.24

Answer and Explanation (p. 2360)

7.3.3.6 Question 6

What output is produced by the program shown in Listing 6 (p. 2341) ?

• A. Compiler Error
• B. Runtime Error
• C. 2147483649
• D. -2147483647

Listing 6 . Listing for Question 6.

public class Ap015{

public static void main(

String args[]){

new Worker().doMixed();

}//end main()

}//end class definition

class Worker{

public void doMixed(){

//Integer.MAX_VALUE = 2147483647

int myVar01 = Integer.MAX_VALUE;

int myVar02 = 2;

System.out.println(

myVar01 + myVar02);

}//end doMixed()

}//end class definition

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2334 CHAPTER 7. OOP SELF-ASSESSMENT

Table 7.25

Answer and Explanation (p. 2360)

7.3.3.7 Question 7

What output is produced by the program shown in Listing 7 (p. 2342) ?

• A. Compiler Error
• B. Runtime Error
• C. 33.666666
• D. 34
• E. 33

Listing 7 . Listing for Question 7.

public class Ap016{

public static void main(

String args[]){

new Worker().doMixed();

}//end main()

}//end class definition

class Worker{

public void doMixed(){

int myVar01 = 101;

int myVar02 = 3;

System.out.println(

myVar01/myVar02);

}//end doMixed()

}//end class definition

Table 7.26

Answer and Explanation (p. 2359)

7.3.3.8 Question 8

What output is produced by the program shown in Listing 8 (p. 2343) ?

• A. Compiler Error
• B. Runtime Error
• C. In�nity
• D. 11

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2335

Listing 8 . Listing for Question 8.

public class Ap017{

public static void main(

String args[]){

new Worker().doMixed();

}//end main()

}//end class definition

class Worker{

public void doMixed(){

int myVar01 = 11;

int myVar02 = 0;

System.out.println(

myVar01/myVar02);

}//end doMixed()

}//end class definition

Table 7.27

Answer and Explanation (p. 2358)

7.3.3.9 Question 9

What output is produced by the program shown in Listing 9 (p. 2343) ?

• A. Compiler Error
• B. Runtime Error
• C. In�nity
• D. 11

Listing 9 . Listing for Question 9.

public class Ap018{

public static void main(

String args[]){

new Worker().doMixed();

}//end main()

}//end class definition

class Worker{

public void doMixed(){

double myVar01 = 11;

double myVar02 = 0;

System.out.println(

myVar01/myVar02);

}//end doMixed()

}//end class definition

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2336 CHAPTER 7. OOP SELF-ASSESSMENT

Table 7.28

Answer and Explanation (p. 2358)

7.3.3.10 Question 10

What output is produced by the program shown in Listing 10 (p. 2344) ?

• A. Compiler Error
• B. Runtime Error
• C. 2
• D. -2

Listing 10 . Listing for Question 10.

public class Ap019{

public static void main(

String args[]){

new Worker().doMod();

}//end main()

}//end class definition

class Worker{

public void doMod(){

int myVar01 = -11;

int myVar02 = 3;

System.out.println(

myVar01 % myVar02);

}//end doMod()

}//end class definition

Table 7.29

Answer and Explanation (p. 2357)

7.3.3.11 Question 11

What output is produced by the program shown in Listing 11 (p. 2345) ?

• A. Compiler Error
• B. Runtime Error
• C. 2
• D. 11

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2337

Listing 11 . Listing for Question 11.

public class Ap020{

public static void main(

String args[]){

new Worker().doMod();

}//end main()

}//end class definition

class Worker{

public void doMod(){

int myVar01 = -11;

int myVar02 = 0;

System.out.println(

myVar01 % myVar02);

}//end doMod()

}//end class definition

Table 7.30

Answer and Explanation (p. 2357)

7.3.3.12 Question 12

What output is produced by the program shown in Listing 12 (p. 2345) ?

• A. Compiler Error
• B. Runtime Error
• C. -0.010999999999999996
• D. 0.010999999999999996

Listing 12 . Listing for Question 12.

public class Ap021{

public static void main(

String args[]){

new Worker().doMod();

}//end main()

}//end class definition

class Worker{

public void doMod(){

double myVar01 = -0.11;

double myVar02 = 0.033;

System.out.println(

myVar01 % myVar02);

}//end doMod()

}//end class definition

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2338 CHAPTER 7. OOP SELF-ASSESSMENT

Table 7.31

Answer and Explanation (p. 2356)

7.3.3.13 Question 13

What output is produced by the program shown in Listing 13 (p. 2346) ?

• A. Compiler Error
• B. Runtime Error
• C. 0.0
• D. 1.5499999999999996

Listing 13 . Listing for Question 13.

public class Ap022{

public static void main(

String args[]){

new Worker().doMod();

}//end main()

}//end class definition

class Worker{

public void doMod(){

double myVar01 = 15.5;

double myVar02 = 1.55;

System.out.println(

myVar01 % myVar02);

}//end doMod()

}//end class definition

Table 7.32

Answer and Explanation (p. 2356)

7.3.3.14 Question 14

What output is produced by the program shown in Listing 14 (p. 2347) ?

• A. Compiler Error
• B. Runtime Error
• C. In�nity
• D. NaN

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2339

Listing 14 . Listing for Question 14.

public class Ap023{

public static void main(

String args[]){

new Worker().doMod();

}//end main()

}//end class definition

class Worker{

public void doMod(){

double myVar01 = 15.5;

double myVar02 = 0.0;

System.out.println(

myVar01 % myVar02);

}//end doMod()

}//end class definition

Table 7.33

Answer and Explanation (p. 2356)

7.3.3.15 Question 15

What output is produced by the program shown in Listing 15 (p. 2347) ?

• A. Compiler Error
• B. Runtime Error
• C. -3 2
• D. -3 -2

Listing 15 . Listing for Question 15.

public class Ap024{

public static void main(

String args[]){

new Worker().doMod();

}//end main()

}//end class definition

class Worker{

public void doMod(){

int x = 11;

int y = -3;

System.out.println(

x/y + " " + x % y);

}//end doMod()

}//end class definition

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2340 CHAPTER 7. OOP SELF-ASSESSMENT

Table 7.34

Answer and Explanation (p. 2355)

7.3.4 Programming challenge questions

7.3.4.1 Question 16

Write the program described in Listing 16 (p. 2348) .

Listing 16 . Listing for Question 16.

/*File Ap0020a1.java Copyright 2012, R.G.Baldwin

Instructions to student:

Beginning with the code fragment shown below, write a

method named doIt that:

1. Illustrates the proper use of the combined

arithmetic/assignment operators such as the following

operators:

+=

*=

**/

public class Ap0020a1{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class definition

//===//

class Worker{

//---//

//Student: insert the method named doIt between these

// lines.

//---//

}//end class definition

//===//

Table 7.35

7.3.4.2 Question 17

Write the program described in Listing 17 (p. 2349) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2341

Listing 17 . Listing for Question 17.

/*File Ap0020b1.java Copyright 2012, R.G.Baldwin

Instructions to student:

Beginning with the code fragment shown below, write a

method named doIt that:

1. Illustrates the detrimental impact of integer arithmetic

overflow.

**/

public class Ap0020b1{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class definition

//===//

class Worker{

//---//

//Student: insert the method named doIt between these

// lines.

//---//

}//end class definition

//===//

Table 7.36

7.3.4.3 Question 18

Write the program described in Listing 18 (p. 2350) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2342 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 18 . Listing for Question 18.

/*File Ap0020c1.java Copyright 2012, R.G.Baldwin

Instructions to student:

Beginning with the code fragment shown below, write a

method named doIt that:

1. Illustrates the effect of integer truncation that

occurs with integer division.

**/

public class Ap0020c1{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class definition

//===//

class Worker{

//---//

//Student: insert the method named doIt between these

// lines.

//---//

}//end class definition

//===//

Table 7.37

7.3.4.4 Question 19

Write the program described in Listing 19 (p. 2351) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2343

Listing 19 . Listing for Question 19.

/*File Ap0020d1.java Copyright 2012, R.G.Baldwin

Instructions to student:

Beginning with the code fragment shown below, write a

method named doIt that:

1. Illustrates the effect of double divide by zero.

2. Illustrates the effect of integer divide by zero.

**/

public class Ap0020d1{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class definition

//===//

class Worker{

//---//

//Student: insert the method named doIt between these

// lines.

//---//

}//end class definition

//===//

Table 7.38

7.3.4.5 Question 20

Write the program described in Listing 20 (p. 2352) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2344 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 20 . Listing for Question 20.

/*File Ap0020e1.java Copyright 2012, R.G.Baldwin

Instructions to student:

Beginning with the code fragment shown below, write a

method named doIt that:

1. Illustrates the effect of the modulus operation with

integers.

**/

public class Ap0020e1{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class definition

//===//

class Worker{

//---//

//Student: insert the method named doIt between these

// lines.

//---//

}//end class definition

//===//

Table 7.39

7.3.4.6 Question 21

Write the program described in Listing 21 (p. 2353) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2345

Listing 21 . Listing for Question 21.

/*File Ap0020f1.java Copyright 2012, R.G.Baldwin

Instructions to student:

Beginning with the code fragment shown below, write a

method named doIt that:

1. Illustrates the effect of the modulus operation with

doubles.

**/

public class Ap0020f1{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class definition

//===//

class Worker{

//---//

//Student: insert the method named doIt between these

// lines.

//---//

}//end class definition

//===//

Table 7.40

7.3.4.7 Question 22

Write the program described in Listing 22 (p. 2354) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2346 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 22 . Listing for Question 22.

/*File Ap0020g1.java Copyright 2012, R.G.Baldwin

Instructions to student:

Beginning with the code fragment shown below, write a

method named doIt that:

1. Illustrates the concatenation of the following strings

separated by space characters.

"This"

"is"

"fun"

Cause your program to produce the following output:

This

is

fun

This is fun

**/

public class Ap0020g1{

public static void main(String args[]){

new Worker().doIt();

}//end main()

}//end class definition

//===//

class Worker{

//---//

//Student: insert the method named doIt between these

// lines.

//---//

}//end class definition

//===//

Table 7.41

7.3.5 Listings

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

• Listing 1 (p. 2337) . Listing for Question 1.
• Listing 2 (p. 2338) . Listing for Question 2.
• Listing 3 (p. 2339) . Listing for Question 3.
• Listing 4 (p. 2340) . Listing for Question 4.
• Listing 5 (p. 2341) . Listing for Question 5.
• Listing 6 (p. 2341) . Listing for Question 6.
• Listing 7 (p. 2342) . Listing for Question 7.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2347

• Listing 8 (p. 2343) . Listing for Question 8.
• Listing 9 (p. 2343) . Listing for Question 9.
• Listing 10 (p. 2344) . Listing for Question 10.
• Listing 11 (p. 2345) . Listing for Question 11.
• Listing 12 (p. 2345) . Listing for Question 12.
• Listing 13 (p. 2346) . Listing for Question 13.
• Listing 14 (p. 2347) . Listing for Question 14.
• Listing 15 (p. 2347) . Listing for Question 15.
• Listing 16 (p. 2348) . Listing for Question 16.
• Listing 17 (p. 2349) . Listing for Question 17.
• Listing 18 (p. 2350) . Listing for Question 18.
• Listing 19 (p. 2351) . Listing for Question 19.
• Listing 20 (p. 2352) . Listing for Question 20.
• Listing 21 (p. 2353) . Listing for Question 21.
• Listing 22 (p. 2354) . Listing for Question 22.

7.3.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Ap0020: Self-assessment, Assignment and Arithmetic Operators
• File: Ap0020.htm
• Originally published: January 7, 2002
• Published at cnx.org: 12/01/12
• Revised: 12/03/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

7.3.7 Answers

7.3.7.1 Answer 15

C. -3 2

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2348 CHAPTER 7. OOP SELF-ASSESSMENT

7.3.7.1.1 Explanation 15

String concatenation
This program uses String concatenation, which has not been previously discussed in this group of

self-assessment modules.
In this case, the program executes both an integer divide operation and an integer modulus operation,

using String concatenation to display both results on a single line of output.
Quotient = -3 with a remainder of 2
Thus, the displayed result is the integer quotient followed by the remainder.
What is String concatenation?
If either operand of the plus (+) operator is of type String , no attempt is made to perform arithmetic

addition. Rather, the other operand is converted to a String , and the two strings are concatenated.
A space character, " "
The string containing a space character (" ") in this expression appears as the right operand of one plus

operator and as the left operand of the other plus operator.
If you already knew about String concatenation, you should have been able to �gure out the correct

answer to the question on the basis of the answers to earlier questions in this module.
Back to Question 15 (p. 2347)

7.3.7.2 Answer 14

D. NaN

7.3.7.2.1 Explanation 14

Floating modulus operation involves �oating divide
The modulus operation with �oating operands and 0.0 as the right operand produces NaN , which

stands for Not a Number .
What is the actual value of Not a Number?
A symbolic constant that is accessible as Double.NaN speci�es the value that is returned in this case.
Be careful what you try to do with it. It has some peculiar behavior of its own.
Back to Question 14 (p. 2346)

7.3.7.3 Answer 13

D. 1.5499999999999996

7.3.7.3.1 Explanation 13

A totally incorrect result
Unfortunately, due to �oating arithmetic inaccuracy, the modulus operation in this program produces an

entirely incorrect result.
The result should be 0.0, and that is the result produced by my hand calculator.
Terminates one step too early
However, this program terminates the repetitive subtraction process one step too early and produces an

incorrect remainder.
Be careful
This program is included here to emphasize the need to be very careful how you interpret the result of

performing modulus operations on �oating operands.
Back to Question 13 (p. 2346)

7.3.7.4 Answer 12

C. -0.010999999999999996

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2349

7.3.7.4.1 Explanation 12

Modulus operator can be used with �oating types
In this case, the program returns the remainder that would be produced by dividing a double value of

-0.11 by a double value of 0.033 and terminating the divide operation at the beginning of the fractional part
of the quotient.

Say that again
Stated di�erently, the result of the modulus operation is the remainder that results after

• subtracting the right operand from the left operand an integral number of times, and
• terminating the repetitive subtraction process when the result of the subtraction is less than the right

operand

Modulus result is not exact
According to my hand calculator, taking into account the fact that the left operand is negative, this

operation should produce a modulus result of -0.011. As you can see, the result produced by the application
of the modulus operation to �oating types is not exact.

Back to Question 12 (p. 2345)

7.3.7.5 Answer 11

B. Runtime Error

7.3.7.5.1 Explanation 11

Integer modulus involves integer divide
The modulus operation with integer operands involves an integer divide.
Therefore, it is subject to the same kind of problem as an ordinary integer divide when the right operand

has a value of zero.
Program produces a runtime error
In this case, the program produced a runtime error that terminated the program. The error produced

by JDK 1.3 is as follows:

Exception in thread "main" java.lang.ArithmeticException: / by zero

at Worker.doMod(Ap020.java:14)

at Ap020.main(Ap020.java:6)

Table 7.42

Dealing with the problem
As with integer divide, you can either test the right operand for a zero value before performing the

modulus operation, or you can deal with the problem after the fact using try-catch.
Back to Question 11 (p. 2344)

7.3.7.6 Answer 10

D. -2

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2350 CHAPTER 7. OOP SELF-ASSESSMENT

7.3.7.6.1 Explanation 10

What is a modulus operation?
In elementary terms, we like to say that the modulus operation returns the remainder that results from

a divide operation.
In general terms, that is true.
Some interesting behavior
However, the modulus operation has some interesting behaviors that are illustrated in this and the next

several questions.
This program returns the modulus of -11 and 3, with -11 being the left operand.
What is the algebraic sign of the result?
Here is a rule:
The result of the modulus operation takes the sign of the left operand, regardless of the sign of the

quotient and regardless of the sign of the right operand. In this program, that produced a result of -2.
Changing the sign of the right operand would not have changed the sign of the result.
Exercise care with sign of modulus result
Thus, you may need to exercise care as to how you interpret the result when you perform a modulus

operation having a negative left operand.
Back to Question 10 (p. 2344)

7.3.7.7 Answer 9

C. In�nity

7.3.7.7.1 Explanation 9

Floating divide by zero
This program attempts to divide the double value of 11 by the double value of zero.
No runtime error with �oating divide by zero
In the case of �oating types, an attempt to divide by zero does not produce a runtime error. Rather, it

returns a value that the println method interprets and displays as In�nity.
What is the actual value?
The actual value returned by this program is provided by a static �nal variable in the Double class

named POSITIVE_INFINITY .
(There is also a value for NEGATIVE_INFINITY, which is the value that would be returned if one of

the operands were a negative value.)
Is this a better approach?
Is this a better approach than throwing an exception as is the case for integer divide by zero?
I will let you be the judge of that.
In either case, you can test the right operand before the divide to assure that it isn't equal to zero.
Cannot use exception handling in this case
For �oating divide by zero, you cannot handle the problem by using try-catch.
However, you can test the result following the divide to see if it is equal to either of the in�nity values

mentioned above.
Back to Question 9 (p. 2343)

7.3.7.8 Answer 8

B. Runtime Error

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2351

7.3.7.8.1 Explanation 8

Dividing by zero
This program attempts to divide the int value of 11 by the int value of zero.
Integer divide by zero is not allowed
This produces a runtime error and terminates the program.
The runtime error is as follows under JDK 1.3:

Exception in thread "main" java.lang.ArithmeticException: / by zero

at Worker.doMixed(Ap017.java:14)

at Ap017.main(Ap017.java:6)

Table 7.43

Two ways to deal with this sort of problem
One way is to test the right operand before each divide operation to assure that it isn't equal to zero,

and to take appropriate action if it is.
A second (possibly preferred) way is to use exception handling and surround the divide operation with

a try block, followed by a catch block for the type

java.lang.ArithmeticException.

Table 7.44

The code in the catch block can be designed to deal with the problem if it occurs. (Exception handling
will be discussed in a future module.)

Back to Question 8 (p. 2342)

7.3.7.9 Answer 7

E. 33

7.3.7.9.1 Explanation 7

Integer truncation
This program illustrates the integer truncation that results when the division operator is applied to

operands of the integer types.
The result of simple long division
We all know that when we divide 101 by 3, the result is 33.666666 with the sixes extending out to the

limit of our arithmetic accuracy.
The result of rounding
If we round the result to the next closest integer, the result is 34.
Integer division does not round
However, when division is performed using operands of integer types in Java, the fractional part is simply

discarded (not rounded) .
The result is the whole number result without regard for the fractional part or the remainder.
Thus, with integer division, 101/3 produces the integer value 33.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2352 CHAPTER 7. OOP SELF-ASSESSMENT

If either operand is a �oating type ...
If either operand is one of the �oating types,

• the integer operand will be converted to the �oating type,
• the result will be of the �oating type, and
• the fractional part of the result will be preserved to some degree of accuracy

Back to Question 7 (p. 2342)

7.3.7.10 Answer 6

D. -2147483647

7.3.7.10.1 Explanation 6

Danger, integer over�ow ahead!
This program illustrates a very dangerous situation involving arithmetic using operands of integer types.

This situation involves a condition commonly known as integer over�ow .
The good news
The good news about doing arithmetic using operands of integer types is that as long as the result is

within the allowable value range for the wider of the integer types, the results are exact (�oating arithmetic
often produces results that are not exact) .

The bad news
The bad news about doing arithmetic using operands of integer types is that when the result is not

within the allowable value range for the wider of the integer types, the results are garbage, having no usable
relationship to the correct result (�oating arithmetic has a high probability of producing approximately
correct results, even though the results may not be exact).

For this speci�c case ...
As you can see by the answer to this question, when a value of 2 was added to the largest positive value

that can be stored in type int , the incorrect result was a very large negative value.
The result is simply incorrect. (If you know how to do binary arithmetic, you can �gure out how this

happens.)
No safety net in this case � just garbage
Furthermore, there was no compiler error and no runtime error. The program simply produced an

incorrect result with no warning.
You need to be especially careful when writing programs that perform arithmetic using operands of

integer types. Otherwise, your programs may produce incorrect results.
Back to Question 6 (p. 2341)

7.3.7.11 Answer 5

C. 4.294967294E9

7.3.7.11.1 Explanation 5

Mixed-type arithmetic
This program illustrates the use of arithmetic operators with operands of di�erent types.
Declare and initialize an int
The method named doMixed declares a local variable of type int named myIntVar and initializes

it with the largest positive value that can be stored in type int .
Evaluate an arithmetic expression
An arithmetic expression involving myIntVar is evaluated and the result is passed as a parameter to

the println method where it is displayed on the computer screen.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2353

Multiply by a literal double value
The arithmetic expression uses the multiplication operator (*) to multiply the value stored in myIntVar

by 2.0 (this literal operand is type double by default) .
Automatic conversion to wider type
When arithmetic is performed using operands of di�erent types, the type of the operand of the narrower

type is automatically converted to the type of the operand of the wider type, and the arithmetic is performed
on the basis of the wider type.

Result is of the wider type
The type of the result is the same as the wider type.
In this case ...
Because the left operand is type double , the int value is converted to type double and the

arithmetic is performed as type double .
This produces a result of type double , causing the �oating value 4.294967294E9 to be displayed on

the computer screen.
Back to Question 5 (p. 2340)

7.3.7.12 Answer 4

C. 2147483647

7.3.7.12.1 Explanation 4

Uses a cast operator
This program, named Ap013.java , di�ers from the earlier program named Ap012.java in one

important respect.
This program uses a cast operator to force the compiler to allow a narrowing conversion in order to

assign a double value to an int variable.
The cast operator
The statement containing the cast operator is shown below for convenient viewing.

myIntVar = (int)myDoubleVar;

Table 7.45

Syntax of a cast operator
The cast operator consists of the name of a type contained within a pair of matching parentheses.
A unary operator
The cast operator always appears to the left of an expression whose type is being converted to the type

speci�ed by the cast operator.
Assuming responsibility for potential problems
When dealing with primitive types, the cast operator is used to notify the compiler that the programmer

is willing to assume the risk of a possible loss of precision in a narrowing conversion.
No loss of precision here
In this case, there was no loss in precision, but that was only because the value stored in the double

variable was within the allowable value range for an int .
In fact, it was the largest positive value that can be stored in the type int . Had it been any larger, a

loss of precision would have occurred.
More on this later ...
I will have quite a bit more to say about the cast operator in future modules. I will also have more to

say about the use of the assignment operator in conjunction with the non-primitive types.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2354 CHAPTER 7. OOP SELF-ASSESSMENT

Back to Question 4 (p. 2339)

7.3.7.13 Answer 3

A. Compiler Error

7.3.7.13.1 Explanation 3

Conversion from double to int is not automatic
This program attempts to assign a value of type double to a variable of type int .
Even though we know that the speci�c double value involved would �t in the int variable with no loss

of precision, the conversion from double to int is not a widening conversion.
This is a narrowing conversion
In fact, it is a narrowing conversion because the allowable value range for an int is less than the

allowable value range for a double .
The conversion is not allowed by the compiler. The following compiler error occurs under JDK 1.3:

Ap012.java:16: possible loss of precision

found : double

required: int

myIntVar = myDoubleVar myIntVar = myDoubleVar;

Table 7.46

Back to Question 3 (p. 2338)

7.3.7.14 Answer 2

C. 2.147483647E9

7.3.7.14.1 Explanation 2

Declare a double
The method named doAsg �rst declares a local variable of type double named myDoubleVar

without providing an initial value.
Declare and initialize an int
Then it declares an int variable named myIntVar and initializes its value to the integer value

2147483647 (you learned about Integer.MAX_VALUE in an earlier module) .
Assign the int to the double
Following this, the method assigns contents of the int variable to the double variable.
An assignment compatible conversion
This is an assignment compatible conversion. In particular, the integer value of 2147483647 is auto-

matically converted to a double value and stored in the double variable.
The double representation of that value is what appears on the screen later when the value of

myDoubleVar is displayed.
What is an assignment compatible conversion?
An assignment compatible conversion for the primitive types occurs when the required conversion is a

widening conversion.
What is a widening conversion?

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2355

A widening conversion occurs when the allowable value range of the type of the left operand of the
assignment operator is greater than the allowable value range of the right operand of the assignment operator.

A double is wider than an int
Since the allowable value range of type double is greater than the allowable value range of type int

, assignment of an int value to a double variable is allowed, with conversion from int to double
occurring automatically.

A safe conversion
It is also signi�cant to note that there is no loss in precision when converting from an int to a double

.
An unsafe but allowable conversion
However, a loss of precision may occur when an int is assigned to a �oat , or when a long is

assigned to a double .
What would a �oat produce ?

The value of 2.14748365E9 shown for selection D is what you would see for this program if you were
to change the double variable to a �oat variable. (Contrast this with 2147483647 to see the loss of
precision.)

Widening is no guarantee that precision will be preserved
The fact that a type conversion is a widening conversion does not guarantee that there will be no loss

of precision in the conversion. It simply guarantees that the conversion will be allowed by the compiler. In
some cases, such as that shown above (p. 2363) , an assignment compatible conversion can result in a loss
of precision, so you always need to be aware of what you are doing.

Back to Question 2 (p. 2337)

7.3.7.15 Answer 1

E. 7.0

7.3.7.15.1 Explanation 1

Declare but don't initialize a double variable
The method named doAsg begins by declaring a double variable named myVar without initializing

it.
Use the simple assignment operator
The simple assignment operator (=) is then used to assign the double value 3.0 to the variable.

Following the execution of that statement, the variable contains the value 3.0.
Use the arithmetic/assignment operator
The next statement uses the combined arithmetic/assignment operator (+=) to add the value 4.0 to the

value of 3.0 previously assigned to the variable. The following two statements are functionally equivalent:

myVar += 4.0;

myVar = myVar + 4.0;

Table 7.47

Two statements are equivalent
This program uses the �rst statement listed above. If you were to replace the �rst statement with the

second statement, the result would be the same.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2356 CHAPTER 7. OOP SELF-ASSESSMENT

In this case, either statement would add the value 4.0 to the value of 3.0 that was previously assigned
to the variable named myVar , producing the sum of 7.0. Then it would assign the sum of 7.0 back to
the variable. When the contents of the variable are then displayed, the result is that 7.0 appears on the
computer screen.

No particular bene�t
To the knowledge of this author, there is no particular bene�t to using the combined arith-

metic/assignment notation other than to reduce the amount of typing required to produce the source code.
However, if you ever plan to interview for a job as a Java programmer, you need to know how to use the
combined version.

Four other similar operators
Java support several combined operators. Some involve arithmetic and some involve other operations

such as bit shifting. Five of the combined operators are shown below. These �ve all involve arithmetic.

• +=
• -=
• *=
• /=
• %=

In all �ve cases, you can construct a functionally equivalent arithmetic and assignment statement in the
same way that I constructed the functionally equivalent statement for += above.

Back to Question 1 (p. 2337)
-end-

7.4 Ap0030: Self-assessment, Relational Operators, Increment Op-
erator, and Control Structures12

7.4.1 Table of Contents

• Preface (p. 2364)
• Questions (p. 2365)

· 1 (p. 2365) , 2 (p. 2365) , 3 (p. 2367) , 4 (p. 2368) , 5 (p. 2369) , 6 (p. 2370) , 7 (p. 2371) , 8
(p. 2372) , 9 (p. 2373) , 10 (p. 2374) , 11 (p. 2375) , 12 (p. 2376) , 13 (p. 2377) , 14 (p. 2378) ,
15 (p. 2379)

• Listings (p. 2380)
• Miscellaneous (p. 2380)
• Answers (p. 2381)

7.4.2 Preface

This module is part of a self-assessment test designed to help you determine how much you know about
object-oriented programming using Java.

The test consists of a series of questions with answers and explanations of the answers.
The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the

question to the answer and back.
I recommend that you open another copy of this document in a separate browser window and use the

links to under Listings (p. 2380) to easily �nd and view the listings while you are reading about them.

12This content is available online at <http://cnx.org/content/m45287/1.4/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2357

7.4.3 Questions

7.4.3.1 Question 1 .

Given: The use of String concatenation in the argument list of the call to the println method in the
program shown in Listing 1 (p. 2365) will cause seven items to be displayed on the screen, separated by
spaces.

True or False? The program produces the output shown below:

false true false false true true false

Table 7.48

Listing 1 . Listing for Question 1.

public class Ap025{

public static void main(

String args[]){

new Worker().doRelat();

}//end main()

}//end class definition

class Worker{

public void doRelat(){

int a = 1, b = 2, c = 3, d = 2;

System.out.println(

(a == b) + " " +

(b == d) + " " +

(b != d) + " " +

(c < a) + " " +

(b <= d) + " " +

(c > d) + " " +

(a >= c));

}//end doRelat()

}//end class definition

Table 7.49

Answer and Explanation (p. 2389)

7.4.3.2 Question 2

What output is produced by the program shown in Listing 2 (p. 2367) ?

• A. Compiler Error
• B. Runtime Error

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2358 CHAPTER 7. OOP SELF-ASSESSMENT

• C. true
• D. false

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2359

Listing 2 . Listing for Question 2.

public class Ap026{

public static void main(

String args[]){

new Worker().doRelat();

}//end main()

}//end class definition

class Worker{

public void doRelat(){

Dummy x = new Dummy();

Dummy y = new Dummy();

System.out.println(x == y);

}//end doRelat()

}//end class definition

class Dummy{

int x = 5;

double y = 5.5;

String z = "A String Object";

}//end class Dummy

Table 7.50

Answer and Explanation (p. 2388)

7.4.3.3 Question 3

What output is produced by the program shown in Listing 3 (p. 2368) ?

• A. Compiler Error
• B. Runtime Error
• C. true
• D. false

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2360 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 3 . Listing for Question 3.

public class Ap027{

public static void main(

String args[]){

new Worker().doRelat();

}//end main()

}//end class definition

class Worker{

public void doRelat(){

Dummy x = new Dummy();

Dummy y = new Dummy();

System.out.println(x.equals(y));

}//end doRelat()

}//end class definition

class Dummy{

int x = 5;

double y = 5.5;

String z = "A String Object";

}//end class Dummy

Table 7.51

Answer and Explanation (p. 2387)

7.4.3.4 Question 4

What output is produced by the program shown in Listing 4 (p. 2369) ?

• A. Compiler Error
• B. Runtime Error
• C. true false
• D. false true
• E. true true

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2361

Listing 4 . Listing for Question 4.

public class Ap028{

public static void main(

String args[]){

new Worker().doRelat();

}//end main()

}//end class definition

class Worker{

public void doRelat(){

Dummy x = new Dummy();

Dummy y = x;

System.out.println(

(x == y) + " " + x.equals(y));

}//end doRelat()

}//end class definition

class Dummy{

int x = 5;

double y = 5.5;

String z = "A String Object";

}//end class Dummy

Table 7.52

Answer and Explanation (p. 2387)

7.4.3.5 Question 5

What output is produced by the program shown in Listing 5 (p. 2370) ?

• A. Compiler Error
• B. Runtime Error
• C. true
• D. false

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2362 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 5 . Listing for Question 5.

public class Ap029{

public static void main(

String args[]){

new Worker().doRelat();

}//end main()

}//end class definition

class Worker{

public void doRelat(){

Dummy x = new Dummy();

Dummy y = new Dummy();

System.out.println(x > y);

}//end doRelat()

}//end class definition

class Dummy{

int x = 5;

double y = 5.5;

String z = "A String Object";

}//end class Dummy

Table 7.53

Answer and Explanation (p. 2387)

7.4.3.6 Question 6

What output is produced by the program shown in Listing 6 (p. 2371) ?

• A. Compiler Error
• B. Runtime Error
• C. 5 5 8.3 8.3
• D. 6 4 9.3 7.300000000000001

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2363

Listing 6 . Listing for Question 6.

public class Ap030{

public static void main(

String args[]){

new Worker().doIncr();

}//end main()

}//end class definition

class Worker{

public void doIncr(){

int w = 5, x = 5;

double y = 8.3, z = 8.3;

w++;

x--;

y++;

z--;

System.out.println(w + " " +

x + " " +

y + " " +

z);

}//end doIncr()

}//end class definition

Table 7.54

Answer and Explanation (p. 2386)

7.4.3.7 Question 7

What output is produced by the program shown in Listing 7 (p. 2372) ?

• A. Compiler Error
• B. Runtime Error
• C. Hello
• D. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2364 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 7 . Listing for Question 7.

public class Ap031{

public static void main(

String args[]){

new Worker().doIf();

}//end main()

}//end class definition

class Worker{

public void doIf(){

int x = 5, y = 6;

if(x - y){

System.out.println("Hello");

}//end if

}//end doIf()

}//end class definition

Table 7.55

Answer and Explanation (p. 2386)

7.4.3.8 Question 8

What output is produced by the program shown in Listing 8 (p. 2373) ?

• A. Compiler Error
• B. Runtime Error
• C. World
• D. Hello World
• E. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2365

Listing 8 . Listing for Question 8.

public class Ap032{

public static void main(

String args[]){

new Worker().doIf();

}//end main()

}//end class definition

class Worker{

public void doIf(){

int x = 5, y = 6;

if(x < y){

System.out.print("Hello ");

}//end if

System.out.println("World");

}//end doIf()

}//end class definition

Table 7.56

Answer and Explanation (p. 2385)

7.4.3.9 Question 9

What output is produced by the program shown in Listing 9 (p. 2374) ?

• A. Compiler Error
• B. Runtime Error
• C. Hello World
• D. Goodbye World
• E. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2366 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 9 . Listing for Question 9.

public class Ap033{

public static void main(

String args[]){

new Worker().doIf();

}//end main()

}//end class definition

class Worker{

public void doIf(){

int x = 5, y = 6;

if(x == y){

System.out.println(

"Hello World");

}else{

System.out.println(

"Goodbye World");

}//end else

}//end doIf()

}//end class definition

Table 7.57

Answer and Explanation (p. 2384)

7.4.3.10 Question 10

What output is produced by the program shown in Listing 10 (p. 2375) ?

• A. Compiler Error
• B. Runtime Error
• C. x = 4
• D. x = 5
• E. x = 6
• F. x != 4,5,6
• G. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2367

Listing 10 . Listing for Question 10.

public class Ap034{

public static void main(

String args[]){

new Worker().doIf();

}//end main()

}//end class definition

class Worker{

public void doIf(){

int x = 2;

if(x == 4){

System.out.println("x = 4");

}else if (x == 5){

System.out.println("x = 5");

}else if (x == 6){

System.out.println("x = 6");

}else{

System.out.println("x != 4,5,6");

}//end else

}//end doIf()

}//end class definition

Table 7.58

Answer and Explanation (p. 2384)

7.4.3.11 Question 11

What output is produced by the program shown in Listing 11 (p. 2376) ?

• A. Compiler Error
• B. Runtime Error
• C. 0 1 2 3 4
• D. 1 2 3 4 5
• E. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2368 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 11 . Listing for Question 11.

public class Ap035{

public static void main(

String args[]){

new Worker().doLoop();

}//end main()

}//end class definition

class Worker{

public void doLoop(){

int cnt = 0;

while(cnt<5){
cnt++;

System.out.print(cnt + " ");

cnt++;

}//end while loop

System.out.println("");

}//end doLoop()

}//end class definition

Table 7.59

Answer and Explanation (p. 2384)

7.4.3.12 Question 12

What output is produced by the program shown in Listing 12 (p. 2377) ?

• A. Compiler Error
• B. Runtime Error
• C. 0 1 2 3 4 5
• D. 1 2 3 4 5 5
• E. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2369

Listing 12 . Listing for Question 12.

public class Ap036{

public static void main(

String args[]){

new Worker().doLoop();

}//end main()

}//end class definition

class Worker{

public void doLoop(){

int cnt;

for(cnt = 0; cnt < 5; cnt++){

System.out.print(cnt + " ");

}//end for loop

System.out.println(cnt + " ");

}//end doLoop()

}//end class definition

Table 7.60

Answer and Explanation (p. 2383)

7.4.3.13 Question 13

What output is produced by the program shown in Listing 13 (p. 2378) ?

• A. Compiler Error
• B. Runtime Error
• C. 0 1 2 3 4 5
• D. 1 2 3 4 5 5
• E. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2370 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 13 . Listing for Question 13.

public class Ap037{

public static void main(

String args[]){

new Worker().doLoop();

}//end main()

}//end class definition

class Worker{

public void doLoop(){

for(int cnt = 0; cnt < 5; cnt++){

System.out.print(cnt + " ");

}//end for loop

System.out.println(cnt + " ");

}//end doLoop()

}//end class definition

Table 7.61

Answer and Explanation (p. 2382)

7.4.3.14 Question 14

What output is produced by the program shown in Listing 14 (p. 2379) ?

• A. Compiler Error
• B. Runtime Error
• C. 0 1 2 3 3
• D. 0 1 2 3 4
• E. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2371

Listing 14 . Listing for Question 14.

public class Ap037{

public static void main(

String args[]){

new Worker().doLoop();

}//end main()

}//end class definition

class Worker{

public double doLoop(){

for(int cnt = 0; cnt < 5; cnt++){

System.out.print(cnt + " ");

if(cnt == 3){

System.out.println(cnt);

return cnt;

}//end if

}//end for loop

//return 3.5;

}//end doLoop()

}//end class definition

Table 7.62

Answer and Explanation (p. 2381)

7.4.3.15 Question 15

What output is produced by the program shown in Listing 15 (p. 2380) ?

• A. Compiler Error
• B. Runtime Error
• C. 0 1 2 3 3
• D. 0 1 2 3 4
• E. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2372 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 15 . Listing for Question 15.

public class Ap038{

public static void main(

String args[]){

new Worker().doLoop();

}//end main()

}//end class definition

class Worker{

public void doLoop(){

for(int cnt = 0; cnt < 5; cnt++){

System.out.print(cnt + " ");

if(cnt == 3){

System.out.println(cnt);

return;

}//end if

}//end for loop

}//end doLoop()

}//end class definition

Table 7.63

Answer and Explanation (p. 2381)

7.4.4 Listings

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

• Listing 1 (p. 2365) . Listing for Question 1.
• Listing 2 (p. 2367) . Listing for Question 2.
• Listing 3 (p. 2368) . Listing for Question 3.
• Listing 4 (p. 2369) . Listing for Question 4.
• Listing 5 (p. 2370) . Listing for Question 5.
• Listing 6 (p. 2371) . Listing for Question 6.
• Listing 7 (p. 2372) . Listing for Question 7.
• Listing 8 (p. 2373) . Listing for Question 8.
• Listing 9 (p. 2374) . Listing for Question 9.
• Listing 10 (p. 2375) . Listing for Question 10.
• Listing 11 (p. 2376) . Listing for Question 11.
• Listing 12 (p. 2377) . Listing for Question 12.
• Listing 13 (p. 2378) . Listing for Question 13.
• Listing 14 (p. 2379) . Listing for Question 14.
• Listing 15 (p. 2380) . Listing for Question 15.

7.4.5 Miscellaneous

This section contains a variety of miscellaneous information.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2373

Housekeeping material

• Module name: Ap0030: Self-assessment, Relational Operators, Increment Operator, and Con-
trol Structures
• File: Ap0030.htm
• Originally published: January, 2002
• Published at cnx.org: 12/02/12
• Revised: 12/03/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

7.4.6 Answers

7.4.6.1 Answer 15

C. 0 1 2 3 3

7.4.6.1.1 Explanation 15

No return statement is required
A method with a signature that speci�es a void return type does not require a return statement.
However, such a method may contain a return statement, provided that it is terminated immediately

with a semicolon (no expression between the word return and the semicolon) .
(Every method whose return type is not void must contain at least one return statement.)
Multiple return statements are allowed
Any method may contain any number of return statements provided that they make sense from a

syntax viewpoint, and provided the expression (or lack thereof) between the word return and the
semicolon evaluates to the type speci�ed in the method signature (or a type that will be automatically
converted to the type speci�ed in the method signature) .

A return statement terminates a method immediately
Whenever the execution stream encounters any return statement, the method is terminated immedi-

ately, and control is returned to the method that called that method.
Back to Question 15 (p. 2379)

7.4.6.2 Answer 14

A. Compiler Error

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2374 CHAPTER 7. OOP SELF-ASSESSMENT

7.4.6.2.1 Explanation 14

Missing return statement
This program produces the following compiler error under JDK 1.3:

Ap037.java:11: missing return statement

public int doLoop(){

Table 7.64

Even though this program contains a return statement inside the for loop, it is still necessary to
place a return statement at the end of the method to satisfy the compiler. (The one shown in the code
is a comment.)

The method named doLoop must return a value of type double . Apparently the compiler assumes
that the return statement inside the for loop may never be executed (although that isn't true in this
case) .

Both of the return statements must return a value that satis�es the double type requirement given
in the method signature.

Returning a value of type int in the for loop will satisfy the type requirement because type int
will be automatically converted to type double as it is returned. (Conversion from type int to type
double is a widening conversion.)

Back to Question 14 (p. 2378)

7.4.6.3 Answer 13

A. Compiler Error

7.4.6.3.1 Explanation 13

The scope of a local variable
In general, the scope of a local variable extends from the point at which it is declared to the curly brace

that signals the end of the block in which it is declared.
This applies to for loop in an interesting way
While it is allowable to declare a variable within the �rst clause of a for loop, the scope of that variable

is limited to the block of code contained in the loop structure.
The variable cannot be accessed outside the loop.
Attempts to access variable out of scope
This program attempts to access the value of the variable named cnt after the loop terminates.
The program displays the following compiler error under JDK 1.3. This error results from the attempt

to display the value of the counter after the loop terminates.

Ap037.java:15: cannot resolve symbol

symbol : variable cnt

location: class Worker

System.out.println(cnt + " ");

Table 7.65

Back to Question 13 (p. 2377)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2375

7.4.6.4 Answer 12

C. 0 1 2 3 4 5

7.4.6.4.1 Explanation 12

A simple for loop structure
This program illustrates a simple for loop that displays the value of its counter using a call to the

print method inside the loop.
After the loop terminates, the program displays the value of the counter one last time using a call to

println .
Three clauses separated by semicolons
The �rst line of a for loop structure always contains three clauses separated by semicolons.
The �rst and third clauses may be empty, but the semicolons are required in any case.
The �rst clause ...
The �rst clause is executed once and only once at the beginning of the loop.
It can contain just about any valid Java expression.
It can even contain more than one expression with the individual expression separated by commas.
When the �rst clause contains more than one expression separated by commas, the expressions are

evaluated in left-to-right order.
The second clause
The second clause is a conditional clause. It must contain an expression that returns a boolean value.
(Actually, this clause can also be empty, in which case it is apparently assumed to be true. This leads

to an in�nite loop unless there is some code inside the loop to terminate it, perhaps by executing a return
or a break statement.)

An entry-condition loop
The for loop is an entry condition loop, meaning that the conditional expression is evaluated once

immediately after the �rst clause is executed, and once per iteration thereafter.
Behavior of the for loop
If the conditional expression returns true, the block of code following the closing parenthesis is executed.
If it returns false, the block of code is skipped, and control passes to the �rst executable statement

following the block of code.
(For the case where the block contains only one statement, the matching curly brackets can be omitted.)
The third clause
The third clause can contain none, one, or more valid expressions separated by commas.
If there are more than one, they are evaluated in left-to-right order.
When they are evaluated
The expressions in the third clause are evaluated once during each iteration.
However, it is very important to remember that despite the physical placement of the clause in the �rst

line, the expressions in the third clause are not evaluated until after the code in the block has been evaluated.
Typically an update clause
The third clause is typically used to update a counter, but this is not a technical requirement.
This clause can be used for just about any purpose.
However, the counter must be updated somewhere within the block of code or the loop will never termi-

nate.
(Stated di�erently, something must occur within the block of code to eventually cause the conditional

expression to evaluate to false. Otherwise, the loop will never terminate on its own. However, it is possible
to execute a return or break within the block to terminate the loop.)

Note the �rst output value for this program
Because the update in the third clause is not executed until after the code in the block has been executed,

the �rst value displayed (p. 2383) by this program is the value zero.
Back to Question 12 (p. 2376)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2376 CHAPTER 7. OOP SELF-ASSESSMENT

7.4.6.5 Answer 11

E. None of the above

7.4.6.5.1 Explanation 11

And the answer is ...
The output produced by this program is:
1 3 5
A simple while loop
This program uses a simple while loop to display the value of a counter, once during each iteration.
Behavior of a while loop
As long as the relational expression in the conditional clause returns true, the block of code immediately

following the conditional clause is executed.
When the relational expression returns false, the block of code following the conditional clause is skipped

and control passes to the next executable statement following that block of code.
An entry-condition loop
The while loop is an entry condition loop, meaning that the test is performed once during each iteration

before the block of code is executed.
If the �rst test returns false, the block of code is skipped entirely.
An exit-condition loop
There is another loop, known as a do-while loop, that performs the test after the block of code has

been executed once. This guarantees that the block of code will always be executed at least once.
Just to make things interesting ...
Two statements using the increment operator were placed inside the loop in this program.
Therefore, insofar as the conditional test is concerned, the counter is being incremented by twos. This

causes the output to display the sequence 1 3 5.
Nested while loops
The while loop control structure can contain loops nested inside of loops, which leads to some interesting

behavior.
Back to Question 11 (p. 2375)

7.4.6.6 Answer 10

F. x != 4,5,6

7.4.6.6.1 Explanation 10

A multiple-choice structure
This is a form of control structure that is often used to make logical decisions in a multiple-choice sense.
This is a completely general control structure. It can be used with just about any type of data.
A switch structure
There is a somewhat more specialized, control structure named switch that can also be used to make

decisions in a multiple choice sense under certain fairly restrictive conditions.
However, the structure shown in this program can always be used to replace a switch. Therefore, I �nd

that I rarely use the switch structure, opting instead for the more general form of multiple-choice structure.
Back to Question 10 (p. 2374)

7.4.6.7 Answer 9

D. Goodbye World

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2377

7.4.6.7.1 Explanation 9

An if-else control structure
This program contains a simple if-else control structure.
Behavior of if-else structure
If the expression in the conditional clause returns true, the block of code following the conditional clause

is executed, and the block of code following the word else is skipped.
If the expression in the conditional clause returns false, the block of code following the conditional clause

is skipped, and the block of code following the word else is executed.
This program executes the else block
In this program, the expression in the conditional clause returns false.
Therefore, the block of code following the word else is executed, producing the words Goodbye World

on the computer screen.
Can result in very complex structures
While the structure used in this program is relatively simple, it is possible to create very complex control

structures by nesting additional if-else structures inside the blocks of code.
Back to Question 9 (p. 2373)

7.4.6.8 Answer 8

D. Hello World

7.4.6.8.1 Explanation 8

A simple if statement
This program contains a simple if statement that

• uses a relational expression
• to return a value of type boolean inside its conditional clause

Tests for x less than y
The relational expression tests to determine if the value of the variable named x is less than the value

of the variable named y .
Since the value of x is 5 and the value of y is 6, this relational expression returns true.
Behavior of an if statement
If the expression in the conditional clause returns true, the block of code following the conditional clause

is executed
What is a block of code?
A block of code is one or more statements surrounded by matching curly brackets.
For cases like this one where the block includes only one statement, the curly brackets can be omitted.

However, I prefer to put them there anyway. They don't cause any harm and help me avoid programming
errors if I come back later and add more statements to the body of the if statement.

Display the word Hello
In this program, execution of the code in the block causes the print method to be called and the word

Hello to be displayed followed by a space, but without a newline following the space.
What if the conditional clause returns false?
If the expression in the conditional clause returns false, the block of code following the conditional clause

is bypassed.
(That is not the case in this program.)
After the if statement ...
After the if statement is executed in this program, the println method is called to cause the word

World to be displayed on the same line as the word Hello .
Back to Question 8 (p. 2372)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2378 CHAPTER 7. OOP SELF-ASSESSMENT

7.4.6.9 Answer 7

A. Compiler Error

7.4.6.9.1 Explanation 7

Not the same as C and C++
Unlike C and C++, which can use an integer numeric expression in the conditional clause of an if

statement, Java requires the conditional clause of an if statement to contain an expression that will return
a boolean result.

Bad conditional expression
That is not the case in this program, and the following compiler error occurs under JDK 1.3:

Ap031.java:13: incompatible types

found : int

required: boolean

if(x - y){

Table 7.66

Back to Question 7 (p. 2371)

7.4.6.10 Answer 6

D. 6 4 9.3 7.300000000000001

7.4.6.10.1 Explanation 6

Post�x increment and decrement operators
This program illustrates the use of the increment (++) and decrement (�) operators in their post�x form.
Behavior of increment operator
Given a variable x , the following two statements are equivalent:

x++;

x = x + 1;

Table 7.67

Behavior of decrement operator
Also, the following two statements are equivalent:

x--;

x = x - 1;

Table 7.68

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2379

Pre�x and post�x forms available
These operators have both a pre�x form and a post�x form.
Can be fairly complex
It is possible to construct some fairly complex scenarios when using these operators and combining them

into expressions.
In these modules ...
In this group of self-assessment modules, the increment and decrement operators will primarily be used

to update control variables in loops.
Inaccurate results
Regarding the program output, you will note that there is a little arithmetic inaccuracy when this program

is executed using JDK 1.3. (The same is still true with JDK version 1.7.)
Ideally, the output value 7.300000000000001 should simply be 7.3 without the very small additional

fractional part, but that sort of thing often happens when using �oating types.
Back to Question 6 (p. 2370)

7.4.6.11 Answer 5

A. Compiler Error

7.4.6.11.1 Explanation 5

Cannot use > with reference variables
The only relational operator that can be applied to reference variables is the == operator.
As discussed in the previous questions, even then it can only be used to determine if two reference

variables refer to the same object.
This program produces the following compiler error under JDK 1.3:

Ap029.java:14: operator > cannot be applied to Dummy,Dummy

System.out.println(x > y);

Table 7.69

Back to Question 5 (p. 2369)

7.4.6.12 Answer 4

E. true true

7.4.6.12.1 Explanation 4

Two references to the same object
In this case, the reference variables named x and y both refer to the same object. Therefore, when

tested for equality, using either the == operator or the default equals method, the result is true.
Back to Question 4 (p. 2368)

7.4.6.13 Answer 3

D. false

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2380 CHAPTER 7. OOP SELF-ASSESSMENT

7.4.6.13.1 Explanation 3

Read question 2
In case you skipped it, you need to read the explanation for the answer to Question 2 (p. 2365) before

reading this explanation.
Objects appear to be equal
These two objects are of the same type and contain the same values. Why are they reported as not being

equal?
Did not override the equals method
When I de�ned the class named Dummy used in the programs for Question 2 (p. 2365) and Question

3 (p. 2367) , I did not override the method named equals .
Therefore, my class named Dummy simply inherited the default version of the method named equals

that is de�ned in the class named Object .
Default behavior of equals method
The default version of the equals method behaves essentially the same as the == operator.
That is to say, the inherited default version of the equals method will return true if the two objects

being compared are actually the same object, and will return false otherwise.
As a result, this program displays false.
Overridden equals is required for valid testing
If you want to be able to determine if two objects instantiated from a class that you de�ne are "equal",

you must override the inherited equals method for your new class. You cannot depend on the inherited
version of the equals method to do that job for you.

Overriding may not be easy
That is not to say that overriding the equals method is easy. In fact, it may be quite di�cult in those

cases where the class declares instance variables that refer to other objects. In this case, it may be necessary
to test an entire tree of objects for equality.

Back to Question 3 (p. 2367)

7.4.6.14 Answer 2

D. false

7.4.6.14.1 Explanation 2

Use of the == operator with references to objects
This program illustrates an extremely important point about the use of the == operator with objects

and reference variables containing references to objects.
You cannot determine...
You cannot determine if two objects are "equal" by applying the == operator to the reference variables

containing references to those objects.
Rather, that test simply determines if two reference variables refer to the same object.
Two references to the same object
Obviously, if there is only one object, referred to by two di�erent reference variables, then it is "equal"

to itself.
Objects of same type containing same instance values
On the other hand, two objects of the same type could contain exactly the same data values, but this

test would not indicate that they are "equal." (In fact, that is the case in this program.)
So, how do you test two objects for equal?
In order to determine if two objects are "equal", you must devise a way to compare the types of the two

objects and actually compare the contents of one object to the contents of the other object. Fortunately,
there is a standard framework for doing this.

The equals method

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2381

In particular, the class named Object de�nes a default version of a method named equals that is
inherited by all other classes.

Class author can override the equals method
The intent is that the author of a new class can override the equals method so that it can be called to

determine if two objects instantiated from that class are "equal."
What does "equal" mean for objects?
Actually, that is up to the author of the class to decide.
After having made that decision, the author of the class writes that behavior into her overridden version

of the method named equals .
Back to Question 2 (p. 2365)

7.4.6.15 Answer 1

The answer is True.

7.4.6.15.1 Explanation 1

Not much to explain here
There isn't much in the way of an explanation to provide for this program.
Evaluate seven relational expressions
Each of the seven relational expressions in the argument list for the println method is evaluated and

returns either true or false as a boolean value.
Concatenate the individual results, separated by a space
The seven boolean results are concatenated, separated by space characters, and displayed on the

computer screen.
Brief description of the relational operators
Just in case your aren't familiar with the relational operators, here is a brief description.
Each of these operators returns the boolean value true if the speci�ed condition is met. Otherwise, it

returns false.

== Left operand equals the right operand

!= Left operand is not equal to the right operand

< Left operand is less than the right operand

<= Left operand is less than or equal to the right operand

> Left operand is greater than the right operand

>= Left operand is greater than or equal to the right operand

Table 7.70

Back to Question 1 (p. 2365)
-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2382 CHAPTER 7. OOP SELF-ASSESSMENT

7.5 Ap0040: Self-assessment, Logical Operations, Numeric Casting,
String Concatenation, and the toString Method13

7.5.1 Table of Contents

• Preface (p. 2390)
• Questions (p. 2390)

· 1 (p. 2390) , 2 (p. 2391) , 3 (p. 2392) , 4 (p. 2393) , 5 (p. 2394) , 6 (p. 2395) , 7 (p. 2396) , 8
(p. 2397) , 9 (p. 2398) , 10 (p. 2399)

• Listings (p. 2400)
• Miscellaneous (p. 2400)
• Answers (p. 2401)

7.5.2 Preface

This module is part of a self-assessment test designed to help you determine how much you know about
object-oriented programming using Java.

The test consists of a series of questions with answers and explanations of the answers.
The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the

question to the answer and back.
I recommend that you open another copy of this document in a separate browser window and use the

links to under Listings (p. 2400) to easily �nd and view the listings while you are reading about them.

7.5.3 Questions

7.5.3.1 Question 1 .

What output is produced by the program shown in Listing 1 (p. 2391) ?

• A. Compiler Error
• B. Runtime Error
• C. A
• D. B
• E. None of the above

13This content is available online at <http://cnx.org/content/m45260/1.6/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2383

Listing 1 . Listing for Question 1.

public class Ap039{

public static void main(

String args[]){

new Worker().doLogical();

}//end main()

}//end class definition

class Worker{

public void doLogical(){

int x = 5, y = 6;

if((x > y) || (y < x/0)){

System.out.println("A");

}else{

System.out.println("B");

}//end else

}//end doLogical()

}//end class definition

Table 7.71

Answer and Explanation (p. 2409)

7.5.3.2 Question 2

What output is produced by the program shown in Listing 2 (p. 2392) ?

• A. Compiler Error
• B. Runtime Error
• C. A
• D. B
• E. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2384 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 2 . Listing for Question 2.

public class Ap040{

public static void main(

String args[]){

new Worker().doLogical();

}//end main()

}//end class definition

class Worker{

public void doLogical(){

int x = 5, y = 6;

if((x < y) || (y < x/0)){

System.out.println("A");

}else{

System.out.println("B");

}//end else

}//end doLogical()

}//end class definition

Table 7.72

Answer and Explanation (p. 2408)

7.5.3.3 Question 3

What output is produced by the program shown in Listing 3 (p. 2393) ?

• A. Compiler Error
• B. Runtime Error
• C. A
• D. B
• E. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2385

Listing 3 . Listing for Question 3.

public class Ap041{

public static void main(

String args[]){

new Worker().doLogical();

}//end main()

}//end class definition

class Worker{

public void doLogical(){

int x = 5, y = 6;

if(!(x < y) && !(y < x/0)){

System.out.println("A");

}else{

System.out.println("B");

}//end else

}//end doLogical()

}//end class definition

Table 7.73

Answer and Explanation (p. 2406)

7.5.3.4 Question 4

What output is produced by the program shown in Listing 4 (p. 2393) ?

• A. Compiler Error
• B. Runtime Error
• C. true
• D. 1
• E. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2386 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 4 . Listing for Question 4.

public class Ap042{

public static void main(

String args[]){

new Worker().doCast();

}//end main()

}//end class definition

class Worker{

public void doCast(){

boolean x = true;

int y = (int)x;

System.out.println(y);

}//end doCast()

}//end class definition

Table 7.74

Answer and Explanation (p. 2405)

7.5.3.5 Question 5

What output is produced by the program shown in Listing 5 (p. 2395) ?

• A. Compiler Error
• B. Runtime Error
• C. 4 -4
• D. 3 -3
• E. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2387

Listing 5 . Listing for Question 5.

public class Ap043{

public static void main(

String args[]){

new Worker().doCast();

}//end main()

}//end class definition

class Worker{

public void doCast(){

double w = 3.7;

double x = -3.7;

int y = (int)w;

int z = (int)x;

System.out.println(y + " " + z);

}//end doCast()

}//end class definition

Table 7.75

Answer and Explanation (p. 2405)

7.5.3.6 Question 6

What output is produced by the program shown in Listing 6 (p. 2396) ?

• A. Compiler Error
• B. Runtime Error
• C. 4 -3
• D. 3 -4
• E. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2388 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 6 . Listing for Question 6.

public class Ap044{

public static void main(

String args[]){

new Worker().doCast();

}//end main()

}//end class definition

class Worker{

public void doCast(){

double w = 3.5;

double x = -3.499999999999;

System.out.println(doIt(w) +

" " +

doIt(x));

}//end doCast()

private int doIt(double arg){

if(arg > 0){

return (int)(arg + 0.5);

}else{

return (int)(arg - 0.5);

}//end else

}//end doIt()

}//end class definition

Table 7.76

Answer and Explanation (p. 2405)

7.5.3.7 Question 7

What output is produced by the program shown in Listing 7 (p. 2396) ?

• A. Compiler Error
• B. Runtime Error
• C. 3.5/9/true
• D. None of the above

Listing 7 . Listing for Question 7.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2389

public class Ap045{

public static void main(

String args[]){

new Worker().doConcat();

}//end main()

}//end class definition

class Worker{

public void doConcat(){

double w = 3.5;

int x = 9;

boolean y = true;

String z = w + "/" + x + "/" + y;

System.out.println(z);

}//end doConcat()

}// end class

Table 7.77

Answer and Explanation (p. 2403)

7.5.3.8 Question 8

Which of the following best approximates the output from the program shown in Listing 8 (p. 2398) ?

• A. Compiler Error
• B. Runtime Error
• C. Dummy@273d3c
• D. Joe 35 162.5

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2390 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 8 . Listing for Question 8.

public class Ap046{

public static void main(

String args[]){

new Worker().doConcat();

}//end main()

}//end class definition

class Worker{

public void doConcat(){

Dummy y = new Dummy();

System.out.println(y);

}//end doConcat()

}// end class

class Dummy{

private String name = "Joe";

private int age = 35;

private double weight = 162.5;

}//end class dummy

Table 7.78

Answer and Explanation (p. 2402)

7.5.3.9 Question 9

Which of the following best approximates the output from the program shown in Listing 9 (p. 2399) ?

• A. Compiler Error
• B. Runtime Error
• C. C. Dummy@273d3c
• D. Joe Age = 35 Weight = 162.5

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2391

Listing 9 . Listing for Question 9.

public class Ap047{

public static void main(

String args[]){

new Worker().doConcat();

}//end main()

}//end class definition

class Worker{

public void doConcat(){

Dummy y = new Dummy();

System.out.println(y);

}//end doConcat()

}// end class

class Dummy{

private String name = "Joe";

private int age = 35;

private double weight = 162.5;

public String toString(){

String x = name + " " +

" Age = " + age + " " +

" Weight = " + weight;

return x;

}

}//end class dummy

Table 7.79

Answer and Explanation (p. 2402)

7.5.3.10 Question 10

Which of the following best approximates the output from the program shown in Listing 10 (p. 2400) ?
(Note the use of the constructor for the Date class that takes no parameters.)

• A. Compiler Error
• B. Runtime Error
• C. Sun Dec 02 17:35:00 CST 2012 1354491300781
• D. Thur Jan 01 00:00:00 GMT 1970
• 0
• None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2392 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 10 . Listing for Question 10.

import java.util.*;

public class Ap048{

public static void main(

String args[]){

new Worker().doConcat();

}//end main()

}//end class definition

class Worker{

public void doConcat(){

Date w = new Date();

String y = w.toString();

System.out.print(y);

System.out.println(" " + w.getTime());

}//end doConcat()

}// end class

Table 7.80

Answer and Explanation (p. 2401)

7.5.4 Listings

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

• Listing 1 (p. 2391) . Listing for Question 1.
• Listing 2 (p. 2392) . Listing for Question 2.
• Listing 3 (p. 2393) . Listing for Question 3.
• Listing 4 (p. 2394) . Listing for Question 4.
• Listing 5 (p. 2395) . Listing for Question 5.
• Listing 6 (p. 2396) . Listing for Question 6.
• Listing 7 (p. 2396) . Listing for Question 7.
• Listing 8 (p. 2398) . Listing for Question 8.
• Listing 9 (p. 2399) . Listing for Question 9.
• Listing 10 (p. 2400) . Listing for Question 10.

7.5.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Ap0040: Self-assessment, Logical Operations, Numeric Casting, String Con-
catenation, and the toString Method
• File: Ap0040.htm
• Originally published: 2002
• Published at cnx.org: 12/02/12

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2393

• Revised: 12/03/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

7.5.6 Answers

7.5.6.1 Answer 10

C. Sun Dec 02 17:35:00 CST 2012 1354491300781

7.5.6.1.1 Explanation 10

The noarg constructor for the Date class
The Date class has a constructor that takes no parameters and is described in the documentation as

follows:
"Allocates a Date object and initializes it so that it represents the time at which it was allocated,

measured to the nearest millisecond."
In other words, this constructor can be used to instantiate a Date object that represents the current

date and time according to the system clock.
A property named time of type long
The actual date and time information encapsulated in a Date object is apparently stored in a property

named time as a long integer.
Milliseconds since the epoch
The long integer encapsulated in a Date object represents the total number of milliseconds for the

encapsulated date and time, relative to the epoch, which was Jan 01 00:00:00 GMT 1970.
Earlier dates are represented as negative values. Later dates are represented as positive values.
An overridden toString method
An object of the Date class has an overridden toString method that converts the value in milliseconds

to a form that is more useful for a human observer, such as:
Sun Dec 02 17:35:00 CST 2012
Instantiate a Date object with the noarg constructor
This program instantiates an object of the Date class using the constructor that takes no parameters.
Call the overridden toString method
Then it calls the overridden toString method to populate a String object that represents the Date

object.
Following this, it displays that String object by calling the print method, producing the �rst part of

the output shown above. (The actual date and time will vary depending on when the program is executed.)
Get the time property value

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2394 CHAPTER 7. OOP SELF-ASSESSMENT

Then it calls the getTime method to get and display the value of the time property.
This is a representation of the same date and time shown above (p. 2401) , but in milliseconds:
1354491300781
Back to Question 10 (p. 2399)

7.5.6.2 Answer 9

D. Joe Age = 35 Weight = 162.5

7.5.6.2.1 Explanation 9

Upgraded program from Question 8
The program used for this question is an upgrade to the program that was used for Question 8 (p. 2397)

.
Dummy class overrides the toString method
In particular, in this program, the class named Dummy overrides the toString method in such a

way as to return a String representing the object that would be useful to a human observer.
The String that is returned contains the values of the instance variables of the object: name, age, and

weight.
Overridden toString method code
The overridden toString method for the Dummy class is shown below for easy reference.

Overridden toString method

public String toString(){

String x = name + " " +

" Age = " + age + " " +

" Weight = " + weight;

return x;

}//end toString()

Table 7.81

The code in the overridden toString method is almost trivial.
The important thing is not the speci�c code in a speci�c overridden version of the toString method.
Why override the toString method?
Rather, the important thing is to understand why you should probably override the toString method

in most of the new classes that you de�ne.
In fact, you should override the toString method in all new classes that you de�ne if a String

representation of an instance of that class will ever be needed for any purpose.
The code will vary
The code required to override the toString method will vary from one class to another. The important

point is that the code must return a reference to a String object. The String object should encapsulate
information that represents the original object in a format that is meaningful to a human observer.

Back to Question 9 (p. 2398)

7.5.6.3 Answer 8

C. Dummy@273d3c

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2395

7.5.6.3.1 Explanation 8

Display an object of the Dummy class
This program instantiates a new object of the Dummy class, and passes that object's reference to

the method named println .
The purpose of the println method is to display a representation of the new object that is meaningful

to a human observer. In order to do so, it requires a String representation of the object.
The toString method
The class named Object de�nes a default version of a method named toString .
All classes inherit the toString method.
A child of the Object class
Those classes that extend directly from the class named Object inherit the default version of the

toString method.
Grandchildren of the Object class
Those classes that don't directly extend the class named Object also inherit a version of the toString

method.
May be default or overridden version
The inherited toString method may be the default version, or it may be an overridden version,

depending on whether the method has been overridden in a superclass of the new class.
The purpose of the toString method
The purpose of the toString method de�ned in the Object class is to be overridden in new classes.
The body of the overridden version should return a reference to a String object that represents an

object of the new class.
Whenever a String representation of an object is required
Whenever a String representation of an object is required for any purpose in Java, the toString

method is called on a reference to the object.
The String that is returned by the toString method is taken to be a String that represents the

object.
When toString has not been overridden
When the toString method is called on a reference to an object for which the method has not been

overridden, the default version of the method is called.
The default String representation of an object
The String returned by the default version consists of the following:

• The name of the class from which the object was instantiated
• The @ character
• A hexadecimal value that is the hashcode value for the object

As you can see, this does not include any information about the values of the data stored in the object.
Other than the name of the class from which the object was instantiated, this is not particularly useful

to a human observer.
Dummy class does not override toString method
In this program, the class named Dummy extends the Object class directly, and doesn't override

the toString method.
Therefore, when the toString method is called on a reference to an object of the Dummy class, the

String that is returned looks something like the following:
Dummy@273d3c
Note that the six hexadecimal digits at the end will probably be di�erent from one program to the next.
Back to Question 8 (p. 2397)

7.5.6.4 Answer 7

C. 3.5/9/true

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2396 CHAPTER 7. OOP SELF-ASSESSMENT

7.5.6.4.1 Explanation 7

More on String concatenation
This program illustrates String concatenation.
The plus (+) operator is what is commonly called an overloaded operator .
What is an overloaded operator?
An overloaded operator is an operator whose behavior depends on the types of its operands.
Plus (+) as a unary operator
The plus operator can be used as either a unary operator or a binary operator. However, as a

unary operator, with only one operand to its right, it doesn't do anything useful. This is illustrated by the
following two statements, which are functionally equivalent.

x = y;
x = +y;
Plus (+) as a binary operator
As a binary operator, the plus operator requires two operands, one on either side. (This is called in�x

notation.) When used as a binary operator, its behavior depends on the types of its operands.
Two numeric operands
If both operands are numeric operands, the plus operator performs arithmetic addition.
If the two numeric operands are of di�erent types, the narrower operand is converted to the type of the

wider operand, and the addition is performed as the wider type.
Two String operands
If both operands are references to objects of type String , the plus operator creates and returns a new

String object that contains the concatenated values of the two operands.
One String operand and one of another type
If one operand is a reference to an object of type String and the other operand is of some type other

than String , the plus operator causes a new String object to come into existence.
This new String object is a String representation of the non-String operand (such as a value of

type int) ,
Then it concatenates the two String objects, producing another new String object, which is the

concatenation of the two.
How is the new String operand representing the non-string operand created?
The manner in which it creates the new String object that represents the non-String operand varies

with the actual type of the operand.
A primitive operand
The simplest case is when the non-String operand is one of the primitive types. In these cases, the

capability already exists in the core programming language to produce a String object that represents the
value of the primitive type.

A boolean operand
For example, if the operand is of type boolean , the new String object that represents the operand

will either contain the word true or the word false.
A numeric operand
If the operand is one of the numeric types, the new String object will be composed of some of the

following:

• numeric characters
• a decimal point character
• minus characters
• plus character
• other characters such as E or e

These characters will be arranged in such a way as to represent the numeric value of the operand to a human
observer.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2397

In this program ...
In this program, a numeric double value, a numeric int value, and a boolean value were concatenated

with a pair of slash characters to produce a String object containing the following:
3.5/9/true
When a reference to this String object was passed as a parameter to the println method, the code

in that method extracted the character string from the String object, and displayed that character string
on the screen.

The toString method
If one of the operands to the plus operator is a reference to an object, the toString method is called

on the reference to produce a string that represents the object. The toString method may be overridden
by the author of the class from which the object was instantiated to produce a String that faithfully
represents the object.

Back to Question 7 (p. 2396)

7.5.6.5 Answer 6

C. 4 -3

7.5.6.5.1 Explanation 6

A rounding algorithm
The method named doIt in this program illustrates an algorithm that can be used with a numeric cast

operator (int) to cause double values to be rounded to the nearest integer.
Di�erent than truncation toward zero
Note that this is di�erent from simply truncating to the next integer closer to zero (as was illustrated

in Question 5 (p. 2394)) .
Back to Question 6 (p. 2395)

7.5.6.6 Answer 5

D. 3 -3

7.5.6.6.1 Explanation 5

Truncates toward zero
When a double value is cast to an int , the fractional part of the double value is discarded.
This produces a result that is the next integer value closer to zero.
This is true regardless of whether the double is positive or negative. This is sometimes referred to as

its "truncation toward zero" behavior.
Not the same as rounding
If each of the values assigned to the variables named w and x in this program were rounded to the

nearest integer, the result would be 4 and -4, not 3 and -3 as produced by the program.
Back to Question 5 (p. 2394)

7.5.6.7 Answer 4

A. Compiler Error

7.5.6.7.1 Explanation 4

Cannot cast a boolean type
A boolean type cannot be cast to any other type. This program produces the following compiler error:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2398 CHAPTER 7. OOP SELF-ASSESSMENT

Ap042.java:13: inconvertible types

found : boolean

required: int

int y = (int)x;

Table 7.82

Back to Question 4 (p. 2393)

7.5.6.8 Answer 3

D. B

7.5.6.8.1 Explanation 3

The logical and operator
The logical and operator shown below

The logical and operator

&&

Table 7.83

performs an and operation between its two operands, both of which must be of type boolean . If
both operands are true, the operator returns true. Otherwise, it returns false.

The boolean negation operator
The boolean negation operator shown below

The boolean negation operator !

Table 7.84

is a unary operator, meaning that it always has only one operand. That operand must be of type
boolean , and the operand always appears immediately to the right of the operator.

The behavior of this operator is to change its right operand from true to false, or from false to true.
Evaluation from left to right
Now, consider the following code fragment from this program.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2399

int x = 5, y = 6;

if(!(x < y) && !(y < x/0)){

System.out.println("A");

}else{

System.out.println("B");

}//end else

Table 7.85

The individual operands of the logical and operator are evaluated from left to right.
Consider the left operand of the logical and operator that reads:

!(x<y)

Table 7.86

The following expression is true

(x < y)

Table 7.87

In this case, x is less than y , so the expression inside the parentheses evaluates to true.
The following expression is false

!(x < y)

Table 7.88

The true result becomes the right operand for the boolean negation operator at this point.
You might think of the state of the evaluation process at this point as being something like
not true .
When the ! operator is applied to the true result, the combination of the two become a false result.
Short-circuit evaluation applies
This, in turn, causes the left operand of the logical and operator to be false .
At that point, the �nal outcome of the logical expression has been determined. It doesn't matter whether

the right operand is true or false. The �nal result will be false regardless.
No attempt is made to evaluate the right operand
Therefore, no attempt is made to evaluate the right operand of the logical and operator in this case.
No attempt is made to divide the integer variable x by zero, no exception is thrown, and the program

doesn't terminate abnormally. It runs to completion and displays a B on the screen.
Back to Question 3 (p. 2392)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2400 CHAPTER 7. OOP SELF-ASSESSMENT

7.5.6.9 Answer 2

C. A

7.5.6.9.1 Explanation 2

Short-circuit evaluation
Question 1 (p. 2390) was intended to set the stage for this question.
This Question, in combination with Question 1 (p. 2390) , is intended to help you understand and

remember the concept of short-circuit evaluation.
What is short-circuit evaluation?
Logical expressions are evaluated from left to right. That is, the left operand of a logical operator is

evaluated before the right operand of the same operator is evaluated.
When evaluating a logical expression, the �nal outcome can often be determined without the requirement

to evaluate all of the operands.
Once the �nal outcome is determined, no attempt is made to evaluate the remainder of the expression.

This is short-circuit evaluation.
Code from Question 1
Consider the following code fragment from Question 1 (p. 2390) :

int x = 5, y = 6;

if((x > y) || (y < x/0)){

...

Table 7.89

The (||) operator is the logical or operator.
Boolean operands required
This operator requires that its left and right operands both be of type boolean . This operator performs

an inclusive or on its left and right operands. The rules for an inclusive or are:
If either of its operands is true, the operator returns true. Otherwise, it returns false.
Left operand is false
In this particular expression, the value of x is not greater than the value of y . Therefore, the left

operand of the logical or operator is not true.
Right operand must be evaluated
This means that the right operand must be evaluated in order to determine the �nal outcome.
Right operand attempts to divide by zero
However, when an attempt is made to evaluate the right operand, an attempt is made to divide x by

zero. This throws an exception, which is not caught and handled by the program, so the program terminates
as described in Question 1 (p. 2390) .

Similar code from Question 2
Now consider the following code fragment from Question 2 (p. 2391) .

int x = 5, y = 6;

if((x < y) || (y < x/0)){

System.out.println("A");

...

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2401

Table 7.90

Note that the right operand of the logical or operator still contains an expression that attempts to
divide the integer x by zero.

No runtime error in this case
This program does not terminate with a runtime error. Why not?
And the answer is ...
In this case, x is less than y . Therefore, the left operand of the logical or operator is true.
Remember the rule for inclusive or
It doesn't matter whether the right operand is true or false. The �nal outcome is determined as soon as

it is determined that the left operand is true.
The bottom line
Because the �nal outcome has been determined as soon as it is determined that the left operand is true,

no attempt is made to evaluate the right operand.
Therefore, no attempt is made to divide x by zero, and no runtime error occurs.
Short-circuit evaluation
This behavior is often referred to as short-circuit evaluation .
Only as much of a logical expression is evaluated as is required to determine the �nal outcome.
Once the �nal outcome is determined, no attempt is made to evaluate the remainder of the logical

expression.
This is not only true for the logical or operator, it is also true for the logical and operator, which

consists of two ampersand characters with no space between them.
Back to Question 2 (p. 2391)

7.5.6.10 Answer 1

B. Runtime Error

7.5.6.10.1 Explanation 1

Divide by zero
Whenever a Java program attempts to evaluate an expression requiring that a value of one of the integer

types be divided by zero, it will throw an ArithmeticException . If this exception is not caught and
handled by the program, it will cause the program to terminate.

Attempts to divide x by 0
This program attempts to evaluate the following expression:

(y < x/0)

Table 7.91

This expression attempts to divide the variable named x by zero. This causes the program to terminate
with the following error message when running under JDK 1.3:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2402 CHAPTER 7. OOP SELF-ASSESSMENT

java.lang.ArithmeticException: / by zero

at Worker.doLogical(Ap039.java:13)

at Ap039.main(Ap039.java:6)

Table 7.92

Back to Question 1 (p. 2390)
-end-

7.6 Ap0050: Self-assessment, Escape Character Sequences and
Arrays14

7.6.1 Table of Contents

• Preface (p. 2410)
• Questions (p. 2410)

· 1 (p. 2410) , 2 (p. 2411) , 3 (p. 2412) , 4 (p. 2413) , 5 (p. 2414) , 6 (p. 2416) , 7 (p. 2416) , 8
(p. 2417) , 9 (p. 2418) , 10 (p. 2419) , 11 (p. 2420) , 12 (p. 2421) , 13 (p. 2422) , 14 (p. 2423) ,
15 (p. 2424)

• Listings (p. 2425)
• Miscellaneous (p. 2426)
• Answers (p. 2426)

7.6.2 Preface

This module is part of a self-assessment test designed to help you determine how much you know about
object-oriented programming using Java.

The test consists of a series of questions with answers and explanations of the answers.
The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the

question to the answer and back.
I recommend that you open another copy of this document in a separate browser window and use the

links to under Listings (p. 2425) to easily �nd and view the listings while you are reading about them.

7.6.3 Questions

7.6.3.1 Question 1 .

What output is produced by the program shown in Listing 1 (p. 2411) ?

A. Compiler Error

B. Runtime Error

C. \"Backslash\"->\\\nUnderstand
D. "Backslash"->\

Understand

14This content is available online at <http://cnx.org/content/m45280/1.8/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2403

Listing 1 . Listing for Question 1.

public class Ap049{

public static void main(

String args[]){

new Worker().doEscape();

}//end main()

}//end class definition

class Worker{

public void doEscape(){

System.out.println(

"\"Backslash\"->\\\nUnderstand");
}//end doEscape()

}// end class

Table 7.93

Answer and Explanation (p. 2438)

7.6.3.2 Question 2

What output is produced by the program shown in Listing 2 (p. 2412) ?

• A. Compiler Error
• B. Runtime Error
• C. St@273d3c St@256a7c St@720eeb
• D. Tom Dick Harry
• E. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2404 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 2 . Listing for Question 2.

public class Ap050{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

St[] myArray = {new St("Tom"),

new St("Dick"),

new St ("Harry")};

for(int cnt = 0;

cnt < myArray.length;cnt++){

System.out.print(

myArray[cnt] + " ");

}//end for loop

System.out.println("");

}//end doArrays()

}// end class

class St{

private String name;

public St(String name){

this.name = name;

}//end constructor

public String toString(){

return name;

}//end toString()

}//end class

Table 7.94

Answer and Explanation (p. 2436)

7.6.3.3 Question 3

What output is produced by the program shown in Listing 3 (p. 2413) ?

A. Compiler Error

B. Runtime Error

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2405

C. 0 0 0 0 0

0 1 2 3 4

0 2 4 6 8

D. None of the above

Listing 3 . Listing for Question 3.

public class Ap051{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

int myArray[3][5];

for(int i=0;i<myArray.length;i++){
for(int j=0;

j<myArray[0].length;j++){
myArray[i][j] = i*j;

}//end inner for loop

}//end outer for loop

for(int i=0;i<myArray.length;i++){
for(int j=0;

j<myArray[0].length;j++){
System.out.print(

myArray[i][j] + " ");

}//end inner for loop

System.out.println("");

}//end outer for loop

}//end doArrays()

}// end class

Table 7.95

Answer and Explanation (p. 2434)

7.6.3.4 Question 4

What output is produced by the program shown in Listing 4 (p. 2414) ?

A. Compiler Error

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2406 CHAPTER 7. OOP SELF-ASSESSMENT

B. Runtime Error

C. 1 1 1 1 1

1 2 3 4 5

1 3 5 7 9

D. None of the above

Listing 4 . Listing for Question 4.

public class Ap052{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

int myArray[][];

myArray = new int[3][5];

for(int i=0;i<myArray.length;i++){
for(int j=0;

j<myArray[0].length;j++){
myArray[i][j] = i*j + 1;

}//end inner for loop

}//end outer for loop

for(int i=0;i<myArray.length;i++){
for(int j=0;

j<myArray[0].length;j++){
System.out.print(

myArray[i][j] + " ");

}//end inner for loop

System.out.println("");

}//end outer for loop

}//end doArrays()

}// end class

Table 7.96

Answer and Explanation (p. 2433)

7.6.3.5 Question 5

What output is produced by program shown in Listing 5 (p. 2415) ?

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2407

A. Compiler Error

B. Runtime Error

C. -1 -1 -1 -1 -1

-1 -2 -3 -4 -5

-1 -3 -5 -7 -9

D. None of the above

Listing 5 . Listing for Question 5.

public class Ap053{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

int myArray[][];

myArray = new int[3][5];

for(int i = 0;i < 3;i++){

for(int j = 0;j < 5;j++){

myArray[i][j] = (i*j+1)*(-1);

}//end inner for loop

}//end outer for loop

for(int i = 0;i < 3;i++){

for(int j = 0;j < 6;j++){

System.out.print(

myArray[i][j] + " ");

}//end inner for loop

System.out.println("");

}//end outer for loop

}//end doArrays()

}// end class

Table 7.97

Answer and Explanation (p. 2432)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2408 CHAPTER 7. OOP SELF-ASSESSMENT

7.6.3.6 Question 6

What output is produced by program shown in Listing 6 (p. 2416) ?

• A. Compiler Error
• B. Runtime Error
• C. 3
• D. None of the above

Listing 6 . Listing for Question 6.

public class Ap054{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

int[] A = new int[2];

A[0] = 1;

A[1] = 2;

System.out.println(A[0] + A[1]);

}//end doArrays()

}// end class

Table 7.98

Answer and Explanation (p. 2432)

7.6.3.7 Question 7

What output is produced by program shown in Listing 7 (p. 2417) ?

• A. Compiler Error
• B. Runtime Error
• C. OK
• D. None of the above

Listing 7 . Listing for Question 7.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2409

import java.awt.Label;

public class Ap055{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

Label[] A = new Label[2];

A[0] = new Label("O");

A[1] = new Label("K");

System.out.println(A[0] + A[1]);

}//end doArrays()

}// end class

Table 7.99

Answer and Explanation (p. 2430)

7.6.3.8 Question 8

What output is produced by program shown in Listing 8 (p. 2418) ?

• A. Compiler Error
• B. Runtime Error
• C. OK
• D. None of the above

Listing 8 . Listing for Question 8.

import java.awt.Label;

public class Ap056{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

Label[] A = new Label[2];

A[0] = new Label("O");

A[1] = new Label("K");

System.out.println(A[0].getText() + A[1].getText());

}//end doArrays()

}// end class

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2410 CHAPTER 7. OOP SELF-ASSESSMENT

Table 7.100

Answer and Explanation (p. 2429)

7.6.3.9 Question 9

What output is produced by program shown in Listing 9 (p. 2419) ?

• A. Compiler Error
• B. Runtime Error
• C. 1
• D. None of the above

Listing 9 . Listing for Question 9.

public class Ap057{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

Integer[] A = new Integer[2];

A[0] = new Integer(1);

System.out.println(

A[1].intValue());

}//end doArrays()

}// end class

Table 7.101

Answer and Explanation (p. 2429)

7.6.3.10 Question 10

What output is produced by program shown in Listing 10 (p. 2420) ?

A. Compiler Error

B. Runtime Error

C. 0

0 1

0 2 4

D. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2411

Listing 10 . Listing for Question 10.

public class Ap058{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

int A[][] = new int[3][];

A[0] = new int[1];

A[1] = new int[2];

A[2] = new int[3];

for(int i = 0;i < A.length;i++){

for(int j=0;j < A[i].length;j++){

A[i][j] = i*j;

}//end inner for loop

}//end outer for loop

for(int i=0;i<A.length;i++){
for(int j=0;j < A[i].length;j++){

System.out.print(

A[i][j] + " ");

}//end inner for loop

System.out.println("");

}//end outer for loop

}//end doArrays()

}// end class

Table 7.102

Answer and Explanation (p. 2428)

7.6.3.11 Question 11

What output is produced by the program shown in Listing 11 (p. 2421) ?

• A. Compiler Error
• B. Runtime Error
• C. Zero One Two
• D. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2412 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 11 . Listing for Question 11.

public class Ap059{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

Object[] A = new Object[3];

//Note that there is a simpler and

// better way to do the following

// but it won't illustrate my point

// as well as doing it this way.

A[0] = new String("Zero");

A[1] = new String("One");

A[2] = new String("Two");

System.out.println(A[0] + " " +

A[1] + " " +

A[2]);

}//end doArrays()

}// end class

Table 7.103

Answer and Explanation (p. 2428)

7.6.3.12 Question 12

What output is produced by program shown in Listing 12 (p. 2422) ?

• A. Compiler Error
• B. Runtime Error
• C. Zero 1 2.0
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2413

Listing 12 . Listing for Question 12.

public class Ap060{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

Object[] A = new Object[3];

//Note that there is a simpler and

// better way to do the following

// but it won't illustrate my point

// as well as doing it this way.

A[0] = new String("Zero");

A[1] = new Integer(1);

A[2] = new Double(2.0);

System.out.println(A[0] + " " +

A[1] + " " +

A[2]);

}//end doArrays()

}// end class

Table 7.104

Answer and Explanation (p. 2427)

7.6.3.13 Question 13

What output is produced by program shown in Listing 13 (p. 2423) ?

• A. Compiler Error
• B. Runtime Error
• C. Zero 1 2.0
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2414 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 13 . Listing for Question 13.

public class Ap061{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

Object[] A = new Object[3];

//Note that there is a simpler and

// better way to do the following

// but it won't illustrate my point

// as well as doing it this way.

A[0] = new String("Zero");

A[1] = new Integer(1);

A[2] = new MyClass(2.0);

System.out.println(A[0] + " " +

A[1] + " " +

A[2]);

}//end doArrays()

}// end class

class MyClass{

private double data;

public MyClass(double data){

this.data = data;

}//end constructor

}// end MyClass

Table 7.105

Answer and Explanation (p. 2427)

7.6.3.14 Question 14

What output is produced by program shown in Listing 14 (p. 2424) ?

• A. Compiler Error
• B. Runtime Error
• C. 1.0 2.0
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2415

Listing 14 . Listing for Question 14.

public class Ap062{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

Object[] A = new Object[2];

A[0] = new MyClass(1.0);

A[1] = new MyClass(2.0);

System.out.println(

A[0].getData() + " " +

A[1].getData());

}//end doArrays()

}// end class

class MyClass{

private double data;

public MyClass(double data){

this.data = data;

}//end constructor

public double getData(){

return data;

}//end getData()

}// end MyClass

Table 7.106

Answer and Explanation (p. 2427)

7.6.3.15 Question 15

What output is produced by program shown in Listing 15 (p. 2425) ?

• A. Compiler Error
• B. Runtime Error
• C. 1.0 2.0
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2416 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 15 . Listing for Question 15.

public class Ap063{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

Object[] A = new Object[2];

A[0] = new MyClass(1.0);

A[1] = new MyClass(2.0);

System.out.println(

((MyClass)A[0]).getData() + " "

+ ((MyClass)A[1]).getData());

}//end doArrays()

}// end class

class MyClass{

private double data;

public MyClass(double data){

this.data = data;

}//end constructor

public double getData(){

return data;

}//end getData()

}// end MyClass

Table 7.107

Answer and Explanation (p. 2426)

7.6.4 Listings

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

• Listing 1 (p. 2411) . Listing for Question 1.
• Listing 2 (p. 2412) . Listing for Question 2.
• Listing 3 (p. 2413) . Listing for Question 3.
• Listing 4 (p. 2414) . Listing for Question 4.
• Listing 5 (p. 2415) . Listing for Question 5.
• Listing 6 (p. 2416) . Listing for Question 6.
• Listing 7 (p. 2417) . Listing for Question 7.
• Listing 8 (p. 2418) . Listing for Question 8.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2417

• Listing 9 (p. 2419) . Listing for Question 9.
• Listing 10 (p. 2420) . Listing for Question 10.
• Listing 11 (p. 2421) . Listing for Question 11.
• Listing 12 (p. 2422) . Listing for Question 12.
• Listing 13 (p. 2423) . Listing for Question 13.
• Listing 14 (p. 2424) . Listing for Question 14.
• Listing 15 (p. 2425) . Listing for Question 15.

7.6.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Ap0050: Self-assessment, Escape Character Sequences and Arrays
• File: Ap0050.htm
• Originally published: 2002
• Published at cnx.org: 12/03/12
• Revised: 08/17/15

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

7.6.6 Answers

7.6.6.1 Answer 15

C. 1.0 2.0

7.6.6.1.1 Explanation 15

This is an upgrade of the program from Question 14 (p. 2423) . This program applies the proper downcast
operator to the references extracted from the array of type Object before attempting to call the method
named getData on those references. (For more information, see the discussion of Question 14 (p.
2423) .)

As a result of applying a proper downcast, the program compiles and runs successfully.
Back to Question 15 (p. 2424)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2418 CHAPTER 7. OOP SELF-ASSESSMENT

7.6.6.2 Answer 14

A. Compiler Error

7.6.6.2.1 Explanation 14

Storing references in a generic array of type Object
This program stores references to two objects instantiated from a new class named MyClass in the

elements of an array object of declared type Object . That is OK.
Calling a method on the references
Then the program extracts the references to the two objects and attempts to call the method named

getData on each of the references. That is not OK.
Downcast is required
Because the method named getData is not de�ned in the class named Object , in order to call this

method on references extracted from an array of type Object , it is necessary to downcast the references
to the class in which the method is de�ned. In this case, the method is de�ned in the new class named
MyClass (but it could be de�ned in an intermediate class in the class hierarchy if the new class extended
some class further down the hierarchy) .

Here is a partial listing of the compiler error produced by this program:

Ap062.java:15: error: cannot find symbol

A[0].getData() + " " +

^

symbol: method getData()

location: class Object

Back to Question 14 (p. 2423)

7.6.6.3 Answer 13

D. None of the above.

7.6.6.3.1 Explanation 13

The array object of type Object in this program is capable of storing a reference to a new object instantiated
from the new class named MyClass . However, because the new class does not override the toString
method, when a string representation of the new object is displayed, the string representation is created
using the version of the toString method that is inherited from the Object class. That causes this
program to produce an output similar to the following:

Zero 1 MyClass@273d3c
Back to Question 13 (p. 2422)

7.6.6.4 Answer 12

C. Zero 1 2.0

7.6.6.4.1 Explanation 12

A type-generic array object
As explained in Question 11 (p. 2420) , an array object of the type Object is a generic array that can

be used to store references to objects instantiated from any class.
Storing mixed reference types

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2419

This program instantiates objects from the classes String , Integer , and Double , and stores those
objects' references in the elements of an array of type Object . Then the program accesses the references
and uses them to display string representations of each of the objects.

Polymorphic behavior applies
Once again, polymorphic behavior involving overridden versions of the toString method were involved

and it was not necessary to downcast the references to their true type to display string representations of
the objects.

Back to Question 12 (p. 2421)

7.6.6.5 Answer 11

C. Zero One Two

7.6.6.5.1 Explanation 11

Storing references to subclass types
When you create an array object for a type de�ned by a class de�nition, the elements of the array can

be used to store references to objects of that class or any subclass of that class.
A type-generic array object
All classes in Java are subclasses of the class named Object . This program creates an array object

with the declared type being type Object . An array of type Object can be used to store references to
objects instantiated from any class.

After creating the array object, this program instantiates three objects of the class String and stores
those object's references in the elements of the array. (As I pointed out in the comments, there is a simpler
and better way to instantiate String objects, but it wouldn't illustrate my point as well as doing the
way that I did.)

Sometimes you need to downcast
Although an array of type Object can be used to store references to objects of any type (including

mixed types and references to other array objects) , you will sometimes need to downcast those references
back to their true type once you extract them from the array and attempt to use them for some purpose.

Polymorphic behavior applies here
For this case, however, because the toString method is de�ned in the Object class and overridden

in the String class, polymorphic behavior applies and it is not necessary to downcast the references to
type String in order to be able to convert them to strings and display them.

Back to Question 11 (p. 2420)

7.6.6.6 Answer 10

C. 0

0 1

0 2 4

7.6.6.6.1 Explanation 10

Defer size speci�cation for secondary arrays
It is not necessary to specify the sizes of the secondary arrays when you create a multi-dimensional array

in Java. Rather, since the elements in the primary array simply contain references to other array objects
(or null by default) , you can defer the creation of those secondary array objects until later.

Independent array objects

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2420 CHAPTER 7. OOP SELF-ASSESSMENT

When you do �nally create the secondary arrays, they are essentially independent array objects (except
for the requirement for type commonality among them) .

Ragged arrays
Each individual secondary array can be of any size, and this leads to the concept of a ragged array .

(On a two-dimensional basis, a ragged array might be thought of as a two-dimensional array where each
row can have a di�erent number of columns.)

This program creates, populates, and displays the contents of such a two-dimensional ragged array.
Although this program creates a two-dimensional array that is triangular in shape, even that is not a
requirement. The number of elements in each of the secondary arrays need have no relationship to the
number of elements in any of the other secondary arrays.

Back to Question 10 (p. 2419)

7.6.6.7 Answer 9

B. Runtime Error

7.6.6.7.1 Explanation 9

NullPointerException
The following code fragment shows that this program attempts to perform an illegal operation on the

value accessed from the array object at index 1.

Integer[] A = new Integer[2];

A[0] = new Integer(1);

System.out.println(

A[1].intValue());

You can't call methods on null references
The reference value that was returned by accessing A[1] is the default value of null. This is the value

that was deposited in the element when the array object was created (no other value was ever stored there)
. When an attempt was made to call the intValue method on that reference value, the following runtime
error occurred

java.lang.NullPointerException

at Worker.doArrays(Ap057.java:14)

at Ap057.main(Ap057.java:6)

This is a common programming error, and most Java programmers have seen an error message involving a
NullPointerException several (perhaps many) times during their programming careers.

Back to Question 9 (p. 2418)

7.6.6.8 Answer 8

C. OK

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2421

7.6.6.8.1 Explanation 8

Success at last
This program �nally gets it all together and works properly. In particular, after accessing the reference

values stored in each of the elements, the program does something legal with those values.
Call methods on the object's references
In this case, the code calls one of the public methods belonging to the objects referred to by the reference

values stored in the array elements.

System.out.println(A[0].getText() + A[1].getText());

The getText method that is called, returns the contents of the Label object as type String . This
makes it possible to perform String concatenation on the values returned by the method, so the program
compiles and executes properly.

Back to Question 8 (p. 2417)

7.6.6.9 Answer 7

A. Compiler Error

7.6.6.9.1 Explanation 7

Java arrays may seem di�erent to you
For all types other than the primitive types, you may �nd the use of arrays in Java to be considerably

di�erent from what you are accustomed to in other programming languages. There are a few things that
you should remember.

Array elements may contain default values
If the declared type of an array is one of the primitive types, the elements of the array contain values

of the declared type. If you have not initialized those elements or have not assigned speci�c values to the
elements, they will contain default values.

The default values
You need to know that:

• The default for numeric primitive types is the zero value for that type
• The default for the boolean type is false
• The default for the char type is a 16-bit unsigned integer, all of whose bits have a zero value

(sometimes called a null character)
• The default value for reference types is null , not to be confused with the null character above.

(An array element that contains null doesn't refer to an object.)

Arrays of references
If the declared type for the array is not one of the primitive types, the elements in the array are actually

reference variables. Objects are never stored directly in a Java array. Only references to objects are stored
in a Java array.

If the array type is the name of a class ...
If the declared type is the name of a class, references to objects of that class or any subclass of that class

can be stored in the elements of the array.
If the array type is the name of an interface ...
If the declared type is the name of an interface, references to objects of any class that implements the

interface, or references to objects of any subclass of a class that implements the interface can be stored in
the elements of the array.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2422 CHAPTER 7. OOP SELF-ASSESSMENT

Why did this program fail to compile?
Now back to the program at hand. Why did this program fail to compile? To begin with, this array

was not designed to store any of the primitive types. Rather, this array was designed to store references to
objects instantiated from the class named Label , as indicated in the following fragment.

Label[] A = new Label[2];

Elements initialized to null
This is a two-element array. When �rst created, it contains two elements, each having a default value of

null . What this really means is that the reference values stored in each of the two elements don't initially
refer to any object.

Populate the array elements
The next fragment creates two instances (objects) of the Label class and assigns those object's

references to the two elements in the array object. This is perfectly valid.

A[0] = new Label("O");

A[1] = new Label("K");

You cannot add reference values
The problem arises in the next fragment. Rather than dealing with the object's references in an appropri-

ate manner, this fragment attempts to access the text values of the two reference variables and concatenate
those values.

System.out.println(A[0] + A[1]);

The compiler produces the following error message:

Ap055.java:14: error: bad operand types for binary operator '+'

System.out.println(A[0] + A[1]);

^

first type: Label

second type: Label

1 error

This error message is simply telling us that it is not legal to add the values of reference variables.
Not peculiar to arrays
This problem is not peculiar to arrays. You would get a similar error if you attempted to add two

reference variables even when they aren't stored in an array. In this case, the code to access the values of
the elements is good. The problem arises when we attempt to do something illegal with those values after
we access them.

Usually two steps are required
Therefore, except in some special cases such as certain operations involving the wrapper classes, to use

Java arrays with types other than the primitive types, when you access the value stored in an element of
the array (a reference variable) you must perform only those operations on that reference variable that are
legal for an object of that type. That usually involves two steps. The �rst step accesses the reference to an
object. The second step performs some operation on the object.

Back to Question 7 (p. 2416)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2423

7.6.6.10 Answer 6

C. 3

7.6.6.10.1 Explanation 6

Once you create an array object for a primitive type in Java, you can treat the elements of the array pretty
much as you would treat the elements of an array in other programming languages. In particular, a statement
such the following can be used to assign a value to an indexed element in an array referred to by a reference
variable named A .

A[1] = 2;

Similarly, when you reference an indexed element in an expression such as the following, the value stored in
the element is used to evaluate the expression.

System.out.println(A[0] + A[1]);

For all Java arrays, you must remember to create the new array object and to store the array object's
reference in a reference variable of the correct type. Then you can use the reference variable to gain access
to the elements in the array.

Back to Question 6 (p. 2416)

7.6.6.11 Answer 5

B. Runtime Error

7.6.6.11.1 Explanation 5

Good fences make good neighbors
One of the great things about an array object in Java is that it knows how to protect its boundaries.
Unlike some other currently popular programming languages, if your program code attempts to access a

Java array element outside its boundaries, an exception will be thrown. If your program doesn't catch and
handle the exception, the program will be terminated.

Abnormal termination
While experiencing abnormal program termination isn't all that great, it is better than the alternative

of using arrays whose boundaries aren't protected. Programming languages that don't protect the array
boundaries simply overwrite other data in memory whenever the array boundaries are exceeded.

Attempt to access out of bounds element
The code in the for loop in the following fragment attempts to access the array element at the index

value 5. That index value is out of bounds of the array.

for(int j = 0;j < 6;j++){

System.out.print(

myArray[i][j] + " ");

}//end inner for loop

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2424 CHAPTER 7. OOP SELF-ASSESSMENT

Because that index value is outside the boundaries of the array, an ArrayIndexOutOfBoundsException
is thrown. The exception isn't caught and handled by program code, so the program terminates abnormally
at runtime.

This program also illustrates that it is usually better to use the length property of an array to control
iterative loops than to use hard-coded limit values, which may be coded erroneously.

Back to Question 5 (p. 2414)

7.6.6.12 Answer 4

C. 1 1 1 1 1

1 2 3 4 5

1 3 5 7 9

7.6.6.12.1 Explanation 4

A two-dimensional array
This program illustrates how to create, populate, and process a two-dimensional array with three rows

and �ve columns.
(As mentioned earlier, a Java programmer who understands the �ne points of the language probably

wouldn't call this a two-dimensional array. Rather, this is a one-dimensional array containing three elements.
Each of those elements is a reference to a one-dimensional array containing �ve elements. That is the more
general way to think of Java arrays.)

The following code fragment creates the array, using one of the acceptable formats discussed in Question
3 (p. 2412) .

int myArray[][];

myArray = new int[3][5];

Populating the array
The next code fragment uses a pair of nested for loops to populate the elements in the array with

values of type int .

for(int i=0;i<myArray.length;i++){
for(int j=0;

j<myArray[0].length;j++){
myArray[i][j] = i*j + 1;

}//end inner for loop

}//end outer for loop

This is where the analogy of a two-dimensional array falls apart. It is much easier at this point to think in
terms of a three-element primary array, each of whose elements contains a reference to a secondary array
containing �ve elements. (Note that in Java, the secondary arrays don't all have to be of the same size.
Hence, it is possible to create odd-shaped multi-dimensional arrays in Java.)

Using the length property
Pay special attention to the two chunks of code that use the length properties of the arrays to determine

the number of iterations for each of the for loops.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2425

The �rst chunk determines the number of elements in the primary array. In this case, the length property
contains the value 3.

The second chunk determines the number of elements in the secondary array that is referred to by the
contents of the element at index 0 in the primary array. (Think carefully about what I just said.)

In this case, the length property of the secondary array contains the value 5.
Putting data into the secondary array elements
The code interior to the inner loop simply calculates some numeric values and stores those values in the

elements of the three secondary array objects.
Let's look at a picture
Here is a picture that attempts to illustrate what is really going on here. I don't know if it will make

sense to you or not, but hopefully, it won't make the situation any more confusing than it might already be.

[->] [1][1][1][1][1]

[->] [1][2][3][4][5]

[->] [1][3][5][7][9]

The primary array
The three large boxes on the left represent the individual elements of the three-element primary array.

The length property for this array has a value of 3. The arrows in the boxes indicate that the content of
each of these three elements is a reference to one of the �ve-element arrays on the right.

The secondary arrays
Each of the three rows of �ve boxes on the right represents a separate �ve-element array object. Each

element in each of those array objects contains the int value shown. The length property for each of those
arrays has a value of 5.

Access and display the array data
The code in the following fragment is another pair of nested for loops.

for(int i=0;i<myArray.length;i++){
for(int j=0;

j<myArray[0].length;j++){
System.out.print(

myArray[i][j] + " ");

}//end inner for loop

System.out.println("");

}//end outer for loop

In this case, the code in the inner loop accesses the contents of the individual elements in the three �ve-
element arrays and displays those contents. If you understand the earlier code in this program, you shouldn't
have any di�culty understanding the code in this fragment.

Back to Question 4 (p. 2413)

7.6.6.13 Answer 3

A. Compiler Error

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2426 CHAPTER 7. OOP SELF-ASSESSMENT

7.6.6.13.1 Explanation 3

An incorrect statement
The following statement is not the proper way to create an array object in Java.

int myArray[3][5];

This statement caused the program to fail to compile, producing several error messages.
What is the correct syntax?
There are several di�erent formats that can be used to create an array object in Java. One of the

acceptable ways was illustrated by the code used in Question 2 (p. 2411) . Three more acceptable formats
are shown below.

int[][] myArrayA = new int[3][5];

int myArrayB[][] = new int[3][5];

int myArrayC[][];

myArrayC = new int[3][5];

Two steps are required
The key thing to remember is that an array is an object in Java. Just like all other (non-anonymous)

objects in Java, there are two steps involved in creating and preparing an object for use.
Declare a reference variable
The �rst step is to declare a reference variable capable of holding a reference to the object.
The second step
The second step is to create the object and to assign the object's reference to the reference variable.

From that point on, the reference variable can be used to gain access to the object.
Two steps can often be combined
Although there are two steps involved, they can often be combined into a single statement, as indicated

by the �rst two acceptable formats shown above.
In both of these formats, the code on the left of the assignment operator declares a reference variable.

The code on the right of the assignment operator creates a new array object and returns the array object's
reference. The reference is assigned to the new reference variable declared on the left.

A two-dimensional array object
In the code fragments shown above, the array object is a two-dimensional array object that can be

thought of as consisting of three rows and �ve columns.
(Actually, multi-dimensional array objects in Java can be much more complex than this. In fact, although

I have referred to this as a two-dimensional array object, there is no such thing as a multi-dimensional array
object in Java. The concept of a multi-dimensional array in Java is achieved by creating a tree structure of
single-dimensional array objects that contain references to other single-dimensional array objects.)

The square brackets in the declaration
What about the placement and the number of matching pairs of empty square brackets? As indicated

in the �rst two acceptable formats shown above, the empty square brackets can be next to the name of the
type or next to the name of the reference variable. The end result is the same, so you can use whichever
format you prefer.

How many pairs of square brackets are required?
Also, as implied by the acceptable formats shown above, the number of matching pairs of empty square

brackets must match the number of so-called dimensions of the array. (This tells the compiler to create

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2427

a reference variable capable of holding a reference to a one-dimensional array object, whose elements are
capable of holding references to other array objects.)

Making the two steps obvious
A third acceptable format, also shown above, separates the process into two steps.
One statement in the third format declares a reference variable capable of holding a reference to a two-

dimensional array object containing data of type int . When that statement �nishes executing, the reference
variable exists, but it doesn't refer to an actual array object. The next statement creates an array object
and assigns that object's reference to the reference variable.

Back to Question 3 (p. 2412)

7.6.6.14 Answer 2

D. Tom Dick Harry

7.6.6.14.1 Explanation 2

An array is an object in Java
An array is a special kind of object in Java. Stated di�erently, all array structures are encapsulated in

objects in Java. Further. all array structures are one-dimensional. I often refer to this special kind of object
as an array object .

An array object always has a property named length . The value of the length property is always
equal to the number of elements in the array. Thus, a program can always determine the size of an array be
examining its length property.

Instantiating an array object
An array object can be instantiated in at least two di�erent ways:

1. By using the new operator in conjunction with the type of data to be stored in the array.
2. By specifying an initial value for every element in the array, in which case the new operator is not

used.

This program uses the second of the two ways listed above.
Declaring a reference variable for an array object
The following code fragment was extracted from the method named doArrays().

St[] myArray = {new St("Tom"),

new St("Dick"),

new St ("Harry")};

The code to the left of the assignment operator declares a reference variable named myArray . This
reference variable is capable of holding a reference to an array object that contains an unspeci�ed number
of references to objects instantiated from the class named St (or any subclass of the class named St) .

Note the square brackets
You should note the square brackets in the declaration of the reference variable in the above code (the

declaration of a reference variable to hold a reference to an ordinary object doesn't include square brackets)
.

Create the array object
The code to the right of the assignment operator in the above fragment causes the new array object to

come into being. Note that the new operator is not used to create the array object in this case. (This
is one of the few cases in Java, along with a literal String object, where it is possible to create a new
object without using either the new operator or the newInstance method of the class whose name is
Class .)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2428 CHAPTER 7. OOP SELF-ASSESSMENT

Populate the array object
This syntax not only creates the new array object, it also populates it. The new array object created

by the above code contains three elements, because three initial values were provided. The initial values are
separated by commas in the initialization syntax.

Also instantiates three objects of the St class
The code in the above fragment also instantiates three objects of the class named St . Once the array

object has come into being, each of the three elements in the array contains a reference to a new object of
the class St . Each of those objects is initialized to contain the name of a student by using a parameterized
constructor that is de�ned in the class.

The length property value is 3
Following execution of the above code, the length property of the array object will contain a value of

3, because the array contains three elements, one for each initial value that was provided.
Using the length property
The code in the following fragment uses the length property of the array object in the conditional

clause of a for loop to display a String representation of each of the objects.

for(int cnt = 0;

cnt < myArray.length;

cnt++){

System.out.print(

myArray[cnt] + " ");

Overridden toString method
The class named St , from which each of the objects was instantiated, de�nes an overridden toString

method that causes the string representation of an object of that class to consist of the String stored in
an instance variable of the object.

Thus, the for loop shown above displays the student names that were originally encapsulated in the
objects when they were instantiated.

The class named St
The code in the following fragment shows the beginning of the class named St including one instance

variable and a parameterized constructor.

class St{

private String name;

public St(String name){

this.name = name;

}//end constructor

A very common syntax
This constructor makes use of a very common syntax involving the reference named this . Basically,

this syntax says to get the value of the incoming parameter whose name is name and to assign that value
to the instance variable belonging to this object whose name is also name .

Initializing the object of type St
Each time a new object of the St class is instantiated, that object contains an instance variable of type

String whose value matches the String value passed as a parameter to the constructor.
Overridden toString method
The overridden toString method for the class named St is shown in the following code fragment.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2429

public String toString(){

return name;

}//end toString()

This version causes the value in the String object, referred to by the instance variable named name ,
to be returned when it is necessary to produce a String representation of the object.

Back to Question 2 (p. 2411)

7.6.6.15 Answer 1

The answer is item D, which reads as follows:

"Backslash"->\
Understand

7.6.6.15.1 Explanation 1

Don't confuse the compiler
If you include certain characters inside a literal String , you will confuse the compiler. For example, if

you simply include a quotation mark (") inside a literal String , the compiler will interpret that as the end
of the string. From that point on, everything will be out of synchronization. Therefore, in order to include
a quotation mark inside a literal string, you must precede it with a backslash character like this:
\"
Multiple lines
If you want your string to comprise two or more physical lines, you can include a newline code inside a

String by including the following in the string:
\n
Escape character sequences
These character sequences are often referred to as escape character sequences . Since the backslash is

used as the �rst character in such a sequence, if you want to include a backslash in a literal string, you must
do it like this:
\\
There are some other escape sequences used in Java as well. You would do well to learn how to use them

before going to an interview for a job as a Java programmer.
Back to Question 1 (p. 2410)
-end-

7.7 Ap0060: Self-assessment, More on Arrays15

7.7.1 Table of Contents

• Preface (p. 2439)
• Questions (p. 2439)

· 1 (p. 2439) , 2 (p. 2440) , 3 (p. 2440) , 4 (p. 2441) , 5 (p. 2442) , 6 (p. 2443) , 7 (p. 2444) , 8
(p. 2446) , 9 (p. 2447) , 10 (p. 2448) , 11 (p. 2449) , 12 (p. 2450) , 13 (p. 2451) , 14 (p. 2452) ,
15 (p. 2454)

15This content is available online at <http://cnx.org/content/m45264/1.5/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2430 CHAPTER 7. OOP SELF-ASSESSMENT

• Listings (p. 2454)
• Miscellaneous (p. 2455)
• Answers (p. 2455)

7.7.2 Preface

This module is part of a self-assessment test designed to help you determine how much you know about
object-oriented programming using Java.

The test consists of a series of questions with answers and explanations of the answers.
The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the

question to the answer and back.
I recommend that you open another copy of this document in a separate browser window and use the

links to under Listings (p. 2454) to easily �nd and view the listings while you are reading about them.

7.7.3 Questions

7.7.3.1 Question 1 .

What output is produced by the program shown in Listing 1 (p. 2439) ?

• A. Compiler Error
• B. Runtime Error
• C. I'm OK
• D. None of the above

Listing 1 . Listing for Question 1.

public class Ap064{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

double[] A = new double[2];

A[0] = 1.0;

A[1] = 2.0;

Object B = A;

System.out.println("I'm OK");

}//end doArrays()

}// end class

Table 7.108

Answer and Explanation (p. 2463)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2431

7.7.3.2 Question 2

What output is produced by the program shown in Listing 2 (p. 2440) ?

• A. Compiler Error
• B. Runtime Error
• C. 1.0 2.0
• D. None of the above.

Listing 2 . Listing for Question 2.

public class Ap065{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

double[] A = new double[2];

A[0] = 1.0;

A[1] = 2.0;

Object B = A;

System.out.println(

B[0] + " " + B[1]);

}//end doArrays()

}// end class

Table 7.109

Answer and Explanation (p. 2462)

7.7.3.3 Question 3

What output is produced by the program shown in Listing 3 (p. 2441) ?

• A. Compiler Error
• B. Runtime Error
• C. 1.0 2.0
• D. None of the above.

Listing 3 . Listing for Question 3.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2432 CHAPTER 7. OOP SELF-ASSESSMENT

public class Ap066{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

double[] A = new double[2];

A[0] = 1.0;

A[1] = 2.0;

Object B = A;

double C = (double)B;

System.out.println(

C[0] + " " + C[1]);

}//end doArrays()

}// end class

Table 7.110

Answer and Explanation (p. 2462)

7.7.3.4 Question 4

What output is produced by the program shown in Listing 4 (p. 2442) ?

• A. Compiler Error
• B. Runtime Error
• C. 1.0 2.0
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2433

Listing 4 . Listing for Question 4.

public class Ap067{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

double[] A = new double[2];

A[0] = 1.0;

A[1] = 2.0;

Object B = A;

double[] C = (double[])B;

System.out.println(

C[0] + " " + C[1]);

}//end doArrays()

}// end class

Table 7.111

Answer and Explanation (p. 2462)

7.7.3.5 Question 5

What output is produced by the program shown in Listing 5 (p. 2443) ?

• A. Compiler Error
• B. Runtime Error
• C. 1.0 2.0
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2434 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 5 . Listing for Question 5.

public class Ap068{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

double[] A = new double[2];

A[0] = 1.0;

A[1] = 2.0;

Object B = A;

String[] C = (String[])B;

System.out.println(

C[0] + " " + C[1]);

}//end doArrays()

}// end class

Table 7.112

Answer and Explanation (p. 2461)

7.7.3.6 Question 6

What output is produced by the program shown in Listing 6 (p. 2444) ?

• A. Compiler Error
• B. Runtime Error
• C. 1 2
• D. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2435

Listing 6 . Listing for Question 6.

public class Ap069{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

Subclass[] A = new Subclass[2];

A[0] = new Subclass(1);

A[1] = new Subclass(2);

System.out.println(

A[0] + " " + A[1]);

}//end doArrays()

}// end class

class Superclass{

private int data;

public Superclass(int data){

this.data = data;

}//end constructor

public int getData(){

return data;

}//end getData()

public String toString(){

return "" + data;

}//end toString()

}//end class SuperClass

class Subclass extends Superclass{

public Subclass(int data){

super(data);

}//end constructor

}//end class Subclass

Table 7.113

Answer and Explanation (p. 2461)

7.7.3.7 Question 7

What output is produced by the program shown in Listing 7 (p. 2445) ?

• A. Compiler Error

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2436 CHAPTER 7. OOP SELF-ASSESSMENT

• B. Runtime Error
• C. 1 2
• D. None of the above

Listing 7 . Listing for Question 7.

public class Ap070{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

Subclass[] A = new Subclass[2];

A[0] = new Subclass(1);

A[1] = new Subclass(2);

Superclass[] B = A;

System.out.println(

B[0] + " " + B[1]);

}//end doArrays()

}// end class

class Superclass{

private int data;

public Superclass(int data){

this.data = data;

}//end constructor

public int getData(){

return data;

}//end getData()

public String toString(){

return "" + data;

}//end toString()

}//end class SuperClass

class Subclass extends Superclass{

public Subclass(int data){

super(data);

}//end constructor

}//end class Subclass

Table 7.114

Answer and Explanation (p. 2460)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2437

7.7.3.8 Question 8

What output is produced by the program shown in Listing 8 (p. 2446) ?

• A. Compiler Error
• B. Runtime Error
• C. 1 2
• D. None of the above

Listing 8 . Listing for Question 8.

public class Ap071{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

Superclass[] A = new Superclass[2];

A[0] = new Superclass(1);

A[1] = new Superclass(2);

Subclass[] B = (Subclass[])A;

System.out.println(

B[0] + " " + B[1]);

}//end doArrays()

}// end class

class Superclass{

private int data;

public Superclass(int data){

this.data = data;

}//end constructor

public int getData(){

return data;

}//end getData()

public String toString(){

return "" + data;

}//end toString()

}//end class SuperClass

class Subclass extends Superclass{

public Subclass(int data){

super(data);

}//end constructor

}//end class Subclass

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2438 CHAPTER 7. OOP SELF-ASSESSMENT

Table 7.115

Answer and Explanation (p. 2460)

7.7.3.9 Question 9

What output is produced by the program shown in Listing 9 (p. 2448) ?

• A. Compiler Error
• B. Runtime Error
• C. 1 2
• D. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2439

Listing 9 . Listing for Question 9.

public class Ap072{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

Subclass[] A = new Subclass[2];

A[0] = new Subclass(1);

A[1] = new Subclass(2);

Superclass[] B = A;

Subclass[] C = (Subclass[])B;

System.out.println(

C[0] + " " + C[1]);

}//end doArrays()

}// end class

class Superclass{

private int data;

public Superclass(int data){

this.data = data;

}//end constructor

public int getData(){

return data;

}//end getData()

public String toString(){

return "" + data;

}//end toString()

}//end class SuperClass

class Subclass extends Superclass{

public Subclass(int data){

super(data);

}//end constructor

}//end class Subclass

Table 7.116

Answer and Explanation (p. 2459)

7.7.3.10 Question 10

What output is produced by the program shown in Listing 10 (p. 2449) ?

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2440 CHAPTER 7. OOP SELF-ASSESSMENT

• A. Compiler Error
• B. Runtime Error
• C. 1.0 2.0
• D. D. None of the above

Listing 10 . Listing for Question 10.

public class Ap073{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

double[] A = new double[2];

A[0] = 1.0;

A[1] = 2.0;

Object B = A;

System.out.println(

((double[])B)[0] + " " +

((double[])B)[1]);

}//end doArrays()

}// end class

Table 7.117

Answer and Explanation (p. 2459)

7.7.3.11 Question 11

What output is produced by the program shown in Listing 11 (p. 2450) ?

• A. Compiler Error
• B. Runtime Error
• C. 1 2
• D. None of the above

Listing 11 . Listing for Question 11.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2441

public class Ap074{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

int[] A = new int[2];

A[0] = 1;

A[1] = 2;

double[] B = (double[])A;

System.out.println(

B[0] + " " + B[1]);

}//end doArrays()

}// end class

Table 7.118

Answer and Explanation (p. 2458)

7.7.3.12 Question 12

What output is produced by the program shown in Listing 12 (p. 2451) ?

• A. Compiler Error
• B. Runtime Error
• C. 1 2
• D. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2442 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 12 . Listing for Question 12.

public class Ap075{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

int[] B = returnArray();

for(int i = 0; i < B.length;i++){

System.out.print(B[i] + " ");

}//end for loop

System.out.println();

}//end doArrays()

public int[] returnArray(){

int[] A = new int[2];

A[0] = 1;

A[1] = 2;

return A;

}//end returnArray()

}// end class

Table 7.119

Answer and Explanation (p. 2458)

7.7.3.13 Question 13

What output is produced by the program shown in Listing 13 (p. 2452) ?

A. Compiler Error

B. Runtime Error

C. 0 0 0

0 1 2

D. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2443

Listing 13 . Listing for Question 13.

public class Ap076{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

int[] A[];

A = new int[2][3];

for(int i=0; i<A.length;i++){
for(int j=0;j<A[0].length;j++){

A[i][j] = i*j;

}//end inner loop

}//end outer loop

for(int i=0; i<A.length;i++){
for(int j=0;j<A[0].length;j++){

System.out.print(

A[i][j] + " ");

}//end inner loop

System.out.println();

}//end outer loop

}//end doArrays()

}// end class

Table 7.120

Answer and Explanation (p. 2457)

7.7.3.14 Question 14

What output is produced by the program shown in Listing 14 (p. 2453) ?

• A. Compiler Error
• B. Runtime Error
• C. 1 2
• D. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2444 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 14 . Listing for Question 14.

public class Ap077{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

Subclass[] A = new Subclass[2];

A[0] = new Subclass(1);

A[1] = new Subclass(2);

Object X = A;

Superclass B = A;

Subclass[] C = (Subclass[])B;

Subclass[] Y = (Subclass[])X;

System.out.println(

C[0] + " " + Y[1]);

}//end doArrays()

}// end class

class Superclass{

private int data;

public Superclass(int data){

this.data = data;

}//end constructor

public int getData(){

return data;

}//end getData()

public String toString(){

return "" + data;

}//end toString()

}//end class SuperClass

class Subclass extends Superclass{

public Subclass(int data){

super(data);

}//end constructor

}//end class Subclass

Table 7.121

Answer and Explanation (p. 2456)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2445

7.7.3.15 Question 15

What output is produced by the program shown in Listing 15 (p. 2454) ?

• A. Compiler Error
• B. Runtime Error
• C. 0 0.0 false 0
• D. None of the above

Listing 15 . Listing for Question 15.

public class Ap078{

public static void main(

String args[]){

new Worker().doArrays();

}//end main()

}//end class definition

class Worker{

public void doArrays(){

int[] A = new int[1];

double[] B = new double[1];

boolean[] C = new boolean[1];

int[] D = new int[0];

System.out.println(A[0] + " " +

B[0] + " " +

C[0] + " " +

D.length);

}//end doArrays()

}// end class

Table 7.122

Answer and Explanation (p. 2455)

7.7.4 Listings

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

• Listing 1 (p. 2439) . Listing for Question 1.
• Listing 2 (p. 2440) . Listing for Question 2.
• Listing 3 (p. 2441) . Listing for Question 3.
• Listing 4 (p. 2442) . Listing for Question 4.
• Listing 5 (p. 2443) . Listing for Question 5.
• Listing 6 (p. 2444) . Listing for Question 6.
• Listing 7 (p. 2445) . Listing for Question 7.
• Listing 8 (p. 2446) . Listing for Question 8.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2446 CHAPTER 7. OOP SELF-ASSESSMENT

• Listing 9 (p. 2448) . Listing for Question 9.
• Listing 10 (p. 2449) . Listing for Question 10.
• Listing 11 (p. 2450) . Listing for Question 11.
• Listing 12 (p. 2451) . Listing for Question 12.
• Listing 13 (p. 2452) . Listing for Question 13.
• Listing 14 (p. 2453) . Listing for Question 14.
• Listing 15 (p. 2454) . Listing for Question 15.

7.7.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Ap0060: Self-assessment, More on Arrays
• File: Ap0060.htm
• Originally published: 2002
• Published at cnx.org: 12/03/12
• Revised: 12/03/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

7.7.6 Answers

7.7.6.1 Answer 15

C. 0 0.0 false 0

7.7.6.1.1 Explanation 15

You can initialize array elements
You can create a new array object and initialize its elements using statements similar to the following:

int[] A = {22, 43, 69};

X[] B = {new X(32), new X(21)};

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2447

What if you don't initialize array elements?
If you create a new array object without initializing its elements, the value of each element in the array

is automatically initialized to a default value.
Illustrating array element default initialization
This program illustrates default initialization of int , double , and boolean arrays.
The default values are as follows:

• zero for all numeric values
• false for all boolean values
• all zero bits for char values
• null for object references

An array with no elements ...
This program also illustrates that it is possible to have an array object in Java that has no elements. In

this case, the value of the length property for the array object is 0.
Give me an example
For example, when the user doesn't enter any arguments on the command line for a Java application,

the incoming String array parameter to the main method has a length value of 0.
Another example
It is also possible that methods that return a reference to an array object may sometimes return a

reference to an array whose length is 0. The method must satisfy the return type requirement by returning
a reference to an array object. Sometimes, there is no data to be used to populate the array, so the method
will simply return a reference to an array object with a length property value of 0.

Back to Question 15 (p. 2454)

7.7.6.2 Answer 14

A. Compiler Error

7.7.6.2.1 Explanation 14

Assigning array reference to type Object
As you learned in an earlier module, you can assign an array object's reference to an ordinary reference

variable of the type Object . It is not necessary to indicate that the reference variable is a reference to an
array by appending square brackets to the type name or the variable name.

Only works with type Object
However, you cannot assign an array object's reference to an ordinary reference variable of any other

type. For any type other than Object , the reference variable must be declared to hold a reference to an
array object by appending empty square brackets onto the type name or the variable name.

The �rst statement in the following fragment compiles successfully.

Object X = A;

Superclass B = A;

However, the second statement in the above fragment produces a compiler error under JDK 1.3, which is
partially reproduced below.

Ap077.java:22: incompatible types

found : Subclass[]

required: Superclass

Superclass B = A;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2448 CHAPTER 7. OOP SELF-ASSESSMENT

Both Superclass and Object are superclasses of the array type referred to by the reference variable
named A . However, because of the above rule, in order to cause this program to compile successfully, you
would need to modify it as shown below by adding the requisite empty square brackets to the Superclass
type name.

Object X = A;

Superclass[] B = A;

Back to Question 14 (p. 2452)

7.7.6.3 Answer 13

C. 0 0 0

0 1 2

7.7.6.3.1 Explanation 13

Syntactical ugliness
As I indicated in an earlier module, when declaring a reference variable that will refer to an array object,

you can place the empty square brackets next to the name of the type or next to the name of the reference
variable. In other words, either of the following formats will work.

int[][] A;

int B[][];

What I may not have told you at that time is that you can place some of the empty square brackets in one
location and the remainder in the other location.

Really ugly syntax
This is indicated by the following fragment, which declares a reference variable for a two-dimensional

array of type int . Then it creates the two-dimensional array object and assigns the array object's reference
to the reference variable.

int[] A[];

A = new int[2][3];

While it doesn't matter which location you use for the square brackets in the declaration, it does matter
how many pairs of square brackets you place in the two locations combined. The number of dimensions
on the array (if you want to think of a Java array as having dimensions) will equal the total number of
pairs of empty square brackets in the declaration of the reference variable. Thus, in this case, the array is a
two-dimensional array because there is one pair of square brackets next to the type and another pair next
to the variable name.

This program goes on to use nested for loops to populate the array and then to display the contents of
the elements.

I personally don't use this syntax, and I hope that you don't either. However, even if you don't use it,
you need to be able to recognize it when used by others.

Back to Question 13 (p. 2451)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2449

7.7.6.4 Answer 12

C. 1 2

7.7.6.4.1 Explanation 12

The length property
This program illustrates the use of the array property named length , whose value always matches the

number of elements in the array.
As a Java programmer, you will frequently call methods that will return a reference to an array object of a

speci�ed type, but of an unknown length. (See, for example, the method named getEventSetDescriptors
that is declared in the interface named BeanInfo .) This program simulates that situation.

Returning a reference to an array
The method named returnArray returns a reference to an array of type int having two elements.

Although I �xed the size of the array in this example, I could just as easily have used a random number to
set a di�erent size for the array each time the method is called. Therefore, the doArrays method making
the call to the method named returnArray has no way of knowing the size of the array referred to by the
reference that it receives as a return value.

All array objects have a length property
This could be a problem, but Java provides the solution to the problem in the length property belonging

to all array objects.
The for loop in the method named doArrays uses the length property of the array to determine

how many elements it needs to display. This is a very common scenario in Java.
Back to Question 12 (p. 2450)

7.7.6.5 Answer 11

A. Compiler Error

7.7.6.5.1 Explanation 11

You cannot cast primitive array references
You cannot cast an array reference from one primitive type to another primitive type, even if the individual

elements in the array are of a type that can normally be converted to the new type.
This program attempts to cast a reference to an array of type int[] and assign it to a reference variable of

type double []. Normally, a value of type int will be automatically converted to type double whenever
there is a need for such a conversion. However, this attempted cast produces the following compiler error
under JDK 1.3.

Ap074.java:19: inconvertible types

found : int[]

required: double[]

double[] B = (double[])A;

Why is this cast not allowed?
I can't give you a �rm reason why such a cast is not allowed, but I believe that I have a good idea why.

I speculate that this is due to the fact that the actual primitive values are physically stored in the array
object, and primitive values of di�erent types require di�erent amounts of storage. For example, the type
int requires 32 bits of storage while the type double requires 64 bits of storage.

Would require reconstructing the array object

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2450 CHAPTER 7. OOP SELF-ASSESSMENT

Therefore, to convert an array object containing int values to an array object containing double
values would require reconstructing the array object and allocating twice as much storage space for each
element in the array.

Restriction doesn't apply to arrays of references
As you have seen from previous questions, such a casting restriction does not apply to arrays containing

references to objects. This may be because the amount of storage required to store a reference to an object
is the same, regardless of the type of the object. Therefore, the allowable casts that you have seen in
the previous questions did not require any change to the size of the array. All that changed was some
supplemental information regarding the type of objects to which the elements in the array refer.

Back to Question 11 (p. 2449)

7.7.6.6 Answer 10

C. 1.0 2.0

7.7.6.6.1 Explanation 10

Assigning array reference to variable of type Object
A reference to an array can be assigned to a non-array reference of the class named Object , as in the

following statement extracted from the program, where A is a reference to an array object of type double
.

Object B = A;

Note that there are no square brackets anywhere in the above statement. Thus, the reference to the array
object is not being assigned to an array reference of the type Object[] . Rather, it is being assigned to an
ordinary reference variable of the type Object .

Downcasting to an array type
Once the array reference has been assigned to the ordinary reference variable of the type Object , that

reference variable can be downcast and used to access the individual elements in the array as illustrated in
the following fragment. Note the empty square brackets in the syntax of the cast operator (double[]) .

System.out.println(

((double[])B)[0] + " " +

((double[])B)[1]);

Placement of parentheses is critical
Note also that due to precedence issues, the placement of both sets of parentheses is critical in the above

code fragment. You must downcast the reference variable before applying the index to that variable.
Back to Question 10 (p. 2448)

7.7.6.7 Answer 9

C. 1 2

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2451

7.7.6.7.1 Explanation 9

General array casting rule
The general rule for casting array references (for arrays whose declared type is the name of a class or an

interface) is:
A reference to an array object can be cast to another array type if the elements of the referenced array

are of a type that can be cast to the type of the elements of the speci�ed array type.
Old rules apply here also
Thus, the general rules covering conversion and casting up and down the inheritance hierarchy and among

classes that implement the same interfaces also apply to the casting of references to array objects.
A reference to an object can be cast down the inheritance hierarchy to the actual class of the object.

Therefore, an array reference can also be cast down the inheritance hierarchy to the declared class for the
array object.

This program declares a reference to, creates, and populates an array of the class type Subclass . This
reference is assigned to an array reference of a type that is a superclass of the actual class type of the array.
Then the superclass reference is downcast to the actual class type of the array and assigned to a di�erent
reference variable. This third reference variable is used to successfully access and display the contents of the
elements in the array.

Back to Question 9 (p. 2447)

7.7.6.8 Answer 8

B. Runtime Error

7.7.6.8.1 Explanation 8

Another ClassCastException
While it is allowable to assign an array reference to an array reference variable declared for a class that

is further up the inheritance hierarchy (as illustrated earlier) , it is not allowable to cast an array reference
down the inheritance hierarchy to a subclass of the original declared class for the array.

This program declares a reference for, creates, and populates a two-element array for a class named
Superclass . Then it downcasts that reference to a subclass of the class named Superclass . The
compiler is unable to determine that this is a problem. However, the runtime system throws the following
exception, which terminates the program at runtime.

java.lang.ClassCastException: [LSuperclass;

at Worker.doArrays(Ap071.java:19)

at Ap071.main(Ap071.java:9)

Back to Question 8 (p. 2446)

7.7.6.9 Answer 7

C. 1 2

7.7.6.9.1 Explanation 7

Assignment to superclass array reference variable
This program illustrates that, if you have a reference to an array object containing references to other

objects, you can assign the array object's reference to an array reference variable whose type is a superclass
of the declared class of the array object. (As we will see later, this doesn't work for array objects containing
primitive values.)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2452 CHAPTER 7. OOP SELF-ASSESSMENT

What can you do then?
Having made the assignment to the superclass reference variable, whether or not you can do anything

useful with the elements in the array (without downcasting) depends on many factors.
No downcast required in this case
In this case, the ability to display the contents of the objects referred to in the array was inherited from

the class named Superclass . Therefore, it is possible to access and display a String representation
of the objects without downcasting the array object reference from Superclass to the actual type of the
objects.

Probably need to downcast in most cases
However, that will often not be the case. In most cases, when using a reference of a superclass type, you

will probably need to downcast in order to make e�ective use of the elements in the array object.
Back to Question 7 (p. 2444)

7.7.6.10 Answer 6

C. 1 2

7.7.6.10.1 Explanation 6

Straightforward array application
This is a straightforward application of Java array technology for the storage and retrieval of references

to objects.
The program declares a reference to, creates, and populates a two-element array of a class named

Subclass . The class named Subclass extends the class named Superclass , which in turn, extends
the class named Object by default.

The super keyword
The class named Subclass doesn't do anything particularly useful other than to illustrate extending a

class.
However, it also provides a preview of the use of the super keyword for the purpose of causing a

constructor in a subclass to call a parameterized constructor in its superclass.
Setting the stage for follow-on questions
The main purpose for showing you this program is to set the stage for several programs that will be using

this class structure in follow-on questions.
Back to Question 6 (p. 2443)

7.7.6.11 Answer 5

B. Runtime Error

7.7.6.11.1 Explanation 5

ClassCastException
There are some situations involving casting where the compiler cannot identify an erroneous condition

that is later identi�ed by the runtime system. This is one of those cases.
This program begins with an array of type double []. The reference to that array is converted to type

Object . Then it is cast to type String []. All of these operations are allowed by the compiler.
However, at runtime, the runtime system expects to �nd references to objects of type String in the

elements of the array. What it �nds instead is values of type double stored in the elements of the array.
As a result, a ClassCastException is thrown. Since it isn't caught and handled by the program, the

program terminates with the following error message showing on the screen.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2453

java.lang.ClassCastException: [D

at Worker.doArrays(Ap068.java:17)

at Ap068.main(Ap068.java:6)

Back to Question 5 (p. 2442)

7.7.6.12 Answer 4

C. 1.0 2.0

7.7.6.12.1 Explanation 4

Finally, we got it right
Finally, we managed to get it all together. The program compiles and executes correctly. This program

illustrates the assignment of an array object's reference to a reference variable of type Object , and the
casting of that reference of type Object back to the correct array type in order to gain access to the
elements in the array.

But don't go away, there is a lot more that you need to know about arrays in Java. We will look at some
of those things in the questions that follow.

Back to Question 4 (p. 2441)

7.7.6.13 Answer 3

A. Compiler Error

7.7.6.13.1 Explanation 3

Must use the correct cast syntax
While it is possible to store an array object's reference in a reference variable of type Object , and later

cast it back to an array type to gain access to the elements in the array, you must use the correct syntax in
performing the cast. This is not the correct syntax for performing that cast. It is missing the empty square
brackets required to indicate a reference to an array object.

A portion of the compiler error produced by JDK 1.3 is shown below:

Ap066.java:17: inconvertible types

found : java.lang.Object

required: double

double C = (double)B;

Back to Question 3 (p. 2440)

7.7.6.14 Answer 2

A. Compiler Error

7.7.6.14.1 Explanation 2

Must cast back to an array type
This program illustrates another very important point. Although you can assign an array object's ref-

erence to a reference variable of type Object , you cannot gain access to the elements in the array while
treating it as type Object . Instead, you must cast it back to an array type before you can gain access to
the elements in the array object.

A portion of the compiler error produced by JDK 1.3 is shown below:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2454 CHAPTER 7. OOP SELF-ASSESSMENT

Ap065.java:18: array required, but java.lang.Object found

B[0] + " " + B[1]);

Back to Question 2 (p. 2440)

7.7.6.15 Answer 1

C. I'm OK

7.7.6.15.1 Explanation 1

Assigning array reference to type Object
This program illustrates a very important point. You can assign an array object's reference to an ordinary

reference variable of type Object . Note that I didn't say Object[] . The empty square brackets are not
required when the type is Object .

Standard containers or collections
Later on, when we study the various containers in the Java class libraries (see the Java Collections

Framework) , we will see that they store references to all objects, including array objects, as type Object
. Thus, if it were not possible to store a reference to an array object in a reference variable of type Object
, it would not be possible to use the standard containers to store references to array objects.

Because it is possible to assign an array object's reference to a variable of type Object , it is also
possible to store array object references in containers of type Object .

Back to Question 1 (p. 2439)
-end-

7.8 Ap0070: Self-assessment, Method Overloading16

7.8.1 Table of Contents

• Preface (p. 2463)
• Questions (p. 2464)

· 1 (p. 2464) , 2 (p. 2464) , 3 (p. 2465) , 4 (p. 2466) , 5 (p. 2467) , 6 (p. 2469) , 7 (p. 2470) , 8
(p. 2471)

• Listings (p. 2472)
• Miscellaneous (p. 2473)
• Answers (p. 2473)

7.8.2 Preface

This module is part of a self-assessment test designed to help you determine how much you know about
object-oriented programming using Java.

The test consists of a series of questions with answers and explanations of the answers.
The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the

question to the answer and back.
I recommend that you open another copy of this document in a separate browser window and use the

links to under Listings (p. 2472) to easily �nd and view the listings while you are reading about them.

16This content is available online at <http://cnx.org/content/m45276/1.5/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2455

7.8.3 Questions

7.8.3.1 Question 1 .

What output is produced by the program shown in Listing 1 (p. 2464) ?

• A. Compiler Error
• B. Runtime Error
• C. 9 17.64
• D. None of the above

Listing 1 . Listing for Question 1.

public class Ap079{

public static void main(

String args[]){

new Worker().doOverLoad();

}//end main()

}//end class definition

class Worker{

public void doOverLoad(){

int x = 3;

double y = 4.2;

System.out.println(square(x) + " "

+ square(y));

}//end doOverLoad()

public int square(int y){

return y*y;

}//end square()

public double square(double y){

return y*y;

}//end square()

}// end class

Table 7.123

Answer and Explanation (p. 2479)

7.8.3.2 Question 2

What output is produced by the program shown in Listing 2 (p. 2465) ?

• A. Compiler Error
• B. Runtime Error
• C. �oat 9.0 double 17.64
• D. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2456 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 2 . Listing for Question 2.

public class Ap080{

public static void main(

String args[]){

new Worker().doOverLoad();

}//end main()

}//end class definition

class Worker{

public void doOverLoad(){

int x = 3;

double y = 4.2;

System.out.print(square(x) + " ");

System.out.print(square(y));

System.out.println();

}//end doOverLoad()

public float square(float y){

System.out.print("float ");

return y*y;

}//end square()

public double square(double y){

System.out.print("double ");

return y*y;

}//end square()

}// end class

Table 7.124

Answer and Explanation (p. 2478)

7.8.3.3 Question 3

What output is produced by the program shown in Listing 3 (p. 2466) ?

• A. Compiler Error
• B. Runtime Error
• C. 10 17.64
• D. None of the above

Listing 3 . Listing for Question 3.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2457

public class Ap081{

public static void main(

String args[]){

new Worker().doOverLoad();

}//end main()

}//end class definition

class Worker{

public void doOverLoad(){

double w = 3.2;

double x = 4.2;

int y = square(w);

double z = square(x);

System.out.println(y + " " + z);

}//end doOverLoad()

public int square(double y){

return (int)(y*y);

}//end square()

public double square(double y){

return y*y;

}//end square()

}// end class

Table 7.125

Answer and Explanation (p. 2478)

7.8.3.4 Question 4

What output is produced by the program shown in Listing 4 (p. 2467) ?

• A. Compiler Error
• B. Runtime Error
• C. 9 17.64
• D. None of the above

Listing 4 . Listing for Question 4.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2458 CHAPTER 7. OOP SELF-ASSESSMENT

public class Ap083{

public static void main(

String args[]){

new Worker().doOverLoad();

}//end main()

}//end class definition

class Worker{

public void doOverLoad(){

int w = 3;

double x = 4.2;

System.out.println(

new Subclass().square(w) + " "

+ new Subclass().square(x));

}//end doOverLoad()

}// end class

class Superclass{

public double square(double y){

return y*y;

}//end square()

}//end class Superclass

class Subclass extends Superclass{

public int square(int y){

return y*y;

}//end square()

}//end class Subclass

Table 7.126

Answer and Explanation (p. 2477)

7.8.3.5 Question 5

Which of the following is produced by the program shown in Listing 5 (p. 2469) ?

A. Compiler Error

B. Runtime Error

C. float 2.14748365E9

float 9.223372E18

double 4.2

D. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2459

Listing 5 . Listing for Question 5.

public class Ap084{

public static void main(

String args[]){

new Worker().doOverLoad();

}//end main()

}//end class definition

class Worker{

public void doOverLoad(){

int x = 2147483647;

square(x);

long y = 9223372036854775807L;

square(y);

double z = 4.2;

square(z);

System.out.println();

}//end doOverLoad()

public void square(float y){

System.out.println("float" + " " +

y + " ");

}//end square()

public void square(double y){

System.out.println("double" + " " +

y + " ");

}//end square()

}// end class

Table 7.127

Answer and Explanation (p. 2475)

7.8.3.6 Question 6

What output is produced by the program shown in Listing 6 (p. 2470) ?

• A. Compiler Error
• B. Runtime Error
• C. Test DumIntfc
• D. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2460 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 6 . Listing for Question 6.

public class Ap085{

public static void main(

String args[]){

new Worker().doOverLoad();

}//end main()

}//end class definition

class Worker{

public void doOverLoad(){

Test a = new Test();

DumIntfc b = new Test();

overLoadMthd(a);

overLoadMthd(b);

System.out.println();

}//end doOverLoad()

public void overLoadMthd(Test x){

System.out.print("Test ");

}//end overLoadMthd

public void overLoadMthd(DumIntfc x){

System.out.print("DumIntfc ");

}//end overLoadMthd

}// end class

interface DumIntfc{

}//end DumIntfc

class Test implements DumIntfc{

}//end class Test

Table 7.128

Answer and Explanation (p. 2474)

7.8.3.7 Question 7

What output is produced by the program shown in Listing 7 (p. 2471) ?

• A. Compiler Error
• B. Runtime Error
• C. Test Object
• D. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2461

Listing 7 . Listing for Question 7.

public class Ap086{

public static void main(

String args[]){

new Worker().doOverLoad();

}//end main()

}//end class definition

class Worker{

public void doOverLoad(){

Test a = new Test();

Object b = new Test();

overLoadMthd(a);

overLoadMthd(b);

System.out.println();

}//end doOverLoad()

public void overLoadMthd(Test x){

System.out.print("Test ");

}//end overLoadMthd

public void overLoadMthd(Object x){

System.out.print("Object ");

}//end overLoadMthd

}// end class

class Test{

}//end class Test

Table 7.129

Answer and Explanation (p. 2474)

7.8.3.8 Question 8

What output is produced by the program shown in Listing 8 (p. 2472) ?

• A. Compiler Error
• B. Runtime Error
• C. SubC SuperC
• D. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2462 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 8 . Listing for Question 8.

public class Ap087{

public static void main(

String args[]){

new Worker().doOverLoad();

}//end main()

}//end class definition

class Worker{

public void doOverLoad(){

SubC a = new SubC();

SuperC b = new SubC();

SubC obj = new SubC();

obj.overLoadMthd(a);

obj.overLoadMthd(b);

System.out.println();

}//end doOverLoad()

}// end class

class SuperC{

public void overLoadMthd(SuperC x){

System.out.print("SuperC ");

}//end overLoadMthd

}//end SuperC

class SubC extends SuperC{

public void overLoadMthd(SubC x){

System.out.print("SubC ");

}//end overLoadMthd

}//end class SubC

Table 7.130

Answer and Explanation (p. 2473)

7.8.4 Listings

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

• Listing 1 (p. 2464) . Listing for Question 1.
• Listing 2 (p. 2465) . Listing for Question 2.
• Listing 3 (p. 2466) . Listing for Question 3.
• Listing 4 (p. 2467) . Listing for Question 4.
• Listing 5 (p. 2469) . Listing for Question 5.
• Listing 6 (p. 2470) . Listing for Question 6.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2463

• Listing 7 (p. 2471) . Listing for Question 7.
• Listing 8 (p. 2472) . Listing for Question 8.

7.8.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Ap0070: Self-assessment, Method Overloading
• File: Ap0070.htm
• Originally published: 2002
• Published at cnx.org: 12/04/12
• Revised: 12/03/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

7.8.6 Answers

7.8.6.1 Answer 8

C. SubC SuperC

7.8.6.1.1 Explanation 8

While admittedly a little convoluted, this is another relatively straightforward application of method over-
loading using types from the class hierarchy.

Type SubC , SuperC , or Object?
This method de�nes a class named SuperC , which extends Object , and a class named SubC ,

which extends SuperC . Therefore, an object instantiated from the class named SubC can be treated
as any of the following types: SubC , SuperC , or Object .

Two overloaded methods in di�erent classes
Two overloaded methods named overLoadMthd are de�ned in two classes in the inheritance hierarchy.

The class named SuperC de�nes a version that requires an incoming parameter of type SuperC . The
class named SubC de�nes a version that requires an incoming parameter of type SubC . When called,
each of these overloaded methods prints the type of its formal argument.

Two objects of type SubC

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2464 CHAPTER 7. OOP SELF-ASSESSMENT

The program instantiates two objects of the SubC class, storing the reference to one of them in a
reference variable of type SubC , and storing the reference to the other in a reference variable of type
SuperC .

Call the overloaded method twice
The next step is to call the overloaded method named overLoadMthd twice in succession, passing

each of the reference variables of type SubC and SuperC to the method.
Instance methods require an object
Because the two versions of the overloaded method are instance methods, it is necessary to have an object

on which to call the methods. This is accomplished by instantiating a new object of the SubC class, storing
the reference to that object in a reference variable named obj , and calling the overloaded method on that
reference.

Overloaded methods not in same class
The important point here is that the two versions of the overloaded method were not de�ned in the

same class. Rather, they were de�ned in two di�erent classes in the inheritance hierarchy. However, they
were de�ned in such a way that both overloaded versions were contained as instance methods in an object
instantiated from the class named SubC .

No surprises
There were no surprises. When the overloaded method was called twice in succession, passing the two

di�erent reference variables as parameters, the output shows that the version that was called in each case
had a formal argument type that matched the type of the parameter that was passed to the method.

Back to Question 8 (p. 2471)

7.8.6.2 Answer 7

C. Test Object

7.8.6.2.1 Explanation 7

Another straightforward application
This is another straightforward application of method overloading, which produces no surprises.
This program de�nes a new class named Test , which extends the Object class by default. This

means that an object instantiated from the class named Test can be treated either as type Test , or as
type Object .

The program de�nes two overloaded methods named overLoadMthd . One requires an incoming
parameter of type Test . The other requires an incoming parameter of type Object . When called, each
of these methods prints the type of its incoming parameter.

The program instantiates two di�erent objects of the class Test , storing a reference to one of them
in a reference variable of type Test , and storing a reference to the other in a reference variable of type
Object .

No surprises here
Then it calls the overloaded overLoadMthd method twice in succession, passing the reference of type

Test during the �rst call, and passing the reference of type Object during the second call.
As mentioned above, the output produces no surprises. The output indicates that the method selected for

execution during each call is the method with the formal argument type that matches the type of parameter
passed to the method.

Back to Question 7 (p. 2470)

7.8.6.3 Answer 6

C. Test DumIntfc

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2465

7.8.6.3.1 Explanation 6

Overloaded methods with reference parameters
This is a fairly straightforward application of method overloading. However, rather than requiring method

parameters of primitive types as in the previous questions in this module, the overloaded methods in this
program require incoming parameters of class and interface types respectively.

Type Test or type DumIntfc?
The program de�nes an interface named DumIntfc and de�nes a class named Test that implements

that interface. The result is that an object instantiated from the Test class can be treated either as type
Test or as type DumIntfc (it could also be treated as type Object as well) .

Two overloaded methods
The program de�nes two overloaded methods named overLoadMthd . One requires an incoming

parameter of type Test , and the other requires an incoming parameter of type DumIntfc . When
called, each of the overloaded methods prints a message indicating the type of its argument.

Two objects of the class Test
The program instantiates two objects of the class Test . It assigns one of the object's references to a

reference variable named a , which is declared to be of type Test .
The program assigns the other object's reference to a reference variable named b , which is declared to

be of type DumIntfc . (Remember, both objects were instantiated from the class Test .)
No surprises here
Then it calls the overloaded method named overLoadMthd twice in succession, passing �rst the

reference variable of type Test and then the reference variable of type DumIntfc .
The program output doesn't produce any surprises. When the reference variable of type Test is passed

as a parameter, the overloaded method requiring that type of parameter is selected for execution. When the
reference variable of type DumIntfc is passed as a parameter, the overloaded method requiring that type
of parameter is selected for execution.

Back to Question 6 (p. 2469)

7.8.6.4 Answer 5

C. float 2.14748365E9

float 9.223372E18

double 4.2

7.8.6.4.1 Explanation 5

Another subtle method selection issue
This program illustrates a subtle issue in the automatic selection of an overloaded method based on

assignment compatibility.
This program de�nes two overloaded methods named square . One requires an incoming parameter of

type �oat , and the other requires an incoming parameter of type double .
When called, each of these methods prints the type of its formal argument along with the value of the

incoming parameter as represented by its formal argument type. In other words, the value of the incoming
parameter is printed after it has been automatically converted to the formal argument type.

Printout identi�es the selected method
This printout makes it possible to determine which version is called for di�erent types of parameters. It

also makes it possible to determine the e�ect of the automatic conversion on the incoming parameter. What
we are going to see is that the conversion process can introduce serious accuracy problems.

Call the method three times

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2466 CHAPTER 7. OOP SELF-ASSESSMENT

The square method is called three times in succession, passing values of type int , long , and
double during successive calls.

(Type long is a 64-bit integer type capable of storing integer values that are much larger than can
be stored in type int . The use of this type here is important for illustration of data corruption that
occurs through automatic type conversion.)

The third invocation of the square method, passing a double as a parameter, is not particularly
interesting. There is a version of square with a matching argument type, and everything behaves as would
be expected for this invocation. The interesting behavior occurs when the int and long values are passed
as parameters.

Passing an int parameter
The �rst thing to note is the behavior of the program produced by the following code fragment.

int x = 2147483647;

square(x);

The above fragment assigns a large integer value (2147483647)to the int variable and passes that variable
to the square method. This fragment produces the following output on the screen:

float 2.14748365E9

As you can see, the system selected the overloaded method that requires an incoming parameter of type
�oat for execution in this case (rather than the version that requires type double).

Conversion from int to �oat loses accuracy
Correspondingly, it converted the incoming int value to type �oat , losing one decimal digit of accuracy

in the process. (The original int value contained ten digits of accuracy. This was approximated by a
nine-digit �oat value with an exponent value of 9.)

This seems like an unfortunate choice of overloaded method. Selecting the other version that requires a
double parameter as input would not have resulted in any loss of accuracy.

A more dramatic case
Now, consider an even more dramatic case, as illustrated in the following fragment where a very large

long integer value(9223372036854775807) is passed to the square method.

long y = 9223372036854775807L;

square(y);

The above code fragment produced the following output:

float 9.223372E18

A very serious loss of accuracy
Again, unfortunately, the system selected the version of the square method that requires a �oat

parameter for execution. This caused the long integer to be converted to a �oat . As a result, the long
value containing 19 digits of accuracy was converted to an estimate consisting of only seven digits plus an
exponent. (Even if the overloaded square method requiring a double parameter had been

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2467

selected, the conversion process would have lost about three digits of accuracy, but that would have been
much better than losing twelve digits of accuracy.)

The moral to the story is ...
Don't assume that just because the system knows how to automatically convert your integer data to

�oating data, it will protect the integrity of your data. Oftentimes it won't.
To be really safe ...
To be really safe, whenever you need to convert either int or long types to �oating format, you should

write your code in such a way as to ensure that it will be converted to type double instead of type �oat
.

For example, the following modi�cation would solve the problem for the int data and would greatly
reduce the magnitude of the problem for the long data. Note the use of the (double) cast to force the
double version of the square method to be selected for execution.

int x = 2147483647;

square((double)x);

long y = 9223372036854775807L;

square((double)y);

The above modi�cation would cause the program to produce the following output:

double 2.147483647E9

double 9.223372036854776E18

double 4.2

This output shows no loss of accuracy for the int value, and the loss of three digits of accuracy for the
long value.

(Because a long and a double both store their data in 64 bits, it is not possible to convert
a very large long value to a double value without some loss in accuracy, but even that is much
better than converting a 64-bit long value to a 32-bit �oat value.)

Back to Question 5 (p. 2467)

7.8.6.5 Answer 4

C. 9 17.64

7.8.6.5.1 Explanation 4

When the square method is called on an object of the Subclass type passing an int as a parameter,
there is an exact match to the required parameter type of the square method de�ned in that class. Thus,
the method is properly selected and executed.

When the square method is called on an object of the Subclass type passing a double as a
parameter, the version of the square method de�ned in the Subclass type is not selected. The double
value is not assignment compatible with the required type of the parameter (an int is narrower than
a double).

Having made that determination, the system continues searching for an overloaded method with a required
parameter that is either type double or assignment compatible with double . It �nds the version inherited
from Superclass that requires a double parameter and calls it.

The bottom line is, overloaded methods can occur up and down the inheritance hierarchy.
Back to Question 4 (p. 2466)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2468 CHAPTER 7. OOP SELF-ASSESSMENT

7.8.6.6 Answer 3

A. Compiler Error

7.8.6.6.1 Explanation 3

Return type is not a di�erentiating feature
This is not a subtle issue. This program illustrates the important fact that the return type does not

di�erentiate between overloaded methods having the same name and formal argument list.
For a method to be overloaded, two or more versions of the method must have the same name and

di�erent formal arguments lists.
The return type can be the same, or it can be di�erent (it can even be void) . It doesn't matter.
These two methods are not a valid overload
This program attempts to de�ne two methods named square , each of which requires a single incoming

parameter of type double . One of the methods casts its return value to type int and returns type int
. The other method returns type double .

The JDK 1.3 compiler produced the following error:

Ap081.java:28: square(double) is already defined

in Worker

public double square(double y){

Back to Question 3 (p. 2465)

7.8.6.7 Answer 2

C. �oat 9.0 double 17.64

7.8.6.7.1 Explanation 2

This program is a little more subtle
Once again, the program de�nes two overloaded methods named square . However, in this case, one

of the methods requires a single incoming parameter of type �oat and the other requires a single incoming
parameter of type double . (Su�ce it to say that the �oat type is similar to the double type,
but with less precision. It is a �oating type, not an integer type. The double type is a 64-bit �oating
type and the �oat type is a 32-bit �oating type.)

Passing a type int as a parameter
This program does not de�ne a method named square that requires an incoming parameter of type

int . However, the program calls the square method passing a value of type int as a parameter.
What happens to the int parameter?
The �rst question to ask is, will this cause one of the two overloaded methods to be called, or will it

cause a compiler error? The answer is that it will cause one of the overloaded methods to be called because
a value of type int is assignment compatible with both type �oat and type double .

Which overloaded method will be called?
Since the type int is assignment compatible with type �oat and also with type double , the next

question is, which of the two overloaded methods will be called when a value of type int is passed as a
parameter?

Learn through experimentation
I placed a print statement in each of the overloaded methods to display the type of that method's

argument on the screen when the method is called. By examining the output, we can see that the method

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2469

with the �oat parameter was called �rst (corresponding to the parameter of type int). Then the
method with the double parameter was called (corresponding to the parameter of type double).

Converted int to �oat
Thus, the system selected the overloaded method requiring an incoming parameter of type �oat when

the method was called passing an int as a parameter. The value of type int was automatically converted
to type �oat .

In this case, it wasn't too important which method was called to process the parameter of type int ,
because the two methods do essentially the same thing � compute and return the square of the incoming
value.

However, if the behavior of the two methods were di�erent from one another, it could make a lot of
di�erence, which one gets called on an assignment compatible basis. (Even in this case, it makes some
di�erence. As we will see later, when a very large int value is converted to a �oat , there is some
loss in accuracy. However, when the same very large int value is converted to a double , there is
no loss in accuracy.)

Avoiding the problem
One way to avoid this kind of subtle issue is to avoid passing assignment-compatible values to overloaded

methods.
Passing assignment-compatible values to overloaded methods allows the system to resolve the issue

through automatic type conversion. Automatic type conversion doesn't always provide the best choice.
Using a cast to force your choice of method
Usually, you can cast the parameter values to a speci�c type before calling the method and force the

system to select your overloaded method of choice.
For example, in this problem, you could force the method with the double parameter to handle the

parameter of type int by using the following cast when the method named square is called:
square((double)x)
However, as we will see later, casting may not be the solution in every case.
Back to Question 2 (p. 2464)

7.8.6.8 Answer 1

C. 9 17.64

7.8.6.8.1 Explanation 1

What is method overloading?
A rigorous de�nition of method overloading is very involved and won't be presented here. However, from

a practical viewpoint, a method is overloaded when two or more methods having the same name and di�erent
formal argument lists are de�ned in the class from which an object is instantiated, or are inherited into an
object by way of superclasses of that class.

How does the compiler select among overloaded methods?
The exact manner in which the system determines which method to call in each particular case is also

very involved. Basically, the system determines which of the overloaded methods to execute by matching
the types of parameters passed to the method to the types of arguments de�ned in the formal argument list.

Assignment compatible matching
However, there are a number of subtle issues that arise, particularly when there isn't an exact match. In

selecting the version of the method to call, Java supports the concept of an "assignment compatible" match
(or possibly more than one assignment compatible match) .

Brie�y, assignment compatibility means that it would be allowable to assign a value of the type that is
passed as a parameter to a variable whose type matches the speci�ed argument in the formal argument list.

Selecting the best match
According to Java Language Reference by Mark Grand,

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2470 CHAPTER 7. OOP SELF-ASSESSMENT

"If more than one method is compatible with the given arguments, the method that most closely matches
the given parameters is selected. If the compiler cannot select one of the methods as a better match than
the others, the method selection process fails and the compiler issues an error message."

Understanding subtleties
If you plan to be a Java programmer, you must have some understanding of the subtle issues involving

overloaded methods, and the relationship between overloaded methods and overridden methods. Therefore,
the programs in this module will provide some of that information and discuss some of the subtle issues that
arise.

Even if you don't care about the subtle issues regarding method overloading, many of those issues really
involve automatic type conversion. You should study these questions to learn about the problems associated
with automatic type conversion.

This program is straightforward
However, there isn't anything subtle about the program for Question 1 (p. 2464) . This program de�nes

two overloaded methods named square . One requires a single incoming parameter of type int . The
other requires a single incoming parameter of type double . Each method calculates and returns the
square of the incoming parameter.

The program calls a method named square twice in succession, and displays the values returned by
those two invocations. In the �rst case, an int value is passed as a parameter. This causes the method
with the formal argument list of type int to be called.

In the second case, a double value is passed as a parameter. This causes the method with the formal
argument list of type double to be called.

Overloaded methods may have di�erent return types
Note in particular that the overloaded methods have di�erent return types. One method returns its value

as type int and the other returns its value as type double . This is re�ected in the output format for
the two return vales as shown below:

9 17.64
Back to Question 1 (p. 2464)
-end-

7.9 Ap0080: Self-assessment, Classes, Constructors, and Accessor
Methods17

7.9.1 Table of Contents

• Preface (p. 2480)
• Questions (p. 2481)

· 1 (p. 2481) , 2 (p. 2481) , 3 (p. 2482) , 4 (p. 2483) , 5 (p. 2484) , 6 (p. 2485) , 7 (p. 2486) , 8
(p. 2487) , 9 (p. 2488) , 10 (p. 2489)

• Listings (p. 2490)
• Miscellaneous (p. 2491)
• Answers (p. 2491)

7.9.2 Preface

This module is part of a self-assessment test designed to help you determine how much you know about
object-oriented programming using Java.

The test consists of a series of questions with answers and explanations of the answers.

17This content is available online at <http://cnx.org/content/m45279/1.5/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2471

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back.

I recommend that you open another copy of this document in a separate browser window and use the
links to under Listings (p. 2490) to easily �nd and view the listings while you are reading about them.

7.9.3 Questions

7.9.3.1 Question 1 .

What output is produced by the program shown in Listing 1 (p. 2481) ?

• A. Compiler Error
• B. Runtime Error
• C. An Object
• D. None of the above

Listing 1 . Listing for Question 1.

public class Ap090{

public static void main(

String args[]){

new Worker().makeObj();

}//end main()

}//end class definition

class Worker{

public void makeObj(){

NewClass obj = NewClass();

System.out.println(obj);

}//end makeObj()

}// end class

class NewClass{

public String toString(){

return "An Object";

}//end toString()

}//end NewClass

Table 7.131

Answer and Explanation (p. 2499)

7.9.3.2 Question 2

What output is produced by the program shown in Listing 2 (p. 2482) ?

• A. Compiler Error

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2472 CHAPTER 7. OOP SELF-ASSESSMENT

• B. Runtime Error
• C. An Object
• D. None of the above

Listing 2 . Listing for Question 2.

public class Ap091{

public static void main(

String args[]){

new Worker().makeObj();

}//end main()

}//end class definition

class Worker{

public void makeObj(){

NewClass obj = new NewClass();

System.out.println(obj);

}//end makeObj()

}// end class

Class NewClass{

public String toString(){

return "An Object";

}//end toString()

}//end NewClass

Table 7.132

Answer and Explanation (p. 2498)

7.9.3.3 Question 3

What output is produced by the program shown in Listing 3 (p. 2483) ?

• A. Compiler Error
• B. Runtime Error
• C. An Object
• D. None of the above

Listing 3 . Listing for Question 3.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2473

public class Ap092{

public static void main(

String args[]){

new Worker().makeObj();

}//end main()

}//end class definition

class Worker{

public void makeObj(){

NewClass obj = new NewClass();

System.out.println(obj);

}//end makeObj()

}// end class

class NewClass{

public String toString(){

return "An Object";

}//end toString()

}//end NewClass

Table 7.133

Answer and Explanation (p. 2497)

7.9.3.4 Question 4

What output is produced by the program shown in Listing 4 (p. 2484) ?

• A. Compiler Error
• B. Runtime Error
• C. Object containing 2
• D. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2474 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 4 . Listing for Question 4.

public class Ap093{

public static void main(

String args[]){

new Worker().makeObj();

}//end main()

}//end class definition

class Worker{

public void makeObj(){

NewClass obj = new NewClass();

System.out.println(obj);

}//end makeObj()

}// end class

class NewClass{

private int x = 2;

public NewClass(int x){

this.x = x;

}//end constructor

public String toString(){

return "Object containing " + x;

}//end toString()

}//end NewClass

Table 7.134

Answer and Explanation (p. 2495)

7.9.3.5 Question 5

What output is produced by the program shown in Listing 5 (p. 2484) ?

• A. Compiler Error
• B. Runtime Error
• C. Object containing 2
• D. None of the above

Listing 5 . Listing for Question 5.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2475

public class Ap094{

public static void main(

String args[]){

new Worker().makeObj();

}//end main()

}//end class definition

class Worker{

public void makeObj(){

Subclass obj = new Subclass();

System.out.println(obj);

}//end makeObj()

}// end class

class Superclass{

private int x;

public Superclass(int x){

this.x = x;

}//end constructor

public String toString(){

return "Object containing " + x;

}//end toString()

public void setX(int x){

this.x = x;

}//end setX()

}//end Superclass

class Subclass extends Superclass{

public Subclass(){

setX(2);

}//end noarg constructor

}//end Subclass

Table 7.135

Answer and Explanation (p. 2495)

7.9.3.6 Question 6

What output is produced by the program shown in Listing 6 (p. 2486) ?

• A. Compiler Error
• B. Runtime Error
• C. Object containing 5
• D. Object containing 2
• E. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2476 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 6 . Listing for Question 6.

public class Ap095{

public static void main(

String args[]){

new Worker().makeObj();

}//end main()

}//end class definition

class Worker{

public void makeObj(){

NewClass obj = new NewClass(5);

System.out.println(obj);

}//end makeObj()

}// end class

class NewClass{

private int x = 2;

public NewClass(){

}//end constructor

public NewClass(int x){

this.x = x;

}//end constructor

public String toString(){

return "Object containing " + x;

}//end toString()

}//end NewClass

Table 7.136

Answer and Explanation (p. 2494)

7.9.3.7 Question 7

What output is produced by the program shown in Listing 7 (p. 2487) ?

• A. Compiler Error
• B. Runtime Error
• C. Object containing 0, 0.0, false
• D. Object containing 0.0, 0, true
• E. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2477

Listing 7 . Listing for Question 7.

public class Ap096{

public static void main(

String args[]){

new Worker().makeObj();

}//end main()

}//end class definition

class Worker{

public void makeObj(){

NewClass obj = new NewClass();

System.out.println(obj);

}//end makeObj()

}// end class

class NewClass{

private int x;

private double y;

private boolean z;

public String toString(){

return "Object containing " +

x + ", " +

y + ", " + z;

}//end toString()

}//end NewClass

Table 7.137

Answer and Explanation (p. 2494)

7.9.3.8 Question 8

What output is produced by the program shown in Listing 8 (p. 2488) ?

• A. Compiler Error
• B. Runtime Error
• C. 2
• D. 5
• E. None of the above

Listing 8 . Listing for Question 8.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2478 CHAPTER 7. OOP SELF-ASSESSMENT

public class Ap097{

public static void main(

String args[]){

new Worker().makeObj();

}//end main()

}//end class definition

class Worker{

public void makeObj(){

NewClass obj = new NewClass(5);

System.out.println(obj.getX());

}//end makeObj()

}// end class

class NewClass{

private int x = 2;

public NewClass(){

}//end constructor

public NewClass(int x){

this.x = x;

}//end constructor

public int getX(){

return x;

}//end getX()

}//end NewClass

Table 7.138

Answer and Explanation (p. 2492)

7.9.3.9 Question 9

What output is produced by the program shown in Listing 9 (p. 2489) ?

• A. Compiler Error
• B. Runtime Error
• C. 10
• D. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2479

Listing 9 . Listing for Question 9.

public class Ap098{

public static void main(

String args[]){

new Worker().makeObj();

}//end main()

}//end class definition

class Worker{

public void makeObj(){

NewClass obj = new NewClass();

obj.setX(10);

System.out.println(obj.getX());

}//end makeObj()

}// end class

class NewClass{

private int y;

public void setX(int y){

this.y = y;

}//end setX()

public int getX(){

return y;

}//end getX()

}//end NewClass

Table 7.139

Answer and Explanation (p. 2492)

7.9.3.10 Question 10

What output is produced by the program shown in Listing 10 (p. 2490) ?

• A. Compiler Error
• B. Runtime Error
• C. 2
• D. 5
• E. 10
• F. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2480 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 10 . Listing for Question 10.

public class Ap099{

public static void main(

String args[]){

new Worker().makeObj();

}//end main()

}//end class definition

class Worker{

public void makeObj(){

NewClass obj = new NewClass(5);

obj.x = 10;

System.out.println(obj.x);

}//end makeObj()

}// end class

class NewClass{

private int x = 2;

public NewClass(){

}//end constructor

public NewClass(int x){

this.x = x;

}//end constructor

public void setX(int x){

this.x = x;

}//end setX()

public int getX(){

return x;

}//end getX()

}//end NewClass

Table 7.140

Answer and Explanation (p. 2491)

7.9.4 Listings

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

• Listing 1 (p. 2481) . Listing for Question 1.
• Listing 2 (p. 2482) . Listing for Question 2.
• Listing 3 (p. 2483) . Listing for Question 3.
• Listing 4 (p. 2484) . Listing for Question 4.
• Listing 5 (p. 2484) . Listing for Question 5.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2481

• Listing 6 (p. 2486) . Listing for Question 6.
• Listing 7 (p. 2487) . Listing for Question 7.
• Listing 8 (p. 2488) . Listing for Question 8.
• Listing 9 (p. 2489) . Listing for Question 9.
• Listing 10 (p. 2490) . Listing for Question 10.

7.9.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Ap0080: Self-assessment, Classes, Constructors, and Accessor Methods
• File: Ap0080.htm
• Originally published: 2002
• Published at cnx.org: 12/05/12
• Revised: 12/03/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

7.9.6 Answers

7.9.6.1 Answer 10

A. Compiler Error

7.9.6.1.1 Explanation 10

Variables declared private really are private
The code in the following fragment attempts to ignore the setter and getter methods and directly access

the private instance variable named x in the object referred to by the reference variable named obj .

obj.x = 10;

System.out.println(obj.x);

This produces a compiler error. The compiler error produced by JDK 1.3 is reproduced below.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2482 CHAPTER 7. OOP SELF-ASSESSMENT

Ap099.java:19: x has private access in

NewClass

obj.x = 10;

^

Ap099.java:20: x has private access in

NewClass

System.out.println(obj.x);

^

Back to Question 10 (p. 2489)

7.9.6.2 Answer 9

C. 10

7.9.6.2.1 Explanation 9

A setter and a getter
This is a very simple program that uses a setter (modi�er or mutator) method named setX to set the

value 10 in a property named x that is stored in an instance variable named y in an object instantiated
from the class named NewClass ..

The program also uses a getter (accessor) method named getX to get and display the value of the
property named x . (Note that according to JavaBeans design patterns, the name of the property is
unrelated to the name of variable in which the property value is stored.)

Back to Question 9 (p. 2488)

7.9.6.3 Answer 8

D. 5

7.9.6.3.1 Explanation 8

Hide your data and expose your methods
For reasons that I won't go into here, good object-oriented design principles state that in almost all cases

where an instance variable is not declared to be �nal , it should be declared private . (A �nal variable
behaves like a constant.)

What is private access?
When an instance variable is declared private , it is accessible only by methods of the class in which it

is de�ned. Therefore, the only way that the "outside world" can gain access to a private instance variable
is by going through an (usually public) instance method of the object.

Accessor, modi�er, mutator, setter, and getter methods
Historically, methods that have been de�ned for the purpose of exposing private instance variables to

the outside world have been referred to as accessor and modi�er methods. (Modi�er methods are also
sometimes called mutator methods.)

(Note that since the advent of Sun's JavaBeans Component design patterns, these methods have also come
to be known as getter methods and setter methods in deference to the design-pattern naming conventions
for the methods.)

A private instance variable with an initializer
The class named NewClass declares a private instance variable named x and initializes its value

to 2, as shown in the following code fragment:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2483

private int x = 2;

Two constructors
The class contains both a noarg constructor and a parameterized constructor as shown in the following

fragment:

public NewClass(){

}//end constructor

public NewClass(int x){

this.x = x;

}//end constructor

Calling the noarg constructor
If an object of the class is instantiated by calling the noarg constructor, the initial value of 2 remains

intact, and that object contains an instance variable with an initial value of 2.
Calling the parameterized constructor
If an object of the class is instantiated by calling the parameterized constructor, the initial value of 2

is overwritten by the value of the incoming parameter to the parameterized constructor. In this case, that
value is 5, because the object is instantiated by the following code fragment that passes the literal value 5
to the parameterized constructor. Thus, the initial value of the instance variable in that object is 5.

NewClass obj = new NewClass(5);

A getter method
Because the instance variable named x is private , it cannot be accessed directly for display by

the code in the makeObj method of the Worker class. However, the NewClass class provides
the following public getter or accessor method that can be used to get the value stored in the instance
variable.

(The name of this method complies with JavaBeans design patterns. If you examine the name carefully,
you will see why Java programmers often refer to methods like this as getter methods.)

public int getX(){

return x;

}//end getX()

Calling the getter method
Finally, the second statement in the following code fragment calls the getter method on the NewClass

object to get and display the value of the instance variable named x .

NewClass obj = new NewClass(5);

System.out.println(obj.getX());

Back to Question 8 (p. 2487)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2484 CHAPTER 7. OOP SELF-ASSESSMENT

7.9.6.4 Answer 7

C. Object containing 0, 0.0, false

7.9.6.4.1 Explanation 7

Default initialization values
The purpose of this question is to con�rm that you understand the default initialization of instance

variables in an object when you don't write code to cause the initialization of the instance variable to di�er
from the default.

By default, all instance variables in a new object are initialized with default values if you don't provide
a constructor (or other mechanism) that causes them to be initialized di�erently from the default.

• All instance variables of the numeric types are initialized to the value of zero for the type. This program
illustrates default initialization to zero for int and double types.

• Instance variables of type boolean are initialized to false.
• Instance variables of type char are initialized to a 16-bit Unicode character for which all sixteen bits

have been set to zero. I didn't include initialization of the char type in the output of this program
because the default char value is not printable.

• Instance variables of reference types are initialized to null.

Back to Question 7 (p. 2486)

7.9.6.5 Answer 6

C. Object containing 5

7.9.6.5.1 Explanation 6

A parameterized constructor
This program illustrates the straightforward use of a parameterized constructor.
The class named NewClass de�nes a parameterized constructor that requires an incoming parameter

of type int .
(For good design practice, the class also de�nes a noarg constructor, even though it isn't actually used

in this program. This makes it available if needed later when someone extends the class.)
Both constructors are shown in the following code fragment.

public NewClass(){

}//end constructor

public NewClass(int x){

this.x = x;

}//end constructor

The parameterized constructor stores its incoming parameter named x in an instance variable of the class,
also named x .

(The use of the keyword this is required in this case to eliminate the ambiguity of having a local
parameter with the same name as an instance variable. This is very common Java programming style that
you should recognize and understand.)

Call the parameterized constructor
The following code fragment calls the parameterized constructor, passing the literal int value of 5 as a

parameter.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2485

NewClass obj = new NewClass(5);

Hopefully you will have no di�culty understanding the remaining code in the program that causes the value
stored in the instance variable named x to be displayed on the computer screen.

Back to Question 6 (p. 2485)

7.9.6.6 Answer 5

A. Compiler Error

7.9.6.6.1 Explanation 5

If you de�ne any constructors, ...
The discussion for Question 4 (p. 2483) explained that if you de�ne any constructor in a new class,

you must de�ne all constructors that will ever be needed for that class. When you de�ne one or more
constructors, the default noarg constructor is no longer provided by the system on your behalf.

Question 4 (p. 2483) illustrated a simple manifestation of a problem arising from the failure to de�ne a
noarg constructor that would be needed later. The reason that it was needed later was that the programmer
attempted to explicitly use the non-existent noarg constructor to create an instance of the class.

A more subtle problem
The problem in this program is more subtle. Unless you (or the programmer of the superclasses)

speci�cally write code to cause the system to behave otherwise, each time you instantiate an object of a
class, the system automatically calls the noarg constructor on superclasses of that class up to and including
the class named Object . If one or more of those superclasses don't have a noarg constructor, unless the
author of the subclass constructor has taken this into account, the program will fail to compile.

Calling a non-existing noarg constructor
This program attempts to instantiate an object of a class named Subclass , which extends a class

named Superclass . By default, when attempting to instantiate the object, the system will attempt to
call a noarg constructor de�ned in Superclass .

Superclass has no noarg constructor
The Superclass class de�nes a parameterized constructor that requires a single incoming parameter of

type int . However, it does not also de�ne a noarg constructor. Because the parameterized constructor is
de�ned, the default noarg constructor does not exist. As a result, JDK 1.3 produces the following compiler
error:

Ap094.java:40: cannot resolve symbol

symbol : constructor Superclass ()

location: class Superclass

public Subclass(){

Back to Question 5 (p. 2484)

7.9.6.7 Answer 4

A. Compiler Error

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2486 CHAPTER 7. OOP SELF-ASSESSMENT

7.9.6.7.1 Explanation 4

Constructors
Java uses the following kinds of constructors:

• Those that take arguments, often referred to as parameterized constructors , which typically perform
initialization on the new object using parameter values.

• Those that don't take arguments, often referred to as default or noarg constructors, which perform
default initialization on the new object.

• Those that don't take arguments but perform initialization on the new object in ways that di�er from
the default initialization.

Constructor de�nition is optional
You are not required to de�ne a constructor when you de�ne a new class. If you don't de�ne a constructor

for your new class, a default constructor will be provided on your behalf. This constructor requires no
argument, and it is typically used in conjunction with the new operator to create an instance of the class
using statements such as the following:

NewClass obj = new NewClass();

The default constructor
The default constructor typically does the following:

• Calls the noarg constructor of the superclass
• Assists in the process of allocating and organizing memory for the new object
• Initializes all instance variables of the new object with the following four default values:

· numeric = 0,
· boolean = false,
· char = all zero bits
· reference = null

Are you satis�ed with default values?
As long as you are satis�ed with the default initialization of all instance variables belonging to the object,

there is no need for you to de�ne a constructor of your own.
However, in the event that you have initialization needs that are not satis�ed by the default constructor,

you can de�ne your own constructor. Your new constructor may or may not require arguments. (In case
you have forgotten, the name of the constructor is always the same of the name of the class in which it is
de�ned.)

A non-default noarg constructor
If your new constructor doesn't require arguments, you may need to write code that performs initialization

in ways that di�er from the default initialization. For example, you might decide that a particular double
instance variable needs to be initialized with a random number each time a new object is instantiated. You
could do that with a constructor of your own design that doesn't take arguments by de�ning the constructor
to get initialization values from an object of the Random class.

A parameterized constructor
If your new constructor does take arguments, (a parameterized constructor) you can de�ne as many

overloaded versions as you need. Each overloaded version must have a formal argument list that di�ers from
the formal argument list of all of the other overloaded constructors for that class.

(The rules governing the argument list for overloaded constructors are similar to the rules governing the
argument list for overloaded methods, which were discussed in a previous module.)

Use parameter values for initialization

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2487

In this case, you will typically de�ne your parameterized constructors to initialize some or all of the
instance variables of the new object using values passed to the constructor as parameters.

What else can a constructor do?
You can also cause your new constructor to do other things if you so choose. For example, if you know

how to do so, you could cause your constructor (with or without parameters) to play an audio clip each
time a new object is instantiated. You could use a parameter to determine which audio clip to play in each
particular instance.

The punch line
So far, everything that I have said is background information for this program. Here is the punch line

insofar as this program is concerned.
If you de�ne any constructor in your new class, you must de�ne all constructors that your new class will

ever need.
If you de�ne any constructor, the default constructor is no longer provided on your behalf. If your new

class needs a noarg constructor (and it probably does, but that may not become apparent until later
when you or someone else extends your class) you must de�ne the noarg version in addition to the other
overloaded versions that you de�ne.

A violation of the rule
This program violated the rule given above. It de�ned the parameterized constructor for the class named

NewClass shown below

public NewClass(int x){

this.x = x;

}//end constructor

However, the program did not also de�ne a noarg constructor for the NewClass class.
Calling the noarg constructor
The code in the makeObj method of the Worker class attempted to instantiate a new object using

the following code:

NewClass obj = new NewClass();

Since the class de�nition didn't contain a de�nition for a noarg constructor, the following compiler error
was produced by JDK 1.3.

Ap093.java:18: cannot resolve symbol

symbol : constructor NewClass

()

location: class NewClass

NewClass obj = new NewClass();

Back to Question 4 (p. 2483)

7.9.6.8 Answer 3

C. An Object

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2488 CHAPTER 7. OOP SELF-ASSESSMENT

7.9.6.8.1 Explanation 3

We �nally got it right!
Did you identify the errors in the previous two programs before looking at the answers?
This program declares the class named NewClass correctly and uses the new operator correctly in

conjunction with the default noarg constructor for the NewClass class to create a new instance of the
class (an object) .

Making the class public
One of the things that I could do di�erently would be to make the declaration for the NewClass class

public (as shown in the following code fragment) .

public class NewClass{

public String toString(){

return "An Object";

}//end toString()

}//end NewClass

I am a little lazy
The reason that I didn't declare this class public (and haven't done so throughout this series of

modules) is because the source code for all public classes and interfaces must be in separate �les. While
that is probably a good requirement for large programming projects, it is overkill for simple little programs
like I am presenting in this group of self-assessment modules.

Dealing with multiple �les
Therefore, in order to avoid the hassle of having to deal with multiple source code �les for every program,

I have been using package-private access for class de�nitions other than the controlling class (the controlling
class is declared public) . Although I won't get into the details at this point, when a class is not declared
public, it is common to say that it has package-private access instead of public access.

Back to Question 3 (p. 2482)

7.9.6.9 Answer 2

A. Compiler Error

7.9.6.9.1 Explanation 2

Java is a case-sensitive language
Java keywords must be written exactly as speci�ed. The keyword class cannot be written as Class ,

which is the problem with this program.
The inappropriate use of the upper-case C in the word Class caused the following compiler error.

Ap091.java:25: 'class' or 'interface' expected

Class NewClass{

The solution to the problem
This problem can be resolved by causing the �rst character in the keyword class to be a lower-case

character as shown in the following code fragment.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2489

class NewClass{

public String toString(){

return "An Object";

}//end toString()

}//end NewClass

Back to Question 2 (p. 2481)

7.9.6.10 Answer 1

A. Compiler Error

7.9.6.10.1 Explanation 1

Instantiating an object
There are several ways to instantiate an object in Java:

• Use the newInstance method of the class named Class .
• Reconstruct a serialized object using an I/O readObject method.
• Create an initialized array object such as {1,2,3}.
• Create a String object from a literal string such as "A String".
• Use the new operator.

Of all of these, the last two are by far the most common.
What you cannot do!
You cannot instantiate a new object using code like the following code fragment that was extracted from

this program.

NewClass obj = NewClass();

This program produces the following compiler error:

Ap090.java:18: cannot resolve symbol

symbol : method NewClass ()

location: class Worker

NewClass obj = NewClass();

The solution to the problem
This problem can be solved by inserting the new operator to the left of the constructor as shown in

the following code fragment.

NewClass obj = new NewClass();

Back to Question 1 (p. 2481)
-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2490 CHAPTER 7. OOP SELF-ASSESSMENT

7.10 Ap0090: Self-assessment, the super keyword, �nal keyword, and
static methods18

7.10.1 Table of Contents

• Preface (p. 2500)
• Questions (p. 2500)

· 1 (p. 2500) , 2 (p. 2501) , 3 (p. 2504) , 4 (p. 2504) , 5 (p. 2505) , 6 (p. 2506) , 7 (p. 2506) , 8
(p. 2507) , 9 (p. 2508) , 10 (p. 2508)

• Listings (p. 2509)
• Miscellaneous (p. 2509)
• Answers (p. 2510)

7.10.2 Preface

This module is part of a self-assessment test designed to help you determine how much you know about
object-oriented programming using Java.

The test consists of a series of questions with answers and explanations of the answers.
The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the

question to the answer and back.
I recommend that you open another copy of this document in a separate browser window and use the

links to under Listings (p. 2509) to easily �nd and view the listings while you are reading about them.

7.10.3 Questions

7.10.3.1 Question 1 .

What output is produced by the program shown in Listing 1 (p. 2501) ?

• A. Compiler Error
• B. Runtime Error
• C. 1, 2
• D. 5, 10
• E. None of the above

18This content is available online at <http://cnx.org/content/m45270/1.5/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2491

Listing 1 . Listing for Question 1.

public class Ap100{

public static void main(

String args[]){

new Worker().makeObj();

}//end main()

}//end class definition

class Worker{

public void makeObj(){

Subclass obj = new Subclass();

System.out.println(obj.getX() +

", " + obj.getY());

}//end makeObj()

}// end class

class Superclass{

private int x = 1;

public Superclass(){

x = 5;

}//end constructor

public int getX(){

return x;

}//end getX()

}//end Superclass

class Subclass extends Superclass{

private int y = 2;

public Subclass(){

super();

y = 10;

}//end constructor

public int getY(){

return y;

}//end getY()

}//end Subclass

Table 7.141

Answer and Explanation (p. 2517)

7.10.3.2 Question 2

What output is produced by the program shown in Listing 2 (p. 2503) ?

• A. Compiler Error

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2492 CHAPTER 7. OOP SELF-ASSESSMENT

• B. Runtime Error
• C. 1, 2
• D. 5, 2
• E. 5, 10
• F. 20, 10
• G. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2493

Listing 2 . Listing for Question 2.

public class Ap101{

public static void main(

String args[]){

new Worker().makeObj();

}//end main()

}//end class definition

class Worker{

public void makeObj(){

Subclass obj = new Subclass();

System.out.println(obj.getX() +

", " + obj.getY());

}//end makeObj()

}// end class

class Superclass{

private int x = 1;

public Superclass(){

x = 5;

}//end constructor

public Superclass(int x){

this.x = x;

}//end constructor

public int getX(){

return x;

}//end getX()

}//end Superclass

class Subclass extends Superclass{

private int y = 2;

public Subclass(){

super(20);

y = 10;

}//end constructor

public int getY(){

return y;

}//end getY()

}//end Subclass

Table 7.142

Answer and Explanation (p. 2516)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2494 CHAPTER 7. OOP SELF-ASSESSMENT

7.10.3.3 Question 3

What output is produced by the program shown in Listing 3 (p. 2504) ?

• A. Compiler Error
• B. Runtime Error
• C. 5
• D. None of the above

Listing 3 . Listing for Question 3.

public class Ap102{

public static void main(

String args[]){

new Worker().finalStuff();

}//end main()

}//end class definition

class Worker{

public void finalStuff(){

final int x = 5;

x = 10;

System.out.println(x);

}//end finalStuff()

}// end class

Table 7.143

Answer and Explanation (p. 2515)

7.10.3.4 Question 4

What output is produced by the program shown in Listing 4 (p. 2505) ?

• A. Compiler Error
• B. Runtime Error
• C. 5
• D. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2495

Listing 4 . Listing for Question 4.

public class Ap103{

public static void main(

String args[]){

new Worker().finalStuff();

}//end main()

}//end class definition

class Worker{

public void finalStuff(){

public final int x = 5;

System.out.println(x);

}//end finalStuff()

}// end class

Table 7.144

Answer and Explanation (p. 2513)

7.10.3.5 Question 5

What output is produced by the program shown in Listing 5 (p. 2505) ?

• A. Compiler Error
• B. Runtime Error
• C. 5
• D. None of the above

Listing 5 . Listing for Question 5.

public class Ap104{

public static void main(

String args[]){

new Worker().finalStuff();

}//end main()

}//end class definition

class Worker{

void finalStuff(){

final int x = 5;

System.out.println(x);

}//end finalStuff()

}// end class

Table 7.145

Answer and Explanation (p. 2513)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2496 CHAPTER 7. OOP SELF-ASSESSMENT

7.10.3.6 Question 6

What output is produced by the program shown in Listing 6 (p. 2506) ?

• A. Compiler Error
• B. Runtime Error
• C. 3.141592653589793
• D. 3.1415927
• E. None of the above

Listing 6 . Listing for Question 6.

public class Ap105{

public static void main(

String args[]){

System.out.println(Worker.fPi);

}//end main()

}//end class definition

class Worker{

public static final float fPi =

(float)Math.PI;

}// end class

Table 7.146

Answer and Explanation (p. 2513)

7.10.3.7 Question 7

What output is produced by the program shown in Listing 7 (p. 2507) ?

• A. Compiler Error
• B. Runtime Error
• C. A static method
• D. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2497

Listing 7 . Listing for Question 7.

public class Ap106{

public static void main(

String args[]){

Worker.staticMethod();

}//end main()

}//end class definition

class Worker{

public static void staticMethod(){

System.out.println(

"A static method");

}//end staticMethod()

}// end class

Table 7.147

Answer and Explanation (p. 2512)

7.10.3.8 Question 8

What output is produced by the program shown in Listing 8 (p. 2507) ?

• A. Compiler Error
• B. Runtime Error
• C. 5
• D. None of the above

Listing 8 . Listing for Question 8.

public class Ap107{

public static void main(

String args[]){

Worker.staticMethod();

}//end main()

}//end class Ap107

class Worker{

private int x = 5;

public static void staticMethod(){

System.out.println(x);

}//end staticMethod()

}// end class

Table 7.148

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2498 CHAPTER 7. OOP SELF-ASSESSMENT

Answer and Explanation (p. 2512)

7.10.3.9 Question 9

What output is produced by the program shown in Listing 9 (p. 2508) ?

• A. Compiler Error
• B. Runtime Error
• C. 5
• D. None of the above

Listing 9 . Listing for Question 9.

public class Ap108{

public static void main(

String args[]){

Worker.staticMethod();

}//end main()

}//end class Ap108

class Worker{

private int x = 5;

public static void staticMethod(){

System.out.println(

new Worker().getX());

}//end staticMethod()

public int getX(){

return x;

}//end getX()

}// end class

Table 7.149

Answer and Explanation (p. 2511)

7.10.3.10 Question 10

Which output shown below is produced by the program shown in Listing 10 (p. 2509) ?

A. Compiler Error

B. Runtime Error

C. 38.48451000647496

12.566370614359172

D. None of the above

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2499

Listing 10 . Listing for Question 10.

public class Ap109{

public static void main(String args[]){

System.out.println(Worker.area(3.5));

System.out.println(Worker.area(2.0));

System.out.println();

}//end main()

}//end class Ap109

class Worker{

public static double area(double r){

return r*r*Math.PI;

}//end area()

}// end class

Table 7.150

Answer and Explanation (p. 2510)

7.10.4 Listings

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

• Listing 1 (p. 2501) . Listing for Question 1.
• Listing 2 (p. 2503) . Listing for Question 2.
• Listing 3 (p. 2504) . Listing for Question 3.
• Listing 4 (p. 2505) . Listing for Question 4.
• Listing 5 (p. 2505) . Listing for Question 5.
• Listing 6 (p. 2506) . Listing for Question 6.
• Listing 7 (p. 2507) . Listing for Question 7.
• Listing 8 (p. 2507) . Listing for Question 8.
• Listing 9 (p. 2508) . Listing for Question 9.
• Listing 10 (p. 2509) . Listing for Question 10.

7.10.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Ap0090: Self-assessment, the super keyword, �nal keyword, and static methods

• File: Ap0090.htm
• Originally published: 2002
• Published at cnx.org: 12/05/12
• Revised: 12/03/14

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2500 CHAPTER 7. OOP SELF-ASSESSMENT

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

7.10.6 Answers

7.10.6.1 Answer 10

C. 38.48451000647496

12.566370614359172

7.10.6.1.1 Explanation 10

Use static methods sparingly
Good object-oriented design dictates that static methods be used sparingly, and only in those situations

where they are appropriate. As you might guess, not all authors will agree on the issue of appropriateness
in all cases.

Is this an appropriate use of a static method?
However, I believe that most authors will agree that this program illustrates an appropriate use of a

static method.
No persistence requirement
This static method computes and returns a result on a non-persistent basis. That is to say, there is no

attempt by the static method to save any historical information from one call of the method to the next.
(Of course, the method that calls the static method can save whatever it chooses to save.)

Avoiding wasted computer resources
In situations such as this, it would often be a waste of computer resources to require a program to

instantiate an object and call an instance method on that object just to be able to delegate a non-persistent
computation to that method. (This is just about as close to a global method as you can get in Java.)

Computing the area of a circle
In this program, the Worker class provides a static method named area that receives a double

parameter representing the radius of a circle. It computes and returns the area of the circle as a double
value. The static method named area is shown in the following code fragment.

class Worker{

public static double area(double r){

return r*r*Math.PI;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2501

}//end area()

}// end class

As a driver, the main method of the controlling class calls the area method twice in succession, passing
di�erent values for the radius of a circle. In each case, the main method receives and displays the value
that is returned by the area method representing the area of a circle.

Static methods in the class libraries
If you examine the Java API documentation carefully, you will �nd numerous examples of static methods

that produce and return something on a non-persistent basis. (Again, non-persistent in this context means
that no attempt is made by the static method to store any historical information. It does a job, forgets
it, and goes on to the next job when it is called again.)

Factory methods
For example, the alphabetical index of the JDK 1.3 API lists several dozen static methods named

getInstance , which are de�ned in di�erent classes. These methods, which usually produce and return a
reference to an object, are often called factory methods .

Here is the text from the API documentation describing one of them:

getInstance(int)

Static method in class java.awt.AlphaComposite

Creates an AlphaComposite object with the speci�ed rule.

Back to Question 10 (p. 2508)

7.10.6.2 Answer 9

C. 5

7.10.6.2.1 Explanation 9

Going through a reference to ...
This program illustrates a rather convoluted methodology by which a static method can gain access

to an instance member of an object.

class Worker{

private int x = 5;

public static void staticMethod(){

System.out.println(

new Worker().getX());

}//end staticMethod()

public int getX(){

return x;

}//end getX()

}// end class

In this example, the static method calls a getter method on a reference to an object to gain access to an
instance variable belonging to that object. This is what I meant in the discussion in the previous question
when I said "going through a reference to an object of the class."

Back to Question 9 (p. 2508)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2502 CHAPTER 7. OOP SELF-ASSESSMENT

7.10.6.3 Answer 8

A. Compiler Error

7.10.6.3.1 Explanation 8

A static method cannot access ...
A static method cannot access non-static or instance members of its class without going through a

reference to an object of the class.
In this program, the static method attempts to directly access the instance variable named x . As a

result, JDK 1.3 produces the following compiler error:

Ap107.java:17: non-static variable x

cannot be referenced from a static context

System.out.println(x);

Back to Question 8 (p. 2507)

7.10.6.4 Answer 7

C. A static method

7.10.6.4.1 Explanation 7

Using a static method
This is a very straightforward example of the use of a static method.
When a method is declared static , it is not necessary to instantiate an object of the class containing

the method in order to access the method (although it is possible to do so unless the class is declared
abstract) . All that is necessary to access a public static method is to refer to the name of the class in
which it is de�ned and the name of the method joined by a period.

(A method that is declared static is commonly referred to as a class method. If the method is not
declared public , it may not be accessible from your code.)

Accessing the static method
This is illustrated by the following fragment from the program, with much of the code deleted for brevity.

//...

Worker.staticMethod();

//...

class Worker{

public static void staticMethod(){

//...

}//end staticMethod()

}// end class

The class named Worker de�nes a public static method named staticMethod . A statement in
the main method of the controlling class calls the method by referring to the name of the class and the
name of the method joined by a period.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2503

When should you use static methods?
Static methods are very useful as utility methods (getting the absolute value of a number, for example)

.
In my opinion, you should almost never use a static method in any circumstance that requires the

storage and use of data from one call of the method to the next. In other words, a static method may
be appropriate for use when it performs a speci�c task that is completed each time it is called without the
requirement for data to persist between calls.

The Math class contains many good examples of the use of static methods, such as abs , acos ,
asin , etc.
Back to Question 7 (p. 2506)

7.10.6.5 Answer 6

D. 3.1415927

7.10.6.5.1 Explanation 6

Using a public static �nal member variable
The class named Worker declares and initializes a member variable named fPi .
�nal
Because it is declared �nal , it is not possible to write code that will change its value after it has been

initialized.
static
Because it is declared static , it can be accessed without a requirement to instantiate an object of the

Worker class. All that is necessary to access the variable is to refer to the name of the class and the name
of the variable joined by a period.

Because it is static , it can also be accessed by static methods.
public
Because it is declared public , it can be accessed by any code in any method in any object that can

locate the class.
Type �oat is less precise than type double
Because the initialized value is cast from the type double that is returned by Math.PI to type

�oat , an 8-digit approximation is stored in the variable named fPi .
The double value returned by Math.PI is 3.141592653589793
The cast to type �oat reduces the precision down to 3.1415927
Back to Question 6 (p. 2506)

7.10.6.6 Answer 5

C. 5

7.10.6.6.1 Explanation 5

Using a �nal local variable
Well, I �nally got rid of all the bugs. This program uses a �nal local variable properly. The program

compiles and executes without any problems.
Back to Question 5 (p. 2505)

7.10.6.7 Answer 4

A. Compiler Error

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2504 CHAPTER 7. OOP SELF-ASSESSMENT

7.10.6.7.1 Explanation 4

The purpose of this question is to see if you are still awake.
What caused the compiler error?
The statement that caused the compiler error in this program is shown below. Now that you know that

there was a compiler error, and you know which statement caused it, do you know what caused it?

public final int x = 5;

Using public static �nal member variables
As I mentioned in an earlier question, the �nal keyword can be applied either to local variables or to

member variables. When applying the �nal keyword to member variables, it is common practice to declare
them to be both public and static in order to make them as accessible as possible. For example, the
math class has a �nal variable that is described as follows:

public static �nal double PI

The double value that is closer than any other to pi, the ratio of the circumference of a circle to its
diameter.

The constant named PI
You may recognize the constant named PI from your high school geometry class.
Whenever you need the value for the constant PI , you shouldn't have to instantiate an object just

to get access to it. Furthermore, your class should not be required to have any special package relationship
with the Math class just to get access to PI .

The good news ...
Because PI is declared to be both public and static in the Math class, it is readily available to

any code in any method in any Java program that has access to the standard Java class library.
How is PI accessed?
PI can be accessed by using an expression as simple as that shown below, which consists simply of the

name of the class and the name of the variable joined by a period (Math.PI) .

double piRSquare = Math.PI * R * R;

No notion of public local variables
As a result of the above, many of you may have become accustomed to associating the keyword public

with the keyword �nal . However, if you missed this question and you have read the explanation to this
point, you must also remember that there is no notion of public or private for local variables. Therefore,
when this program was compiled under JDK 1.3, a compiler error was produced. That compiler error is
partially reproduced below:

Ap103.java:16: illegal start of

expression

public final int x = 5;

Back to Question 4 (p. 2504)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2505

7.10.6.8 Answer 3

A. Compiler Error

7.10.6.8.1 Explanation 3

The �nal keyword
The �nal keyword can be applied in a variety of ways in Java. This includes:

• �nal parameters
• �nal methods
• �nal classes
• �nal variables (constants)

Behaves like a constant
When the �nal keyword is applied to a variable in Java, that causes the variable to behave like a

constant. In other words, the value of the variable must be initialized when it is declared, and it cannot be
changed thereafter (see the exception discussed below) .

Apply to local or member variables
The �nal keyword can be applied to either local variables or member variables. (In case you have

forgotten, local variables are declared inside a method or constructor, while member variables are declared
inside a class, but outside a method.)

So, what is the problem?
The problem with this program is straightforward. As shown in the following code fragment, after

declaring a �nal local variable and initializing its value to 5, the program attempts to change the value
stored in that variable to 10. This is not allowed.

final int x = 5;

x = 10;

A compiler error
JDK 1.3 produces the following error message:

Ap102.java:17: cannot assign a value to

final

variable x

x = 10;

An interesting twist - blank �nals
An interesting twist of the use of the �nal keyword with local variables is discussed below.
Background information
Regardless of whether or not the local variable is declared �nal , the compiler will not allow you to

access the value in a local variable if that variable doesn't contain a value. This means that you must always
either initialize a local variable or assign a value to it before you can access it.

So, what is the twist?
Unlike �nal member variables of a class, the Java compiler and runtime system do not require you to

initialize a �nal local variable when you declare it. Rather, you can wait and assign a value to it later.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2506 CHAPTER 7. OOP SELF-ASSESSMENT

(Some authors refer to this as a blank �nal.) However, once you have assigned a value to a �nal local
variable, you cannot change that value later.

The bottom line
Whether you initialize the �nal local variable when you declare it, or assign a value to it later, the

result is the same. It behaves as a constant. The di�erence is that if you don't initialize it when you declare
it, you cannot access it until after you assign a value to it.

Back to Question 3 (p. 2504)

7.10.6.9 Answer 2

F. 20, 10

7.10.6.9.1 Explanation 2

Calling a parameterized constructor
This is a relatively straightforward implementation of the use of the super keyword in a subclass

constructor to call a parameterized constructor in the superclass.
The interesting code in the program is highlighted in the following fragment. Note that quite a lot of

code was deleted from the fragment for brevity.

class Superclass{

//...

public Superclass(int x){

//...

}//end constructor

//...

}//end Superclass

class Subclass extends Superclass{

//...

public Subclass(){

super(20);

//...

}//end constructor

//...

}//end Subclass

Using the super keyword
The code that is of interest is the use of super(20) as the �rst executable statement in the Subclass

constructor to call the parameterized constructor in the superclass, passing a value of 20 as a parameter to
the parameterized constructor.

Note that when the super keyword is used in this fashion in a constructor, it must be the �rst
executable statement in the constructor.

As before, the program plays around a little with initial values for instance variables to see if you are
alert, but the code that is really of interest is highlighted in the above fragment.

Back to Question 2 (p. 2501)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2507

7.10.6.10 Answer 1

D. 5, 10

7.10.6.10.1 Explanation 1

The execution of constructors
The purpose of this question and the associated answer is to illustrate explicitly what happens automat-

ically by default regarding the execution of constructors.
The Subclass constructor
This program de�nes a class named Subclass , which extends a class named Superclass . A portion

of the Subclass de�nition, including its noarg constructor is shown in the following code fragment.
(The class also de�nes a getter method, which was omitted here for brevity.)

class Subclass extends Superclass{

private int y = 2;

public Subclass(){

super();

y = 10;

}//end constructor

//...

}//end Subclass

The super keyword
The important thing to note in the above fragment is the statement containing the keyword super .
The super keyword has several uses in Java. As you might guess from the word, all of those uses have

something to do with the superclass of the class in which the keyword is used.
Invoke the superclass constructor
When the super keyword (followed by a pair of matching parentheses) appears as the �rst executable

statement in a constructor, this is an instruction to the runtime system to �rst call the constructor for the
superclass, and then come back and �nish executing the code in the constructor for the class to which the
constructor belongs.

Call the noarg superclass constructor
If the parentheses following the super keyword are empty, this is an instruction to call the noarg

constructor for the superclass.
Invoke a parameterized superclass constructor
If the parentheses are not empty, this is an instruction to �nd and call a parameterized constructor in

the superclass whose formal arguments match the parameters in the parentheses.
Invoke the noarg superclass constructor by default
Here is an important point that is not illustrated above. If the �rst executable statement in your

constructor is not an instruction to call the constructor for the superclass, an instruction to call the noarg
constructor for the superclass will e�ectively be inserted into your constructor code before it is compiled.

Therefore, a constructor for the superclass is always called before the code in the constructor for
your new class is executed.

You can choose the superclass constructor
The superclass constructor that is called may be the noarg constructor for the superclass, or you can

force it to be a parameterized constructor by inserting something like
super(3,x,4.5);
as the �rst instruction in your constructor de�nition.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2508 CHAPTER 7. OOP SELF-ASSESSMENT

Always have a noarg constructor ...
Now you should understand why I told you in an earlier module that the classes you de�ne should almost

always have a noarg constructor, either the default noarg version, or a noarg version of your own design.
If your classes don't have a noarg constructor, then anyone who extends your classes will be required

to put code in the constructor for their new class to call a parameterized constructor in your class.
In this program, the super(); statement in the Subclass constructor causes the noarg constructor

for the Superclass to be called. That noarg constructor is shown in the following code fragment.

class Superclass{

private int x = 1;

public Superclass(){

x = 5;

}//end constructor

//...

}//end Superclass

Additional code
Beyond an exposure and explanation of the use of the super keyword to call the superclass constructor,

this program plays a few games with initial values of instance variables just to see if you are alert to that
sort of thing. However, none of that should be new to you, so I won't discuss it further here.

Back to Question 1 (p. 2500)
-end-

7.11 Ap0100: Self-assessment, The this keyword, static �nal vari-
ables, and initialization of instance variables19

7.11.1 Table of Contents

• Preface (p. 2518)
• Questions (p. 2519)

· 1 (p. 2519) , 2 (p. 2520) , 3 (p. 2520) , 4 (p. 2521) , 5 (p. 2523) , 6 (p. 2524) , 7 (p. 2524) , 8
(p. 2525) , 9 (p. 2526) , 10 (p. 2527)

• Listings (p. 2528)
• Miscellaneous (p. 2529)
• Answers (p. 2529)

7.11.2 Preface

This module is part of a self-assessment test designed to help you determine how much you know about
object-oriented programming using Java.

The test consists of a series of questions with answers and explanations of the answers.
The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the

question to the answer and back.
I recommend that you open another copy of this document in a separate browser window and use the

links to under Listings (p. 2528) to easily �nd and view the listings while you are reading about them.

19This content is available online at <http://cnx.org/content/m45296/1.4/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2509

7.11.3 Questions

7.11.3.1 Question 1 .

What output is produced by the program shown in Listing 1 (p. 2519) ?

• A. Compiler Error
• B. Runtime Error
• C. 33
• D. None of the above

Listing 1 . Listing for Question 1.

public class Ap110{

public static void main(

String args[]){

new Worker().doThis();

}//end main()

}//end class Ap110

class Worker{

private int data = 33;

public void doThis(){

new Helper().helpMe(this);

}//end area()

public String getData(){

return data;

}//end getData()

}// end class Worker

class Helper{

public void helpMe(Worker param){

System.out.println(

param.getData());

}//end helpMe()

}//end class Helper

Table 7.151

Answer and Explanation (p. 2541)

7.11.3.2 Question 2

What output is produced by the program shown in Listing 2 (p. 2520) ?

• A. Compiler Error
• B. Runtime Error
• C. 33
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2510 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 2 . Listing for Question 2.

public class Ap111{

public static void main(

String args[]){

new Worker().doThis();

}//end main()

}//end class Ap111

class Worker{

private int data = 33;

public void doThis(){

new Helper().helpMe(this);

}//end area()

public String getData(){

return "" + data;

}//end getData()

}// end class Worker

class Helper{

public void helpMe(Worker param){

System.out.println(

param.getData());

}//end helpMe()

}//end class Helper

Table 7.152

Answer and Explanation (p. 2539)

7.11.3.3 Question 3

What output is produced by the program shown in Listing 3 (p. 2521) ?

• A. Compiler Error
• B. Runtime Error
• C. 11
• D. 22
• E. 33
• F. 44
• G. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2511

Listing 3 . Listing for Question 3.

public class Ap112{

public static void main(

String args[]){

Worker obj1 = new Worker(11);

Worker obj2 = new Worker(22);

Worker obj3 = new Worker(33);

Worker obj4 = new Worker(44);

obj2.doThis();

}//end main()

}//end class Ap112

class Worker{

private int data;

public Worker(int data){

this.data = data;

}//end constructor

public void doThis(){

System.out.println(this);

}//end area()

public String toString(){

return "" + data;

}//end toString()

}// end class Worker

Table 7.153

Answer and Explanation (p. 2537)

7.11.3.4 Question 4

What output is produced by the program shown in Listing 4 (p. 2523) ?
Note that 6.283185307179586 is a correct numeric value.

• A. Compiler Error
• B. Runtime Error
• C. 6.283185307179586
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2512 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 4 . Listing for Question 4.

public class Ap113{

public static void main(

String args[]){

System.out.println(

new Worker().twoPI);

}//end main()

}//end class Ap113

class Worker{

public static final double twoPI;

public Worker(){

twoPI = 2 * Math.PI;

}//end constructor

}// end class Worker

Table 7.154

Answer and Explanation (p. 2537)

7.11.3.5 Question 5

What output is produced by the program shown in Listing 5 (p. 2523) ?
Note that 6.283185307179586 is a correct numeric value.

• A. Compiler Error
• B. Runtime Error
• C. 6.283185307179586
• D. None of the above.

Listing 5 . Listing for Question 5.

public class Ap114{

public static void main(

String args[]){

System.out.println(

new Worker().twoPI);

}//end main()

}//end class Ap114

class Worker{

public static final double twoPI

= 2 * Math.PI;

}// end class Worker

Table 7.155

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2513

Answer and Explanation (p. 2536)

7.11.3.6 Question 6

What output is produced by the program shown in Listing 6 (p. 2524) ?
Note that 6.283185307179586 is a correct numeric value.

• A. Compiler Error
• B. Runtime Error
• C. 6.283185307179586
• D. None of the above.

Listing 6 . Listing for Question 6.

public class Ap115{

public static void main(

String args[]){

System.out.println(Worker.twoPI);

}//end main()

}//end class Ap115

class Worker{

public static final double twoPI

= 2 * Math.PI;

}// end class Worker

Table 7.156

Answer and Explanation (p. 2535)

7.11.3.7 Question 7

What output is produced by the program shown in Listing 7 (p. 2525) ?
Note that 6.283185307179586 is a correct numeric value.

• A. Compiler Error
• B. Runtime Error
• C. C. 6.283185307179586
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2514 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 7 . Listing for Question 7.

public class Ap116{

public static void main(

String args[]){

System.out.println(Worker.twoPI);

}//end main()

}//end class Ap116

class Worker{

public static final double twoPI

= 2 * myPI;

public static final double myPI

= Math.PI;

}// end class Worker

Table 7.157

Answer and Explanation (p. 2534)

7.11.3.8 Question 8

What output is produced by the program shown in Listing 8 (p. 2526) ?

• A. Compiler Error
• B. Runtime Error
• C. 0 0.0 false
• D. null null null
• E. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2515

Listing 8 . Listing for Question 8.

public class Ap117{

public static void main(

String args[]){

new Worker().display();

}//end main()

}//end class Ap117

class Worker{

private int myInt;

private double myDouble;

private boolean myBoolean;

public void display(){

System.out.print(myInt);

System.out.print(" " + myDouble);

System.out.println(

" " + myBoolean);

}//end display()

}// end class Worker

Table 7.158

Answer and Explanation (p. 2533)

7.11.3.9 Question 9

What output is produced by the program shown in Listing 9 (p. 2527) ?

• A. Compiler Error
• B. Runtime Error
• C. 0 false 5 true
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2516 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 9 . Listing for Question 9.

public class Ap118{

public static void main(

String args[]){

new Worker().display();

new Worker(5,true).display();

System.out.println();

}//end main()

}//end class Ap118

class Worker{

private int myInt;

private boolean myBoolean;

public Worker(int x, boolean y){

myInt = x;

myBoolean = y;

}//end parameterized constructor

public void display(){

System.out.print(myInt);

System.out.print(

" " + myBoolean + " ");

}//end display()

}// end class Worker

Table 7.159

Answer and Explanation (p. 2532)

7.11.3.10 Question 10

What output is produced by the program shown in Listing 10 (p. 2528) ?

• A. Compiler Error
• B. Runtime Error
• C. 20 222.0 false � 5 222.0 true
• D. None of the above.

Listing 10 . Listing for Question 10.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2517

public class Ap119{

public static void main(

String args[]){

new Worker().display();

System.out.print("--- ");

new Worker(5,true).display();

System.out.println();

}//end main()

}//end class Ap119

class Worker{

private int myInt = 100;

private double myDouble = 222.0;

private boolean myBoolean;

public Worker(){

myInt = 20;

}//end noarg constructor

public Worker(int x, boolean y){

myInt = x;

myBoolean = y;

}//end parameterized constructor

public void display(){

System.out.print(myInt + " ");

System.out.print(myDouble + " ");

System.out.print(myBoolean + " ");

}//end display()

}// end class Worker

Table 7.160

Answer and Explanation (p. 2529)

7.11.4 Listings

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

• Listing 1 (p. 2519) . Listing for Question 1.
• Listing 2 (p. 2520) . Listing for Question 2.
• Listing 3 (p. 2521) . Listing for Question 3.
• Listing 4 (p. 2523) . Listing for Question 4.
• Listing 5 (p. 2523) . Listing for Question 5.
• Listing 6 (p. 2524) . Listing for Question 6.
• Listing 7 (p. 2525) . Listing for Question 7.
• Listing 8 (p. 2526) . Listing for Question 8.
• Listing 9 (p. 2527) . Listing for Question 9.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2518 CHAPTER 7. OOP SELF-ASSESSMENT

• Listing 10 (p. 2528) . Listing for Question 10.

7.11.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Ap0100: Self-assessment, The this keyword, static �nal variables, and initial-
ization of instance variables
• File: Ap0100.htm
• Originally published: 2004
• Published at cnx.org: 12/08/12
• Revised: 12/03/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

7.11.6 Answers

7.11.6.1 Answer 10

C. 20 222.0 false � 5 222.0 true

7.11.6.1.1 Explanation 10

Four ways to initialize instance variables
There are at least four ways to establish initial values for instance variables (you may be able to think

of others) :

1. Allow them to take on their default values.
2. Establish their values using initialization expressions.
3. Establish their values using hard-coded values within a constructor.
4. Establish their values using parameter values passed to parameterized constructors.

Using the �rst two ways
The following fragment illustrates the �rst two of those four ways.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2519

class Worker{

private int myInt = 100;

private double myDouble = 222.0;

private boolean myBoolean;

//...

In the above fragment, the instance variables named myInt and myDouble receive their initial values
from initialization expressions. In these two cases, the initialization expressions are very simple. They are
simply literal expressions. However, they could be much more complex if needed.

The variable named myBoolean in the above fragment is allowed to take on its default value of false.
Replacing the default noarg constructor
The next fragment shows one of the two overloaded constructors in the class named Worker . This

constructor is a replacement for the default noarg constructor.

class Worker{

private int myInt = 100;

private double myDouble = 222.0;

private boolean myBoolean;

public Worker(){

myInt = 20;

}//end noarg constructor

//...

Using hard-coded values for initialization
This fragment illustrates the third of the four ways listed earlier to establish the initial value of the

instance variables of an object of the class named Worker . In particular, this fragment assigns the
hard-coded value 20 to the instance variable named myInt , thus overwriting the value of 100 previously
established for that variable by an initialization expression.

(All objects instantiated from the Worker class using this noarg constructor would have the same
initial value for the variable named myInt .)

Note, that this constructor does not disturb the initial values of the other two instance variables that were
earlier established by an initialization expression, or by taking on the default value. Thus, the initial values
of these two instance variables remain as they were immediately following the declaration of the variables.

Initial values using this noarg constructor
When an object of the Worker class is instantiated using this constructor and the values of the three

instance variables are displayed, the results are as shown below:
20 222.0 false
The value of myInt is 20 as established by the constructor. The value of myDouble is 222.0 as

established by the initialization expression, and the value of myBoolean is false as established by default.
Using constructor parameters for initialization
The next fragment shows the last of the four ways listed earlier for establishing the initial value of an

instance variable.

public class Ap119{

public static void main(

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2520 CHAPTER 7. OOP SELF-ASSESSMENT

String args[]){

//...

new Worker(5,true).display();

//...

}//end main()

}//end class Ap119

class Worker{

private int myInt = 100;

private double myDouble = 222.0;

private boolean myBoolean;

//...

public Worker(int x, boolean y){

myInt = x;

myBoolean = y;

}//end parameterized constructor

//...

A parameterized constructor
The above fragment shows the second of two overloaded constructors for the class named Worker .

This constructor uses two incoming parameter values to establish the values of two of the instance variables,
overwriting whatever values may earlier have been established for those variables.

The above fragment uses this constructor to instantiate an object of the Worker class, assigning
incoming parameter values of 5 and true to the instance variables named myInt and myBoolean
respectively. This overwrites the value previously placed in the variable named myInt by the initialization
expression. It also overwrites the default value previously placed in the instance variable named myBoolean
.

(Note that this constructor doesn't disturb the value for the instance variable named myDouble
that was previously established through the use of an initialization expression.)

Initial values using parameterized constructor
After instantiating the new object, this fragment causes the values of all three instance variables to be

displayed. The result is:
5 222.0 true
As you can see, the values contained in the instance variables named myInt and myBoolean are

the values of 5 and true placed there by the constructor, based on incoming parameter values. The value in
the instance variable named myDouble is the value placed there by the initialization expression when the
variable was declared.

Default initialization
If you don't take any steps to initialize instance variables, they will be automatically initialized. Numeric

instance variables will be initialized with zero value for the type of variable involved. Instance variables of
type boolean will be initialized to false. Instance variables of type char will be initialized to a Unicode
value with all 16 bits set to zero. Reference variables will be initialized to null.

Initialization expression
If you provide an initialization expression for an instance variable, the value of the expression will overwrite

the default value, and the value of the initialization expression will become the initial value for the instance
variable.

Assignment in constructor code
If you use an assignment statement in a constructor to assign a value to an instance variable, that

value will overwrite the value previously placed in the instance variable either by default, or by use of an

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2521

initialization expression. The constructor has the "last word" on the matter of initialization of instance
variables.

Back to Question 10 (p. 2527)

7.11.6.2 Answer 9

A. Compiler Error

7.11.6.2.1 Explanation 9

The default constructor
When you de�ne a class, you are not required to de�ne a constructor for the class. If you do not de�ne a

constructor for the class, a default constructor that takes no arguments will be provided on your behalf. You
can instantiate new objects of the class by applying the new operator to the default constructor as shown in
the following code fragment from Question 8 (p. 2525) .

new Worker().display();

Behavior of the default constructor
As illustrated in Question 8 (p. 2525) , when you don't provide a constructor that purposely initializes

the values of instance variables, or initialize them in some other manner, they will automatically be initialized
to the default values described in Question 8 (p. 2525) .

De�ning overloaded constructors
You can also de�ne one or more overloaded constructors having di�erent formal argument lists. The

typical intended purpose of such constructors is to use incoming parameter values to initialize the values of
instance variables in the new object.

A parameterized constructor
This is illustrated in the following code fragment. This fragment receives two incoming parameters and

uses the values of those two parameters to initialize the values of two instance variables belonging to the
new object.

class Worker{

private int myInt;

private boolean myBoolean;

public Worker(int x, boolean y){

myInt = x;

myBoolean = y;

}//end parameterized constructor

//display() omitted for brevity

}// end class Worker

If you de�ne any constructors ...
However, there is a pitfall that you must never forget.
If you de�ne any constructors in your new class, you must de�ne all constructors that will ever be required

for your new class.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2522 CHAPTER 7. OOP SELF-ASSESSMENT

If you de�ne any constructors, the default constructor will no longer be provided automatically. Therefore,
if a constructor that takes no arguments will ever be needed for your new class, and you de�ne one or more
parameterized constructors, you must de�ne the noarg constructor when you de�ne your class.

A parameterized constructor for Worker
The class named Worker in this program de�nes a constructor that receives two incoming parameters,

one of type int and the other of type boolean . It uses those two incoming parameters to initialize two
instance variables of the new object.

Oops!
However, it does not de�ne a constructor with no arguments in the formal argument list (commonly

called a noarg constructor) .
Calling the missing noarg constructor
The following code in the main method of the controlling class attempts to instantiate two objects

of the Worker class. The �rst call of the constructor passes no parameters to the constructor. Thus, it
requires a noarg constructor in order to instantiate the object.

public class Ap118{

public static void main(

String args[]){

new Worker().display();

new Worker(5,true).display();

System.out.println();

}//end main()

}//end class Ap118

A compiler error
Since there is no constructor de�ned in the Worker class with an empty formal argument list (and

the default version is not provided) , the program produces the following compiler error.

Ap118.java:11: cannot resolve symbol

symbol : constructor Worker

()

location: class Worker

new Worker().display();

Back to Question 9 (p. 2526)

7.11.6.3 Answer 8

C. 0 0.0 false

7.11.6.3.1 Explanation 8

All instance variables are initialized to default values
All instance variables are automatically initialized to default values if the author of the class doesn't take

explicit steps to cause them to initialized to other values.
The default values
Numeric variables are automatically initialized to zero, while boolean variables are automatically

initialized to false. Instance variables of type char are initialized to a Unicode value with all 16 bits set to
zero. Reference variables are initialized to null.

Back to Question 8 (p. 2525)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2523

7.11.6.4 Answer 7

A. Compiler Error

7.11.6.4.1 Explanation 7

Pushing the compiler beyond its limits
Compared to many programming environments, the Java compiler is very forgiving. However, there is a

limit to how far even the Java compiler is willing to go to keep us out of trouble.
Initializing the value of a static variable
We can initialize the value of a static variable using an initialization expression as follows:

public static final MY_CONSTANT

= initialization expression;

Important point
It is necessary for the compiler to be able to evaluate the initialization expression when it is encountered.
Illegal forward reference
This program attempts to use an initialization expression that makes use of the value of another static

variable (myPI) that has not yet been established at that point in the compilation process. As a result,
the program produces the following compiler error under JDK 1.3.

Ap116.java:18: illegal forward reference

= 2 * myPI;

^

Reverse the order of the variable declarations
The problem can be resolved by reversing the order of the two static variable declarations in the

following revised version of the program.

public class Ap116{

public static void main(

String args[]){

System.out.println(Worker.twoPI);

}//end main()

}//end class Ap116

class Worker{

public static final double myPI

= Math.PI;

public static final double twoPI

= 2 * myPI;

}// end class Worker

This revised version of the program compiles and executes successfully.
Back to Question 7 (p. 2524)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2524 CHAPTER 7. OOP SELF-ASSESSMENT

7.11.6.5 Answer 6

C. 6.283185307179586

7.11.6.5.1 Explanation 6

Access via an object
Question 5 (p. 2523) illustrated the fact that a public static �nal member variable of a class can

be accessed via a reference to an object instantiated from the class.
Not the only way to access a static variable
However, that is not the only way in which static member variables can be accessed. More importantly,

public static member variables of a class can be accessed simply by referring to the name of the class and
the name of the member variable joined by a period.

(Depending on other factors, it may not be necessary for the static variable to also be declared
public , but that is the most general approach.)

A public static �nal member variable
In this program, the Worker class declares and initializes a public static �nal member variable

named twoPI as shown in the following fragment.

class Worker{

public static final double twoPI

= 2 * Math.PI;

}// end class Worker

Accessing the static variable
The single statement in the main method of the controlling class accesses and displays the value of the

public static �nal member variable named twoPI as shown in the following fragment.

public class Ap115{

public static void main(

String args[]){

System.out.println(Worker.twoPI);

}//end main()

}//end class Ap115

Objects share one copy of static variables
Basically, when a member variable is declared static , no matter how many objects are instantiated

from a class (including no objects at all) , they all share a single copy of the variable.
Sharing can be dangerous
This sharing of a common variable leads to the same kind of problems that have plagued programs that

use global variables for years. If the code in any object changes the value of the static variable, it is
changed insofar as all objects are concerned.

Should you use non-�nal static variables?
Most authors will probably agree that in most cases, you probably should not use static variables

unless you also make them �nal .
(There are some cases, such as counting the number of objects instantiated from a class, where a non-�nal

static variable may be appropriate. However, the appropriate uses of non-�nal static variables
are few and far between.)

Should you also make static variables public ?

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2525

If you make your variables static and �nal , you will often also want to make them public so that
they are easy to access. There are numerous examples in the standard Java class libraries where variables
are declared as public , static , and �nal . This is the mechanism by which the class libraries create
constants and make them available for easy access on a widespread basis.

The Color class
For example, the Color class de�nes a number of public static �nal variables containing

the information that represents generic colors such as ORANGE, PINK, and MAGENTA. (By convention,
constants in Java are written with all upper-case characters, but that is not a technical requirement.)

If you need generic colors and not custom colors, you can easily access and use these color values without
the requirement to mix red, green, and blue to produce the desired color values.

Back to Question 6 (p. 2524)

7.11.6.6 Answer 5

C. 6.283185307179586

7.11.6.6.1 Explanation 5

A public static �nal variable
This program declares a public static �nal member variable named twoPI in the class named

Worker , and properly initializes it when it is declared as shown in the following code fragment.

class Worker{ public static final double twoPI

= 2 * Math.PI;

}/}// end class Worker

From that point forward in the program, this member variable named twoPI behaves like a constant,
meaning that any code that attempts to change its value will cause a compiler error (as in the program in
Question 4 (p. 2521)) ..

Accessing the static variable
The following single statement that appears in the main method of the controlling class instantiates a

new object of the Worker class, accesses, and displays the public static �nal member variable named
twoPI .

public static void main(

String args[]){

System.out.println(

new Worker().twoPI);

} }//end main()

(Note for future discussion that the variable named twoPI is accessed via a reference to an object
instantiated from the class named Worker .)

This causes the double value 6.283185307179586 to be displayed on the standard output device.
Back to Question 5 (p. 2523)

7.11.6.7 Answer 4

A. Compiler Error

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2526 CHAPTER 7. OOP SELF-ASSESSMENT

7.11.6.7.1 Explanation 4

A �nal variable
When a member variable of a class (not a local variable) is declared �nal , its value must be established

when the variable is declared. This program attempts to assign a value to a �nal member variable after
it has been declared, producing the following compiler error under JDK 1.3.

Ap113.java:20: cannot assign a value to

final variable twoPI

twoPI = 2 * Math.PI;

Back to Question 4 (p. 2521)

7.11.6.8 Answer 3

D. 22

7.11.6.8.1 Explanation 3

Two uses of the this keyword
This program illustrates two di�erent uses of the this keyword.
Disambiguating a reference to a variable
Consider �rst the use of this that is shown in the following code fragment.

class Worker{

private int data;

public Worker(int data){

this.data = data;

}//end constructor

Very common usage
The code in the above fragment is commonly used by many Java programmers. All aspiring Java

programmers need to know how to read such code, even if they elect not to use it. In addition, understanding
this code should enhance your overall understanding of the use and nature of the this keyword.

A parameterized constructor
The above fragment shows a parameterized constructor for the class named Worker . This constructor

illustrates a situation where there is a local parameter named data that has the same name as an instance
variable belonging to the object.

Casting a shadow
The existence of the local parameter named data casts a shadow on the instance variable having the

same name, making it inaccessible by using its name alone.
(A local variable having the same name as an instance variable casts a similar shadow on the instance

variable.)
In this shadowing circumstance, when the code in the constructor refers simply to the name data , it

is referring to the local parameter having that name. In order for the code in the constructor to refer to the
instance variable having the name data, it must refer to it as this.data .

In other words ...
In other words, this.data is a reference to an instance variable named data belonging to the object

being constructed by the constructor (this object) .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2527

Not always necessary
You could always use this syntax to refer to an instance variable of the object being constructed if you

wanted to. However, the use of this syntax is necessary only when a local parameter or variable has the
same name as the instance variable and casts a shadow on the instance variable. When this is not the case,
you can refer to the instance variable simply by referring to its name without the keyword this .

Finally, the main point ...
Now consider the main point of this program. The following fragment shows the main method of the

controlling class for the application.

public class Ap112{

public static void main(

String args[]){

Worker obj1 = new Worker(11);

Worker obj2 = new Worker(22);

Worker obj3 = new Worker(33);

Worker obj4 = new Worker(44);

obj2.doThis();

}//end main()

}//end class Ap112

Four di�erent objects of type Worker
The code in the above fragment instantiates four di�erent objects from the class named Worker ,

passing a di�erent value to the constructor for each object. Thus, individual instance variable in each of the
four objects contain the int values 11, 22, 33, and 44 respectively.

Call an instance method on one object
Then the code in the main method calls the instance method named doThis on only one of the

objects, which is the one referred to by the reference variable named obj2 .
An overridden toString method of the Worker class is eventually called to return a String

representation of the value stored in the instance variable named data for the purpose of displaying that
value on the standard output device.

Overridden toString method
The next fragment shows the overridden toString method for the Worker class. As you can see,

this overridden method constructs and returns a reference to a String representation of the int value
stored in the instance variable named data . Thus, depending on which object the toString method is
called on, di�erent string values will be returned by the overridden method.

public String toString(){

return "" + data;

}//end toString()

}// end class Worker

Passing reference to this object to println method
The next fragment shows the doThis instance method belonging to each object instantiated from the

Worker class. When this method is called on a speci�c object instantiated from the Worker class,
it uses the this keyword to pass that speci�c object's reference to the println method. The println
method uses that reference to call the toString method on that speci�c object. This, in turn causes a
String representation of the value of the instance variable named data belonging to that speci�c object
to be displayed.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2528 CHAPTER 7. OOP SELF-ASSESSMENT

public void doThis(){

System.out.println(this);

}//end area()

The bottom line
In this program, the instance variable in the object referred to by obj2 contains the value 22. The

instance variables in the other three objects instantiated from the same class contain di�erent values.
The bottom line is that the following statement in the main method causes the value 22 to be displayed

on the standard output device. Along the way, the this keyword is used to cause the println method to
get and display the value stored in a speci�c object, and to ignore three other objects that were instantiated
from the same class.

obj2.doThis();

Back to Question 3 (p. 2520)

7.11.6.9 Answer 2

C. 33

7.11.6.9.1 Explanation 2

The this keyword
The key to an understanding of this program lies in an understanding of the single statement that appears

in the method named doThis , as shown in the following fragment.

public void doThis(){

new Helper().helpMe(this);

}//end area()

The keyword named this has several uses in Java, some of which are explicit, and some of which take place
behind the scenes.

What do you need to know about the this keyword?
One of the uses of the keyword this is passing the implicit parameter in its entirety to another method.
That is exactly what this program does. But what is the implicit parameter named this anyway?
Every object holds a reference to itself
This implicit reference can be accessed using the keyword this in a non-static (instance) method

belonging to the object. (The implicit reference named this cannot be accessed from within a static
method for reasons that won't be discussed here.)

Calling an instance method
An instance method can only be called by referring to a speci�c object and joining that object's reference

to the name of the instance method using a period as the joining operator. This is illustrated in the following
statement, which calls the method named doThis on a reference to an object of the class named Worker
.

new Worker().doThis();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2529

An anonymous object
The above statement creates an anonymous object of the class named Worker . (An anonymous

object is an object whose reference is not assigned to a named reference variable.)
The code to the left of the period returns a reference to the new object. Then the code calls the instance

method named doThis on the reference to the object.
Which object is this object?
When the code in the instance method named doThis refers to the keyword this , it is a reference

to the speci�c object on which the doThis method was called. The statement in the following fragment
passes a reference to that speci�c instance of the Worker class to a method named helpMe in a new
object of the Helper class.

public void doThis(){

new Helper().helpMe(this);

}//end area()

A little help here please
The helpMe method is shown in the following fragment.

class Helper{

public void helpMe(Worker param){

System.out.println(

param.getData());

}//end helpMe()

}//end class Helper

Using the incoming reference
The code in the helpMe method uses the incoming reference to the object of the Worker class to

call the getData method on that object.
Thus code in the helpMe method is able to call a method in the object containing the method that

called the helpMe method in the �rst place.
A callback scenario
When a method in one object calls a method in another object, passing this as a parameter, that makes

it possible for the method receiving the parameter to make a callback to the object containing the method
that passed this as a parameter.

The getData method returns a String representation of the int instance variable named data
with a value of 33 that is contained in the object of the Worker class.

Display the value
The code in the helpMe method causes that string to be displayed on the computer screen.
And the main point is ...
Any number of objects can be instantiated from a given class. A given instance method can be called

on any of those objects. When the code in such an instance method refers to this , it is referring to the
speci�c object on which it was called, and is not referring to any of the many other objects that may have
been instantiated from the same class.

Back to Question 2 (p. 2520)

7.11.6.10 Answer 1

A. Compiler Error

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2530 CHAPTER 7. OOP SELF-ASSESSMENT

7.11.6.10.1 Explanation 1

A wakeup call
The purpose of this question is simply to give you a wakeup call. The declaration for the method named

getData indicates that the method returns a reference to an object of the class String . However, the
code in the method attempts to return an int . The program produces the following compiler error under
JDK 1.3.

found : int

required: java.lang.String

return data;

Back to Question 1 (p. 2519)
-end-

7.12 Ap0110: Self-assessment, Extending classes, overriding meth-
ods, and polymorphic behavior20

7.12.1 Table of Contents

• Preface (p. 2541)
• Questions (p. 2542)

· 1 (p. 2542) , 2 (p. 2542) , 3 (p. 2543) , 4 (p. 2544) , 5 (p. 2545) , 6 (p. 2546) , 7 (p. 2547) , 8
(p. 2548) , 9 (p. 2549) , 10 (p. 2550)

• Listings (p. 2551)
• Miscellaneous (p. 2552)
• Answers (p. 2552)

7.12.2 Preface

This module is part of a self-assessment test designed to help you determine how much you know about
object-oriented programming using Java.

The test consists of a series of questions with answers and explanations of the answers.
The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the

question to the answer and back.
I recommend that you open another copy of this document in a separate browser window and use the

links to under Listings (p. 2551) to easily �nd and view the listings while you are reading about them.

7.12.3 Questions

7.12.3.1 Question 1 .

What output is produced by the program shown in Listing 1 (p. 2542) ?

• A. Compiler Error
• B. Runtime Error
• C. A
• D. None of the above.

20This content is available online at <http://cnx.org/content/m45308/1.5/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2531

Listing 1 . Listing for Question 1.

public class Ap120{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap120

class Worker{

void doIt(){

Base myVar = new A();

myVar.test();

System.out.println("");

}//end doIt()

}// end class Worker

class Base{

}//end class Base

class A extends Base{

public void test(){

System.out.print("A ");

}//end test()

}//end class A

Table 7.161

Answer and Explanation (p. 2561)

7.12.3.2 Question 2

What output is produced by the program shown in Listing 2 (p. 2543) ?

• A. Compiler Error
• B. Runtime Error
• C. A
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2532 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 2 . Listing for Question 2.

public class Ap121{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap121

class Worker{

void doIt(){

Base myVar = new A();

((A)myVar).test();

System.out.println("");

}//end doIt()

}// end class Worker

class Base{

}//end class Base

class A extends Base{

public void test(){

System.out.print("A ");

}//end test()

}//end class A

Table 7.162

Answer and Explanation (p. 2560)

7.12.3.3 Question 3

What output is produced by the program shown in Listing 3 (p. 2544) ?

• A. Compiler Error
• B. Runtime Error
• C. A
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2533

Listing 3 . Listing for Question 3.

public class Ap122{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap122

class Worker{

void doIt(){

Base myVar = new A();

myVar.test();

System.out.println("");

}//end doIt()

}// end class Worker

class Base{

abstract public void test();

}//end class Base

class A extends Base{

public void test(){

System.out.print("A ");

}//end test()

}//end class A

Table 7.163

Answer and Explanation (p. 2559)

7.12.3.4 Question 4

What output is produced by the program shown in Listing 4 (p. 2545) ?

• A. Compiler Error
• B. Runtime Error
• C. A
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2534 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 4 . Listing for Question 4.

public class Ap123{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap123

class Worker{

void doIt(){

Base myVar = new A();

myVar.test();

System.out.println("");

}//end doIt()

}// end class Worker

abstract class Base{

abstract public void test();

}//end class Base

class A extends Base{

public void test(){

System.out.print("A ");

}//end test()

}//end class A

Table 7.164

Answer and Explanation (p. 2558)

7.12.3.5 Question 5

What output is produced by the program shown in Listing 5 (p. 2546) ?

• A. Compiler Error
• B. Runtime Error
• C. Base
• D. A
• E. None of the above.

Listing 5 . Listing for Question 5.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2535

public class Ap124{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap124

class Worker{

void doIt(){

Base myVar = new Base();

myVar.test();

System.out.println("");

}//end doIt()

}// end class Worker

abstract class Base{

public void test(){

System.out.print("Base ");};

}//end class Base

class A extends Base{

public void test(){

System.out.print("A ");

}//end test()

}//end class A

Table 7.165

Answer and Explanation (p. 2558)

7.12.3.6 Question 6

What output is produced by the program shown in Listing 6 (p. 2547) ?

• A. Compiler Error
• B. Runtime Error
• C. Base
• D. A
• E. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2536 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 6 . Listing for Question 6.

public class Ap125{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap125

class Worker{

void doIt(){

Base myVar = new Base();

myVar.test();

System.out.println("");

}//end doIt()

}// end class Worker

class Base{

public void test(){

System.out.print("Base ");};

}//end class Base

class A extends Base{

public void test(){

System.out.print("A ");

}//end test()

}//end class A

Table 7.166

Answer and Explanation (p. 2557)

7.12.3.7 Question 7

What output is produced by the program shown in Listing 7 (p. 2548) ?

• A. Compiler Error
• B. Runtime Error
• C. Base
• D. A
• E. None of the above.

Listing 7 . Listing for Question 7.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2537

public class Ap126{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap126

class Worker{

void doIt(){

Base myVar = new Base();

((A)myVar).test();

System.out.println("");

}//end doIt()

}// end class Worker

class Base{

public void test(){

System.out.print("Base ");};

}//end class Base

class A extends Base{

public void test(){

System.out.print("A ");

}//end test()

}//end class A

Table 7.167

Answer and Explanation (p. 2555)

7.12.3.8 Question 8

What output is produced by the program shown in Listing 8 (p. 2549) ?

• A. Compiler Error
• B. Runtime Error
• C. Base
• D. A
• E. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2538 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 8 . Listing for Question 8.

public class Ap127{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap127

class Worker{

void doIt(){

Base myVar = new A();

((A)myVar).test();

System.out.println("");

}//end doIt()

}// end class Worker

class Base{

public void test(){

System.out.print("Base ");};

}//end class Base

class A extends Base{

public void test(){

System.out.print("A ");

}//end test()

}//end class A

Table 7.168

Answer and Explanation (p. 2554)

7.12.3.9 Question 9

What output is produced by the program shown in Listing 9 (p. 2550) ?

• A. Compiler Error
• B. Runtime Error
• C. Base
• D. A
• E. None of the above.

Listing 9 . Listing for Question 9.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2539

public class Ap128{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap128

class Worker{

void doIt(){

Base myVar = new A();

myVar.test();

System.out.println("");

}//end doIt()

}// end class Worker

class Base{

public void test(){

System.out.print("Base ");};

}//end class Base

class A extends Base{

public void test(){

System.out.print("A ");

}//end test()

}//end class A

Table 7.169

Answer and Explanation (p. 2554)

7.12.3.10 Question 10

What output is produced by the program shown in Listing 10 (p. 2551) ?

• A. Compiler Error
• B. Runtime Error
• C. Base
• D. A B
• E. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2540 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 10 . Listing for Question 10.

public class Ap129{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap129

class Worker{

void doIt(){

Base myVar = new A();

myVar.test();

myVar = new B();

myVar.test();

System.out.println("");

}//end doIt()

}// end class Worker

class Base{

public void test(){

System.out.print("Base ");};

}//end class Base

class A extends Base{

public void test(){

System.out.print("A ");

}//end test()

}//end class A

class B extends Base{

public void test(){

System.out.print("B ");

}//end test()

}//end class B

Table 7.170

Answer and Explanation (p. 2552)

7.12.4 Listings

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

• Listing 1 (p. 2542) . Listing for Question 1.
• Listing 2 (p. 2543) . Listing for Question 2.
• Listing 3 (p. 2544) . Listing for Question 3.
• Listing 4 (p. 2545) . Listing for Question 4.
• Listing 5 (p. 2546) . Listing for Question 5.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2541

• Listing 6 (p. 2547) . Listing for Question 6.
• Listing 7 (p. 2548) . Listing for Question 7.
• Listing 8 (p. 2549) . Listing for Question 8.
• Listing 9 (p. 2550) . Listing for Question 9.
• Listing 10 (p. 2551) . Listing for Question 10.

7.12.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Ap0110: Self-assessment, Extending classes, overriding methods, and poly-
morphic behavior
• File: Ap0110.htm
• Originally published: 2002
• Published at cnx.org: 12/08/12
• Revised: 12/03/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

7.12.6 Answers

7.12.6.1 Answer 10

D. A B

7.12.6.1.1 Explanation 10

Another illustration of simple polymorphic behavior
In this program, two classes named A and B extend the class named Base , each overriding the

method named test to produce di�erent behavior. (Typically, overridden methods in di�erent classes will
produce di�erent behavior, even though they have the same names.)

Behavior appropriate for object on which method is called
In other words, the behavior of the method named test , when called on a reference to an object of

type A , is di�erent from the behavior of the method named test when called on a reference to an object
of type B .

The method de�nitions

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2542 CHAPTER 7. OOP SELF-ASSESSMENT

The de�nitions of the two classes named A and B , along with the two versions of the overridden
method named test are shown in the following fragment.

class A extends Base{

public void test(){

System.out.print("A ");

}//end test()

}//end class A

class B extends Base{

public void test(){

System.out.print("B ");

}//end test()

}//end class B

Store a subclass object's reference as a superclass type
The program declares a reference variable of type Base , instantiates a new object of the class named

A , and assigns that object's reference to the reference variable of type Base . Then it calls the method
named test on that reference as shown in the following fragment.

Base myVar = new A();

myVar.test();

Polymorphic behavior applies
Simple polymorphic behavior causes the overridden version of the method named test , de�ned in the

class named A , (as opposed to the versions de�ned in class Base or class B) to be executed. This
causes the letter A followed by a space character to be displayed on the standard output device.

Store another subclass object's reference as superclass type
Then the program instantiates a new object from the class named B , and assigns that object's reference

to the same reference variable, overwriting the reference previously stored there. (This causes the object
whose reference was previously stored in the reference variable to become eligible for garbage collection in
this case.)

Then the program calls the method named test on the reference as shown in the following fragment.

myVar = new B();

myVar.test();

Polymorphic behavior applies again
This time, simple polymorphic behavior causes the overridden version of the method named test ,

de�ned in the class named B , (as opposed to the versions de�ned in class Base or class A) to be
executed. This causes the letter B followed by a space character to be displayed on the standard output
device.

Once again, what is runtime polymorphic behavior?
With runtime polymorphic behavior, the method selected for execution is based, not on the type of the

reference variable holding the reference to the object, but rather on the actual class from which the object
was instantiated.

If the method was properly overridden, the behavior exhibited by the execution of the method is appro-
priate for an object of the class from which the object was instantiated.

Back to Question 10 (p. 2550)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2543

7.12.6.2 Answer 9

D. A

7.12.6.2.1 Explanation 9

Compiles and executes successfully
This program compiles and executes successfully causing the version of the method named test , which

is overridden in the class named A to be executed. That overridden method is shown in the following
fragment.

class A extends Base{

public void test(){

System.out.print("A ");

}//end test()

}//end class A

So, what is the issue here?
The purpose of this program is to determine if you understand polymorphic behavior and the role of

downcasting. Consider the following fragment taken from the program in Question 8 (p. 2548) .

Base myVar = new A();

((A)myVar).test();

The downcast is redundant
As you learned in the discussion of Question 8 (p. 2548) , the downcast isn't required, and it has no

impact on the behavior of the program in Question 8 (p. 2548) .
This program behaves exactly the same with the second statement in the above fragment replaced by

the following statement, which does not contain a downcast.

myVar.test();

Again, you need to know when downcasting is required, when it isn't required, and to make use of that
knowledge to downcast appropriately.

Back to Question 9 (p. 2549)

7.12.6.3 Answer 8

D. A

7.12.6.3.1 Explanation 8

Compiles and executes successfully
This program compiles and executes successfully causing the version of the method named test , which

is overridden in the class named A to be executed. That overridden method is shown in the following
fragment.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2544 CHAPTER 7. OOP SELF-ASSESSMENT

class A extends Base{

public void test(){

System.out.print("A ");

}//end test()

}//end class A

So, what is the issue here?
The purpose of this program is to determine if you understand polymorphic behavior and the role of

downcasting, as shown in the following fragment.

Base myVar = new A();

((A)myVar).test();

This would be a simple case of polymorphic behavior were it not for the downcast shown in the above
fragment.

The downcast is redundant
Actually, the downcast was placed there to see if you could determine that it is redundant. It isn't

required, and it has no impact on the behavior of this program. This program would behave exactly the
same if the second statement in the above fragment were replaced with the following statement, which does
not contain a downcast.

myVar.test();

You need to know when downcasting is required, when it isn't required, and to make use of that knowledge
to downcast appropriately.

Back to Question 8 (p. 2548)

7.12.6.4 Answer 7

B. Runtime Error

7.12.6.4.1 Explanation 7

Storing a reference as a superclass type
You can store an object's reference in any reference variable whose declared type is a superclass of the

actual class from which the object was instantiated.
May need to downcast later
Later on, when you attempt to make use of that reference, you may need to downcast it. Whether or

not you will need to downcast will depend on what you attempt to do.
In order to call a method ...
For example, if you attempt to call a method on the reference, but that method is not de�ned in or

inherited into the class of the reference variable, then you will need to downcast the reference in order to
call the method on that reference.

Class Base de�nes method named test
This program de�nes a class named Base that de�nes a method named test .
Class A extends Base and overrides test
The program also de�nes a class named A that extends Base and overrides the method named test

as shown in the following fragment.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2545

class Base{

public void test(){

System.out.print("Base ");};

}//end class Base

class A extends Base{

public void test(){

System.out.print("A ");

}//end test()

}//end class A

A new object of the class Base
The program instantiates a new object of the class Base and stores a reference to that object in a

reference variable of type Base , as shown in the following fragment.

Base myVar = new Base();

((A)myVar).test();

Could call test directly on the reference
Having done this, the program could call the method named test directly on the reference variable

using a statement such as the following, which is not part of this program.

myVar.test();

This statement would cause the version of the method named test de�ned in the class named Base to
be called, causing the word Base to appear on the standard output device.

This downcast is not allowed
However, this program attempts to cause the version of the method named test de�ned in the class

named A to be called, by downcasting the reference to type A before calling the method named test .
This is shown in the following fragment.

((A)myVar).test();

A runtime error occurs
This program compiles successfully. However, the downcast shown above causes the following runtime

error to occur under JDK 1.3:

Exception in thread "main" java.lang.ClassCastException: Base

at Worker.doIt(Ap126.java:22)

at Ap126.main(Ap126.java:15)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2546 CHAPTER 7. OOP SELF-ASSESSMENT

What you can do
You can store an object's reference in a reference variable whose type is a superclass of the class from

which the object was originally instantiated. Later, you can downcast the reference back to the type (class)
from which the object was instantiated.

What you cannot do
However, you cannot downcast an object's reference to a subclass of the class from which the object was

originally instantiated.
Unfortunately, the compiler is unable to detect an error of this type. The error doesn't become apparent

until the exception is thrown at runtime.
Back to Question 7 (p. 2547)

7.12.6.5 Answer 6

C. Base

7.12.6.5.1 Explanation 6

Totally straightforward code
This rather straightforward program instantiates an object of the class named Base and assigns that

object's reference to a reference variable of the type Base as shown in the following fragment .

Base myVar = new Base();

myVar.test();

Then it calls the method named test on the reference variable.
Class Base de�nes the method named test
The class named Base contains a concrete de�nition of the method named test as shown in the

following fragment. This is the method that is called by the code shown in the above fragment (p. 2557) .

class Base{

public void test(){

System.out.print("Base ");};

}//end class Base

Class A is just a smokescreen
The fact that the class named A extends the class named Base , and overrides the method named

test , as shown in the following fragment, is of absolutely no consequence in the behavior of this program.
Hopefully you understand why this is so. If not, then you still have a great deal of studying to do on Java
inheritance.

class A extends Base{

public void test(){

System.out.print("A ");

}//end test()

}//end class A

Back to Question 6 (p. 2546)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2547

7.12.6.6 Answer 5

A. Compiler Error

7.12.6.6.1 Explanation 5

Cannot instantiate an abstract class
This program de�nes an abstract class named Base . Then it violates one of the rules regarding

abstract classes, by attempting to instantiate an object of the abstract class as shown in the following
code fragment.

Base myVar = new Base();

The program produces the following compiler error under JDK 1.3:

Ap124.java:19: Base is abstract; cannot be instantiated

Base myVar = new Base();

Back to Question 5 (p. 2545)

7.12.6.7 Answer 4

C. A

7.12.6.7.1 Explanation 4

An abstract class with an abstract method
This program illustrates the use of an abstract class containing an abstract method to achieve

polymorphic behavior .
The following code fragment shows an abstract class named Base that contains an abstract

method named test .

abstract class Base{

abstract public void test();

}//end class Base

Extending abstract class and overriding abstract method
The class named A , shown in the following fragment extends the abstract class named Base and

overrides the abstract method named test .

class A extends Base{

public void test(){

System.out.print("A ");

}//end test()

}//end class A

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2548 CHAPTER 7. OOP SELF-ASSESSMENT

Can store a subclass reference as a superclass type
Because the class named A extends the class named Base , a reference to an object instantiated from

the class named A can be stored in a reference variable of the declared type Base . No cast is required
in this case.

Polymorphic behavior
Furthermore, because the class named Base contains the method named test , (as an abstract

method) , when the method named test is called on a reference to an object of the class named A ,
stored in a reference variable of type Base , the overridden version of the method as de�ned in the class
named A will actually be called. This is polymorphic behavior.

(Note, however, that this example does little to illustrate the power of polymorphic behavior because
only one class extends the class named Base and only one version of the abstract method named test
exists. Thus, the system is not required to select among two or more overridden versions of the method
named test .)

The important code
The following code fragment shows the instantiation of an object of the class named A and the

assignment of that object's reference to a reference variable of type Base . Then the fragment calls the
method named test on the reference variable.

Base myVar = new A();

myVar.test();

This causes the overridden version of the method named test , shown in the following fragment, to be
called, which causes the letter A to be displayed on the standard output device.

public void test(){

System.out.print("A ");

}//end test()

Back to Question 4 (p. 2544)

7.12.6.8 Answer 3

A. Compiler Error

7.12.6.8.1 Explanation 3

Classes can be �nal or abstract, but not both
A class in Java may be declared �nal . A class may also be declared abstract . A class cannot be

declared both �nal and abstract .
Behavior of �nal and abstract classes
A class that is declared �nal cannot be extended. A class that is declared abstract cannot be

instantiated. Therefore, it must be extended to be useful.
An abstract class is normally intended to be extended.
Methods can be �nal or abstract, but not both
A method in Java may be declared �nal . A method may also be declared abstract . However, a

method cannot be declared both �nal and abstract .
Behavior of �nal and abstract methods
A method that is declared �nal cannot be overridden. A method that is declared abstract must be

overridden to be useful.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2549

An abstract method doesn't have a body.
Abstract classes and methods
A class that contains an abstract method must itself be declared abstract . However, an abstract

class is not required to contain abstract methods.
Failed to declare the class abstract
In this program, the class named Base contains an abstract method named test , but the class is

not declared abstract as required.

class Base{

abstract public void test();

}//end class Base

Therefore, the program produces the following compiler error under JDK 1.3:

Ap122.java:24: Base should be declared abstract;

it does not define test in Base

class Base{

Back to Question 3 (p. 2543)

7.12.6.9 Answer 2

C. A

7.12.6.9.1 Explanation 2

If you missed this ...
If you missed this question, you didn't pay attention to the explanation for Question 1 (p. 2542) .
De�ne a method in a subclass
This program de�nes a subclass named A that extends a superclass named Base . A method named

test is de�ned in the subclass named A but is not de�ned in any superclass of the class named A .
Store a reference as a superclass type
The program declares a reference variable of the superclass type, and stores a reference to an object of

the subclass in that reference variable as shown in the following code fragment.

Base myVar = new A();

Downcast and call the method
Then the program calls the method named test on the reference stored as the superclass type, as shown

in the following fragment.

((A)myVar).test();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2550 CHAPTER 7. OOP SELF-ASSESSMENT

Unlike the program in Question 1 (p. 2542) , the reference is downcast to the true type of the object before
calling the method named test . As a result, this program does not produce a compiler error.

Why is the cast required?
As explained in Question 1 (p. 2542) , it is allowable to store a reference to a subclass object in a variable

of a superclass type. Also, as explained in Question 1 (p. 2542) , it is not allowable to directly call, on that
superclass reference, a method of the subclass object that is not de�ned in or inherited into the superclass.

However, such a call is allowable if the programmer purposely downcasts the reference to the true type
of the object before calling the method.

Back to Question 2 (p. 2542)

7.12.6.10 Answer 1

A. Compiler Error

7.12.6.10.1 Explanation 1

De�ne a method in a subclass
This program de�nes a subclass named A that extends a superclass named Base . A method named

test , is de�ned in the subclass named A , which is not de�ned in any superclass of the class named A
.

Store a reference as superclass type
The program declares a reference variable of the superclass type, and stores a reference to an object of

the subclass in that reference variable as shown in the following code fragment.

Base myVar = new A();

Note that no cast is required to store a reference to a subclass object in a reference variable of a superclass
type. The required type conversion happens automatically in this case.

Call a method on the reference
Then the program attempts to call the method named test on the reference stored as the superclass

type, as shown in the following fragment. This produces a compiler error.

myVar.test();

The reason for the error
It is allowable to store a reference to a subclass object in a variable of a superclass type. However, it is

not allowable to directly call, (on that superclass reference) , a method of the subclass object that is not
de�ned in or inherited into the superclass.

The following error message is produced by JDK 1.3.

Ap120.java:18: cannot resolve symbol

symbol : method test ()

location: class Base

myVar.test();

The solution is ...
This error can be avoided by casting the reference to type A before calling the method as shown below:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2551

((A)myVar).test();

Back to Question 1 (p. 2542)
-end-

7.13 Ap0120: Self-assessment, Interfaces and polymorphic behavior21

7.13.1 Table of Contents

• Preface (p. 2562)
• Questions (p. 2562)

· 1 (p. 2562) , 2 (p. 2563) , 3 (p. 2565) , 4 (p. 2566) , 5 (p. 2567) , 6 (p. 2569) , 7 (p. 2570) , 8
(p. 2571) , 9 (p. 2573) , 10 (p. 2575)

• Listings (p. 2577)
• Miscellaneous (p. 2577)
• Answers (p. 2577)

7.13.2 Preface

This module is part of a self-assessment test designed to help you determine how much you know about
object-oriented programming using Java.

The test consists of a series of questions with answers and explanations of the answers.
The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the

question to the answer and back.
I recommend that you open another copy of this document in a separate browser window and use the

links to under Listings (p. 2577) to easily �nd and view the listings while you are reading about them.

7.13.3 Questions

7.13.3.1 Question 1 .

What output is produced by the program shown in Listing 1 (p. 2563) ?

• A. Compiler Error
• B. Runtime Error
• C. Base A-intfcMethod
• D. None of the above.

21This content is available online at <http://cnx.org/content/m45303/1.5/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2552 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 1 . Listing for Question 1.

public class Ap131{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap131

class Worker{

void doIt(){

Base myVar1 = new Base();

myVar1.inherMethod();

X myVar2 = new A();

myVar2.intfcMethod();

System.out.println("");

}//end doIt()

}// end class Worker

class Base{

public void inherMethod(){

System.out.print("Base ");

}//end inherMethod()

}//end class Base

class A extends Base{

public void inherMethod(){

System.out.print(

" A-inherMethod ");

}//end inherMethod()

public void intfcMethod(){

System.out.print("A-intfcMethod ");

}//end intfcMethod()

}//end class A

interface X{

public void intfcMethod();

}//end X

Table 7.171

Answer and Explanation (p. 2592)

7.13.3.2 Question 2

What output is produced by the program shown in Listing 2 (p. 2564) ?

• A. Compiler Error

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2553

• B. Runtime Error
• C. A-inherMethod A-intfcMethod
• D. None of the above.

Listing 2 . Listing for Question 2.

public class Ap132{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap132

class Worker{

void doIt(){

Base myVar1 = new Base();

myVar1.inherMethod();

Base myVar2 = new A();

myVar2.intfcMethod();

System.out.println("");

}//end doIt()

}// end class Worker

class Base{

public void inherMethod(){

System.out.print("Base ");

}//end inherMethod()

}//end class Base

class A extends Base implements X{

public void inherMethod(){

System.out.print(

" A-inherMethod ");

}//end inherMethod()

public void intfcMethod(){

System.out.print("A-intfcMethod ");

}//end intfcMethod()

}//end class A

interface X{

public void intfcMethod();

}//end X

Table 7.172

Answer and Explanation (p. 2591)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2554 CHAPTER 7. OOP SELF-ASSESSMENT

7.13.3.3 Question 3

What output is produced by the program shown in Listing 3 (p. 2565) ?

• A. Compiler Error
• B. Runtime Error
• C. Base A-intfcMethod
• D. None of the above.

Listing 3 . Listing for Question 3.

public class Ap133{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap133

class Worker{

void doIt(){

Base myVar1 = new Base();

myVar1.inherMethod();

A myVar2 = new A();

myVar2.intfcMethod();

System.out.println("");

}//end doIt()

}// end class Worker

class Base{

public void inherMethod(){

System.out.print("Base ");

}//end inherMethod()

}//end class Base

class A extends Base implements X{

public void inherMethod(){

System.out.print(

" A-inherMethod ");

}//end inherMethod()

public void intfcMethod(){

System.out.print("A-intfcMethod ");

}//end intfcMethod()

}//end class A

interface X{

public void intfcMethod();

}//end X

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2555

Table 7.173

Answer and Explanation (p. 2589)

7.13.3.4 Question 4

What output is produced by the program shown in Listing 4 (p. 2567) ?

• A. Compiler Error
• B. Runtime Error
• C. Base A-intfcMethod
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2556 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 4 . Listing for Question 4.

public class Ap134{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap134

class Worker{

void doIt(){

Base myVar1 = new Base();

myVar1.inherMethod();

X myVar2 = new A();

myVar2.intfcMethod();

System.out.println("");

}//end doIt()

}// end class Worker

class Base{

public void inherMethod(){

System.out.print("Base ");

}//end inherMethod()

}//end class Base

class A extends Base implements X{

public void inherMethod(){

System.out.print(

" A-inherMethod ");

}//end inherMethod()

public void intfcMethod(){

System.out.print("A-intfcMethod ");

}//end intfcMethod()

}//end class A

interface X{

public void intfcMethod();

}//end X

Table 7.174

Answer and Explanation (p. 2588)

7.13.3.5 Question 5

What output is produced by the program shown in Listing 5 (p. 2568) ?

• A. Compiler Error

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2557

• B. Runtime Error
• C. A-intfcMethodX B-intfcMethodX
• D. None of the above.

Listing 5 . Listing for Question 5.

public class Ap135{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap135

class Worker{

void doIt(){

X myVar1 = new A();

myVar1.intfcMethodX();

X myVar2 = new B();

myVar2.intfcMethodX();

System.out.println("");

}//end doIt()

}// end class Worker

class Base{

public void inherMethod(){

System.out.print("Base ");

}//end inherMethod()

}//end class Base

class A extends Base implements X{

public void inherMethod(){

System.out.print(

" A-inherMethod ");

}//end inherMethod()

public void intfcMethodX(){

System.out.print(

"A-intfcMethodX ");

}//end intfcMethodX()

}//end class A

class B extends Base implements X{

public void inherMethod(){

System.out.print(

" B-inherMethod ");

}//end inherMethod()

public void intfcMethodX(){

System.out.print(

"B-intfcMethodX ");

}//end intfcMethodX()

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2558 CHAPTER 7. OOP SELF-ASSESSMENT

}//end class B

interface X{

public void intfcMethodX();

}//end X

Answer and Explanation (p. 2585)

7.13.3.6 Question 6

What output is produced by the program shown in Listing 6 (p. 2569) ?

• A. Compiler Error
• B. Runtime Error
• C. A-intfcMethodX B-intfcMethodX
• D. None of the above.

Listing 6 . Listing for Question 6.

public class Ap136{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap136

class Worker{

void doIt(){

Object[] myArray = new Object[2];

myArray[0] = new A();

myArray[1] = new B();

for(int i=0;i<myArray.length;i++){
myArray[i].intfcMethodX();

}//end for loop

System.out.println("");

}//end doIt()

}// end class Worker

class Base{

public void inherMethod(){

System.out.print("Base ");

}//end inherMethod()

}//end class Base

class A extends Base implements X{

public void inherMethod(){

System.out.print(

" A-inherMethod ");

}//end inherMethod()

public void intfcMethodX(){

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2559

System.out.print(

"A-intfcMethodX ");

}//end intfcMethodX()

}//end class A

class B extends Base implements X{

public void inherMethod(){

System.out.print(

" B-inherMethod ");

}//end inherMethod()

public void intfcMethodX(){

System.out.print(

"B-intfcMethodX ");

}//end intfcMethodX()

}//end class B

interface X{

public void intfcMethodX();

}//end X

Answer and Explanation (p. 2582)

7.13.3.7 Question 7

What output is produced by the program shown in Listing 7 (p. 2570) ?

• A. Compiler Error
• B. Runtime Error
• C. A-intfcMethodX B-intfcMethodX
• D. None of the above.

Listing 7 . Listing for Question 7.

public class Ap137{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap137

class Worker{

void doIt(){

Object[] myArray = new Object[2];

myArray[0] = new A();

myArray[1] = new B();

for(int i=0;i<myArray.length;i++){
((X)myArray[i]).intfcMethodX();

}//end for loop

System.out.println("");

}//end doIt()

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2560 CHAPTER 7. OOP SELF-ASSESSMENT

}// end class Worker

class Base{

public void inherMethod(){

System.out.print("Base ");

}//end inherMethod()

}//end class Base

class A extends Base implements X{

public void inherMethod(){

System.out.print(

" A-inherMethod ");

}//end inherMethod()

public void intfcMethodX(){

System.out.print(

"A-intfcMethodX ");

}//end intfcMethodX()

}//end class A

class B extends Base implements X{

public void inherMethod(){

System.out.print(

" B-inherMethod ");

}//end inherMethod()

public void intfcMethodX(){

System.out.print(

"B-intfcMethodX ");

}//end intfcMethodX()

}//end class B

interface X{

public void intfcMethodX();

}//end X

Answer and Explanation (p. 2581)

7.13.3.8 Question 8

What output is produced by the program shown in Listing 8 (p. 2571) ?

• A. Compiler Error
• B. Runtime Error
• C. A-intfcMethodX B-intfcMethodX
• D. None of the above.

Listing 8 . Listing for Question 8.

public class Ap138{

public static void main(

String args[]){

new Worker().doIt();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2561

}//end main()

}//end class Ap138

class Worker{

void doIt(){

X[] myArray = new X[2];

myArray[0] = new A();

myArray[1] = new B();

for(int i=0;i<myArray.length;i++){
myArray[i].intfcMethodX();

}//end for loop

System.out.println("");

}//end doIt()

}// end class Worker

class Base{

public void inherMethod(){

System.out.print("Base ");

}//end inherMethod()

}//end class Base

class A extends Base implements X{

public void inherMethod(){

System.out.print(

" A-inherMethod ");

}//end inherMethod()

public void intfcMethodX(){

System.out.print(

"A-intfcMethodX ");

}//end intfcMethodX()

}//end class A

class B extends Base implements X{

public void inherMethod(){

System.out.print(

" B-inherMethod ");

}//end inherMethod()

public void intfcMethodX(){

System.out.print(

"B-intfcMethodX ");

}//end intfcMethodX()

}//end class B

interface X{

public void intfcMethodX();

}//end X

Answer and Explanation (p. 2580)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2562 CHAPTER 7. OOP SELF-ASSESSMENT

7.13.3.9 Question 9

What output is produced by the program shown in Listing 9 (p. 2574) ?

• A. Compiler Error
• B. Runtime Error
• C. Base A B
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2563

Listing 9 . Listing for Question 9.

public class Ap139{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap139

class Worker{

void doIt(){

Base myVar = new Base();

myVar.test();

myVar = new A();

myVar.test();

myVar = new B();

myVar.test();

System.out.println("");

}//end doIt()

}// end class Worker

class Base{

public void test(){

System.out.print("Base ");

}//end test()

}//end class Base

class A extends Base implements X,Y{

public void test(){

System.out.print("A ");

}//end test()

}//end class A

class B extends Base implements X,Y{

public void test(){

System.out.print("B ");

}//end test()

}//end class B

interface X{

public void test();

}//end X

interface Y{

public void test();

}//end Y

Table 7.175

Answer and Explanation (p. 2578)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2564 CHAPTER 7. OOP SELF-ASSESSMENT

7.13.3.10 Question 10

What output is produced by the program shown in Listing 10 (p. 2576) ?

• A. Compiler Error
• B. Runtime Error
• C. Base A B B
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2565

Listing 10 . Listing for Question 10.

public class Ap140{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap140

class Worker{

void doIt(){

Base myVar1 = new Base();

myVar1.test();

myVar1 = new A();

myVar1.test();

myVar1 = new B();

myVar1.test();

X myVar2 = (X)myVar1;

myVar2.test();

System.out.println("");

}//end doIt()

}// end class Worker

class Base{

public void test(){

System.out.print("Base ");

}//end test()

}//end class Base

class A extends Base implements X,Y{

public void test(){

System.out.print("A ");

}//end test()

}//end class A

class B extends Base implements X,Y{

public void test(){

System.out.print("B ");

}//end test()

}//end class B

interface X{

public void test();

}//end X

interface Y{

public void test();

}//end Y

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2566 CHAPTER 7. OOP SELF-ASSESSMENT

Table 7.176

Answer and Explanation (p. 2577)

7.13.4 Listings

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

• Listing 1 (p. 2563) . Listing for Question 1.
• Listing 2 (p. 2564) . Listing for Question 2.
• Listing 3 (p. 2565) . Listing for Question 3.
• Listing 4 (p. 2567) . Listing for Question 4.
• Listing 5 (p. 2568) . Listing for Question 5.
• Listing 6 (p. 2569) . Listing for Question 6.
• Listing 7 (p. 2570) . Listing for Question 7.
• Listing 8 (p. 2571) . Listing for Question 8.
• Listing 9 (p. 2574) . Listing for Question 9.
• Listing 10 (p. 2576) . Listing for Question 10.

7.13.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Ap0120: Self-assessment, Interfaces and polymorphic behavior
• File: Ap0120.htm
• Originally published: 2004
• Published at cnx.org: 12/08/12
• Revised: 02/07/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

7.13.6 Answers

7.13.6.1 Answer 10

C. Base A B B

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2567

7.13.6.1.1 Explanation 10

Expansion of the program from Question 9 (p. 2573)
The class and interface de�nitions for the classes and interfaces named Base , A , B , X , and

Y are the same as in Question 9 (p. 2573) .
Call the test method di�erently
However, the call of the method named test in the object instantiated from the class named B is

somewhat di�erent. The di�erence is identi�ed by the code in the following fragment.

void doIt(){

Base myVar1 = new Base();

myVar1.test();

myVar1 = new A();

myVar1.test();

myVar1 = new B();

myVar1.test();

X myVar2 = (X)myVar1;

myVar2.test();

System.out.println("");

}//end doIt()

Calling test method on Base-type reference
In Question 9 (p. 2573) , and in the above code fragment as well, the method named test was called

on each of the objects using a reference stored in a reference variable of type Base .
Calling the overridden version of test method
This might be thought of as calling the overridden version of the method, through polymorphism, without

regard for anything having to do with the interfaces.
Calling test method on interface-type reference
Then the code shown above calls the same method named test on one of the same objects using a

reference variable of the interface type X .
Only one test method in each object
Keep in mind that each object de�nes only one method named test . This single method serves the

dual purpose of overriding the method having the same signature from the superclass, and implementing a
method with the same signature declared in each of the interfaces.

Implementing the interface method
Perhaps when the same method is called using a reference variable of the interface type, it might be

thought of as implementing the interface method rather than overriding the method de�ned in the superclass.
You can be the judge of that.

The same method is called regardless of reference type
In any event, in this program, the same method is called whether it is called using a reference variable

of the superclass type, or using a reference variable of the interface type.
Illustrates the behavior of signature collisions
The purpose of this and Question 9 (p. 2573) is not necessarily to illustrate a useful inheritance and

implementation construct. Rather, these two questions are intended to illustrate the behavior of Java for
the case of duplicated superclass and interface method signatures.

Back to Question 10 (p. 2575)

7.13.6.2 Answer 9

C. Base A B

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2568 CHAPTER 7. OOP SELF-ASSESSMENT

7.13.6.2.1 Explanation 9

A question regarding signature collisions
The question often arises in my classroom as to what will happen if a class inherits a method with a given

signature and also implements one or more interfaces that declare a method with an identical signature.
The answer
The answer is that nothing bad happens, as long as the class provides a concrete de�nition for a method

having that signature.
Only one method de�nition is allowed
Of course, only one de�nition can be provided for any given method signature, so that de�nition must

satisfy the needs of overriding the inherited method as well as the needs of implementing the interfaces.
An example of signature collisions
The following fragment de�nes a class named Base that de�nes a method named test . The code

also de�nes two interfaces named X and Y , each of which declares a method named test with an
identical signature.

class Base{

public void test(){

System.out.print("Base ");

}//end test()

}//end class Base

interface X{

public void test();

}//end X

interface Y{

public void test();

}//end Y

class A extends Base implements X,Y{

public void test(){

System.out.print("A ");

}//end test()

}//end class A

Classes A and B extend Base and implement X and Y
The code in the following fragment de�nes two classes, named A and B , each of which extends Base

, and each of which implements both interfaces X and Y . Each class provides a concrete de�nition for
the method named test , with each class providing a di�erent de�nition.

class A extends Base implements X,Y{

public void test(){

System.out.print("A ");

}//end test()

}//end class A

class B extends Base implements X,Y{

public void test(){

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2569

System.out.print("B ");

}//end test()

}//end class B

Override inherited method and de�ne interface method
Each of the methods named test in the above fragment serves not only to override the method inherited

from the class named Base , but also to satisfy the requirement to de�ne the methods declared in the
implemented interfaces named X and Y . (This can also be thought of as overriding an inherited abstract
method from an interface.)

Store object's references as type Base and call test method
Finally, the code in the following fragment declares a reference variable of the type Base . Objects

respectively of the classes Base , A , and B are instantiated and stored in the reference variable. Then
the method named test is called on each of the references in turn.

void doIt(){

Base myVar = new Base();

myVar.test();

myVar = new A();

myVar.test();

myVar = new B();

myVar.test();

System.out.println("");

}//end doIt()

}// end class Worker

As you probably expected, this causes the following text to appear on the screen:

Base A B

Back to Question 9 (p. 2573)

7.13.6.3 Answer 8

C. A-intfcMethodX B-intfcMethodX

7.13.6.3.1 Explanation 8

Similar to previous two programs
This program is very similar to the programs in Question 6 (p. 2569) and Question 7 (p. 2570) . The

program is Question 6 (p. 2569) exposed a speci�c type mismatch problem. The program in Question 7 (p.
2570) provided one solution to the problem.

A di�erent solution
The following fragment illustrates a di�erent solution to the problem.

void doIt(){

X[] myArray = new X[2];

myArray[0] = new A();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2570 CHAPTER 7. OOP SELF-ASSESSMENT

myArray[1] = new B();

for(int i=0;i<myArray.length;i++){
myArray[i].intfcMethodX();

}//end for loop

System.out.println("");

}//end doIt()

An array object of the interface type
In this case, rather than to declare the array object to be of type Object , the array is declared to be

of the interface type X .
This is a less generic container than the one declared to be of type Object . Only references to objects

instantiated from classes that implement the X interface, or objects instantiated from subclasses of those
classes can be stored in the container. However, this is often adequate.

What methods can be called?
Since the references are stored as the interface type, any method declared in or inherited into the interface

can be called on the references stored in the container. Of course, the objects referred to by those references
must provide concrete de�nitions of those methods or the program won't compile.

(Although it isn't implicitly obvious, it is also possible to call any of the eleven methods de�ned in the
Object class on an object's reference being stored as an interface type. Those eleven methods can be

called on any object, including array objects, regardless of how the references are stored.)
Not the standard approach
If you are de�ning your own container, this is a satisfactory approach to implementation of the observer

design pattern. However, you cannot use this approach when using containers from the standard collections
framework, because those containers are designed to always store references as the generic type Object .
In those cases, the casting solution of Question 7 (p. 2570) (or the use of generics) is required.

Back to Question 8 (p. 2571)

7.13.6.4 Answer 7

C. A-intfcMethodX B-intfcMethodX

7.13.6.4.1 Explanation 7

The correct use of an interface
This program illustrates the correct use of an interface. It uses a cast of the interface type in the following

fragment to resolve the problem that was discussed at length in Question 6 (p. 2569) earlier.

void doIt(){

Object[] myArray = new Object[2];

myArray[0] = new A();

myArray[1] = new B();

for(int i=0;i<myArray.length;i++){
((X)myArray[i]).intfcMethodX();

}//end for loop

System.out.println("");

}//end doIt()

Back to Question 7 (p. 2570)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2571

7.13.6.5 Answer 6

A. Compiler Error

7.13.6.5.1 Explanation 6

What is a container?
The word container is often used in Java, with at least two di�erent meaning. One meaning is to refer

to the type of an object that is instantiated from a subclass of the class named Container . In that case,
the object can be considered to be of type Container , and typically appears in a graphical user interface
(GUI) . That is not the usage of the word in the explanation of this program.

A more generic meaning
In this explanation, the word container has a more generic meaning. It is common to store a collection

of object references in some sort of Java container, such as an array object or a Vector object. In fact,
there is a complete collections framework provided to facilitate that sort of thing (Vector is one of the
concrete classes in the Java Collections Framework) .

Storing references as type Object
It is also common to declare the type of references stored in the container to be of the class Object .

Because Object is a completely generic type, this means that a reference to any object instantiated from
any class (or any array object) can be stored in the container. The standard containers such as Vector
and Hashtable take this approach.

(Note that this topic became a little more complicated with the release of generics in jdk version 1.5.)
A class named Base and an interface named X
In a manner similar to several previous programs, this program de�nes a class named Base and an

interface named X as shown in the following fragment.

class Base{

public void inherMethod(){

System.out.print("Base ");

}//end inherMethod()

}//end class Base

interface X{

public void intfcMethodX();

}//end X

Classes A and B extend Base and implement X
Also similar to previous programs, this program de�nes two classes named A and B . Each of these

classes extends the class named Base and implements the interface named X , as shown in the next
fragment.

class A extends Base implements X{

public void inherMethod(){

System.out.print(

" A-inherMethod ");

}//end inherMethod()

public void intfcMethodX(){

System.out.print(

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2572 CHAPTER 7. OOP SELF-ASSESSMENT

"A-intfcMethodX ");

}//end intfcMethodX()

}//end class A

class B extends Base implements X{

public void inherMethod(){

System.out.print(

" B-inherMethod ");

}//end inherMethod()

public void intfcMethodX(){

System.out.print(

"B-intfcMethodX ");

}//end intfcMethodX()

}//end class B

Concrete de�nitions of the interface method
As before, these methods provide concrete de�nitions of the method named intfcMethodX , which is

declared in the interface named X .
An array of references of type Object
The interesting portion of this program begins in the following fragment, which instantiates and populates

a two-element array object (container) of type Object . (In the sense of this discussion, an array object
is a container, albeit a very simple one.)

void doIt(){

Object[] myArray = new Object[2];

myArray[0] = new A();

myArray[1] = new B();

Store object references of type A and B as type Object
Because the container is declared to be of type Object , references to objects instantiated from any

class can be stored in the container. The code in the above fragment instantiates two objects, (one of class
A and the other of class B), and stores the two object's references in the container.
Cannot call interface method as type Object
The code in the for loop in the next fragment attempts to call the method named intfcMethodX

on each of the two objects whose references are stored in the elements of the array.

for(int i=0;i<myArray.length;i++){
myArray[i].intfcMethodX();

}//end for loop

System.out.println("");

}//end doIt()

This produces the following compiler error under JDK 1.3:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2573

Ap136.java:24: cannot resolve symbol

symbol : method intfcMethodX ()

location: class java.lang.Object

myArray[i].intfcMethodX();

What methods can you call as type Object?
It is allowable to store the reference to an object instantiated from any class in a container of the type

Object . However, the only methods that can be directly called (without a cast and not using generics)
on that reference are the following eleven methods. These methods are de�ned in the class named Object
:

• clone ()
• equals(Object obj)
• �nalize()
• getClass()
• hashCode()
• notify()
• notifyAll()
• toString()
• wait()
• wait(long timeout)
• wait(long timeout,int nanos)

Overridden methods
Some, (but not all) , of the methods in the above list are de�ned with default behavior in the Object

class, and are meant to be overridden in new classes that you de�ne. This includes the methods named
equals and toString .

Some of the methods in the above list, such as getClass , are simply utility methods, which are not
meant to be overridden.

Polymorphic behavior applies
If you call one of these methods on an object's reference (being stored as type Object) , polymorphic

behavior will apply. The version of the method overridden in, or inherited into, the class from which the
object was instantiated will be identi�ed and executed.

Otherwise, a cast is required
In order to call any method other than one of the eleven methods in the above list (p. 2584) , (on an

object's reference being stored as type Object without using generics) , you must cast the reference to
some other type.

Casting to an interface type
The exact manner in which you write the cast will di�er from one situation to the next. In this case, the

problem can be resolved by rewriting the program using the interface cast shown in the following fragment.

void doIt(){

Object[] myArray = new Object[2];

myArray[0] = new A();

myArray[1] = new B();

for(int i=0;i<myArray.length;i++){
((X)myArray[i]).intfcMethodX();

}//end for loop

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2574 CHAPTER 7. OOP SELF-ASSESSMENT

System.out.println("");

}//end doIt()

The observer design pattern
By implementing an interface, and using a cast such as this, you can store references to many di�erent

objects, of many di�erent actual types, each of which implements the same interface, but which have no
required superclass-subclass relationship, in the same container. Then, when needed, you can call the
interface methods on any of the objects whose references are stored in the container.

This is a commonly used design pattern in Java, often referred to as the observer design pattern.
Registration of observers
With this design pattern, none, one, or more observer objects, (which implement a common observer

interface) are registered on an observable object. This means references to the observer objects are stored
in a container by the observable object.

Making a callback
When the observable object determines that some interesting event has occurred, the observable object

calls a speci�c interface method on each of the observer objects whose references are stored in the container.
The observer objects execute whatever behavior they were designed to execute as a result of having been

noti�ed of the event.
The model-view-control (MVC) paradigm
In fact, there is a class named Observable and an interface named Observer in the standard Java

library. The purpose of these class and interface de�nitions is to make it easy to implement the observer
design pattern.

(The Observer interface and the Observable class are often used to implement a programming style
commonly referred to as the MVC paradigm.)

Delegation event model, bound properties of Beans, etc.
Java also provides other tools for implementing the observer design pattern under more speci�c circum-

stances, such as the Delegation Event Model, and in conjunction with bound and constrained properties in
JavaBeans Components.

Back to Question 6 (p. 2569)

7.13.6.6 Answer 5

C. A-intfcMethodX B-intfcMethodX

7.13.6.6.1 Explanation 5

More substantive use of an interface
This program illustrates a more substantive use of the interface than was the case in the previous pro-

grams.
The class named Base
The program de�nes a class named Base as shown in the following fragment.

class Base{

public void inherMethod(){

System.out.print("Base ");

}//end inherMethod()

}//end class Base

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2575

The interface named X
The program also de�nes an interface named X as shown in the next fragment. Note that this interface

declares a method named intfcMethodX .

interface X{

public void intfcMethodX();

}//end X

Class A extends Base and implements X
The next fragment shows the de�nition of a class named A that extends Base and implements X .

class A extends Base implements X{

public void inherMethod(){

System.out.print(

" A-inherMethod ");

}//end inherMethod()

public void intfcMethodX(){

System.out.print(

"A-intfcMethodX ");

}//end intfcMethodX()

}//end class A

De�ning interface method
Because the class named A implements the interface named X , it must provide a concrete de�nition

of all the methods declared in X .
In this case, there is only one such method. That method is named intfcMethodX . A concrete

de�nition for the method is provided in the class named A .
Class B also extends Base and implements X
The next fragment shows the de�nition of another class (named B), which also extends Base and

implements X .

class B extends Base implements X{

public void inherMethod(){

System.out.print(

" B-inherMethod ");

}//end inherMethod()

public void intfcMethodX(){

System.out.print(

"B-intfcMethodX ");

}//end intfcMethodX()

}//end class B

De�ning the interface method
Because this class also implements X , it must also provide a concrete de�nition of the method named

intfcMethodX .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2576 CHAPTER 7. OOP SELF-ASSESSMENT

Di�erent behavior for interface method
However (and this is extremely important) , there is no requirement for this de�nition of the method to

match the de�nition in the class named A , or to match the de�nition in any other class that implements
X .

Only the method signature for the method named intfcMethodX is necessarily common among all
the classes that implement the interface.

The de�nition of the method named intfcMethodX in the class named A is di�erent from the
de�nition of the method having the same name in the class named B .

The interesting behavior
The interesting behavior of this program is illustrated by the code in the following fragment.

void doIt(){

X myVar1 = new A();

myVar1.intfcMethodX();

X myVar2 = new B();

myVar2.intfcMethodX();

System.out.println("");

}//end doIt()

Store object's references as interface type X
The code in the above fragment causes one object to be instantiated from the class named A , and

another object to be instantiated from the class named B .
The two object's references are stored in two di�erent reference variables, each declared to be of the type

of the interface X .
Call the interface method on each reference
A method named intfcMethodX is called on each of the reference variables. Despite the fact that

both object's references are stored as type X , the system selects and calls the appropriate method, (as
de�ned by the class from which each object was instantiated) , on each of the objects. This causes the
following text to appear on the screen:

A-intfcMethodX B-intfcMethodX

No subclass-superclass relationship exists
Thus, the use of an interface makes it possible to call methods having the same signatures on objects

instantiated from di�erent classes, without any requirement for a subclass-superclass relationship to exist
among the classes involved.

In this case, the only subclass-superclass relationship between the classes named A and B was that
they were both subclasses of the same superclass. Even that relationship was established for convenience,
and was not a requirement.

Di�erent behavior of interface methods
The methods having the same signature, (declared in the common interface, and de�ned in the classes)

, need not have any similarity in terms of behavior.
A new interface relationship
The fact that both classes implemented the interface named X created a new relationship among the

classes, which is not based on class inheritance.
Back to Question 5 (p. 2567)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2577

7.13.6.7 Answer 4

C. Base A-intfcMethod

7.13.6.7.1 Explanation 4

Illustrates the use of an interface as a type
The program de�nes a class named Base , and a class named A , which extends Base , and

implements an interface named X , as shown below.

class Base{

public void inherMethod(){

System.out.print("Base ");

}//end inherMethod()

}//end class Base

class A extends Base implements X{

public void inherMethod(){

System.out.print(

" A-inherMethod ");

}//end inherMethod()

public void intfcMethod(){

System.out.print("A-intfcMethod ");

}//end intfcMethod()

}//end class A

interface X{

public void intfcMethod();

}//end X

Implementing interfaces
A class may implement none, one, or more interfaces.
The cardinal rule on interfaces
If a class implements one or more interfaces, that class must either be declared abstract, or it must provide

concrete de�nitions of all methods declared in and inherited into all of the interfaces that it implements. If
the class is declared abstract, its subclasses must provide concrete de�nitions of the interface methods.

A concrete de�nition of an interface method
The interface named X in this program declares a method named intfcMethod . The class named

A provides a concrete de�nition of that method.
(The minimum requirement for a concrete de�nition is a method that matches the method signature

and has an empty body.)
Storing object's reference as an interface type
The interesting part of the program is shown in the following code fragment.

void doIt(){

Base myVar1 = new Base();

myVar1.inherMethod();

X myVar2 = new A();

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2578 CHAPTER 7. OOP SELF-ASSESSMENT

myVar2.intfcMethod();

System.out.println("");

}//end doIt()

The above fragment instantiates a new object of the class named A , and saves a reference to that object
in a reference variable of the declared type X .

How many ways can you save an object's reference?
Recall that a reference to an object can be held by a reference variable whose type matches any of the

following:

• The class from which the object was instantiated.
• Any superclass of the class from which the object was instantiated.
• Any interface implemented by the class from which the object was instantiated.
• Any interface implemented by any superclass of the class from which the object was instantiated.
• Any superinterface of the interfaces mentioned above.

Save object's reference as implemented interface type
In this program, the type of the reference variable matches the interface named X , which is implemented

by the class named A .
What does this allow you to do?
When a reference to an object is held by a reference variable whose type matches an interface implemented

by the class from which the object was instantiated, that reference can be used to call any method declared
in or inherited into that interface.

(That reference cannot be used to call methods not declared in or not inherited into that interface.)
In this simple case ...
The method named intfcMethod is declared in the interface named X and implemented in the class

named A .
Therefore, the method named intfcMethod can be called on an object instantiated from the class

named A when the reference to the object is held in a reference variable of the interface type.
(The method could also be called if the reference is being held in a reference variable of declared type

A .)
The call to the method named intfcMethod causes the text A-intfcMethod to appear on the

screen.
Back to Question 4 (p. 2566)

7.13.6.8 Answer 3

C. Base A-intfcMethod

7.13.6.8.1 Explanation 3

What is runtime polymorphic behavior?
One way to describe runtime polymorphic behavior is:
The runtime system selects among two or more methods having the same signature, not on the basis of

the type of the reference variable in which an object's reference is stored, but rather on the basis of the class
from which the object was originally instantiated.

Illustrates simple class and interface inheritance
The program de�nes a class named Base , and a class named A , which extends Base , and

implements the interface named X , as shown in the following fragment.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2579

class Base{

public void inherMethod(){

System.out.print("Base ");

}//end inherMethod()

}//end class Base

class A extends Base implements X{

public void inherMethod(){

System.out.print(

" A-inherMethod ");

}//end inherMethod()

public void intfcMethod(){

System.out.print("A-intfcMethod ");

}//end intfcMethod()

}//end class A

interface X{

public void intfcMethod();

}//end X

De�ne an interface method
The interface named X declares a method named intfcMethod . A concrete de�nition of that

method is de�ned in the class named A .
A new object of type Base
The code in the following fragment instantiates a new object of the class Base and calls its inher-

Method . This causes the word Base to appear on the output screen. There is nothing special about
this. This is a simple example of the use of an object's reference to call one of its instance methods.

void doIt(){

Base myVar1 = new Base();

myVar1.inherMethod();

A new object of type A
The following fragment instantiates a new object of the class A and calls its intfcMethod . This

causes the text A-intfcMethod to appear on the output screen. There is also nothing special about this.
This is also a simple example of the use of an object's reference to call one of its instance methods.

A myVar2 = new A();

myVar2.intfcMethod();

System.out.println("");

}//end doIt()

Not polymorphic behavior
The fact that the class named A implements the interface named X does not indicate polymorphic

behavior in this case. Rather, this program is an example of simple class and interface inheritance.
Interface type is not used

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2580 CHAPTER 7. OOP SELF-ASSESSMENT

The program makes no use of the interface as a type, and exhibits no polymorphic behavior (no decision
among methods having the same signature is required) .

The class named A inherits an abstract method named intfcMethod from the interface and must
de�ne it. (Otherwise, it would be necessary to declare the class named A abstract.)

The interface is not a particularly important player in this program.
Back to Question 3 (p. 2565)

7.13.6.9 Answer 2

A. Compiler Error

7.13.6.9.1 Explanation 2

Simple hierarchical polymorphic behavior
This program is designed to test your knowledge of simple hierarchical polymorphic behavior.
Implement the interface named X
This program de�nes a class named A that extends a class named Base , and implements an interface

named X , as shown in the following code fragment.

class A extends Base implements X{

public void inherMethod(){

System.out.print(

" A-inherMethod ");

}//end inherMethod()

public void intfcMethod(){

System.out.print("A-intfcMethod ");

}//end intfcMethod()

}//end class A

interface X{

public void intfcMethod();

}//end X

Override and de�ne some methods
The class named A overrides the method named inherMethod , which it inherits from the class

named Base . It also provides a concrete de�nition of the method named intfcMethod , which is
declared in the interface named X .

Store object's reference as superclass type
The program instantiates an object of the class named A and assigns that object's reference to a

reference variable of type Base , as shown in the following code fragment.

Base myVar2 = new A();

Oops! Cannot call this method
So far, so good. However, the next fragment shows where the program turns sour. It attempts to call

the method named intfcMethod on the object's reference, which was stored as type Base .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2581

myVar2.intfcMethod();

Polymorphic behavior doesn't apply here
Because the class named Base does not de�ne the method named intfcMethod , hierarchical

polymorphic behavior does not apply. Therefore a reference to the object being stored as type Base
cannot be used to directly call the method named intfcMethod , and the program produces a compiler
error.

What is the solution?
Hierarchical polymorphic behavior is possible only when the class de�ning the type of the reference (or

some superclass of that class) contains a de�nition for the method that is called on the reference.
There are a couple of ways that downcasting could be used to solve the problem in this case.
Back to Question 2 (p. 2563)

7.13.6.10 Answer 1

A. Compiler Error

7.13.6.10.1 Explanation 1

I put this question in here just to see if you are still awake.
Can store reference as interface type
A reference to an object instantiated from a class can be assigned to any reference variable whose

declared type is the name of an interface implemented by the class from which the object was instantiated,
or implemented by any superclass of that class.

De�ne two classes and an interface
This program de�nes a class named A that extends a class named Base . The class named Base

extends Object by default.
The program also de�nes an interface named X .
Instantiate an object
The following statement instantiates an object of the class named A , and attempts to assign that

object's reference to a reference variable whose type is the interface type named X .

X myVar2 = new A();

Interface X is de�ned but not implemented
None of the classes named A , Base , and Object implement the interface named X . Therefore,

it is not allowable to assign a reference to an object of the class named A to a reference variable whose
declared type is X . Therefore, the program produces the following compiler error under JDK 1.3:

Ap131.java:20: incompatible types

found : A

required: X

X myVar2 = new A();

Back to Question 1 (p. 2562)
-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2582 CHAPTER 7. OOP SELF-ASSESSMENT

7.14 Ap0130: Self-assessment, Comparing objects, packages, import
directives, and some common exceptions22

7.14.1 Table of Contents

• Preface (p. 2593)
• Questions (p. 2593)

· 1 (p. 2593) , 2 (p. 2594) , 3 (p. 2595) , 4 (p. 2596) , 5 (p. 2597) , 6 (p. 2598) , 7 (p. 2599) , 8
(p. 2600) , 9 (p. 2601) , 10 (p. 2602)

• Listings (p. 2602)
• Miscellaneous (p. 2603)
• Answers (p. 2603)

7.14.2 Preface

This module is part of a self-assessment test designed to help you determine how much you know about
object-oriented programming using Java.

The test consists of a series of questions with answers and explanations of the answers.
The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the

question to the answer and back.
I recommend that you open another copy of this document in a separate browser window and use the

links to under Listings (p. 2602) to easily �nd and view the listings while you are reading about them.

7.14.3 Questions

7.14.3.1 Question 1 .

What output is produced by the program shown in Listing 1 (p. 2594) ?

• A. Compiler Error
• B. Runtime Error
• C. Joe Joe false
• D. Joe Joe true
• E. None of the above.

22This content is available online at <http://cnx.org/content/m45310/1.6/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2583

Listing 1 . Listing for Question 1.

public class Ap141{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap141

class Worker{

void doIt(){

char[] anArray = {'J','o','e'};

String Str1 = new String(anArray);

String Str2 = new String(anArray);

System.out.println(

Str1 + " " + Str2 + " " +

(Str1 == Str2));

}//end doIt()

}// end class Worker

Table 7.177

Answer and Explanation (p. 2612)

7.14.3.2 Question 2

What output is produced by the program shown in Listing 2 (p. 2595) ?

• A. Compiler Error
• B. Runtime Error
• C. Joe Joe false
• D. Joe Joe true
• E. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2584 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 2 . Listing for Question 2.

public class Ap142{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap142

class Worker{

void doIt(){

char[] anArray = {'J','o','e'};

String Str1 = new String(anArray);

String Str2 = new String(anArray);

System.out.println(

Str1 + " " + Str2 + " " +

Str1.equals(Str2));

}//end doIt()

}// end class Worker

Table 7.178

Answer and Explanation (p. 2611)

7.14.3.3 Question 3

What output is produced by the program shown in Listing 3 (p. 2596) ?

• A. Compiler Error
• B. Runtime Error
• C. ABC DEF GHI
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2585

Listing 3 . Listing for Question 3.

public class Ap143{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap143

class Worker{

void doIt(){

java.util.ArrayList ref =

new java.util.ArrayList(1);

ref.add("ABC ");

ref.add("DEF ");

ref.add("GHI");

System.out.println(

(String)ref.get(0) +

(String)ref.get(1) +

(String)ref.get(2));

}//end doIt()

}// end class Worker

Table 7.179

Answer and Explanation (p. 2609)

7.14.3.4 Question 4

What output is produced by the program shown in Listing 4 (p. 2597) ?

• A. Compiler Error
• B. Runtime Error
• C. ABC DEF GHI
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2586 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 4 . Listing for Question 4.

public class Ap144{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap144

class Worker{

void doIt(){

ArrayList ref =

new ArrayList(1);

ref.add("ABC ");

ref.add("DEF ");

ref.add("GHI");

System.out.println(

(String)ref.get(0) +

(String)ref.get(1) +

(String)ref.get(2));

}//end doIt()

}// end class Worker

Table 7.180

Answer and Explanation (p. 2608)

7.14.3.5 Question 5

What output is produced by the program shown in Listing 5 (p. 2598) ?

• A. Compiler Error
• B. Runtime Error
• C. ABC DEF GHI
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2587

Listing 5 . Listing for Question 5.

import java.util.ArrayList;

public class Ap145{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap145

class Worker{

void doIt(){

ArrayList ref = null;

ref = new ArrayList(1);

ref.add("ABC ");

ref.add("DEF ");

ref.add("GHI");

System.out.println(

(String)ref.get(0) +

(String)ref.get(1) +

(String)ref.get(2));

}//end doIt()

}// end class Worker

Table 7.181

Answer and Explanation (p. 2607)

7.14.3.6 Question 6

What output is produced by the program shown in Listing 6 (p. 2599) ?

• A. Compiler Error
• B. Runtime Error
• C. ABC DEF GHI
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2588 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 6 . Listing for Question 6.

import java.util.ArrayList;

public class Ap146{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap146

class Worker{

void doIt(){

ArrayList ref = null;

ref.add("ABC ");

ref.add("DEF ");

ref.add("GHI");

System.out.println(

(String)ref.get(0) +

(String)ref.get(1) +

(String)ref.get(2));

}//end doIt()

}// end class Worker

Table 7.182

Answer and Explanation (p. 2606)

7.14.3.7 Question 7

What output is produced by the program shown in Listing 7 (p. 2600) ?

• A. Compiler Error
• B. Runtime Error
• C. ABC DEF GHI
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2589

Listing 7 . Listing for Question 7.

import java.util.ArrayList;

public class Ap147{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap147

class Worker{

void doIt(){

ArrayList ref = null;

ref = new ArrayList(1);

ref.add("ABC ");

ref.add("DEF ");

System.out.println(

(String)ref.get(0) +

(String)ref.get(1) +

(String)ref.get(2));

}//end doIt()

}// end class Worker

Table 7.183

Answer and Explanation (p. 2605)

7.14.3.8 Question 8

What output is produced by the program shown in Listing 8 (p. 2601) ?

• A. Compiler Error
• B. Runtime Error
• C. In�nity
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2590 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 8 . Listing for Question 8.

public class Ap148{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap148

class Worker{

void doIt(){

System.out.println(1.0/0);

}//end doIt()

}// end class Worker

Table 7.184

Answer and Explanation (p. 2605)

7.14.3.9 Question 9

What output is produced by the program shown in Listing 9 (p. 2601) ?

• A. Compiler Error
• B. Runtime Error
• C. In�nity
• D. None of the above.

Listing 9 . Listing for Question 9.

public class Ap149{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap149

class Worker{

void doIt(){

System.out.println(1/0);

}//end doIt()

}// end class Worker

Table 7.185

Answer and Explanation (p. 2604)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2591

7.14.3.10 Question 10

What output is produced by the program shown in Listing 10 (p. 2602) ?

• A. Compiler Error
• B. Runtime Error
• C. AB CD EF
• D. None of the above.

Listing 10 . Listing for Question 10.

public class Ap150{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap150

class Worker{

void doIt(){

String[] ref = {"AB ","CD ","EF "};

for(int i = 0; i <= 3; i++){

System.out.print(ref[i]);

}//end forloop

System.out.println("");

}//end doIt()

}// end class Worker

Table 7.186

Answer and Explanation (p. 2603)

7.14.4 Listings

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

• Listing 1 (p. 2594) . Listing for Question 1.
• Listing 2 (p. 2595) . Listing for Question 2.
• Listing 3 (p. 2596) . Listing for Question 3.
• Listing 4 (p. 2597) . Listing for Question 4.
• Listing 5 (p. 2598) . Listing for Question 5.
• Listing 6 (p. 2599) . Listing for Question 6.
• Listing 7 (p. 2600) . Listing for Question 7.
• Listing 8 (p. 2601) . Listing for Question 8.
• Listing 9 (p. 2601) . Listing for Question 9.
• Listing 10 (p. 2602) . Listing for Question 10.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2592 CHAPTER 7. OOP SELF-ASSESSMENT

7.14.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Ap0130: Self-assessment, Comparing objects, packages, import directives, and
some common exceptions
• File: Ap0130.htm
• Originally published: 2004
• Published at cnx.org: 12/18/12
• Revised: 12/03/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

7.14.6 Answers

7.14.6.1 Answer 10

Both of the following occur.
C. AB CD EF
B. Runtime Error

7.14.6.1.1 Explanation 10

Another index out of bounds
This is another example of a program that throws an index out of bounds exception. In this case, since

the container is an array object, the name of the exception is ArrayIndexOutOfBoundsException .
Populate a three-element array object
The code in the following fragment creates and populates a three-element array object containing reference

to three String objects.

void doIt(){

String[] ref = {"AB ","CD ","EF "};

Access an out-of-bounds element
The next fragment attempts to access elements at indices 0 through 3 inclusive.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2593

for(int i = 0; i <= 3; i++){

System.out.print(ref[i]);

}//end forloop

Since index value 3 is outside the bounds of the array, the program throws the following exception and
aborts:

AB CD EF

java.lang.ArrayIndexOutOfBoundsException

at Worker.doIt(Ap150.java:22)

at Ap150.main(Ap150.java:14)

Note however that the program displays the contents of the three String objects referred to by the contents
of the �rst three elements in the array before the problem occurs.

That's the way it often is with runtime errors. Often, a program will partially complete its task before
getting into trouble and aborting with a runtime error.

Back to Question 10 (p. 2602)

7.14.6.2 Answer 9

B. Runtime Error

7.14.6.2.1 Explanation 9

A setup
If you feel like you've been had, chances are you have been had. The purpose for Question 8 (p. 2600)

was to set you up for this question.
Division by zero for integer types
This program deals with the process of dividing by zero for int types. The code in the following

fragment divides the int value 1 by the int value 0.

void doIt(){

System.out.println(1/0);

}//end doIt()

Not the same as double divide by zero
However, unlike with type double , this process doesn't return a very large value and continue running.

Rather, for type int , attempting to divide by zero will result in a runtime error of type ArithmeticEx-
ception that looks something like the following under JDK 1.3:

java.lang.ArithmeticException: / by zero

at Worker.doIt(Ap149.java:20)

at Ap149.main(Ap149.java:14)

An exercise for the student
I won't attempt to explain the di�erence in behavior for essentially the same problem between type int

and type double . As the old saying goes, I'll leave that as an exercise for the student.
Back to Question 9 (p. 2601)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2594 CHAPTER 7. OOP SELF-ASSESSMENT

7.14.6.3 Answer 8

C. In�nity

7.14.6.3.1 Explanation 8

A double divide by zero operation
This program deals with the process of dividing by zero for �oating values of type double .
The following code fragment attempts to divide the double value 1.0 by the double value 0.

void doIt(){

System.out.println(1.0/0);

}//end doIt()

The program runs successfully, producing the output In�nity .
What is In�nity?
Su�ce it to say that In�nity is a very large number.
(Any value divided by zero is a very large number.)
At this point, I'm not going to explain it further. If you are interested in learning what you can do with

In�nity , see the language speci�cations.
Back to Question 8 (p. 2600)

7.14.6.4 Answer 7

B. Runtime Error

7.14.6.4.1 Explanation 7

This program illustrates an IndexOutOfBounds exception.
Instantiate and populate an ArrayList object
By now, you will be familiar with the kind of container object that you get when you instantiate the

ArrayList class.
The code in the following fragment instantiates such a container, having an initial capacity of one element.
Then it adds two elements to the container. Each element is a reference to an object of the class String

.

void doIt(){

ArrayList ref = null;

ref = new ArrayList(1);

ref.add("ABC ");

ref.add("DEF ");

Increase capacity automatically
Because two elements were successfully added to a container having an initial capacity of only one element,

the container was forced to increase its capacity automatically.
Following execution of the code in the above fragment, String object references were stored at index

locations 0 and 1 in the ArrayList object.
Get reference at index location 2
The next fragment attempts to use the get method to fetch an element from the container at index

value 2.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2595

Index values in an ArrayList object begin with zero. Therefore, since only two elements were added
to the container in the earlier fragment, there is no element at index value 2.

System.out.println(

(String)ref.get(0) +

(String)ref.get(1) +

(String)ref.get(2));

An IndexOutOfBounds exception
As a result, the program throws an IndexOutOfBounds exception. The error produced under JDK

1.3 looks something like the following:

Exception in thread "main" java.lang.IndexOutOfBoundsException:

Index: 2, Size: 2

at java.util.ArrayList.RangeCheck

(Unknown Source)

at java.util.ArrayList.get

(Unknown Source)

at Worker.doIt(Ap147.java:27)

at Ap147.main(Ap147.java:16)

Attempting to access an element with a negative index value would produce the same result.
An ArrayIndexOutOfBounds exception
A similar result occurs if you attempt to access an element in an ordinary array object outside the bounds

of the index values determined by the size of the array. However, in that case, the name of the exception is
ArrayIndexOutOfBounds .

Back to Question 7 (p. 2599)

7.14.6.5 Answer 6

B. Runtime Error

7.14.6.5.1 Explanation 6

The infamous NullPointerException
Interestingly, one of the �rst things that you read when you start reading Java books, is that there are

no pointers in Java . It is likely that shortly thereafter when you begin writing, compiling, and executing
simple Java programs, one of your programs will abort with an error message looking something like that
shown below :

Exception in thread "main" java.lang.NullPointerException

at

Worker.doIt(Ap146.java:23)

at

Ap146.main(Ap146.java:16)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2596 CHAPTER 7. OOP SELF-ASSESSMENT

What is a NullPointerException?
Stated simply, a NullPointerException occurs when you attempt to perform some operation on an

object using a reference that doesn't refer to an object.
That is the case in this program
The following code fragment declares a local reference variable and initializes its value to null .

void doIt(){

ArrayList ref = null;

(A reference variable in Java must either refer to a valid object, or speci�cally refer to no object (null).
Unlike a pointer in C and C++, a Java reference variable cannot refer to something arbitrary.)

In this case, null means that the reference variable doesn't refer to a valid object.
No ArrayList object
Note that the code in the above fragment does not instantiate an object of the class ArrayList and

assign that object's reference to the reference variable.
(The reference variable doesn't contain a reference to an object instantiated from the class named

ArrayList , or an object instantiated from any class for that matter.)
Call a method on the reference
However, the code in the next fragment attempts to add a String object's reference to a nonexistent

ArrayList object by calling the add method on the reference containing null.

ref.add("ABC ");

This results in the NullPointerException shown earlier (p. 2606) .
What can you do with a null reference?
The only operation that you can perform on a reference variable containing null is to assign an object's

reference to the variable. Any other attempted operation will result in a NullPointerException .
Back to Question 6 (p. 2598)

7.14.6.6 Answer 5

C. ABC DEF GHI

7.14.6.6.1 Explanation 5

The purpose of this program is to

• Continue to illustrate the use of java packages, and
• Illustrate the use of the Java import directive.

Program contains an import directive
This program is the same as the program in Question 4 (p. 2596) with a major exception. Speci�cally,

the program contains the import directive shown in the following fragment.

import java.util.ArrayList;

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2597

A shortcut
The designers of Java recognized that having to type a fully-quali�ed name for every reference to a class

in a Java program can become burdensome. Therefore, they provided us with a shortcut that can be used,
so long as we don't need to refer to two or more class �les having the same name.

Import directives
The shortcut is called an import directive.
As can be seen above, the import directive consists of the word import followed by the fully-quali�ed

name of a class �le that will be used in the program.
A program may have more than one import directive, with each import directive specifying the location

of a di�erent class �le.
The import directive(s) must appear before any class or interface de�nitions in the source code.
The alternative wild-card syntax
An alternative form of the import directive replaces the name of the class with an asterisk.
The asterisk behaves as a wild-card character. It tells the compiler to use any class �le that it �nds in

that package that matches a class reference in the source code.
The wild-card form should be used with care, because it can sometimes cause the compiler to use a class

�le that is di�erent from the one that you intended to use (if it �nds the wrong one �rst) .
Class �le name collisions
If your source code refers to two di�erent class �les having the same name, you must forego the use of

the import directive and provide fully-quali�ed names for those class �les.
Back to Question 5 (p. 2597)

7.14.6.7 Answer 4

A. Compiler Error

7.14.6.7.1 Explanation 4

The purpose of this program is to continue to illustrate the use of java packages.
No fully-quali�ed class names
This program is the same as the program in Question 3 (p. 2595) with a major exception. Neither of the

references to the ArrayList class use fully-quali�ed names in this program. Rather, the references are as
shown in the following fragment.

ArrayList ref =

new ArrayList(1);

Compiler errors
As a result, the JDK 1.3 compiler produces two error messages similar to the following:

Ap144.java:20: cannot resolve symbol

symbol : class ArrayList

location: class Worker

ArrayList ref =

Doesn't know how to �nd the class �le
This error message indicates that the compiler didn't know where to look on the disk to �nd the �le

named ArrayList.class
Back to Question 4 (p. 2596)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2598 CHAPTER 7. OOP SELF-ASSESSMENT

7.14.6.8 Answer 3

C. ABC DEF GHI

7.14.6.8.1 Explanation 3

Illustrate the use of java packages
Since it was necessary to make use of a class to illustrate packages, this program also previews the use of

the ArrayList class. We will be very interested in this class later when we study Java data containers.
What is an ArrayList object?
Some of this terminology may not make much sense to you at this point, but I'll go ahead and tell you

anyway, just as a preview.
According to Sun, the ArrayList class provides a
"Resizable-array implementation of the List interface. Implements all optional list operations, and

permits all elements, including null. In addition to implementing the List interface, this class provides
methods to manipulate the size of the array that is used internally to store the list. (This class is roughly
equivalent to Vector , except that it is unsynchronized.)"

Stated more simply ...
Stated more simply, an object of the ArrayList class can be used as a replacement for an array object.

An ArrayList object knows how to increase its capacity on demand, whereas the capacity of a simple
array object cannot change once it is instantiated.

An ArrayList object
The following statement instantiates a new object of the ArrayList class, with an initial capacity for

one element. The initial capacity is determined by the int value passed to the constructor when the object
is instantiated.

java.util.ArrayList ref =

new java.util.ArrayList(1);

Back to the primary purpose ...
Getting back to the primary purpose of this program, what is the meaning of the term java.util that

appears ahead of the name of the class, ArrayList ?
Avoiding name con�icts
One of the age-old problems in computer programming has to do with the potential for name con�icts.

The advent of OOP and reusable code didn't cause that problem to go away. If anything, it made the
problem worse.

For example, you and I may work as programmers for separate companies named X and Y. A company
named Z may purchase our two companies and attempt to merge the software that we have written separately.
Given that there are only a �nite number of meaningful class names, there is a good possibility that you and
I may have de�ned di�erent classes with the same names. Furthermore, it may prove useful to use both of
the class de�nitions in a new program.

Put class �les in di�erent directories
Sun's solution to the problem is to cause compiled class �les to reside in di�erent directories. Simplifying

things somewhat, if your compiled �le for a class named Joe is placed in a directory named X , and
my compiled �le for a di�erent class named Joe is placed in a directory named Y , then source code in
the same Java program can refer to those two class �les as X.Joe and Y.Joe . This scheme makes it
possible for the Java compiler and the Java virtual machine to distinguish between the two �les having the
name Joe.class .

The java and util directories
Again, simplifying things slightly, the code in the above fragment refers to a �le named ArrayList.class

, which is stored in a directory named util , which is a subdirectory of a directory named java .

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2599

The directory named java is the root of a directory tree containing a very large number of standard Java
class �les.

(As an aside, there is another directory named javax, which forms the root of another directory tree
containing class �les considered to be extensions to the standard class library.)

Many directories (packages)
Stated simply, a Java package is nothing more or less than a directory containing class �les.
The standard and extended Java class libraries are scattered among a fairly large number of directories or

packages (a quick count of the packages in the JDK 1.3 documentation indicates that there are approximately
65 standard and extended packages) .

A fully-quali�ed class name
With one exception, whenever you refer to a class in a Java program, you must provide a fully-quali�ed

name for the class, including the path through the directory tree culminating in the name of the class. Thus,
the following is the fully-quali�ed name for the class whose name is ArrayList .

java.util.ArrayList
(Later we will see another way to accomplish this that requires less typing e�ort.)
The exception
The one exception to the rule is the use of classes in the java.lang package, (such as Boolean ,

Class , and Double) . Your source code can refer to classes in the java.lang package without the
requirement to provide a fully-quali�ed class name.

An ArrayList object
Now back to the use of the object previously instantiated from the class named ArrayList . This is

the kind of object that is often referred to as a container.
(A container in this sense is an object that is used to store references to other objects.)
Many methods available
An object of the ArrayList class provides a variety of methods that can be used to store object

references and to fetch the references that it contains.
The add method
One of those methods is the method named add .
The following code fragment instantiates three objects of the String class, and stores them in the

ArrayList object instantiated earlier.
(Note that since the initial capacity of the ArrayList object was adequate to store only a single

reference, the following code causes the object to automatically increase its capacity to at least three.)

ref.add("ABC ");

ref.add("DEF ");

ref.add("GHI");

The get() method
The references stored in an object of the ArrayList class can be fetched by calling the get method

on a reference to the object passing a parameter of type int .
The code in the following fragment calls the get method to fetch the references stored in index locations

0, 1, and 2. These references are passed to the println method, where the contents of the String objects
referred to by those references are concatenated and displayed on the computer screen.

System.out.println(

(String)ref.get(0) +

(String)ref.get(1) +

(String)ref.get(2));

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2600 CHAPTER 7. OOP SELF-ASSESSMENT

The output
This results in the following being displayed:
ABC DEF GHI
Summary
The above discussion gave you a preview into the use of containers in general, and the ArrayList

container in particular.
However, the primary purpose of this program was to help you to understand the use of packages in Java.
The ArrayList class was simply used as an example of a class �le that is stored in a standard Java

package.
Back to Question 3 (p. 2595)

7.14.6.9 Answer 2

D. Joe Joe true

7.14.6.9.1 Explanation 2

Two String objects with identical contents
As in Question 1 (p. 2593) , the program instantiates two String objects containing identical character

strings, as shown in the following code fragment.

char[] anArray = {'J','o','e'};

String Str1 = new String(anArray);

String Str2 = new String(anArray);

Compare objects for equality
Also, as in Question 1 (p. 2593) , this program compares the two objects for equality and displays the

result as shown by the call to the equals method in the following fragment.

System.out.println(

Str1 + " " + Str2 + " " +

Str1.equals(Str2));

Compare using overridden equals method
The == operator is not used to compare the two objects in this program. Instead, the objects are

compared using an overridden version of the equals method. In this case, the equals method returns
true, indicating that the objects are of the same type and contain the same data values.

The equals method
The equals method is de�ned in the Object class, and can be overridden in subclasses of Object .

It is the responsibility of the author of the subclass to override the method so as to implement that author's
concept of "equal" insofar as objects of the class are concerned.

The overridden equals method
The reason that the equals method returned true in this case was that the author of the String class

provided an overridden version of the equals method.
The default equals method
If the author of the class does not override the equals method, and the default version of the equals

method inherited from Object is called on an object of the class, then according to Sun:
"for any reference values x and y, this method returns true if and only if x and y refer to the same object

(x==y has the value true)"

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2601

In other words, the default version of the equals method inherited from the class Object provides
the same behavior as the == operator when applied to object references.

Back to Question 2 (p. 2594)

7.14.6.10 Answer 1

C. Joe Joe false

7.14.6.10.1 Explanation 1

The identity operator
This program illustrates the behavior of the == operator (sometimes referred to as the identity operator)

when used to compare references to objects.
Two String objects with identical contents
As shown in the following fragment, this program instantiates two objects of the String class containing

identical character strings.

class Worker{

void doIt(){

char[] anArray = {'J','o','e'};

String Str1 = new String(anArray);

String Str2 = new String(anArray);

The fact that the two String objects contain identical character strings is con�rmed by:

• Both objects are instantiated using the same array object of type char as input.
• When the toString representations of the two objects are displayed later, the display of each object

produces Joe on the computer screen.

Compare object references using identity (==)
The references to the two String objects are compared using the == operator, and the result of that

comparison is displayed. This comparison will produce either true or false. The code to accomplish this
comparison is shown in the following fragment.

System.out.println(

Str1 + " " + Str2 + " " +

(Str1 == Str2));

The statement in the above fragment produces the following display:
Joe Joe false
How can this be false?
We know that the two objects are of the same type (String) and that they contain the same character

strings. Why does the == operator return false?
Doesn't compare the objects
The answer lies in the fact that the above statement doesn't really compare the two objects at all. Rather,

it compares the values stored in the reference variables referring to the two objects. That is not the same as
comparing the objects.

References are not equal

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2602 CHAPTER 7. OOP SELF-ASSESSMENT

Even though the objects are of the same type and contain the same character string, they are two
di�erent objects, located in di�erent parts of memory. Therefore, the contents of the two reference variables
containing references to the two objects are not equal.

The correct answer is false
The == operator returns false as it should. The only way that the == operator could return true

is if both reference variables refer to the same object, (which is not the case) .
The bottom line is ...
The == operator cannot be used to compare two objects for equality. However, it can be used to

determine if two reference variables refer to the same object.
Back to Question 1 (p. 2593)
-end-

7.15 Ap0140: Self-assessment, Type conversion, casting, common
exceptions, public class �les, javadoc comments and directives, and
null references23

7.15.1 Table of Contents

• Preface (p. 2613)
• Questions (p. 2613)

· 1 (p. 2613) , 2 (p. 2614) , 3 (p. 2615) , 4 (p. 2616) , 5 (p. 2618) , 6 (p. 2618) , 7 (p. 2619) , 8
(p. 2620) , 9 (p. 2621) , 10 (p. 2622)

• Listings (p. 2623)
• Miscellaneous (p. 2623)
• Answers (p. 2624)

7.15.2 Preface

This module is part of a self-assessment test designed to help you determine how much you know about
object-oriented programming using Java.

The test consists of a series of questions with answers and explanations of the answers.
The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the

question to the answer and back.
I recommend that you open another copy of this document in a separate browser window and use the

links to under Listings (p. 2623) to easily �nd and view the listings while you are reading about them.

7.15.3 Questions

7.15.3.1 Question 1 .

What output is produced by the program shown in Listing 1 (p. 2614) ?

• A. Compiler Error
• B. Runtime Error
• C. OK OK
• D. OK
• E. None of the above.

23This content is available online at <http://cnx.org/content/m45302/1.5/>.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2603

Listing 1 . Listing for Question 1.

public class Ap151{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap151

class Worker{

void doIt(){

Object refA = new MyClassA();

Object refB =

(Object)(new MyClassB());

System.out.print(refA);

System.out.print(refB);

System.out.println("");

}//end doIt()

}// end class Worker

class MyClassA{

public String toString(){

return "OK ";

}//end test()

}//end class MyClassA

class MyClassB{

public String toString(){

return "OK ";

}//end test()

}//end class MyClassB

Table 7.187

Answer and Explanation (p. 2633)

7.15.3.2 Question 2

What output is produced by the program shown in Listing 2 (p. 2615) ?

• A. Compiler Error
• B. Runtime Error
• C. OK OK
• D. OK
• E. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2604 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 2 . Listing for Question 2.

public class Ap152{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap152

class Worker{

void doIt(){

Object ref1 = new MyClassA();

Object ref2 = new MyClassB();

System.out.print(ref1);

MyClassB ref3 = (MyClassB)ref1;

System.out.print(ref3);

System.out.println("");

}//end doIt()

}// end class Worker

class MyClassA{

public String toString(){

return "OK ";

}//end test()

}//end class MyClassA

class MyClassB{

public String toString(){

return "OK ";

}//end test()

}//end class MyClassB

Table 7.188

Answer and Explanation (p. 2632)

7.15.3.3 Question 3

What output is produced by the program shown in Listing 3 (p. 2616) ?

• A. Compiler Error
• B. Runtime Error
• C. OK
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2605

Listing 3 . Listing for Question 3.

import java.util.Random;

import java.util.Date;

public class Ap153{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap153

class Worker{

void doIt(){

Random ref = new Random(

new Date().getTime());

if(ref.nextBoolean()){

throw new IllegalStateException();

}else{

System.out.println("OK");

}//end else

}//end doIt()

}// end class Worker

Table 7.189

Answer and Explanation (p. 2630)

7.15.3.4 Question 4

What output is produced by the program shown in Listing 4 (p. 2617) ?

• A. Compiler Error
• B. Runtime Error
• C. 5 10 15
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2606 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 4 . Listing for Question 4.

import java.util.NoSuchElementException;

public class Ap154{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap154

class Worker{

void doIt(){

MyContainer ref =

new MyContainer();

ref.put(0,5);

ref.put(1,10);

ref.put(2,15);

System.out.print(ref.get(0)+" ");

System.out.print(ref.get(1)+" ");

System.out.print(ref.get(2)+" ");

System.out.print(ref.get(3)+" ");

}//end doIt()

}// end class Worker

class MyContainer{

private int[] array = new int[3];

public void put(int idx, int data){

if(idx > (array.length-1)){

throw new

NoSuchElementException();

}else{

array[idx] = data;

}//end else

}//end put()

public int get(int idx){

if(idx > (array.length-1)){

throw new

NoSuchElementException();

}else{

return array[idx];

}//end else

}//end put()

}//end class MyContainer

Table 7.190

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2607

Answer and Explanation (p. 2628)

7.15.3.5 Question 5

The source code in Listing 5 (p. 2618) is contained in a single �le named Ap155.java
What output is produced by the program?

• A. Compiler Error
• B. Runtime Error
• C. OK
• D. None of the above.

Listing 5 . Listing for Question 5.

public class Ap155{

public static void main(

String args[]){

new Ap155a().doIt();

}//end main()

}//end class Ap155

public class Ap155a{

void doIt(){

System.out.println("OK");

}//end doIt()

}// end class Ap155a

Table 7.191

Answer and Explanation (p. 2628)

7.15.3.6 Question 6

A Java application consists of the two source �les shown in Listing 6 (p. 2618) and Listing 7 (p. 2619)
having names of AP156.java and AP156a.java

What output is produced by this program?

• A. Compiler Error
• B. Runtime Error
• C. OK
• D. None of the above.

Listing 6 . Listing for Question 6.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2608 CHAPTER 7. OOP SELF-ASSESSMENT

public class Ap156{

public static void main(

String args[]){

new Ap156a().doIt();

}//end main()

}//end class Ap156

Table 7.192

Listing 7 . Listing for Question 6.

public class Ap156a{

void doIt(){

System.out.println("OK");

}//end doIt()

}// end class Ap156a

Table 7.193

Answer and Explanation (p. 2627)

7.15.3.7 Question 7

Explain the purpose of the terms @param and @return in Listing 8 (p. 2620) . Also explain any of the other
terms that make sense to you.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2609

Listing 8 . Listing for Question 7.

public class Ap157{

/**

* Returns the character at the

* specified index. An index ranges from

* <code>0</code> to

* <code>length() - 1</code>.
*

* @param index index of desired

* character.

* @return the desired character.

*/

public char charAt(int index) {

//Note, this method is not intended

// to be operational. Rather, it

// ...

return 'a';//return dummy char

}//end charAt method

}//end class

Table 7.194

Answer and Explanation (p. 2626)

7.15.3.8 Question 8

What output is produced by the program shown in Listing 9 (p. 2621) ?

• A. Compiler Error
• B. Runtime Error
• C. Tom
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2610 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 9 . Listing for Question 8.

public class Ap158{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap158

class Worker{

void doIt(){

char[] ref;

System.out.print(ref);

System.out.print(" ");

ref[0] = 'T';

ref[1] = 'o';

ref[2] = 'm';

System.out.println(ref);

}//end doIt()

}// end class Worker

Table 7.195

Answer and Explanation (p. 2625)

7.15.3.9 Question 9

What output is produced by the program shown in Listing 10 (p. 2622) ?

• A. Compiler Error
• B. Runtime Error
• C. Tom
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2611

Listing 10 . Listing for Question 9.

public class Ap159{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap159

class Worker{

void doIt(){

char[] ref = null;

System.out.print(ref);

System.out.print(" ");

ref[0] = 'T';

ref[1] = 'o';

ref[2] = 'm';

System.out.println(ref);

}//end doIt()

}// end class Worker

Table 7.196

Answer and Explanation (p. 2625)

7.15.3.10 Question 10

What output is produced by the program shown in Listing 11 (p. 2623) ?

• A. Compiler Error
• B. Runtime Error
• C. Joe Tom
• D. None of the above.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2612 CHAPTER 7. OOP SELF-ASSESSMENT

Listing 11 . Listing for Question 10.

public class Ap160{

public static void main(

String args[]){

new Worker().doIt();

}//end main()

}//end class Ap160

class Worker{

void doIt(){

char[] ref = {'J','o','e'};

System.out.print(ref);

System.out.print(" ");

ref[0] = 'T';

ref[1] = 'o';

ref[2] = 'm';

System.out.println(ref);

}//end doIt()

}// end class Worker

Table 7.197

Answer and Explanation (p. 2624)

7.15.4 Listings

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

• Listing 1 (p. 2614) . Listing for Question 1.
• Listing 2 (p. 2615) . Listing for Question 2.
• Listing 3 (p. 2616) . Listing for Question 3.
• Listing 4 (p. 2617) . Listing for Question 4.
• Listing 5 (p. 2618) . Listing for Question 5.
• Listing 6 (p. 2618) . Listing for Question 6.
• Listing 7 (p. 2619) . Listing for Question 6.
• Listing 8 (p. 2620) . Listing for Question 7.
• Listing 9 (p. 2621) . Listing for Question 8.
• Listing 10 (p. 2622) . Listing for Question 9.
• Listing 11 (p. 2623) . Listing for Question 10.

7.15.5 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Ap0140: Self-assessment, Type conversion, casting, common exceptions, public
class �les, javadoc comments and directives, and null references

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2613

• File: Ap0140.htm
• Originally published: 2004
• Published at cnx.org: 12/18/12
• Revised: 12/03/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

7.15.6 Answers

7.15.6.1 Answer 10

C. Joe Tom

7.15.6.1.1 Explanation 10

This is an upgrade to the program from Question 9 (p. 2621) .
Success at last
The code in the following fragment resolves the compilation problem from Question 8 and the runtime

problem from Question 9 (p. 2621) .

void doIt(){

char[] ref = {'J','o','e'};

System.out.print(ref);

System.out.print(" ");

ref[0] = 'T';

ref[1] = 'o';

ref[2] = 'm';

System.out.println(ref);

}//end doIt()

Simply initializing the local reference variable named ref satis�es the compiler, making it possible to
compile the program.

Initializing the local reference variable named ref with a reference to a valid array object eliminates
the NullPointerException that was experienced in Question 9 (p. 2621) .

Printing the contents of the array object

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2614 CHAPTER 7. OOP SELF-ASSESSMENT

The print statement passes the reference variable to the print method. The print method �nds that
the reference variable refers to a valid object (instead of containing null as was the case in Question 9 (p.
2621)) and behaves accordingly.

The print statement causes the initialized contents of the array object to be displayed. Then those
contents are replaced with a new set of characters. The println statement causes the new characters to
be displayed.

Back to Question 10 (p. 2622)

7.15.6.2 Answer 9

B. Runtime Error

7.15.6.2.1 Explanation 9

Purposely initializing a local variable
This is an update to the program from Question 8 (p. 2620) . The code in the following fragment solves

the compilation problem identi�ed in Question 8 (p. 2620) .

void doIt(){

char[] ref = null;

In particular, initializing the value of the reference variable named ref satis�es the compiler and makes it
possible to compile the program.

A NullPointerException
However, there is still a problem, and that problem causes a runtime error.
The following statement attempts to use the reference variable named ref to print something on the

screen. This results, among other things, in an attempt to call the toString method on the reference.
However, the reference doesn't refer to an object. Rather, it contains the value null .

System.out.print(ref);

The result is a runtime error with the following infamous NullPointerException message appearing on
the screen:

java.lang.NullPointerException

at java.io.Writer.write(Writer.java:107)

at java.io.PrintStream.write(PrintStream.java:245)

at java.io.PrintStream.print(PrintStream.java:396)

at Worker.doIt(Ap159.java:22)

at Ap159.main(Ap159.java:15)

Back to Question 9 (p. 2621)

7.15.6.3 Answer 8

A. Compiler Error

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2615

7.15.6.3.1 Explanation 8

Garbage in, garbage out
Earlier programming languages, notably C and C++ allowed you to inadvertently write programs that

process the garbage left in memory by previous programs running there. This happens when the C or C++
programmer fails to properly initialize variables, allowing them to contain left-over garbage from memory.

Member variables are automatically initialized to default values
That is not possible in Java. All member variables in a Java object are automatically initialized to a

default value if you don't write the code to initialize them to some other value.
Local variables are not automatically initialized
Local variables are not automatically initialized. However, your program will not compile if you write

code that attempts to fetch and use a value in a local variable that hasn't been initialized or had a value
assigned to it.

Print an uninitialized local variable
The statement in the following code fragment attempts to fetch and print a value using the uninitialized

local variable named ref .

void doIt(){

char[] ref;

System.out.print(ref);

As a result, the program refuses to compile, displaying the following error message under JDK 1.3.

Ap158.java:23: variable ref might not have been initialized

System.out.print(ref);

Back to Question 8 (p. 2620)

7.15.6.4 Answer 7

See explanation below.

7.15.6.4.1 Explanation 7

The javadoc.exe program
When you download the JDK from Oracle, you receive a program named javadoc.exe in addition to

several other programs.
The purpose of the javadoc program is to help you document the Java programs that you write. You

create the documentation by running the javadoc program and specifying your source �le or �les as a
command-line parameter. For example, you can generate documentation for this program by entering the
following at the command line.

javadoc Ap157.java

Produces HTML �les as output
This will produce a large number of related HTML �les containing documentation for the class named

Ap157 . The primary HTML �le is named Ap157.html . A �le named index.html is also created.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2616 CHAPTER 7. OOP SELF-ASSESSMENT

This �le can be opened in a browser to provide a viewer for all of the information contained in the many
related HTML �les.

(As a labor saving device, you can also specify a group of input �les to the javadoc program, using
wildcard characters as appropriate, to cause the program to produce documentation �les for each of the
input �les in a single run.)

Special documentation comments and directives
If you include comments in your source code that begin with
/**
and end with
*/
they will be picked up by the javadoc program and become part of the documentation.
In addition to comments, you can also enter a variety of special directives to the javadoc program as

shown in the following program.

public class Ap157{

/**

* Returns the character at the

* specified index. An index ranges from

* <code>0</code> to

* <code>length() - 1</code>.
*

* @param index index of desired

* character.

* @return the desired character.

*/

public char charAt(int index) {

//Note, this method is not intended

// to be operational. Rather, it

// is intended solely to illustrate

// the generation of javadoc

// documentation for the parameter

// and the return value.

return 'a';//return dummy char

}//end charAt method

}//end class

The @param and @return directives
The @param and @return directives in the source code shown above are used by the javadoc

program for documenting information about parameters passed to and information returned from the method
named charAt . The method de�nition follows the special javadoc comment.

Back to Question 7 (p. 2619)

7.15.6.5 Answer 6

C. OK

7.15.6.5.1 Explanation 6

Public classes in separate �les

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2617

This program meets the requirement identi�ed in Question 5 (p. 2618) . In particular, this program
de�nes two public classes. The source code for each public class is stored in a separate �le. Thus, the
program compiles and executes successfully, producing the text OK on the screen.

Back to Question 6 (p. 2618)

7.15.6.6 Answer 5

A. Compiler Error

7.15.6.6.1 Explanation 5

Public classes in separate �les
Java requires that the source code for every public class be contained in a separate �le. In this case, the

source code for two public classes was contained in a single �le. The following compiler error was produced
by JDK 1.3:

Ap155.java:18: class Ap155a is public, should be declared in a file

named Ap155a.java

public class Ap155a{

Back to Question 5 (p. 2618)

7.15.6.7 Answer 4

This program produces both of the following:

• C. 5 10 15
• B. Runtime Error

7.15.6.7.1 Explanation 4

The NoSuchElementException
This program de�nes, creates, and uses a very simple container object for the purpose of illustrating the

NoSuchElementException .
The code in the following fragment shows the beginning of a class named MyContainer from which

the container object is instantiated.

class MyContainer{

private int[] array = new int[3];

public void put(int idx, int data){

if(idx > (array.length-1)){

throw new

NoSuchElementException();

}else{

array[idx] = data;

}//end else

}//end put()

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2618 CHAPTER 7. OOP SELF-ASSESSMENT

A wrapper for an array object
This class is essentially a wrapper for a simple array object of type int . An object of the class provides

a method named put , which can be used to store an int value into the array. The put method
receives two parameters. The �rst parameter speci�es the index of the element where the value of the second
parameter is to be stored.

Throw NoSuchElementException on index out of bounds
The put method tests to con�rm that the speci�ed index is within the positive bounds of the array.

If not, it uses the throw keyword to throw an exception of the type NoSuchElementException .
Otherwise, it stores the incoming data value in the speci�ed index position in the array.

(Note that a negative index will cause an ArrayIndexOutOfBoundsException instead of a NoSuchEle-
mentException to be thrown.)

The get method
An object of the MyContainer class also provides a get method that can be used to retrieve the

value stored in a speci�ed index.

public int get(int idx){

if(idx > (array.length-1)){

throw new

NoSuchElementException();

}else{

return array[idx];

}//end else

}//end put()

The get method also tests to con�rm that the speci�ed index is within the positive bounds of the array.
If not, it throws an exception of the type NoSuchElementException . Otherwise, it returns the value
stored in the speci�ed index of the array.

(As noted earlier, a negative index will cause an ArrayIndexOutOfBoundsException instead of a No-
SuchElementException to be thrown.)

The NoSuchElementException
Thus, this container class illustrates the general intended purpose of the NoSuchElementException

.
Instantiate and populate a container
The remainder of the program simply exercises the container. The code in the following fragment instan-

tiates a new container, and uses the put method to populate each of its three available elements with the
values 5, 10, and 15.

void doIt(){

MyContainer ref =

new MyContainer();

ref.put(0,5);

ref.put(1,10);

ref.put(2,15);

Get and display the data in the container
Then the code in the next fragment uses the get method to get and display the values in each of the

three elements, causing the following text to appear on the screen:
5 10 15

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2619

System.out.print(ref.get(0)+" ");

System.out.print(ref.get(1)+" ");

System.out.print(ref.get(2)+" ");

One step too far
Finally, the code in the next fragment goes one step too far and attempts to get a value from index 3,

which is outside the bounds of the container.

System.out.print(ref.get(3)+" ");

This causes the get method of the container object to throw a NoSuchElementException . The
program was not designed to handle this exception, so this causes the program to abort with the following
text showing on the screen:

5 10 15 java.util.NoSuchElementException

at MyContainer.get(Ap154.java:49)

at Worker.doIt(Ap154.java:30)

at Ap154.main(Ap154.java:15)

(Note that the values of 5, 10, and 15 were displayed on the screen before the program aborted and displayed
the error message.)

Back to Question 4 (p. 2616)

7.15.6.8 Answer 3

This program can produce either of the following depending on the value produced by a random boolean
value generator:

• B. Runtime Error
• C. OK

7.15.6.8.1 Explanation 3

Throwing an exception
This program illustrates the use of the throw keyword to throw an exception.
(Note that the throw keyword is di�erent from the throws keyword.)
Throw an exception if random boolean value is true
A random boolean value is obtained. If the value is true, the program throws an IllegalStateEx-

ception and aborts with the following message on the screen:

java.lang.IllegalStateException

at Worker.doIt(Ap153.java:29)

at Ap153.main(Ap153.java:20)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2620 CHAPTER 7. OOP SELF-ASSESSMENT

If the random boolean value is false, the program runs to completion, displaying the text OK on the
screen.

Instantiate a Random object
The following code fragment instantiates a new object of the Random class and stores the object's

reference in a reference variable named ref .

void doIt(){

Random ref = new Random(

new Date().getTime());

I'm not going to go into a lot of detail about the Random class. Su�ce it to say that an object of this
class provides methods that will return a pseudo random sequence of values upon successive calls. You might
think of this object as a random value generator.

Seeding the random generator
The constructor for the class accepts a long integer as the seed for the sequence.
(Two Random objects instantiated using the same seed will produce the same sequence of values.)
In this case, I obtained the time in milliseconds, relative to January 1, 1970, as a long integer, and

provided that value as the seed. Thus, if you run the program two times in succession, with a time delay of
at least one millisecond in between, the random sequences will be di�erent.

Get a random boolean value
The code in the next fragment calls the nextBoolean method on the Random object to obtain a

random boolean value. (Think of this as tossing a coin with true on one side and false on the other side.)

if(ref.nextBoolean()){

throw new IllegalStateException();

Throw an exception
If the boolean value obtained in the above fragment is true, the code instantiates a new object of the

IllegalStateException class , and uses the throw keyword to throw an exception of this type.
Program aborts
The program was not designed to gracefully handle such an exception. Therefore the program aborts,

displaying the error message shown earlier.
Don't throw an exception
The code in the next fragment shows that if the boolean value tested above is false, the program will

display the text OK and run successfully to completion.

}else{

System.out.println("OK");

}//end else

}//end doIt()

You may need to run the program several times to see both possibilities.
Back to Question 3 (p. 2615)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2621

7.15.6.9 Answer 2

The answer is both of the following:

• D. OK
• B. Runtime Error

7.15.6.9.1 Explanation 2

One cast is allowable ...
It is allowable, but not necessary, to cast the type of an object's reference toward the root of the inheritance

hierarchy.
It is also allowable to cast the type of an object's reference along the inheritance hierarchy toward the

actual class from which the object was instantiated.
Another cast is not allowable ...
However, (excluding interface type casts) , it is not allowable to cast the type of an object's reference in

ways that are not related in a subclass-superclass inheritance sense. For example, you cannot cast the type
of an object's reference to the type of a sibling of that object.

Two sibling classes
The code in the following fragment de�nes two simple classes named MyClassA and MyClassB .

By default, each of these classes extends the class named Object . Therefore, neither is a superclass of
the other. Rather, they are siblings.

class MyClassA{

public String toString(){

return "OK ";

}//end test()

}//end class MyClassA

class MyClassB{

public String toString(){

return "OK ";

}//end test()

}//end class MyClassB

Instantiate one object from each sibling class
The code in the next fragment instantiates one object from each of the above classes, and stores references

to those objects in reference variables of type Object.
Then the code causes the overridden toString method of one of the objects to be called by passing

that object's reference to the print method.

void doIt(){

Object ref1 = new MyClassA();

Object ref2 = new MyClassB();

System.out.print(ref1);

The code in the above fragment causes the text OK to appear on the screen.
Try to cast to a sibling class type

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2622 CHAPTER 7. OOP SELF-ASSESSMENT

At this point, the reference variable named ref1 holds a reference to an object of type MyClassA .
The reference is being held as type Object .

The statement in the next fragment attempts to cast that reference to type MyClassB , which is a
sibling of the class named MyClassA .

MyClassB ref3 = (MyClassB)ref1;

A ClassCastException
The above statement causes a ClassCastException to be thrown, which in turn causes the program

to abort. The screen output is shown below:

OK java.lang.ClassCastException:MyClassA

at Worker.doIt(Ap152.java:24)

at Ap152.main(Ap152.java:14)

(Note that the text OK appeared on the screen before the program aborted and displayed diagnostic
information on the screen.)

Back to Question 2 (p. 2614)

7.15.6.10 Answer 1

C. OK OK

7.15.6.10.1 Explanation 1

Type conversion
This program illustrates type conversion up the inheritance hierarchy, both with and without a cast.
Store object's reference as type Object
The following fragment instantiates a new object of the class named MyClassA , and stores that

object's reference in a reference variable of type Object . This demonstrates that you can store an object's
reference in a reference variable whose type is a superclass of the class from which the object was instantiated,
with no cast required.

class Worker{

void doIt(){

Object refA = new MyClassA();

Cast object's reference to type Object
The code in the next fragment instantiates an object of the class named MyClassB , and stores the

object's reference in a reference variable of type Object , after �rst casting the reference to type Object
. This, and the previous fragment demonstrate that while it is allowable to cast a reference to the superclass
type before storing it in a superclass reference variable, such a cast is not required.

Object refB =

(Object)(new MyClassB());

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2623

Type conversion and assignment compatibility
This is part of a larger overall topic commonly referred to as type conversion. It also touches the fringes

of something that is commonly referred to as assignment-compatibility.
Automatic type conversions
Some kinds of type conversions happen automatically. For example, you can assign a value of type byte

to a variable of type int and the type conversion will take place automatically.
Cast is required for narrowing conversions
However, if you attempt to assign a value of type int to a variable of type byte , the assignment will

not take place automatically. Rather, the compiler requires you to provide a cast to con�rm that you accept
responsibility for the conversion, which in the case of int to byte could result in the corruption of data.

Automatic conversions up the inheritance hierarchy
When working with objects, type conversion takes place automatically for conversions toward the root of

the inheritance hierarchy. Therefore, conversion from any class type to type Object happen automatically.
However, conversions in the direction away from the root require a cast.

(Conversion from any class type to any superclass of that class also happens automatically.)
Polymorphic behavior
The code in the next fragment uses polymorphic behavior to display the contents of the two String

objects.

System.out.print(refA);

System.out.print(refB);

No cast required
This works without the use of a cast because the print method calls the toString method on any

object's reference that it receives as an incoming parameter. The toString method is de�ned in the
Object class, and overridden in the String class. Polymorphic behavior dictates that in such a situation,
the version of the method belonging to the object will be called regardless of the type of the reference variable
holding the reference to the object.

When would a cast be required?
Had the program attempted to call a method on the reference that is not de�ned in the Object , class,

it would have been necessary to cast the reference down the inheritance hierarchy in order to successfully
call the method.

Back to Question 1 (p. 2613)
-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2624 CHAPTER 7. OOP SELF-ASSESSMENT

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

Chapter 8

Anatomy of a Game Engine

8.1 Jy0060: Anatomy of a Game Engine1

8.1.1 Table of Contents

• Welcome (p. 2635)
• Miscellaneous (p. 2636)

8.1.2 Welcome

Click the link to view the material for Anatomy of a Game Engine 2 , which I use in some of the courses
that I teach at Austin Community College in Austin, TX.

This is a collection of modules designed to teach students about the anatomy of a typical game or
simulation engine (sometimes called a game or simulation framework) .

The collection is built around the Slick2D Game library.
The Slick2D library
I chose to concentrate on the free game library named Slick2D 3 ,(which is written in Java) for several

reasons including the following:

• Java is the language with which I am the most comfortable. Hence, I can probably do a better job of
explaining the anatomy of a game engine that uses Slick2D than would be the case for a game engine
written in C++, C#, Python, or some other programming language.

• Java has proven in recent years to be a commercially successful game programming language. For
example, I cite the commercial game named Minecraft 4 , written in Java, for which apparently millions
of copies have been sold. Also, knowing Java is very bene�cial for those who might want to develop
apps for Android.

• Slick2D is free and the source code for Slick2D is readily available.
• The overall structure of a basic Slick2D game engine is very similar to Dark GDK and XNA, and is

probably similar to other game engines as well.
• Java is platform independent.

Applicable to other environments as well
Although the modules in this collection concentrate on the Java game library named Slick2D, the concepts

involved and the knowledge that you will gain is applicable to other game engines written in di�erent
programming languages.

1This content is available online at <http://cnx.org/content/m45747/1.1/>.
2http://cnx.org/content/col11489/latest/
3http://slick.cokeandcode.com/index.php
4http://minecraft.net/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2625

2626 CHAPTER 8. ANATOMY OF A GAME ENGINE

8.1.3 Miscellaneous

This section contains a variety of miscellaneous information.

note: Housekeeping material

• Module name: Jy0060: Anatomy of a Game Engine
• File: Jy0060.htm
• Published: 02/05/13

note: Disclaimers:: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

Chapter 9

Principles of Object-Oriented
Programming

9.1 Jy0070-Principles of Object-Oriented Programming1

9.1.1 Table of Contents

• Welcome (p. 2637)
• Miscellaneous (p. 2637)

9.1.2 Welcome

Click the following title to view Principles of Object-Oriented Programming 2 (current as of 02/20/13) :

• Summary : An objects-�rst with design patterns introductory course
• Instructor : Stephen Wong and Dung Nguyen
• Institution : Rice University
• Course Number : COMP201

One of the great things about cnx.org is the ability for an instructor like myself to incorporate course
materials shared by others. This makes it possible for the courses that I teach to have more breadth than
might otherwise be the case.

It may be bene�cial for you to study this material, which you will probably �nd to be more formal and
rigorous than the material that I have provided. Pay particular attention to the design pattern concept as
well as the UML diagrams.

9.1.3 Miscellaneous

This section contains a variety of miscellaneous information.

note: Housekeeping material

• Module name: Jy0070-Principles of Object-Oriented Programming
• File: Jy0070.htm
• Published: 02/20/13

1This content is available online at <http://cnx.org/content/m45793/1.1/>.
2http://cnx.org/content/col10213/latest/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2627

2628 CHAPTER 9. PRINCIPLES OF OBJECT-ORIENTED PROGRAMMING

note: Disclaimers:: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

Chapter 10

Programming Oldies But Goodies

10.1 Jy0050: Programming Oldies But Goodies1

10.1.1 Table of Contents

• Welcome (p. 2639)
• Miscellaneous (p. 2639)

10.1.2 Welcome

Over the years, I have published a large number of tutorials in the areas of computer programming and
DSP. As I have the time to do so, I am converting the more signi�cant of those tutorials into cnxml code
and re-publishing them at cnx.org. In the meantime, the collection titled Programming Oldies But Goodies
2 , which is a work in process, gathers many of the tutorials in their original HTML format into a common
location to make them readily available for Connexions users.

10.1.3 Miscellaneous

This section contains a variety of miscellaneous information.

note: Housekeeping material

• Module name: Jy0050: Programming Oldies But Goodies
• File: Jy0050.htm
• Published: 01/17/13

note: Disclaimers:: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive

1This content is available online at <http://cnx.org/content/m45681/1.1/>.
2http://cnx.org/content/col11478

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2629

2630 CHAPTER 10. PROGRAMMING OLDIES BUT GOODIES

compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

Chapter 11

Objects First

11.1 Gf0100: Objects First with Greenfoot1

11.1.1 Table of Contents

• Preface (p. 2641)
• Overview (p. 2642)

· A visual interactive programming environment (p. 2642)
· Greenfoot is not a toy (p. 2642)
· The Greenfoot gallery (p. 2643)

• Software (p. 2643)

· Software to download and install (p. 2643)
· Stand alone software (p. 2643)

• Running Greenfoot (p. 2644)

· The installed version (p. 2644)
· The stand alone version (p. 2644)

• Textbook and tutorials (p. 2644)

· The textbook (p. 2645)
· The tutorials (p. 2645)

* Written tutorials (p. 2645)
* Video tutorials (p. 2645)
* Other possibilities (p. 2645)

• What comes next after Greenfoot (p. 2646)
• Miscellaneous (p. 2646)

11.1.2 Preface

If you are new to programming and want to learn how to program, or if you have programming experience
but are new to object-oriented programming (OOP) and want to learn OOP, I can't think of a better way
to take that �rst step than through the use of Greenfoot 2 .

1This content is available online at <http://cnx.org/content/m45790/1.2/>.
2http://www.greenfoot.org/door

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2631

2632 CHAPTER 11. OBJECTS FIRST

Greenfoot provides a set of interactive visual tools coupled with the Java programming language that
makes learning to program both interesting and productive.

(Note that descriptions of the Greenfoot website contained herein are current as of 02/19/13.)

11.1.3 Overview

11.1.3.1 A visual interactive programming environment

The greenfoot overview 3 page describes Greenfoot as an Interactive Visual World that "...teaches object
orientation with Java."

When programming with Greenfoot, you "Create 'actors' which live in 'worlds' to build games, simula-
tions, and other graphical programs."

Greenfoot is both instructive and enjoyable because it is visual and interactive. Visualization and inter-
action tools are built into the programming environment.

Unlike Scratch 4 and Alice 5 (two programming environments for beginners that use a drag-and-drop
approach to programming) , Greenfoot actors "are programmed in standard textual Java code, providing
a combination of programming experience in a traditional text-based language with visual execution."

According to Wikipedia 6 ,
"Greenfoot is an interactive Java development environment designed primarily for educational pur-

poses at the high school and undergraduate level. It allows easy development of two-dimensional graphical
applications, such as simulations and interactive games.

Greenfoot is being developed and maintained at the University of Kent 7 and La Trobe University 8

, with support from Oracle 9 . It is free software, released under the GPL license. Greenfoot is available
for Microsoft Windows 10 , Mac OS X 11 , Linux 12 , Sun Solaris 13 , and any recent JVM 14

."
Continuing with Wikipedia 15 ,
"Greenfoot aims to motivate learners quickly by providing easy access to animated graphics, sound

and interaction. The environment is highly interactive and encourages exploration and experimentation.
Pedagogically, the design is based on constructivist and apprenticeship approaches.

Secondly, the environment is designed to illustrate and emphasize important abstractions and concepts
of object-oriented programming. Concepts such as the class/object relationship, methods, parameters, and
object interaction are conveyed through visualizations and guided interactions. The goal is to build and
support a mental model that correctly represents modern object-oriented programming systems."

11.1.3.2 Greenfoot is not a toy

Your �rst impression when you enter the Greenfoot home page 16 may be that Greenfoot is a toy, but that
de�nitely is not the case.

3http://www.greenfoot.org/overview
4http://scratch.mit.edu/
5http://www.alice.org/
6http://en.wikipedia.org/wiki/Greenfoot
7http://en.wikipedia.org/wiki/University_of_Kent
8http://en.wikipedia.org/wiki/La_Trobe_University
9http://en.wikipedia.org/wiki/Oracle

10http://en.wikipedia.org/wiki/Microsoft_Windows
11http://en.wikipedia.org/wiki/Mac_OS_X
12http://en.wikipedia.org/wiki/Linux
13http://en.wikipedia.org/wiki/Sun_Solaris
14http://en.wikipedia.org/wiki/Java_Virtual_Machine
15http://en.wikipedia.org/wiki/Greenfoot
16http://www.greenfoot.org/home

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2633

While it is true that the �rst impulse of many beginning programmers is to create computer games (as
evidenced on the home page 17 and the Greenfoot Gallery 18), Greenfoot can also be used to create
serious interactive simulations. As an example, I will point you to the following simulations:

• Ants 19 by mik
• Wave-Lab 20 by delmar
• Birds and Trees 21 by polle

(Click a link given above to download and run a simulation. When the simulation window appears, click
the Run button on the simulation window to start the simulation running.)

You can view more than 7500 scenarios (Greenfoot programs are commonly referred to as scenarios) by
clicking the Scenarios link at the top of the home page 22 . Some of the scenarios are impressive. Some
are not so impressive. Many, possibly most, were written by beginning programmers.

(Note that you must have Java applets enabled on your computer to run these simulations. Alternatively,
if you have Greenfoot installed on your computer, you can click the "Open in Greenfoot" button to cause
the program to be downloaded for compilation and execution locally on your computer.)

11.1.3.3 The Greenfoot Gallery

What you see when you click the Scenarios link at the top of the home page 23 has been called the
Greenfoot Gallery 24 in times past. This is a place where the authors of Greenfoot scenarios can publish
their scenarios if they so choose.

This is a social network or virtual programming community where Greenfoot programmers gather to
encourage one another and to critique the work being done by themselves and others. Note however that
active participation in the gallery is completely voluntary.

11.1.4 Software

The Greenfoot software and the Java Development Kit (JDK), both of which run on Windows, Mac, and
Linux, are available for free download 25 .

11.1.4.1 Software to download and install

When you visit the download 26 page, you will �nd download links for Windows, Mac OS X, and Ubuntu.
Click one of those links to download and install the appropriate version of Greenfoot on your computer.

You will also need to download and install the Java Development Kit (JDK). There is a download button
labeled Download JDK for that purpose.

11.1.4.2 Stand alone software

As an alternative to the version that can be installed on your computer, there is a self-contained Stand
Alone version that you can download, unzip, copy to, and run either from a disk folder or from a USB
memory stick with no other installation required. This version contains both the Greenfoot software and
the Java JDK.

17http://www.greenfoot.org/home
18http://www.greenfoot.org/scenarios
19http://www.greenfoot.org/scenarios/1016
20http://www.greenfoot.org/scenarios/597
21http://www.greenfoot.org/scenarios/267
22http://www.greenfoot.org/home
23http://www.greenfoot.org/home
24http://www.greenfoot.org/scenarios
25http://www.greenfoot.org/download
26http://www.greenfoot.org/download

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2634 CHAPTER 11. OBJECTS FIRST

Once you extract the software from the zip �le, you will need about 200 Mbytes to store it in a disk
folder. Depending on the formatting, you may need as much as 275 Mbytes of available space to copy the
software to a USB memory stick.

The stand alone version is particularly useful in several situations including the following:

• You want to run Greenfoot on a computer for which you don't have installation privileges, such as in
a public library or a college computer lab.

• You don't already have the Java JDK installed on your computer and would prefer not to go through
the e�ort to download and install it.

• You want to run Greenfoot, but you don't want to install anything on your computer.

11.1.5 Running Greenfoot

11.1.5.1 The installed version

If you download and install Greenfoot and the Java JDK on your computer, you will have an opportunity to
place a Greenfoot icon on your desktop. Just double-click the icon to start the Greenfoot program running.
(Although not necessary, it is probably best to install the JDK before installing Greenfoot.)

11.1.5.2 The stand alone version

If you elect to use the stand alone version, you will extract the following folders from the zip �le:

• BlueJ 27 (a more advanced Java programming environment)
• Greenfoot (the programming environment of interest in this module)
• jdk (the Java Development Kit)
• userhome (not sure the purpose of this folder)

You will �nd a �le named Greenfoot.exe inside the Greenfoot folder. It will have an icon of a small
green footprint. Double click this �le to start the Greenfoot program running.

Once the program is running, you can select the Greenfoot Tutorial item on the Help menu to open
a webpage containing a variety of educational tutorials. (I will have more to say about this later.) The
Help menu also provides access to several other useful items, such as documentation for both Greenfoot
and the Java JDK.

11.1.6 Textbook and tutorials

There is a textbook titled Introduction to Programming with Greenfoot - Object-Oriented Programming in
Java with Games and Simulations 28 that you can purchase on Amazon for about $75.00. (As usual, you
can rent it for less or purchase a used copy for less.)

There are also many free online tutorials 29 available to help you get started programming with Java and
Greenfoot.

Whether you need the textbook, or whether the tutorials will su�ce will depend on your background.
My advice is to begin with the tutorials alone, and then purchase the textbook if needed.

27http://www.bluej.org/
28http://www.greenfoot.org/book
29http://www.greenfoot.org/doc

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2635

11.1.6.1 The textbook

That having been said, I will comment on the textbook. If I had the luxury of designing a computer
programming curriculum from scratch, I would choose a model very similar to the Greenfoot textbook.

In particular, unlike the programming curricula in many colleges and universities, I would begin with
the big picture (classes, interfaces, objects, methods, variables, etc.) and work my way down to the more
detailed aspects of programming (selection, loops, operators, types, etc.) .

(The programming curricula at many colleges and universities begin at the bottom and work their way
up instead of beginning at the top and working their way down. As a result, many students become bogged
down in details and either quit or fail and never get a chance to see the big picture of object-oriented
programming.)

Because I believe in the top down model on which the textbook is based, I can recommend this textbook as
a very good way to get started learning computer programming in general and object-oriented programming
in particular. (I am not a�liated with the author or the publisher and receive no compensation from the
sale of this textbook.)

11.1.6.2 The tutorials

11.1.6.2.1 Written tutorials

As of 02/19/13, the Greenfoot website provides the following written tutorials to help you learn how to use
Greenfoot and begin programming:

• Interacting with Greenfoot 30

• Movement and Key Control 31

• Detecting and Removing Actors, and Making Methods 32

• Saving the World, Making and Playing Sound 33

• Adding a Randomly Moving Enemy 34

• How to Access One Object From Another 35

11.1.6.2.2 Video tutorials

If you prefer video tutorials, the Joy Of Code 36 is a thorough introduction to Greenfoot broken down into
a large number of videos. A wide range of other short videos 37 are also available.

11.1.6.2.3 Other possibilities

Once you become an accomplished Greenfoot programmer, you might be interested in some of the following
possibilities, which generally require other resources or more advanced knowledge:

• Kinect with Greenfoot 38 .
• PicoBoard with Greenfoot 39 .
• Sense Board with Greenfoot 40 .

30http://www.greenfoot.org/doc/tut-1
31http://www.greenfoot.org/doc/tut-2
32http://www.greenfoot.org/doc/tut-3
33http://www.greenfoot.org/doc/tut-4
34http://www.greenfoot.org/doc/tut-5
35http://www.greenfoot.org/doc/howto-1
36http://www.joyofcode.org/
37http://www.youtube.com/user/18km?ob=5#g/u
38http://www.greenfoot.org/doc/kinect
39http://www.greenfoot.org/doc/pico
40http://www.greenfoot.org/doc/sense

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2636 CHAPTER 11. OBJECTS FIRST

• Finch with Greenfoot 41 .
• Loading native libraries with Greenfoot 42 .
• Gamepads with Greenfoot 43 .
• CS Unplugged with Greenfoot 44 .
• AP Computer Science with Greenfoot 45 .
• Learn Maths with Greenfoot 46

11.1.7 What comes next after Greenfoot

While this may sound like an exaggeration, programming with Greenfoot is sort of like riding a bicycle with
training wheels. After awhile, you no longer need the training wheels and you are ready to move on to true
two-wheeler.

While is it possible to push Greenfoot into some pretty complex and sophisticated scenarios, there comes
a time when you need to take the training wheels o� and ride that two-wheeler.

Numerous possibilities are possible in this regard. One possibility is BlueJ - The interactive Java envi-
ronment 47 from the same folks who brought you Greenfoot. Like Greenfoot, the BlueJ software is available
for free downloading. Also like Greenfoot, a textbook can be purchased and some free tutorials are available.

Another possibility is to continue working through the modules in this collection.
A very good possibility is to do both.

11.1.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Gf0100: Objects First with Greenfoot
• File: Gf0100.htm
• Published: 02/19/13
• Revised: 12/26/14

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-
41http://www.greenfoot.org/doc/�nch
42http://www.greenfoot.org/doc/native_loader
43http://www.greenfoot.org/doc/gamepad
44http://www.greenfoot.org/doc/csunplugged
45http://www.greenfoot.org/doc/ap
46http://sinepost.wordpress.com/
47http://www.bluej.org/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

Chapter 12

Appendices

12.1 Java3140 Java OOP Java Documentation1

Revised: Fri Apr 08 18:13:10 CDT 2016
This page is included in the following Books:

• ITSE 2321 - Object-Oriented Programming (Java) 2

• Object-Oriented Programming (OOP) with Java 3

12.1.1 Table of Contents

• Preface (p. 2647)

· Viewing tip (p. 2648)

* Figures (p. 2648)

• Discussion (p. 2648)
• Java Platform, Standard Edition 7 API Speci�cation (p. 2649)
• A universal documentation format (p. 2661)
• Typical usage of the API documentation (p. 2661)
• Summary (p. 2661)
• Miscellaneous (p. 2661)

12.1.2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

I cannot overemphasize the importance of Oracle's Java documentation 4 to aspiring Java programmers.
The documentation package, which can be downloaded for installation and local access or accessed online,
contains a wealth of information.

In my opinion, it is not possible to write Java programs of any substance without frequent reference
to the documentation. No one can memorize everything that they need to know to be a successful Java
programmer.

1This content is available online at <http://cnx.org/content/m45117/1.4/>.
2http://cnx.org/contents/dzOvxPFw
3http://cnx.org/contents/-2RmHFs_
4http://docs.oracle.com/javase/7/docs/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2637

2638 CHAPTER 12. APPENDICES

(Note that each time Oracle releases a new version of the Java Development Kit (JDK), they also release
a new version of the documentation. Therefore, as new versions are released, the links provided in this
document may become outdated and may not take you to the latest version of the documentation. However,
you should be able to �nd the latest documentation via an online search.)

12.1.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the �gures while you are reading about them.

12.1.2.1.1 Figures

• Figure 1 (p. 2654) . Screen shot of the API speci�cation at startup.
• Figure 2 (p. 2660) . Screen shot of the API documentation after selecting the JButton class.

12.1.3 Discussion

Small core language, large class library
The Java Platform Standard Edition programming environment consists of a small core programming

language and a large class library.
(As of the date of this writing, you can view The Java Language Speci�cation 5 online. This speci�cation

will tell you just about everything that most programmers need to know about the core language.)
The size of the class library grows with the release of each new version of the JDK, because each new

version provides capabilities that didn't exist in the previous version. New capabilities are added through
the addition of new classes and new interfaces to the library.

The true power of Java resides in the class libraries
Once you understand how OOP is implemented in Java and you get beyond while loops, if statements,

and other fundamental programming concepts, virtually all the power of Java resides in:

• Classes, interfaces, and methods in the various class libraries that you use directly.
• Classes, interfaces, and methods in the various class libraries that you extend.
• New classes, interfaces, and methods that you and others de�ne.

You will always use material from Oracle's standard class libraries. You will often use material from other
libraries that you create yourself, or that you obtain from sources outside of Oracle (such as Barb Ericson's
multimedia library 6 , for example) .

Top-level online documentation
As of the date of this writing, you can view the top-level page of the documentation for Java Platform

Standard Edition 7 at http://docs.oracle.com/javase/7/docs/ 7 .
A complicated page
When you �rst view that documentation page, it may appear to be very complicated. Of all the material

on the page, the most important is probably the Application Programming Interface (API) , which is
currently available via a link on the right side of the page labeled Java SE API 8 .

However, you should not ignore the links to other information available on the top-level page 9 . Those
links will often contain information that you need, and that information can make you more e�cient in using
the API documentation.

Search
5http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
6http://coweb.cc.gatech.edu/mediaComp-plan/101
7http://docs.oracle.com/javase/7/docs/
8http://docs.oracle.com/javase/7/docs/api/index.html
9http://docs.oracle.com/javase/7/docs/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2639

If you follow the Search link at the top of the page, you will arrive at a search engine page 10 that gives
you the ability to do a keyword search on the online documentation.

Downloading and installing Java
Of particular interest to most newcomers should be the links titled Installation Instructions 11 and Java

SE Downloads 12 .
The Java Tutorials
Also very important is the link to The Java Tutorials 13 . Once you reach those tutorials, of particular

importance is the Path and CLASSPATH 14 tutorial. (Many students trip on the path, the classpath, and
the di�erence between the two.)

12.1.4 Java Platform, Standard Edition 7 API Speci�cation

The API Speci�cation 15 is probably the most frequently used section of the entire documentation package.
A screen shot
Figure 1 (p. 2654) shows a partial screen shot of what you should see when you �rst load the API

Speci�cation into your browser. (Note that this screen shot was cropped to force it to �t into this
publication format.)

10http://docs.oracle.com/javase/search.html
11http://docs.oracle.com/javase/7/docs/webnotes/install/index.html
12http://www.oracle.com/technetwork/java/javase/downloads/index.html
13http://docs.oracle.com/javase/tutorial/
14http://docs.oracle.com/javase/tutorial/essential/environment/paths.html
15http://docs.oracle.com/javase/7/docs/api/index.html

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2640 CHAPTER 12. APPENDICES

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2641

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2642 CHAPTER 12. APPENDICES

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2643

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2644 CHAPTER 12. APPENDICES

Figure 1. Screen shot of the API speci�cation at startup.

Table 12.1

Screen layout
The purpose of providing this screen shot is to give you an idea of the general layout of the material as

it appears on your screen. As you can see, the layout consists of three frames when viewed in your HTML
browser.

(A version without frames is also available by selecting the "No Frames" link at the top of the page.
The version without frames is particularly useful for using the "page search" capability of your browser to
�nd something on the page.)

The two leftmost frames
The upper-left frame contains a list of packages . The lower-left frame contains a list of the classes

and interfaces that are contained in the package that is selected in the top-left frame.
(The default package selection in the upper-left frame is "All Classes".)
You make selections in these two frames (or in the link bar at the top of the page) to control the contents

of the rightmost frame.
The rightmost frame
When you �rst access the API documentation (and when you select Overview at the top of the page),

the rightmost frame contains summary information about all of the packages.
When you select a class in the lower-left frame (such as the JButton class for example) , the rightmost

frame contains hyperlinked information about that class, including:

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2645

• A visual class hierarchy diagram
• Interfaces implemented by the class
• Known subclasses of the class
• Text description of the class
• Summary of nested classes
• Summary of �elds de�ned in the class
• Summary of �elds inherited into the class
• Summary and detailed information on constructors de�ned in the class
• Summary and detailed information on methods de�ned in the class
• List of methods inherited into the class

Figure 2 (p. 2660) shows a screen shot of the browser window after selecting the class named JButton in
the lower-left frame. If you pull down the thumb in the scroll bar on the right side of the browser window,
you will expose all of the information in the above list.

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2646 CHAPTER 12. APPENDICES

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2647

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2648 CHAPTER 12. APPENDICES

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2649

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2650 CHAPTER 12. APPENDICES

Figure 2. Screen shot of the API documentation after selecting the JButton class.

Table 12.2

The link bar at the top of the page
It can sometimes be di�cult to �nd what you are looking for in the documentation package. Referring

back to Figure 2 (p. 2660) , you can see a link bar at the top of the page in the rightmost frame. This link
bar contains the following hyperlinks:

• Overview - provides summary information about packages (shown in Figure 1 (p. 2654)).
• Package - provides a description of the package that contains the class selected in the lower-left

frame.
• Class - provides a description of the class selected in the lower-left frame.
• Use - describes how the class selected in the lower-left frame is used in various packages.
• Tree - provides detailed inheritance hierarchy information for a selected package.
• Deprecated - provides a list of material that has been deprecated (may not be supported in future

versions)
• Index - provides a hyperlinked alphabetized index of interfaces, classes, constructors, variables, and

methods.
• Help - Describes how the API document is organized.

The various pages that are displayed by selecting these links can often help you to �nd what you are looking
for. Probably the most useful and frequently consulted item in the above list is the Index.

The alphabetical index

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2651

The alphabetical index can be extremely useful if you know the full or partial spelling of what you are
looking for, beginning with the �rst character.

For example, assume that you remember (or you can surmise from what you know about Java properties)
that there is a method whose name begins with getSystemLookAndFeel , which returns the name of
the LookAndFeel class that implements the native look and feel for a particular operating system. You
can easily look this up under G in the alphabetical index.

What you will �nd when you look it up is a brief description of a method named getSystemLookAnd-
FeelClassName that matches what you are looking for. The name of the method is also a hyperlink
to the detailed description of the same method as it appears in the documentation for the class named
UIManager .

12.1.5 A universal documentation format

The documentation for the API is created using a program named javadoc.exe that is contained in the
JDK. Therefore, the API documentation for class libraries obtained from outside sources should have the
same format as that described above (assuming that the documentation was produced using javadoc.exe) .

However, the program named javadoc.exe only controls the format of the documentation. It does not
produce the explanatory content. It is the responsibility of the author of the class library to provide that
content.

12.1.6 Typical usage of the API documentation

Typical usage of the API documentation consists of the following steps:

• Open the API documentation in your browser.
• Click the class of interest in the lower-left frame.
• Manually search the rightmost frame for summary information about �elds, constructors, or methods

of interest.
• Click the name of a �eld, constructor, or method in the summary section to open a detailed description

of that �eld, constructor, or method.

12.1.7 Summary

There are several ways to search for useful information in the Oracle documentation. There is no single
approach that will serve all of your needs to �nd information in the documentation. You simply need to
become familiar with the di�erent ways to search for information in the documentation and be prepared to
use the approach that does the best job in each situation.

12.1.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Java OOP: Java Documentation
• File: Java3140.htm
• Published: 11/11/12

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2652 CHAPTER 12. APPENDICES

version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

INDEX 2653

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A absolute coordinates, � 4.4.2.25(1633),
� 4.4.2.26(1634)
absolute position and size coordinates,
� 4.4.2.25(1633)
abstract class, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
abstract method, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),

� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
accessor, � 3.3.4(522), � 3.3.5(543)
accessor methods, � 7.9(2480)
Action objects, � 4.4.2.23(1630)
addItemListener() method, � 4.4.2.17(1623)
addMessage, � 3.3.4(522), � 3.3.5(543)
addTextListener, � 4.4.2.22(1629)
A�ne Transforms, � 3.3.25(818)
algorithms, � 3.4.7(949), � 3.4.8(960)
Anatomy of a Game Engine, � 8.1(2635)
anonymous classes, � 4.4.2.13(1618),
� 4.4.2.14(1619)
anonymous objects, � 4.4.2.13(1618)
arithmetic, � 7.3(2336)
array, � 2.30(208), � 2.31(222), � 3.4.23(1093),
� 5.5.12(2273), � 5.5.14(2291)
arrays, � 7.6(2410), � 7.7(2438)
ascending order, � 3.4.19(1064)
assignment, � 3.1.2(277), � 7.3(2336)
assignment compability, � 3.2.1(301),
� 3.2.2(309), � 3.2.3(319), � 3.2.4(332),
� 3.2.5(340), � 3.2.6(347), � 3.2.7(358),
� 3.2.8(366), � 3.2.9(376), � 3.2.10(387),
� 3.2.11(399), � 3.2.12(416), � 3.2.13(427),
� 3.2.14(450), � 3.2.15(462), � 3.2.16(478),
� 3.3.7(603), � 3.3.8(625), � 3.3.9(633),
� 3.3.10(645), � 3.3.11(652), � 3.3.12(662),
� 3.3.13(668), � 3.3.14(679), � 3.3.15(688),
� 3.3.16(701), � 3.3.17(708), � 3.3.19(732),
� 3.3.21(759), � 3.3.23(787), � 3.3.24(802),
� 3.3.26(824), � 3.3.28(847), � 3.3.30(869),

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2654 INDEX

� 3.3.32(888), � 4.2.3(1229), � 4.2.4(1261),
� 4.2.5(1287), � 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
AWT, � 4.4.2.9(1569), � 4.4.2.24(1631)
AWTEventMulticaster Class, � 4.4.2.15(1621)

B behavior, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
bookClasses, � 3.3.4(522), � 3.3.5(543)
BorderLayout, � 4.4.2.25(1633),
� 4.4.2.26(1634)
bound properties, � 4.4.2.23(1630)
bounded type parameters, � 4.3.5(1376),
� 4.3.6(1392)
Brightening, � 3.3.22(778)
browser, � 5.2.10(2052)
Button, � 4.4.2.26(1634)

C C++, � 2.2(7)
callback, � 4.4.2.3(1461), � 4.4.2.4(1473)
CardLayout, � 4.4.2.25(1633), � 4.4.2.29(1637)

case, � 3.4.21(1080)
casting, � 3.2.1(301), � 3.2.2(309), � 3.2.3(319),
� 3.2.4(332), � 3.2.5(340), � 3.2.6(347),
� 3.2.7(358), � 3.2.8(366), � 3.2.9(376),
� 3.2.10(387), � 3.2.11(399), � 3.2.12(416),
� 3.2.13(427), � 3.2.14(450), � 3.2.15(462),
� 3.2.16(478), � 3.3.7(603), � 3.3.8(625),
� 3.3.9(633), � 3.3.10(645), � 3.3.11(652),
� 3.3.12(662), � 3.3.13(668), � 3.3.14(679),
� 3.3.15(688), � 3.3.16(701), � 3.3.17(708),
� 3.3.19(732), � 3.3.21(759), � 3.3.23(787),
� 3.3.24(802), � 3.3.26(824), � 3.3.28(847),
� 3.3.30(869), � 3.3.32(888), � 4.2.3(1229),
� 4.2.4(1261), � 4.2.5(1287), � 4.4.2.1(1438),
� 4.4.2.2(1440), � 4.4.2.5(1486),
� 4.4.2.6(1511), � 4.4.3.1.1(1641),
� 4.4.3.1.2(1667), � 4.4.3.1.3(1689),
� 4.4.3.1.4(1705), � 4.4.3.1.5(1740),
� 4.4.3.2.1(1751), � 4.4.3.2.2(1766),
� 4.4.3.2.3(1783), � 4.4.3.2.4(1796),
� 4.4.3.2.5(1805), � 4.4.3.3.1(1821),
� 4.4.3.3.2(1829), � 4.4.3.3.3(1856),
� 4.4.3.3.4(1870), � 4.4.3.3.5(1884),
� 4.4.3.4.1(1919), � 4.4.3.4.2(1932),
� 4.4.3.4.3(1944), � 7.15(2613)
centered, � 4.4.2.27(1635)
checkboxes, � 4.4.2.17(1623)
circle, � 3.3.6(560)
class, � 3.2.1(301), � 3.2.2(309), � 3.2.3(319),
� 3.2.4(332), � 3.2.5(340), � 3.2.6(347),
� 3.2.7(358), � 3.2.8(366), � 3.2.9(376),
� 3.2.10(387), � 3.2.11(399), � 3.2.12(416),
� 3.2.13(427), � 3.2.14(450), � 3.2.15(462),
� 3.2.16(478), � 3.3.7(603), � 3.3.8(625),
� 3.3.9(633), � 3.3.10(645), � 3.3.11(652),
� 3.3.12(662), � 3.3.13(668), � 3.3.14(679),
� 3.3.15(688), � 3.3.16(701), � 3.3.17(708),
� 3.3.19(732), � 3.3.21(759), � 3.3.23(787),
� 3.3.24(802), � 3.3.26(824), � 3.3.28(847),
� 3.3.30(869), � 3.3.32(888), � 4.2.3(1229),
� 4.2.4(1261), � 4.2.5(1287), � 4.4.2.1(1438),
� 4.4.2.2(1440), � 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

INDEX 2655

class method, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
class variable, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
classes, � 2.16(96), � 2.17(99), � 7.9(2480)
classpath, � 3.3.4(522), � 3.3.5(543)
Clients and Servers, � 5.2.2(1989),

� 5.2.3(2000)
Clipping Images, � 3.3.31(881)
Collection, � 3.4.9(969), � 3.4.23(1093)
Collection interface, � 3.4.29(1145),
� 3.4.31(1163)
Collections class, � 3.4.25(1113), � 3.4.27(1128)
Collections Framework, � 3.4.13(1002)
color class, � 3.3.4(522), � 3.3.5(543)
Colors, � 3.3.22(778)
command-line arguments, � 2.33(233),
� 2.34(237)
comment, � 2.10(52), � 2.11(58)
common exceptions, � 7.15(2613)
Communication Protocol, � 5.2.2(1989),
� 5.2.3(2000)
Comparable interface, � 3.4.13(1002),
� 3.4.14(1016), � 3.4.15(1027), � 3.4.16(1039),
� 3.4.17(1046)
Comparator, � 3.4.19(1064), � 3.4.21(1080),
� 3.4.23(1093), � 3.4.27(1128)
Comparator interface, � 3.4.15(1027),
� 3.4.17(1046), � 3.4.18(1058), � 3.4.20(1075)
Comparator object, � 3.4.25(1113)
comparing objects, � 7.14(2593)
Component class, � 4.4.2.16(1622)
ComponentEvent., � 4.4.2.16(1622)
ComponentListener, � 4.4.2.16(1622)
concatenation, � 7.5(2390)
concrete implementations, � 3.4.3(925),
� 3.4.4(931), � 3.4.7(949), � 3.4.8(960),
� 3.4.10(979), � 3.4.12(994)
consistent with equals, � 3.4.15(1027)
constructor, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2656 INDEX

� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
constructors, � 4.2.2(1228), � 7.9(2480)
container events, � 4.4.2.14(1619)
contract, � 3.4.5(936), � 3.4.6(942)
control structures, � 7.4(2364)
Cookies, � 5.4.8(2165), � 5.4.9(2180)
Cookies with JSP, � 4.5.1(1984)
core collection interfaces, � 3.4.7(949),
� 3.4.8(960), � 3.4.10(979), � 3.4.12(994)
core interfaces, � 3.4.5(936), � 3.4.6(942),
� 3.4.9(969)
cosine, � 3.3.6(560)
create and dispatch events, � 4.4.2.15(1621)
Cropping, � 3.3.18(725)
cubic, � 3.3.6(560)
custom components, � 4.4.2.20(1627)
custom event types, � 4.4.2.18(1624)

D Darkening, � 3.3.22(778)
data structures, � 3.4.1(906), � 3.4.2(917),
� 3.4.3(925), � 3.4.4(931)
data types, � 2.12(61), � 2.13(75)
decode, � 5.5.10(2252), � 5.5.14(2291)
deploying, � 5.4.1(2099), � 5.4.2(2109)
descending order, � 3.4.21(1080)
documentation, � 12.1(2647)
Domain Name, � 5.2.2(1989), � 5.2.3(2000)
download, � 5.5.4(2223)
Duplicate Elements, � 3.4.11(986),
� 3.4.12(994)

E Ebook Changes, � 3.1.4(299)
elements, � 3.4.27(1128)
Email Noti�cation, � 3.1.4(299)
encapsulation, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),

� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
enclosing class, � 4.2.6(1310)
encode, � 5.5.8(2240)
Ericson, � 3.1.3(285), � 3.3.4(522),
� 3.3.5(543), � 3.3.6(560)
escape characters, � 7.6(2410)
event handling, � 4.4.1(1437), � 4.4.2.9(1569),
� 4.4.2.11(1600), � 4.4.2.15(1621),
� 4.4.4.1(1953)
Event Listener modeloverride paint method,
� 4.4.2.19(1625)
event queue, � 4.4.2.19(1625)
event Source object, � 4.4.2.7(1522)
exception handling, � 2.32(230)
exceptions, � 7.14(2593)
expressions, � 2.26(176), � 2.27(179)
Extended Components, � 4.4.2.20(1627)
extending classes, � 7.12(2541)
extending existing components,
� 4.4.2.20(1627)
extends, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

INDEX 2657

� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
extract, � 3.4.23(1093)

F �le, � 5.5.14(2291)
�nal, � 3.2.1(301), � 3.2.2(309), � 3.2.3(319),
� 3.2.4(332), � 3.2.5(340), � 3.2.6(347),
� 3.2.7(358), � 3.2.8(366), � 3.2.9(376),
� 3.2.10(387), � 3.2.11(399), � 3.2.12(416),
� 3.2.13(427), � 3.2.14(450), � 3.2.15(462),
� 3.2.16(478), � 3.3.7(603), � 3.3.8(625),
� 3.3.9(633), � 3.3.10(645), � 3.3.11(652),
� 3.3.12(662), � 3.3.13(668), � 3.3.14(679),
� 3.3.15(688), � 3.3.16(701), � 3.3.17(708),
� 3.3.19(732), � 3.3.21(759), � 3.3.23(787),
� 3.3.24(802), � 3.3.26(824), � 3.3.28(847),
� 3.3.30(869), � 3.3.32(888), � 4.2.3(1229),
� 4.2.4(1261), � 4.2.5(1287), � 4.4.2.1(1438),
� 4.4.2.2(1440), � 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
�nal Keyword, � 7.10(2500)
Firewall, � 5.2.2(1989), � 5.2.3(2000)
Flipping, � 3.3.18(725)
�ow of control, � 2.28(183), � 2.29(200)
FlowLayout, � 4.4.2.25(1633), � 4.4.2.27(1635)
Form Processing with JSP, � 4.5.1(1984)
Frame object, � 4.4.2.26(1634)
frameworks, � 5.6.1(2308)

G general behavior, � 3.4.5(936), � 3.4.6(942)
generic methods, � 4.3.4(1366), � 4.3.5(1376),
� 4.3.6(1392)
generic types, � 4.3.3(1351)
Generics, � 4.3.1(1312), � 4.3.2(1333),
� 4.3.6(1392), � 4.3.7(1407), � 4.3.8(1421)
getContentPane(), � 4.4.2.10(1585)
getDefaultToolkit, � 4.4.2.21(1628)
getPicture, � 3.3.4(522), � 3.3.5(543)
getSystemEventQueue, � 4.4.2.21(1628)
getter method, � 3.3.4(522), � 3.3.5(543)
GradientPaint, � 3.3.29(864)
graph, � 3.3.6(560)
graphic, � 3.1.2(277)
graphics, � 4.4.2.24(1631)

graphics library, � 3.3.3(519)
Green-Screen, � 3.3.20(749)
Greenfoot, � 11.1(2641)
GridBagLayout, � 4.4.2.25(1633)
GridLayout, � 4.4.2.25(1633), � 4.4.2.28(1636)
Guzdial, � 3.1.3(285), � 3.3.4(522),
� 3.3.5(543), � 3.3.6(560)
Guzdial-Ericson Multimedia Class Library,
� 3.3.1(503), � 3.3.2(512)

H Handling Events, � 4.4.2.20(1627)
Hello World, � 2.14(83), � 2.15(90)
hidden, � 4.4.2.16(1622)
hidden �elds, � 5.4.5(2128), � 5.4.6(2147)
HTML and CSS Fundamentals, � 4.5.1(1984)
hyperlink, � 5.3.2(2093)

I ibrary, � 5.5.4(2223)
ignoring case, � 3.4.19(1064)
Images, � 3.3.25(818)
implements, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
import directive, � 3.3.4(522), � 3.3.5(543)
import directives, � 7.14(2593)
increment operator, � 7.4(2364)
INEW2338, � 5.1.1(1987)
inheritance, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2658 INDEX

� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.3.6(1392), � 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944),
� 5.5.6(2230)
inheritance structure, � 3.4.9(969)
inner class, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
inner classes, � 4.4.2.13(1618), � 4.4.2.14(1619)
instance, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),

� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
instance iariables, � 7.11(2518)
instance initializers, � 4.2.2(1228)
instance method, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
instance variable, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

INDEX 2659

� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
instance variables, � 2.22(122), � 2.23(137),
� 4.2.2(1228)
instantiate, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
interface, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),

� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
Interface Specialization, � 3.4.11(986),
� 3.4.12(994)
interfaces, � 3.4.3(925), � 3.4.4(931),
� 4.4.2.3(1461), � 4.4.2.4(1473), � 7.13(2562)
interfaces., � 3.4.9(969)
into JSON string, � 5.5.8(2240)
ip, � 5.2.2(1989), � 5.2.3(2000)
IP Address, � 5.2.2(1989), � 5.2.3(2000)
item event, � 4.4.2.17(1623)
ItemEvent class, � 4.4.2.17(1623)
ItemListener, � 4.4.2.17(1623)
itemStateChanged() method, � 4.4.2.17(1623)
ITSE 2317, � 4.1.1(1225), � 4.4.1(1437)
ITSE 2321, � 3.1.1(273), � 3.1.2(277),
� 3.1.3(285), � 3.3.3(519)

J Java, � 1.1(1), � 2.2(7), � 2.3(11), � 2.4(17),
� 2.5(21), � 2.6(26), � 2.7(34), � 2.8(39),
� 2.9(47), � 2.10(52), � 2.11(58), � 2.12(61),
� 2.13(75), � 2.14(83), � 2.15(90), � 2.16(96),
� 2.17(99), � 2.18(102), � 2.19(107),
� 2.20(111), � 2.21(116), � 2.22(122),
� 2.23(137), � 2.24(149), � 2.25(159),
� 2.26(176), � 2.27(179), � 2.28(183),
� 2.29(200), � 2.30(208), � 2.31(222),
� 2.32(230), � 2.33(233), � 2.34(237),
� 2.35(241), � 2.36(250), � 2.37(261),
� 2.38(270), � 3.1.1(273), � 3.1.2(277),
� 3.1.3(285), � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.3(519),

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2660 INDEX

� 3.3.4(522), � 3.3.5(543), � 3.3.6(560),
� 3.3.7(603), � 3.3.8(625), � 3.3.9(633),
� 3.3.10(645), � 3.3.11(652), � 3.3.12(662),
� 3.3.13(668), � 3.3.14(679), � 3.3.15(688),
� 3.3.16(701), � 3.3.17(708), � 3.3.18(725),
� 3.3.19(732), � 3.3.20(749), � 3.3.21(759),
� 3.3.22(778), � 3.3.23(787), � 3.3.24(802),
� 3.3.26(824), � 3.3.27(840), � 3.3.28(847),
� 3.3.29(864), � 3.3.30(869), � 3.3.31(881),
� 3.3.32(888), � 3.3.33(898), � 4.1.1(1225),
� 4.2.1(1227), � 4.2.2(1228), � 4.2.3(1229),
� 4.2.4(1261), � 4.2.5(1287), � 4.2.6(1310),
� 4.3.1(1312), � 4.3.2(1333), � 4.3.3(1351),
� 4.3.5(1376), � 4.3.6(1392), � 4.3.7(1407),
� 4.3.8(1421), � 4.4.1(1437), � 4.4.2.1(1438),
� 4.4.2.2(1440), � 4.4.2.3(1461),
� 4.4.2.4(1473), � 4.4.2.5(1486),
� 4.4.2.6(1511), � 4.4.2.7(1522),
� 4.4.2.8(1548), � 4.4.2.9(1569),
� 4.4.2.10(1585), � 4.4.2.11(1600),
� 4.4.2.12(1617), � 4.4.2.13(1618),
� 4.4.2.14(1619), � 4.4.2.15(1621),
� 4.4.2.16(1622), � 4.4.2.17(1623),
� 4.4.2.18(1624), � 4.4.2.19(1625),
� 4.4.2.20(1627), � 4.4.2.21(1628),
� 4.4.2.22(1629), � 4.4.2.23(1630),
� 4.4.2.24(1631), � 4.4.2.25(1633),
� 4.4.2.26(1634), � 4.4.2.27(1635),
� 4.4.2.28(1636), � 4.4.2.29(1637),
� 4.4.2.30(1638), � 4.4.2.31(1640),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944),
� 4.4.4.1(1953), � 5.2.10(2052), � 5.2.11(2070),
� 5.2.12(2087), � 5.4.8(2165), � 5.4.9(2180),
� 5.4.10(2185), � 5.4.11(2207), � 5.5.1(2210),
� 5.5.2(2211), � 5.5.3(2218), � 5.5.4(2223),
� 5.5.5(2227), � 5.5.6(2230), � 5.5.7(2235),
� 5.5.9(2247), � 5.5.11(2261), � 5.5.12(2273),
� 5.5.13(2282), � 5.5.14(2291), � 5.5.15(2299),
� 5.6.1(2308), � 7.1(2313), � 7.2(2314),
� 7.3(2336), � 7.4(2364), � 7.5(2390),
� 7.6(2410), � 7.7(2438), � 7.8(2463),
� 7.9(2480), � 7.10(2500), � 7.11(2518),
� 7.12(2541), � 7.13(2562), � 7.14(2593),

� 7.15(2613), � 11.1(2641), � 12.1(2647)
Java Beans, � 4.4.2.18(1624)
Java collection, � 3.4.3(925), � 3.4.4(931)
Java Collections framework, � 3.4.1(906),
� 3.4.2(917), � 3.4.5(936), � 3.4.6(942),
� 3.4.7(949), � 3.4.8(960), � 3.4.10(979),
� 3.4.11(986), � 3.4.12(994)
Java Collections Framework., � 3.4.3(925),
� 3.4.4(931)
Java servlets, � 5.4.1(2099), � 5.4.2(2109),
� 5.4.3(2111), � 5.4.4(2122)
Java., � 4.3.4(1366)
Java2D, � 3.3.29(864)
javadoc, � 12.1(2647)
javadoc comments and directives, � 7.15(2613)
JDialog, � 4.4.2.10(1585)
JDK, � 3.1.3(285)
JFrame, � 4.4.2.10(1585)
JInternalFrame, � 4.4.2.10(1585)
json, � 5.5.1(2210), � 5.5.2(2211),
� 5.5.3(2218), � 5.5.5(2227), � 5.5.7(2235),
� 5.5.9(2247), � 5.5.11(2261), � 5.5.12(2273),
� 5.5.13(2282), � 5.5.14(2291), � 5.5.15(2299)
JSON strings, � 5.5.10(2252)
json-simple, � 5.5.4(2223), � 5.5.6(2230)
JSONArray, � 5.5.12(2273)
JSONObject, � 5.5.8(2240)
JSONParser, � 5.5.10(2252)
JSONValue, � 5.5.10(2252)
JSP, � 4.5.1(1984), � 5.4.5(2128),
� 5.4.6(2147), � 5.4.7(2150)
JSP Fundamentals, � 4.5.1(1984)

K key/value pairs, � 5.5.8(2240)
KeyEvent, � 4.4.2.30(1638), � 4.4.2.31(1640)
KeyEventDispatcher, � 4.4.2.30(1638),
� 4.4.2.31(1640)
KeyEventPostProcessor, � 4.4.2.30(1638),
� 4.4.2.31(1640)

L Label, � 4.4.2.12(1617), � 4.4.2.26(1634)
layout manager, � 4.4.2.26(1634),
� 4.4.2.28(1636), � 4.4.2.29(1637)
layout managers, � 4.4.2.25(1633)
left aligned, � 4.4.2.27(1635)
library, � 5.5.1(2210), � 5.5.2(2211),
� 5.5.6(2230)
List, � 3.4.13(1002), � 3.4.25(1113),
� 3.4.27(1128)
List object, � 3.4.11(986)
Listener object, � 4.4.2.7(1522)
Listener Objects, � 4.4.2.20(1627)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

INDEX 2661

local variables, � 2.22(122), � 2.23(137)
logical operations, � 7.5(2390)
loop, � 2.5(21)
low-level event, � 4.4.2.8(1548)
low-level events, � 4.4.2.7(1522)

M main method, � 2.18(102), � 2.19(107),
� 3.3.4(522), � 3.3.5(543)
Map, � 3.4.9(969)
Mathematical Applications for Game
Development, � 6.1(2311)
member variables, � 2.22(122), � 2.23(137)
Merging Pictures, � 3.3.33(898)
method, � 2.8(39), � 2.9(47), � 3.2.1(301),
� 3.2.2(309), � 3.2.3(319), � 3.2.4(332),
� 3.2.5(340), � 3.2.6(347), � 3.2.7(358),
� 3.2.8(366), � 3.2.9(376), � 3.2.10(387),
� 3.2.11(399), � 3.2.12(416), � 3.2.13(427),
� 3.2.14(450), � 3.2.15(462), � 3.2.16(478),
� 3.3.7(603), � 3.3.8(625), � 3.3.9(633),
� 3.3.10(645), � 3.3.11(652), � 3.3.12(662),
� 3.3.13(668), � 3.3.14(679), � 3.3.15(688),
� 3.3.16(701), � 3.3.17(708), � 3.3.19(732),
� 3.3.21(759), � 3.3.23(787), � 3.3.24(802),
� 3.3.26(824), � 3.3.28(847), � 3.3.30(869),
� 3.3.32(888), � 4.2.3(1229), � 4.2.4(1261),
� 4.2.5(1287), � 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
method overloading, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),

� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944), � 7.8(2463)
method overriding, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
methods, � 3.4.5(936), � 3.4.6(942)
Mirroring Image, � 3.3.27(840)
mouse events, � 4.4.2.12(1617)
MOUSE_CLICKED, � 4.4.2.21(1628)
MOUSE_DRAGGED, � 4.4.2.21(1628)
MOUSE_ENTERED, � 4.4.2.21(1628)
MOUSE_EXITED, � 4.4.2.21(1628)
MOUSE_FIRST, � 4.4.2.21(1628)
MOUSE_LAST, � 4.4.2.21(1628)
MOUSE_MOVED, � 4.4.2.21(1628)
MOUSE_PRESSED, � 4.4.2.21(1628)
MOUSE_RELEASED, � 4.4.2.21(1628)
MouseEvent, � 4.4.2.21(1628)
MouseListener, � 4.4.2.12(1617)
MouseMotionListener, � 4.4.2.12(1617)
mouseMoved(), � 4.4.2.12(1617)
moved, � 4.4.2.16(1622)
moveTo, � 3.3.4(522), � 3.3.5(543), � 3.3.6(560)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2662 INDEX

multicast, � 4.4.2.3(1461), � 4.4.2.4(1473),
� 4.4.2.17(1623), � 4.4.2.22(1629)
multimedia library, � 3.1.3(285)

N natural order, � 3.4.19(1064)
natural ordering of the elements,
� 3.4.15(1027)
nested classes, � 4.2.6(1310)
nested top-level classes, � 4.2.6(1310)
network, � 5.2.10(2052)
Network Layers, � 5.2.2(1989), � 5.2.3(2000)
network programming, � 5.2.1(1989)
nstall, � 5.5.4(2223)
null reference, � 7.15(2613)
numeric casting, � 7.5(2390)

O object, � 3.2.1(301), � 3.2.2(309), � 3.2.3(319),
� 3.2.4(332), � 3.2.5(340), � 3.2.6(347),
� 3.2.7(358), � 3.2.8(366), � 3.2.9(376),
� 3.2.10(387), � 3.2.11(399), � 3.2.12(416),
� 3.2.13(427), � 3.2.14(450), � 3.2.15(462),
� 3.2.16(478), � 3.3.7(603), � 3.3.8(625),
� 3.3.9(633), � 3.3.10(645), � 3.3.11(652),
� 3.3.12(662), � 3.3.13(668), � 3.3.14(679),
� 3.3.15(688), � 3.3.16(701), � 3.3.17(708),
� 3.3.19(732), � 3.3.21(759), � 3.3.23(787),
� 3.3.24(802), � 3.3.26(824), � 3.3.28(847),
� 3.3.30(869), � 3.3.32(888), � 4.2.3(1229),
� 4.2.4(1261), � 4.2.5(1287), � 4.4.2.1(1438),
� 4.4.2.2(1440), � 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
object-oriented programming, � 1.1(1),
� 2.2(7), � 2.3(11), � 2.4(17), � 2.5(21),
� 2.6(26), � 2.7(34), � 2.8(39), � 2.9(47),
� 2.10(52), � 2.11(58), � 2.12(61), � 2.13(75),
� 2.14(83), � 2.15(90), � 2.16(96), � 2.17(99),
� 2.18(102), � 2.19(107), � 2.20(111),
� 2.21(116), � 2.22(122), � 2.23(137),
� 2.24(149), � 2.25(159), � 2.26(176),
� 2.27(179), � 2.28(183), � 2.29(200),
� 2.30(208), � 2.31(222), � 2.32(230),
� 2.33(233), � 2.34(237), � 2.35(241),
� 2.36(250), � 2.37(261), � 2.38(270),
� 3.1.1(273), � 3.1.2(277), � 3.1.3(285),

� 3.2.1(301), � 3.2.2(309), � 3.2.3(319),
� 3.2.4(332), � 3.2.5(340), � 3.2.6(347),
� 3.2.7(358), � 3.2.8(366), � 3.2.9(376),
� 3.2.10(387), � 3.2.11(399), � 3.2.12(416),
� 3.2.13(427), � 3.2.14(450), � 3.2.15(462),
� 3.2.16(478), � 3.3.3(519), � 3.3.4(522),
� 3.3.5(543), � 3.3.6(560), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 3.4.1(906), � 3.4.2(917), � 4.1.1(1225),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.1(1437), � 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944),
� 7.2(2314), � 7.3(2336), � 7.4(2364),
� 7.5(2390), � 7.6(2410), � 7.7(2438),
� 7.8(2463), � 7.9(2480), � 7.10(2500),
� 7.11(2518), � 7.12(2541), � 7.13(2562),
� 7.14(2593), � 7.15(2613)
OOP, � 1.1(1), � 2.2(7), � 2.6(26), � 2.7(34),
� 2.8(39), � 2.9(47), � 2.10(52), � 2.11(58),
� 2.14(83), � 2.15(90), � 2.16(96), � 2.17(99),
� 2.18(102), � 2.19(107), � 2.20(111),
� 2.21(116), � 2.22(122), � 2.23(137),
� 2.24(149), � 2.25(159), � 3.1.1(273),
� 3.1.2(277), � 3.1.3(285), � 3.2.1(301),
� 3.2.2(309), � 3.2.3(319), � 3.2.4(332),
� 3.2.5(340), � 3.2.6(347), � 3.2.7(358),
� 3.2.8(366), � 3.2.9(376), � 3.2.10(387),
� 3.2.11(399), � 3.2.12(416), � 3.2.13(427),
� 3.2.14(450), � 3.2.15(462), � 3.2.16(478),
� 3.3.3(519), � 3.3.4(522), � 3.3.5(543),
� 3.3.6(560), � 3.3.7(603), � 3.3.8(625),
� 3.3.9(633), � 3.3.10(645), � 3.3.11(652),
� 3.3.12(662), � 3.3.13(668), � 3.3.14(679),
� 3.3.15(688), � 3.3.16(701), � 3.3.17(708),
� 3.3.19(732), � 3.3.21(759), � 3.3.23(787),
� 3.3.24(802), � 3.3.26(824), � 3.3.27(840),
� 3.3.28(847), � 3.3.29(864), � 3.3.30(869),

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

INDEX 2663

� 3.3.31(881), � 3.3.32(888), � 3.3.33(898),
� 4.1.1(1225), � 4.2.3(1229), � 4.2.4(1261),
� 4.2.5(1287), � 4.4.1(1437), � 4.4.2.1(1438),
� 4.4.2.2(1440), � 4.4.2.5(1486),
� 4.4.2.6(1511), � 4.4.3.1.1(1641),
� 4.4.3.1.2(1667), � 4.4.3.1.3(1689),
� 4.4.3.1.4(1705), � 4.4.3.1.5(1740),
� 4.4.3.2.1(1751), � 4.4.3.2.2(1766),
� 4.4.3.2.3(1783), � 4.4.3.2.4(1796),
� 4.4.3.2.5(1805), � 4.4.3.3.1(1821),
� 4.4.3.3.2(1829), � 4.4.3.3.3(1856),
� 4.4.3.3.4(1870), � 4.4.3.3.5(1884),
� 4.4.3.4.1(1919), � 4.4.3.4.2(1932),
� 4.4.3.4.3(1944), � 7.1(2313), � 7.2(2314),
� 7.3(2336), � 7.4(2364), � 7.5(2390),
� 7.6(2410), � 7.7(2438), � 7.8(2463),
� 7.9(2480), � 7.10(2500), � 7.11(2518),
� 7.12(2541), � 7.13(2562), � 7.14(2593),
� 7.15(2613), � 12.1(2647)
operators, � 2.24(149), � 2.25(159), � 7.3(2336)
optional methods, � 3.4.9(969)
Ordered Collections, � 3.4.11(986),
� 3.4.11(986), � 3.4.12(994)
override, � 4.2.6(1310)
override update method, � 4.4.2.19(1625)
overriding methods, � 7.12(2541)

P packages, � 2.35(241), � 7.14(2593)
pagerank, � 5.3.2(2093)
paint event, � 4.4.2.19(1625)
paint method, � 4.4.2.19(1625)
Panel, � 4.4.2.12(1617)
parabola, � 3.3.6(560)
parse method, � 5.5.10(2252)
penDown, � 3.3.6(560)
Picture, � 3.3.3(519), � 3.3.22(778)
Picture class, � 3.3.4(522), � 3.3.5(543),
� 3.3.6(560)
PictureExplorer, � 3.3.3(519)
PictureFrame, � 3.3.3(519)
Pictures, � 3.3.18(725)
Pixel, � 3.3.3(519)
polymorphic, � 4.2.6(1310)
polymorphic behavior, � 7.12(2541),
� 7.13(2562)
polymorphic methods, � 3.4.9(969)
polymorphism, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),

� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
Port, � 5.2.2(1989), � 5.2.3(2000)
postEvent, � 4.4.2.21(1628)
practice programs, � 3.5.1(1187), � 3.5.2(1201),
� 3.5.3(1213)
preface, � 2.1(5)
primitive type, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
primitive types, � 7.2(2314)
Principles of Object-Oriented Programming,
� 9.1(2637)
println method, � 3.3.4(522), � 3.3.5(543)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2664 INDEX

PrintStream class, � 2.20(111), � 2.21(116)
Prob01 class, � 3.3.4(522), � 3.3.5(543)
Prob01Runner class, � 3.3.4(522), � 3.3.5(543)
Program-Generated Events, � 4.4.2.15(1621)
programming fundamentals, � 2.1(5)
Programming Oldies But Goodies,
� 10.1(2639)
Protocols, � 5.2.2(1989), � 5.2.3(2000)
Proxy Server, � 5.2.2(1989), � 5.2.3(2000)
public, � 3.2.1(301), � 3.2.2(309), � 3.2.3(319),
� 3.2.4(332), � 3.2.5(340), � 3.2.6(347),
� 3.2.7(358), � 3.2.8(366), � 3.2.9(376),
� 3.2.10(387), � 3.2.11(399), � 3.2.12(416),
� 3.2.13(427), � 3.2.14(450), � 3.2.15(462),
� 3.2.16(478), � 3.3.7(603), � 3.3.8(625),
� 3.3.9(633), � 3.3.10(645), � 3.3.11(652),
� 3.3.12(662), � 3.3.13(668), � 3.3.14(679),
� 3.3.15(688), � 3.3.16(701), � 3.3.17(708),
� 3.3.19(732), � 3.3.21(759), � 3.3.23(787),
� 3.3.24(802), � 3.3.26(824), � 3.3.28(847),
� 3.3.30(869), � 3.3.32(888), � 4.2.3(1229),
� 4.2.4(1261), � 4.2.5(1287), � 4.4.2.1(1438),
� 4.4.2.2(1440), � 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
public class �les, � 7.15(2613)

R radio buttons, � 4.4.2.17(1623)
reference, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),

� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
reference type, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
reference variables, � 2.22(122), � 2.23(137)
relational operators, � 7.4(2364)
rendering, � 5.2.10(2052)
resized, � 4.4.2.16(1622)
reverse method, � 3.4.27(1128)
reverse natural order, � 3.4.23(1093),
� 3.4.25(1113)
reverse the order, � 3.4.27(1128)
reverseOrder method, � 3.4.27(1128)
review, � 2.4(17), � 2.7(34), � 2.9(47),
� 2.11(58), � 2.13(75), � 2.15(90), � 2.17(99),
� 2.19(107), � 2.21(116), � 2.23(137),
� 2.25(159), � 2.27(179), � 2.29(200),
� 2.34(237), � 2.37(261), � 3.3.2(512),
� 3.3.5(543), � 3.3.8(625), � 3.3.10(645),
� 3.3.12(662), � 3.3.14(679), � 3.3.16(701),
� 3.3.18(725), � 3.3.20(749), � 3.3.22(778),
� 3.3.25(818), � 3.3.27(840), � 3.3.29(864),
� 3.3.31(881), � 3.3.33(898), � 5.3.2(2093),
� 5.5.3(2218), � 5.5.5(2227), � 5.5.7(2235),

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

INDEX 2665

� 5.5.9(2247), � 5.5.11(2261), � 5.5.13(2282),
� 5.5.15(2299)
review questions, � 4.3.2(1333), � 4.3.3(1351)
review questions and answers, � 4.3.4(1366),
� 4.3.5(1376), � 4.3.6(1392), � 4.3.7(1407),
� 4.3.8(1421), � 4.4.4.1(1953)
right aligned, � 4.4.2.27(1635)
robots exclusion standard, � 5.3.2(2093)
robots.txt, � 5.3.2(2093)
Rotating, � 3.3.25(818)
run method, � 3.3.4(522), � 3.3.5(543)

S Scaling, � 3.3.25(818)
screen resolution, � 4.4.2.25(1633)
Scrollbar, � 4.4.2.11(1600)
search algorithms, � 3.4.1(906), � 3.4.2(917)
search engine, � 5.3.2(2093)
search engines, � 5.3.1(2090)
selection, � 2.5(21)
self assessment, � 7.1(2313)
self-assessment, � 7.2(2314), � 7.3(2336),
� 7.4(2364), � 7.5(2390), � 7.6(2410),
� 7.7(2438), � 7.8(2463), � 7.9(2480),
� 7.10(2500), � 7.11(2518), � 7.12(2541),
� 7.13(2562), � 7.14(2593), � 7.15(2613)
semantic event, � 4.4.2.8(1548),
� 4.4.2.17(1623), � 4.4.2.22(1629)
sequence, � 2.5(21)
serialized, � 4.4.2.19(1625)
servlet, � 5.4.5(2128), � 5.4.6(2147),
� 5.4.7(2150), � 5.4.8(2165), � 5.4.9(2180),
� 5.4.10(2185), � 5.4.11(2207)
session tracking, � 5.4.5(2128), � 5.4.6(2147),
� 5.4.7(2150), � 5.4.8(2165), � 5.4.9(2180)
Session Tracking API, � 5.4.10(2185),
� 5.4.11(2207)
Sessions with JSP, � 4.5.1(1984)
Set, � 3.4.13(1002)
Set object, � 3.4.11(986)
setBodyColor, � 3.3.4(522), � 3.3.5(543)
setName, � 3.3.4(522), � 3.3.5(543)
setPenColor, � 3.3.4(522), � 3.3.5(543),
� 3.3.6(560)
setPenDown, � 3.3.4(522), � 3.3.5(543)
setPenWidth, � 3.3.4(522), � 3.3.5(543),
� 3.3.6(560)
setPicture, � 3.3.4(522), � 3.3.5(543)
setShell, � 3.3.4(522), � 3.3.5(543)
setter method, � 3.3.4(522), � 3.3.5(543)
setVisible() method, � 4.4.2.16(1622)
shown, � 4.4.2.16(1622)
signature, � 3.2.1(301), � 3.2.2(309),

� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
SimplePicture class, � 3.3.4(522), � 3.3.5(543),
� 3.3.6(560)
SimpleTurtle class, � 3.3.4(522), � 3.3.5(543),
� 3.3.6(560)
socket, � 5.2.11(2070), � 5.2.12(2087)
Socket Class, � 5.2.2(1989), � 5.2.3(2000)
Socket Programming, � 5.2.2(1989),
� 5.2.3(2000)
sort, � 3.4.23(1093)
sort a list into reverse natural order,
� 3.4.27(1128)
sort method, � 3.4.25(1113)
sorted, � 3.4.21(1080)
sorted collections, � 3.4.11(986), � 3.4.11(986),
� 3.4.12(994)
SortedMap, � 3.4.13(1002)
SortedSet, � 3.4.13(1002)
sorting algorithms, � 3.4.1(906), � 3.4.2(917)
sorting order natural order, � 3.4.17(1046)
Standards, � 5.2.2(1989), � 5.2.3(2000)
state, � 3.2.1(301), � 3.2.2(309), � 3.2.3(319),
� 3.2.4(332), � 3.2.5(340), � 3.2.6(347),
� 3.2.7(358), � 3.2.8(366), � 3.2.9(376),
� 3.2.10(387), � 3.2.11(399), � 3.2.12(416),
� 3.2.13(427), � 3.2.14(450), � 3.2.15(462),
� 3.2.16(478), � 3.3.7(603), � 3.3.8(625),
� 3.3.9(633), � 3.3.10(645), � 3.3.11(652),
� 3.3.12(662), � 3.3.13(668), � 3.3.14(679),

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2666 INDEX

� 3.3.15(688), � 3.3.16(701), � 3.3.17(708),
� 3.3.19(732), � 3.3.21(759), � 3.3.23(787),
� 3.3.24(802), � 3.3.26(824), � 3.3.28(847),
� 3.3.30(869), � 3.3.32(888), � 4.2.3(1229),
� 4.2.4(1261), � 4.2.5(1287), � 4.4.2.1(1438),
� 4.4.2.2(1440), � 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
statements, � 2.26(176), � 2.27(179)
static �nal Variables, � 7.11(2518)
static initializer block, � 3.2.1(301),
� 3.2.2(309), � 3.2.3(319), � 3.2.4(332),
� 3.2.5(340), � 3.2.6(347), � 3.2.7(358),
� 3.2.8(366), � 3.2.9(376), � 3.2.10(387),
� 3.2.11(399), � 3.2.12(416), � 3.2.13(427),
� 3.2.14(450), � 3.2.15(462), � 3.2.16(478),
� 3.3.7(603), � 3.3.8(625), � 3.3.9(633),
� 3.3.10(645), � 3.3.11(652), � 3.3.12(662),
� 3.3.13(668), � 3.3.14(679), � 3.3.15(688),
� 3.3.16(701), � 3.3.17(708), � 3.3.19(732),
� 3.3.21(759), � 3.3.23(787), � 3.3.24(802),
� 3.3.26(824), � 3.3.28(847), � 3.3.30(869),
� 3.3.32(888), � 4.2.3(1229), � 4.2.4(1261),
� 4.2.5(1287), � 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
static initializer blocks, � 4.2.1(1227)
static initializers, � 4.2.2(1228)
static Methods, � 7.10(2500)
straight line, � 3.3.6(560)
String, � 2.30(208), � 2.31(222), � 2.36(250),
� 2.37(261), � 7.5(2390)
String objects, � 3.4.19(1064)
StringBu�er, � 2.30(208), � 2.36(250),
� 2.37(261)
StringBu�erreview, � 2.31(222)

structure, � 5.5.6(2230)
subclass, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
subtypes, � 4.3.6(1392)
super Keyword, � 7.10(2500)
superclass, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

INDEX 2667

Swing, � 4.4.2.9(1569), � 4.4.2.24(1631)
System class, � 2.20(111), � 2.21(116)
SystemEventQueue, � 4.4.2.21(1628)

T TCP, � 5.2.2(1989), � 5.2.3(2000)
test, � 5.5.4(2223)
testing, � 5.4.1(2099), � 5.4.2(2109)
TextEvent class, � 4.4.2.22(1629)
TextField object, � 4.4.2.22(1629)
TextListener, � 4.4.2.22(1629)
textValueChanged, � 4.4.2.22(1629)
The Comparator Interface, � 3.4.22(1088),
� 3.4.24(1106), � 3.4.26(1122), � 3.4.28(1138)
the InetAddress class, � 5.2.4(2008),
� 5.2.5(2021)
The Java Collections Framework, � 3.4.9(969)
the mouseDragged(), � 4.4.2.12(1617)
The toArray Method, � 3.4.30(1157),
� 3.4.32(1178)
the URL class, � 5.2.6(2024), � 5.2.7(2039)
the URLConnection class, � 5.2.8(2042),
� 5.2.9(2049)
the URLEncoder class, � 5.2.6(2024),
� 5.2.7(2039)
this Keyword, � 7.11(2518)
Tinting, � 3.3.22(778)
toArray method, � 3.4.29(1145), � 3.4.31(1163)
toString, � 7.5(2390)
toString method, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)

Translating, � 3.3.25(818)
TreeSet, � 3.4.21(1080)
TreeSet collection, � 3.4.15(1027),
� 3.4.19(1064)
turtle, � 3.1.2(277), � 3.3.3(519)
Turtle class, � 3.3.4(522), � 3.3.5(543),
� 3.3.6(560)
type conversion, � 7.15(2613)
type inference, � 4.3.7(1407), � 4.3.8(1421)

U UDP, � 5.2.2(1989), � 5.2.3(2000)
update method, � 4.4.2.19(1625)
URL, � 5.2.2(1989), � 5.2.3(2000)
URL Class, � 5.2.2(1989), � 5.2.3(2000)
URL Programming, � 5.2.2(1989),
� 5.2.3(2000)
URL rewriting, � 5.4.7(2150)
User Interface, � 4.4.2.28(1636)

V variable, � 3.2.1(301), � 3.2.2(309),
� 3.2.3(319), � 3.2.4(332), � 3.2.5(340),
� 3.2.6(347), � 3.2.7(358), � 3.2.8(366),
� 3.2.9(376), � 3.2.10(387), � 3.2.11(399),
� 3.2.12(416), � 3.2.13(427), � 3.2.14(450),
� 3.2.15(462), � 3.2.16(478), � 3.3.7(603),
� 3.3.8(625), � 3.3.9(633), � 3.3.10(645),
� 3.3.11(652), � 3.3.12(662), � 3.3.13(668),
� 3.3.14(679), � 3.3.15(688), � 3.3.16(701),
� 3.3.17(708), � 3.3.19(732), � 3.3.21(759),
� 3.3.23(787), � 3.3.24(802), � 3.3.26(824),
� 3.3.28(847), � 3.3.30(869), � 3.3.32(888),
� 4.2.3(1229), � 4.2.4(1261), � 4.2.5(1287),
� 4.4.2.1(1438), � 4.4.2.2(1440),
� 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),
� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)
variables, � 2.22(122), � 2.23(137)
void, � 3.2.1(301), � 3.2.2(309), � 3.2.3(319),
� 3.2.4(332), � 3.2.5(340), � 3.2.6(347),
� 3.2.7(358), � 3.2.8(366), � 3.2.9(376),
� 3.2.10(387), � 3.2.11(399), � 3.2.12(416),
� 3.2.13(427), � 3.2.14(450), � 3.2.15(462),
� 3.2.16(478), � 3.3.7(603), � 3.3.8(625),
� 3.3.9(633), � 3.3.10(645), � 3.3.11(652),
� 3.3.12(662), � 3.3.13(668), � 3.3.14(679),

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2668 INDEX

� 3.3.15(688), � 3.3.16(701), � 3.3.17(708),
� 3.3.19(732), � 3.3.21(759), � 3.3.23(787),
� 3.3.24(802), � 3.3.26(824), � 3.3.28(847),
� 3.3.30(869), � 3.3.32(888), � 4.2.3(1229),
� 4.2.4(1261), � 4.2.5(1287), � 4.4.2.1(1438),
� 4.4.2.2(1440), � 4.4.2.5(1486), � 4.4.2.6(1511),
� 4.4.3.1.1(1641), � 4.4.3.1.2(1667),
� 4.4.3.1.3(1689), � 4.4.3.1.4(1705),
� 4.4.3.1.5(1740), � 4.4.3.2.1(1751),
� 4.4.3.2.2(1766), � 4.4.3.2.3(1783),
� 4.4.3.2.4(1796), � 4.4.3.2.5(1805),
� 4.4.3.3.1(1821), � 4.4.3.3.2(1829),

� 4.4.3.3.3(1856), � 4.4.3.3.4(1870),
� 4.4.3.3.5(1884), � 4.4.3.4.1(1919),
� 4.4.3.4.2(1932), � 4.4.3.4.3(1944)

W web, � 5.6.1(2308)
Web Programming Model, � 4.5.1(1984)
wildcard, � 4.3.8(1421)
Working with Java Classes in JSP,
� 4.5.1(1984)
World, � 3.3.3(519)
World class, � 3.3.4(522), � 3.3.5(543),
� 3.3.6(560)
writing, � 5.4.1(2099), � 5.4.2(2109)

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

ATTRIBUTIONS 2669

Attributions

Collection: Object-Oriented Programming (OOP) with Java
Edited by: R.G. (Dick) Baldwin
URL: http://cnx.org/content/col11441/1.206/
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jy0010: Preface to OOP with Java"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45136/1.19/
Pages: 1-4
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0103 Preface to Programming Fundamentals with Java"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45179/1.13/
Pages: 5-7
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0105: Java OOP: Similarities and Di�erences between Java and C++"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45142/1.4/
Pages: 7-11
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0110: Java OOP: Programming Fundamentals, Getting Started"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45137/1.5/
Pages: 11-16
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0110r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45162/1.7/
Pages: 17-21
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0115: Java OOP: First Program"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45220/1.6/
Pages: 21-26
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2670 ATTRIBUTIONS

Module: "Jb0120: Java OOP: A Gentle Introduction to Java Programming"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45138/1.6/
Pages: 26-33
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0120r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45164/1.6/
Pages: 34-39
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0130: Java OOP: A Gentle Introduction to Methods in Java"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45139/1.6/
Pages: 39-46
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0130r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45165/1.6/
Pages: 47-52
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0140: Java OOP: Java comments"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45140/1.6/
Pages: 52-57
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0140r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45169/1.6/
Pages: 58-61
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0150: Java OOP: A Gentle Introduction to Java Data Types"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45141/1.5/
Pages: 61-74
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0150r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45168/1.6/
Pages: 75-83
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

ATTRIBUTIONS 2671

Module: "Jb0160: Java OOP: Hello World"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45143/1.7/
Pages: 83-89
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0160r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45159/1.9/
Pages: 90-96
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0170: Java OOP: A little more information about classes."
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45144/1.4/
Pages: 96-98
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0170r: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45177/1.6/
Pages: 99-102
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0180: Java OOP: The main method."
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45145/1.6/
Pages: 102-106
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0180r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45171/1.7/
Pages: 107-111
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0190: Java OOP: Using the System and PrintStream Classes"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45148/1.5/
Pages: 111-115
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0190r: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45175/1.7/
Pages: 116-122
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2672 ATTRIBUTIONS

Module: "Jb0200: Java OOP: Variables"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45150/1.5/
Pages: 122-136
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0200r: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45173/1.8/
Pages: 137-149
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0210: Java OOP: Operators"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45195/1.6/
Pages: 149-158
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0210r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45186/1.7/
Pages: 159-176
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0220: Java OOP: Statements and Expressions"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45192/1.5/
Pages: 176-178
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0220r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45189/1.6/
Pages: 179-183
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0230: Java OOP: Flow of Control"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45196/1.8/
Pages: 183-199
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0230r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45218/1.7/
Pages: 200-208
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

ATTRIBUTIONS 2673

Module: "Jb0240: Java OOP: Arrays and Strings"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45214/1.8/
Pages: 208-221
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0240r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45208/1.7/
Pages: 222-230
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0250: Java OOP: Brief Introduction to Exceptions"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45211/1.5/
Pages: 230-233
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0260: Java OOP: Command-Line Arguments"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45246/1.6/
Pages: 233-236
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0260r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45244/1.7/
Pages: 237-241
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0270: Java OOP: Packages"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45229/1.6/
Pages: 241-250
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0280: Java OOP: String and StringBu�er"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45237/1.6/
Pages: 250-260
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jb0280r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45241/1.7/
Pages: 261-270
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2674 ATTRIBUTIONS

Module: "Jb0290: The end of Programming Fundamentals"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45257/1.5/
Pages: 270-271
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jy0020: Java OOP: Preface to ITSE 2321"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45222/1.22/
Pages: 273-277
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1554 Completing the First Assignment"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m63203/1.3/
Pages: 277-285
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java 1560: Con�guring Your Computer"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m63123/1.6/
Pages: 285-299
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1562: Email Noti�cation of Ebook Changes"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m63206/1.2/
Pages: 299-301
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1600: Objects and Encapsulation"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44153/1.5/
Pages: 301-309
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1602: Classes"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44150/1.8/
Pages: 309-319
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1604: Inheritance, Part 1"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44193/1.8/
Pages: 319-332
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

ATTRIBUTIONS 2675

Module: "Java1606: Inheritance, Part 2"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44156/1.8/
Pages: 332-340
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1608: Polymorphism Based on Overloaded Methods"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44182/1.5/
Pages: 340-347
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1610: Polymorphism, Type Conversion, Casting, etc."
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44168/1.5/
Pages: 347-358
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1612: Runtime Polymorphism through Inheritance"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44177/1.5/
Pages: 358-366
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1614: Polymorphism and the Object Class"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44190/1.7/
Pages: 366-376
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1616: Polymorphism and Interfaces, Part 1"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44195/1.6/
Pages: 376-387
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1618: Polymorphism and Interfaces, Part 2"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44196/1.9/
Pages: 387-399
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1620: Static Members"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44197/1.8/
Pages: 399-416
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2676 ATTRIBUTIONS

Module: "Java1622: Array Objects, Part 1"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44198/1.5/
Pages: 416-427
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1624: Array Objects, Part 2"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44199/1.7/
Pages: 427-450
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1626: Array Objects, Part 3"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44200/1.7/
Pages: 450-462
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1628: The this and super Keywords"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44201/1.8/
Pages: 462-478
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1630: Exception Handling"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44202/1.9/
Pages: 478-502
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3000: The Guzdial-Ericson Multimedia Class Library"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44148/1.15/
Pages: 503-511
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3000r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45761/1.7/
Pages: 512-519
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3001: An Alternative Graphics Library"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m63525/1.2/
Pages: 519-522
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

ATTRIBUTIONS 2677

Module: "Java3002: Creating and Manipulating Turtles and Pictures in a World Object"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44149/1.12/
Pages: 522-542
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3002r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45762/1.6/
Pages: 543-560
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3003: Drawing Graphs with Turtles and Pixels"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m62037/1.4/
Pages: 560-603
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3004: Image Processing Algorithms, Image Inversion, and PictureExplorer Objects"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44203/1.11/
Pages: 603-624
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3004r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45763/1.13/
Pages: 625-633
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3006: Implementing a space-wise linear color-modi�cation algorithm."
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44204/1.11/
Pages: 633-644
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3006r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45768/1.6/
Pages: 645-652
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3008: Abstract Methods, Abstract Classes, and Overridden Methods"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44205/1.10/
Pages: 652-661
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2678 ATTRIBUTIONS

Module: "Java3008r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45773/1.4/
Pages: 662-668
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3010: Indirection, Array Objects, and Casting"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44206/1.9/
Pages: 668-678
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3010r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45774/1.6/
Pages: 679-688
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3012: Using Nested Loops to Process Pixels"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44207/1.11/
Pages: 688-700
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3012r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45775/1.5/
Pages: 701-708
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3014: Cropping, Flipping, and Combining Pictures"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44238/1.12/
Pages: 708-724
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3014r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45778/1.5/
Pages: 725-732
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3016: Green-Screen Processing"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44210/1.11/
Pages: 732-748
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

ATTRIBUTIONS 2679

Module: "Java3016r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45781/1.5/
Pages: 749-759
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3018: Darkening, Brightening, and Tinting the Colors in a Picture"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44234/1.10/
Pages: 759-777
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3018r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45782/1.5/
Pages: 778-787
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3020: Interfaces, Object Arrays, etc."
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44214/1.10/
Pages: 787-802
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3022: Scaling, Rotating, and Translating Images using A�ne Transforms"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44223/1.12/
Pages: 802-817
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3022r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45783/1.4/
Pages: 818-824
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3024: Mirroring Images"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44228/1.11/
Pages: 824-839
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3024r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45784/1.5/
Pages: 840-847
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2680 ATTRIBUTIONS

Module: "Java3026: GradientPaint and other Java2D Classes"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44242/1.11/
Pages: 847-863
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3026r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45785/1.5/
Pages: 864-869
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3028: Clipping Images"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44246/1.11/
Pages: 869-880
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3028r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45786/1.5/
Pages: 881-888
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3030: Merging Pictures"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44247/1.11/
Pages: 888-897
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3030r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45787/1.6/
Pages: 898-906
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4010: Getting Started with Java Collections"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m46135/1.6/
Pages: 906-916
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4010r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48040/1.6/
Pages: 917-925
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

ATTRIBUTIONS 2681

Module: "Java4020: What is a Collection"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m46136/1.4/
Pages: 925-930
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4020r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48041/1.4/
Pages: 931-936
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4030: Purpose of Framework Interfaces"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m46140/1.5/
Pages: 936-941
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4030r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48043/1.3/
Pages: 942-949
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4040: Purpose of Framework Implementations and Algorithms"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m46137/1.8/
Pages: 949-959
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4040r Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48044/1.5/
Pages: 960-969
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4050: Core Collection Interfaces"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m46138/1.5/
Pages: 969-978
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4050r: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48114/1.4/
Pages: 979-986
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2682 ATTRIBUTIONS

Module: "Java4060: Duplicate Elements, Ordered Collections, Sorted Collections, and Interface Specializa-
tion"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m46141/1.5/
Pages: 986-993
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4060r: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48121/1.4/
Pages: 994-1002
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4070: The Comparable Interface, Part 1"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m46142/1.6/
Pages: 1002-1015
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4070r: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48122/1.6/
Pages: 1016-1027
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4080: The Comparable Interface, Part 2"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m46143/1.4/
Pages: 1027-1038
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4080r: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48130/1.5/
Pages: 1039-1046
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4090: The Comparator Interface, Part 1"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m46189/1.4/
Pages: 1046-1057
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

ATTRIBUTIONS 2683

Module: "Java4090r: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48132/1.4/
Pages: 1058-1064
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4100: The Comparator Interface, Part 2"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m46190/1.4/
Pages: 1064-1074
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4100r: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48124/1.4/
Pages: 1075-1080
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4110: The Comparator Interface, Part 3"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m46191/1.4/
Pages: 1080-1087
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4110r: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48138/1.4/
Pages: 1088-1093
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4120: The Comparator Interface, Part 4"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m46192/1.4/
Pages: 1093-1105
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4120r: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48137/1.4/
Pages: 1106-1113
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4130: The Comparator Interface, Part 5"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m46193/1.5/
Pages: 1113-1121
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2684 ATTRIBUTIONS

Module: "Java4130r: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48140/1.4/
Pages: 1122-1128
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4140: The Comparator Interface, Part 6"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m46194/1.4/
Pages: 1128-1137
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4140r: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48153/1.5/
Pages: 1138-1145
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4150: The toArray Method, Part 1"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m46197/1.6/
Pages: 1145-1156
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4150r: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48168/1.4/
Pages: 1157-1163
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4160: The toArray Method, Part 2"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m46198/1.4/
Pages: 1163-1177
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4160r: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48166/1.5/
Pages: 1178-1185
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java OOP: ITSE 2321 Practice Group 1"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44252/1.10/
Pages: 1187-1200
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

ATTRIBUTIONS 2685

Module: "Java OOP: ITSE 2321 Practice Group 2"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44254/1.9/
Pages: 1201-1212
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java OOP: ITSE 2321 Practice Group 3"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44255/1.7/
Pages: 1213-1224
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jy0030: Java OOP: Preface to ITSE 2317"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45258/1.11/
Pages: 1225-1227
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1632 The Essence of OOP using Java, Static Initializer Blocks"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59577/1.2/
Pages: 1227-1228
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1634 The Essence of OOP using Java, Instance Initializers"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59579/1.2/
Pages: 1228-1229
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1636 Java OOP Member Classes"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44347/1.8/
Pages: 1229-1261
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1638 Java OOP Local Classes"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44346/1.8/
Pages: 1261-1287
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1640 Java OOP Anonymous Classes"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44342/1.9/
Pages: 1287-1310
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2686 ATTRIBUTIONS

Module: "Java1642 The Essence of OOP using Java, Nested Top-Level Classes"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59576/1.3/
Pages: 1310-1312
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4210: Getting Started with Generics"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m47554/1.5/
Pages: 1312-1332
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4210r: Review of Getting Started"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m47555/1.8/
Pages: 1333-1350
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4220r: Review of Generic Types"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m47562/1.6/
Pages: 1351-1365
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4230r: Review of Generic Methods"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m47563/1.5/
Pages: 1366-1375
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4240r: Review of Bounded Type Parameters"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m47819/1.5/
Pages: 1376-1391
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4250r: Review of Generics, Inheritance, and Subtypes"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m47822/1.7/
Pages: 1392-1406
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4260r: Review of Type Inference"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m47828/1.6/
Pages: 1407-1420
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

ATTRIBUTIONS 2687

Module: "Java4270r: Review of Wildcards"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m47836/1.5/
Pages: 1421-1436
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jy0035: Java OOP: Preface to Event Handling"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m47842/1.11/
Pages: 1437-1438
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java0073 Java OOP The AWT and Swing, A Preview"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44331/1.5/
Pages: 1438-1440
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java0077 Java OOP Callbacks - I"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44333/1.7/
Pages: 1440-1461
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java0078 Java OOP Callbacks - II"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59589/1.3/
Pages: 1461-1473
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java0079 Java OOP Callbacks - III"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59592/1.4/
Pages: 1473-1486
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java0080 Java OOP Event Handling in JDK 1.1, A First Look, Delegation Event Model"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44340/1.7/
Pages: 1486-1511
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java0081 Java OOP Swing and the Delegation Event Model"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44336/1.6/
Pages: 1511-1522
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2688 ATTRIBUTIONS

Module: "Java082 Sharing a Listener Object Among Visual Components"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59602/1.2/
Pages: 1522-1548
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java084 Low-level and Semantic Events"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59595/1.2/
Pages: 1548-1569
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java085 Swing, New Event Types in Swing"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59621/1.2/
Pages: 1569-1585
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java087 Swing, Understanding getContentPane() and other JFrame Layers"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59614/1.2/
Pages: 1585-1600
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java090 Scrollbar (Adjustment) Event Handling"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59619/1.2/
Pages: 1600-1617
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java092 Mouse Motion Events"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59617/1.2/
Pages: 1617-1618
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java094 Using Abbreviated Inner Classes"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59641/1.1/
Pages: 1618-1619
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

ATTRIBUTIONS 2689

Module: "Java095 Container Events and More on Inner Classes"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59631/1.1/
Pages: 1619-1621
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java096 Program-Generated Events and the AWTEventMulticaster Class"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59643/1.1/
Pages: 1621-1622
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java097 Component Events"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59638/1.1/
Pages: 1622-1623
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java099 Item Events"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59637/1.1/
Pages: 1623-1624
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java100 Creating, Trapping, and Processing Custom Event Types"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59627/1.1/
Pages: 1624-1625
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java101 Paint Events"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59644/1.1/
Pages: 1625-1627
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java102 Handling Events in Extended Components without Listener Objects"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59658/1.1/
Pages: 1627-1628
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java104 Posting Synthetic Events to the System Event Queue"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59650/1.1/
Pages: 1628-1629
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2690 ATTRIBUTIONS

Module: "Java105 Text Events"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59660/1.1/
Pages: 1629-1630
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java107 Understanding Action Objects in Java"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59662/1.1/
Pages: 1630-1631
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java110 The AWT Package, An Overview"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59567/1.2/
Pages: 1631-1633
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java112 Placing Components in Containers, Absolute Coordinates"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59679/1.1/
Pages: 1633-1634
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java114 BorderLayout"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59654/1.1/
Pages: 1634-1635
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java116 FlowLayout"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59678/1.1/
Pages: 1635-1636
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java118 GridLayout"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59664/1.1/
Pages: 1636-1637
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java120 CardLayout"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59674/1.1/
Pages: 1637-1638
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

ATTRIBUTIONS 2691

Module: "Java1855 The KeyEventDispatcher in Java"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59669/1.1/
Pages: 1638-1640
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java1856 The KeyEventPostProcessor in Java (Capturing Keyboard Strokes in Java)"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m59671/1.1/
Pages: 1640-1641
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3102 Java OOP Modifying the World and SimpleTurtle Classes"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44330/1.5/
Pages: 1641-1667
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3104 Java OOP Modi�cations to the Turtle and SimpleTurtle Classes"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44348/1.5/
Pages: 1667-1689
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3106 Java OOP Incorporating GUI Components into a World Object"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44350/1.5/
Pages: 1689-1705
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3108 Java OOP Background Color, Text Color, Mouse Clicks, etc"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44351/1.5/
Pages: 1705-1739
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3110 Java OOP Panels, Labels, Text Fields, and Buttons"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44352/1.6/
Pages: 1740-1751
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2692 ATTRIBUTIONS

Module: "Java3112 Java OOP Using Alpha Transparency with Ericson's Media Library"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44911/1.5/
Pages: 1751-1766
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3114 Java OOP Controlling Opacity with a Slider"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44912/1.8/
Pages: 1766-1783
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3116 Java OOP Controlling an Edge Detector with a Slider"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44913/1.7/
Pages: 1783-1796
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3118 Java OOP Controlling an Image-Scaling Program with a Slider"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44914/1.7/
Pages: 1796-1805
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3120 Java OOP Controlling Image Rotation with a Slider and A�ne Transforms"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44915/1.7/
Pages: 1805-1821
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3122 Java OOP Opening an Image File in a PictureExplorer Object"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44916/1.7/
Pages: 1821-1829
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3124 Java OOP Extracting pixel color data from a PictureExplorer object"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44917/1.6/
Pages: 1829-1856
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3126 Java OOP Handling document events on a text �eld and creating a color swatch"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44921/1.7/
Pages: 1856-1870
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

ATTRIBUTIONS 2693

Module: "Java3128 Java OOP Using a JColorChooser object"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44923/1.6/
Pages: 1870-1884
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3130 Java OOP A Pixel Color Editor"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44926/1.6/
Pages: 1884-1917
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java OOP: ITSE 2317 Practice Test 1"
Used here as: "Java OOP: ITSE 2317 Practice Programs 1"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44264/1.5/
Pages: 1919-1931
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java OOP: ITSE 2317 Practice Test 2"
Used here as: "Java OOP: ITSE 2317 Practice Programs 2"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44265/1.6/
Pages: 1932-1943
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java OOP: ITSE 2317 Practice Test 3"
Used here as: "Java OOP: ITSE 2317 Practice Programs 3"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m44262/1.5/
Pages: 1944-1951
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jy0037: Review Event Handling"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m47927/1.6/
Pages: 1953-1984
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4309-Links to JSP Learning Resources"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m61616/1.5/
Pages: 1984-1985
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2694 ATTRIBUTIONS

Module: "Java4510: Preface to INEW 2338"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48259/1.10/
Pages: 1987-1988
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4610-Preface"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m49532/1.3/
Page: 1989
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4620: General Information"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m49533/1.2/
Pages: 1989-1999
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4620r-Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m49577/1.3/
Pages: 2000-2008
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4630: The InetAddress Class"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m49534/1.5/
Pages: 2008-2020
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4630r-Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m49562/1.3/
Pages: 2021-2024
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4640: The URL Class and the URLEncoder Class"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m49535/1.5/
Pages: 2024-2038
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4640r-Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m49558/1.3/
Pages: 2039-2042
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

ATTRIBUTIONS 2695

Module: "Java4650: The URLConnection Class"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m49537/1.4/
Pages: 2042-2048
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4650r-Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m49573/1.3/
Pages: 2049-2052
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4655: A Rendering Web Browser"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m49542/1.4/
Pages: 2052-2070
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4660: Sockets"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m49539/1.6/
Pages: 2070-2086
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4660r-Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m49571/1.3/
Pages: 2087-2090
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4585: Getting Started with Search Engines"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m55646/1.3/
Pages: 2090-2092
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4590r-Review for search engines"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m55520/1.1/
Pages: 2093-2099
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4530: Getting Started with Servlets"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48509/1.7/
Pages: 2099-2108
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2696 ATTRIBUTIONS

Module: "Java4530r-Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m49581/1.2/
Pages: 2109-2111
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4535: Introduction to Servlet Code"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48518/1.4/
Pages: 2111-2121
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4535r-Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m49594/1.2/
Pages: 2122-2128
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4550: Session Tracking using Hidden Fields"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48550/1.5/
Pages: 2128-2146
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4550r-Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m49590/1.2/
Pages: 2147-2150
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4560: Session Tracking using URL Rewriting"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48551/1.5/
Pages: 2150-2165
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4570: Session Tracking using Cookies"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48571/1.4/
Pages: 2165-2179
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4570r-Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m49593/1.2/
Pages: 2180-2185
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

ATTRIBUTIONS 2697

Module: "Java4580: Session Tracking using the Session Tracking API"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48579/1.6/
Pages: 2185-2206
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4580r-Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m49586/1.2/
Pages: 2207-2210
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Json0195: Preface to JSON"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m61773/1.1/
Pages: 2210-2211
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Json0200: The What and Why of JSON"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m61717/1.5/
Pages: 2211-2217
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Json0200R: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m61776/1.1/
Pages: 2218-2223
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Json0205: Getting Started"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m61718/1.4/
Pages: 2223-2226
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Json0205R: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m61777/1.1/
Pages: 2227-2230
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Json0210: Structure of the json-simple Java Library"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m61723/1.3/
Pages: 2230-2234
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2698 ATTRIBUTIONS

Module: "Json0210R: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m61778/1.1/
Pages: 2235-2240
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Json0215: Encoding JSON Strings"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m61724/1.4/
Pages: 2240-2246
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Json0215R: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m61779/1.1/
Pages: 2247-2252
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Json0220: Decoding JSON Strings"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m61725/1.3/
Pages: 2252-2260
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Json0220R: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m61780/1.2/
Pages: 2261-2273
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Json0225: Encoding JSON Arrays"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m61731/1.2/
Pages: 2273-2281
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Json0225R: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m61781/1.1/
Pages: 2282-2291
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Json0230: Decoding JSON Arrays"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m61744/1.3/
Pages: 2291-2298
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

ATTRIBUTIONS 2699

Module: "Json0230R: Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m61783/1.1/
Pages: 2299-2308
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java4710: INEW 2338 - Java EE 7 and Frameworks"
By: R.G. (Dick) Baldwin, R.L. Martinez, PhD
URL: http://cnx.org/content/m49764/1.9/
Pages: 2308-2309
Copyright: R.G. (Dick) Baldwin, R.L. Martinez, PhD
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jy0040: GAME2302: Mathematical Applications for Game Development"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45680/1.2/
Pages: 2311-2312
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/3.0/

Module: "Ap0005: Preface to OOP Self-Assessment"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45252/1.8/
Pages: 2313-2314
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Ap0010: Self-assessment, Primitive Types"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45284/1.9/
Pages: 2314-2336
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Ap0020: Self-assessment, Assignment and Arithmetic Operators"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45286/1.6/
Pages: 2336-2364
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Ap0030: Self-assessment, Relational Operators, Increment Operator, and Control Structures"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45287/1.4/
Pages: 2364-2389
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2700 ATTRIBUTIONS

Module: "Ap0040: Self-assessment, Logical Operations, Numeric Casting, String Concatenation, and the
toString Method"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45260/1.6/
Pages: 2390-2410
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Ap0050: Self-assessment, Escape Character Sequences and Arrays"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45280/1.8/
Pages: 2410-2438
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Ap0060: Self-assessment, More on Arrays"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45264/1.5/
Pages: 2438-2463
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Ap0070: Self-assessment, Method Overloading"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45276/1.5/
Pages: 2463-2480
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Ap0080: Self-assessment, Classes, Constructors, and Accessor Methods"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45279/1.5/
Pages: 2480-2499
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Ap0090: Self-assessment, the super keyword, �nal keyword, and static methods"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45270/1.5/
Pages: 2500-2518
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Ap0100: Self-assessment, The this keyword, static �nal variables, and initialization of instance
variables"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45296/1.4/
Pages: 2518-2541
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

ATTRIBUTIONS 2701

Module: "Ap0110: Self-assessment, Extending classes, overriding methods, and polymorphic behavior"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45308/1.5/
Pages: 2541-2562
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Ap0120: Self-assessment, Interfaces and polymorphic behavior"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45303/1.5/
Pages: 2562-2592
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Ap0130: Self-assessment, Comparing objects, packages, import directives, and some common
exceptions"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45310/1.6/
Pages: 2593-2613
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Ap0140: Self-assessment, Type conversion, casting, common exceptions, public class �les, javadoc
comments and directives, and null references"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45302/1.5/
Pages: 2613-2634
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Jy0060: Anatomy of a Game Engine"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45747/1.1/
Pages: 2635-2636
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/3.0/

Module: "Jy0070-Principles of Object-Oriented Programming"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45793/1.1/
Pages: 2637-2638
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/3.0/

Module: "Jy0050: Programming Oldies But Goodies"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45681/1.1/
Pages: 2639-2640
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

2702 ATTRIBUTIONS

Module: "Gf0100: Objects First with Greenfoot"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45790/1.2/
Pages: 2641-2646
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Java3140 Java OOP Java Documentation"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m45117/1.4/
Pages: 2647-2662
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11441/1.206>

Object-Oriented Programming (OOP) with Java
Teaching material for various Object-Oriented Programming (OOP) courses at Austin Community College
in Austin, TX.

About OpenStax-CNX
Rhaptos is a web-based collaborative publishing system for educational material.

