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Preface 1

PREFACE

Welcome to University Physics, an OpenStax resource. This textbook was written to increase student access to high-quality
learning materials, maintaining highest standards of academic rigor at little to no cost.

About OpenStax

OpenStax is a nonprofit based at Rice University, and it’s our mission to improve student access to education. Our first
openly licensed college textbook was published in 2012 and our library has since scaled to over 20 books used by hundreds
of thousands of students across the globe. Our adaptive learning technology, designed to improve learning outcomes through
personalized educational paths, is currently being piloted for K-12 and college. The OpenStax mission is made possible
through the generous support of philanthropic foundations. Through these partnerships and with the help of additional
low-cost resources from our OpenStax partners, OpenStax is breaking down the most common barriers to learning and
empowering students and instructors to succeed.

About OpenStax Resources
Customization

University Physics is licensed under a Creative Commons Attribution 4.0 International (CC BY) license, which means
that you can distribute, remix, and build upon the content, as long as you provide attribution to OpenStax and its content
contributors.

Because our books are openly licensed, you are free to use the entire book or pick and choose the sections that are most
relevant to the needs of your course. Feel free to remix the content by assigning your students certain chapters and sections
in your syllabus in the order that you prefer. You can even provide a direct link in your syllabus to the sections in the web
view of your book.

Faculty also have the option of creating a customized version of their OpenStax book through the aerSelect platform. The
custom version can be made available to students in low-cost print or digital form through their campus bookstore. Visit
your book page on openstax.org for a link to your book on aerSelect.

Errata

All OpenStax textbooks undergo a rigorous review process. However, like any professional-grade textbook, errors
sometimes occur. Since our books are web based, we can make updates periodically when deemed pedagogically necessary.
If you have a correction to suggest, submit it through the link on your book page on openstax.org. Subject matter experts
review all errata suggestions. OpenStax is committed to remaining transparent about all updates, so you will also find a list
of past errata changes on your book page on openstax.org.

Format
You can access this textbook for free in web view or PDF through openstax.org, and for a low cost in print.
About University Physics

University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed
to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics,
science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and
understand how those concepts apply to their lives and to the world around them.

Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency.
Coverage and Scope

Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses
nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical
rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged
to provide a logical progression from fundamental to more advanced concepts, building upon what students have already
learned and emphasizing connections between topics and between theory and applications. The goal of each section is
to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and
future careers. The organization and pedagogical features were developed and vetted with feedback from science educators
dedicated to the project.

VOLUME I
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Unit 1: Mechanics
Chapter 1: Units and Measurement
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Chapter 3: Motion Along a Straight Line
Chapter 4: Motion in Two and Three Dimensions
Chapter 5: Newton’s Laws of Motion
Chapter 6: Applications of Newton’s Laws
Chapter 7: Work and Kinetic Energy
Chapter 8: Potential Energy and Conservation of Energy
Chapter 9: Linear Momentum and Collisions
Chapter 10: Fixed-Axis Rotation
Chapter 11: Angular Momentum
Chapter 12: Static Equilibrium and Elasticity
Chapter 13: Gravitation
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VOLUME II
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Chapter 3: Interference
Chapter 4: Diffraction
Unit 2: Modern Physics
Chapter 5: Relativity
Chapter 6: Photons and Matter Waves
Chapter 7: Quantum Mechanics
Chapter 8: Atomic Structure
Chapter 9: Condensed Matter Physics
Chapter 10: Nuclear Physics
Chapter 11: Particle Physics and Cosmology
Pedagogical Foundation

Throughout University Physics you will find derivations of concepts that present classical ideas and techniques, as well
as modern applications and methods. Most chapters start with observations or experiments that place the material in a
context of physical experience. Presentations and explanations rely on years of classroom experience on the part of long-
time physics professors, striving for a balance of clarity and rigor that has proven successful with their students. Throughout
the text, links enable students to review earlier material and then return to the present discussion, reinforcing connections
between topics. Key historical figures and experiments are discussed in the main text (rather than in boxes or sidebars),
maintaining a focus on the development of physical intuition. Key ideas, definitions, and equations are highlighted in
the text and listed in summary form at the end of each chapter. Examples and chapter-opening images often include
contemporary applications from daily life or modern science and engineering that students can relate to, from smart phones
to the internet to GPS devices.

Assessments That Reinforce Key Concepts

In-chapter Examples generally follow a three-part format of Strategy, Solution, and Significance to emphasize how to
approach a problem, how to work with the equations, and how to check and generalize the result. Examples are often
followed by Check Your Understanding questions and answers to help reinforce for students the important ideas of the
examples. Problem-Solving Strategies in each chapter break down methods of approaching various types of problems into
steps students can follow for guidance. The book also includes exercises at the end of each chapter so students can practice
what they’ve learned.

Conceptual questions do not require calculation but test student learning of the key concepts.

Problems categorized by section test student problem-solving skills and the ability to apply ideas to practical
situations.

Additional Problems apply knowledge across the chapter, forcing students to identify what concepts and equations
are appropriate for solving given problems. Randomly located throughout the problems are Unreasonable Results
exercises that ask students to evaluate the answer to a problem and explain why it is not reasonable and what
assumptions made might not be correct.

Challenge Problems extend text ideas to interesting but difficult situations.
Answers for selected exercises are available in an Answer Key at the end of the book.

Additional Resources
Student and Instructor Resources

We’ve compiled additional resources for both students and instructors, including Getting Started Guides, PowerPoint slides,
and answer and solution guides for instructors and students. Instructor resources require a verified instructor account, which
can be requested on your openstax.org log-in. Take advantage of these resources to supplement your OpenStax book.

Partner Resources

OpenStax partners are our allies in the mission to make high-quality learning materials affordable and accessible to students
and instructors everywhere. Their tools integrate seamlessly with our OpenStax titles at a low cost. To access the partner
resources for your text, visit your book page on openstax.org.

About the Authors

Senior Contributing Authors
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Chapter 1 | The Nature of Light 7

1| THE NATURE OF LIGHT

Figure 1.1 Due to total internal reflection, an underwater swimmer’s image is reflected back into the water where the camera is
located. The circular ripple in the image center is actually on the water surface. Due to the viewing angle, total internal reflection
is not occurring at the top edge of this image, and we can see a view of activities on the pool deck. (credit: modification of work
by “jayhem”/Flickr)

Chapter Outline

1.1 The Propagation of Light
1.2 The Law of Reflection
1.3 Refraction

1.4 Total Internal Reflection
1.5 Dispersion

1.6 Huygens’s Principle

1.7 Polarization

Introduction

Our investigation of light revolves around two questions of fundamental importance: (1) What is the nature of light, and (2)
how does light behave under various circumstances? Answers to these questions can be found in Maxwell’s equations (in
Electromagnetic Waves (http:/lcnx.org/content/m58495/latest/) ), which predict the existence of electromagnetic
waves and their behavior. Examples of light include radio and infrared waves, visible light, ultraviolet radiation, and X-rays.
Interestingly, not all light phenomena can be explained by Maxwell’s theory. Experiments performed early in the twentieth
century showed that light has corpuscular, or particle-like, properties. The idea that light can display both wave and particle
characteristics is called wave-particle duality, which is examined in Photons and Matter Waves.

In this chapter, we study the basic properties of light. In the next few chapters, we investigate the behavior of light when it
interacts with optical devices such as mirrors, lenses, and apertures.


http://cnx.org/content/m58495/latest/
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1.1 | The Propagation of Light

Learning Objectives

By the end of this section, you will be able to:

* Determine the index of refraction, given the speed of light in a medium
» List the ways in which light travels from a source to another location

The speed of light in a vacuum c is one of the fundamental constants of physics. As you will see when you reach Relativity,
it is a central concept in Einstein’s theory of relativity. As the accuracy of the measurements of the speed of light improved,
it was found that different observers, even those moving at large velocities with respect to each other, measure the same
value for the speed of light. However, the speed of light does vary in a precise manner with the material it traverses. These
facts have far-reaching implications, as we will see in later chapters.

The Speed of Light: Early Measurements

The first measurement of the speed of light was made by the Danish astronomer Ole Roemer (1644—-1710) in 1675. He
studied the orbit of Io, one of the four large moons of Jupiter, and found that it had a period of revolution of 42.5 h around
Jupiter. He also discovered that this value fluctuated by a few seconds, depending on the position of Earth in its orbit around
the Sun. Roemer realized that this fluctuation was due to the finite speed of light and could be used to determine c.

Roemer found the period of revolution of Io by measuring the time interval between successive eclipses by Jupiter. Figure
1.2(a) shows the planetary configurations when such a measurement is made from Earth in the part of its orbit where it
is receding from Jupiter. When Earth is at point A, Earth, Jupiter, and Io are aligned. The next time this alignment occurs,
Earth is at point B, and the light carrying that information to Earth must travel to that point. Since B is farther from Jupiter
than A, light takes more time to reach Earth when Earth is at B. Now imagine it is about 6 months later, and the planets
are arranged as in part (b) of the figure. The measurement of Io’s period begins with Earth at point A" and Io eclipsed by

Jupiter. The next eclipse then occurs when Earth is at point B’, to which the light carrying the information of this eclipse
must travel. Since B’ is closer to Jupiter than A’, light takes less time to reach Earth when it is at B’ . This time interval
between the successive eclipses of Io seen at A’ and B’ is therefore less than the time interval between the eclipses seen
at A and B. By measuring the difference in these time intervals and with appropriate knowledge of the distance between
Jupiter and Earth, Roemer calculated that the speed of light was 2.0 X 108 m/s, which is 33% below the value accepted

today.

Jupiter

Earth’s orbit A’ B’
(@) (b)
Figure 1.2 Roemer’s astronomical method for determining the speed of light. Measurements of Io’s period

done with the configurations of parts (a) and (b) differ, because the light path length and associated travel time
increase from A to B (a) but decrease from A’ to B’ (b).

The first successful terrestrial measurement of the speed of light was made by Armand Fizeau (1819-1896) in 1849. He
placed a toothed wheel that could be rotated very rapidly on one hilltop and a mirror on a second hilltop 8 km away (Figure
1.3). An intense light source was placed behind the wheel, so that when the wheel rotated, it chopped the light beam into
a succession of pulses. The speed of the wheel was then adjusted until no light returned to the observer located behind the
wheel. This could only happen if the wheel rotated through an angle corresponding to a displacement of (n + %2) teeth,

This OpenStax book is available for free at http://cnx.org/content/col12067/1.3
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while the pulses traveled down to the mirror and back. Knowing the rotational speed of the wheel, the number of teeth on
the wheel, and the distance to the mirror, Fizeau determined the speed of light to be 3.15 X 108 m/s, which is only 5%
too high.

Mirror

— Rotating
toothed wheel

Light source

Figure 1.3 Fizeau’s method for measuring the speed of light. The teeth of the
wheel block the reflected light upon return when the wheel is rotated at a rate that
matches the light travel time to and from the mirror.

The French physicist Jean Bernard Léon Foucault (1819-1868) modified Fizeau’s apparatus by replacing the toothed wheel
with a rotating mirror. In 1862, he measured the speed of light to be 2.98 X 108 m/s, which is within 0.6% of the presently

accepted value. Albert Michelson (1852—-1931) also used Foucault’s method on several occasions to measure the speed of
light. His first experiments were performed in 1878; by 1926, he had refined the technique so well that he found c to be

(2.99796 + 4) x 108 m/s.

Today, the speed of light is known to great precision. In fact, the speed of light in a vacuum c is so important that it is
accepted as one of the basic physical quantities and has the value

¢ = 2.99792458 x 10® m/s ~ 3.00 x 10® m/s (1.1)

where the approximate value of 3.00 X 103 m/s is used whenever three-digit accuracy is sufficient.

Speed of Light in Matter

The speed of light through matter is less than it is in a vacuum, because light interacts with atoms in a material. The speed
of light depends strongly on the type of material, since its interaction varies with different atoms, crystal lattices, and other
substructures. We can define a constant of a material that describes the speed of light in it, called the index of refraction n:

(1.2)

=
Il
<o

where v is the observed speed of light in the material.

Since the speed of light is always less than ¢ in matter and equals ¢ only in a vacuum, the index of refraction is always
greater than or equal to one; that is, n > 1. Table 1.1 gives the indices of refraction for some representative substances.

The values are listed for a particular wavelength of light, because they vary slightly with wavelength. (This can have
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important effects, such as colors separated by a prism, as we will see in Dispersion.) Note that for gases, n is close to
1.0. This seems reasonable, since atoms in gases are widely separated, and light travels at ¢ in the vacuum between atoms.
It is common to take n = 1 for gases unless great precision is needed. Although the speed of light v in a medium varies

considerably from its value c in a vacuum, it is still a large speed.

Medium n

Gases at 0°C, 1 atm

Air 1.000293
Carbon dioxide 1.00045

Hydrogen 1.000139
Oxygen 1.000271

Liquids at 20°C

Benzene 1.501
Carbon disulfide 1.628
Carbon tetrachloride 1.461
Ethanol 1.361
Glycerine 1.473
Water, fresh 1.333

Solids at 20°C

Diamond 2.419
Fluorite 1.434
Glass, crown 1.52
Glass, flint 1.66
Ice (at 0°C) 1.309
Polystyrene 1.49
Plexiglas 1.51
Quartz, crystalline 1.544
Quiartz, fused 1.458
Sodium chloride 1.544
Zircon 1.923

Table 1.1 Index of Refraction in
Various Media For light with a
wavelength of 589 nm in a vacuum

Example 1.1

Speed of Light in Jewelry
Calculate the speed of light in zircon, a material used in jewelry to imitate diamond.
Strategy

We can calculate the speed of light in a material v from the index of refraction n of the material, using the equation
n=cl.

This OpenStax book is available for free at http://cnx.org/content/col12067/1.3
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Solution

Rearranging the equation n = ¢/v for v gives us

V= n
The index of refraction for zircon is given as 1.923 in Table 1.1, and c is given in Equation 1.1. Entering these
values in the equation gives

3.00x 108 m/s _ 8
1923 =1.56x% 10° m/s.

V=

Significance

This speed is slightly larger than half the speed of light in a vacuum and is still high compared with speeds we
normally experience. The only substance listed in Table 1.1 that has a greater index of refraction than zircon is
diamond. We shall see later that the large index of refraction for zircon makes it sparkle more than glass, but less
than diamond.

1.1 Check Your Understanding Table 1.1 shows that ethanol and fresh water have very similar indices of
refraction. By what percentage do the speeds of light in these liquids differ?

The Ray Model of Light

You have already studied some of the wave characteristics of light in the previous chapter on Electromagnetic Waves
(http:/lcnx.org/content/m58495/latest/) . In this chapter, we start mainly with the ray characteristics. There are three
ways in which light can travel from a source to another location (Figure 1.4). It can come directly from the source through
empty space, such as from the Sun to Earth. Or light can travel through various media, such as air and glass, to the observer.
Light can also arrive after being reflected, such as by a mirror. In all of these cases, we can model the path of light as a
straight line called a ray.

(@ (b)
Figure 1.4 Three methods for light to travel from a source to another location. (a) Light reaches the upper atmosphere of Earth,
traveling through empty space directly from the source. (b) Light can reach a person by traveling through media like air and
glass. (c) Light can also reflect from an object like a mirror. In the situations shown here, light interacts with objects large enough
that it travels in straight lines, like a ray.

Experiments show that when light interacts with an object several times larger than its wavelength, it travels in straight lines
and acts like a ray. Its wave characteristics are not pronounced in such situations. Since the wavelength of visible light is
less than a micron (a thousandth of a millimeter), it acts like a ray in the many common situations in which it encounters
objects larger than a micron. For example, when visible light encounters anything large enough that we can observe it with
unaided eyes, such as a coin, it acts like a ray, with generally negligible wave characteristics.

In all of these cases, we can model the path of light as straight lines. Light may change direction when it encounters objects
(such as a mirror) or in passing from one material to another (such as in passing from air to glass), but it then continues in
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a straight line or as a ray. The word “ray” comes from mathematics and here means a straight line that originates at some
point. It is acceptable to visualize light rays as laser rays. The ray model of light describes the path of light as straight lines.

Since light moves in straight lines, changing directions when it interacts with materials, its path is described by geometry
and simple trigonometry. This part of optics, where the ray aspect of light dominates, is therefore called geometric optics.
Two laws govern how light changes direction when it interacts with matter. These are the law of reflection, for situations
in which light bounces off matter, and the law of refraction, for situations in which light passes through matter. We will
examine more about each of these laws in upcoming sections of this chapter.

1.2 | The Law of Reflection

Learning Objectives

By the end of this section, you will be able to:

* Explain the reflection of light from polished and rough surfaces
* Describe the principle and applications of corner reflectors

Whenever we look into a mirror, or squint at sunlight glinting from a lake, we are seeing a reflection. When you look at a
piece of white paper, you are seeing light scattered from it. Large telescopes use reflection to form an image of stars and
other astronomical objects.

The law of reflection states that the angle of reflection equals the angle of incidence, or

0, = 0, (1.3)

The law of reflection is illustrated in Figure 1.5, which also shows how the angle of incidence and angle of reflection are
measured relative to the perpendicular to the surface at the point where the light ray strikes.

Perpendicular
to surface

Incident ray Reflected ray

C \%

Figure 1.5 The law of reflection states that the angle of
reflection equals the angle of incidence— 8, = ;. The angles

are measured relative to the perpendicular to the surface at the
point where the ray strikes the surface.

We expect to see reflections from smooth surfaces, but Figure 1.6 illustrates how a rough surface reflects light. Since the
light strikes different parts of the surface at different angles, it is reflected in many different directions, or diffused. Diffused
light is what allows us to see a sheet of paper from any angle, as shown in Figure 1.7(a). People, clothing, leaves, and
walls all have rough surfaces and can be seen from all sides. A mirror, on the other hand, has a smooth surface (compared
with the wavelength of light) and reflects light at specific angles, as illustrated in Figure 1.7(b). When the Moon reflects
from a lake, as shown in Figure 1.7(c), a combination of these effects takes place.

This OpenStax book is available for free at http://cnx.org/content/col12067/1.3
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Figure 1.6 Light is diffused when it reflects from a rough surface.
Here, many parallel rays are incident, but they are reflected at many
different angles, because the surface is rough.

Light reflects from a rough Light reflects from a smooth Moonlight reflects from a lake
surface at many angles surface at just one angle mostly at one angle

A

<
/ I
Y

" "
N/
vior N7 /

@ (b) (©)
Figure 1.7 (a) When a sheet of paper is illuminated with many parallel incident rays, it can be seen at many different angles,
because its surface is rough and diffuses the light. (b) A mirror illuminated by many parallel rays reflects them in only one
direction, because its surface is very smooth. Only the observer at a particular angle sees the reflected light. (c) Moonlight is
spread out when it is reflected by the lake, because the surface is shiny but uneven. (credit c: modification of work by Diego
Torres Silvestre)

When you see yourself in a mirror, it appears that the image is actually behind the mirror (Figure 1.8). We see the light
coming from a direction determined by the law of reflection. The angles are such that the image is exactly the same distance
behind the mirror as you stand in front of the mirror. If the mirror is on the wall of a room, the images in it are all behind the
mirror, which can make the room seem bigger. Although these mirror images make objects appear to be where they cannot
be (like behind a solid wall), the images are not figments of your imagination. Mirror images can be photographed and
videotaped by instruments and look just as they do with our eyes (which are optical instruments themselves). The precise
manner in which images are formed by mirrors and lenses is discussed in an upcoming chapter on Geometric Optics and
Image Formation.
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Mirror

{

|
A

(@) (b)
Figure 1.8 (a) Your image in a mirror is behind the mirror. The two rays shown are those that strike the mirror at just the
correct angles to be reflected into the eyes of the person. The image appears to be behind the mirror at the same distance away as
(b) if you were looking at your twin directly, with no mirror.

Corner Reflectors (Retroreflectors)

A light ray that strikes an object consisting of two mutually perpendicular reflecting surfaces is reflected back exactly
parallel to the direction from which it came (Figure 1.9). This is true whenever the reflecting surfaces are perpendicular,
and it is independent of the angle of incidence. (For proof, see at the end of this section.) Such an object is called a
corner reflector, since the light bounces from its inside corner. Corner reflectors are a subclass of retroreflectors, which
all reflect rays back in the directions from which they came. Although the geometry of the proof is much more complex,
corner reflectors can also be built with three mutually perpendicular reflecting surfaces and are useful in three-dimensional
applications.

Figure 1.9 A light ray that strikes two mutually perpendicular
reflecting surfaces is reflected back exactly parallel to the
direction from which it came.

Many inexpensive reflector buttons on bicycles, cars, and warning signs have corner reflectors designed to return light
in the direction from which it originated. Rather than simply reflecting light over a wide angle, retroreflection ensures
high visibility if the observer and the light source are located together, such as a car’s driver and headlights. The Apollo
astronauts placed a true corner reflector on the Moon (Figure 1.10). Laser signals from Earth can be bounced from that
corner reflector to measure the gradually increasing distance to the Moon of a few centimeters per year.

This OpenStax book is available for free at http://cnx.org/content/col12067/1.3
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(a) (b)
Figure 1.10 (a) Astronauts placed a corner reflector on the Moon to measure its gradually increasing orbital distance. (b) The
bright spots on these bicycle safety reflectors are reflections of the flash of the camera that took this picture on a dark night.
(credit a: modification of work by NASA; credit b: modification of work by “Julo”/Wikimedia Commons)

Working on the same principle as these optical reflectors, corner reflectors are routinely used as radar reflectors (Figure
1.11) for radio-frequency applications. Under most circumstances, small boats made of fiberglass or wood do not strongly
reflect radio waves emitted by radar systems. To make these boats visible to radar (to avoid collisions, for example), radar
reflectors are attached to boats, usually in high places.

Fgure 1.11 A radar reflector hoisted on a sailboat is a type
corner reflector. (credit: Tim Sheerman-Chase)

As a counterexample, if you are interested in building a stealth airplane, radar reflections should be minimized to evade
detection. One of the design considerations would then be to avoid building 90° corners into the airframe.

1.3 | Refraction

Learning Objectives

By the end of this section, you will be able to:

» Describe how rays change direction upon entering a medium
* Apply the law of refraction in problem solving

You may often notice some odd things when looking into a fish tank. For example, you may see the same fish appearing to
be in two different places (Figure 1.12). This happens because light coming from the fish to you changes direction when it
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leaves the tank, and in this case, it can travel two different paths to get to your eyes. The changing of a light ray’s direction
(loosely called bending) when it passes through substances of different refractive indices is called refraction and is related
to changes in the speed of light, v = ¢/n . Refraction is responsible for a tremendous range of optical phenomena, from the

action of lenses to data transmission through optical fibers.

4

@) (b)
Figure 1.12 (a) Looking at the fish tank as shown, we can see the same fish in two different locations, because light changes
directions when it passes from water to air. In this case, the light can reach the observer by two different paths, so the fish seems
to be in two different places. This bending of light is called refraction and is responsible for many optical phenomena. (b) This
image shows refraction of light from a fish near the top of a fish tank.

Figure 1.13 shows how a ray of light changes direction when it passes from one medium to another. As before, the angles
are measured relative to a perpendicular to the surface at the point where the light ray crosses it. (Some of the incident light
is reflected from the surface, but for now we concentrate on the light that is transmitted.) The change in direction of the light
ray depends on the relative values of the indices of refraction (The Propagation of Light) of the two media involved. In
the situations shown, medium 2 has a greater index of refraction than medium 1. Note that as shown in Figure 1.13(a), the
direction of the ray moves closer to the perpendicular when it progresses from a medium with a lower index of refraction
to one with a higher index of refraction. Conversely, as shown in Figure 1.13(b), the direction of the ray moves away
from the perpendicular when it progresses from a medium with a higher index of refraction to one with a lower index of
refraction. The path is exactly reversible.
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Figure 1.13 The change in direction of a light ray depends on how the index of refraction
changes when it crosses from one medium to another. In the situations shown here, the index of
refraction is greater in medium 2 than in medium 1. (a) A ray of light moves closer to the
perpendicular when entering a medium with a higher index of refraction. (b) A ray of light
moves away from the perpendicular when entering a medium with a lower index of refraction.

The amount that a light ray changes its direction depends both on the incident angle and the amount that the speed changes.
For a ray at a given incident angle, a large change in speed causes a large change in direction and thus a large change
in angle. The exact mathematical relationship is the law of refraction, or Snell’s law, after the Dutch mathematician
Willebrord Snell (1591-1626), who discovered it in 1621. The law of refraction is stated in equation form as

np sin 61 =ny sin 92. (14)

Here n, and n, are the indices of refraction for media 1 and 2, and #; and 6, are the angles between the rays and the

perpendicular in media 1 and 2. The incoming ray is called the incident ray, the outgoing ray is called the refracted ray, and
the associated angles are the incident angle and the refracted angle, respectively.

Snell’s experiments showed that the law of refraction is obeyed and that a characteristic index of refraction n could be
assigned to a given medium and its value measured. Snell was not aware that the speed of light varied in different media, a
key fact used when we derive the law of refraction theoretically using Huygens’s principle in Huygens’s Principle.

Example 1.2

Determining the Index of Refraction

Find the index of refraction for medium 2 in Figure 1.13(a), assuming medium 1 is air and given that the incident
angle is 30.0° and the angle of refraction is 22.0°.

Strategy

The index of refraction for air is taken to be 1 in most cases (and up to four significant figures, it is 1.000).
Thus, ny =1.00 here. From the given information, #; =30.0° and 8, = 22.0°. With this information, the

only unknown in Snell’s law is 7,5, so we can use Snell’s law to find it.

Solution
From Snell’s law we have
nysin@; = n,siné,

" " sin 64
2 1 sin92'
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Entering known values,

_ 1 ansin 30.0° _ 0.500 _
ny = 100G 5505 = 0375 — 133

Significance

This is the index of refraction for water, and Snell could have determined it by measuring the angles and
performing this calculation. He would then have found 1.33 to be the appropriate index of refraction for water in
all other situations, such as when a ray passes from water to glass. Today, we can verify that the index of refraction
is related to the speed of light in a medium by measuring that speed directly.

’ Explore bending of light (https:/lopenstaxcollege.org/l/21bendoflight) between two media with different
indices of refraction. Use the “Intro” simulation and see how changing from air to water to glass changes the

bending angle. Use the protractor tool to measure the angles and see if you can recreate the configuration in

Example 1.2. Also by measurement, confirm that the angle of reflection equals the angle of incidence.

Example 1.3

A Larger Change in Direction

Suppose that in a situation like that in Example 1.2, light goes from air to diamond and that the incident angle
is 30.0°. Calculate the angle of refraction 0, in the diamond.

Strategy

Again, the index of refraction for air is taken to be n; = 1.00, and we are given 8; = 30.0°. We can look up
the index of refraction for diamond in Table 1.1, finding n, = 2.419 . The only unknown in Snell’s law is 6, ,
which we wish to determine.

Solution

Solving Snell’s law for sin 6, yields
n
in@, = 5= sin ;.
sin 6, = 5, sin6,
Entering known values,

sin@, = 21'40109 sin 30.0° = (0.413)(0.500) = 0.207.

The angle is thus
0, = sin~1(0.207) = 11.9°.

Significance
For the same 30.0° angle of incidence, the angle of refraction in diamond is significantly smaller than in water
(11.9° rather than 22.0° —see Example 1.2). This means there is a larger change in direction in diamond. The

cause of a large change in direction is a large change in the index of refraction (or speed). In general, the larger
the change in speed, the greater the effect on the direction of the ray.

1.2 Check Your Understanding In Table 1.1, the solid with the next highest index of refraction after
diamond is zircon. If the diamond in Example 1.3 were replaced with a piece of zircon, what would be the
new angle of refraction?

This OpenStax book is available for free at http://cnx.org/content/col12067/1.3
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1.4 | Total Internal Reflection

Learning Objectives

By the end of this section, you will be able to:

* Explain the phenomenon of total internal reflection
» Describe the workings and uses of optical fibers
* Analyze the reason for the sparkle of diamonds

A good-quality mirror may reflect more than 90% of the light that falls on it, absorbing the rest. But it would be useful

to have a mirror that reflects all of the light that falls on it. Interestingly, we can produce total reflection using an aspect of
refraction.

Consider what happens when a ray of light strikes the surface between two materials, as shown in Figure 1.14(a). Part
of the light crosses the boundary and is refracted; the rest is reflected. If, as shown in the figure, the index of refraction
for the second medium is less than for the first, the ray bends away from the perpendicular. (Since 7| > n,, the angle

of refraction is greater than the angle of incidence—that is, 6, > 8,.) Now imagine what happens as the incident angle
increases. This causes 6, to increase also. The largest the angle of refraction 6, can beis 90°, as shown in part (b). The
critical angle 6. for a combination of materials is defined to be the incident angle €, that produces an angle of refraction
of 90°. That s, 6 is the incident angle for which 8, = 90° . If the incident angle @, is greater than the critical angle, as

shown in Figure 1.14(c), then all of the light is reflected back into medium 1, a condition called total internal reflection.
(As the figure shows, the reflected rays obey the law of reflection so that the angle of reflection is equal to the angle of
incidence in all three cases.)

Refracted ray

Ny

Incident ray

0,

B, |
,M Total
6, | internal
P ! reflection

Reflected ray
(@ (b) (©

Figure 1.14 (a) A ray of light crosses a boundary where the index of refraction decreases. That is, 7, < ny. The ray bends
away from the perpendicular. (b) The critical angle 6. is the angle of incidence for which the angle of refraction is 90°. (c)

Total internal reflection occurs when the incident angle is greater than the critical angle.

Snell’s law states the relationship between angles and indices of refraction. It is given by

nq sin@y = n, sin6,.
When the incident angle equals the critical angle (0 = 6,), the angle of refraction is 90° (6, = 90°). Noting that
sin 90° = 1, Snell’s law in this case becomes
ny sin 61 =n,.

The critical angle . for a given combination of materials is thus
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0. = sin~! (%) forny > n,. (1.5)

Total internal reflection occurs for any incident angle greater than the critical angle 6., and it can only occur when the

second medium has an index of refraction less than the first. Note that this equation is written for a light ray that travels in
medium 1 and reflects from medium 2, as shown in Figure 1.14.

Example 1.4

Determining a Critical Angle

What is the critical angle for light traveling in a polystyrene (a type of plastic) pipe surrounded by air? The index
of refraction for polystyrene is 1.49.

Strategy

The index of refraction of air can be taken to be 1.00, as before. Thus, the condition that the second medium (air)
has an index of refraction less than the first (plastic) is satisfied, and we can use the equation

—_an—1(2
6. = sin (”_1)

to find the critical angle 6., where n, =1.00 and n; = 1.49.

Solution

Substituting the identified values gives

0. = sin”! (%) — sin~1(0.671) = 42.2°.

Significance

This result means that any ray of light inside the plastic that strikes the surface at an angle greater than 42.2° is
totally reflected. This makes the inside surface of the clear plastic a perfect mirror for such rays, without any need
for the silvering used on common mirrors. Different combinations of materials have different critical angles, but
any combination with 7 > n, can produce total internal reflection. The same calculation as made here shows
that the critical angle for a ray going from water to air is 48.6°, whereas that from diamond to air is 24.4°, and
that from flint glass to crown glass is 66.3° .

1.3 Check Your Understanding At the surface between air and water, light rays can go from air to water and
from water to air. For which ray is there no possibility of total internal reflection?

In the photo that opens this chapter, the image of a swimmer underwater is captured by a camera that is also underwater.
The swimmer in the upper half of the photograph, apparently facing upward, is, in fact, a reflected image of the swimmer
below. The circular ripple near the photograph’s center is actually on the water surface. The undisturbed water surrounding
it makes a good reflecting surface when viewed from below, thanks to total internal reflection. However, at the very top
edge of this photograph, rays from below strike the surface with incident angles less than the critical angle, allowing the
camera to capture a view of activities on the pool deck above water.

Fiber Optics: Endoscopes to Telephones

Fiber optics is one application of total internal reflection that is in wide use. In communications, it is used to transmit
telephone, internet, and cable TV signals. Fiber optics employs the transmission of light down fibers of plastic or glass.
Because the fibers are thin, light entering one is likely to strike the inside surface at an angle greater than the critical angle
and, thus, be totally reflected (Figure 1.15). The index of refraction outside the fiber must be smaller than inside. In fact,
most fibers have a varying refractive index to allow more light to be guided along the fiber through total internal refraction.
Rays are reflected around corners as shown, making the fibers into tiny light pipes.
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Exiting light ray

Entering light ray
Figure 1.15 Light entering a thin optic fiber may strike the inside surface at large
or grazing angles and is completely reflected if these angles exceed the critical
angle. Such rays continue down the fiber, even following it around corners, since
the angles of reflection and incidence remain large.

Bundles of fibers can be used to transmit an image without a lens, as illustrated in Figure 1.16. The output of a device
called an endoscope is shown in Figure 1.16(b). Endoscopes are used to explore the interior of the body through its natural
orifices or minor incisions. Light is transmitted down one fiber bundle to illuminate internal parts, and the reflected light is
transmitted back out through another bundle to be observed.

@ (b)
Figure 1.16 (a) An image “A” is transmitted by a bundle of optical fibers. (b) An endoscope is used to probe the body,
both transmitting light to the interior and returning an image such as the one shown of a human epiglottis (a structure at
the base of the tongue). (credit b: modification of work by “Med_Chaos”/Wikimedia Commons)

Fiber optics has revolutionized surgical techniques and observations within the body, with a host of medical diagnostic and
therapeutic uses. Surgery can be performed, such as arthroscopic surgery on a knee or shoulder joint, employing cutting
tools attached to and observed with the endoscope. Samples can also be obtained, such as by lassoing an intestinal polyp
for external examination. The flexibility of the fiber optic bundle allows doctors to navigate it around small and difficult-to-
reach regions in the body, such as the intestines, the heart, blood vessels, and joints. Transmission of an intense laser beam
to burn away obstructing plaques in major arteries, as well as delivering light to activate chemotherapy drugs, are becoming
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commonplace. Optical fibers have in fact enabled microsurgery and remote surgery where the incisions are small and the
surgeon’s fingers do not need to touch the diseased tissue.

Optical fibers in bundles are surrounded by a cladding material that has a lower index of refraction than the core (Figure
1.17). The cladding prevents light from being transmitted between fibers in a bundle. Without cladding, light could pass
between fibers in contact, since their indices of refraction are identical. Since no light gets into the cladding (there is total
internal reflection back into the core), none can be transmitted between clad fibers that are in contact with one another.
Instead, the light is propagated along the length of the fiber, minimizing the loss of signal and ensuring that a quality image
is formed at the other end. The cladding and an additional protective layer make optical fibers durable as well as flexible.

Light ray

Cladding

Core
Figure 1.17 Fibers in bundles are clad by a material that has a
lower index of refraction than the core to ensure total internal
reflection, even when fibers are in contact with one another.

Special tiny lenses that can be attached to the ends of bundles of fibers have been designed and fabricated. Light emerging
from a fiber bundle can be focused through such a lens, imaging a tiny spot. In some cases, the spot can be scanned,
allowing quality imaging of a region inside the body. Special minute optical filters inserted at the end of the fiber bundle
have the capacity to image the interior of organs located tens of microns below the surface without cutting the surface—an
area known as nonintrusive diagnostics. This is particularly useful for determining the extent of cancers in the stomach and
bowel.

In another type of application, optical fibers are commonly used to carry signals for telephone conversations and internet
communications. Extensive optical fiber cables have been placed on the ocean floor and underground to enable optical
communications. Optical fiber communication systems offer several advantages over electrical (copper)-based systems,
particularly for long distances. The fibers can be made so transparent that light can travel many kilometers before it becomes
dim enough to require amplification—much superior to copper conductors. This property of optical fibers is called low loss.
Lasers emit light with characteristics that allow far more conversations in one fiber than are possible with electric signals
on a single conductor. This property of optical fibers is called high bandwidth. Optical signals in one fiber do not produce
undesirable effects in other adjacent fibers. This property of optical fibers is called reduced crosstalk. We shall explore the
unique characteristics of laser radiation in a later chapter.

Corner Reflectors and Diamonds

Corner reflectors (The Law of Reflection) are perfectly efficient when the conditions for total internal reflection are
satisfied. With common materials, it is easy to obtain a critical angle that is less than 45°. One use of these perfect mirrors

is in binoculars, as shown in Figure 1.18. Another use is in periscopes found in submarines.
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Prism

- T S —
Light ray
Figure 1.18 These binoculars employ corner reflectors

(prisms) with total internal reflection to get light to the
observer’s eyes.

Total internal reflection, coupled with a large index of refraction, explains why diamonds sparkle more than other materials.
The critical angle for a diamond-to-air surface is only 24.4°, so when light enters a diamond, it has trouble getting back

out (Figure 1.19). Although light freely enters the diamond, it can exit only if it makes an angle less than 24.4° . Facets

on diamonds are specifically intended to make this unlikely. Good diamonds are very clear, so that the light makes many
internal reflections and is concentrated before exiting—hence the bright sparkle. (Zircon is a natural gemstone that has an
exceptionally large index of refraction, but it is not as large as diamond, so it is not as highly prized. Cubic zirconia is
manufactured and has an even higher index of refraction (x2.17), but it is still less than that of diamond.) The colors

you see emerging from a clear diamond are not due to the diamond’s color, which is usually nearly colorless. The colors
result from dispersion, which we discuss in Dispersion. Colored diamonds get their color from structural defects of the
crystal lattice and the inclusion of minute quantities of graphite and other materials. The Argyle Mine in Western Australia
produces around 90% of the world’s pink, red, champagne, and cognac diamonds, whereas around 50% of the world’s clear
diamonds come from central and southern Africa.

Critical angle

Total
reflection h y
\\\//

Figure 1.19 Light cannot easily escape a diamond, because its
critical angle with air is so small. Most reflections are total, and
the facets are placed so that light can exit only in particular
ways—thus concentrating the light and making the diamond
sparkle brightly.
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. Explore refraction and reflection of light (https://openstaxcollege.org/li21bendoflight) between two
media with different indices of refraction. Try to make the refracted ray disappear with total internal reflection. Use
the protractor tool to measure the critical angle and compare with the prediction from Equation 1.5.

1.5 | Dispersion

Learning Objectives

By the end of this section, you will be able to:

* Explain the cause of dispersion in a prism
* Describe the effects of dispersion in producing rainbows
* Summarize the advantages and disadvantages of dispersion

Everyone enjoys the spectacle of a rainbow glimmering against a dark stormy sky. How does sunlight falling on clear drops
of rain get broken into the rainbow of colors we see? The same process causes white light to be broken into colors by a clear
glass prism or a diamond (Figure 1.20).

(a) (b)
Figure 1.20 The colors of the rainbow (a) and those produced by a prism (b) are identical. (credit a: modification of work by
“Alfredo55”/Wikimedia Commons; credit b: modification of work by NASA)

We see about six colors in a rainbow—red, orange, yellow, green, blue, and violet; sometimes indigo is listed, too. These
colors are associated with different wavelengths of light, as shown in Figure 1.21. When our eye receives pure-wavelength
light, we tend to see only one of the six colors, depending on wavelength. The thousands of other hues we can sense in other
situations are our eye’s response to various mixtures of wavelengths. White light, in particular, is a fairly uniform mixture
of all visible wavelengths. Sunlight, considered to be white, actually appears to be a bit yellow, because of its mixture of
wavelengths, but it does contain all visible wavelengths. The sequence of colors in rainbows is the same sequence as the
colors shown in the figure. This implies that white light is spread out in a rainbow according to wavelength. Dispersion is
defined as the spreading of white light into its full spectrum of wavelengths. More technically, dispersion occurs whenever
the propagation of light depends on wavelength.

Visible light
A
r Al
Orange Green Violet
Infrared Red Yellow Blue Ultraviolet
800 700 600 500 400 300 A (nm)

Figure 1.21 Even though rainbows are associated with six colors, the rainbow is a continuous
distribution of colors according to wavelengths.

Any type of wave can exhibit dispersion. For example, sound waves, all types of electromagnetic waves, and water waves
can be dispersed according to wavelength. Dispersion may require special circumstances and can result in spectacular
displays such as in the production of a rainbow. This is also true for sound, since all frequencies ordinarily travel at the
same speed. If you listen to sound through a long tube, such as a vacuum cleaner hose, you can easily hear it dispersed by
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interaction with the tube. Dispersion, in fact, can reveal a great deal about what the wave has encountered that disperses
its wavelengths. The dispersion of electromagnetic radiation from outer space, for example, has revealed much about what
exists between the stars—the so-called interstellar medium.

’ Nick Moore’s video (https:/lopenstaxcollege.org/l/i21nickmoorevid) discusses dispersion of a pulse as he
taps a long spring. Follow his explanation as Moore replays the high-speed footage showing high frequency waves
outrunning the lower frequency waves.

Refraction is responsible for dispersion in rainbows and many other situations. The angle of refraction depends on the index
of refraction, as we know from Snell’s law. We know that the index of refraction n depends on the medium. But for a given
medium, n also depends on wavelength (Table 1.2). Note that for a given medium, n increases as wavelength decreases
and is greatest for violet light. Thus, violet light is bent more than red light, as shown for a prism in Figure 1.22(b). White
light is dispersed into the same sequence of wavelengths as seen in Figure 1.20 and Figure 1.21.

Medium Red Orange Yellow Green Blue Violet
(660 nm) (610 nm) (580 nm) (550 nm) (470 nm) (410 nm)
Water 1.331 1.332 1.333 1.335 1.338 1.342
Diamond 2.410 2.415 2.417 2.426 2.444 2.458
Glass, crown 1.512 1.514 1.518 1.519 1.524 1.530
Glass, flint 1.662 1.665 1.667 1.674 1.684 1.698
Polystyrene 1.488 1.490 1.492 1.493 1.499 1.506
Quartz, fused 1.455 1.456 1.458 1.459 1.462 1.468

Table 1.2 Index of Refraction n in Selected Media at Various Wavelengths

Glass prism
A Glass prism
J ) Incident ’;
Incident « >~ /,/ white light AN
light " ; A Red
(760 nm)
Pure A \
(380 nm)

(@) (b)
Figure 1.22 (a) A pure wavelength of light falls onto a prism and is refracted at both
surfaces. (b) White light is dispersed by the prism (shown exaggerated). Since the index
of refraction varies with wavelength, the angles of refraction vary with wavelength. A
sequence of red to violet is produced, because the index of refraction increases steadily
with decreasing wavelength.

Dispersion of White Light by Flint Glass

A beam of white light goes from air into flint glass at an incidence angle of 43.2° . What is the angle between the
red (660 nm) and violet (410 nm) parts of the refracted light?
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Air

Flint glass

violet

Strategy

Values for the indices of refraction for flint glass at various wavelengths are listed in Table 1.2. Use these values
for calculate the angle of refraction for each color and then take the difference to find the dispersion angle.

Solution
Applying the law of refraction for the red part of the beam

Ngir SIN 0 = Npeq SN0,

we can solve for the angle of refraction as

i sin Qair) — gin~! [(1.000) sin 43.2°

_ «in—1{"a — o
0,eq = sin ( 7 (1.662) ]—27.0.

red

Similarly, the angle of incidence for the violet part of the beam is

L= (Mair SO ) (1.000)sin43.2°]_ o
Drioter = sin ( Miolet )‘S“‘ [ 1.608) | = 204"

The difference between these two angles is
Ored — Ovioler = 27.0° —26.4° = 0.6°.

Significance

Although 0.6° may seem like a negligibly small angle, if this beam is allowed to propagate a long enough
distance, the dispersion of colors becomes quite noticeable.

@/ 1.4 Check Your Understanding In the preceding example, how much distance inside the block of flint glass
would the red and the violet rays have to progress before they are separated by 1.0 mm?

Rainbows are produced by a combination of refraction and reflection. You may have noticed that you see a rainbow only
when you look away from the Sun. Light enters a drop of water and is reflected from the back of the drop (Figure 1.23).
The light is refracted both as it enters and as it leaves the drop. Since the index of refraction of water varies with wavelength,
the light is dispersed, and a rainbow is observed (Figure 1.24(a)). (No dispersion occurs at the back surface, because the
law of reflection does not depend on wavelength.) The actual rainbow of colors seen by an observer depends on the myriad
rays being refracted and reflected toward the observer’s eyes from numerous drops of water. The effect is most spectacular
when the background is dark, as in stormy weather, but can also be observed in waterfalls and lawn sprinklers. The arc of a
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rainbow comes from the need to be looking at a specific angle relative to the direction of the Sun, as illustrated in part (b). If
two reflections of light occur within the water drop, another “secondary” rainbow is produced. This rare event produces an
arc that lies above the primary rainbow arc, as in part (c), and produces colors in the reverse order of the primary rainbow,
with red at the lowest angle and violet at the largest angle.

Water
droplet

Sunlight A

/

Refraction Reflection

Violet

Figure 1.23 A ray of light falling on this water drop enters and is
reflected from the back of the drop. This light is refracted and
dispersed both as it enters and as it leaves the drop.

0

@) (b)
Figure 1.24 (a) Different colors emerge in different directions, and so you must look at different locations to see the various
colors of a rainbow. (b) The arc of a rainbow results from the fact that a line between the observer and any point on the arc must
make the correct angle with the parallel rays of sunlight for the observer to receive the refracted rays. (c¢) Double rainbow. (credit
c: modification of work by “Nicholas”/Wikimedia Commons)

Dispersion may produce beautiful rainbows, but it can cause problems in optical systems. White light used to transmit
messages in a fiber is dispersed, spreading out in time and eventually overlapping with other messages. Since a laser
produces a nearly pure wavelength, its light experiences little dispersion, an advantage over white light for transmission of
information. In contrast, dispersion of electromagnetic waves coming to us from outer space can be used to determine the
amount of matter they pass through.
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1.6 | Huygens’s Principle

Learning Objectives

By the end of this section, you will be able to:

* Describe Huygens'’s principle

* Use Huygens'’s principle to explain the law of reflection
* Use Huygens'’s principle to explain the law of refraction
* Use Huygens'’s principle to explain diffraction

So far in this chapter, we have been discussing optical phenomena using the ray model of light. However, some phenomena
require analysis and explanations based on the wave characteristics of light. This is particularly true when the wavelength is
not negligible compared to the dimensions of an optical device, such as a slit in the case of diffraction. Huygens’s principle
is an indispensable tool for this analysis.

Figure 1.25 shows how a transverse wave looks as viewed from above and from the side. A light wave can be imagined
to propagate like this, although we do not actually see it wiggling through space. From above, we view the wave fronts (or
wave crests) as if we were looking down on ocean waves. The side view would be a graph of the electric or magnetic field.
The view from above is perhaps more useful in developing concepts about wave optics.

. JANVANVANN
VARV IR VIR

View from above View from side Overall view
Figure 1.25 A transverse wave, such as an electromagnetic light wave, as viewed from above and from
the side. The direction of propagation is perpendicular to the wave fronts (or wave crests) and is
represented by a ray.

The Dutch scientist Christiaan Huygens (1629-1695) developed a useful technique for determining in detail how and where
waves propagate. Starting from some known position, Huygens’s principle states that every point on a wave front is a
source of wavelets that spread out in the forward direction at the same speed as the wave itself. The new wave front is
tangent to all of the wavelets.

Figure 1.26 shows how Huygens’s principle is applied. A wave front is the long edge that moves, for example, with the
crest or the trough. Each point on the wave front emits a semicircular wave that moves at the propagation speed v. We can
draw these wavelets at a time t later, so that they have moved a distance s = v¢. The new wave front is a plane tangent to
the wavelets and is where we would expect the wave to be a time t later. Huygens’s principle works for all types of waves,
including water waves, sound waves, and light waves. It is useful not only in describing how light waves propagate but also
in explaining the laws of reflection and refraction. In addition, we will see that Huygens’s principle tells us how and where
light rays interfere.
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New wave front

J\5=vr

Old wave front

Figure 1.26 Huygens’s principle applied to a straight wave
front. Each point on the wave front emits a semicircular wavelet
that moves a distance s = v¢. The new wave front is a line

tangent to the wavelets.

Reflection

Figure 1.27 shows how a mirror reflects an incoming wave at an angle equal to the incident angle, verifying the law of
reflection. As the wave front strikes the mirror, wavelets are first emitted from the left part of the mirror and then from the
right. The wavelets closer to the left have had time to travel farther, producing a wave front traveling in the direction shown.

4

Y

Y

Incidence P .

\j
Reflection
Figure 1.27 Huygens’s principle applied to a plane wave front
striking a mirror. The wavelets shown were emitted as each
point on the wave front struck the mirror. The tangent to these
wavelets shows that the new wave front has been reflected at an
angle equal to the incident angle. The direction of propagation is
perpendicular to the wave front, as shown by the downward-
pointing arrows.

Refraction

The law of refraction can be explained by applying Huygens’s principle to a wave front passing from one medium to another
(Figure 1.28). Each wavelet in the figure was emitted when the wave front crossed the interface between the media. Since
the speed of light is smaller in the second medium, the waves do not travel as far in a given time, and the new wave front
changes direction as shown. This explains why a ray changes direction to become closer to the perpendicular when light
slows down. Snell’s law can be derived from the geometry in Figure 1.28 (Example 1.6).
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Ray
Wave front
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Surface
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Figure 1.28 Huygens’s principle applied to a plane wave front
traveling from one medium to another, where its speed is less. The
ray bends toward the perpendicular, since the wavelets have a lower
speed in the second medium.

Example 1.6

Deriving the Law of Refraction
By examining the geometry of the wave fronts, derive the law of refraction.
Strategy

Consider Figure 1.29, which expands upon Figure 1.28. It shows the incident wave front just reaching the
surface at point A, while point B is still well within medium 1. In the time Ar it takes for a wavelet from

B to reach B’ on the surface at speed v| =c/n;, a wavelet from A travels into medium 2 a distance of

AA’ =v,At, where v, = c/n,. Note that in this example, v, is slower than v, because n; < n,.

Incident

B wave front
Incident ray !

Surface Medium 1: n,

Medium 2: n,

Refracted
wave front

Refracted ray

Figure 1.29 Geometry of the law of refraction from medium 1 to medium 2.
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Solution

The segment on the surface AB’ is shared by both the triangle ABB’ inside medium 1 and the triangle AA’B’
inside medium 2. Note that from the geometry, the angle ZBAB’ is equal to the angle of incidence, 6.

Similarly, ZAB'A’ is 6, .

The length of AB’ is given in two ways as

,_ BB _ _AA’
AB T sinf  sinf,

Inverting the equation and substituting AA" = cAt/n, from above and similarly BB’ = cAt/n|, we obtain

sinf; _ sin6,
cAtin, = cAtiny

Cancellation of cAtr allows us to simplify this equation into the familiar form
ny sin@y = n, sin 6,.

Significance

Although the law of refraction was established experimentally by Snell and stated in Refraction, its derivation
here requires Huygens’s principle and the understanding that the speed of light is different in different media.

1.5 Check Your Understanding In Example 1.6, we had n; <n,. If n, were decreased such that
ny > ny and the speed of light in medium 2 is faster than in medium 1, what would happen to the length of

AA’? What would happen to the wave front A’B’ and the direction of the refracted ray?

’ This applet (https:/lopenstaxcollege.org/l/21walfedaniref) by Walter Fendt shows an animation of
reflection and refraction using Huygens’s wavelets while you control the parameters. Be sure to click on “Next
step” to display the wavelets. You can see the reflected and refracted wave fronts forming.

Diffraction

What happens when a wave passes through an opening, such as light shining through an open door into a dark room? For
light, we observe a sharp shadow of the doorway on the floor of the room, and no visible light bends around corners into
other parts of the room. When sound passes through a door, we hear it everywhere in the room and thus observe that sound
spreads out when passing through such an opening (Figure 1.30). What is the difference between the behavior of sound
waves and light waves in this case? The answer is that light has very short wavelengths and acts like a ray. Sound has
wavelengths on the order of the size of the door and bends around corners (for frequency of 1000 Hz,

a=£=330mhs _g33m
f 100057

about three times smaller than the width of the doorway).
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Figure 1.30 (a) Light passing through a doorway makes a sharp outline on the floor. Since light’s
wavelength is very small compared with the size of the door, it acts like a ray. (b) Sound waves bend
into all parts of the room, a wave effect, because their wavelength is similar to the size of the door.

If we pass light through smaller openings such as slits, we can use Huygens’s principle to see that light bends as sound does
(Figure 1.31). The bending of a wave around the edges of an opening or an obstacle is called diffraction. Diffraction is a
wave characteristic and occurs for all types of waves. If diffraction is observed for some phenomenon, it is evidence that the
phenomenon is a wave. Thus, the horizontal diffraction of the laser beam after it passes through the slits in Figure 1.31 is
evidence that light is a wave. You will learn about diffraction in much more detail in the chapter on Diffraction.

A
_..| |.._
Wave
fronts

N

Opening is about
the same size as A

Figure 1.31 Huygens’s principle applied to a plane wave front striking an opening. The edges
of the wave front bend after passing through the opening, a process called diffraction. The
amount of bending is more extreme for a small opening, consistent with the fact that wave
characteristics are most noticeable for interactions with objects about the same size as the

wavelength.
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1.7 | Polarization

Learning Objectives

By the end of this section, you will be able to:

» Explain the change in intensity as polarized light passes through a polarizing filter
* Calculate the effect of polarization by reflection and Brewster’s angle

* Describe the effect of polarization by scattering

* Explain the use of polarizing materials in devices such as LCDs

Polarizing sunglasses are familiar to most of us. They have a special ability to cut the glare of light reflected from water
or glass (Figure 1.32). They have this ability because of a wave characteristic of light called polarization. What is
polarization? How is it produced? What are some of its uses? The answers to these questions are related to the wave
character of light.

(@ (b)
Figure 1.32 These two photographs of a river show the effect of a polarizing filter in reducing glare in light reflected from the
surface of water. Part (b) of this figure was taken with a polarizing filter and part (a) was not. As a result, the reflection of clouds
and sky observed in part (a) is not observed in part (b). Polarizing sunglasses are particularly useful on snow and water. (credit a
and credit b: modifications of work by “Amithshs”/Wikimedia Commons)

Malus’s Law

Light is one type of electromagnetic (EM) wave. As noted in the previous chapter on Electromagnetic Waves
(http://lcnx.org/content/m58495/latest/) , EM waves are transverse waves consisting of varying electric and magnetic
fields that oscillate perpendicular to the direction of propagation (Figure 1.33). However, in general, there are no specific
directions for the oscillations of the electric and magnetic fields; they vibrate in any randomly oriented plane perpendicular
to the direction of propagation. Polarization is the attribute that a wave’s oscillations do have a definite direction relative
to the direction of propagation of the wave. (This is not the same type of polarization as that discussed for the separation of
charges.) Waves having such a direction are said to be polarized. For an EM wave, we define the direction of polarization
to be the direction parallel to the electric field. Thus, we can think of the electric field arrows as showing the direction of
polarization, as in Figure 1.33.


http://cnx.org/content/m58495/latest/
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Direction of
polarization

Figure 1.33 An EM wave, such as light, is a transverse wave.

- -
The electric ( E ) and magnetic ( B ) fields are

perpendicular to the direction of propagation. The direction of
polarization of the wave is the direction of the electric field.

To examine this further, consider the transverse waves in the ropes shown in Figure 1.34. The oscillations in one rope
are in a vertical plane and are said to be vertically polarized. Those in the other rope are in a horizontal plane and are
horizontally polarized. If a vertical slit is placed on the first rope, the waves pass through. However, a vertical slit blocks
the horizontally polarized waves. For EM waves, the direction of the electric field is analogous to the disturbances on the
ropes.

Direction of polarization ¢ = : f\ Direction of polarization

@) (b)
Figure 1.34 The transverse oscillations in one rope (a) are in a vertical plane, and those in the other rope (b)
are in a horizontal plane. The first is said to be vertically polarized, and the other is said to be horizontally
polarized. Vertical slits pass vertically polarized waves and block horizontally polarized waves.

The Sun and many other light sources produce waves that have the electric fields in random directions (Figure 1.35(a)).
Such light is said to be unpolarized, because it is composed of many waves with all possible directions of polarization.
Polaroid materials—which were invented by the founder of the Polaroid Corporation, Edwin Land—act as a polarizing slit
for light, allowing only polarization in one direction to pass through. Polarizing filters are composed of long molecules
aligned in one direction. If we think of the molecules as many slits, analogous to those for the oscillating ropes, we can
understand why only light with a specific polarization can get through. The axis of a polarizing filter is the direction along
which the filter passes the electric field of an EM wave.
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Polarizing filter

Random polarization
‘ E Polarization

direction
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Direction
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Y Direction of ray
(of propagation)

(@) (b)
Figure 1.35 The slender arrow represents a ray of unpolarized light. The bold arrows represent the direction of
polarization of the individual waves composing the ray. (a) If the light is unpolarized, the arrows point in all directions. (b)
A polarizing filter has a polarization axis that acts as a slit passing through electric fields parallel to its direction. The
direction of polarization of an EM wave is defined to be the direction of its electric field.

Figure 1.36 shows the effect of two polarizing filters on originally unpolarized light. The first filter polarizes the light
along its axis. When the axes of the first and second filters are aligned (parallel), then all of the polarized light passed by
the first filter is also passed by the second filter. If the second polarizing filter is rotated, only the component of the light
parallel to the second filter’s axis is passed. When the axes are perpendicular, no light is passed by the second filter.

E Polarizing filter E Polarizing filter

@) (b)

Polarizing filter

E

(©) (d)
Figure 1.36 The effect of rotating two polarizing filters, where the first polarizes the light. (a) All of the polarized light is
passed by the second polarizing filter, because its axis is parallel to the first. (b) As the second filter is rotated, only part of the
light is passed. (c) When the second filter is perpendicular to the first, no light is passed. (d) In this photograph, a polarizing filter
is placed above two others. Its axis is perpendicular to the filter on the right (dark area) and parallel to the filter on the left (lighter
area). (credit d: modification of work by P.P. Urone)
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Only the component of the EM wave parallel to the axis of a filter is passed. Let us call the angle between the direction of
polarization and the axis of a filter €. If the electric field has an amplitude E, then the transmitted part of the wave has an

amplitude E cos@ (Figure 1.37). Since the intensity of a wave is proportional to its amplitude squared, the intensity I of
the transmitted wave is related to the incident wave by

I=1Iycos® 0 (1.6)

where [ is the intensity of the polarized wave before passing through the filter. This equation is known as Malus’s law.

E Polarizing filter

Figure 1.37 A polarizing filter transmits only the component
of the wave parallel to its axis, reducing the intensity of any
light not polarized parallel to its axis.

’ This Open Source Physics animation (https://openstaxcollege.orgl/li21phyanielefie) helps you
visualize the electric field vectors as light encounters a polarizing filter. You can rotate the filter—note that the
angle displayed is in radians. You can also rotate the animation for 3D visualization.

Example 1.7

Calculating Intensity Reduction by a Polarizing Filter

What angle is needed between the direction of polarized light and the axis of a polarizing filter to reduce its
intensity by 90.0% ?

Strategy
When the intensity is reduced by 90.0%, it is 10.0% or 0.100 times its original value. That is, / = 0.100 /.

Using this information, the equation I = I cos? @ can be used to solve for the needed angle.

Solution

Solving the equation I = I cos? @ for cos 6 and substituting with the relationship between I and I, gives
cos ) = F: 1219070 _ 346,
1y Iy

6 =cos™! 0.3162 = 71.6°.

Solving for 6 yields
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Significance

A fairly large angle between the direction of polarization and the filter axis is needed to reduce the intensity to
10.0% of its original value. This seems reasonable based on experimenting with polarizing films. It is interesting
that at an angle of 45°, the intensity is reduced to 50% of its original value. Note that 71.6° is 18.4° from
reducing the intensity to zero, and that at an angle of 18.4°, the intensity is reduced to 90.0% of its original
value, giving evidence of symmetry.

1.6 Check Your Understanding Although we did not specify the direction in Example 1.7, let’s say the
polarizing filter was rotated clockwise by 71.6° to reduce the light intensity by 90.0% . What would be the

intensity reduction if the polarizing filter were rotated counterclockwise by 71.6°?

Polarization by Reflection

By now, you can probably guess that polarizing sunglasses cut the glare in reflected light, because that light is polarized.
You can check this for yourself by holding polarizing sunglasses in front of you and rotating them while looking at light
reflected from water or glass. As you rotate the sunglasses, you will notice the light gets bright and dim, but not completely
black. This implies the reflected light is partially polarized and cannot be completely blocked by a polarizing filter.

Figure 1.38 illustrates what happens when unpolarized light is reflected from a surface. Vertically polarized light is
preferentially refracted at the surface, so the reflected light is left more horizontally polarized. The reasons for this
phenomenon are beyond the scope of this text, but a convenient mnemonic for remembering this is to imagine the
polarization direction to be like an arrow. Vertical polarization is like an arrow perpendicular to the surface and is more
likely to stick and not be reflected. Horizontal polarization is like an arrow bouncing on its side and is more likely to be
reflected. Sunglasses with vertical axes thus block more reflected light than unpolarized light from other sources.

Unpolarized Reflected light
light partially polarized
parallel to surface

y

|
I
i?eflecting surface i 4 When 6, equals Brewster's angle,
o this angle is 90°
2
| b 4
l s
| \’\, Refracted light partially polarized
} 4 perpendicular to surface
I
!

Figure 1.38 Polarization by reflection. Unpolarized light has equal amounts of vertical and horizontal
polarization. After interaction with a surface, the vertical components are preferentially absorbed or refracted,
leaving the reflected light more horizontally polarized. This is akin to arrows striking on their sides and
bouncing off, whereas arrows striking on their tips go into the surface.

Since the part of the light that is not reflected is refracted, the amount of polarization depends on the indices of refraction of
the media involved. It can be shown that reflected light is completely polarized at an angle of reflection 8}, given by
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tan 6y, = % (1.7)

where 7 is the medium in which the incident and reflected light travel and 7, is the index of refraction of the medium
that forms the interface that reflects the light. This equation is known as Brewster’s law and 6y, is known as Brewster’s

angle, named after the nineteenth-century Scottish physicist who discovered them.

. This Open Source Physics animation (https://lopenstaxcollege.orgl/l/i21phyaniincref) shows incident,
reflected, and refracted light as rays and EM waves. Try rotating the animation for 3D visualization and also change
the angle of incidence. Near Brewster’s angle, the reflected light becomes highly polarized.

Example 1.8

Calculating Polarization by Reflection

(a) At what angle will light traveling in air be completely polarized horizontally when reflected from water? (b)
From glass?

Strategy
All we need to solve these problems are the indices of refraction. Air has n; = 1.00, water has n, = 1.333,
and crown glass has n2 = 1.520. The equation tan @}, = % can be directly applied to find 8}, in each case.
Solution
a. Putting the known quantities into the equation
v}
tan 9b = n_l
gives
tan 0y = 72 = 4333 — 1333

Solving for the angle 6, yields

0, = tan~! 1333 = 53.1°.

b. Similarly, for crown glass and air,

’

Ny 1.520 _
tan 0 = 100 1.52.

Thus,
0, = tan~! 1.52 = 56.7°.

Significance

Light reflected at these angles could be completely blocked by a good polarizing filter held with its axis vertical.
Brewster’s angle for water and air are similar to those for glass and air, so that sunglasses are equally effective
for light reflected from either water or glass under similar circumstances. Light that is not reflected is refracted
into these media. Therefore, at an incident angle equal to Brewster’s angle, the refracted light is slightly polarized
vertically. It is not completely polarized vertically, because only a small fraction of the incident light is reflected,
so a significant amount of horizontally polarized light is refracted.

This OpenStax book is available for free at http://cnx.org/content/col12067/1.3
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1.7 Check Your Understanding What happens at Brewster’s angle if the original incident light is already
100% vertically polarized?

Atomic Explanation of Polarizing Filters

Polarizing filters have a polarization axis that acts as a slit. This slit passes EM waves (often visible light) that have an
electric field parallel to the axis. This is accomplished with long molecules aligned perpendicular to the axis, as shown in
Figure 1.39.
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0:0°0920:°000 %9959 Long
° °°°° m molecule
009°9999:° 090 %999
@09°909295°%0997°9°,9
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Q30°0929:°0994 %9929
000°0929:° PP %9929
@003°90205°090 %9990
000°09°0:° PP 29999

Figure 1.39 Long molecules are aligned perpendicular to the
axis of a polarizing filter. In an EM wave, the component of the
electric field perpendicular to these molecules passes through
the filter, whereas the component parallel to the molecules is
absorbed.

Figure 1.40 illustrates how the component of the electric field parallel to the long molecules is absorbed. An EM wave
is composed of oscillating electric and magnetic fields. The electric field is strong compared with the magnetic field and
is more effective in exerting force on charges in the molecules. The most affected charged particles are the electrons, since
electron masses are small. If an electron is forced to oscillate, it can absorb energy from the EM wave. This reduces the field
in the wave and, hence, reduces its intensity. In long molecules, electrons can more easily oscillate parallel to the molecule
than in the perpendicular direction. The electrons are bound to the molecule and are more restricted in their movement
perpendicular to the molecule. Thus, the electrons can absorb EM waves that have a component of their electric field parallel
to the molecule. The electrons are much less responsive to electric fields perpendicular to the molecule and allow these
fields to pass. Thus, the axis of the polarizing filter is perpendicular to the length of the molecule.
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Figure 1.40 Diagram of an electron in a long molecule oscillating parallel to the molecule. The oscillation of the electron
absorbs energy and reduces the intensity of the component of the EM wave that is parallel to the molecule.

Polarization by Scattering

If you hold your polarizing sunglasses in front of you and rotate them while looking at blue sky, you will see the sky get
bright and dim. This is a clear indication that light scattered by air is partially polarized. Figure 1.41 helps illustrate how
this happens. Since light is a transverse EM wave, it vibrates the electrons of air molecules perpendicular to the direction
that it is traveling. The electrons then radiate like small antennae. Since they are oscillating perpendicular to the direction of
the light ray, they produce EM radiation that is polarized perpendicular to the direction of the ray. When viewing the light
along a line perpendicular to the original ray, as in the figure, there can be no polarization in the scattered light parallel to the
original ray, because that would require the original ray to be a longitudinal wave. Along other directions, a component of
the other polarization can be projected along the line of sight, and the scattered light is only partially polarized. Furthermore,
multiple scattering can bring light to your eyes from other directions and can contain different polarizations.

Molecule
Unpolarized sunlight Unpolarized light

Partially
polarized
light

i

Polarized L

light

Figure 1.41 Polarization by scattering. Unpolarized light scattering from air molecules shakes their electrons
perpendicular to the direction of the original ray. The scattered light therefore has a polarization perpendicular to the
original direction and none parallel to the original direction.
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Photographs of the sky can be darkened by polarizing filters, a trick used by many photographers to make clouds brighter by
contrast. Scattering from other particles, such as smoke or dust, can also polarize light. Detecting polarization in scattered
EM waves can be a useful analytical tool in determining the scattering source.

A range of optical effects are used in sunglasses. Besides being polarizing, sunglasses may have colored pigments embedded
in them, whereas others use either a nonreflective or reflective coating. A recent development is photochromic lenses,
which darken in the sunlight and become clear indoors. Photochromic lenses are embedded with organic microcrystalline
molecules that change their properties when exposed to UV in sunlight, but become clear in artificial lighting with no UV.

Liquid Crystals and Other Polarization Effects in Materials

Although you are undoubtedly aware of liquid crystal displays (LCDs) found in watches, calculators, computer screens,
cellphones, flat screen televisions, and many other places, you may not be aware that they are based on polarization. Liquid
crystals are so named because their molecules can be aligned even though they are in a liquid. Liquid crystals have the
property that they can rotate the polarization of light passing through them by 90° . Furthermore, this property can be turned

off by the application of a voltage, as illustrated in Figure 1.42. It is possible to manipulate this characteristic quickly and
in small, well-defined regions to create the contrast patterns we see in so many LCD devices.

In flat screen LCD televisions, a large light is generated at the back of the TV. The light travels to the front screen through
millions of tiny units called pixels (picture elements). One of these is shown in Figure 1.42(a) and (b). Each unit has three
cells, with red, blue, or green filters, each controlled independently. When the voltage across a liquid crystal is switched off,
the liquid crystal passes the light through the particular filter. We can vary the picture contrast by varying the strength of the
voltage applied to the liquid crystal.

LCD-no voltage,
‘5_ 90° rotation

Discover learning materials in an Open
Space.
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(b) (c)
Figure 1.42 (a) Polarized light is rotated 90° by a liquid crystal and then passed by a polarizing filter that has its axis

perpendicular to the direction of the original polarization. (b) When a voltage is applied to the liquid crystal, the polarized light is
not rotated and is blocked by the filter, making the region dark in comparison with its surroundings. (c) LCDs can be made color
specific, small, and fast enough to use in laptop computers and TVs.

Many crystals and solutions rotate the plane of polarization of light passing through them. Such substances are said to be
optically active. Examples include sugar water, insulin, and collagen (Figure 1.43). In addition to depending on the type
of substance, the amount and direction of rotation depend on several other factors. Among these is the concentration of the
substance, the distance the light travels through it, and the wavelength of light. Optical activity is due to the asymmetrical
shape of molecules in the substance, such as being helical. Measurements of the rotation of polarized light passing through
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substances can thus be used to measure concentrations, a standard technique for sugars. It can also give information on the
shapes of molecules, such as proteins, and factors that affect their shapes, such as temperature and pH.

5 Polarizing filter

Optically
A AxiS active

substance

Analyzer

Figure 1.43 Optical activity is the ability of some substances to rotate the
plane of polarization of light passing through them. The rotation is detected
with a polarizing filter or analyzer.

Glass and plastic become optically active when stressed: the greater the stress, the greater the effect. Optical stress analysis
on complicated shapes can be performed by making plastic models of them and observing them through crossed filters, as
seen in Figure 1.44. It is apparent that the effect depends on wavelength as well as stress. The wavelength dependence is
sometimes also used for artistic purposes.

Figure 1.44 Optical stress analysis of a plastic lens placed
between crossed polarizers. (credit: “Infopro”/Wikimedia
Commons)

Another interesting phenomenon associated with polarized light is the ability of some crystals to split an unpolarized beam
of light into two polarized beams. This occurs because the crystal has one value for the index of refraction of polarized light
but a different value for the index of refraction of light polarized in the perpendicular direction, so that each component
has its own angle of refraction. Such crystals are said to be birefringent, and, when aligned properly, two perpendicularly
polarized beams will emerge from the crystal (Figure 1.45). Birefringent crystals can be used to produce polarized beams
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from unpolarized light. Some birefringent materials preferentially absorb one of the polarizations. These materials are called

dichroic and can produce polarization by this preferential absorption. This is fundamentally how polarizing filters and other
polarizers work.

Unpolarized
light Birefringent crystal

7 x|\ a

Two perpendicularly

B b f T polarized beams
\\ l

)

’

y
Figure 1.45 Birefringent materials, such as the common mineral calcite, split unpolarized beams of light into two with two
different values of index of refraction.
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CHAPTER 1 REVIEW

KEY TERMS

birefringent refers to crystals that split an unpolarized beam of light into two beams
Brewster’s angle angle of incidence at which the reflected light is completely polarized

Brewster’s law ,, Oy = n—f, where 7, is the medium in which the incident and reflected light travel and 7, is the

index of refraction of the medium that forms the interface that reflects the light

corner reflector object consisting of two (or three) mutually perpendicular reflecting surfaces, so that the light that enters
is reflected back exactly parallel to the direction from which it came

critical angle incident angle that produces an angle of refraction of 90°

direction of polarization direction parallel to the electric field for EM waves
dispersion spreading of light into its spectrum of wavelengths

fiber optics field of study of the transmission of light down fibers of plastic or glass, applying the principle of total
internal reflection

geometric optics part of optics dealing with the ray aspect of light
horizontally polarized oscillations are in a horizontal plane

Huygens’s principle every point on a wave front is a source of wavelets that spread out in the forward direction at the
same speed as the wave itself; the new wave front is a plane tangent to all of the wavelets

index of refraction for a material, the ratio of the speed of light in a vacuum to that in a material
law of reflection angle of reflection equals the angle of incidence

law of refraction when a light ray crosses from one medium to another, it changes direction by an amount that depends
on the index of refraction of each medium and the sines of the angle of incidence and angle of refraction

Malus’s law where [ is the intensity of the polarized wave before passing through the filter

optically active substances that rotate the plane of polarization of light passing through them

polarization attribute that wave oscillations have a definite direction relative to the direction of propagation of the wave
polarized refers to waves having the electric and magnetic field oscillations in a definite direction

ray straight line that originates at some point

refraction changing of a light ray’s direction when it passes through variations in matter

total internal reflection phenomenon at the boundary between two media such that all the light is reflected and no
refraction occurs

unpolarized refers to waves that are randomly polarized
vertically polarized oscillations are in a vertical plane

wave optics part of optics dealing with the wave aspect of light

KEY EQUATIONS

Speed of light ¢ =2.99792458 x 10® m/s ~ 3.00 x 10% m/s
Index of refraction n= %
Law of reflection 0, =0,
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Law of refraction (Snell’s law) nq sin@; =n, sinf,

Critical angle

.1 (n
0. = sin l(n—?) forny > n,

Malus’s law I=1,cos’ 0

Brewster’s law

n
tan gb = n—?

SUMMARY

1.1 The Propagation of Light

The speed of light in a vacuum is ¢ = 2.99792458 x 108 m/s ~ 3.00 x 10% m/s.
The index of refraction of a material is n = ¢/v, where v is the speed of light in a material and c is the speed of
light in a vacuum.

The ray model of light describes the path of light as straight lines. The part of optics dealing with the ray aspect of
light is called geometric optics.

Light can travel in three ways from a source to another location: (1) directly from the source through empty space;
(2) through various media; and (3) after being reflected from a mirror.

1.2 The Law of Reflection

When a light ray strikes a smooth surface, the angle of reflection equals the angle of incidence.
A mirror has a smooth surface and reflects light at specific angles.

Light is diffused when it reflects from a rough surface.

1.3 Refraction

The change of a light ray’s direction when it passes through variations in matter is called refraction.

The law of refraction, also called Snell’s law, relates the indices of refraction for two media at an interface to the
change in angle of a light ray passing through that interface.

1.4 Total Internal Reflection

The incident angle that produces an angle of refraction of 90° is called the critical angle.

Total internal reflection is a phenomenon that occurs at the boundary between two media, such that if the incident
angle in the first medium is greater than the critical angle, then all the light is reflected back into that medium.

Fiber optics involves the transmission of light down fibers of plastic or glass, applying the principle of total internal
reflection.

Cladding prevents light from being transmitted between fibers in a bundle.

Diamonds sparkle due to total internal reflection coupled with a large index of refraction.

1.5 Dispersion

The spreading of white light into its full spectrum of wavelengths is called dispersion.

Rainbows are produced by a combination of refraction and reflection, and involve the dispersion of sunlight into a
continuous distribution of colors.

Dispersion produces beautiful rainbows but also causes problems in certain optical systems.
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1.6 Huygens’s Principle
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¢ According to Huygens’s principle, every point on a wave front is a source of wavelets that spread out in the forward
direction at the same speed as the wave itself. The new wave front is tangent to all of the wavelets.

* A mirror reflects an incoming wave at an angle equal to the incident angle, verifying the law of reflection.

¢ The law of refraction can be explained by applying Huygens’s principle to a wave front passing from one medium

to another.

¢ The bending of a wave around the edges of an opening or an obstacle is called diffraction.

1.7 Polarization

¢ Polarization is the attribute that wave oscillations have a definite direction relative to the direction of propagation
of the wave. The direction of polarization is defined to be the direction parallel to the electric field of the EM wave.

¢ Unpolarized light is composed of many rays having random polarization directions.

¢ Unpolarized light can be polarized by passing it through a polarizing filter or other polarizing material. The process
of polarizing light decreases its intensity by a factor of 2.

» The intensity, I, of polarized light after passing through a polarizing filter is I = I cos® 6, where Iy is the

incident intensity and @ is the angle between the direction of polarization and the axis of the filter.

¢ Polarization is also produced by reflection.

* Brewster’s law states that reflected light is completely polarized at the angle of reflection 8,,, known as Brewster’s

angle.

* Polarization can also be produced by scattering.

¢ Several types of optically active substances rotate the direction of polarization of light passing through them.

CONCEPTUAL QUESTIONS

1.1 The Propagation of Light

1. Under what conditions can light be modeled like a ray?
Like a wave?

2. Why is the index of refraction always greater than or
equal to 1?

3. Does the fact that the light flash from lightning reaches
you before its sound prove that the speed of light is
extremely large or simply that it is greater than the speed
of sound? Discuss how you could use this effect to get an
estimate of the speed of light.

4. Speculate as to what physical process might be
responsible for light traveling more slowly in a medium
than in a vacuum.

1.2 The Law of Reflection

5. Using the law of reflection, explain how powder takes
the shine off of a person’s nose. What is the name of the
optical effect?
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1.3 Refraction

6. Diffusion by reflection from a rough surface is
described in this chapter. Light can also be diffused by
refraction. Describe how this occurs in a specific situation,
such as light interacting with crushed ice.

7. Will light change direction toward or away from the
perpendicular when it goes from air to water? Water to
glass? Glass to air?

8. Explain why an object in water always appears to be at
a depth shallower than it actually is?

9. Explain why a person’s legs appear very short when
wading in a pool. Justify your explanation with a ray
diagram showing the path of rays from the feet to the eye
of an observer who is out of the water.

10. Explain why an oar that is partially submerged in
water appears bent.
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1.4 Total Internal Reflection

11. A ring with a colorless gemstone is dropped into water.
The gemstone becomes invisible when submerged. Can it
be a diamond? Explain.

12. The most common type of mirage is an illusion that
light from faraway objects is reflected by a pool of water
that is not really there. Mirages are generally observed in
deserts, when there is a hot layer of air near the ground.
Given that the refractive index of air is lower for air at
higher temperatures, explain how mirages can be formed.

13. How can you use total internal reflection to estimate
the index of refraction of a medium?

1.5 Dispersion

14. Is it possible that total internal reflection plays a role
in rainbows? Explain in terms of indices of refraction and
angles, perhaps referring to that shown below. Some of
us have seen the formation of a double rainbow; is it
physically possible to observe a triple rainbow?

15. A high-quality diamond may be quite clear and
colorless, transmitting all visible wavelengths with little
absorption. Explain how it can sparkle with flashes of
brilliant color when illuminated by white light.

1.6 Huygens’s Principle

16. How do wave effects depend on the size of the object
with which the wave interacts? For example, why does
sound bend around the corner of a building while light does
not?

PROBLEMS

1.1 The Propagation of Light
26. What is the speed of light in water? In glycerine?

27. What is the speed of light in air? In crown glass?

a7

17. Does Huygens’s principle apply to all types of waves?

18. If diffraction is observed for some phenomenon, it is
evidence that the phenomenon is a wave. Does the reverse
hold true? That is, if diffraction is not observed, does that
mean the phenomenon is not a wave?

1.7 Polarization

19. Can a sound wave in air be polarized? Explain.

20. No light passes through two perfect polarizing filters
with perpendicular axes. However, if a third polarizing
filter is placed between the original two, some light can
pass. Why is this? Under what circumstances does most of
the light pass?

21. Explain what happens to the energy carried by light
that it is dimmed by passing it through two crossed
polarizing filters.

22. When particles scattering light are much smaller than
its wavelength, the amount of scattering is proportional to
1
A
than large A ? How does this relate to the fact that the sky

is blue?

. Does this mean there is more scattering for small 1

23. Using the information given in the preceding question,
explain why sunsets are red.

24. When light is reflected at Brewster’s angle from a
smooth surface, it is 100% polarized parallel to the
surface. Part of the light will be refracted into the surface.
Describe how you would do an experiment to determine
the polarization of the refracted light. What direction would
you expect the polarization to have and would you expect it
tobe 100% ?

25. If you lie on a beach looking at the water with your
head tipped slightly sideways, your polarized sunglasses do
not work very well. Why not?

28. Calculate the index of refraction for a medium in
which the speed of light is 2.012 X 10% m/s, and identify
the most likely substance based on Table 1.1.
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29. In what substance in Table 1.1 is the speed of light
2.290 x 10® m/s?

30. There was a major collision of an asteroid with the
Moon in medieval times. It was described by monks at
Canterbury Cathedral in England as a red glow on and
around the Moon. How long after the asteroid hit the Moon,

which is 3.84 x 10° km away, would the light first arrive
on Earth?

31. Components of some computers communicate with
each other through optical fibers having an index of
refraction n = 1.55. What time in nanoseconds is required

for a signal to travel 0.200 m through such a fiber?

32. Compare the time it takes for light to travel 1000 m on
the surface of Earth and in outer space.

33. How far does light travel underwater during a time
interval of 1.50x 1070 s?

1.2 The Law of Reflection

34. Suppose a man stands in front of a mirror as shown
below. His eyes are 1.65 m above the floor and the top of
his head is 0.13 m higher. Find the height above the floor
of the top and bottom of the smallest mirror in which he
can see both the top of his head and his feet. How is this
distance related to the man’s height?
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35. Show that when light reflects from two mirrors that
meet each other at a right angle, the outgoing ray is parallel
to the incoming ray, as illustrated below.

\\.
\
\

36. On the Moon’s surface, lunar astronauts placed a
corner reflector, off which a laser beam is periodically
reflected. The distance to the Moon is calculated from the
round-trip time. What percent correction is needed to
account for the delay in time due to the slowing of light
in Earth’s atmosphere? Assume the distance to the Moon

is precisely 3.84 X 10® m and Earth’s atmosphere (which
varies in density with altitude) is equivalent to a layer

30.0 km thick with a constant index of refraction
n = 1.000293.

37. A flat mirror is neither converging nor diverging. To
prove this, consider two rays originating from the same
point and diverging at an angle 6 (see below). Show that
after striking a plane mirror, the angle between their
directions remains 6.

1.3 Refraction

Unless otherwise specified, for problems 1 through 10, the
indices of refraction of glass and water should be taken to
be 1.50 and 1.333, respectively.
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38. A light beam in air has an angle of incidence of 35°

at the surface of a glass plate. What are the angles of
reflection and refraction?

39. A light beam in air is incident on the surface of a pond,
making an angle of 20° with respect to the surface. What

are the angles of reflection and refraction?

40. When a light ray crosses from water into glass, it
emerges at an angle of 30° with respect to the normal of

the interface. What is its angle of incidence?

41. A pencil flashlight submerged in water sends a light
beam toward the surface at an angle of incidence of 30°.

What is the angle of refraction in air?

42. Light rays from the Sun make a 30° angle to the

vertical when seen from below the surface of a body of
water. At what angle above the horizon is the Sun?

43. The path of a light beam in air goes from an angle of
incidence of 35° to an angle of refraction of 22° when it

enters a rectangular block of plastic. What is the index of
refraction of the plastic?

44. A scuba diver training in a pool looks at his instructor
as shown below. What angle does the ray from the
instructor’s face make with the perpendicular to the water
at the point where the ray enters? The angle between the ray
in the water and the perpendicular to the water is 25.0°.

45. (a) Using information in the preceding problem, find
the height of the instructor’s head above the water, noting
that you will first have to calculate the angle of incidence.
(b) Find the apparent depth of the diver’s head below water
as seen by the instructor.
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1.4 Total Internal Reflection

46. Verify that the critical angle for light going from water
to air is 48.6°, as discussed at the end of Example 1.4,

regarding the critical angle for light traveling in a
polystyrene (a type of plastic) pipe surrounded by air.

47. (a) At the end of Example 1.4, it was stated that the
critical angle for light going from diamond to air is 24.4°.
Verify this. (b) What is the critical angle for light going
from zircon to air?

48. An optical fiber uses flint glass clad with crown glass.
What is the critical angle?

49. At what minimum angle will you get total internal
reflection of light traveling in water and reflected from ice?

50. Suppose you are using total internal reflection to make
an efficient corner reflector. If there is air outside and the
incident angle is 45.0°, what must be the minimum index
of refraction of the material from which the reflector is
made?

51. You can determine the index of refraction of a
substance by determining its critical angle. (a) What is the
index of refraction of a substance that has a critical angle
of 68.4° when submerged in water? What is the substance,

based on Table 1.1? (b) What would the critical angle be
for this substance in air?

52. A ray of light, emitted beneath the surface of an
unknown liquid with air above it, undergoes total internal
reflection as shown below. What is the index of refraction
for the liquid and its likely identification?
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53. Light rays fall normally on the vertical surface of
the glass prism (rn = 1.50) shown below. (a) What is the

largest value for ¢ such that the ray is totally reflected at

the slanted face? (b) Repeat the calculation of part (a) if the
prism is immersed in water.

1.5 Dispersion

54. (a) What is the ratio of the speed of red light to violet
light in diamond, based on Table 1.2? (b) What is this ratio
in polystyrene? (c) Which is more dispersive?

55. A beam of white light goes from air into water at an
incident angle of 75.0°. At what angles are the red (660

nm) and violet (410 nm) parts of the light refracted?

56. By how much do the critical angles for red (660 nm)
and violet (410 nm) light differ in a diamond surrounded by
air?

57. (a) A narrow beam of light containing yellow (580
nm) and green (550 nm) wavelengths goes from
polystyrene to air, striking the surface at a 30.0° incident
angle. What is the angle between the colors when they
emerge? (b) How far would they have to travel to be
separated by 1.00 mm?

58. A parallel beam of light containing orange (610 nm)
and violet (410 nm) wavelengths goes from fused quartz
to water, striking the surface between them at a 60.0°
incident angle. What is the angle between the two colors in
water?

59. A ray of 610-nm light goes from air into fused quartz
at an incident angle of 55.0°. At what incident angle must
470 nm light enter flint glass to have the same angle of
refraction?
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60. A narrow beam of light containing red (660 nm) and
blue (470 nm) wavelengths travels from air through a
1.00-cm-thick flat piece of crown glass and back to air
again. The beam strikes at a 30.0° incident angle. (a) At
what angles do the two colors emerge? (b) By what distance
are the red and blue separated when they emerge?

61. A narrow beam of white light enters a prism made of
crown glass at a 45.0° incident angle, as shown below. At

what angles, 0 and 6y, do the red (660 nm) and violet

(410 nm) components of the light emerge from the prism?

e

.'600.

Incident  45° T~/

light Red (660 nm)

o N Violet
60
/ % (410 nm)

..-\60o

1.7 Polarization

62. What angle is needed between the direction of
polarized light and the axis of a polarizing filter to cut its
intensity in half?

63. The angle between the axes of two polarizing filters
is 45.0°. By how much does the second filter reduce the

intensity of the light coming through the first?

64. Two polarizing sheets P; and P, are placed together

with their transmission axes oriented at an angle 6 to
each other. What is € when only 25% of the maximum
transmitted light intensity passes through them?

65. Suppose that in the preceding problem the light
incident on P is unpolarized. At the determined value of
6, what fraction of the incident light passes through the
combination?

66. If you have completely polarized light of intensity
150 W/m? , what will its intensity be after passing through
a polarizing filter with its axis at an 89.0° angle to the
light’s polarization direction?

67. What angle would the axis of a polarizing filter need
to make with the direction of polarized light of intensity

1.00 kW/m? to reduce the intensity to 10.0 W/m??
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68. At the end of Example 1.7, it was stated that the
intensity of polarized light is reduced to 90.0% of its
original value by passing through a polarizing filter with its
axis at an angle of 18.4° to the direction of polarization.

Verify this statement.

69. Show that if you have three polarizing filters, with the
second at an angle of 45.0° to the first and the third at an

angle of 90.0° to the first, the intensity of light passed by
the first will be reduced to 25.0% of its value. (This is in

contrast to having only the first and third, which reduces the
intensity to zero, so that placing the second between them
increases the intensity of the transmitted light.)

70. Three polarizing sheets are placed together such that
the transmission axis of the second sheet is oriented at
25.0° to the axis of the first, whereas the transmission

axis of the third sheet is oriented at 40.0° (in the same

sense) to the axis of the first. What fraction of the intensity
of an incident unpolarized beam is transmitted by the
combination?

ADDITIONAL PROBLEMS

76. From his measurements, Roemer estimated that it took
22 min for light to travel a distance equal to the diameter
of Earth’s orbit around the Sun. (a) Use this estimate along
with the known diameter of Earth’s orbit to obtain a rough
value of the speed of light. (b) Light actually takes 16.5 min
to travel this distance. Use this time to calculate the speed
of light.

77. Cornu performed Fizeau’s measurement of the speed
of light using a wheel of diameter 4.00 cm that contained
180 teeth. The distance from the wheel to the mirror was
22.9 km. Assuming he measured the speed of light
accurately, what was the angular velocity of the wheel?

78. Suppose you have an unknown clear substance
immersed in water, and you wish to identify it by finding
its index of refraction. You arrange to have a beam of light
enter it at an angle of 45.0°, and you observe the angle of
refraction to be 40.3°. What is the index of refraction of

the substance and its likely identity?
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71. In order to rotate the polarization axis of a beam of
linearly polarized light by 90.0°, a student places sheets

P, and P, with their transmission axes at 45.0° and

90.0°, respectively, to the beam’s axis of polarization. (a)
What fraction of the incident light passes through P; and
(b) through the combination? (c) Repeat your calculations
for part (b) for transmission-axis angles of 30.0° and
90.0°, respectively.

72. Tt is found that when light traveling in water falls on
a plastic block, Brewster’s angle is 50.0°. What is the

refractive index of the plastic?

73. At what angle will light reflected from diamond be
completely polarized?

74. What is Brewster’s angle for light traveling in water
that is reflected from crown glass?

75. A scuba diver sees light reflected from the water’s
surface. At what angle will this light be completely
polarized?

79. Shown below is a ray of light going from air through
crown glass into water, such as going into a fish tank.
Calculate the amount the ray is displaced by the glass
(Ax), given that the incident angle is 40.0° and the glass

is 1.00 cm thick.

80. Considering the previous problem, show that €5 is the

same as it would be if the second medium were not present.

81. At what angle is light inside crown glass completely
polarized when reflected from water, as in a fish tank?
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82. Light reflected at 55.6° from a window is completely

polarized. What is the window’s index of refraction and the
likely substance of which it is made?

83. (a) Light reflected at 62.5° from a gemstone in a ring
is completely polarized. Can the gem be a diamond? (b) At
what angle would the light be completely polarized if the
gem was in water?

84. If 0 is Brewster’s angle for light reflected from the

top of an interface between two substances, and 0]; is

Brewster’s angle for light reflected from below, prove that
0y, + 6, = 90.0°.

85. Unreasonable results Suppose light travels from
water to another substance, with an angle of incidence of
10.0° and an angle of refraction of 14.9°. (a) What is

the index of refraction of the other substance? (b) What is
unreasonable about this result? (c) Which assumptions are
unreasonable or inconsistent?

CHALLENGE PROBLEMS

90. Light shows staged with lasers use moving mirrors to
swing beams and create colorful effects. Show that a light
ray reflected from a mirror changes direction by 26 when

the mirror is rotated by an angle 6.

91. Consider sunlight entering Earth’s atmosphere at
sunrise and sunset—that is, at a 90.0° incident angle.

Taking the boundary between nearly empty space and the
atmosphere to be sudden, calculate the angle of refraction
for sunlight. This lengthens the time the Sun appears to
be above the horizon, both at sunrise and sunset. Now
construct a problem in which you determine the angle of
refraction for different models of the atmosphere, such as
various layers of varying density. Your instructor may wish
to guide you on the level of complexity to consider and on
how the index of refraction varies with air density.

This OpenStax book is available for free at http://cnx.org/content/col12067/1.3

Chapter 1 | The Nature of Light

86. Unreasonable results Light traveling from water to
a gemstone strikes the surface at an angle of 80.0° and
has an angle of refraction of 15.2°. (a) What is the speed
of light in the gemstone? (b) What is unreasonable about
this result? (c) Which assumptions are unreasonable or
inconsistent?

87. If a polarizing filter reduces the intensity of polarized
light to 50.0% of its original value, by how much are the

electric and magnetic fields reduced?

88. Suppose you put on two pairs of polarizing sunglasses
with their axes at an angle of 15.0°. How much longer will
it take the light to deposit a given amount of energy in your
eye compared with a single pair of sunglasses? Assume the
lenses are clear except for their polarizing characteristics.

89. (@) On a day when the intensity of sunlight is
1.00 kW/m? , a circular lens 0.200 m in diameter focuses
light onto water in a black beaker. Two polarizing sheets
of plastic are placed in front of the lens with their axes at
an angle of 20.0°. Assuming the sunlight is unpolarized
and the polarizers are 100% efficient, what is the initial
rate of heating of the water in °C/s, assuming it is 80.0%
absorbed? The aluminum beaker has a mass of 30.0 grams

and contains 250 grams of water. (b) Do the polarizing
filters get hot? Explain.

92. A light ray entering an optical fiber surrounded by air
is first refracted and then reflected as shown below. Show
that if the fiber is made from crown glass, any incident ray
will be totally internally reﬂected.
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93. A light ray falls on the left face of a prism (see below)
at the angle of incidence € for which the emerging beam

has an angle of refraction € at the right face. Show that the
index of refraction n of the glass prism is given by
sin %(a +¢)
n= —1
sin 545
where ¢ is the vertex angle of the prism and « is the angle

through which the beam has been deviated. If @ = 37.0°
and the base angles of the prism are each 50.0°, what is

n?

53

94. If the apex angle ¢ in the previous problem is 20.0°

and n = 1.50, what is the value of a?

95. The light incident on polarizing sheet P; is linearly

polarized at an angle of 30.0° with respect to the
transmission axis of P;. Sheet P, is placed so that its

axis is parallel to the polarization axis of the incident light,
that is, also at 30.0° with respect to P . (a) What fraction

of the incident light passes through P, ? (b) What fraction

of the incident light is passed by the combination? (c)
By rotating P,, a maximum in transmitted intensity is

obtained. What is the ratio of this maximum intensity to
the intensity of transmitted light when P, is at 30.0° with

respectto P ?

96. Prove that if I is the intensity of light transmitted by
two polarizing filters with axes at an angle 6 and I’ is

the intensity when the axes are at an angle 90.0° — 6,

then I+1 = I, the original intensity. (Hint: Use the

trigonometric ~ identities  c0s 90.0° — 0 =sind and

cos? O +sin’ 0 = 1.)
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2 | GEOMETRIC OPTICS
AND IMAGE FORMATION

- e B

Figre 2.1 Cloud Gate is a public scuipture .by Anish_l-(ap(-)or located in Millennium Park in Chicago. Its stainless steel plates
reflect and distort images around it, including the Chicago skyline. Dedicated in 2006, it has become a popular tourist attraction,
illustrating how art can use the principles of physical optics to startle and entertain. (credit: modification of work by Dhilung
Kirat)

Chapter Outline

2.1 Images Formed by Plane Mirrors
2.2 Spherical Mirrors

2.3 Images Formed by Refraction
2.4 Thin Lenses

2.5 The Eye

2.6 The Camera

2.7 The Simple Magnifier

2.8 Microscopes and Telescopes

Introduction

This chapter introduces the major ideas of geometric optics, which describe the formation of images due to reflection and
refraction. It is called “geometric” optics because the images can be characterized using geometric constructions, such as
ray diagrams. We have seen that visible light is an electromagnetic wave; however, its wave nature becomes evident only
when light interacts with objects with dimensions comparable to the wavelength (about 500 nm for visible light). Therefore,
the laws of geometric optics only apply to light interacting with objects much larger than the wavelength of the light.
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2.1 | Images Formed by Plane Mirrors

Learning Objectives

By the end of this section, you will be able to:

» Describe how an image is formed by a plane mirror.
» Distinguish between real and virtual images.
* Find the location and characterize the orientation of an image created by a plane mirror.

You only have to look as far as the nearest bathroom to find an example of an image formed by a mirror. Images in a plane
mirror are the same size as the object, are located behind the mirror, and are oriented in the same direction as the object
(i.e., “upright”).

To understand how this happens, consider Figure 2.2. Two rays emerge from point P, strike the mirror, and reflect into
the observer’s eye. Note that we use the law of reflection to construct the reflected rays. If the reflected rays are extended
backward behind the mirror (see dashed lines in Figure 2.2), they seem to originate from point Q. This is where the image
of point P is located. If we repeat this process for point P’ , we obtain its image at point Q" . You should convince yourself

by using basic geometry that the image height (the distance from Q to Q') is the same as the object height (the distance

from P to P’). By forming images of all points of the object, we obtain an upright image of the object behind the mirror.

il
Figure 2.2 Two light rays originating from point P on an object are reflected by a flat mirror
into the eye of an observer. The reflected rays are obtained by using the law of reflection.
Extending these reflected rays backward, they seem to come from point Q behind the mirror,
which is where the virtual image is located. Repeating this process for point P’ gives the

image point Q' . The image height is thus the same as the object height, the image is upright,
and the object distance d,, is the same as the image distance d; . (credit: modification of work

by Kevin Dufendach)

Notice that the reflected rays appear to the observer to come directly from the image behind the mirror. In reality, these rays
come from the points on the mirror where they are reflected. The image behind the mirror is called a virtual image because
it cannot be projected onto a screen—the rays only appear to originate from a common point behind the mirror. If you walk
behind the mirror, you cannot see the image, because the rays do not go there. However, in front of the mirror, the rays
behave exactly as if they come from behind the mirror, so that is where the virtual image is located.

Later in this chapter, we discuss real images; a real image can be projected onto a screen because the rays physically go
through the image. You can certainly see both real and virtual images. The difference is that a virtual image cannot be
projected onto a screen, whereas a real image can.
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Locating an Image in a Plane Mirror

The law of reflection tells us that the angle of incidence is the same as the angle of reflection. Applying this to triangles PAB
and QAB in Figure 2.2 and using basic geometry shows that they are congruent triangles. This means that the distance PB
from the object to the mirror is the same as the distance BQ from the mirror to the image. The object distance (denoted
d, ) is the distance from the mirror to the object (or, more generally, from the center of the optical element that creates its

image). Similarly, the image distance (denoted d;) is the distance from the mirror to the image (or, more generally, from

the center of the optical element that creates it). If we measure distances from the mirror, then the object and image are in
opposite directions, so for a plane mirror, the object and image distances should have the opposite signs:

dO = _di' (2.1)

An extended object such as the container in Figure 2.2 can be treated as a collection of points, and we can apply the
method above to locate the image of each point on the extended object, thus forming the extended image.

Multiple Images

If an object is situated in front of two mirrors, you may see images in both mirrors. In addition, the image in the first mirror
may act as an object for the second mirror, so the second mirror may form an image of the image. If the mirrors are placed
parallel to each other and the object is placed at a point other than the midpoint between them, then this process of image-
of-an-image continues without end, as you may have noticed when standing in a hallway with mirrors on each side. This is
shown in Figure 2.3, which shows three images produced by the blue object. Notice that each reflection reverses front and
back, just like pulling a right-hand glove inside out produces a left-hand glove (this is why a reflection of your right hand
is a left hand). Thus, the fronts and backs of images 1 and 2 are both inverted with respect to the object, and the front and
back of image 3 is inverted with respect to image 2, which is the object for image 3.

Mir[or 1 Mirr_or 2

//

e Image 2
Image 3 mage 1 ‘m .

e 4 -
*"" - . *7"<: ~Q’

~_ |

Figure 2.3 Two parallel mirrors can produce, in theory, an infinite number of images of an object
placed off center between the mirrors. Three of these images are shown here. The front and back of
each image is inverted with respect to its object. Note that the colors are only to identify the images.
For normal mirrors, the color of an image is essentially the same as that of its object.

You may have noticed that image 3 is smaller than the object, whereas images 1 and 2 are the same size as the object. The
ratio of the image height with respect to the object height is called magnification. More will be said about magnification in
the next section.

Infinite reflections may terminate. For instance, two mirrors at right angles form three images, as shown in part (a) of
Figure 2.4. Images 1 and 2 result from rays that reflect from only a single mirror, but image 1,2 is formed by rays that
reflect from both mirrors. This is shown in the ray-tracing diagram in part (b) of Figure 2.4. To find image 1,2, you have
to look behind the corner of the two mirrors.
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Figure 2.4 Two mirrors can produce multiple images. (a) Three images of a plastic head are visible in the two mirrors at a right
angle. (b) A single object reflecting from two mirrors at a right angle can produce three images, as shown by the green, purple,
and red images.

2.2 | Spherical Mirrors

Learning Objectives

By the end of this section, you will be able to:

* Describe image formation by spherical mirrors.

* Use ray diagrams and the mirror equation to calculate the properties of an image in a spherical
mirror.

The image in a plane mirror has the same size as the object, is upright, and is the same distance behind the mirror as the
object is in front of the mirror. A curved mirror, on the other hand, can form images that may be larger or smaller than the
object and may form either in front of the mirror or behind it. In general, any curved surface will form an image, although
some images make be so distorted as to be unrecognizable (think of fun house mirrors).

Because curved mirrors can create such a rich variety of images, they are used in many optical devices that find many uses.
We will concentrate on spherical mirrors for the most part, because they are easier to manufacture than mirrors such as
parabolic mirrors and so are more common.

Curved Mirrors

We can define two general types of spherical mirrors. If the reflecting surface is the outer side of the sphere, the mirror is
called a convex mirror. If the inside surface is the reflecting surface, it is called a concave mirror.

Symmetry is one of the major hallmarks of many optical devices, including mirrors and lenses. The symmetry axis of such
optical elements is often called the principal axis or optical axis. For a spherical mirror, the optical axis passes through the
mirror’s center of curvature and the mirror’s vertex, as shown in Figure 2.5.
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Figure 2.5 A spherical mirror is formed by cutting out a piece of a sphere and silvering either the
inside or outside surface. A concave mirror has silvering on the interior surface (think “cave”), and a
convex mirror has silvering on the exterior surface.

Consider rays that are parallel to the optical axis of a parabolic mirror, as shown in part (a) of Figure 2.6. Following the
law of reflection, these rays are reflected so that they converge at a point, called the focal point. Part (b) of this figure shows
a spherical mirror that is large compared with its radius of curvature. For this mirror, the reflected rays do not cross at the
same point, so the mirror does not have a well-defined focal point. This is called spherical aberration and results in a blurred
image of an extended object. Part (c) shows a spherical mirror that is small compared to its radius of curvature. This mirror
is a good approximation of a parabolic mirror, so rays that arrive parallel to the optical axis are reflected to a well-defined
focal point. The distance along the optical axis from the mirror to the focal point is called the focal length of the mirror.

Parabolic mirror Large spherical mirror Small spherical mirror
T ﬁ'\\
- \\\ \I".
= N > //

|

Yyy
| \

@) (b) ©
Figure 2.6 (a) Parallel rays reflected from a parabolic mirror cross at a single point called the
focal point F. (b) Parallel rays reflected from a large spherical mirror do not cross at a common
point. (c) If a spherical mirror is small compared with its radius of curvature, it better
approximates the central part of a parabolic mirror, so parallel rays essentially cross at a
common point. The distance along the optical axis from the mirror to the focal point is the focal
length f of the mirror.

A convex spherical mirror also has a focal point, as shown in Figure 2.7. Incident rays parallel to the optical axis are
reflected from the mirror and seem to originate from point F at focal length f behind the mirror. Thus, the focal point is
virtual because no real rays actually pass through it; they only appear to originate from it.
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Convex spherical mirror

@) (b)
Figure 2.7 (a) Rays reflected by a convex spherical mirror: Incident rays of light parallel to the
optical axis are reflected from a convex spherical mirror and seem to originate from a well-defined
focal point at focal distance f on the opposite side of the mirror. The focal point is virtual because no
real rays pass through it. (b) Photograph of a virtual image formed by a convex mirror. (credit b:
modification of work by Jenny Downing)

How does the focal length of a mirror relate to the mirror’s radius of curvature? Figure 2.8 shows a single ray that is
reflected by a spherical concave mirror. The incident ray is parallel to the optical axis. The point at which the reflected ray
crosses the optical axis is the focal point. Note that all incident rays that are parallel to the optical axis are reflected through
the focal point—we only show one ray for simplicity. We want to find how the focal length FP (denoted by f) relates to
the radius of curvature of the mirror, R, whose length is R = CF + FP . The law of reflection tells us that angles OXC

and CXF are the same, and because the incident ray is parallel to the optical axis, angles OXC and XCP are also the same.
Thus, triangle CXF is an isosceles triangle with CF = FX . If the angle 0 is small (so that sin 8 = @ ; this is called the

“small-angle approximation”), then FX =~ FP or CF = FP . Inserting this into the equation for the radius R, we get

R=CF+FP=FP+FP=2FP=2f

Incident ray
5 £

Reflected ray

Figure 2.8 Reflection in a concave mirror. In the small-angle
approximation, a ray that is parallel to the optical axis CP is
reflected through the focal point F of the mirror.

In other words, in the small-angle approximation, the focal length f of a concave spherical mirror is half of its radius of
curvature, R:
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In this chapter, we assume that the small-angle approximation (also called the paraxial approximation) is always valid.
In this approximation, all rays are paraxial rays, which means that they make a small angle with the optical axis and are at
a distance much less than the radius of curvature from the optical axis. In this case, their angles 6 of reflection are small

angles, so sinf ~tanf = 6.

Using Ray Tracing to Locate Images

To find the location of an image formed by a spherical mirror, we first use ray tracing, which is the technique of drawing
rays and using the law of reflection to determine the reflected rays (later, for lenses, we use the law of refraction to determine
refracted rays). Combined with some basic geometry, we can use ray tracing to find the focal point, the image location,
and other information about how a mirror manipulates light. In fact, we already used ray tracing above to locate the focal
point of spherical mirrors, or the image distance of flat mirrors. To locate the image of an object, you must locate at least
two points of the image. Locating each point requires drawing at least two rays from a point on the object and constructing
their reflected rays. The point at which the reflected rays intersect, either in real space or in virtual space, is where the
corresponding point of the image is located. To make ray tracing easier, we concentrate on four “principal” rays whose
reflections are easy to construct.

Figure 2.9 shows a concave mirror and a convex mirror, each with an arrow-shaped object in front of it. These are the
objects whose images we want to locate by ray tracing. To do so, we draw rays from point Q that is on the object but not on
the optical axis. We choose to draw our ray from the tip of the object. Principal ray 1 goes from point Q and travels parallel
to the optical axis. The reflection of this ray must pass through the focal point, as discussed above. Thus, for the concave
mirror, the reflection of principal ray 1 goes through focal point F, as shown in part (b) of the figure. For the convex mirror,
the backward extension of the reflection of principal ray 1 goes through the focal point (i.e., a virtual focus). Principal
ray 2 travels first on the line going through the focal point and then is reflected back along a line parallel to the optical
axis. Principal ray 3 travels toward the center of curvature of the mirror, so it strikes the mirror at normal incidence and is
reflected back along the line from which it came. Finally, principal ray 4 strikes the vertex of the mirror and is reflected
symmetrically about the optical axis.
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Figure 2.9 The four principal rays shown for both (a) a concave mirror and (b) a convex mirror. The
image forms where the rays intersect (for real images) or where their backward extensions intersect (for
virtual images).

The four principal rays intersect at point (', which is where the image of point Q is located. To locate point Q' , drawing

any two of these principle rays would suffice. We are thus free to choose whichever of the principal rays we desire to locate
the image. Drawing more than two principal rays is sometimes useful to verify that the ray tracing is correct.

To completely locate the extended image, we need to locate a second point in the image, so that we know how the image
is oriented. To do this, we trace the principal rays from the base of the object. In this case, all four principal rays run along
the optical axis, reflect from the mirror, and then run back along the optical axis. The difficulty is that, because these rays
are collinear, we cannot determine a unique point where they intersect. All we know is that the base of the image is on the
optical axis. However, because the mirror is symmetrical from top to bottom, it does not change the vertical orientation of
the object. Thus, because the object is vertical, the image must be vertical. Therefore, the image of the base of the object is
on the optical axis directly above the image of the tip, as drawn in the figure.

For the concave mirror, the extended image in this case forms between the focal point and the center of curvature of the
mirror. It is inverted with respect to the object, is a real image, and is smaller than the object. Were we to move the object
closer to or farther from the mirror, the characteristics of the image would change. For example, we show, as a later exercise,
that an object placed between a concave mirror and its focal point leads to a virtual image that is upright and larger than the
object. For the convex mirror, the extended image forms between the focal point and the mirror. It is upright with respect to
the object, is a virtual image, and is smaller than the object.

Summary of Ray-Tracing Rules

Ray tracing is very useful for mirrors. The rules for ray tracing are summarized here for reference:
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¢ A ray travelling parallel to the optical axis of a spherical mirror is reflected along a line that goes through the focal
point of the mirror (ray 1 in Figure 2.9).

e A ray travelling along a line that goes through the focal point of a spherical mirror is reflected along a line parallel
to the optical axis of the mirror (ray 2 in Figure 2.9).

e A ray travelling along a line that goes through the center of curvature of a spherical mirror is reflected back along
the same line (ray 3 in Figure 2.9).

¢ A ray that strikes the vertex of a spherical mirror is reflected symmetrically about the optical axis of the mirror (ray
4 in Figure 2.9).

We use ray tracing to illustrate how images are formed by mirrors and to obtain numerical information about optical
properties of the mirror. If we assume that a mirror is small compared with its radius of curvature, we can also use algebra
and geometry to derive a mirror equation, which we do in the next section. Combining ray tracing with the mirror equation
is a good way to analyze mirror systems.

Image Formation by Reflection—The Mirror Equation

For a plane mirror, we showed that the image formed has the same height and orientation as the object, and it is located at
the same distance behind the mirror as the object is in front of the mirror. Although the situation is a bit more complicated
for curved mirrors, using geometry leads to simple formulas relating the object and image distances to the focal lengths of
concave and convex mirrors.

Consider the object OP shown in Figure 2.10. The center of curvature of the mirror is labeled C and is a distance R from
the vertex of the mirror, as marked in the figure. The object and image distances are labeled d, and d;, and the object

and image heights are labeled %, and #;, respectively. Because the angles ¢ and ¢’ are alternate interior angles, we

know that they have the same magnitude. However, they must differ in sign if we measure angles from the optical axis, so
¢ = —¢’ . An analogous scenario holds for the angles § and 6’ . The law of reflection tells us that they have the same

magnitude, but their signs must differ if we measure angles from the optical axis. Thus, 8 = —" . Taking the tangent of the
angles @ and @', and using the property that tan (—6) = —tan @, gives us

tan6 = fo (2:3)
o ho_ i, ha_do
tan @ = —tan @ = ﬂ do 4 hi i
1
R

| Optical
| axis

» d .

Figure 2.10 Image formed by a concave mirror.
Similarly, taking the tangent of ¢ and ¢’ gives
tan ¢ =

o
do—R he _ __h ho _do—R

tang’ = —tan¢ = }_li

Combining these two results gives
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After a little algebra, this becomes
(2.4)

No approximation is required for this result, so it is exact. However, as discussed above, in the small-angle approximation,
the focal length of a spherical mirror is one-half the radius of curvature of the mirror, or f = R/2. Inserting this into

Equation 2.3 gives the mirror equation:

1_1 (2.5)
ar di

L 1
do f

The mirror equation relates the image and object distances to the focal distance and is valid only in the small-angle
approximation. Although it was derived for a concave mirror, it also holds for convex mirrors (proving this is left as an
exercise). We can extend the mirror equation to the case of a plane mirror by noting that a plane mirror has an infinite radius
of curvature. This means the focal point is at infinity, so the mirror equation simplifies to

dO = _di (2.6)

which is the same as Equation 2.1 obtained earlier.

Notice that we have been very careful with the signs in deriving the mirror equation. For a plane mirror, the image distance
has the opposite sign of the object distance. Also, the real image formed by the concave mirror in Figure 2.10 is on the
opposite side of the optical axis with respect to the object. In this case, the image height should have the opposite sign
of the object height. To keep track of the signs of the various quantities in the mirror equation, we now introduce a sign
convention.

Sign convention for spherical mirrors

Using a consistent sign convention is very important in geometric optics. It assigns positive or negative values for the
quantities that characterize an optical system. Understanding the sign convention allows you to describe an image without
constructing a ray diagram. This text uses the following sign convention:

1. The focal length fis positive for concave mirrors and negative for convex mirrors.
2. The image distance d; is positive for real images and negative for virtual images.
Notice that rule 1 means that the radius of curvature of a spherical mirror can be positive or negative. What does it mean

to have a negative radius of curvature? This means simply that the radius of curvature for a convex mirror is defined to be
negative.

Image magnification

Let’s use the sign convention to further interpret the derivation of the mirror equation. In deriving this equation, we found
that the object and image heights are related by

he _ do 2.7)

See Equation 2.3. Both the object and the image formed by the mirror in Figure 2.10 are real, so the object and image
distances are both positive. The highest point of the object is above the optical axis, so the object height is positive. The
image, however, is below the optical axis, so the image height is negative. Thus, this sign convention is consistent with our
derivation of the mirror equation.

Equation 2.7 in fact describes the linear magnification (often simply called “magnification”) of the image in terms of the
object and image distances. We thus define the dimensionless magnification m as follows:

h; (2.8)
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If m is positive, the image is upright, and if m is negative, the image is inverted. If |m| > 1, the image is larger than the
object, and if |m| < 1, the image is smaller than the object. With this definition of magnification, we get the following

relation between the vertical and horizontal object and image distances:

hi _ d, (2.9)

This is a very useful relation because it lets you obtain the magnification of the image from the object and image distances,
which you can obtain from the mirror equation.

Example 2.1

Solar Electric Generating System

One of the solar technologies used today for generating electricity involves a device (called a parabolic trough
or concentrating collector) that concentrates sunlight onto a blackened pipe that contains a fluid. This heated
fluid is pumped to a heat exchanger, where the thermal energy is transferred to another system that is used to
generate steam and eventually generates electricity through a conventional steam cycle. Figure 2.11 shows such
a working system in southern California. The real mirror is a parabolic cylinder with its focus located at the pipe;
however, we can approximate the mirror as exactly one-quarter of a circular cylinder.

P
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Figure 2.11 Parabolic trough collectors are used to generate electricity in southern California. (‘Cr‘edit:
“kjkolb”/Wikimedia Commons)

If we want the rays from the sun to focus at 40.0 cm from the mirror, what is the radius of the mirror?
b. What is the amount of sunlight concentrated onto the pipe, per meter of pipe length, assuming the

insolation (incident solar radiation) is 900 W/m??

c. If the fluid-carrying pipe has a 2.00-cm diameter, what is the temperature increase of the fluid per meter
of pipe over a period of 1 minute? Assume that all solar radiation incident on the reflector is absorbed by
the pipe, and that the fluid is mineral oil.

Strategy

First identify the physical principles involved. Part (a) is related to the optics of spherical mirrors. Part (b)
involves a little math, primarily geometry. Part (c) requires an understanding of heat and density.

Solution
a. The sun is the object, so the object distance is essentially infinity: d, = oo . The desired image distance

is d; = 40.0 cm . We use the mirror equation to find the focal length of the mirror:
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+

<=

1,1
do  d;

f

o L
dy " q,
-1

(% 40.0 cm)
40.0

Thus, the radius of the mirroris R =2f = 80.0cm.

b. The insolation is 900 W/m?2 . You must find the cross-sectional area A of the concave mirror, since the
power delivered is 900 W/m? x A . The mirror in this case is a quarter-section of a cylinder, so the area

for a length L of the mirror is A = %(ZnR)L . The area for a length of 1.00 m is then
A=ZR(1.00m) = (3'—214)(0.800 m)(1.00m) = 1.26 m.

The insolation on the 1.00-m length of pipe is then
(9.00 x 102%)(1.26 m?) = 1130 W.
m

C. The increase in temperature is given by Q = mcAT . The mass m of the mineral oil in the one-meter
section of pipe is
2
m =pV =pa(£) (1.00m)
= (8.00x 10 kg/m*)(3.14)(0.0100 m)*(1.00 m)
=0.251kg

Therefore, the increase in temperature in one minute is

AT = Q/mc
_ (1130 W)(60.0 s)
(0.251 kg)16701J - kg/°C)
=162°C

Significance

An array of such pipes in the California desert can provide a thermal output of 250 MW on a sunny day, with
fluids reaching temperatures as high as 400°C . We are considering only one meter of pipe here and ignoring heat

losses along the pipe.

Example 2.2

Image in a Convex Mirror

A keratometer is a device used to measure the curvature of the cornea of the eye, particularly for fitting contact
lenses. Light is reflected from the cornea, which acts like a convex mirror, and the keratometer measures the
magnification of the image. The smaller the magnification, the smaller the radius of curvature of the cornea. If
the light source is 12 cm from the cornea and the image magnification is 0.032, what is the radius of curvature of
the cornea?
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Strategy

If you find the focal length of the convex mirror formed by the cornea, then you know its radius of curvature (it’s
twice the focal length). The object distance is d, = 12 cm and the magnification is m = 0.032 . First find the

image distance d; and then solve for the focal length f.

Solution

Start with the equation for magnification, m = —d;/d, . Solving for d; and inserting the given values yields
d; = —-md, = —(0.032)(12 cm) = —0.384 cm

where we retained an extra significant figure because this is an intermediate step in the calculation. Solve the
mirror equation for the focal length f and insert the known values for the object and image distances. The result is

1 1 1
4 41 =4
dO d] f
A
=|-—4+ =
f (do di)
—1
_ 1 1
= (12 em T 20384 cm)
= —-0.40cm

The radius of curvature is twice the focal length, so
R=2f=-0.80cm

Significance

The focal length is negative, so the focus is virtual, as expected for a concave mirror and a real object. The radius
of curvature found here is reasonable for a cornea. The distance from cornea to retina in an adult eye is about
2.0 cm. In practice, corneas may not be spherical, which complicates the job of fitting contact lenses. Note that
the image distance here is negative, consistent with the fact that the image is behind the mirror. Thus, the image
is virtual because no rays actually pass through it. In the problems and exercises, you will show that, for a fixed
object distance, a smaller radius of curvature corresponds to a smaller the magnification.

Problem-Solving Strategy: Spherical Mirrors

Step 1. First make sure that image formation by a spherical mirror is involved.

Step 2. Determine whether ray tracing, the mirror equation, or both are required. A sketch is very useful even if ray
tracing is not specifically required by the problem. Write symbols and known values on the sketch.

Step 3. Identify exactly what needs to be determined in the problem (identify the unknowns).
Step 4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).
Step 5. If ray tracing is required, use the ray-tracing rules listed near the beginning of this section.

Step 6. Most quantitative problems require using the mirror equation. Use the examples as guides for using the mirror
equation.

Step 7. Check to see whether the answer makes sense. Do the signs of object distance, image distance, and focal length
correspond with what is expected from ray tracing? Is the sign of the magnification correct? Are the object and image
distances reasonable?

Departure from the Small-Angle Approximation

The small-angle approximation is a cornerstone of the above discussion of image formation by a spherical mirror. When
this approximation is violated, then the image created by a spherical mirror becomes distorted. Such distortion is called
aberration. Here we briefly discuss two specific types of aberrations: spherical aberration and coma.
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Spherical aberration

Consider a broad beam of parallel rays impinging on a spherical mirror, as shown in Figure 2.12.

[y [
- L

/ \
Blurred

| Optical
| axis

@) (b)
Figure 2.12 (a) With spherical aberration, the rays that are farther from the optical axis and the rays that are closer to
the optical axis are focused at different points. Notice that the aberration gets worse for rays farther from the optical
axis. (b) For comatic aberration, parallel rays that are not parallel to the optical axis are focused at different heights and
at different focal lengths, so the image contains a “tail” like a comet (which is “coma” in Latin). Note that the colored
rays are only to facilitate viewing; the colors do not indicate the color of the light.

The farther from the optical axis the rays strike, the worse the spherical mirror approximates a parabolic mirror. Thus, these
rays are not focused at the same point as rays that are near the optical axis, as shown in the figure. Because of spherical
aberration, the image of an extended object in a spherical mirror will be blurred. Spherical aberrations are characteristic of
the mirrors and lenses that we consider in the following section of this chapter (more sophisticated mirrors and lenses are
needed to eliminate spherical aberrations).

Coma or comatic aberration

Coma is similar to spherical aberration, but arises when the incoming rays are not parallel to the optical axis, as shown in
part (b) of Figure 2.12. Recall that the small-angle approximation holds for spherical mirrors that are small compared to
their radius. In this case, spherical mirrors are good approximations of parabolic mirrors. Parabolic mirrors focus all rays
that are parallel to the optical axis at the focal point. However, parallel rays that are not parallel to the optical axis are
focused at different heights and at different focal lengths, as show in part (b) of Figure 2.12. Because a spherical mirror
is symmetric about the optical axis, the various colored rays in this figure create circles of the corresponding color on the
focal plane.

Although a spherical mirror is shown in part (b) of Figure 2.12, comatic aberration occurs also for parabolic mirrors—it
does not result from a breakdown in the small-angle approximation. Spherical aberration, however, occurs only for spherical
mirrors and is a result of a breakdown in the small-angle approximation. We will discuss both coma and spherical aberration
later in this chapter, in connection with telescopes.
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2.3 | Images Formed by Refraction

Learning Objectives

By the end of this section, you will be able to:

* Describe image formation by a single refracting surface
* Determine the location of an image and calculate its properties by using a ray diagram

* Determine the location of an image and calculate its properties by using the equation for a
single refracting surface

When rays of light propagate from one medium to another, these rays undergo refraction, which is when light waves are bent
at the interface between two media. The refracting surface can form an image in a similar fashion to a reflecting surface,
except that the law of refraction (Snell’s law) is at the heart of the process instead of the law of reflection.

Refraction at a Plane Interface—Apparent Depth

If you look at a straight rod partially submerged in water, it appears to bend at the surface (Figure 2.13). The reason behind
this curious effect is that the image of the rod inside the water forms a little closer to the surface than the actual position of
the rod, so it does not line up with the part of the rod that is above the water. The same phenomenon explains why a fish in
water appears to be closer to the surface than it actually is.

Air

Water Image of rod

Figure 2.13 Bending of a rod at a water-air interface. Point P
on the rod appears to be at point Q, which is where the image of
point P forms due to refraction at the air-water interface.

To study image formation as a result of refraction, consider the following questions:
1. What happens to the rays of light when they enter or pass through a different medium?
2. Do the refracted rays originating from a single point meet at some point or diverge away from each other?

To be concrete, we consider a simple system consisting of two media separated by a plane interface (Figure 2.14). The
object is in one medium and the observer is in the other. For instance, when you look at a fish from above the water surface,
the fish is in medium 1 (the water) with refractive index 1.33, and your eye is in medium 2 (the air) with refractive index
1.00, and the surface of the water is the interface. The depth that you “see” is the image height /; and is called the apparent

depth. The actual depth of the fish is the object height 4, .
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Air

Water

Figure 2.14 Apparent depth due to refraction. The real object
at point P creates an image at point Q. The image is not at the
same depth as the object, so the observer sees the image at an
“apparent depth.”

The apparent depth /; depends on the angle at which you view the image. For a view from above (the so-called “normal”

view), we can approximate the refraction angle € to be small, and replace sin @ in Snell’s law by tan €. With this
approximation, you can use the triangles AOPR and AOQR to show that the apparent depth is given by

= (2)he (2.10)

The derivation of this result is left as an exercise. Thus, a fish appears at 3/4 of the real depth when viewed from above.

Refraction at a Spherical Interface

Spherical shapes play an important role in optics primarily because high-quality spherical shapes are far easier to
manufacture than other curved surfaces. To study refraction at a single spherical surface, we assume that the medium with
the spherical surface at one end continues indefinitely (a “semi-infinite” medium).

Refraction at a convex surface

Consider a point source of light at point P in front of a convex surface made of glass (see Figure 2.15). Let R be the radius
of curvature, n; be the refractive index of the medium in which object point P is located, and 7, be the refractive index

of the medium with the spherical surface. We want to know what happens as a result of refraction at this interface.

Normal to

interface "™~ _ \
Spherical surface

Center of
R sphere

n, n,

Figure 2.15 Refraction at a convex surface (1, > ny).
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Because of the symmetry involved, it is sufficient to examine rays in only one plane. The figure shows a ray of light that
starts at the object point P, refracts at the interface, and goes through the image point P’. We derive a formula relating the

object distance d,, the image distance d;, and the radius of curvature R.

Applying Snell’s law to the ray emanating from point P gives n;sinf; = n,sinf,. We work in the small-angle

approximation, so sin @ ~ @ and Snell’s law then takes the form
ny6, =~ n,0,.
From the geometry of the figure, we see that
Op=a+¢, O,=¢-p.
Inserting these expressions into Snell’s law gives

ny(a+¢) = ny(p—p).

Using the diagram, we calculate the tangent of the angles «, f, and ¢ :
tana ~ dLO’
Again using the small-angle approximation, we find that tan @ = 8, so the above relationships become

~ ~ ~ 0
args Prg PR

Putting these angles into Snell’s law gives

We can write this more conveniently as

ny —ny (2.11)
5

d, " d

n; np
i

If the object is placed at a special point called the first focus, or the object focus F;, then the image is formed at infinity,

as shown in part (a) of Figure 2.16.

nl n2 > nl

Optical axis

<y

@) (b)
Figure 2.16 (a) First focus (called the “object focus”) for refraction at a convex surface. (b) Second focus (called “image
focus”) for refraction at a convex surface.

We can find the location f; of the first focus F'; by setting d; = co in the preceding equation.
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My _nmp—m (2.12)
fi ® R

n R (2.13)
h=m=n

Similarly, we can define a second focus or image focus F', where the image is formed for an object that is far away [part

(b)]. The location of the second focus F, is obtained from Equation 2.11 by setting d, = oo :

n1+n2_"2—”1
" f R

_ l’l2R
fz_"z—”l'

Note that the object focus is at a different distance from the vertex than the image focus because n| # n, .

Sign convention for single refracting surfaces

Although we derived this equation for refraction at a convex surface, the same expression holds for a concave surface,
provided we use the following sign convention:

1. R > 0 if surface is convex toward object; otherwise, R < 0.

2. d; > 0 if image is real and on opposite side from the object; otherwise, d; < 0.

2.4 | Thin Lenses

Learning Objectives

By the end of this section, you will be able to:

* Use ray diagrams to locate and describe the image formed by a lens
* Employ the thin-lens equation to describe and locate the image formed by a lens

Lenses are found in a huge array of optical instruments, ranging from a simple magnifying glass to a camera’s zoom lens to
the eye itself. In this section, we use the Snell’s law to explore the properties of lenses and how they form images.

The word “lens” derives from the Latin word for a lentil bean, the shape of which is similar to a convex lens. However,
not all lenses have the same shape. Figure 2.17 shows a variety of different lens shapes. The vocabulary used to describe
lenses is the same as that used for spherical mirrors: The axis of symmetry of a lens is called the optical axis, where this
axis intersects the lens surface is called the vertex of the lens, and so forth.

Converging lenses /[ L y i

[ -I I| f
| | . [ Meniscus

| Bi-convex | Plano-convex

| | | convex

'. I| | |

I\ .l’lll I" .\\ A

Diverging lenses |/ N

. | || Meniscus

‘ ‘ Bi-concave Plano-concave |
| | | concave

| | | I|

[ '.II II| ? f,-" .'I

Figure 2.17 Various types of lenses: Note that a converging lens has a thicker “waist,” whereas a
diverging lens has a thinner waist.
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A convex or converging lens is shaped so that all light rays that enter it parallel to its optical axis intersect (or focus)
at a single point on the optical axis on the opposite side of the lens, as shown in part (a) of Figure 2.18. Likewise, a
concave or diverging lens is shaped so that all rays that enter it parallel to its optical axis diverge, as shown in part (b).
To understand more precisely how a lens manipulates light, look closely at the top ray that goes through the converging
lens in part (a). Because the index of refraction of the lens is greater than that of air, Snell’s law tells us that the ray is bent
toward the perpendicular to the interface as it enters the lens. Likewise, when the ray exits the lens, it is bent away from the
perpendicular. The same reasoning applies to the diverging lenses, as shown in part (b). The overall effect is that light rays
are bent toward the optical axis for a converging lens and away from the optical axis for diverging lenses. For a converging
lens, the point at which the rays cross is the focal point F of the lens. For a diverging lens, the point from which the rays
appear to originate is the (virtual) focal point. The distance from the center of the lens to its focal point is the focal length f
of the lens.

Optical axis

Optical axis

Converging lens Diverging lens

@) (b)
Figure 2.18 Rays of light entering (a) a converging lens and (b) a diverging lens, parallel to its axis, converge at its focal
point F. The distance from the center of the lens to the focal point is the lens’s focal length f. Note that the light rays are
bent upon entering and exiting the lens, with the overall effect being to bend the rays toward the optical axis.

A lens is considered to be thin if its thickness t is much less than the radii of curvature of both surfaces, as shown in Figure
2.19. In this case, the rays may be considered to bend once at the center of the lens. For the case drawn in the figure, light
ray 1 is parallel to the optical axis, so the outgoing ray is bent once at the center of the lens and goes through the focal point.
Another important characteristic of thin lenses is that light rays that pass through the center of the lens are undeviated, as
shown by light ray 2.
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Focal

M point

Optical axis

Light ray 2
Light ray 1

I hY
Figure 2.19 In the thin-lens approximation, the thickness d of the lens is much, much less than the radii R; and R, of

curvature of the surfaces of the lens. Light rays are considered to bend at the center of the lens, such as light ray 1. Light ray 2
passes through the center of the lens and is undeviated in the thin-lens approximation.

As noted in the initial discussion of Snell’s law, the paths of light rays are exactly reversible. This means that the direction
of the arrows could be reversed for all of the rays in Figure 2.18. For example, if a point-light source is placed at the focal
point of a convex lens, as shown in Figure 2.20, parallel light rays emerge from the other side.

Y

Figure 2.20 A small light source, like a light bulb filament,
placed at the focal point of a convex lens results in parallel rays
of light emerging from the other side. The paths are exactly the
reverse of those shown in Figure 2.18 in converging and
diverging lenses. This technique is used in lighthouses and
sometimes in traffic lights to produce a directional beam of light
from a source that emits light in all directions.

Ray Tracing and Thin Lenses
Ray tracing is the technique of determining or following (tracing) the paths taken by light rays.

Ray tracing for thin lenses is very similar to the technique we used with spherical mirrors. As for mirrors, ray tracing can
accurately describe the operation of a lens. The rules for ray tracing for thin lenses are similar to those of spherical mirrors:
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1. A ray entering a converging lens parallel to the optical axis passes through the focal point on the other side of the
lens (ray 1 in part (a) of Figure 2.21). A ray entering a diverging lens parallel to the optical axis exits along the
line that passes through the focal point on the same side of the lens (ray 1 in part (b) of the figure).

2. A ray passing through the center of either a converging or a diverging lens is not deviated (ray 2 in parts (a) and
(b)).

3. For a converging lens, a ray that passes through the focal point exits the lens parallel to the optical axis (ray 3 in part
(a)). For a diverging lens, a ray that approaches along the line that passes through the focal point on the opposite
side exits the lens parallel to the axis (ray 3 in part (b)).
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(b)
Figure 2.21 Thin lenses have the same focal lengths on either side. (a) Parallel light rays entering a converging lens from the
right cross at its focal point on the left. (b) Parallel light rays entering a diverging lens from the right seem to come from the
focal point on the right.

Thin lenses work quite well for monochromatic light (i.e., light of a single wavelength). However, for light that contains
several wavelengths (e.g., white light), the lenses work less well. The problem is that, as we learned in the previous
chapter, the index of refraction of a material depends on the wavelength of light. This phenomenon is responsible for many
colorful effects, such as rainbows. Unfortunately, this phenomenon also leads to aberrations in images formed by lenses. In
particular, because the focal distance of the lens depends on the index of refraction, it also depends on the wavelength of the
incident light. This means that light of different wavelengths will focus at different points, resulting is so-called “chromatic
aberrations.” In particular, the edges of an image of a white object will become colored and blurred. Special lenses called
doublets are capable of correcting chromatic aberrations. A doublet is formed by gluing together a converging lens and a
diverging lens. The combined doublet lens produces significantly reduced chromatic aberrations.

Image Formation by Thin Lenses

We use ray tracing to investigate different types of images that can be created by a lens. In some circumstances, a lens forms
a real image, such as when a movie projector casts an image onto a screen. In other cases, the image is a virtual image,
which cannot be projected onto a screen. Where, for example, is the image formed by eyeglasses? We use ray tracing for
thin lenses to illustrate how they form images, and then we develop equations to analyze quantitatively the properties of
thin lenses.
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Consider an object some distance away from a converging lens, as shown in Figure 2.22. To find the location and size of
the image, we trace the paths of selected light rays originating from one point on the object, in this case, the tip of the arrow.
The figure shows three rays from many rays that emanate from the tip of the arrow. These three rays can be traced by using
the ray-tracing rules given above.

¢ Ray 1 enters the lens parallel to the optical axis and passes through the focal point on the opposite side (rule 1).
¢ Ray 2 passes through the center of the lens and is not deviated (rule 2).
¢ Ray 3 passes through the focal point on its way to the lens and exits the lens parallel to the optical axis (rule 3).

The three rays cross at a single point on the opposite side of the lens. Thus, the image of the tip of the arrow is located at
this point. All rays that come from the tip of the arrow and enter the lens are refracted and cross at the point shown.

After locating the image of the tip of the arrow, we need another point of the image to orient the entire image of the arrow.
We chose to locate the image base of the arrow, which is on the optical axis. As explained in the section on spherical mirrors,
the base will be on the optical axis just above the image of the tip of the arrow (due to the top-bottom symmetry of the lens).
Thus, the image spans the optical axis to the (negative) height shown. Rays from another point on the arrow, such as the
middle of the arrow, cross at another common point, thus filling in the rest of the image.

Although three rays are traced in this figure, only two are necessary to locate a point of the image. It is best to trace rays for
which there are simple ray-tracing rules.
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Figure 2.22 Ray tracing is used to locate the image formed by a lens. Rays originating
from the same point on the object are traced—the three chosen rays each follow one of the
rules for ray tracing, so that their paths are easy to determine. The image is located at the
point where the rays cross. In this case, a real image—one that can be projected on a
screen—is formed.

Several important distances appear in the figure. As for a mirror, we define d, to be the object distance, or the distance
of an object from the center of a lens. The image distance d; is defined to be the distance of the image from the center of
a lens. The height of the object and the height of the image are indicated by %, and h;, respectively. Images that appear

upright relative to the object have positive heights, and those that are inverted have negative heights. By using the rules
of ray tracing and making a scale drawing with paper and pencil, like that in Figure 2.22, we can accurately describe the
location and size of an image. But the real benefit of ray tracing is in visualizing how images are formed in a variety of
situations.

Oblique Parallel Rays and Focal Plane

We have seen that rays parallel to the optical axis are directed to the focal point of a converging lens. In the case of a
diverging lens, they come out in a direction such that they appear to be coming from the focal point on the opposite side
of the lens (i.e., the side from which parallel rays enter the lens). What happens to parallel rays that are not parallel to
the optical axis (Figure 2.23)? In the case of a converging lens, these rays do not converge at the focal point. Instead,
they come together on another point in the plane called the focal plane. The focal plane contains the focal point and is
perpendicular to the optical axis. As shown in the figure, parallel rays focus where the ray through the center of the lens
crosses the focal plane.
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Optical axis

Focal

Chief plane

ray
Figure 2.23 Parallel oblique rays focus on a point in a focal plane.

Thin-Lens Equation

Ray tracing allows us to get a qualitative picture of image formation. To obtain numeric information, we derive a pair of
equations from a geometric analysis of ray tracing for thin lenses. These equations, called the thin-lens equation and the
lens maker’s equation, allow us to quantitatively analyze thin lenses.

Consider the thick bi-convex lens shown in Figure 2.24. The index of refraction of the surrounding medium is n; (if the
lens is in air, then 7y = 1.00) and that of the lens is n, . The radii of curvatures of the two sides are R; and R, . We wish

to find a relation between the object distance d,,, the image distance d;, and the parameters of the lens.

The image of the Refraction at first surface Refraction at second surface
first surface is the
object for the second

surface.

Final image

d d

o] -t - 1

Figure 2.24 Figure for deriving the lens maker’s equation. Here, t is the thickness of lens, 7, is the index of refraction of the

exterior medium, and 1, is the index of refraction of the lens. We take the limit of # — O to obtain the formula for a thin lens.

To derive the thin-lens equation, we consider the image formed by the first refracting surface (i.e., left surface) and then use
this image as the object for the second refracting surface. In the figure, the image from the first refracting surface is Q’,

which is formed by extending backwards the rays from inside the lens (these rays result from refraction at the first surface).
This is shown by the dashed lines in the figure. Notice that this image is virtual because no rays actually pass through the
point Q' . To find the image distance d; corresponding to the image Q’, we use Equation 2.11. In this case, the object

distance is d,,, the image distance is d, and the radius of curvature is R . Inserting these into Equation 2.3 gives

Ry _M—ng (2.14)
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The image is virtual and on the same side as the object, so d; < 0 and d, > 0. The first surface is convex toward the
object,so Ry > 0.

To find the object distance for the object Q formed by refraction from the second interface, note that the role of the indices
of refraction n; and n, are interchanged in Equation 2.11. In Figure 2.24, the rays originate in the medium with index
n,, whereas in Figure 2.15, the rays originate in the medium with index n; . Thus, we must interchange n; and n, in
Equation 2.11. In addition, by consulting again Figure 2.24, we see that the object distance is d;, and the image distance
is d;. The radius of curvature is R, Inserting these quantities into Equation 2.11 gives

Q_l_ﬂ:”l—”z (2.15)
dy d; Ry,

The image is real and on the opposite side from the object, so d; > 0 and d;, > 0. The second surface is convex away from
d

value because d! is a negative number, whereas both d[, and t are positive. We can dispense with the absolute value if we
i 0 p p

the object, so R, < 0. Equation 2.15 can be simplified by noting that dg =

+ t, where we have taken the absolute

negate d; , which gives di, = —d; + ¢ . Inserting this into Equation 2.15 gives

) Mmi_M—m (2.16)
=d;+1t d; R, -
Summing Equation 2.14 and Equation 2.16 gives
L L L) np o1 1 (2.17)
P N g U ”1)(R1 Rz)‘

In the thin-lens approximation, we assume that the lens is very thin compared to the first image distance, or r < d; (or,
equivalently, # < Ry and R, ). In this case, the third and fourth terms on the left-hand side of Equation 2.17 cancel,

leaving us with

o _ 1 1
d0+di (n nl)(Rl Rz)'

Dividing by n; gives us finally

Ll YL (2.18)
d0+di_(”1 1)(131 Rz)'

The left-hand side looks suspiciously like the mirror equation that we derived above for spherical mirrors. As done for
spherical mirrors, we can use ray tracing and geometry to show that, for a thin lens,

(2.19)

+

1411
do d; f

where f is the focal length of the thin lens (this derivation is left as an exercise). This is the thin-lens equation. The focal
length of a thin lens is the same to the left and to the right of the lens. Combining Equation 2.18 and Equation 2.19
gives

- -
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which is called the lens maker’s equation. It shows that the focal length of a thin lens depends only of the radii of curvature
and the index of refraction of the lens and that of the surrounding medium. For a lens in air, n; = 1.0 and n, = n, so the

lens maker’s equation reduces to

el )

Sign conventions for lenses
To properly use the thin-lens equation, the following sign conventions must be obeyed:
1. d, is positive if the image is on the side opposite the object (i.e., real image); otherwise, d; is negative (i.e., virtual
image).
2. fis positive for a converging lens and negative for a diverging lens.
3. Ris positive for a surface convex toward the object, and negative for a surface concave toward object.
Magnification

By using a finite-size object on the optical axis and ray tracing, you can show that the magnification m of an image is

(2.22)

1

h ——

ho ~ do

i _4

m

(where the three lines mean “is defined as™). This is exactly the same equation as we obtained for mirrors (see Equation
2.8). If m > 0, then the image has the same vertical orientation as the object (called an “upright” image). If m < 0, then

the image has the opposite vertical orientation as the object (called an “inverted” image).

Using the Thin-Lens Equation

The thin-lens equation and the lens maker’s equation are broadly applicable to situations involving thin lenses. We explore
many features of image formation in the following examples.

Consider a thin converging lens. Where does the image form and what type of image is formed as the object approaches the
lens from infinity? This may be seen by using the thin-lens equation for a given focal length to plot the image distance as a
function of object distance. In other words, we plot
—(1_L
4= (}-3)

for a given value of f. For f = 1 cm, the result is shown in part (a) of Figure 2.25.

-1
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Figure 2.25 (a) Image distance for a thin converging lens with f = 1.0 cm as a function of object distance. (b) Same thing

but for a diverging lens with f = —1.0cm.

An object much farther than the focal length f from the lens should produce an image near the focal plane, because the
second term on the right-hand side of the equation above becomes negligible compared to the first term, so we have d; ~ f.

This can be seen in the plot of part (a) of the figure, which shows that the image distance approaches asymptotically the
focal length of 1 cm for larger object distances. As the object approaches the focal plane, the image distance diverges to
positive infinity. This is expected because an object at the focal plane produces parallel rays that form an image at infinity
(i.e., very far from the lens). When the object is farther than the focal length from the lens, the image distance is positive, so
the image is real, on the opposite side of the lens from the object, and inverted (because m = —d;/d, ). When the object is

closer than the focal length from the lens, the image distance becomes negative, which means that the image is virtual, on
the same side of the lens as the object, and upright.

For a thin diverging lens of focal length f = —1.0 cm, a similar plot of image distance vs. object distance is shown in part

(b). In this case, the image distance is negative for all positive object distances, which means that the image is virtual, on the
same side of the lens as the object, and upright. These characteristics may also be seen by ray-tracing diagrams (see Figure
2.26).

Seal s A
\::5“ \x\ s |
Image ¥ AT
Object ) Image O'bjefr,t| \H Object |7nage |\
Converging lens Converging lens Diverging lens
Real image Virtual image Virtual image
(a) (b) (©)

Figure 2.26 The red dots show the focal points of the lenses. (a) A real, inverted image formed from an object that is farther
than the focal length from a converging lens. (b) A virtual, upright image formed from an object that is closer than a focal length
from the lens. (c) A virtual, upright image formed from an object that is farther than a focal length from a diverging lens.

To see a concrete example of upright and inverted images, look at Figure 2.27, which shows images formed by converging
lenses when the object (the person’s face in this case) is place at different distances from the lens. In part (a) of the figure,
the person’s face is farther than one focal length from the lens, so the image is inverted. In part (b), the person’s face is
closer than one focal length from the lens, so the image is upright.
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@) (b)
Figure 2.27 (a) When a converging lens is held farther than one focal length from the man’s face, an inverted image is formed.
Note that the image is in focus but the face is not, because the image is much closer to the camera taking this photograph than the
face. (b) An upright image of the man’s face is produced when a converging lens is held at less than one focal length from his
face. (credit a: modification of work by “DaMongMan”/Flickr; credit b: modification of work by Casey Fleser)

Work through the following examples to better understand how thin lenses work.

Problem-Solving Strategy: Lenses

Step 1. Determine whether ray tracing, the thin-lens equation, or both would be useful. Even if ray tracing is not used,
a careful sketch is always very useful. Write symbols and values on the sketch.

Step 2. Identify what needs to be determined in the problem (identify the unknowns).
Step 3. Make a list of what is given or can be inferred from the problem (identify the knowns).
Step 4. If ray tracing is required, use the ray-tracing rules listed near the beginning of this section.

Step 5. Most quantitative problems require the use of the thin-lens equation and/or the lens maker’s equation. Solve
these for the unknowns and insert the given quantities or use both together to find two unknowns.

Step 7. Check to see if the answer is reasonable. Are the signs correct? Is the sketch or ray tracing consistent with the
calculation?

Example 2.3

Using the Lens Maker’s Equation

Find the radius of curvature of a biconcave lens symmetrically ground from a glass with index of refractive 1.55
so that its focal length in air is 20 cm (for a biconcave lens, both surfaces have the same radius of curvature).

Strategy

Use the thin-lens form of the lens maker’s equation:
1_ (ﬂ — ) 1 1
;oo Ry R,

where R; <0 and R, > 0. Since we are making a symmetric biconcave lens, we have |R|| = |R,|.
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Solution

We can determine the radius R of curvature from
1_ (" _ ) _2
- (”1 ( R)'
Solving for R and inserting f = —20cm, n, = 1.55, andn; = 1.00 gives

R=-2 f(% - ) = —2(=20 cm)(% - 1) =22cm.

Example 2.4

Converging Lens and Different Object Distances

Find the location, orientation, and magnification of the image for an 3.0 cm high object at each of the following
positions in front of a convex lens of focal length 10.0 cm. (a)d, =50.0cm, (b)d,=5.00cm, and

(c)do =20.0cm.

Strategy
We start with the thin-lens equation dl + dL = % Solve this for the image distance d; and insert the given
i 0
object distance and focal length.
Solution
a. For dy=50cm, f = + 10cm, this gives
AN
4 =(F-3)
-1
-t b
10.0cm  50.0cm
=12.5cm

The image is positive, so the image, is real, is on the opposite side of the lens from the object, and is 12.6
cm from the lens. To find the magnification and orientation of the image, use

__di _ _125cm _
m= 4~ T500cm — 0.250.
The negative magnification means that the image is inverted. Since |m| < 1, the image is smaller than
the object. The size of the image is given by
|;| = Imlh = (0.250)(3.0 cm) = 0.75 cm

b. For dy=5.00cm, f = +10.0cm

" --2)
-1

- (10.(% cm 5.0& cm)
=-10.0cm

-1

The image distance is negative, so the image is virtual, is on the same side of the lens as the object, and is
10 cm from the lens. The magnification and orientation of the image are found from

di _  —-10.0cm _
4.~ 35.00em ~ 200

m=—
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The positive magnification means that the image is upright (i.e., it has the same orientation as the object).
Since |m| > 0, the image is larger than the object. The size of the image is

|h;| = Imlhy = (2.00)(3.0 cm) = 6.0 cm.
c. Fordy,=20cm,f = +10cm
o =(1_1
4 =(}-7)
-1

= (10.(% cm 20.(% cm)
=20.0cm

-1

The image distance is positive, so the image is real, is on the opposite side of the lens from the object, and
is 20.0 cm from the lens. The magnification is

__4i _ _200cem _ _
=== "200em ~ 00

The negative magnification means that the image is inverted. Since |m| = 1, the image is the same size

as the object.

When solving problems in geometric optics, we often need to combine ray tracing and the lens equations. The following
example demonstrates this approach.

Example 2.5

Choosing the Focal Length and Type of Lens

To project an image of a light bulb on a screen 1.50 m away, you need to choose what type of lens to use
(converging or diverging) and its focal length (Figure 2.28). The distance between the lens and the lightbulb is
fixed at 0.75 m. Also, what is the magnification and orientation of the image?

Strategy

The image must be real, so you choose to use a converging lens. The focal length can be found by using the
thin-lens equation and solving for the focal length. The object distance is d, = 0.75 m and the image distance is

di=15m.

Solution

Solve the thin lens for the focal length and insert the desired object and image distances:

do  dj 7
=L+ 1)
dy d
-1
— 1
= (o s* 13m)
=0.50m
The magnification is
m=-di__15m __5
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Significance

The minus sign for the magnification means that the image is inverted. The focal length is positive, as expected
for a converging lens. Ray tracing can be used to check the calculation (see Figure 2.28). As expected, the image
is inverted, is real, and is larger than the object.

Light bulb Screen

\‘ f=050m [ \~

, |a7d—150m

le—d, —075m\4ij\\

Figure 2.28 A light bulb placed 0.75 m from a lens having a 0.50-m focal length produces a reél
image on a screen, as discussed in the example. Ray tracing predicts the image location and size.

2.5 | The Eye

Learning Objectives

By the end of this section, you will be able to:

* Understand the basic physics of how images are formed by the human eye

* Recognize several conditions of impaired vision as well as the optics principles for treating
these conditions

The human eye is perhaps the most interesting and important of all optical instruments. Our eyes perform a vast number of
functions: They allow us to sense direction, movement, colors, and distance. In this section, we explore the geometric optics
of the eye.

Physics of the Eye

The eye is remarkable in how it forms images and in the richness of detail and color it can detect. However, our eyes
often need some correction to reach what is called “normal” vision. Actually, normal vision should be called “ideal” vision
because nearly one-half of the human population requires some sort of eyesight correction, so requiring glasses is by no
means “abnormal.” Image formation by our eyes and common vision correction can be analyzed with the optics discussed
earlier in this chapter.

Figure 2.29 shows the basic anatomy of the eye. The cornea and lens form a system that, to a good approximation, acts as
a single thin lens. For clear vision, a real image must be projected onto the light-sensitive retina, which lies a fixed distance
from the lens. The flexible lens of the eye allows it to adjust the radius of curvature of the lens to produce an image on the
retina for objects at different distances. The center of the image falls on the fovea, which has the greatest density of light
receptors and the greatest acuity (sharpness) in the visual field. The variable opening (i.e., the pupil) of the eye, along with

chemical adaptation, allows the eye to detect light intensities from the lowest observable to 1019 times greater (without

damage). This is an incredible range of detection. Processing of visual nerve impulses begins with interconnections in the
retina and continues in the brain. The optic nerve conveys the signals received by the eye to the brain.
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Figure 2.29 The cornea and lens of the eye act together to form a real image on the
light-sensing retina, which has its densest concentration of receptors in the fovea and a
blind spot over the optic nerve. The radius of curvature of the lens of an eye is
adjustable to form an image on the retina for different object distances. Layers of
tissues with varying indices of refraction in the lens are shown here. However, they
have been omitted from other pictures for clarity.

The indices of refraction in the eye are crucial to its ability to form images. Table 2.1 lists the indices of refraction relevant
to the eye. The biggest change in the index of refraction, which is where the light rays are most bent, occurs at the air-
cornea interface rather than at the aqueous humor-lens interface. The ray diagram in Figure 2.30 shows image formation
by the cornea and lens of the eye. The cornea, which is itself a converging lens with a focal length of approximately 2.3
cm, provides most of the focusing power of the eye. The lens, which is a converging lens with a focal length of about 6.4
cm, provides the finer focus needed to produce a clear image on the retina. The cornea and lens can be treated as a single
thin lens, even though the light rays pass through several layers of material (such as cornea, aqueous humor, several layers
in the lens, and vitreous humor), changing direction at each interface. The image formed is much like the one produced by
a single convex lens (i.e., a real, inverted image). Although images formed in the eye are inverted, the brain inverts them
once more to make them seem upright.

Material Index of Refraction
Water 1.33

Air 1.0

Cornea 1.38

Aqueous humor 1.34

Lens 1.41°

Vitreous humor 1.34

Table 2.1 Refractive Indices Relevant to the
Eye *This is an average value. The actual
index of refraction varies throughout the lens
and is greatest in center of the lens.
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Figure 2.30 In the human eye, an image forms on the retina. Rays from the top and bottom of the
object are traced to show how a real, inverted image is produced on the retina. The distance to the
object is not to scale.

As noted, the image must fall precisely on the retina to produce clear vision—that is, the image distance d; must equal
the lens-to-retina distance. Because the lens-to-retina distance does not change, the image distance d; must be the same

for objects at all distances. The ciliary muscles adjust the shape of the eye lens for focusing on nearby or far objects.
By changing the shape of the eye lens, the eye changes the focal length of the lens. This mechanism of the eye is called
accommodation.

The nearest point an object can be placed so that the eye can form a clear image on the retina is called the near point of
the eye. Similarly, the far point is the farthest distance at which an object is clearly visible. A person with normal vision
can see objects clearly at distances ranging from 25 cm to essentially infinity. The near point increases with age, becoming
several meters for some older people. In this text, we consider the near point to be 25 cm.

We can use the thin-lens equations to quantitatively examine image formation by the eye. First, we define the optical power
of a lens as

(2.23)

<~k

with the focal length f given in meters. The units of optical power are called “diopters” (D). That is, 1 D = L oorim™

1
m’ :

Optometrists prescribe common eyeglasses and contact lenses in units of diopters. With this definition of optical power, we
can rewrite the thin-lens equations as

P= (2.24)

1 1
-+
dy d;
Working with optical power is convenient because, for two or more lenses close together, the effective optical power of the

lens system is approximately the sum of the optical power of the individual lenses:

Piotal = Prens 1 + Plens2 + Prens3 + - (2.25)
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Example 2.6

Effective Focal Length of the Eye

The cornea and eye lens have focal lengths of 2.3 and 6.4 cm, respectively. Find the net focal length and optical
power of the eye.

Strategy

The optical powers of the closely spaced lenses add, 0 Peye = Pcornea + Plens -

Solution
Writing the equation for power in terms of the focal lengths gives

! 1 ., 1 __1 ., 1
feye feornea  flens 2-3cm  6.4cm

Hence, the focal length of the eye (cornea and lens together) is
Seye = 1.69 cm.
The optical power of the eye is

IR B
Peye =7 = v0160m — P

For clear vision, the image distance d; must equal the lens-to-retina distance. Normal vision is possible for objects at
distances d, = 25 cm to infinity. The following example shows how to calculate the image distance for an object placed

at the near point of the eye.

Example 2.7

Image of an object placed at the near point

The net focal length of a particular human eye is 1.7 cm. An object is placed at the near point of the eye. How far
behind the lens is a focused image formed?

Strategy
The near point is 25 cm from the eye, so the object distance is d, = 25 cm . We determine the image distance

from the lens equation:

1_1_1
di f do
Solution
-1
_(1__1
4 =(4-4)
-1
(-
1.7cm  25cm
=1.8cm
Therefore, the image is formed 1.8 cm behind the lens.
Significance
From the magnification formula, we find m = —18cm _ —0.073. Since m < 0, the image is inverted in

25 cm

orientation with respect to the object. From the absolute value of m we see that the image is much smaller than
the object; in fact, it is only 7% of the size of the object.
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Vision Correction

The need for some type of vision correction is very common. Typical vision defects are easy to understand with geometric
optics, and some are simple to correct. Figure 2.31 illustrates two common vision defects. Nearsightedness, or myopia,
is the ability to see near objects, whereas distant objects are blurry. The eye overconverges the nearly parallel rays from a
distant object, and the rays cross in front of the retina. More divergent rays from a close object are converged on the retina
for a clear image. The distance to the farthest object that can be seen clearly is called the far point of the eye (normally
the far point is at infinity). Farsightedness, or hyperopia, is the ability to see far objects clearly, whereas near objects are
blurry. A farsighted eye does not sufficiently converge the rays from a near object to make the rays meet on the retina.

Lens too strong Eye too long

(a) Myopia

Eye too short

(b) Hyperopia
Figure 2.31 (a) The nearsighted (myopic) eye converges rays from a distant object in front of the retina, so they have
diverged when they strike the retina, producing a blurry image. An eye lens that is too powerful can cause
nearsightedness, or the eye may be too long. (b) The farsighted (hyperopic) eye is unable to converge the rays from a
close object on the retina, producing blurry near-field vision. An eye lens with insufficient optical power or an eye that is
too short can cause farsightedness.

Since the nearsighted eye overconverges light rays, the correction for nearsightedness consists of placing a diverging
eyeglass lens in front of the eye, as shown in Figure 2.32. This reduces the optical power of an eye that is too powerful
(recall that the focal length of a diverging lens is negative, so its optical power is negative). Another way to understand this
correction is that a diverging lens will cause the incoming rays to diverge more to compensate for the excessive convergence
caused by the lens system of the eye. The image produced by the diverging eyeglass lens serves as the (optical) object for
the eye, and because the eye cannot focus on objects beyond its far point, the diverging lens must form an image of distant
(physical) objects at a point that is closer than the far point.
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Distant
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Focus in front
of retina
Focus on retina
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divergence —
Figure 2.32 Correction of nearsightedness requires a diverging lens that compensates for
overconvergence by the eye. The diverging lens produces an image closer to the eye than the
physical object. This image serves as the optical object for the eye, and the nearsighted person can
see it clearly because it is closer than their far point.

Example 2.8

Correcting Nearsightedness

What optical power of eyeglass lens is needed to correct the vision of a nearsighted person whose far point is 30.0
cm? Assume the corrective lens is fixed 1.50 cm away from the eye.

Strategy

You want this nearsighted person to be able to see distant objects clearly, which means that the eyeglass lens
must produce an image 30.0 cm from the eye for an object at infinity. An image 30.0 cm from the eye will
be 30.0cm —1.50cm =28.5cm from the eyeglass lens. Therefore, we must have d; =—28.5cm when

d, = oo . The image distance is negative because it is on the same side of the eyeglass lens as the object.

Solution

Since d; and d,, are known, we can find the optical power of the eyeglass lens by using Equation 2.24:

P= = -3.51D.

4. 1_ 1, 1
do 4, = © " 0285 m
Significance

The negative optical power indicates a diverging (or concave) lens, as expected. If you examine eyeglasses for
nearsighted people, you will find the lenses are thinnest in the center. Additionally, if you examine a prescription
for eyeglasses for nearsighted people, you will find that the prescribed optical power is negative and given in
units of diopters.
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Correcting farsightedness consists simply of using the opposite type of lens as for nearsightedness (i.e., a converging lens),
as shown in Figure 2.33.

Such a lens will produce an image of physical objects that are closer than the near point at a distance that is between the near
point and the far point, so that the person can see the image clearly. To determine the optical power needed for correction,
you must therefore know the person’s near point, as explained in Example 2.9.

Focus on retina

Focus behind
retina

Close
object

Image

Figure 2.33 Correction of farsightedness uses a-;:i)ll_\-f-erging lens that compensates for the
underconvergence by the eye. The converging lens produces an image farther from the eye than
the object, so that the farsighted person can see it clearly.

Example 2.9

Correcting Farsightedness

What optical power of eyeglass lens is needed to allow a farsighted person, whose near point is 1.00 m, to see an
object clearly that is 25.0 cm from the eye? Assume the corrective lens is fixed 1.5 cm from the eye.

Strategy

When an object is 25.0 cm from the person’s eyes, the eyeglass lens must produce an image 1.00 m away (the near
point), so that the person can see it clearly. An image 1.00 m from the eye will be 100 cm — 1.5 cm = 98.5 cm

from the eyeglass lens because the eyeglass lens is 1.5 cm from the eye. Therefore, d; = —98.5cm, where

the minus sign indicates that the image is on the same side of the lens as the object. The object is
25.0cm — 1.5cm = 23.5 cm from the eyeglass lens, so dy, = 23.5cm.

Solution

Since d; and d,, are known, we can find the optical power of the eyeglass lens by using Equation 2.24:

_ 1,11 _
P=gta=oadsm* +3.24D.

1 1
d, —0.985m
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Significance

The positive optical power indicates a converging (convex) lens, as expected. If you examine eyeglasses of
farsighted people, you will find the lenses to be thickest in the center. In addition, prescription eyeglasses for
farsighted people have a prescribed optical power that is positive.

2.6 | The Camera

Learning Objectives

By the end of this section, you will be able to:

* Describe the optics of a camera
* Characterize the image created by a camera

Cameras are very common in our everyday life. Between 1825 and 1827, French inventor Nicéphore Niépce successfully
photographed an image created by a primitive camera. Since then, enormous progress has been achieved in the design of
cameras and camera-based detectors.

Initially, photographs were recorded by using the light-sensitive reaction of silver-based compounds such as silver chloride
or silver bromide. Silver-based photographic paper was in common use until the advent of digital photography in the 1980s,
which is intimately connected to charge-coupled device (CCD) detectors. In a nutshell, a CCD is a semiconductor chip
that records images as a matrix of tiny pixels, each pixel located in a “bin” in the surface. Each pixel is capable of detecting
the intensity of light impinging on it. Color is brought into play by putting red-, blue-, and green-colored filters over the
pixels, resulting in colored digital images (Figure 2.34). At its best resolution, one CCD pixel corresponds to one pixel of
the image. To reduce the resolution and decrease the size of the file, we can “bin” several CCD pixels into one, resulting in
a smaller but “pixelated” image.

Charged coupled device

Conversion
to voltages

Sensors for red, blue, or

green wavelengths of light
Figure 2.34 A charge-coupled device (CCD) converts light signals into electronic signals, enabling electronic processing
and storage of visual images. This is the basis for electronic imaging in all digital cameras, from cell phones to movie
cameras. (credit left: modification of work by Bruce Turner)

Clearly, electronics is a big part of a digital camera; however, the underlying physics is basic optics. As a matter of fact, the
optics of a camera are pretty much the same as those of a single lens with an object distance that is significantly larger than
the lens’s focal distance (Figure 2.35).
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Figure 2.35 Modern digital cameras have several lenses to produce a clear image with minimal aberration and
use red, blue, and green filters to produce a color image.

For instance, let us consider the camera in a smartphone. An average smartphone camera is equipped with a stationary wide-
angle lens with a focal length of about 4-5 mm. (This focal length is about equal to the thickness of the phone.) The image
created by the lens is focused on the CCD detector mounted at the opposite side of the phone. In a cell phone, the lens and
the CCD cannot move relative to each other. So how do we make sure that both the images of a distant and a close object
are in focus?

Recall that a human eye can accommodate for distant and close images by changing its focal distance. A cell phone camera
cannot do that because the distance from the lens to the detector is fixed. Here is where the small focal distance becomes
important. Let us assume we have a camera with a 5-mm focal distance. What is the image distance for a selfie? The object
distance for a selfie (the length of the hand holding the phone) is about 50 cm. Using the thin-lens equation, we can write

1 1

- __1 .1
Smm 500mm d;

We then obtain the image distance:

1 1 1

d; ~5mm 500 mm

Note that the object distance is 100 times larger than the focal distance. We can clearly see that the 1/(500 mm) term is
significantly smaller than 1/(5 mm), which means that the image distance is pretty much equal to the lens’s focal length. An
actual calculation gives us the image distance d; = 5.05 mm . This value is extremely close to the lens’s focal distance.

Now let us consider the case of a distant object. Let us say that we would like to take a picture of a person standing about
5 m from us. Using the thin-lens equation again, we obtain the image distance of 5.005 mm. The farther the object is from
the lens, the closer the image distance is to the focal distance. At the limiting case of an infinitely distant object, we obtain
the image distance exactly equal to the focal distance of the lens.

As you can see, the difference between the image distance for a selfie and the image distance for a distant object is just
about 0.05 mm or 50 microns. Even a short object distance such as the length of your hand is two orders of magnitude
larger than the lens’s focal length, resulting in minute variations of the image distance. (The 50-micron difference is smaller
than the thickness of an average sheet of paper.) Such a small difference can be easily accommodated by the same detector,
positioned at the focal distance of the lens. Image analysis software can help improve image quality.
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Conventional point-and-shoot cameras often use a movable lens to change the lens-to-image distance. Complex lenses of
the more expensive mirror reflex cameras allow for superb quality photographic images. The optics of these camera lenses
is beyond the scope of this textbook.

2.7 | The Simple Magnifier

Learning Objectives

By the end of this section, you will be able to:

* Understand the optics of a simple magnifier
* Characterize the image created by a simple magnifier

The apparent size of an object perceived by the eye depends on the angle the object subtends from the eye. As shown in
Figure 2.36, the object at A subtends a larger angle from the eye than when it is position at point B. Thus, the object at A
forms a larger image on the retina (see OA’) than when it is positioned at B (see OB’). Thus, objects that subtend large

angles from the eye appear larger because they form larger images on the retina.

B

Figure 2.36 Size perceived by an eye is determined by the angle Subt;_I;CEd_ _I;y the object. An

image formed on the retina by an object at A is larger than an image formed on the retina by the
same object positioned at B (compared image heights OA’ to OB’).

We have seen that, when an object is placed within a focal length of a convex lens, its image is virtual, upright, and larger
than the object (see part (b) of Figure 2.26). Thus, when such an image produced by a convex lens serves as the object for
the eye, as shown in Figure 2.37, the image on the retina is enlarged, because the image produced by the lens subtends a
larger angle in the eye than does the object. A convex lens used for this purpose is called a magnifying glass or a simple
magnifier.
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Figure 2.37 The simple magnifier is a convex lens used to produce an enlarged image of an object on the retina. (a) With no

convex lens, the object subtends an angle Hobject from the eye. (b) With the convex lens in place, the image produced by the

convex lens subtends an angle Gimage from the eye, with Himage > eobject . Thus, the image on the retina is larger with the

convex lens in place.

To account for the magnification of a magnifying lens, we compare the angle subtended by the image (created by the lens)
with the angle subtended by the object (viewed with no lens), as shown in Figure 2.37. We assume that the object is
situated at the near point of the eye, because this is the object distance at which the unaided eye can form the largest image
on the retina. We will compare the magnified images created by a lens with this maximum image size for the unaided eye.
The magnification of an image when observed by the eye is the angular magnification M, which is defined by the ratio of
the angle ;.. subtended by the image to the angle ..., subtended by the object:

Fimage (2:26)

M=9

object

Consider the situation shown in Figure 2.37. The magnifying lens is held a distance ¢ from the eye, and the image

produced by the magnifier forms a distance L from the eye. We want to calculate the angular magnification for any arbitrary
Land £ . In the small-angle approximation, the angular size ¢; .. of the image is /;/L . The angular size 0;e.; Of the

object at the near point is 6 « = ho/25 cm . The angular magnification is then

objec
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_ eimage _ h1(25 cm) (2.27)
aobject Lhy
Using Equation 2.8 for linear magnification
__di_n
", T he
and the thin-lens equation
1 1 _1
- 4+ =2
do d; f
in Equation 2.27, we arrive at the following expression for the angular magnification of a magnifying lens:
_(_4i\25cm (2.28)
w = (=g

— _g. (1 _1)}25cm
=-a(p- )
- d;\(25cm
= (1 - 7)(T)
From part (b) of the figure, we see that the absolute value of the image distance is |d;| = L — ¢ . Note that d; < 0 because

the image is virtual, so we can dispense with the absolute value by explicitly inserting the minus sign: —d;=L—-7.

Inserting this into Equation 2.28 gives us the final equation for the angular magnification of a magnifying lens:

M= (25Lcrn)(1 +L - f)‘ (2.29)

Note that all the quantities in this equation have to be expressed in centimeters. Often, we want the image to be at the near-
point distance ( L = 25 cm ) to get maximum magnification, and we hold the magnifying lens close to the eye (£ = 0). In

this case, Equation 2.29 gives

M=1+ 25}:m (2.30)

which shows that the greatest magnification occurs for the lens with the shortest focal length. In addition, when the image is
at the near-point distance and the lens is held close to the eye (£ = 0),then L = d; =25 cm and Equation 2.27 becomes

By (2.31)
he "

M =
where m is the linear magnification (Equation 2.32) derived for spherical mirrors and thin lenses. Another useful situation
is when the image is at infinity (L = oco0). Equation 2.29 then takes the form

The resulting magnification is simply the ratio of the near-point distance to the focal length of the magnifying lens, so
a lens with a shorter focal length gives a stronger magnification. Although this magnification is smaller by 1 than the
magnification obtained with the image at the near point, it provides for the most comfortable viewing conditions, because
the eye is relaxed when viewing a distant object.

By comparing Equation 2.29 with Equation 2.32, we see that the range of angular magnification of a given converging
lens is
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25 cm <M<l1+ 25cm (2.33)

Example 2.10

Magnifying a Diamond

A jeweler wishes to inspect a 3.0-mm-diameter diamond with a magnifier. The diamond is held at the jeweler’s
near point (25 cm), and the jeweler holds the magnifying lens close to his eye.

(a) What should the focal length of the magnifying lens be to see a 15-mm-diameter image of the diamond?

(b) What should the focal length of the magnifying lens be to obtain 10 X magnification?

Strategy

We need to determine the requisite magnification of the magnifier. Because the jeweler holds the magnifying lens
close to his eye, we can use Equation 2.30 to find the focal length of the magnifying lens.

Solution
a. The required linear magnification is the ratio of the desired image diameter to the diamond’s actual
diameter (Equation 2.32). Because the jeweler holds the magnifying lens close to his eye and the image
forms at his near point, the linear magnification is the same as the angular magnification, so

M=m="Ti_15mm _s5q

ho  3.0mm —

The focal length f of the magnifying lens may be calculated by solving Equation 2.30 for f, which gives

25 cm
M =1+==2
f

—25cm _ 25cm _

SM—17=30-1_03m

b. To get an image magnified by a factor of ten, we again solve Equation 2.30 for f, but this time we use
M = 10. The result is

f=23cm _ 25cm

M—1-10-1 =2.8cm.

Significance

Note that a greater magnification is achieved by using a lens with a smaller focal length. We thus need to use a
lens with radii of curvature that are less than a few centimeters and hold it very close to our eye. This is not very
convenient. A compound microscope, explored in the following section, can overcome this drawback.

2.8 | Microscopes and Telescopes

Learning Objectives

By the end of this section, you will be able to:

» Explain the physics behind the operation of microscopes and telescopes
* Describe the image created by these instruments and calculate their magnifications

Microscopes and telescopes are major instruments that have contributed hugely to our current understanding of the micro-
and macroscopic worlds. The invention of these devices led to numerous discoveries in disciplines such as physics,
astronomy, and biology, to name a few. In this section, we explain the basic physics that make these instruments work.
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Microscopes

Although the eye is marvelous in its ability to see objects large and small, it obviously is limited in the smallest details it
can detect. The desire to see beyond what is possible with the naked eye led to the use of optical instruments. We have
seen that a simple convex lens can create a magnified image, but it is hard to get large magnification with such a lens. A
magnification greater than 5 X is difficult without distorting the image. To get higher magnification, we can combine the
simple magnifying glass with one or more additional lenses. In this section, we examine microscopes that enlarge the details
that we cannot see with the naked eye.

Microscopes were first developed in the early 1600s by eyeglass makers in The Netherlands and Denmark. The simplest
compound microscope is constructed from two convex lenses (Figure 2.38). The objective lens is a convex lens of short
focal length (i.e., high power) with typical magnification from 5 X to 100 X . The eyepiece, also referred to as the ocular,

is a convex lens of longer focal length.
The purpose of a microscope is to create magnified images of small objects, and both lenses contribute to the final

magnification. Also, the final enlarged image is produced sufficiently far from the observer to be easily viewed, since the
eye cannot focus on objects or images that are too close (i.e., closer than the near point of the eye).

Eyepiece

Objectf_] f_/ [ -z
<\~ Fina Objective image,/”,/' -7

image
9 lens P

| di

!
Figure 2.38 A compound microscope is composed of two lenses: an objective and an eyepiece. The objective forms the first
image, which is larger than the object. This first image is inside the focal length of the eyepiece and serves as the object for the
eyepiece. The eyepiece forms final image that is further magnified.

To see how the microscope in Figure 2.38 forms an image, consider its two lenses in succession. The object is just beyond
the focal length f ) of the objective lens, producing a real, inverted image that is larger than the object. This first image
serves as the object for the second lens, or eyepiece. The eyepiece is positioned so that the first image is within its focal
eye . . . . o g . .
length f ", so that it can further magnify the image. In a sense, it acts as a magnifying glass that magnifies the intermediate

image produced by the objective. The image produced by the eyepiece is a magnified virtual image. The final image remains
inverted but is farther from the observer than the object, making it easy to view.

The eye views the virtual image created by the eyepiece, which serves as the object for the lens in the eye. The virtual image
formed by the eyepiece is well outside the focal length of the eye, so the eye forms a real image on the retina.
The magnification of the microscope is the product of the linear magnification mobJ by the objective and the angular

magnification M eve by the eyepiece. These are given by
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obj obj
obj di i . e . L.
m = —1— =~ — ——(linear magnification y objective)
obj obj
do
M =1+ ZSe%n (angular magnification y eyepiece)

Here, f obj and f ¢ are the focal lengths of the objective and the eyepiece, respectively. We assume that the final image

is formed at the near point of the eye, providing the largest magnification. Note that the angular magnification of the
eyepiece is the same as obtained earlier for the simple magnifying glass. This should not be surprising, because the eyepiece
is essentially a magnifying glass, and the same physics applies here. The net magnification M . of the compound

microscope is the product of the linear magnification of the objective and the angular magnification of the eyepiece:

diObj ( feye +25 Cm) (2.34)

fobj f

Example 2.11

Microscope Magnification

bi
Mnet — mO JMeye —

eye

Calculate the magnification of an object placed 6.20 mm from a compound microscope that has a 6.00 mm-focal
length objective and a 50.0 mm-focal length eyepiece. The objective and eyepiece are separated by 23.0 cm.

Strategy

This situation is similar to that shown in Figure 2.38. To find the overall magnification, we must know the linear
magnification of the objective and the angular magnification of the eyepiece. We can use Equation 2.34, but we

need to use the thin-lens equation to find the image distance dio ) of the objective.
Solution

Solving the thin-lens equation for dio ) gives

-1
bj 1 1
a3 = L
‘ [fOb] dﬁbj]

-1
1 _ 1 _ B
(6.00 mm _ 6.20 mm) = 186 mm = 18.6 cm

Inserting this result into Equation 2.34 along with the known values fObj =6.20mm = 0.620 cm and

¥ =50.0mm = 5.00cm gives

d™ (£ + 25 cm)
fobj f
(18.6 cm)(5.00 cm + 25 cm)
(0.620 cm)(5.00 cm)
=-180

My =

eye

Significance

Both the objective and the eyepiece contribute to the overall magnification, which is large and negative, consistent
with Figure 2.38, where the image is seen to be large and inverted. In this case, the image is virtual and inverted,
which cannot happen for a single element (see Figure 2.26).
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Figure 2.39 A compound microscope with the image created at infinity.

We now calculate the magnifying power of a microscope when the image is at infinity, as shown in Figure 2.39, because
this makes for the most relaxed viewing. The magnifying power of the microscope is the product of linear magnification

bj R P . b bj , ,obj
m® of the objective and the angular magnification M Y€ of the eyepiece. We know that m®™ = —di0 ]/dg ) and from
the thin-lens equation we obtain

mobj o dfbj diObJ ~ fObJ _ diobj (2.35)

obj obj obj
d, A f

If the final image is at infinity, then the image created by the objective must be located at the focal point of the eyepiece. This
may be seen by considering the thin-lens equation with d; = co or by recalling that rays that pass through the focal point

exit the lens parallel to each other, which is equivalent to focusing at infinity. For many microscopes, the distance between
the image-side focal point of the objective and the object-side focal point of the eyepiece is standardized at L = 16 cm .

This distance is called the tube length of the microscope. From Figure 2.39, we see that L = f obj _ dio bj . Inserting this
into Equation 2.35 gives
o = _L__ 16cm (2.36)
~ Lobj — Lobj’
f f
We now need to calculate the angular magnification of the eyepiece with the image at infinity. To do so, we take the ratio
of the angle Gimage subtended by the image to the angle Hobject subtended by the object at the near point of the eye

(this is the closest that the unaided eye can view the object, and thus this is the position where the object will form the
largest image on the retina of the unaided eye). Using Figure 2.39 and working in the small-angle approximation, we have

Oimage h?bj/ £ and & object h?bj/ZS cm, where hiObj is the height of the image formed by the objective, which is

the object of the eyepiece. Thus, the angular magnification of the eyepiece is

bi
MY = Oimage _ h? ! 25cm _ 25cm (2:37)

gobject feye h?bj feye .

The net magnifying power of the compound microscope with the image at infinity is therefore
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_ (16 cm)(25 cm) (2.38)
fobj feye :

The focal distances must be in centimeters. The minus sign indicates that the final image is inverted. Note that the only
variables in the equation are the focal distances of the eyepiece and the objective, which makes this equation particularly
useful.

Telescopes

Telescopes are meant for viewing distant objects and produce an image that is larger than the image produced in the
unaided eye. Telescopes gather far more light than the eye, allowing dim objects to be observed with greater magnification
and better resolution. Telescopes were invented around 1600, and Galileo was the first to use them to study the heavens,
with monumental consequences. He observed the moons of Jupiter, the craters and mountains on the moon, the details of
sunspots, and the fact that the Milky Way is composed of a vast number of individual stars.

obj , ,eye
Myee=m "M =

Incoming
parallel rays

Objective Eyepiece

Final image

(@)

Very
distant \a et |
goject Objective _-72-7-77  Eyepiece
e
2%
o“$
-
Final image
(b)

Figure 2.40 (a) Galileo made telescopes with a convex objective and a concave eyepiece. These produce an
upright image and are used in spyglasses. (b) Most simple refracting telescopes have two convex lenses. The
objective forms a real, inverted image at (or just within) the focal plane of the eyepiece. This image serves as the
object for the eyepiece. The eyepiece forms a virtual, inverted image that is magnified.
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Part (a) of Figure 2.40 shows a refracting telescope made of two lenses. The first lens, called the objective, forms a real
image within the focal length of the second lens, which is called the eyepiece. The image of the objective lens serves as the
object for the eyepiece, which forms a magnified virtual image that is observed by the eye. This design is what Galileo used
to observe the heavens.

Although the arrangement of the lenses in a refracting telescope looks similar to that in a microscope, there are important
differences. In a telescope, the real object is far away and the intermediate image is smaller than the object. In a microscope,
the real object is very close and the intermediate image is larger than the object. In both the telescope and the microscope,
the eyepiece magnifies the intermediate image; in the telescope, however, this is the only magnification.

The most common two-lens telescope is shown in part (b) of the figure. The object is so far from the telescope that it

is essentially at infinity compared with the focal lengths of the lenses (dgbJ =~ ), so the incoming rays are essentially

parallel and focus on the focal plane. Thus, the first image is produced at dio b _ f obj , as shown in the figure, and is not

large compared with what you might see by looking directly at the object. However, the eyepiece of the telescope eyepiece
(like the microscope eyepiece) allows you to get nearer than your near point to this first image and so magnifies it (because
you are near to it, it subtends a larger angle from your eye and so forms a larger image on your retina). As for a simple

magnifier, the angular magnification of a telescope is the ratio of the angle subtended by the image [Gimage in part (b)] to

the angle subtended by the real object [ Hobjem in part (b)]:

0
0

(2.39)

image

M = .
object

To obtain an expression for the magnification that involves only the lens parameters, note that the focal plane of the
objective lens lies very close to the focal plan of the eyepiece. If we assume that these planes are superposed, we have the
situation shown in Figure 2.41.
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Figure 2.41 The focal plane of the objective lens of a telescope is very near to the focal plane of the eyepiece. The angle

Himage subtended by the image viewed through the eyepiece is larger than the angle gobject subtended by the object when

viewed with the unaided eye.

We further assume that the angles 6 . and 0, are small, so that the small-angle approximation holds (tan 6 = 0).

objec image

If the image formed at the focal plane has height h, then

~ —_h
gobject ~ tan gobject ~ _obj
f
~ — —=h
Himage ~ tan gimage -

eye
f
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where the minus sign is introduced because the height is negative if we measure both angles in the counterclockwise
direction. Inserting these expressions into Equation 2.39 gives

bj bj
" P fOJ. (2.40)
feye hl nyC

Thus, to obtain the greatest angular magnification, it is best to have an objective with a long focal length and an eyepiece
with a short focal length. The greater the angular magnification M, the larger an object will appear when viewed through a
telescope, making more details visible. Limits to observable details are imposed by many factors, including lens quality and
atmospheric disturbance. Typical eyepieces have focal lengths of 2.5 cm or 1.25 cm. If the objective of the telescope has a
focal length of 1 meter, then these eyepieces result in magnifications of 40 X and 80 X , respectively. Thus, the angular

magnifications make the image appear 40 times or 80 times closer than the real object.

The minus sign in the magnification indicates the image is inverted, which is unimportant for observing the stars but is a real
problem for other applications, such as telescopes on ships or telescopic gun sights. If an upright image is needed, Galileo’s
arrangement in part (a) of Figure 2.40 can be used. But a more common arrangement is to use a third convex lens as an
eyepiece, increasing the distance between the first two and inverting the image once again, as seen in Figure 2.42.

Objective Erecting Eyepiece
lens
Figure 2.42 This arrangement of three lenses in a telescope produces an upright final image. The first two lenses are far
enough apart that the second lens inverts the image of the first. The third lens acts as a magnifier and keeps the image upright
and in a location that is easy to view.

The largest refracting telescope in the world is the 40-inch diameter Yerkes telescope located at Lake Geneva, Wisconsin
(Figure 2.43), and operated by the University of Chicago.

It is very difficult and expensive to build large refracting telescopes. You need large defect-free lenses, which in itself is a
technically demanding task. A refracting telescope basically looks like a tube with a support structure to rotate it in different
directions. A refracting telescope suffers from several problems. The aberration of lenses causes the image to be blurred.
Also, as the lenses become thicker for larger lenses, more light is absorbed, making faint stars more difficult to observe.
Large lenses are also very heavy and deform under their own weight. Some of these problems with refracting telescopes
are addressed by avoiding refraction for collecting light and instead using a curved mirror in its place, as devised by Isaac
Newton. These telescopes are called reflecting telescopes.
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Figure 2.43 1In 1897, the Yerkes Observatory in Wisconsin (USA) built
a large refracting telescope with an objective lens that is 40 inches in
diameter and has a tube length of 62 feet. (credit: Yerkes Observatory,
University of Chicago)

Reflecting Telescopes

Isaac Newton designed the first reflecting telescope around 1670 to solve the problem of chromatic aberration that happens
in all refracting telescopes. In chromatic aberration, light of different colors refracts by slightly different amounts in the lens.
As aresult, a rainbow appears around the image and the image appears blurred. In the reflecting telescope, light rays from a
distant source fall upon the surface of a concave mirror fixed at the bottom end of the tube. The use of a mirror instead of a
lens eliminates chromatic aberration. The concave mirror focuses the rays on its focal plane. The design problem is how to
observe the focused image. Newton used a design in which the focused light from the concave mirror was reflected to one
side of the tube into an eyepiece [part (a) of Figure 2.44]. This arrangement is common in many amateur telescopes and is
called the Newtonian design.

Some telescopes reflect the light back toward the middle of the concave mirror using a convex mirror. In this arrangement,
the light-gathering concave mirror has a hole in the middle [part (b) of the figure]. The light then is incident on an eyepiece
lens. This arrangement of the objective and eyepiece is called the Cassegrain design. Most big telescopes, including the
Hubble space telescope, are of this design. Other arrangements are also possible. In some telescopes, a light detector is
placed right at the spot where light is focused by the curved mirror.

Eyepiece
o B Y
R ey b o
> Objective —\ Objective
W
, N
\

Eyepiece
4 /
(a) Newtonian (b) Cassegrain

Figure 2.44 Reflecting telescopes: (a) In the Newtonian design, the eyepiece is located at the side of the telescope; (b) in the
Cassegrain design, the eyepiece is located past a hole in the primary mirror.

Most astronomical research telescopes are now of the reflecting type. One of the earliest large telescopes of this kind is
the Hale 200-inch (or 5-meter) telescope built on Mount Palomar in southern California, which has a 200 inch-diameter
mirror. One of the largest telescopes in the world is the 10-meter Keck telescope at the Keck Observatory on the summit of
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the dormant Mauna Kea volcano in Hawaii. The Keck Observatory operates two 10-meter telescopes. Each is not a single
mirror, but is instead made up of 36 hexagonal mirrors. Furthermore, the two telescopes on the Keck can work together,
which increases their power to an effective 85-meter mirror. The Hubble telescope (Figure 2.45) is another large reflecting
telescope with a 2.4 meter-diameter primary mirror. The Hubble was put into orbit around Earth in 1990.

e i - ———— " . 31 B3
Figure 2.45 The Hubble space telescope as seen from the Spa
modification of work by NASA)

ce Shuttle Discovery. (credit:

The angular magnification M of a reflecting telescope is also given by Equation 2.36. For a spherical mirror, the focal
length is half the radius of curvature, so making a large objective mirror not only helps the telescope collect more light but
also increases the magnification of the image.

This OpenStax book is available for free at http://cnx.org/content/col12067/1.3
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CHAPTER 2 REVIEW

KEY TERMS

aberration distortion in an image caused by departures from the small-angle approximation
accommodation use of the ciliary muscles to adjust the shape of the eye lens for focusing on near or far objects

angular magnification ratio of the angle subtended by an object observed with a magnifier to that observed by the naked
eye

apparent depth depth at which an object is perceived to be located with respect to an interface between two media

Cassegrain design arrangement of an objective and eyepiece such that the light-gathering concave mirror has a hole in
the middle, and light then is incident on an eyepiece lens

charge-coupled device (CCD) semiconductor chip that converts a light image into tiny pixels that can be converted
into electronic signals of color and intensity

coma similar to spherical aberration, but arises when the incoming rays are not parallel to the optical axis

compound microscope microscope constructed from two convex lenses, the first serving as the eyepiece and the
second serving as the objective lens

concave mirror spherical mirror with its reflecting surface on the inner side of the sphere; the mirror forms a “cave”

converging (or convex) lens lens in which light rays that enter it parallel converge into a single point on the opposite
side

convex mirror spherical mirror with its reflecting surface on the outer side of the sphere
curved mirror mirror formed by a curved surface, such as spherical, elliptical, or parabolic
diverging (or concave) lens lens that causes light rays to bend away from its optical axis
eyepiece lens or combination of lenses in an optical instrument nearest to the eye of the observer
far point furthest point an eye can see in focus

farsightedness (or hyperopia) visual defect in which near objects appear blurred because their images are focused
behind the retina rather than on the retina; a farsighted person can see far objects clearly but near objects appear
blurred

first focus or object focus object located at this point will result in an image created at infinity on the opposite side of a
spherical interface between two media

focal length distance along the optical axis from the focal point to the optical element that focuses the light rays
focal plane plane that contains the focal point and is perpendicular to the optical axis

focal point for a converging lens or mirror, the point at which converging light rays cross; for a diverging lens or mirror,
the point from which diverging light rays appear to originate

image distance distance of the image from the central axis of the optical element that produces the image
linear magnification ratio of image height to object height

magnification ratio of image size to object size

hear point closest point an eye can see in focus

nearsightedness (or myopia) visual defect in which far objects appear blurred because their images are focused in
front of the retina rather than on the retina; a nearsighted person can see near objects clearly but far objects appear
blurred

net magnification (M) of the compound microscope is the product of the linear magnification of the objective and

the angular magnification of the eyepiece

Newtonian design arrangement of an objective and eyepiece such that the focused light from the concave mirror was
reflected to one side of the tube into an eyepiece
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object distance e of the object from the central axis of the optical element that produces its image
objective lens nearest to the object being examined.

optical axis axis about which the mirror is rotationally symmetric; you can rotate the mirror about this axis without
changing anything

optical power (P) inverse of the focal length of a lens, with the focal length expressed in meters. The optical power P of a
lens is expressed in units of diopters D; that is, 1D = 1/m =1 m™!

plane mirror plane (flat) reflecting surface

ray tracing technique that uses geometric constructions to find and characterize the image formed by an optical system

real image image that can be projected onto a screen because the rays physically go through the image

second focus or image focus for a converging interface, the point where a bundle of parallel rays refracting at a
spherical interface; for a diverging interface, the point at which the backward continuation of the refracted rays will
converge between two media will focus

simple magnifier (or magnifying glass) converging lens that produces a virtual image of an object that is within the
focal length of the lens

small-angle approximation approximation that is valid when the size of a spherical mirror is significantly smaller than
the mirror’s radius; in this approximation, spherical aberration is negligible and the mirror has a well-defined focal
point

spherical aberration distortion in the image formed by a spherical mirror when rays are not all focused at the same point
thin-lens approximation assumption that the lens is very thin compared to the first image distance
vertex point where the mirror’s surface intersects with the optical axis

virtual image image that cannot be projected on a screen because the rays do not physically go through the image, they
only appear to originate from the image

KEY EQUATIONS

Image distance in a plane mirror do = —d;
Focal length for a spherical mirror f= R
2
Mirror equation 1 + 1 _1
do d; f
Magnification of a spherical mirror = hy _ d;
Cho  do
Sign convention for mirrors
Focal length f + for concave mirror

— for concave mirror

Object distance d, + for real object
— for virtual object

Image distance dj + 1Eor rejal irrllgge
— for virtual 1mage

Magnification m + for upright image
— for inverted image

Apparent depth equation h = (%)ho

This OpenStax book is available for free at http://cnx.org/content/col12067/1.3
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Spherical interface equation

The thin-lens equation

The lens maker’s equation

The magnification m of an object

Optical power

Optical power of thin, closely spaced lenses

Angular magnification M of a simple magnifier

Angular magnification of an object a distance
L from the eye for a convex lens of focal length

f held a distance ¢ from the eye

Range of angular magnification for a given
lens for a person with a near point of 25 cm

Net magnification of compound microscope

SUMMARY

2.1 Images Formed by Plane Mirrors

nny_mp—n
4 - R
1,1 _1

- ==L

doTd T f

1 _ ("2 _ ) L__L1L
f_(nl I)Rl Rz)
_hi_ 4
"= T T do

P:%

Piotal = Prenst + Prens2 + Prensz +

0

M= image
gobject
_(25cm L-¢
M = ( 7 )(1 + 7 )

¢ A plane mirror always forms a virtual image (behind the mirror).
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e The image and object are the same distance from a flat mirror, the image size is the same as the object size, and the

image is upright.

2.2 Spherical Mirrors

¢ Spherical mirrors may be concave (converging) or convex (diverging).

¢ The focal length of a spherical mirror is one-half of its radius of curvature: f = R/2.

¢ The mirror equation and ray tracing allow you to give a complete description of an image formed by a spherical

mirror.

¢ Spherical aberration occurs for spherical mirrors but not parabolic mirrors; comatic aberration occurs for both types

of mirrors.

2.3 Images Formed by Refraction

This section explains how a single refracting interface forms images.

¢ When an object is observed through a plane interface between two media, then it appears at an apparent distance
h; that differs from the actual distance & : h; = (ny/nq)h,.

* Animage is formed by the refraction of light at a spherical interface between two media of indices of refraction n;

and n,.



108

Chapter 2 | Geometric Optics and Image Formation

Image distance depends on the radius of curvature of the interface, location of the object, and the indices of
refraction of the media.

2.4 Thin Lenses

Two types of lenses are possible: converging and diverging. A lens that causes light rays to bend toward (away
from) its optical axis is a converging (diverging) lens.

For a converging lens, the focal point is where the converging light rays cross; for a diverging lens, the focal point
is the point from which the diverging light rays appear to originate.

The distance from the center of a thin lens to its focal point is called the focal length f.

Ray tracing is a geometric technique to determine the paths taken by light rays through thin lenses.
A real image can be projected onto a screen.

A virtual image cannot be projected onto a screen.

A converging lens forms either real or virtual images, depending on the object location; a diverging lens forms only
virtual images.

2.5 The Eye

Image formation by the eye is adequately described by the thin-lens equation.
The eye produces a real image on the retina by adjusting its focal length in a process called accommodation.

Nearsightedness, or myopia, is the inability to see far objects and is corrected with a diverging lens to reduce the
optical power of the eye.

Farsightedness, or hyperopia, is the inability to see near objects and is corrected with a converging lens to increase
the optical power of the eye.

In myopia and hyperopia, the corrective lenses produce images at distances that fall between the person’s near and
far points so that images can be seen clearly.

2.6 The Camera

Cameras use combinations of lenses to create an image for recording.

Digital photography is based on charge-coupled devices (CCDs) that break an image into tiny “pixels” that can be
converted into electronic signals.

2.7 The Simple Magnifier

A simple magnifier is a converging lens and produces a magnified virtual image of an object located within the
focal length of the lens.

Angular magnification accounts for magnification of an image created by a magnifier. It is equal to the ratio of the
angle subtended by the image to that subtended by the object when the object is observed by the unaided eye.

Angular magnification is greater for magnifying lenses with smaller focal lengths.

Simple magnifiers can produce as great as tenfold ( 10 X ) magnification.

2.8 Microscopes and Telescopes

Many optical devices contain more than a single lens or mirror. These are analyzed by considering each element
sequentially. The image formed by the first is the object for the second, and so on. The same ray-tracing and thin-
lens techniques developed in the previous sections apply to each lens element.

The overall magnification of a multiple-element system is the product of the linear magnifications of its individual
elements times the angular magnification of the eyepiece. For a two-element system with an objective and an
eyepiece, this is

M= mobj Meye.

This OpenStax book is available for free at http://cnx.org/content/col12067/1.3
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obj . . o R eye . o .
where m”” is the linear magnification of the objective and M Y is the angular magnification of the eyepiece.

The microscope is a multiple-element system that contains more than a single lens or mirror. It allows us to see
detail that we could not to see with the unaided eye. Both the eyepiece and objective contribute to the magnification.
The magnification of a compound microscope with the image at infinity is

_ (16 cm)(25 cm)

M = ;
obj .eye
f

In this equation, 16 cm is the standardized distance between the image-side focal point of the objective lens and

the object-side focal point of the eyepiece, 25 cm is the normal near point distance, f ) and f ¢ are the focal

distances for the objective lens and the eyepiece, respectively.

e Simple telescopes can be made with two lenses. They are used for viewing objects at large distances.

¢ The angular magnification M for a telescope is given by

obj

M=-L_

eye>
f

where f obj and f ¢ are the focal lengths of the objective lens and the eyepiece, respectively.

CONCEPTUAL QUESTIONS

2.1 Images Formed by Plane Mirrors

1. What are the differences between real and virtual
images? How can you tell (by looking) whether an image
formed by a single lens or mirror is real or virtual?

2. Can you see a virtual image? Explain your response.
3. Can you photograph a virtual image?
4. Can you project a virtual image onto a screen?

5. Is it necessary to project a real image onto a screen to
see it?

6. Devise an arrangement of mirrors allowing you to see
the back of your head. What is the minimum number of
mirrors needed for this task?

7. 1If you wish to see your entire body in a flat mirror (from
head to toe), how tall should the mirror be? Does its size
depend upon your distance away from the mirror? Provide
a sketch.

2.2 Spherical Mirrors

8. At what distance is an image always located: at
do, d;, orf?

9. Under what circumstances will an image be located at
the focal point of a spherical lens or mirror?

10. What is meant by a negative magnification? What is
meant by a magnification whose absolute value is less than
one?

11. Can an image be larger than the object even though its
magnification is negative? Explain.

2.3 Images Formed by Refraction

12. Derive the formula for the apparent depth of a fish in
a fish tank using Snell’s law.
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13. Use a ruler and a protractor to find the image by
refraction in the following cases. Assume an air-glass
interface. Use a refractive index of 1 for air and of 1.5 for
glass. (Hint: Use Snell’s law at the interface.)

(a) A point object located on the axis of a concave interface
located at a point within the focal length from the vertex.

(b) A point object located on the axis of a concave interface
located at a point farther than the focal length from the
vertex.

(c) A point object located on the axis of a convex interface
located at a point within the focal length from the vertex.

(d) A point object located on the axis of a convex interface
located at a point farther than the focal length from the
vertex.

(e) Repeat (a)—(d) for a point object off the axis.

2.4 Thin Lenses

14. You can argue that a flat piece of glass, such as in a
window, is like a lens with an infinite focal length. If so,
where does it form an image? That is, how are d; and d,

related?

15. When you focus a camera, you adjust the distance of
the lens from the film. If the camera lens acts like a thin
lens, why can it not be a fixed distance from the film for
both near and distant objects?

16. A thin lens has two focal points, one on either side
of the lens at equal distances from its center, and should
behave the same for light entering from either side. Look
backward and forward through a pair of eyeglasses and
comment on whether they are thin lenses.

17. Will the focal length of a lens change when it is
submerged in water? Explain.

PROBLEMS

2.1 Images Formed by Plane Mirrors
26. Consider a pair of flat mirrors that are positioned so
that they form an angle of 120 °. An object is placed on the

bisector between the mirrors. Construct a ray diagram as in
Figure 2.4 to show how many images are formed.

27. Consider a pair of flat mirrors that are positioned so
that they form an angle of 60 °. An object is placed on the
bisector between the mirrors. Construct a ray diagram as in
Figure 2.4 to show how many images are formed.

28. By using more than one flat mirror, construct a ray
diagram showing how to create an inverted image.

This OpenStax book is available for free at http://cnx.org/content/col12067/1.3
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2.5 The Eye

18. If the lens of a person’s eye is removed because of
cataracts (as has been done since ancient times), why would
you expect an eyeglass lens of about 16 D to be prescribed?

19. When laser light is shone into a relaxed normal-vision
eye to repair a tear by spot-welding the retina to the back of
the eye, the rays entering the eye must be parallel. Why?

20. Why is your vision so blurry when you open your
eyes while swimming under water? How does a face mask
enable clear vision?

21. It has become common to replace the cataract-clouded
lens of the eye with an internal lens. This intraocular lens
can be chosen so that the person has perfect distant vision.
Will the person be able to read without glasses? If the
person was nearsighted, is the power of the intraocular lens
greater or less than the removed lens?

22, 1If the cornea is to be reshaped (this can be done
surgically or with contact lenses) to correct myopia, should
its curvature be made greater or smaller? Explain.

2.8 Microscopes and Telescopes

23. Geometric optics describes the interaction of light
with macroscopic objects. Why, then, is it correct to use
geometric optics to analyze a microscope’s image?

24. The image produced by the microscope in Figure
2.38 cannot be projected. Could extra lenses or mirrors
project it? Explain.

25. If you want your microscope or telescope to project
a real image onto a screen, how would you change the
placement of the eyepiece relative to the objective?
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2.2 Spherical Mirrors

29. The following figure shows a light bulb between two
spherical mirrors. One mirror produces a beam of light with
parallel rays; the other keeps light from escaping without
being put into the beam. Where is the filament of the light
in relation to the focal point or radius of curvature of each
mirror?

A
|

A
A

30. Why are diverging mirrors often used for rearview
mirrors in vehicles? What is the main disadvantage of using
such a mirror compared with a flat one?

31. Some telephoto cameras use a mirror rather than a
lens. What radius of curvature mirror is needed to replace a
800 mm-focal length telephoto lens?

32. Calculate the focal length of a mirror formed by the
shiny back of a spoon that has a 3.00 cm radius of
curvature.

33. Electric room heaters use a concave mirror to reflect
infrared (IR) radiation from hot coils. Note that IR radiation
follows the same law of reflection as visible light. Given
that the mirror has a radius of curvature of 50.0 cm and
produces an image of the coils 3.00 m away from the
mirror, where are the coils?

34. Find the magnification of the heater element in the
previous problem. Note that its large magnitude helps
spread out the reflected energy.

35. What is the focal length of a makeup mirror that
produces a magnification of 1.50 when a person’s face is
12.0 cm away? Explicitly show how you follow the steps in
the Problem-Solving Strategy: Spherical Mirrors.

36. A shopper standing 3.00 m from a convex security
mirror sees his image with a magnification of 0.250. (a)
Where is his image? (b) What is the focal length of the
mirror? (c¢) What is its radius of curvature?

37. An object 1.50 cm high is held 3.00 cm from a
person’s cornea, and its reflected image is measured to be
0.167 cm high. (a) What is the magnification? (b) Where is
the image? (c) Find the radius of curvature of the convex
mirror formed by the cornea. (Note that this technique is
used by optometrists to measure the curvature of the cornea
for contact lens fitting. The instrument used is called a
keratometer, or curve measurer.)

38. Ray tracing for a flat mirror shows that the image is
located a distance behind the mirror equal to the distance
of the object from the mirror. This is stated as d; = —d,,

since this is a negative image distance (it is a virtual image).
What is the focal length of a flat mirror?

39. Show that, for a flat mirror, h; = h,, given that the

image is the same distance behind the mirror as the distance
of the object from the mirror.

40. Use the law of reflection to prove that the focal length
of a mirror is half its radius of curvature. That is, prove that
f = R/2 . Note this is true for a spherical mirror only if its

diameter is small compared with its radius of curvature.

41. Referring to the electric room heater considered in
problem 5, calculate the intensity of IR radiation in W/m?

projected by the concave mirror on a person 3.00 m away.
Assume that the heating element radiates 1500 W and has

an area of 100 cm? , and that half of the radiated power is
reflected and focused by the mirror.

42. Two mirrors are inclined at an angle of 60 ° and an

object is placed at a point that is equidistant from the two
mirrors. Use a protractor to draw rays accurately and locate
all images. You may have to draw several figures so that
that rays for different images do not clutter your drawing.

43. Two parallel mirrors are facing each other and are
separated by a distance of 3 cm. A point object is placed
between the mirrors 1 cm from one of the mirrors. Find the
coordinates of all the images.

2.3 Images Formed by Refraction

44. An object is located in air 30 cm from the vertex of a
concave surface made of glass with a radius of curvature 10
cm. Where does the image by refraction form and what is

its magpnification? Use 7y, =1 and nge = 1.5.

45. An object is located in air 30 cm from the vertex of a
convex surface made of glass with a radius of curvature 80
cm. Where does the image by refraction form and what is
its magnification?
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46. An object is located in water 15 cm from the vertex of
a concave surface made of glass with a radius of curvature
10 cm. Where does the image by refraction form and what

is its magpnification? Use Ry, = 4/3 and ngj,e0 = 1.5.

47. An object is located in water 30 cm from the vertex
of a convex surface made of Plexiglas with a radius of
curvature of 80 cm. Where does the image form by
refraction and what is its magnification? 7., = 4/3 and

=1.65.

M plexiglas

48. An object is located in air 5 cm from the vertex of a
concave surface made of glass with a radius of curvature 20
cm. Where does the image form by refraction and what is

its magnification? Use n,. = 1 and Nolass = 1.5.

49. Derive the spherical interface equation for refraction
at a concave surface. (Hint: Follow the derivation in the text
for the convex surface.)

2.4 Thin Lenses

50. How far from the lens must the film in a camera be,
if the lens has a 35.0-mm focal length and is being used to
photograph a flower 75.0 cm away? Explicitly show how
you follow the steps in the Problem-Solving Strategy:
Lenses.

51. A certain slide projector has a 100 mm-focal length
lens. (a) How far away is the screen if a slide is placed
103 mm from the lens and produces a sharp image? (b) If
the slide is 24.0 by 36.0 mm, what are the dimensions of
the image? Explicitly show how you follow the steps in the
Problem-Solving Strategy: Lenses.

52. A doctor examines a mole with a 15.0-cm focal length
magnifying glass held 13.5 cm from the mole. (a) Where is
the image? (b) What is its magnification? (c) How big is the
image of a 5.00 mm diameter mole?

53. A camera with a 50.0-mm focal length lens is being
used to photograph a person standing 3.00 m away. (a) How
far from the lens must the film be? (b) If the film is 36.0
mm high, what fraction of a 1.75-m-tall person will fit on
it? (c) Discuss how reasonable this seems, based on your
experience in taking or posing for photographs.

54. A camera lens used for taking close-up photographs
has a focal length of 22.0 mm. The farthest it can be placed
from the film is 33.0 mm. (a) What is the closest object that
can be photographed? (b) What is the magnification of this
closest object?
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55. Suppose your 50.0 mm-focal length camera lens is
51.0 mm away from the film in the camera. (a) How far
away is an object that is in focus? (b) What is the height of
the object if its image is 2.00 cm high?

56. What is the focal length of a magnifying glass that
produces a magnification of 3.00 when held 5.00 cm from
an object, such as a rare coin?

57. The magnification of a book held 7.50 cm from a
10.0 cm-focal length lens is 3.00. (a) Find the magnification
for the book when it is held 8.50 cm from the magnifier.
(b) Repeat for the book held 9.50 cm from the magnifier.
(c) Comment on how magnification changes as the object
distance increases as in these two calculations.

58. Suppose a 200 mm-focal length telephoto lens is being
used to photograph mountains 10.0 km away. (a) Where is
the image? (b) What is the height of the image of a 1000 m
high cliff on one of the mountains?

59. A camera with a 100 mm-focal length lens is used
to photograph the sun. What is the height of the image of

the sun on the film, given the sun is 1.40 X 10% km in
diameter and is 1.50 x 10% km away?

60. Use the thin-lens equation to show that the
magnification for a thin lens is determined by its focal
length and the object distance and is given by

m= fI(f —d,).

61. An object of height 3.0 cm is placed 5.0 cm in front of
a converging lens of focal length 20 cm and observed from
the other side. Where and how large is the image?

62. An object of height 3.0 cm is placed at 5.0 ¢cm in front
of a diverging lens of focal length 20 cm and observed from
the other side. Where and how large is the image?

63. An object of height 3.0 cm is placed at 25 cm in
front of a diverging lens of focal length 20 cm. Behind the
diverging lens, there is a converging lens of focal length
20 cm. The distance between the lenses is 5.0 cm. Find the
location and size of the final image.

64. Two convex lenses of focal lengths 20 cm and 10
cm are placed 30 cm apart, with the lens with the longer
focal length on the right. An object of height 2.0 cm is
placed midway between them and observed through each
lens from the left and from the right. Describe what you
will see, such as where the image(s) will appear, whether
they will be upright or inverted and their magnifications.
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2.5 The Eye

Unless otherwise stated, the lens-to-retina distance is 2.00
cm.

65. What is the power of the eye when viewing an object
50.0 cm away?

66. Calculate the power of the eye when viewing an object
3.00 m away.

67. The print in many books averages 3.50 mm in height.
How high is the image of the print on the retina when the
book is held 30.0 cm from the eye?

68. Suppose a certain person’s visual acuity is such that
he can see objects clearly that form an image 4.00 um

high on his retina. What is the maximum distance at which
he can read the 75.0-cm-high letters on the side of an
airplane?

69. People who do very detailed work close up, such
as jewelers, often can see objects clearly at much closer
distance than the normal 25 cm. (a) What is the power of
the eyes of a woman who can see an object clearly at a
distance of only 8.00 cm? (b) What is the image size of a
1.00-mm object, such as lettering inside a ring, held at this
distance? (c¢) What would the size of the image be if the
object were held at the normal 25.0 cm distance?

70. What is the far point of a person whose eyes have a
relaxed power of 50.5 D?

71. What is the near point of a person whose eyes have an
accommodated power of 53.5 D?

72. (a) A laser reshaping the cornea of a myopic patient
reduces the power of his eye by 9.00 D, with a +5.0 %

uncertainty in the final correction. What is the range of
diopters for eyeglass lenses that this person might need
after this procedure? (b) Was the person nearsighted or
farsighted before the procedure? How do you know?

73. The power for normal close vision is 54.0 D. In a
vision-correction procedure, the power of a patient’s eye is
increased by 3.00 D. Assuming that this produces normal
close vision, what was the patient’s near point before the
procedure?

74. For normal distant vision, the eye has a power of 50.0
D. What was the previous far point of a patient who had
laser vision correction that reduced the power of her eye by
7.00 D, producing normal distant vision?
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75. The power for normal distant vision is 50.0 D. A
severely myopic patient has a far point of 5.00 cm. By how
many diopters should the power of his eye be reduced in
laser vision correction to obtain normal distant vision for
him?

76. A student’s eyes, while reading the blackboard, have a
power of 51.0 D. How far is the board from his eyes?

77. The power of a physician’s eyes is 53.0 D while
examining a patient. How far from her eyes is the object
that is being examined?

78. The normal power for distant vision is 50.0 D. A
young woman with normal distant vision has a 10.0%
ability to accommodate (that is, increase) the power of her
eyes. What is the closest object she can see clearly?

79. The far point of a myopic administrator is 50.0 cm.
(a) What is the relaxed power of his eyes? (b) If he has the
normal 8.00% ability to accommodate, what is the closest
object he can see clearly?

80. A very myopic man has a far point of 20.0 cm. What
power contact lens (when on the eye) will correct his
distant vision?

81. Repeat the previous problem for eyeglasses held 1.50
cm from the eyes.

82. A myopic person sees that her contact lens
prescription is —4.00 D. What is her far point?

83. Repeat the previous problem for glasses that are 1.75
cm from the eyes.

84. The contact lens prescription for a mildly farsighted
person is 0.750 D, and the person has a near point of 29.0
cm. What is the power of the tear layer between the cornea
and the lens if the correction is ideal, taking the tear layer
into account?

2.7 The Simple Magnifier

85. If the image formed on the retina subtends an angle of
30° and the object subtends an angle of 5°, what is the
magnification of the image?

86. What is the magnification of a magnifying lens with a
focal length of 10 cm if it is held 3.0 cm from the eye and
the object is 12 cm from the eye?
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87. How far should you hold a 2.1 cm-focal length
magnifying glass from an object to obtain a magnification
of 10X ? Assume you place your eye 5.0 cm from the

magnifying glass.

88. You hold a 5.0 cm-focal length magnifying glass as
close as possible to your eye. If you have a normal near
point, what is the magnification?

89. You view a mountain with a magnifying glass of focal
length f = 10 cm . What is the magnification?

90. You view an object by holding a 2.5 cm-focal length
magnifying glass 10 cm away from it. How far from your
eye should you hold the magnifying glass to obtain a
magnification of 10 x ?

91. A magnifying glass forms an image 10 cm on the
opposite side of the lens from the object, which is 10 cm
away. What is the magnification of this lens for a person
with a normal near point if their eye 12 cm from the object?

92. An object viewed with the naked eye subtends a 2°
angle. If you view the object through a 10 X magnifying

glass, what angle is subtended by the image formed on your
retina?

93. For a normal, relaxed eye, a magnifying glass
produces an angular magnification of 4.0. What is the
largest magnification possible with this magnifying glass?

94. What range of magnification is possible with a 7.0 cm-
focal length converging lens?

95. A magnifying glass produces an angular magnification
of 4.5 when used by a young person with a near point of 18
cm. What is the maximum angular magnification obtained
by an older person with a near point of 45 cm?

2.8 Microscopes and Telescopes

96. A microscope with an overall magnification of 800 has
an objective that magnifies by 200. (a) What is the angular
magnification of the eyepiece? (b) If there are two other
objectives that can be used, having magnifications of 100
and 400, what other total magnifications are possible?

97. (a) What magnification is produced by a 0.150 cm-
focal length microscope objective that is 0.155 cm from the
object being viewed? (b) What is the overall magnification
if an 8X eyepiece (one that produces an angular

magnification of 8.00) is used?
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98. Where does an object need to be placed relative to
a microscope for its 0.50 cm-focal length objective to
produce a magnification of —400?

99. An amoeba is 0.305 cm away from the 0.300 cm-
focal length objective lens of a microscope. (a) Where is
the image formed by the objective lens? (b) What is this
image’s magnification? (c¢) An eyepiece with a 2.00-cm
focal length is placed 20.0 cm from the objective. Where
is the final image? (d) What angular magnification is
produced by the eyepiece? (e) What is the overall
magnification? (See Figure 2.39.)

100. Unreasonable Results Your friends show you an
image through a microscope. They tell you that the
microscope has an objective with a 0.500-cm focal length
and an eyepiece with a 5.00-cm focal length. The resulting
overall magnification is 250,000. Are these viable values
for a microscope?

Unless otherwise stated, the lens-to-retina distance is 2.00
cm.

101. What is the angular magnification of a telescope that
has a 100 cm-focal length objective and a 2.50 cm-focal
length eyepiece?

102. Find the distance between the objective and eyepiece
lenses in the telescope in the above problem needed to
produce a final image very far from the observer, where
vision is most relaxed. Note that a telescope is normally
used to view very distant objects.

103. A large reflecting telescope has an objective mirror
with a 10.0-m radius of curvature. What angular
magnification does it produce when a 3.00 m-focal length
eyepiece is used?

104. A small telescope has a concave mirror with a 2.00-m
radius of curvature for its objective. Its eyepiece is a 4.00
cm-focal length lens. (a) What is the telescope’s angular
magnification? (b) What angle is subtended by a 25,000
km-diameter sunspot? (c) What is the angle of its telescopic
image?

105. A 75X

magnification of —7.50, acting like a telescope. (Mirrors are
used to make the image upright.) If the binoculars have
objective lenses with a 75.0-cm focal length, what is the
focal length of the eyepiece lenses?

binocular produces an angular
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106. Construct Your Own Problem Consider a telescope
of the type used by Galileo, having a convex objective and
a concave eyepiece as illustrated in part (a) of Figure 2.40.
Construct a problem in which you calculate the location
and size of the image produced. Among the things to be
considered are the focal lengths of the lenses and their
relative placements as well as the size and location of the
object. Verify that the angular magnification is greater than
one. That is, the angle subtended at the eye by the image is
greater than the angle subtended by the object.

107. Trace rays to find which way the given ray will
emerge after refraction through the thin lens in the
following figure. Assume thin-lens approximation. (Hint:
Pick a point P on the given ray in each case. Treat that point
as an object. Now, find its image Q. Use the rule: All rays
on the other side of the lens will either go through Q or
appear to be coming from Q.)
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108. Copy and draw rays to find the final image in the
following diagram. (Hint: Find the intermediate image
through lens alone. Use the intermediate image as the
object for the mirror and work with the mirror alone to find
the final image.)
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109. A concave mirror of radius of curvature 10 cm is
placed 30 cm from a thin convex lens of focal length 15 cm.
Find the location and magnification of a small bulb sitting
50 cm from the lens by using the algebraic method.

110. An object of height 3 cm is placed at 25 c¢m in front
of a converging lens of focal length 20 cm. Behind the
lens there is a concave mirror of focal length 20 cm. The
distance between the lens and the mirror is 5 cm. Find the
location, orientation and size of the final image.
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111. An object of height 3 cm is placed at a distance of 25
cm in front of a converging lens of focal length 20 cm, to be
referred to as the first lens. Behind the lens there is another
converging lens of focal length 20 cm placed 10 cm from
the first lens. There is a concave mirror of focal length 15
cm placed 50 cm from the second lens. Find the location,
orientation, and size of the final image.

112. An object of height 2 cm is placed at 50 cm in front
of a diverging lens of focal length 40 cm. Behind the lens,
there is a convex mirror of focal length 15 cm placed 30
cm from the converging lens. Find the location, orientation,
and size of the final image.

113. Two concave mirrors are placed facing each other.
One of them has a small hole in the middle. A penny is
placed on the bottom mirror (see the following figure).
When you look from the side, a real image of the penny is
observed above the hole. Explain how that could happen.

1 Real image
| T =
< Reflecting

114. A lamp of height 5 cm is placed 40 cm in front of
a converging lens of focal length 20 cm. There is a plane
mirror 15 cm behind the lens. Where would you find the
image when you look in the mirror?

115. Parallel rays from a faraway source strike a
converging lens of focal length 20 cm at an angle of 15
degrees with the horizontal direction. Find the vertical
position of the real image observed on a screen in the focal
plane.

116. Parallel rays from a faraway source strike a diverging
lens of focal length 20 cm at an angle of 10 degrees with the
horizontal direction. As you look through the lens, where in
the vertical plane the image would appear?

117. A light bulb is placed 10 cm from a plane mirror,
which faces a convex mirror of radius of curvature 8 cm.
The plane mirror is located at a distance of 30 cm from
the vertex of the convex mirror. Find the location of two
images in the convex mirror. Are there other images? If so,
where are they located?

118. A point source of light is 50 cm in front of a
converging lens of focal length 30 cm. A concave mirror
with a focal length of 20 cm is placed 25 cm behind the
lens. Where does the final image form, and what are its
orientation and magnification?
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119. Copy and trace to find how a horizontal ray from S
comes out after the lens. Use n = 1.5 for the prism

glass
material.
Parallel
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120. Copy and trace how a horizontal ray from S comes
out after the lens. Use n = 1.55 for the glass.
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121. Copy and draw rays to figure out the final image.
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ADDITIONAL PROBLEMS

127. Use a ruler and a protractor to draw rays to find
images in the following cases.

(a) A point object located on the axis of a concave mirror
located at a point within the focal length from the vertex.
(b) A point object located on the axis of a concave mirror
located at a point farther than the focal length from the
vertex.

(c) A point object located on the axis of a convex mirror
located at a point within the focal length from the vertex.
(d) A point object located on the axis of a convex mirror
located at a point farther than the focal length from the
vertex.

(e) Repeat (a)—(d) for a point object off the axis.

128. Where should a 3 cm tall object be placed in front of
a concave mirror of radius 20 cm so that its image is real
and 2 cm tall?

129. A 3 cm tall object is placed 5 cm in front of a convex
mirror of radius of curvature 20 cm. Where is the image
formed? How tall is the image? What is the orientation of
the image?
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122. By ray tracing or by calculation, find the place inside
the glass where rays from S converge as a result of
refraction through the lens and the convex air-glass
interface. Use a ruler to estimate the radius of curvature.
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123. A diverging lens has a focal length of 20 cm. What is
the power of the lens in diopters?

124. Two lenses of focal lengths of f| and f, are glued

together with transparent material of negligible thickness.
Show that the total power of the two lenses simply add.

125. What will be the angular magnification of a convex
lens with the focal length 2.5 cm?

126. What will be the formula for the angular
magnification of a convex lens of focal length fif the eye is
very close to the lens and the near point is located a distance
D from the eye?

130. You are looking for a mirror so that you can see a
four-fold magnified virtual image of an object when the
object is placed 5 cm from the vertex of the mirror. What
kind of mirror you will need? What should be the radius of
curvature of the mirror?

131. Derive the following equation for a convex mirror:

A 1 __ 1
Vo VI VF’

where VO is the distance to the object O from vertex V, VI
the distance to the image I from V, and VF is the distance
to the focal point F from V. (Hint: use two sets of similar
triangles.)

132. (a) Draw rays to form the image of a vertical object
on the optical axis and farther than the focal point from
a converging lens. (b) Use plane geometry in your figure

and prove that the magnification m is given by
_hi__di
T he  d,

133. Use another ray-tracing diagram for the same
situation as given in the previous problem to derive the
1 1 _1

thin-lens equation, —— + — = =
q doTd, " f
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134. You photograph a 2.0-m-tall person with a camera
that has a 5.0 cm-focal length lens. The image on the film
must be no more than 2.0 cm high. (a) What is the closest
distance the person can stand to the lens? (b) For this
distance, what should be the distance from the lens to the
film?

135. Find the focal length of a thin plano-convex lens. The
front surface of this lens is flat, and the rear surface has
a radius of curvature of R, = —35cm. Assume that the

index of refraction of the lens is 1.5.

136. Find the focal length of a meniscus lens with
R;=20cm and R, = 15cm. Assume that the index of

refraction of the lens is 1.5.

137. A nearsighted man cannot see objects clearly beyond
20 cm from his eyes. How close must he stand to a mirror
in order to see what he is doing when he shaves?

138. A mother sees that her child’s contact lens
prescription is 0.750 D. What is the child’s near point?

139. Repeat the previous problem for glasses that are 2.20
cm from the eyes.

140. The contact-lens prescription for a nearsighted
person is —4.00 D and the person has a far point of 22.5 cm.
What is the power of the tear layer between the cornea and
the lens if the correction is ideal, taking the tear layer into
account?

141. Unreasonable Results A boy has a near point of 50
cm and a far point of 500 cm. Will a —4.00 D lens correct
his far point to infinity?

142. Find the angular magnification of an image by a
magnifying glass of f =5.0cm if the object is placed

do =4.0cm from the lens and the lens is close to the eye.

143. Let objective and eyepiece of a compound
microscope have focal lengths of 2.5 cm and 10 cm,
respectively and be separated by 12 cm. A 70-um object

is placed 6.0 cm from the objective. How large is the virtual
image formed by the objective-eyepiece system?
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144. Draw rays to scale to locate the image at the retina if
the eye lens has a focal length 2.5 cm and the near point is
24 cm. (Hint: Place an object at the near point.)

145. The objective and the eyepiece of a microscope have
the focal lengths 3 cm and 10 cm respectively. Decide about
the distance between the objective and the eyepiece if we
need a 10X magnification from the objective/eyepiece

compound system.

146. A far-sighted person has a near point of 100 cm. How
far in front or behind the retina does the image of an object
placed 25 cm from the eye form? Use the cornea to retina
distance of 2.5 cm.

147. A near-sighted person has afar point of 80 cm. (a)
What kind of corrective lens the person will need if the lens
is to be placed 1.5 cm from the eye? (b) What would be
the power of the contact lens needed? Assume distance to
contact lens from the eye to be zero.

148. In a reflecting telescope the objective is a concave
mirror of radius of curvature 2 m and an eyepiece is a
convex lens of focal length 5 cm. Find the apparent size of
a 25-m tree at a distance of 10 km that you would perceive
when looking through the telescope.

149. Two stars that are 10°km apart are viewed by a
telescope and found to be separated by an angle of
107 radians . If the eyepiece of the telescope has a focal

length of 1.5 cm and the objective has a focal length of 3
meters, how far away are the stars from the observer?

150. What is the angular size of the Moon if viewed from
a binocular that has a focal length of 1.2 cm for the eyepiece
and a focal length of 8 cm for the objective? Use the radius

of the moon 1.74 x 10®m and the distance of the moon

from the observer to be 3.8 x 10%m .

151. An unknown planet at a distance of 10"?m from

Earth is observed by a telescope that has a focal length of
the eyepiece of 1 cm and a focal length of the objective
of 1 m. If the far away planet is seen to subtend an angle

of 107 radian at the eyepiece, what is the size of the
planet?
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3 | INTERFERENCE

Figure 3.1 Soap bubbles are blown from clear fluid into very thin films. The colors we see are not due to any pigmentation but
are the result of light interference, which enhances specific wavelengths for a given thickness of the film.

Chapter Outline

3.1 Young's Double-Slit Interference
3.2 Mathematics of Interference

3.3 Multiple-Silit Interference

3.4 Interference in Thin Films

3.5 The Michelson Interferometer

Introduction

The most certain indication of a wave is interference. This wave characteristic is most prominent when the wave interacts
with an object that is not large compared with the wavelength. Interference is observed for water waves, sound waves, light
waves, and, in fact, all types of waves.

If you have ever looked at the reds, blues, and greens in a sunlit soap bubble and wondered how straw-colored soapy water
could produce them, you have hit upon one of the many phenomena that can only be explained by the wave character of light
(see Figure 3.1). The same is true for the colors seen in an oil slick or in the light reflected from a DVD disc. These and
other interesting phenomena cannot be explained fully by geometric optics. In these cases, light interacts with objects and
exhibits wave characteristics. The branch of optics that considers the behavior of light when it exhibits wave characteristics
is called wave optics (sometimes called physical optics). It is the topic of this chapter.

3.1 | Young's Double-Slit Interference

Learning Objectives

By the end of this section, you will be able to:

* Explain the phenomenon of interference
* Define constructive and destructive interference for a double slit

The Dutch physicist Christiaan Huygens (1629-1695) thought that light was a wave, but Isaac Newton did not. Newton
thought that there were other explanations for color, and for the interference and diffraction effects that were observable at
the time. Owing to Newton’s tremendous reputation, his view generally prevailed; the fact that Huygens’s principle worked
was not considered direct evidence proving that light is a wave. The acceptance of the wave character of light came many
years later in 1801, when the English physicist and physician Thomas Young (1773-1829) demonstrated optical interference
with his now-classic double-slit experiment.
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If there were not one but two sources of waves, the waves could be made to interfere, as in the case of waves on
water (Figure 3.2). If light is an electromagnetic wave, it must therefore exhibit interference effects under appropriate
circumstances. In Young’s experiment, sunlight was passed through a pinhole on a board. The emerging beam fell on two
pinholes on a second board. The light emanating from the two pinholes then fell on a screen where a pattern of bright and
dark spots was observed. This pattern, called fringes, can only be explained through interference, a wave phenomenon.

Figure 3.2 Photograph of an interference pattern produced by
circular water waves in a ripple tank. Two thin plungers are
vibrated up and down in phase at the surface of the water.
Circular water waves are produced by and emanate from each
plunger. The points where the water is calm (corresponding to
destructive interference) are clearly visible.

We can analyze double-slit interference with the help of Figure 3.3, which depicts an apparatus analogous to Young'’s.
Light from a monochromatic source falls on a slit S . The light emanating from S, is incident on two other slits S; and

S, that are equidistant from S,. A pattern of interference fringes on the screen is then produced by the light emanating
from S; and S, . All slits are assumed to be so narrow that they can be considered secondary point sources for Huygens’
wavelets (The Nature of Light). Slits S; and S, are a distance d apart (d < 1 mm ), and the distance between the

screen and the slits is D( =~ 1 m), which is much greater than d.

This OpenStax book is available for free at http://cnx.org/content/col12067/1.3



Chapter 3 | Interference 121

anYya'
L f
“i A
g A

Monochromatic
light

-

&
T

Figure 3.3 The double-slit interference experiment using monochromatic light and narrow slits.
Fringes produced by interfering Huygens wavelets from slits S; and S, are observed on the screen.

Since S is assumed to be a point source of monochromatic light, the secondary Huygens wavelets leaving S; and S,
always maintain a constant phase difference (zero in this case because S and S, are equidistant from S() and have
the same frequency. The sources S; and S, are then said to be coherent. By coherent waves, we mean the waves are in

phase or have a definite phase relationship. The term incoherent means the waves have random phase relationships, which
would be the case if S; and S, were illuminated by two independent light sources, rather than a single source Si. Two

independent light sources (which may be two separate areas within the same lamp or the Sun) would generally not emit
their light in unison, that is, not coherently. Also, because S; and S, are the same distance from S, the amplitudes of

the two Huygens wavelets are equal.

Young used sunlight, where each wavelength forms its own pattern, making the effect more difficult to see. In the following
discussion, we illustrate the double-slit experiment with monochromatic light (single 1) to clarify the effect. Figure 3.4

shows the pure constructive and destructive interference of two waves having the same wavelength and amplitude.
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(a) Constructive interference (b) Destructive interference
Figure 3.4 The amplitudes of waves add. (a) Pure constructive interference is obtained when identical waves are in phase. (b)
Pure destructive interference occurs when identical waves are exactly out of phase, or shifted by half a wavelength.
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When light passes through narrow slits, the slits act as sources of coherent waves and light spreads out as semicircular
waves, as shown in Figure 3.5(a). Pure constructive interference occurs where the waves are crest to crest or trough to
trough. Pure destructive interference occurs where they are crest to trough. The light must fall on a screen and be scattered
into our eyes for us to see the pattern. An analogous pattern for water waves is shown in Figure 3.2. Note that regions of
constructive and destructive interference move out from the slits at well-defined angles to the original beam. These angles
depend on wavelength and the distance between the slits, as we shall see below.
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Figure 3.5 Double slits produce two coherent sources of waves that interfere. (a) Light
spreads out (diffracts) from each slit, because the slits are narrow. These waves overlap and
interfere constructively (bright lines) and destructively (dark regions). We can only see this
if the light falls onto a screen and is scattered into our eyes. (b) When light that has passed
through double slits falls on a screen, we see a pattern such as this.

To understand the double-slit interference pattern, consider how two waves travel from the slits to the screen (Figure 3.6).
Each slit is a different distance from a given point on the screen. Thus, different numbers of wavelengths fit into each path.
Waves start out from the slits in phase (crest to crest), but they may end up out of phase (crest to trough) at the screen if
the paths differ in length by half a wavelength, interfering destructively. If the paths differ by a whole wavelength, then the
waves arrive in phase (crest to crest) at the screen, interfering constructively. More generally, if the path length difference
Al between the two waves is any half-integral number of wavelengths [(1/2) 4, (3/2) 4, (5/2) A, etc.], then destructive

interference occurs. Similarly, if the path length difference is any integral number of wavelengths (4,24, 3 4, etc.), then
constructive interference occurs. These conditions can be expressed as equations:

Al=mk, form=0, +1, £2, +3 ... (constructive interference) (3.1)

Al=(m+ %)/1, form =0, +1, £2, +£3 ... (destructive interference) (3.2)

This OpenStax book is available for free at http://cnx.org/content/col12067/1.3



Chapter 3 | Interference 123

Figure 3.6 Waves follow different paths from the slits to a
common point P on a screen. Destructive interference occurs
where one path is a half wavelength longer than the other—the
waves start in phase but arrive out of phase. Constructive
interference occurs where one path is a whole wavelength longer
than the other—the waves start out and arrive in phase.

3.2 | Mathematics of Interference

Learning Objectives

By the end of this section, you will be able to:

* Determine the angles for bright and dark fringes for double slit interference
* Calculate the positions of bright fringes on a screen

Figure 3.7(a) shows how to determine the path length difference Al for waves traveling from two slits to a common point
on a screen. If the screen is a large distance away compared with the distance between the slits, then the angle 6 between
the path and a line from the slits to the screen [part (b)] is nearly the same for each path. In other words, r; and r, are

essentially parallel. The lengths of r; and r, differ by Al, as indicated by the two dashed lines in the figure. Simple
trigonometry shows
Al =dsinf (3.3)
where d is the distance between the slits. Combining this result with Equation 3.1, we obtain constructive interference for
a double slit when the path length difference is an integral multiple of the wavelength, or
dsin @ = mA, form =0, +1, +2, +3,... (constructive interference). (3.4)

Similarly, to obtain destructive interference for a double slit, the path length difference must be a half-integral multiple of
the wavelength, or

dsinf = (m+ %)/1, form =0, 1, £2, £3,... (destructive interference) (3.5)
where A is the wavelength of the light, d is the distance between slits, and 8 is the angle from the original direction of the
beam as discussed above. We call m the order of the interference. For example, m = 4 is fourth-order interference.
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Figure 3.7 (a) To reach P, the light waves from S; and S, must travel different distances. (b) The path difference

between the two rays is Al.

The equations for double-slit interference imply that a series of bright and dark lines are formed. For vertical slits, the light
spreads out horizontally on either side of the incident beam into a pattern called interference fringes (Figure 3.8). The
closer the slits are, the more the bright fringes spread apart. We can see this by examining the equation

dsin@ =mi, form =0, £1, 2, +3... . For fixed 4 and m, the smaller d is, the larger & must be, since sin 8 = mi/d .

This is consistent with our contention that wave effects are most noticeable when the object the wave encounters (here, slits
a distance d apart) is small. Small d gives large @, hence, a large effect.

Referring back to part (a) of the figure, € is typically small enough that sin 6 ~ tan 0 = y,,/D , where y,, is the distance

from the central maximum to the mth bright fringe and D is the distance between the slit and the screen. Equation 3.4 may
then be written as

or

miD. (3.6)
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Figure 3.8 The interference pattern for a double slit has an intensity that falls off with angle. The image shows
multiple bright and dark lines, or fringes, formed by light passing through a double slit.

Example 3.1

Finding a Wavelength from an Interference Pattern

Suppose you pass light from a He-Ne laser through two slits separated by 0.0100 mm and find that the third bright
line on a screen is formed at an angle of 10.95° relative to the incident beam. What is the wavelength of the

light?
Strategy

The phenomenon is two-slit interference as illustrated in Figure 3.8 and the third bright line is due to third-
order constructive interference, which means that m = 3. We are given d = 0.0100 mm and 6 = 10.95°. The

wavelength can thus be found using the equation d sin @ = mA for constructive interference.

Solution

Solving d sin @ = mA for the wavelength 1 gives

_dsinf
s=dsiné

Substituting known values yields

1= (0.0100 mmg(sin 10.95°) _ 633% 10”4 mm = 633 nm.

Significance

To three digits, this is the wavelength of light emitted by the common He-Ne laser. Not by coincidence, this red
color is similar to that emitted by neon lights. More important, however, is the fact that interference patterns can
be used to measure wavelength. Young did this for visible wavelengths. This analytical techinque is still widely
used to measure electromagnetic spectra. For a given order, the angle for constructive interference increases with
4, so that spectra (measurements of intensity versus wavelength) can be obtained.
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Example 3.2

Calculating the Highest Order Possible

Interference patterns do not have an infinite number of lines, since there is a limit to how big m can be. What is
the highest-order constructive interference possible with the system described in the preceding example?

Strategy

The equation d sin @ = mA (for m =0, =1, £2, +3...) describes constructive interference from two slits. For
fixed values of d and A, the larger m is, the larger sin @ is. However, the maximum value that sin @ can have is
1, for an angle of 90° . (Larger angles imply that light goes backward and does not reach the screen at all.) Let us
find what value of m corresponds to this maximum diffraction angle.

Solution

Solving the equation d sin @ = mA for m gives

dsin 0
=

m=

Taking sin @ = 1 and substituting the values of d and A from the preceding example gives

= 0.0100 mm)(1)
m= et i v 158,

Therefore, the largest integer m can be is 15, or m = 15.
Significance

The number of fringes depends on the wavelength and slit separation. The number of fringes is very large for large
slit separations. However, recall (see The Propagation of Light and the introduction for this chapter) that wave
interference is only prominent when the wave interacts with objects that are not large compared to the wavelength.
Therefore, if the slit separation and the sizes of the slits become much greater than the wavelength, the intensity
pattern of light on the screen changes, so there are simply two bright lines cast by the slits, as expected, when
light behaves like rays. We also note that the fringes get fainter farther away from the center. Consequently, not
all 15 fringes may be observable.

3.1 Check Your Understanding In the system used in the preceding examples, at what angles are the first
and the second bright fringes formed?

3.3 | Multiple-Slit Interference

Learning Objectives

By the end of this section, you will be able to:

» Describe the locations and intensities of secondary maxima for multiple-slit interference

Analyzing the interference of light passing through two slits lays out the theoretical framework of interference and
gives us a historical insight into Thomas Young’s experiments. However, much of the modern-day application of slit
interference uses not just two slits but many, approaching infinity for practical purposes. The key optical element is called
a diffraction grating, an important tool in optical analysis, which we discuss in detail in Diffraction. Here, we start the
analysis of multiple-slit interference by taking the results from our analysis of the double slit (N = 2) and extending it to

configurations with three, four, and much larger numbers of slits.

Figure 3.9 shows the simplest case of multiple-slit interference, with three slits, or N = 3. The spacing between slits is d,
and the path length difference between adjacent slits is d sin &, same as the case for the double slit. What is new is that the
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path length difference for the first and the third slits is 2d sin 8. The condition for constructive interference is the same as
for the double slit, that is

d sin 0 = mA.

When this condition is met, 2d sin @ is automatically a multiple of A, so all three rays combine constructively, and the

bright fringes that occur here are called principal maxima. But what happens when the path length difference between
adjacent slits is only 4/2? We can think of the first and second rays as interfering destructively, but the third ray remains

unaltered. Instead of obtaining a dark fringe, or a minimum, as we did for the double slit, we see a secondary maximum
with intensity lower than the principal maxima.

Ray 1

Ray 2

Ray 3

Figure 3.9 Interference with three slits. Different pairs of
emerging rays can combine constructively or destructively at the
same time, leading to secondary maxima.

In general, for N slits, these secondary maxima occur whenever an unpaired ray is present that does not go away due to
destructive interference. This occurs at (N — 2) evenly spaced positions between the principal maxima. The amplitude of

the electromagnetic wave is correspondingly diminished to 1/N of the wave at the principal maxima, and the light intensity,

being proportional to the square of the wave amplitude, is diminished to 1/N 2 of the intensity compared to the principal
maxima. As Figure 3.10 shows, a dark fringe is located between every maximum (principal or secondary). As N grows
larger and the number of bright and dark fringes increase, the widths of the maxima become narrower due to the closely
located neighboring dark fringes. Because the total amount of light energy remains unaltered, narrower maxima require that
each maximum reaches a correspondingly higher intensity.
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Four slits
Two slits

Three slits

Three slits

Four slits

(b)
Figure 3.10 Interference fringe patterns for two, three and four slits. As the number of slits increases, more secondary
maxima appear, but the principal maxima become brighter and narrower. (a) Graph and (b) photographs of fringe patterns.

3.4 | Interference in Thin Films

Learning Objectives

By the end of this section, you will be able to:

* Describe the phase changes that occur upon reflection
* Describe fringes established by reflected rays of a common source
* Explain the appearance of colors in thin films

The bright colors seen in an oil slick floating on water or in a sunlit soap bubble are caused by interference. The brightest
colors are those that interfere constructively. This interference is between light reflected from different surfaces of a thin
film; thus, the effect is known as thin-film interference.

As we noted before, interference effects are most prominent when light interacts with something having a size similar to
its wavelength. A thin film is one having a thickness ¢ smaller than a few times the wavelength of light, 4. Since color is
associated indirectly with A and because all interference depends in some way on the ratio of A to the size of the object
involved, we should expect to see different colors for different thicknesses of a film, as in Figure 3.11.

Figure 3.11 These soap bubbles exhibit brilliant colors when
exposed to sunlight. (credit: Scott Robinson)
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What causes thin-film interference? Figure 3.12 shows how light reflected from the top and bottom surfaces of a film
can interfere. Incident light is only partially reflected from the top surface of the film (ray 1). The remainder enters the
film and is itself partially reflected from the bottom surface. Part of the light reflected from the bottom surface can emerge
from the top of the film (ray 2) and interfere with light reflected from the top (ray 1). The ray that enters the film travels a
greater distance, so it may be in or out of phase with the ray reflected from the top. However, consider for a moment, again,
the bubbles in Figure 3.11. The bubbles are darkest where they are thinnest. Furthermore, if you observe a soap bubble
carefully, you will note it gets dark at the point where it breaks. For very thin films, the difference in path lengths of rays 1
and 2 in Figure 3.12 is negligible, so why should they interfere destructively and not constructively? The answer is that a
phase change can occur upon reflection, as discussed next.

Incident ﬁ

light

]

Figure 3.12 Light striking a thin film is partially reflected
(ray 1) and partially refracted at the top surface. The refracted
ray is partially reflected at the bottom surface and emerges as
ray 2. These rays interfere in a way that depends on the
thickness of the film and the indices of refraction of the various
media.

Changes in Phase due to Reflection

We saw earlier (Waves (http://cnx.org/content/m58367/latest/) ) that reflection of mechanical waves can involve a
180° phase change. For example, a traveling wave on a string is inverted (i.e., a 180° phase change) upon reflection at
a boundary to which a heavier string is tied. However, if the second string is lighter (or more precisely, of a lower linear
density), no inversion occurs. Light waves produce the same effect, but the deciding parameter for light is the index of
refraction. Light waves undergo a 180° or 7z radians phase change upon reflection at an interface beyond which is a
medium of higher index of refraction. No phase change takes place when reflecting from a medium of lower refractive index
(Figure 3.13). Because of the periodic nature of waves, this phase change or inversion is equivalent to +4/2 in distance

travelled, or path length. Both the path length and refractive indices are important factors in thin-film interference.
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Refracted waves
are not inverted

Reflected wave
is inverted

Incident wave

Reflected wave
is not inverted

n
1
Figure 3.13 Reflection at an interface for light traveling from a
medium with index of refraction 7 to a medium with index of

refraction n,, n; < n,, causes the phase of the wave to change

by m radians.

If the film in Figure 3.12 is a soap bubble (essentially water with air on both sides), then a phase shift of /2 occurs for

ray 1 but not for ray 2. Thus, when the film is very thin and the path length difference between the two rays is negligible,
they are exactly out of phase, and destructive interference occurs at all wavelengths. Thus, the soap bubble is dark here.
The thickness of the film relative to the wavelength of light is the other crucial factor in thin-film interference. Ray 2 in
Figure 3.12 travels a greater distance than ray 1. For light incident perpendicular to the surface, ray 2 travels a distance
approximately 2t farther than ray 1. When this distance is an integral or half-integral multiple of the wavelength in the
medium (4, = A/n, where 1 is the wavelength in vacuum and n is the index of refraction), constructive or destructive

interference occurs, depending also on whether there is a phase change in either ray.

Example 3.3

Calculating the Thickness of a Nonreflective Lens Coating

Assume the index of refraction of the glass is 1.52.

Strategy

ray 1. For rays incident perpendicularly, the path length difference is 2t.
Solution

To obtain destructive interference here,

_ﬂ'nZ
2t ===

where /,, is the wavelength in the film and is given by 4,, = A/n, . Thus,

2t >

Solving for t and entering known values yields
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Sophisticated cameras use a series of several lenses. Light can reflect from the surfaces of these various lenses
and degrade image clarity. To limit these reflections, lenses are coated with a thin layer of magnesium fluoride,
which causes destructive thin-film interference. What is the thinnest this film can be, if its index of refraction
is 1.38 and it is designed to limit the reflection of 550-nm light, normally the most intense visible wavelength?

Refer to Figure 3.12 and use n; = 1.00 for air, n, = 1.38, and ny = 1.52. Bothray 1 and ray 2 have a 4/2

shift upon reflection. Thus, to obtain destructive interference, ray 2 needs to travel a half wavelength farther than
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L Mny _ (500 nm)/1.38

7 7 = 99.6 nm.

Significance

Films such as the one in this example are most effective in producing destructive interference when the thinnest
layer is used, since light over a broader range of incident angles is reduced in intensity. These films are called
nonreflective coatings; this is only an approximately correct description, though, since other wavelengths are only
partially cancelled. Nonreflective coatings are also used in car windows and sunglasses.

Combining Path Length Difference with Phase Change

Thin-film interference is most constructive or most destructive when the path length difference for the two rays is an integral
or half-integral wavelength. That is, for rays incident perpendicularly,

2t = Apy 245, 345,002t = A/2, 34,12, SA,/2,....
To know whether interference is constructive or destructive, you must also determine if there is a phase change upon
reflection. Thin-film interference thus depends on film thickness, the wavelength of light, and the refractive indices. For

white light incident on a film that varies in thickness, you can observe rainbow colors of constructive interference for
various wavelengths as the thickness varies.

Example 3.4

Soap Bubbles

(a) What are the three smallest thicknesses of a soap bubble that produce constructive interference for red light
with a wavelength of 650 nm? The index of refraction of soap is taken to be the same as that of water. (b) What
three smallest thicknesses give destructive interference?

Strategy

Use Figure 3.12 to visualize the bubble, which acts as a thin film between two layers of air. Thus
ny =n3 = 1.00 for air, and n, = 1.333 for soap (equivalent to water). There is a 4/2 shift for ray 1 reflected

from the top surface of the bubble and no shift for ray 2 reflected from the bottom surface. To get constructive
interference, then, the path length difference (2t) must be a half-integral multiple of the wavelength—the first
three being 1,/2, 31,/2, and 51,/2. To get destructive interference, the path length difference must be an

integral multiple of the wavelength—the first three being 0, 4,,, and 24,,.

Solution

a. Constructive interference occurs here when

_ Ay 34, 54,
2Z‘C_ 2’ 2 il 2 s eee s
Thus, the smallest constructive thickness ¢. is
_ An _ Mn _ (650nm)/1.333 _
le=F =% =" = 122 nm.

The next thickness that gives constructive interference is f;, = 34,/4, so that
te = 366 nm.

Finally, the third thickness producing constructive interference is ¢, = 54,/4, so that
te =610 nm.

b. For destructive interference, the path length difference here is an integral multiple of the wavelength. The first
occurs for zero thickness, since there is a phase change at the top surface, that is,
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t d = 0,
the very thin (or negligibly thin) case discussed above. The first non-zero thickness producing destructive
interference is

2ty = A

Substituting known values gives

. _ A _ An _ (650nm)/1.333
2 - 2

ty=%5= = 244 nm.

\S]

Finally, the third destructive thickness is 2t(; = 21,, so that

no— 9 —A_650nm _
ty =dp=%= 1333 488 nm.

Significance

If the bubble were illuminated with pure red light, we would see bright and dark bands at very uniform increases
in thickness. First would be a dark band at 0 thickness, then bright at 122 nm thickness, then dark at 244 nm,
bright at 366 nm, dark at 488 nm, and bright at 610 nm. If the bubble varied smoothly in thickness, like a smooth
wedge, then the bands would be evenly spaced.

3.2 Check Your Understanding Going further with Example 3.4, what are the next two thicknesses of
soap bubble that would lead to (a) constructive interference, and (b) destructive interference?

Another example of thin-film interference can be seen when microscope slides are separated (see Figure 3.14). The slides
are very flat, so that the wedge of air between them increases in thickness very uniformly. A phase change occurs at the
second surface but not the first, so a dark band forms where the slides touch. The rainbow colors of constructive interference
repeat, going from violet to red again and again as the distance between the slides increases. As the layer of air increases, the
bands become more difficult to see, because slight changes in incident angle have greater effects on path length differences.
If monochromatic light instead of white light is used, then bright and dark bands are obtained rather than repeating rainbow
colors.
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Angle shown It
larger than
actual

T A0

(@) (b)

(©)
Figure 3.14 (a) The rainbow-color bands are produced by thin-film interference in the
air between the two glass slides. (b) Schematic of the paths taken by rays in the wedge of
air between the slides. (c) If the air wedge is illuminated with monochromatic light, bright
and dark bands are obtained rather than repeating rainbow colors.

An important application of thin-film interference is found in the manufacturing of optical instruments. A lens or mirror
can be compared with a master as it is being ground, allowing it to be shaped to an accuracy of less than a wavelength over
its entire surface. Figure 3.15 illustrates the phenomenon called Newton’s rings, which occurs when the plane surfaces
of two lenses are placed together. (The circular bands are called Newton’s rings because Isaac Newton described them and
their use in detail. Newton did not discover them; Robert Hooke did, and Newton did not believe they were due to the wave
character of light.) Each successive ring of a given color indicates an increase of only half a wavelength in the distance
between the lens and the blank, so that great precision can be obtained. Once the lens is perfect, no rings appear.



134 Chapter 3 | Interference

Figure 3.15 “Newton’s rings” interference fringes are produced when two plano-convex
lenses are placed together with their plane surfaces in contact. The rings are created by
interference between the light reflected off the two surfaces as a result of a slight gap between
them, indicating that these surfaces are not precisely plane but are slightly convex. (credit: Ulf
Seifert)

Thin-film interference has many other applications, both in nature and in manufacturing. The wings of certain moths
and butterflies have nearly iridescent colors due to thin-film interference. In addition to pigmentation, the wing’s color
is affected greatly by constructive interference of certain wavelengths reflected from its film-coated surface. Some car
manufacturers offer special paint jobs that use thin-film interference to produce colors that change with angle. This
expensive option is based on variation of thin-film path length differences with angle. Security features on credit cards,
banknotes, driving licenses, and similar items prone to forgery use thin-film interference, diffraction gratings, or holograms.
As early as 1998, Australia led the way with dollar bills printed on polymer with a diffraction grating security feature,
making the currency difficult to forge. Other countries, such as Canada, New Zealand, and Taiwan, are using similar
technologies, while US currency includes a thin-film interference effect.

3.5 | The Michelson Interferometer

Learning Objectives

By the end of this section, you will be able to:

* Explain changes in fringes observed with a Michelson interferometer caused by mirror
movements

* Explain changes in fringes observed with a Michelson interferometer caused by changes in
medium

The Michelson interferometer (invented by the American physicist Albert A. Michelson, 1852-1931) is a precision
instrument that produces interference fringes by splitting a light beam into two parts and then recombining them after they
have traveled different optical paths. Figure 3.16 depicts the interferometer and the path of a light beam from a single point
on the extended source S, which is a ground-glass plate that diffuses the light from a monochromatic lamp of wavelength
Ao - The beam strikes the half-silvered mirror M, where half of it is reflected to the side and half passes through the mirror.

The reflected light travels to the movable plane mirror M, where it is reflected back through M to the observer. The

transmitted half of the original beam is reflected back by the stationary mirror M, and then toward the observer by M.

This OpenStax book is available for free at http://cnx.org/content/col12067/1.3



Chapter 3 | Interference 135

. r ____ M, (movable)

V4

. qlowm ﬁMzd

—— ( >I<e )
‘ » I d,
e Laser ]
C
(bending of rays
“ff exaggerated)
() (b)

Figure 3.16 (a) The Michelson interferometer. The extended light source is a ground-glass plate that diffuses the light from a
laser. (b) A planar view of the interferometer.

Because both beams originate from the same point on the source, they are coherent and therefore interfere. Notice from the
figure that one beam passes through M three times and the other only once. To ensure that both beams traverse the same
thickness of glass, a compensator plate C of transparent glass is placed in the arm containing M, . This plate is a duplicate

of M (without the silvering) and is usually cut from the same piece of glass used to produce M. With the compensator in
place, any phase difference between the two beams is due solely to the difference in the distances they travel.

The path difference of the two beams when they recombine is 2d; — 2d, , where d is the distance between M and M,
and d, is the distance between M and M, . Suppose this path difference is an integer number of wavelengths mA, . Then,

constructive interference occurs and a bright image of the point on the source is seen at the observer. Now the light from
any other point on the source whose two beams have this same path difference also undergoes constructive interference and
produces a bright image. The collection of these point images is a bright fringe corresponding to a path difference of m4,

(Figure 3.17). When M is moved a distance Ad = A(/2, this path difference changes by 4y, and each fringe moves to

the position previously occupied by an adjacent fringe. Consequently, by counting the number of fringes m passing a given
point as M is moved, an observer can measure minute displacements that are accurate to a fraction of a wavelength, as

shown by the relation

(3.7)

Figure 3.17 Fringes produced with a Michelson
interferometer. (credit: “SILLAGESvideos”/YouTube)
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Example 3.5

Precise Distance Measurements by Michelson Interferometer
A red laser light of wavelength 630 nm is used in a Michelson interferometer. While keeping the mirror M
fixed, mirror M, is moved. The fringes are found to move past a fixed cross-hair in the viewer. Find the distance

the mirror M, is moved for a single fringe to move past the reference line.

Strategy

Refer to Figure 3.16 for the geometry. We use the result of the Michelson interferometer interference condition
to find the distance moved, Ad .

Solution

For a 630-nm red laser light, and for each fringe crossing (m = 1), the distance traveled by M, if you keep M,

fixed is
Ad:m’l—20= 1 xm%zmsllm = 0.315 um.

Significance

An important application of this measurement is the definition of the standard meter. As mentioned in Units
and Measurement (http:/lcnx.org/content/m58268/latest/) , the length of the standard meter was once
defined as the mirror displacement in a Michelson interferometer corresponding to 1,650,763.73 wavelengths of
the particular fringe of krypton-86 in a gas discharge tube.

Example 3.6

Measuring the Refractive Index of a Gas

In one arm of a Michelson interferometer, a glass chamber is placed with attachments for evacuating the inside
and putting gases in it. The space inside the container is 2 cm wide. Initially, the container is empty. As gas is
slowly let into the chamber, you observe that dark fringes move past a reference line in the field of observation.
By the time the chamber is filled to the desired pressure, you have counted 122 fringes move past the reference
line. The wavelength of the light used is 632.8 nm. What is the refractive index of this gas?

M,

2cm

To vacuum pump

Strategy

The m = 122 fringes observed compose the difference between the number of wavelengths that fit within the

empty chamber (vacuum) and the number of wavelengths that fit within the same chamber when it is gas-filled.
The wavelength in the filled chamber is shorter by a factor of n, the index of refraction.
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Solution
The ray travels a distance ¢t = 2 cm to the right through the glass chamber and another distance ¢ to the left upon

reflection. The total travel is L = 2¢. When empty, the number of wavelengths that fit in this chamber is

=L _ 2t
No= 4o 4o
where 1 = 632.8 nm is the wavelength in vacuum of the light used. In any other medium, the wavelength is

A = Ay/n and the number of wavelengths that fit in the gas-filled chamber is

_L_ 2t

N= A Agln’
The number of fringes observed in the transition is

m =N — No,
_ 2t _ 2t
Ao/n 10’

=2t —

= /10(” 1).

Solving for (n — 1) gives

-9
n-1= m(@) = 122[—632-8 x 10 m] = 0.0019
2t 2(2% 1072 m)

and n = 1.0019.

Significance

The indices of refraction for gases are so close to that of vacuum, that we normally consider them equal to 1. The
difference between 1 and 1.0019 is so small that measuring it requires a correspondingly sensitive technique such
as interferometry. We cannot, for example, hope to measure this value using techniques based simply on Snell’s
law.

137

@/ 3.3 Check Your Understanding Although m, the number of fringes observed, is an integer, which is often

regarded as having zero uncertainty, in practical terms, it is all too easy to lose track when counting fringes. In
Example 3.6, if you estimate that you might have missed as many as five fringes when you reported
m = 122 fringes, (a) is the value for the index of refraction worked out in Example 3.6 too large or too

small? (b) By how much?

Problem-Solving Strategy: Wave Optics

Step 1. Examine the situation to determine that interference is involved. Identify whether slits, thin films, or
interferometers are considered in the problem.

Step 2. If slits are involved, note that diffraction gratings and double slits produce very similar interference patterns,
but that gratings have narrower (sharper) maxima. Single-slit patterns are characterized by a large central maximum
and smaller maxima to the sides.

Step 3. If thin-film interference or an interferometer is involved, take note of the path length difference between the two
rays that interfere. Be certain to use the wavelength in the medium involved, since it differs from the wavelength in
vacuum. Note also that there is an additional A/2 phase shift when light reflects from a medium with a greater index

of refraction.

Step 4. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful.
Draw a diagram of the situation. Labeling the diagram is useful.

Step 5. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).
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Step 6. Solve the appropriate equation for the quantity to be determined (the unknown) and enter the knowns. Slits,
gratings, and the Rayleigh limit involve equations.

Step 7. For thin-film interference, you have constructive interference for a total shift that is an integral number of
wavelengths. You have destructive interference for a total shift of a half-integral number of wavelengths. Always keep
in mind that crest to crest is constructive whereas crest to trough is destructive.

Step 8. Check to see if the answer is reasonable: Does it make sense? Angles in interference patterns cannot be greater
than 90°, for example.
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CHAPTER 3 REVIEW

KEY TERMS

coherent waves waves are in phase or have a definite phase relationship
fringes bright and dark patterns of interference

incoherent waves have random phase relationships

interferometer instrument that uses interference of waves to make measurements
monochromatic light composed of one wavelength only

Newton’s rings circular interference pattern created by interference between the light reflected off two surfaces as a
result of a slight gap between them

order integer m used in the equations for constructive and destructive interference for a double slit
principal maximum brightest interference fringes seen with multiple slits
secondary maximum bright interference fringes of intensity lower than the principal maxima

thin-film interference interference between light reflected from different surfaces of a thin film

KEY EQUATIONS

Constructive interference Al=ml, form=0,+1, £2, £3...
Destructive interference Al = (m+l),1 form=0 +1 +2 +3

54, 11, 2, +£3...
Path length difference for waves from two slits to a Al =dsiné

common point on a screen

Constructive interference dsin@=ml, form=0, +1, +2, +3,...

Destructive interference dsin@=(m+1)a, form = 0,+1,+2, +3
2 9 gy L&y LJy 0o

Distance from central maximum to the mth bright fringe = miD
d
Displacement measured by a Michelson interferometer Ad = m@

2

SUMMARY

3.1 Young's Double-Slit Interference
* Young’s double-slit experiment gave definitive proof of the wave character of light.

¢ An interference pattern is obtained by the superposition of light from two slits.

3.2 Mathematics of Interference
¢ In double-slit diffraction, constructive interference occurs when d sin @ = miA(form =0, +1, +2, +3...), where
d is the distance between the slits, @ is the angle relative to the incident direction, and m is the order of the

interference.

¢ Destructive interference occurs when d sin @ = (m + %)/1 form = 0, =1, +2, +3,....
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3.3 Multiple-Slit Interference
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¢ Interference from multiple slits (N > 2 ) produces principal as well as secondary maxima.

¢ As the number of slits is increased, the intensity of the principal maxima increases and the width decreases.

3.4 Interference in Thin Films

¢ When light reflects from a medium having an index of refraction greater than that of the medium in which it is

traveling, a 180° phase change (or a 4/2 shift) occurs.

¢ Thin-film interference occurs between the light reflected from the top and bottom surfaces of a film. In addition to

the path length difference, there can be a phase change.

3.5 The Michelson Interferometer

¢ When the mirror in one arm of the interferometer moves a distance of 1/2 each fringe in the interference pattern

moves to the position previously occupied by the adjacent fringe.

CONCEPTUAL QUESTIONS

3.1 Young's Double-Slit Interference

1. Young’s double-slit experiment breaks a single light
beam into two sources. Would the same pattern be obtained
for two independent sources of light, such as the headlights
of a distant car? Explain.

2. Is it possible to create a experimental setup in which
there is only destructive interference? Explain.

3. Why won’t two small sodium lamps, held close
together, produce an interference pattern on a distant
screen? What if the sodium lamps were replaced by two
laser pointers held close together?

3.2 Mathematics of Interference

4. Suppose you use the same double slit to perform
Young’s double-slit experiment in air and then repeat the
experiment in water. Do the angles to the same parts of the
interference pattern get larger or smaller? Does the color of
the light change? Explain.

5. Why is monochromatic light used in the double slit
experiment? What would happen if white light were used?

3.4 Interference in Thin Films

6. What effect does increasing the wedge angle have on
the spacing of interference fringes? If the wedge angle is
too large, fringes are not observed. Why?

7. How is the difference in paths taken by two originally
in-phase light waves related to whether they interfere
constructively or destructively? How can this be affected
by reflection? By refraction?
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8. Isthere a phase change in the light reflected from either
surface of a contact lens floating on a person’s tear layer?
The index of refraction of the lens is about 1.5, and its top
surface is dry.

9. Inplacing a sample on a microscope slide, a glass cover
is placed over a water drop on the glass slide. Light incident
from above can reflect from the top and bottom of the glass
cover and from the glass slide below the water drop. At
which surfaces will there be a phase change in the reflected
light?

10. Answer the above question if the fluid between the
two pieces of crown glass is carbon disulfide.

11. While contemplating the food value of a slice of ham,
you notice a rainbow of color reflected from its moist
surface. Explain its origin.

12. An inventor notices that a soap bubble is dark at its
thinnest and realizes that destructive interference is taking
place for all wavelengths. How could she use this
knowledge to make a nonreflective coating for lenses that
is effective at all wavelengths? That is, what limits would
there be on the index of refraction and thickness of the
coating? How might this be impractical?

13. A nonreflective coating like the one described in
Example 3.3 works ideally for a single wavelength and
for perpendicular incidence. What happens for other
wavelengths and other incident directions? Be specific.

14. Why is it much more difficult to see interference
fringes for light reflected from a thick piece of glass than
from a thin film? Would it be easier if monochromatic light
were used?
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3.5 The Michelson Interferometer

15. Describe how a Michelson interferometer can be used
to measure the index of refraction of a gas (including air).

PROBLEMS

3.2 Mathematics of Interference

16. At what angle is the first-order maximum for 450-nm
wavelength blue light falling on double slits separated by
0.0500 mm?

17. Calculate the angle for the third-order maximum of
580-nm wavelength yellow light falling on double slits
separated by 0.100 mm.

18. What is the separation between two slits for which
610-nm orange light has its first maximum at an angle of
30.0°?

19. Find the distance between two slits that produces the
first minimum for 410-nm violet light at an angle of 45.0°.

20. Calculate the wavelength of light that has its third
minimum at an angle of 30.0° when falling on double slits

separated by 3.00 um . Explicitly show how you follow

the steps from the Problem-Solving Strategy: Wave
Optics, located at the end of the chapter.

21. What is the wavelength of light falling on double slits
separated by 2.00 ym if the third-order maximum is at an

angle of 60.0°7?

22. At what angle is the fourth-order maximum for the
situation in the preceding problem?

23. What is the highest-order maximum for 400-nm light
falling on double slits separated by 25.0 ym ?

24. Find the largest wavelength of light falling on double
slits separated by 1.20 um for which there is a first-order

maximum. Is this in the visible part of the spectrum?

25. What is the smallest separation between two slits that
will produce a second-order maximum for 720-nm red
light?

26. (a) What is the smallest separation between two slits
that will produce a second-order maximum for any visible
light? (b) For all visible light?
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27. (a) If the first-order maximum for monochromatic
light falling on a double slit is at an angle of 10.0°, at
what angle is the second-order maximum? (b) What is the
angle of the first minimum? (c) What is the highest-order
maximum possible here?

28. Shown below is a double slit located a distance x
from a screen, with the distance from the center of the
screen given by y. When the distance d between the slits
is relatively large, numerous bright spots appear, called
fringes. Show that, for small angles (where sin 6 ~ 0, with
¢ in radians), the distance between fringes is given by

Ay = xAld

Screen

XA
.’Ay =
y

29. Using the result of the preceding problem, (a)
calculate the distance between fringes for 633-nm light
falling on double slits separated by 0.0800 mm, located
3.00 m from a screen. (b) What would be the distance
between fringes if the entire apparatus were submersed in
water, whose index of refraction is 1.33?

30. Using the result of the problem two problems prior,
find the wavelength of light that produces fringes 7.50 mm
apart on a screen 2.00 m from double slits separated by
0.120 mm.

31. In a double-slit experiment, the fifth maximum is 2.8
cm from the central maximum on a screen that is 1.5 m
away from the slits. If the slits are 0.15 mm apart, what is
the wavelength of the light being used?

32. The source in Young’s experiment emits at two
wavelengths. On the viewing screen, the fourth maximum
for one wavelength is located at the same spot as the fifth
maximum for the other wavelength. What is the ratio of the
two wavelengths?
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33. If 500-nm and 650-nm light illuminates two slits that
are separated by 0.50 mm, how far apart are the second-
order maxima for these two wavelengths on a screen 2.0 m
away?

34. Red light of wavelength of 700 nm falls on a double
slit separated by 400 nm. (a) At what angle is the first-
order maximum in the diffraction pattern? (b) What is
unreasonable about this result? (c) Which assumptions are
unreasonable or inconsistent?

3.3 Multiple-Slit Interference

35. Ten narrow slits are equally spaced 0.25 mm apart
and illuminated with yellow light of wavelength 580 nm.
(a) What are the angular positions of the third and fourth
principal maxima? (b) What is the separation of these
maxima on a screen 2.0 m from the slits?

36. The width of bright fringes can be calculated as the
separation between the two adjacent dark fringes on either
side. Find the angular widths of the third- and fourth-order
bright fringes from the preceding problem.

37. For a three-slit interference pattern, find the ratio of
the peak intensities of a secondary maximum to a principal
maximum.

38. What is the angular width of the central fringe of
the interference pattern of (a) 20 slits separated by

d=2.0x10"mm? (b) 50 slits with the same
separation? Assume that 4 = 600 nm .

3.4 Interference in Thin Films

39. A soap bubble is 100 nm thick and illuminated by
white light incident perpendicular to its surface. What
wavelength and color of visible light is most constructively
reflected, assuming the same index of refraction as water?

40. An oil slick on water is 120 nm thick and illuminated
by white light incident perpendicular to its surface. What
color does the oil appear (what is the most constructively
reflected wavelength), given its index of refraction is 1.40?

41. Calculate the minimum thickness of an oil slick on
water that appears blue when illuminated by white light
perpendicular to its surface. Take the blue wavelength to be
470 nm and the index of refraction of oil to be 1.40.

42. Find the minimum thickness of a soap bubble that
appears red when illuminated by white light perpendicular
to its surface. Take the wavelength to be 680 nm, and
assume the same index of refraction as water.

This OpenStax book is available for free at http://cnx.org/content/col12067/1.3

Chapter 3 | Interference

43. A film of soapy water (n = 1.33) on top of a plastic

cutting board has a thickness of 233 nm. What color is most
strongly reflected if it is illuminated perpendicular to its
surface?

44. What are the three smallest non-zero thicknesses of
soapy water (n = 1.33) on Plexiglas if it appears green

(constructively reflecting 520-nm light) when illuminated
perpendicularly by white light?

45. Suppose you have a lens system that is to be used
primarily for 700-nm red light. What is the second thinnest
coating of fluorite (magnesium fluoride) that would be
nonreflective for this wavelength?

46. (a) As a soap bubble thins it becomes dark, because
the path length difference becomes small compared with
the wavelength of light and there is a phase shift at the top
surface. If it becomes dark when the path length difference
is less than one-fourth the wavelength, what is the thickest
the bubble can be and appear dark at all visible
wavelengths? Assume the same index of refraction as
water. (b) Discuss the fragility of the film considering the
thickness found.

47. To save money on making military aircraft invisible to
radar, an inventor decides to coat them with a nonreflective
material having an index of refraction of 1.20, which is
between that of air and the surface of the plane. This, he
reasons, should be much cheaper than designing Stealth
bombers. (a) What thickness should the coating be to
inhibit the reflection of 4.00-cm wavelength radar? (b)
What is unreasonable about this result? (c) Which
assumptions are unreasonable or inconsistent?

3.5 The Michelson Interferometer

48. A Michelson interferometer has two equal arms. A
mercury light of wavelength 546 nm is used for the
interferometer and stable fringes are found. One of the arms
is moved by 1.5um. How many fringes will cross the

observing field?

49. What is the distance moved by the traveling mirror
of a Michelson interferometer that corresponds to 1500
fringes passing by a point of the observation screen?
Assume that the interferometer is illuminated with a 606
nm spectral line of krypton-86.

50. When the
interferometer is moved 2.40X 107> m, 90 fringes pass

traveling mirror of a Michelson

by a point on the observation screen. What is the
wavelength of the light used?
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51. In a Michelson interferometer, light of wavelength
632.8 nm from a He-Ne laser is used. When one of the
mirrors is moved by a distance D, 8 fringes move past the
field of view. What is the value of the distance D?

ADDITIONAL PROBLEMS

53. For 600-nm wavelength light and a slit separation of
0.12 mm, what are the angular positions of the first and
third maxima in the double slit interference pattern?

54. If the light source in the preceding problem is
changed, the angular position of the third maximum is
found to be 0.57°. What is the wavelength of light being

used now?

55. Red light (4 =710.nm) illuminates double slits
separated by a distance d = 0.150 mm. The screen and

the slits are 3.00 m apart. (a) Find the distance on the screen
between the central maximum and the third maximum. (b)
What is the distance between the second and the fourth
maxima?

56. Two sources as in phase and emit waves with
A=042m. Determine whether constructive or

destructive interference occurs at points whose distances
from the two sources are (a) 0.84 and 0.42 m, (b) 0.21 and
0.42 m, (c) 1.26 and 0.42 m, (d) 1.87 and 1.45 m, (e) 0.63
and 0.84 m and (f) 1.47 and 1.26 m.

57. Twoslits 4.0x 107% m apart are illuminated by light

of wavelength 600 nm. What is the highest order fringe in
the interference pattern?

58. Suppose that the highest order fringe that can be
observed is the eighth in a double-slit experiment where
550-nm wavelength light is used. What is the minimum
separation of the slits?

59. The interference pattern of a He-Ne laser light
(4 =632.9 nm) passing through two slits 0.031 mm apart

is projected on a screen 10.0 m away. Determine the
distance between the adjacent bright fringes.

143

52. A chamber 5.0 cm long with flat, parallel windows at
the ends is placed in one arm of a Michelson interferometer
(see below). The light used has a wavelength of 500 nm
in a vacuum. While all the air is being pumped out of the
chamber, 29 fringes pass by a point on the observation
screen. What is the refractive index of the air?

|5CITI

o

To vacuum pump

[

60. Young’s double-slit experiment is performed
immersed in water (n = 1.333). The light source is a He-
Ne laser, 4 =632.9nm in vacuum. (a) What is the
wavelength of this light in water? (b) What is the angle for
the third order maximum for two slits separated by 0.100
mm.

61. A double-slit experiment is to be set up so that the
bright fringes appear 1.27 cm apart on a screen 2.13 m
away from the two slits. The light source was wavelength
500 nm. What should be the separation between the two
slits?

62. An effect analogous to two-slit interference can occur
with sound waves, instead of light. In an open field, two
speakers placed 1.30 m apart are powered by a single-
function generator producing sine waves at 1200-Hz
frequency. A student walks along a line 12.5 m away and
parallel to the line between the speakers. She hears an
alternating pattern of loud and quiet, due to constructive
and destructive interference. What is (a) the wavelength
of this sound and (b) the distance between the central
maximum and the first maximum (loud) position along this
line?

63. A hydrogen gas discharge lamp emits visible light
at four wavelengths, A = 410, 434, 486, and 656 nm.

(a) If light from this lamp falls on a N slits separated by
0.025 mm, how far from the central maximum are the third
maxima when viewed on a screen 2.0 m from the slits?
(b) By what distance are the second and third maxima
separated for / = 486 nm ?

64. Monochromatic light of frequency 5.5 X 10'* Hz

falls on 10 slits separated by 0.020 mm. What is the
separation between the first and third maxima on a screen
that is 2.0 m from the slits?
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65. Eight slits equally separated by 0.149 mm is uniformly
illuminated by a monochromatic light at A =523 nm.
What is the width of the central principal maximum on a
screen 2.35 m away”?

66. Eight slits equally separated by 0.149 mm is uniformly
illuminated by a monochromatic light at 4 =523 nm.
What is the intensity of a secondary maxima compared to
that of the principal maxima?

67. A transparent film of thickness 250 nm and index of
refraction of 1.40 is surrounded by air. What wavelength in
a beam of white light at near-normal incidence to the film
undergoes destructive interference when reflected?

68. An intensity minimum is found for 450 nm light
transmitted through a transparent film (n = 1.20) in air.

(a) What is minimum thickness of the film? (b) If this
wavelength is the longest for which the intensity minimum
occurs, what are the next three lower values of A for which

this happens?

69. A thin film with n = 1.32 is surrounded by air. What

is the minimum thickness of this film such that the
reflection of normally incident light with 4 = 500 nm is

minimized?

70. Repeat your calculation of the previous problem with
the thin film placed on a flat glass (n = 1.50 ) surface.

71. After a minor oil spill, a think film of oil (n = 1.40)

of thickness 450 nm floats on the water surface in a bay. (a)
What predominant color is seen by a bird flying overhead?
(b) What predominant color is seen by a seal swimming
underwater?

72. A microscope slide 10 cm long is separated from a
glass plate at one end by a sheet of paper. As shown below,
the other end of the slide is in contact with the plate. he
slide is illuminated from above by light from a sodium
lamp (4 = 589 nm ), and 14 fringes per centimeter are seen

along the slide. What is the thickness of the piece of paper?

(Not to scale)

Glass slide

Air Paper
—

-

Glass plate
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73. Suppose that the setup of the preceding problem is
immersed in an unknown liquid. If 18 fringes per
centimeter are now seen along the slide, what is the index
of refraction of the liquid?

74. A thin wedge filled with air is produced when two flat
glass plates are placed on top of one another and a slip of
paper is inserted between them at one edge. Interference
fringes are observed when monochromatic light falling
vertically on the plates are seen in reflection. Is the first
fringe near the edge where the plates are in contact a bright
fringe or a dark fringe? Explain.

75. Two identical pieces of rectangular plate glass are used
to measure the thickness of a hair. The glass plates are
in direct contact at one edge and a single hair is placed
between them hear the opposite edge. When illuminated
with a sodium lamp (4 =1589nm), the hair is seen

between the 180th and 181st dark fringes. What are the
lower and upper limits on the hair’s diameter?

76. Two microscope slides made of glass are illuminated
by monochromatic (4=589nm) light incident

perpendicularly. The top slide touches the bottom slide at
one end and rests on a thin copper wire at the other end,
forming a wedge of air. The diameter of the copper wire is
29.45 um . How many bright fringes are seen across these

slides?

77. A good quality camera “lens” is actually a system
of lenses, rather than a single lens, but a side effect is
that a reflection from the surface of one lens can bounce
around many times within the system, creating artifacts
in the photograph. To counteract this problem, one of the
lenses in such a system is coated with a thin layer of
material (7 = 1.28 ) on one side. The index of refraction of
the lens glass is 1.68. What is the smallest thickness of the
coating that reduces the reflection at 640 nm by destructive
interference? (In other words, the coating’s effect is to be
optimized for 4 = 640 nm .)

78. Constructive interference is observed from directly
above an oil slick for wavelengths (in air) 440 nm and 616
nm. The index of refraction of this oil is n = 1.54 . What

is the film’s minimum possible thickness?

79. A soap bubble is blown outdoors. What colors
(indicate by wavelengths) of the reflected sunlight are seen
enhanced? The soap bubble has index of refraction 1.36 and
thickness 380 nm.
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80. A Michelson interferometer with a He-Ne laser light
source (A = 632.8 nm ) projects its interference pattern on

a screen. If the movable mirror is caused to move by
8.54 um, how many fringes will be observed shifting

through a reference point on a screen?

81. An experimenter detects 251 fringes when the
movable mirror in a Michelson interferometer is displaced.
The light source used is a sodium lamp, wavelength 589
nm. By what distance did the movable mirror move?

82. A Michelson interferometer is used to measure the
wavelength of light put through it. When the movable
mirror is moved by exactly 0.100 mm, the number of
fringes observed moving through is 316. What is the
wavelength of the light?

83. A 5.08-cm-long rectangular glass chamber is inserted
into one arm of a Michelson interferometer using a 633-nm
light source. This chamber is initially filled with air
(n = 1.000293) at standard atmospheric pressure but the

air is gradually pumped out using a vacuum pump until
a near perfect vacuum is achieved. How many fringes are
observed moving by during the transition?

84. Into one arm of a Michelson interferometer, a plastic
sheet of thickness 75 um is inserted, which causes a shift

in the interference pattern by 86 fringes. The light source
has wavelength of 610 nm in air. What is the index of
refraction of this plastic?

CHALLENGE PROBLEMS

89. Determine what happens to the double-slit
interference pattern if one of the slits is covered with a thin,
transparent film whose thickness is A/[2(n — 1)], where A4

is the wavelength of the incident light and n is the index of
refraction of the film.

90. Fifty-one narrow slits are equally spaced and
separated by 0.10 mm. The slits are illuminated by blue
light of wavelength 400 nm. What is angular position of
the twenty-fifth secondary maximum? What is its peak
intensity in comparison with that of the primary
maximum?

91. A film of oil on water will appear dark when it is
very thin, because the path length difference becomes small
compared with the wavelength of light and there is a phase
shift at the top surface. If it becomes dark when the path
length difference is less than one-fourth the wavelength,
what is the thickest the oil can be and appear dark at all
visible wavelengths? Oil has an index of refraction of 1.40.
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85. The thickness of an aluminum foil is measured using
a Michelson interferometer that has its movable mirror
mounted on a micrometer. There is a difference of 27
fringes in the observed interference pattern when the
micrometer clamps down on the foil compared to when the
micrometer is empty. Calculate the thickness of the foil?

86. The movable mirror of a Michelson interferometer
is attached to one end of a thin metal rod of length 23.3
mm. The other end of the rod is anchored so it does not
move. As the temperature of the rod changes from 15 °C

to 25C, a change of 14 fringes is observed. The light
source is a He Ne laser, 4 = 632.8 nm . What is the change

in length of the metal bar, and what is its thermal expansion
coefficient?

87. In a thermally stabilized lab, a Michelson
interferometer is used to monitor the temperature to ensure
it stays constant. The movable mirror is mounted on the
end of a 1.00-m-long aluminum rod, held fixed at the other
end. The light source is a He Ne laser, 1 = 632.8 nm. The

resolution of this apparatus corresponds to the temperature
difference when a change of just one fringe is observed.
What is this temperature difference?

88. A 65-fringe shift results in a Michelson interferometer
when a 42.0-um film made of an unknown material is

placed in one arm. The light source has wavelength 632.9
nm. Identify the material using the indices of refraction
found in Table 1.1.

92. Figure 3.14 shows two glass slides illuminated by
monochromatic light incident perpendicularly. The top
slide touches the bottom slide at one end and rests on a
0.100-mm-diameter hair at the other end, forming a wedge
of air. (a) How far apart are the dark bands, if the slides
are 7.50 cm long and 589-nm light is used? (b) Is there any
difference if the slides are made from crown or flint glass?
Explain.

93. Figure 3.14 shows two 7.50-cm-long glass slides
illuminated by pure 589-nm wavelength light incident
perpendicularly. The top slide touches the bottom slide at
one end and rests on some debris at the other end, forming
a wedge of air. How thick is the debris, if the dark bands
are 1.00 mm apart?

94. A soap bubble is 100 nm thick and illuminated by
white light incident at a 45° angle to its surface. What

wavelength and color of visible light is most constructively
reflected, assuming the same index of refraction as water?
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95. An oil slick on water is 120 nm thick and illuminated
by white light incident at a 45° angle to its surface. What

color does the oil appear (what is the most constructively
reflected wavelength), given its index of refraction is 1.40?
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Figure 4.1 A steel ball bearing illuminated by a laser does not cast a sharp, circular shadow. Instead, a series of diffraction
fringes and a central bright spot are observed. Known as Poisson’s spot, the effect was first predicted by Augustin-Jean Fresnel
(1788-1827) as a consequence of diffraction of light waves. Based on principles of ray optics, Siméon-Denis Poisson
(1781-1840) argued against Fresnel’s prediction. (credit: modification of work by Harvard Natural Science Lecture
Demonstrations)

Chapter Outline

4.1 Single-Slit Diffraction

4.2 Intensity in Single-Slit Diffraction
4.3 Double-Slit Diffraction

4.4 Diffraction Gratings

4.5 Circular Apertures and Resolution
4.6 X-Ray Diffraction

4.7 Holography

Introduction

Imagine passing a monochromatic light beam through a narrow opening—a slit just a little wider than the wavelength of
the light. Instead of a simple shadow of the slit on the screen, you will see that an interference pattern appears, even though
there is only one slit.

In the chapter on interference, we saw that you need two sources of waves for interference to occur. How can there be an
interference pattern when we have only one slit? In The Nature of Light, we learned that, due to Huygens’s principle, we
can imagine a wave front as equivalent to infinitely many point sources of waves. Thus, a wave from a slit can behave not as
one wave but as an infinite number of point sources. These waves can interfere with each other, resulting in an interference
pattern without the presence of a second slit. This phenomenon is called diffraction.

Another way to view this is to recognize that a slit has a small but finite width. In the preceding chapter, we implicitly
regarded slits as objects with positions but no size. The widths of the slits were considered negligible. When the slits have
finite widths, each point along the opening can be considered a point source of light—a foundation of Huygens’s principle.
Because real-world optical instruments must have finite apertures (otherwise, no light can enter), diffraction plays a major
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role in the way we interpret the output of these optical instruments. For example, diffraction places limits on our ability to
resolve images or objects. This is a problem that we will study later in this chapter.

4.1 | Single-Slit Diffraction

Learning Objectives

By the end of this section, you will be able to:

* Explain the phenomenon of diffraction and the conditions under which it is observed
* Describe diffraction through a single slit

After passing through a narrow aperture (opening), a wave propagating in a specific direction tends to spread out. For
example, sound waves that enter a room through an open door can be heard even if the listener is in a part of the room
where the geometry of ray propagation dictates that there should only be silence. Similarly, ocean waves passing through an
opening in a breakwater can spread throughout the bay inside. (Figure 4.2). The spreading and bending of sound and ocean
waves are two examples of diffraction, which is the bending of a wave around the edges of an opening or an obstacle—a
phenomenon exhibited by all types of waves.

Image © 2016 TerraMetrics
Image © 2016 DigitalGlabe

entering through an opening in a breakwater can spread
throughout the bay. (credit: modification of map data from
Google Earth)

The diffraction of sound waves is apparent to us because wavelengths in the audible region are approximately the same
size as the objects they encounter, a condition that must be satisfied if diffraction effects are to be observed easily. Since
the wavelengths of visible light range from approximately 390 to 770 nm, most objects do not diffract light significantly.
However, situations do occur in which apertures are small enough that the diffraction of light is observable. For example,
if you place your middle and index fingers close together and look through the opening at a light bulb, you can see a rather
clear diffraction pattern, consisting of light and dark lines running parallel to your fingers.

Diffraction through a Single Slit

Light passing through a single slit forms a diffraction pattern somewhat different from those formed by double slits or
diffraction gratings, which we discussed in the chapter on interference. Figure 4.3 shows a single-slit diffraction pattern.
Note that the central maximum is larger than maxima on either side and that the intensity decreases rapidly on either side.
In contrast, a diffraction grating (Diffraction Gratings) produces evenly spaced lines that dim slowly on either side of the
center.

This OpenStax book is available for free at http://cnx.org/content/col12067/1.3
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Intensity
oy =

@) (b)
Figure 4.3 Single-slit diffraction pattern. (a) Monochromatic
light passing through a single slit has a central maximum and
many smaller and dimmer maxima on either side. The central
maximum is six times higher than shown. (b) The diagram
shows the bright central maximum, and the dimmer and thinner
maxima on either side.

The analysis of single-slit diffraction is illustrated in Figure 4.4. Here, the light arrives at the slit, illuminating it uniformly
and is in phase across its width. We then consider light propagating onwards from different parts of the same slit. According
to Huygens’s principle, every part of the wave front in the slit emits wavelets, as we discussed in The Nature of Light.
These are like rays that start out in phase and head in all directions. (Each ray is perpendicular to the wave front of
a wavelet.) Assuming the screen is very far away compared with the size of the slit, rays heading toward a common
destination are nearly parallel. When they travel straight ahead, as in part (a) of the figure, they remain in phase, and we
observe a central maximum. However, when rays travel at an angle 0 relative to the original direction of the beam, each ray
travels a different distance to a common location, and they can arrive in or out of phase. In part (b), the ray from the bottom
travels a distance of one wavelength A farther than the ray from the top. Thus, a ray from the center travels a distance
A2 less than the one at the bottom edge of the slit, arrives out of phase, and interferes destructively. A ray from slightly
above the center and one from slightly above the bottom also cancel one another. In fact, each ray from the slit interferes
destructively with another ray. In other words, a pair-wise cancellation of all rays results in a dark minimum in intensity at
this angle. By symmetry, another minimum occurs at the same angle to the right of the incident direction (toward the bottom
of the figure) of the light.
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Figure 4.4 Light passing through a single slit is diffracted in all directions and may interfere constructively or destructively,
depending on the angle. The difference in path length for rays from either side of the slit is seen to be D sin 6.

At the larger angle shown in part (c), the path lengths differ by 3A/2 for rays from the top and bottom of the slit. One
ray travels a distance A different from the ray from the bottom and arrives in phase, interfering constructively. Two rays,

each from slightly above those two, also add constructively. Most rays from the slit have another ray to interfere with
constructively, and a maximum in intensity occurs at this angle. However, not all rays interfere constructively for this
situation, so the maximum is not as intense as the central maximum. Finally, in part (d), the angle shown is large enough to
produce a second minimum. As seen in the figure, the difference in path length for rays from either side of the slit is D sin
6, and we see that a destructive minimum is obtained when this distance is an integral multiple of the wavelength.

Thus, to obtain destructive interference for a single slit,

Dsin@ =mi, form= +1, +2, +3, ...(destructive), (4.1)

where D is the slit width, A is the light’s wavelength, @ is the angle relative to the original direction of the light, and m

is the order of the minimum. Figure 4.5 shows a graph of intensity for single-slit interference, and it is apparent that the
maxima on either side of the central maximum are much less intense and not as wide. This effect is explored in Double-
Slit Diffraction.
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Figure 4.5 A graph of single-slit diffraction intensity showing
the central maximum to be wider and much more intense than
those to the sides. In fact, the central maximum is six times
higher than shown here.
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Example 4.1

Calculating Single-Slit Diffraction

what angle is the first minimum produced?

Strategy

Visible light of wavelength 550 nm falls on a single slit and produces its second diffraction minimum at an angle
of 45.0° relative to the incident direction of the light, as in Figure 4.6. (a) What is the width of the slit? (b) At

Screen

Intensity
on screen

Figure 4.6 In this example, we analyze a graph of the single-
slit diffraction pattern.

From the given information, and assuming the screen is far away from the slit, we can use the equation
D sin @ = mA first to find D, and again to find the angle for the first minimum 6.
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Solution
a. Weare given that A =550nm, m =2, and 6, = 45.0°. Solving the equation D sin 6 = mA for D and

substituting known values gives

mi_ _ 2(550nm) _ 1100x 10~ m _ -6
sinf, ~ sin45.0° 0.707 =1.56x 107" m.

b. Solving the equation D sin @ = mA for sin 6 and substituting the known values gives

o mA_ 1(550x 107 m)
= D = Sex 100 m

Thus the angle 6 is
6, =sin~10.354 = 20.7°.

Significance

We see that the slit is narrow (it is only a few times greater than the wavelength of light). This is consistent with
the fact that light must interact with an object comparable in size to its wavelength in order to exhibit significant
wave effects such as this single-slit diffraction pattern. We also see that the central maximum extends 20.7° on

either side of the original beam, for a width of about 41°. The angle between the first and second minima is only
about 24° (45.0° — 20.7°) . Thus, the second maximum is only about half as wide as the central maximum.

@ 4.1 Check Your Understanding Suppose the slit width in Example 4.1 is increased to 1.8 x 1076 m.
What are the new angular positions for the first, second, and third minima? Would a fourth minimum exist?

4.2 | Intensity in Single-Slit Diffraction

Learning Objectives

By the end of this section, you will be able to:

e Calculate the intensity relative to the central maximum of the single-slit diffraction peaks
* Calculate the intensity relative to the central maximum of an arbitrary point on the screen

To calculate the intensity of the diffraction pattern, we follow the phasor method used for calculations with ac circuits in
Alternating-Current Circuits (http:/lcnx.org/content/m58485/latest/) . If we consider that there are N Huygens
sources across the slit shown in Figure 4.4, with each source separated by a distance D/N from its adjacent neighbors,
the path difference between waves from adjacent sources reaching the arbitrary point P on the screen is (D/N) sin 8. This

distance is equivalent to a phase difference of (2zD/AN)sin . The phasor diagram for the waves arriving at the point
whose angular position is @ is shown in Figure 4.7. The amplitude of the phasor for each Huygens wavelet is AE, the

amplitude of the resultant phasor is E, and the phase difference between the wavelets from the first and the last sources is

b= (%)D sin 6.

With N — oo, the phasor diagram approaches a circular arc of length NAE(, and radius r. Since the length of the arc
is NAE, for any ¢, the radius r of the arc must decrease as ¢ increases (or equivalently, as the phasors form tighter

spirals).
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(€Y (b)
Figure 4.7 (a) Phasor diagram corresponding to the angular
position € in the single-slit diffraction pattern. The phase

difference between the wavelets from the first and last sources is
¢ = (2x/A)D sin 0 . (b) The geometry of the phasor diagram.

The phasor diagram for ¢ = 0 (the center of the diffraction pattern) is shown in Figure 4.8(a) using N = 30. In this
case, the phasors are laid end to end in a straight line of length NAE, the radius r goes to infinity, and the resultant

has its maximum value E = NAE(. The intensity of the light can be obtained using the relation / = %ceo E? from
Electromagnetic Waves (http://cnx.org/content/m58495/latest/) . The intensity of the maximum is then

2 2
Io = Sceg(NAEQ)” = #OC(NAEO) ,

where g = 1/u ¢? . The phasor diagrams for the first two zeros of the diffraction pattern are shown in parts (b) and (d) of

the figure. In both cases, the phasors add to zero, after rotating through ¢ = 2z rad for m = 1 and 4z rad for m =2.

| |
NAE, |

—~ -2

@)

5 = N/
STE, = NAE,

(b) (© (d) (€)
Figure 4.8 Phasor diagrams (with 30 phasors) for various points on the single-slit diffraction
pattern. Multiple rotations around a given circle have been separated slightly so that the phasors can
be seen. (a) Central maximum, (b) first minimum, (c) first maximum beyond central maximum, (d)
second minimum, and (e) second maximum beyond central maximum.

The next two maxima beyond the central maxima are represented by the phasor diagrams of parts (c) and (e). In part (c),
the phasors have rotated through ¢ = 37 rad and have formed a resultant phasor of magnitude E; . The length of the arc

formed by the phasors is NAE|,. Since this corresponds to 1.5 rotations around a circle of diameter E, we have

31E| = NAE,,
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)
2NAE,
E = 3
and
2
Iy =51—Ef = 4(1\2’AE0) = 0.0451,
Mo c (97r )(Z,uoc)
where
(NAE()?
Iy="5—""—
Hoc€

In part (e), the phasors have rotated through ¢ = 57 rad, corresponding to 2.5 rotations around a circle of diameter E,

and arc length NAE. This results in 7, = 0.016/. The proof is left as an exercise for the student (Exercise 4.119).

These two maxima actually correspond to values of ¢ slightly less than 3z rad and 5z rad. Since the total length of the
arc of the phasor diagram is always NAE, the radius of the arc decreases as ¢ increases. As aresult, £ and E, turn
out to be slightly larger for arcs that have not quite curled through 3z rad and 5z rad, respectively. The exact values of ¢
for the maxima are investigated in Exercise 4.120. In solving that problem, you will find that they are less than, but very
closeto, ¢ =3z, Sz, Tx, ... rad.

To calculate the intensity at an arbitrary point P on the screen, we return to the phasor diagram of Figure 4.7. Since the arc
subtends an angle ¢ at the center of the circle,

NAEy=r¢
and

- Q)_ﬁ

sm(2 =5

where E is the amplitude of the resultant field. Solving the second equation for E and then substituting r from the first
equation, we find

_ ¢ _NAE, . ¢
E =2rsin 5= 2—¢ sin >
Now defining
B = ¢ _ zDsin @ (4.2)
2 A
we obtain
sin 4.3
E =NAE, ﬂﬂ (4.3)

This equation relates the amplitude of the resultant field at any point in the diffraction pattern to the amplitude NAE|, at

the central maximum. The intensity is proportional to the square of the amplitude, so
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i (Sin ﬁ)z (4.4)

where Iy = (NAE)*/2ugc is the intensity at the center of the pattern.

For the central maximum, ¢ =0, S is also zero and we see from I’H6pital’s rule that lim f— olsin /) =1, so that
lim b - ol = 1. For the next maximum, ¢ = 3z rad, we have f = 37/2 rad and when substituted into Equation 4.4,

it yields

2
— 7. (sin 37:/2) _
1y = 1,(s23z 0.0451,,
in agreement with what we found earlier in this section using the diameters and circumferences of phasor diagrams.
Substituting ¢ = 5z rad into Equation 4.4 yields a similar result for I, .

A plot of Equation 4.4 is shown in Figure 4.9 and directly below it is a photograph of an actual diffraction pattern.
Notice that the central peak is much brighter than the others, and that the zeros of the pattern are located at those points
where sin f =0, which occurs when f = mx rad. This corresponds to

zD /slin 0 _ mr,
or
Dsin @ = mA,

which is Equation 4.1.

(b)
Figure 4.9 (a) The calculated intensity distribution of a single-slit diffraction pattern. (b) The
actual diffraction pattern.
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Example 4.2

Intensity in Single-Slit Diffraction
Light of wavelength 550 nm passes through a slit of width 2.00 yum and produces a diffraction pattern similar
to that shown in Figure 4.9. (a) Find the locations of the first two minima in terms of the angle from the central
maximum and (b) determine the intensity relative to the central maximum at a point halfway between these two
minima.
Strategy
The minima are given by Equation 4.1, Dsin € = mA . The first two minima are for m =1 and m = 2.
Equation 4.4 and Equation 4.2 can be used to determine the intensity once the angle has been worked out.
Solution

a. Solving Equation 4.1 for 6 givesus 6,, = sin_l(mll/D), so that

) Sin_1[(+1)(550>< 107% m)
L=

= +16.0°
2.00x 107% m ]

and

(+2)(550 x 107 m)
2.00%x107° m

0, = sin_l(

b. The halfway point between 6, and 6, is

]: +33.4°,

0= (0 +0,)2 = (16.0° + 33.4°)/2 = 24.7°.
Equation 4.2 gives
4 — xDsind {2.00 x 107° m)sin(24.7°)

= 1.527 or4.77 rad.
A (550% 10 m)

From Equation 4.4, we can calculate

. 2 . 2
1 _ (sm ﬂ) _ (sm (4.77)) _ (—0.9985)2 —0.044
., =5 477 477 035

Significance

This position, halfway between two minima, is very close to the location of the maximum, expected near
p=3xl2, orl.5x.

i‘/l 4.2 Check Your Understanding For the experiment in Example 4.2, at what angle from the center is the
third maximum and what is its intensity relative to the central maximum?

If the slit width D is varied, the intensity distribution changes, as illustrated in Figure 4.10. The central peak is distributed
over the region from sin @ = —A/D to sin@ = + A/D. For small @, this corresponds to an angular width A8 =~ 21/D.

Hence, an increase in the slit width results in a decrease in the width of the central peak. For a slit with D > 4, the

central peak is very sharp, whereas if D = 4, it becomes quite broad.
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Figure 4.10 Single-slit diffraction patterns for various slit widths. As the slit width D increases from D = A to 5A and then to
102, the width of the central peak decreases as the angles for the first minima decrease as predicted by Equation 4.1.

’ A diffraction experiment in optics can require a lot of preparation but this simulation

(https:/lopenstaxcollege.org/l/21diffrexpoptsi) by Andrew Duffy offers not only a quick set up but also the
ability to change the slit width instantly. Run the simulation and select “Single slit.” You can adjust the slit width
and see the effect on the diffraction pattern on a screen and as a graph.

4.3 | Double-Slit Diffraction

Learning Objectives

By the end of this section, you will be able to:

* Describe the combined effect of interference and diffraction with two slits, each with finite width
* Determine the relative intensities of interference fringes within a diffraction pattern
* Identify missing orders, if any

When we studied interference in Young’s double-slit experiment, we ignored the diffraction effect in each slit. We assumed
that the slits were so narrow that on the screen you saw only the interference of light from just two point sources. If the slit
is smaller than the wavelength, then Figure 4.10(a) shows that there is just a spreading of light and no peaks or troughs
on the screen. Therefore, it was reasonable to leave out the diffraction effect in that chapter. However, if you make the slit
wider, Figure 4.10(b) and (c) show that you cannot ignore diffraction. In this section, we study the complications to the
double-slit experiment that arise when you also need to take into account the diffraction effect of each slit.

To calculate the diffraction pattern for two (or any number of) slits, we need to generalize the method we just used for a
single slit. That is, across each slit, we place a uniform distribution of point sources that radiate Huygens wavelets, and
then we sum the wavelets from all the slits. This gives the intensity at any point on the screen. Although the details of that
calculation can be complicated, the final result is quite simple:

Two-Slit Diffraction Pattern

The diffraction pattern of two slits of width D that are separated by a distance d is the interference pattern of two point
sources separated by d multiplied by the diffraction pattern of a slit of width D.

In other words, the locations of the interference fringes are given by the equation dsin@ = mAl, the same as when we
considered the slits to be point sources, but the intensities of the fringes are now reduced by diffraction effects, according
to Equation 4.4. [Note that in the chapter on interference, we wrote dsin @ = mJ and used the integer m to refer to
interference fringes. Equation 4.1 also uses m, but this time to refer to diffraction minima. If both equations are used
simultaneously, it is good practice to use a different variable (such as n) for one of these integers in order to keep them
distinct.]

Interference and diffraction effects operate simultaneously and generally produce minima at different angles. This gives rise
to a complicated pattern on the screen, in which some of the maxima of interference from the two slits are missing if the
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maximum of the interference is in the same direction as the minimum of the diffraction. We refer to such a missing peak as
a missing order. One example of a diffraction pattern on the screen is shown in Figure 4.11. The solid line with multiple
peaks of various heights is the intensity observed on the screen. It is a product of the interference pattern of waves from
separate slits and the diffraction of waves from within one slit.

"y
1.0 ‘ —— Interference
= 3 —— Diffraction
0.8} mi=4
— Together
\ 0.6/
|
0.4 -
L4 Missing order m = 3
~ A‘/A A\.- ‘-r
—45° -30° -15° 0 15° 30° 450 0

Figure 4.11 Diffraction from a double slit. The purple line with peaks of the same height are
from the interference of the waves from two slits; the blue line with one big hump in the middle
is the diffraction of waves from within one slit; and the thick red line is the product of the two,
which is the pattern observed on the screen. The plot shows the expected result for a slit width
D = 2\ and slit separation d = 6\ . The maximum of m = + 3 order for the interference is

missing because the minimum of the diffraction occurs in the same direction.

Example 4.3

Intensity of the Fringes

Figure 4.11 shows that the intensity of the fringe for m = 3 is zero, but what about the other fringes? Calculate
the intensity for the fringe at m = 1 relative to /), the intensity of the central peak.

Strategy

Determine the angle for the double-slit interference fringe, using the equation from Interference, then determine
the relative intensity in that direction due to diffraction by using Equation 4.4.

Solution

From the chapter on interference, we know that the bright interference fringes occur at d sin @ = m4, or

sinf = m7l
From Equation 4.4,
. 2
— . (sinf _ % _zDsin6
I—Io(ﬂ),whereﬂ—z— VR

Substituting from above,

ﬂansinHZQ‘m_/l_mnD
A A d d ’

For D=21,d=6A,and m=1,
_MrCH _x

p= 64) 3
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Then, the intensity is

. 2 . 2
I= 10(51;/3 ) =1, (%) = 0.6841,,

Significance

Note that this approach is relatively straightforward and gives a result that is almost exactly the same as the more
complicated analysis using phasors to work out the intensity values of the double-slit interference (thin line in
Figure 4.11). The phasor approach accounts for the downward slope in the diffraction intensity (blue line) so
that the peak near m = 1 occurs at a value of € ever so slightly smaller than we have shown here.

Example 4.4

Two-Slit Diffraction

Suppose that in Young’s experiment, slits of width 0.020 mm are separated by 0.20 mm. If the slits are illuminated
by monochromatic light of wavelength 500 nm, how many bright fringes are observed in the central peak of the
diffraction pattern?

Solution

From Equation 4.1, the angular position of the first diffracion minimum is
=7
0~ sin0=%=w= 2.5% 1072 rad.
20%x10™° m
Using sin@ = mA for @ = 2.5 1072 rad , we find

dsing _ (020mm)(2.5x 1072 rad)
L (50x 107 m)

m =

which is the maximum interference order that fits inside the central peak. We note that m = + 10 are missing
orders as @ matches exactly. Accordingly, we observe bright fringes for

m=-9,-8 7,6, =5, —4, =3, =2, 1,0, + 1, +2, +3, +4, +5, +6, +7, +8, and +9

for a total of 19 bright fringes.

4.3 Check Your Understanding For the experiment in Example 4.4, show that m = 20 is also a missing
order.

’ Explore the effects of double-slit diffraction. In this simulation (https:/lopenstaxcollege.orgl/l/
21doubslitdiff) written by Fu-Kwun Hwang, select N =2 using the slider and see what happens when you

control the slit width, slit separation and the wavelength. Can you make an order go “missing?”

4.4 | Diffraction Gratings

Learning Objectives

By the end of this section, you will be able to:

* Discuss the pattern obtained from diffraction gratings
* Explain diffraction grating effects
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Analyzing the interference of light passing through two slits lays out the theoretical framework of interference and gives us
a historical insight into Thomas Young’s experiments. However, most modern-day applications of slit interference use not
just two slits but many, approaching infinity for practical purposes. The key optical element is called a diffraction grating,
an important tool in optical analysis.

Diffraction Gratings: An Infinite Number of Slits

The analysis of multi-slit interference in Interference allows us to consider what happens when the number of slits N
approaches infinity. Recall that N — 2 secondary maxima appear between the principal maxima. We can see there will be
an infinite number of secondary maxima that appear, and an infinite number of dark fringes between them. This makes
the spacing between the fringes, and therefore the width of the maxima, infinitesimally small. Furthermore, because the
intensity of the secondary maxima is proportional to 1/N 2 , it approaches zero so that the secondary maxima are no longer
seen. What remains are only the principal maxima, now very bright and very narrow (Figure 4.12).

i ! i

I ] I

1 — 1 — "
L e s S S S e e m S e S S

A 0 A sin 9
d

@)

(b)
Figure 4.12 (a) Intensity of light transmitted through a large number of slits. When N
approaches infinity, only the principal maxima remain as very bright and very narrow lines. (b)
A laser beam passed through a diffraction grating. (credit b: modification of work by Sebastian
Stapelberg)

In reality, the number of slits is not infinite, but it can be very large—large enough to produce the equivalent effect. A prime
example is an optical element called a diffraction grating. A diffraction grating can be manufactured by carving glass
with a sharp tool in a large number of precisely positioned parallel lines, with untouched regions acting like slits (Figure
4.13). This type of grating can be photographically mass produced rather cheaply. Because there can be over 1000 lines per
millimeter across the grating, when a section as small as a few millimeters is illuminated by an incoming ray, the number of
illuminated slits is effectively infinite, providing for very sharp principal maxima.
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Grooves are cut out
/— at regular spacings d

-

F_igure 4.13 A diffraction grating can be manufactured by carving glass with a
sharp tool in a large number of precisely positioned parallel lines.

Diffraction gratings work both for transmission of light, as in Figure 4.14, and for reflection of light, as on butterfly wings
and the Australian opal in Figure 4.15. Natural diffraction gratings also occur in the feathers of certain birds such as the
hummingbird. Tiny, finger-like structures in regular patterns act as reflection gratings, producing constructive interference
that gives the feathers colors not solely due to their pigmentation. This is called iridescence.

Second-order
rainbow

First-order
rainbow

Central
white

i

\

/M

N i B

First-order
rainbow

Second-order
rainbow

(@ (b)
Figure 4.14 (a) Light passing through a diffraction grating is
diffracted in a pattern similar to a double slit, with bright regions
at various angles. (b) The pattern obtained for white light incident
on a grating. The central maximum is white, and the higher-order
maxima disperse white light into a rainbow of colors.
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(a) (b)
Figure 4.15 (a) This Australian opal and (b) butterfly wings have rows of
reflectors that act like reflection gratings, reflecting different colors at different
angles. (credit b: modification of work by “whologwhy”/Flickr)

Applications of Diffraction Gratings

Where are diffraction gratings used in applications? Diffraction gratings are commonly used for spectroscopic dispersion
and analysis of light. What makes them particularly useful is the fact that they form a sharper pattern than double slits
do. That is, their bright fringes are narrower and brighter while their dark regions are darker. Diffraction gratings are key
components of monochromators used, for example, in optical imaging of particular wavelengths from biological or medical
samples. A diffraction grating can be chosen to specifically analyze a wavelength emitted by molecules in diseased cells in
a biopsy sample or to help excite strategic molecules in the sample with a selected wavelength of light. Another vital use is
in optical fiber technologies where fibers are designed to provide optimum performance at specific wavelengths. A range of
diffraction gratings are available for selecting wavelengths for such use.

Example 4.5

Calculating Typical Diffraction Grating Effects

Diffraction gratings with 10,000 lines per centimeter are readily available. Suppose you have one, and you send
a beam of white light through it to a screen 2.00 m away. (a) Find the angles for the first-order diffraction of the
shortest and longest wavelengths of visible light (380 and 760 nm, respectively). (b) What is the distance between
the ends of the rainbow of visible light produced on the screen for first-order interference? (See Figure 4.16.)
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Grating

Screen

Figure 4.16 (a) The diffraction grating considered in this
example produces a rainbow of colors on a screen a distance
x =2.00m from the grating. The distances along the screen

are measured perpendicular to the x-direction. In other words,
the rainbow pattern extends out of the page.

(b) In a bird’s-eye view, the rainbow pattern can be seen on a
table where the equipment is placed.

Strategy

Once a value for the diffraction grating’s slit spacing d has been determined, the angles for the sharp lines can be
found using the equation

dsin0=miform=0, +1, +2, ....
Since there are 10,000 lines per centimeter, each line is separated by 1/10,000 of a centimeter. Once we know the
angles, we an find the distances along the screen by using simple trigonometry.

Solution
a. The distance between slits is d = (1 cm)/10, 000 = 1.00 x 1074 cmor 1.00 x 10°% m. Let us call

the two angles @y for violet (380 nm) and 6y for red (760 nm). Solving the equation

d sin @y = mJ for sin Oy,

sinfy = mTlV,

where m =1 for the first-order and Ay = 380 nm = 3.80 X 1077 m. Substituting these values gives

=7

sin @ 3
1.00x 10™° m

Thus the angle 0, is

6y = sin~! 0.380 = 22.33°.
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Similarly,

=7

sin @, = =
R 100x10°%m

Thus the angle Oy is

O = sin ! 0.760 = 49.46°.

Notice that in both equations, we reported the results of these intermediate calculations to four significant
figures to use with the calculation in part (b).

b. The distances on the secreen are labeled yy and yp in Figure 4.16. Notice that tan § = y/x. We can

solve for yy and yg. Thatis,

yy = xtan 0y = (2.00m)(tan 22.33°) = 0.815m

and
YR = xtan 0, = (2.00 m)(tan 49.46°) = 2.338 m.

The distance between them is therefore

YR™IYV= 1.523 m.

Significance

The large distance between the red and violet ends of the rainbow produced from the white light indicates the
potential this diffraction grating has as a spectroscopic tool. The more it can spread out the wavelengths (greater
dispersion), the more detail can be seen in a spectrum. This depends on the quality of the diffraction grating—it
must be very precisely made in addition to having closely spaced lines.

4.4 Check Your Understanding If the line spacing of a diffraction grating d is not precisely known, we can
use a light source with a well-determined wavelength to measure it. Suppose the first-order constructive fringe
of the Hy emission line of hydrogen (A= 656.3nm) is measured at 11.36° using a spectrometer with a

diffraction grating. What is the line spacing of this grating?

. Take the same simulation (https://lopenstaxcollege.org/l/21doubslitdiff) we used for double-slit
diffraction and try increasing the number of slits from N =2 to N =3, 4, 5.... The primary peaks become

sharper, and the secondary peaks become less and less pronounced. By the time you reach the maximum number
of N = 20, the system is behaving much like a diffraction grating.

4.5 | Circular Apertures and Resolution

Learning Objectives

By the end of this section, you will be able to:

» Describe the diffraction limit on resolution
» Describe the diffraction limit on beam propagation
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Light diffracts as it moves through space, bending around obstacles, interfering constructively and destructively. This can
be used as a spectroscopic tool—a diffraction grating disperses light according to wavelength, for example, and is used to
produce spectra—but diffraction also limits the detail we can obtain in images.

Figure 4.17(a) shows the effect of passing light through a small circular aperture. Instead of a bright spot with sharp edges,
we obtain a spot with a fuzzy edge surrounded by circles of light. This pattern is caused by diffraction, similar to that
produced by a single slit. Light from different parts of the circular aperture interferes constructively and destructively. The
effect is most noticeable when the aperture is small, but the effect is there for large apertures as well.

(@) (b) (c)
Figure 4.17 (a) Monochromatic light passed through a small circular aperture produces this
diffraction pattern. (b) Two point-light sources that are close to one another produce overlapping images
because of diffraction. (c) If the sources are closer together, they cannot be distinguished or resolved.

How does diffraction affect the detail that can be observed when light passes through an aperture? Figure 4.17(b) shows
the diffraction pattern produced by two point-light sources that are close to one another. The pattern is similar to that for a
single point source, and it is still possible to tell that there are two light sources rather than one. If they are closer together,
as in Figure 4.17(c), we cannot distinguish them, thus limiting the detail or resolution we can obtain. This limit is an
inescapable consequence of the wave nature of light.

Diffraction limits the resolution in many situations. The acuity of our vision is limited because light passes through the
pupil, which is the circular aperture of the eye. Be aware that the diffraction-like spreading of light is due to the limited
diameter of a light beam, not the interaction with an aperture. Thus, light passing through a lens with a diameter D shows
this effect and spreads, blurring the image, just as light passing through an aperture of diameter D does. Thus, diffraction
limits the resolution of any system having a lens or mirror. Telescopes are also limited by diffraction, because of the finite
diameter D of the primary mirror.

Just what is the limit? To answer that question, consider the diffraction pattern for a circular aperture, which has a central
maximum that is wider and brighter than the maxima surrounding it (similar to a slit) (Figure 4.18(a)). It can be shown
that, for a circular aperture of diameter D, the first minimum in the diffraction pattern occurs at 8 = 1.22A/D (providing
the aperture is large compared with the wavelength of light, which is the case for most optical instruments). The accepted
criterion for determining the diffraction limit to resolution based on this angle is known as the Rayleigh criterion, which
was developed by Lord Rayleigh in the nineteenth century.

Rayleigh Criterion

The diffraction limit to resolution states that two images are just resolvable when the center of the diffraction pattern
of one is directly over the first minimum of the diffraction pattern of the other (Figure 4.18(b)).

The first minimum is at an angle of @ = 1.22A/D, so that two point objects are just resolvable if they are separated by the
angle

6= 1.22% (4.5)
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where A is the wavelength of light (or other electromagnetic radiation) and D is the diameter of the aperture, lens, mirror,
etc., with which the two objects are observed. In this expression, 8 has units of radians. This angle is also commonly known
as the diffraction limit.

Intensities

Intensity &
o~ o . Object 1 W [l Object 2
1220 0 1227 0 -'—='I é__i
) D v W
(@) (b)

Figure 4.18 (a) Graph of intensity of the diffraction pattern for a circular aperture. Note
that, similar to a single slit, the central maximum is wider and brighter than those to the sides.
(b) Two point objects produce overlapping diffraction patterns. Shown here is the Rayleigh
criterion for being just resolvable. The central maximum of one pattern lies on the first
minimum of the other.

All attempts to observe the size and shape of objects are limited by the wavelength of the probe. Even the small wavelength
of light prohibits exact precision. When extremely small wavelength probes are used, as with an electron microscope, the
system is disturbed, still limiting our knowledge. Heisenberg’s uncertainty principle asserts that this limit is fundamental
and inescapable, as we shall see in the chapter on quantum mechanics.

Example 4.6

Calculating Diffraction Limits of the Hubble Space Telescope

The primary mirror of the orbiting Hubble Space Telescope has a diameter of 2.40 m. Being in orbit, this telescope
avoids the degrading effects of atmospheric distortion on its resolution. (a) What is the angle between two just-
resolvable point light sources (perhaps two stars)? Assume an average light wavelength of 550 nm. (b) If these
two stars are at a distance of 2 million light-years, which is the distance of the Andromeda Galaxy, how close
together can they be and still be resolved? (A light-year, or ly, is the distance light travels in 1 year.)

Strategy

The Rayleigh criterion stated in Equation 4.5, 8 = 1.22A/D, gives the smallest possible angle € between point

sources, or the best obtainable resolution. Once this angle is known, we can calculate the distance between the
stars, since we are given how far away they are.

Solution
a. The Rayleigh criterion for the minimum resolvable angle is
=1.22A
0=122 D"

Entering known values gives
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-9
0= 1.22% =2.80x 1077 rad.

b. The distance s between two objects a distance r away and separated by an angle 0 is s = r6.
Substituting known values gives

s =(2.0x 10° 1y)2.80x 1077 rad) = 0.56 ly.

Significance

The angle found in part (a) is extraordinarily small (less than 1/50,000 of a degree), because the primary mirror
is so large compared with the wavelength of light. As noticed, diffraction effects are most noticeable when light
interacts with objects having sizes on the order of the wavelength of light. However, the effect is still there, and
there is a diffraction limit to what is observable. The actual resolution of the Hubble Telescope is not quite as
good as that found here. As with all instruments, there are other effects, such as nonuniformities in mirrors or
aberrations in lenses that further limit resolution. However, Figure 4.19 gives an indication of the extent of
the detail observable with the Hubble because of its size and quality, and especially because it is above Earth’s
atmosphere.

(b)

Figure 4.19 These two photographs of the M82 Galaxy give an idea of the
observable detail using (a) a ground-based telescope and (b) the Hubble Space
Telescope. (credit a: modification of work by “Ricnun”/Wikimedia Commons)

The answer in part (b) indicates that two stars separated by about half a light-year can be resolved. The average
distance between stars in a galaxy is on the order of five light-years in the outer parts and about one light-year
near the galactic center. Therefore, the Hubble can resolve most of the individual stars in Andromeda Galaxy,
even though it lies at such a huge distance that its light takes 2 million years to reach us. Figure 4.20 shows
another mirror used to observe radio waves from outer space.
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;’ : by -
Figure 4.20 A 305-m-diameter paraboloid at Arecibo in
Puerto Rico is lined with reflective material, making it into a
radio telescope. It is the largest curved focusing dish in the
world. Although D for Arecibo is much larger than for the
Hubble Telescope, it detects radiation of a much longer
wavelength and its diffraction limit is significantly poorer than
Hubble’s. The Arecibo telescope is still very useful, because
important information is carried by radio waves that is not
carried by visible light. (credit: Jeff Hitchcock)

4.5 Check Your Understanding What is the angular resolution of the Arecibo telescope shown in Figure
4.20 when operated at 21-cm wavelength? How does it compare to the resolution of the Hubble Telescope?

Diffraction is not only a problem for optical instruments but also for the electromagnetic radiation itself. Any beam of light
having a finite diameter D and a wavelength A exhibits diffraction spreading. The beam spreads out with an angle 6 given

by Equation 4.5, 8 = 1.224/D . Take, for example, a laser beam made of rays as parallel as possible (angles between rays
as close to @ = 0° as possible) instead spreads out at an angle 8 = 1.22A/D, where D is the diameter of the beam and
A is its wavelength. This spreading is impossible to observe for a flashlight because its beam is not very parallel to start

with. However, for long-distance transmission of laser beams or microwave signals, diffraction spreading can be significant
(Figure 4.21). To avoid this, we can increase D. This is done for laser light sent to the moon to measure its distance from
Earth. The laser beam is expanded through a telescope to make D much larger and 6 smaller.

e /]

Figure 4.21 The beam produced by this microwave
transmission antenna spreads out at a minimum angle
60 = 1.220M/D due to diffraction. It is impossible to produce a

near-parallel beam because the beam has a limited diameter.
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In most biology laboratories, resolution is an issue when the use of the microscope is introduced. The smaller the distance x
by which two objects can be separated and still be seen as distinct, the greater the resolution. The resolving power of a lens
is defined as that distance x. An expression for resolving power is obtained from the Rayleigh criterion. Figure 4.22(a)
shows two point objects separated by a distance x. According to the Rayleigh criterion, resolution is possible when the
minimum angular separation is

—122h X

0 D=d

where d is the distance between the specimen and the objective lens, and we have used the small angle approximation (i.e.,
we have assumed that x is much smaller than d), so that tan @ = sin § ~ 6. Therefore, the resolving power is

x= 1.22%.

Another way to look at this is by the concept of numerical aperture (NA), which is a measure of the maximum acceptance
angle at which a lens will take light and still contain it within the lens. Figure 4.22(b) shows a lens and an object at point
P. The NA here is a measure of the ability of the lens to gather light and resolve fine detail. The angle subtended by the lens
at its focus is defined to be € = 2a . From the figure and again using the small angle approximation, we can write

ing=DL2_D
sina = =7 2
The NA for a lens is NA = n sin a, where n is the index of refraction of the medium between the objective lens and the
object at point P. From this definition for NA, we can see that
— Ad _ A _ hn

x= 1.22D = 1.222 P 0.61NA.
In a microscope, NA is important because it relates to the resolving power of a lens. A lens with a large NA is able to resolve
finer details. Lenses with larger NA are also able to collect more light and so give a brighter image. Another way to describe
this situation is that the larger the NA, the larger the cone of light that can be brought into the lens, so more of the diffraction
modes are collected. Thus the microscope has more information to form a clear image, and its resolving power is higher.

> - Microscope
Objective

d Acceptance
angle 6

P
|*X+| Object
@) (b)
Figure 4.22 (a) Two points separated by a distance x and positioned a
distance d away from the objective. (b) Terms and symbols used in
discussion of resolving power for a lens and an object at point P (credit a:
modification of work by “Infopro”/Wikimedia Commons).
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One of the consequences of diffraction is that the focal point of a beam has a finite width and intensity distribution. Imagine
focusing when only considering geometric optics, as in Figure 4.23(a). The focal point is regarded as an infinitely small
point with a huge intensity and the capacity to incinerate most samples, irrespective of the NA of the objective lens—an
unphysical oversimplification. For wave optics, due to diffraction, we take into account the phenomenon in which the
focal point spreads to become a focal spot (Figure 4.23(b)) with the size of the spot decreasing with increasing NA.
Consequently, the intensity in the focal spot increases with increasing NA. The higher the NA, the greater the chances of
photodegrading the specimen. However, the spot never becomes a true point.

o
rF i

Focal Focal
| point | | region

v Geometric optics focus V e optics focus

@) (b)
Figure 4.23 (a) In geometric optics, the focus is modelled as a point, but it is not physically possible to produce such a
point because it implies infinite intensity. (b) In wave optics, the focus is an extended region.

In a different type of microscope, molecules within a specimen are made to emit light through a mechanism called
fluorescence. By controlling the molecules emitting light, it has become possible to construct images with resolution much
finer than the Rayleigh criterion, thus circumventing the diffraction limit. The development of super-resolved fluorescence
microscopy led to the 2014 Nobel Prize in Chemistry.

’ In this Optical Resolution Model, two diffraction patterns for light through two circular apertures are shown side
by side in this simulation (https:/lopenstaxcollege.org/l/21optresmodsim) by Fu-Kwun Hwang. Watch
the patterns merge as you decrease the aperture diameters.

4.6 | X-Ray Diffraction

Learning Objectives

By the end of this section, you will be able to:

* Describe interference and diffraction effects exhibited by X-rays in interaction with atomic-scale
structures

Since X-ray photons are very energetic, they have relatively short wavelengths, on the order of 108 mw 10712 m.

Thus, typical X-ray photons act like rays when they encounter macroscopic objects, like teeth, and produce sharp shadows.
However, since atoms are on the order of 0.1 nm in size, X-rays can be used to detect the location, shape, and size of atoms
and molecules. The process is called X-ray diffraction, and it involves the interference of X-rays to produce patterns that
can be analyzed for information about the structures that scattered the X-rays.

Perhaps the most famous example of X-ray diffraction is the discovery of the double-helical structure of DNA in 1953 by an
international team of scientists working at England’s Cavendish Laboratory—American James Watson, Englishman Francis
Crick, and New Zealand-born Maurice Wilkins. Using X-ray diffraction data produced by Rosalind Franklin, they were
the first to model the double-helix structure of DNA that is so crucial to life. For this work, Watson, Crick, and Wilkins
were awarded the 1962 Nobel Prize in Physiology or Medicine. (There is some debate and controversy over the issue that
Rosalind Franklin was not included in the prize, although she died in 1958, before the prize was awarded.)

Figure 4.24 shows a diffraction pattern produced by the scattering of X-rays from a crystal. This process is known as X-ray
crystallography because of the information it can yield about crystal structure, and it was the type of data Rosalind Franklin
supplied to Watson and Crick for DNA. Not only do X-rays confirm the size and shape of atoms, they give information
about the atomic arrangements in materials. For example, more recent research in high-temperature superconductors
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involves complex materials whose lattice arrangements are crucial to obtaining a superconducting material. These can be
studied using X-ray crystallography.
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Figure 4.24 X-ray diffraction from the crystal of a protein
(hen egg lysozyme) produced this interference pattern. Analysis
of the pattern yields information about the structure of the
protein. (credit: “Del45”/Wikimedia Commons)

Historically, the scattering of X-rays from crystals was used to prove that X-rays are energetic electromagnetic (EM) waves.
This was suspected from the time of the discovery of X-rays in 1895, but it was not until 1912 that the German Max von
Laue (1879-1960) convinced two of his colleagues to scatter X-rays from crystals. If a diffraction pattern is obtained, he
reasoned, then the X-rays must be waves, and their wavelength could be determined. (The spacing of atoms in various
crystals was reasonably well known at the time, based on good values for Avogadro’s number.) The experiments were
convincing, and the 1914 Nobel Prize in Physics was given to von Laue for his suggestion leading to the proof that X-rays
are EM waves. In 1915, the unique father-and-son team of Sir William Henry Bragg and his son Sir William Lawrence
Bragg were awarded a joint Nobel Prize for inventing the X-ray spectrometer and the then-new science of X-ray analysis.

In ways reminiscent of thin-film interference, we consider two plane waves at X-ray wavelengths, each one reflecting off
a different plane of atoms within a crystal’s lattice, as shown in Figure 4.25. From the geometry, the difference in path
lengths is 2d sin @ . Constructive interference results when this distance is an integer multiple of the wavelength. This

condition is captured by the Bragg equation,

mA=2dsing, m=1, 2, 3.. (4.6)

where m is a positive integer and d is the spacing between the planes. Following the Law of Reflection, both the incident
and reflected waves are described by the same angle, 8, but unlike the general practice in geometric optics, € is measured

with respect to the surface itself, rather than the normal.
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Figure 4.25 X-ray diffraction with a crystal. Two incident waves reflect off two
planes of a crystal. The difference in path lengths is indicated by the dashed line.

Example 4.7

X-Ray Diffraction with Salt Crystals

Common table salt is composed mainly of NaCl crystals. In a NaCl crystal, there is a family of planes 0.252 nm
apart. If the first-order maximum is observed at an incidence angle of 18.1°, what is the wavelength of the X-ray

scattering from this crystal?

Strategy

Use the Bragg equation, Equation 4.6, mA = 2d sin @, to solve for 6.

Solution

For first-order, m = 1, and the plane spacing d is known. Solving the Bragg equation for wavelength yields

2(0.252x 10~ m) sin (18.1°)
1

A= 2d’sgn0 — =157%x 1071% m, or0.157 nm.

Significance

The determined wavelength fits within the X-ray region of the electromagnetic spectrum. Once again, the wave
nature of light makes itself prominent when the wavelength (A = 0.157 nm) is comparable to the size of the

physical structures (d = 0.252 nm) it interacts with.

4.6 Check Your Understanding For the experiment described in Example 4.7, what are the two other
angles where interference maxima may be observed? What limits the number of maxima?

Although Figure 4.25 depicts a crystal as a two-dimensional array of scattering centers for simplicity, real crystals are
structures in three dimensions. Scattering can occur simultaneously from different families of planes at different orientations
and spacing patterns known as called Bragg planes, as shown in Figure 4.26. The resulting interference pattern can be
quite complex.
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Figure 4.26 Because of the regularity that makes a crystal structure, one
crystal can have many families of planes within its geometry, each one giving
rise to X-ray diffraction.

4.7 | Holography

Learning Objectives

By the end of this section, you will be able to:

* Describe how a three-dimensional image is recorded as a hologram
* Describe how a three-dimensional image is formed from a hologram

A hologram, such as the one in Figure 4.27, is a true three-dimensional image recorded on film by lasers. Holograms
are used for amusement; decoration on novelty items and magazine covers; security on credit cards and driver’s licenses (a
laser and other equipment are needed to reproduce them); and for serious three-dimensional information storage. You can
see that a hologram is a true three-dimensional image because objects change relative position in the image when viewed
from different angles.

Figure 4.27 Credit cards commonly have holograms for
logos, making them difficult to reproduce. (credit: Dominic
Alves)

The name hologram means “entire picture” (from the Greek holo, as in holistic) because the image is three-dimensional.
Holography is the process of producing holograms and, although they are recorded on photographic film, the process is
quite different from normal photography. Holography uses light interference or wave optics, whereas normal photography
uses geometric optics. Figure 4.28 shows one method of producing a hologram. Coherent light from a laser is split by
a mirror, with part of the light illuminating the object. The remainder, called the reference beam, shines directly on a
piece of film. Light scattered from the object interferes with the reference beam, producing constructive and destructive
interference. As a result, the exposed film looks foggy, but close examination reveals a complicated interference pattern
stored on it. Where the interference was constructive, the film (a negative actually) is darkened. Holography is sometimes
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called lens-less photography, because it uses the wave characteristics of light, as contrasted to normal photography, which
uses geometric optics and requires lenses.

Reference <
wave

Object

Object-wave

Figure 4.28 Production of a hologram. Single-wavelength
coherent light from a laser produces a well-defined interference
pattern on a piece of film. The laser beam is split by a partially
silvered mirror, with part of the light illuminating the object and
the remainder shining directly on the film. (credit: modification
of work by Mariana Ruiz Villarreal)

Light falling on a hologram can form a three-dimensional image of the original object. The process is complicated in detail,
but the basics can be understood, as shown in Figure 4.29, in which a laser of the same type that exposed the film is now
used to illuminate it. The myriad tiny exposed regions of the film are dark and block the light, whereas less exposed regions
allow light to pass. The film thus acts much like a collection of diffraction gratings with various spacing patterns. Light
passing through the hologram is diffracted in various directions, producing both real and virtual images of the object used
to expose the film. The interference pattern is the same as that produced by the object. Moving your eye to various places in
the interference pattern gives you different perspectives, just as looking directly at the object would. The image thus looks
like the object and is three dimensional like the object.

- g
/”’f’
~ P e
| SN <
e g
Virtual image Reconstruction Real image

Figure 4.29 A transmission hologram is one that produces real and
virtual images when a laser of the same type as that which exposed the
hologram is passed through it. Diffraction from various parts of the film
produces the same interference pattern that was produced by the object
that was used to expose it. (credit: modification of work by Mariana
Ruiz Villarreal)

The hologram illustrated in Figure 4.29 is a transmission hologram. Holograms that are viewed with reflected light, such
as the white light holograms on credit cards, are reflection holograms and are more common. White light holograms often
appear a little blurry with rainbow edges, because the diffraction patterns of various colors of light are at slightly different
locations due to their different wavelengths. Further uses of holography include all types of three-dimensional information
storage, such as of statues in museums, engineering studies of structures, and images of human organs.
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Invented in the late 1940s by Dennis Gabor (1900-1970), who won the 1971 Nobel Prize in Physics for his work,
holography became far more practical with the development of the laser. Since lasers produce coherent single-wavelength
light, their interference patterns are more pronounced. The precision is so great that it is even possible to record numerous
holograms on a single piece of film by just changing the angle of the film for each successive image. This is how the
holograms that move as you walk by them are produced—a kind of lens-less movie.

In a similar way, in the medical field, holograms have allowed complete three-dimensional holographic displays of objects
from a stack of images. Storing these images for future use is relatively easy. With the use of an endoscope, high-resolution,
three-dimensional holographic images of internal organs and tissues can be made.
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CHAPTER 4 REVIEW

KEY TERMS

Bragg planes families of planes within crystals that can give rise to X-ray diffraction

destructive interference for a single slit occurs when the width of the slit is comparable to the wavelength of light
illuminating it

diffraction bending of a wave around the edges of an opening or an obstacle
diffraction grating large number of evenly spaced parallel slits
diffraction limit fundamental limit to resolution due to diffraction

hologram three-dimensional image recorded on film by lasers; the word hologram means entire picture (from the Greek
word holo, as in holistic)

holography process of producing holograms with the use of lasers
missing order interference maximum that is not seen because it coincides with a diffraction minimum

Rayleigh criterion two images are just-resolvable when the center of the diffraction pattern of one is directly over the
first minimum of the diffraction pattern of the other

resolution ability, or limit thereof, to distinguish small details in images

two-slit diffraction pattern diffraction pattern of two slits of width D that are separated by a distance d is the
interference pattern of two point sources separated by d multiplied by the diffraction pattern of a slit of width D

width of the central peak angle between the minimum for m =1 and m = —1

X-ray diffraction technique that provides the detailed information about crystallographic structure of natural and
manufactured materials

KEY EQUATIONS

Destructive interference for a single slit Dsin@=miform= +1, 2, +3, ..
Half phase angle f= ¢ _ zDsin@
27 A
Field amplitude in the diffraction pattern E = NAE, sin
p
Intensity in the diffraction pattern sin 8 2
1=10(%)
Rayleigh criterion for circular apertures 0 =124
D
Bragg equation mA=2dsing, m=1, 2, 3...

SUMMARY

4.1 Single-Slit Diffraction
» Diffraction can send a wave around the edges of an opening or other obstacle.

¢ A single slit produces an interference pattern characterized by a broad central maximum with narrower and dimmer
maxima to the sides.
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4.2 Intensity in Single-Slit Diffraction

¢ The intensity pattern for diffraction due to a single slit can be calculated using phasors as
. 2
sin 8
I - I ( ) ’
o\ p

, D is the slit width, A is the wavelength, and @ is the angle from the central peak.

zDsin @
A

where f = % =
4.3 Double-Slit Diffraction

e With real slits with finite widths, the effects of interference and diffraction operate simultaneously to form a
complicated intensity pattern.

* Relative intensities of interference fringes within a diffraction pattern can be determined.

¢ Missing orders occur when an interference maximum and a diffraction minimum are located together.

4.4 Diffraction Gratings

¢ A diffraction grating consists of a large number of evenly spaced parallel slits that produce an interference pattern
similar to but sharper than that of a double slit.

* Constructive interference occurs when dsin =miAform =0, +1, +2, ..., whered is the distance between

the slits, @ is the angle relative to the incident direction, and m is the order of the interference.

4.5 Circular Apertures and Resolution
¢ Diffraction limits resolution.

¢ The Rayleigh criterion states that two images are just resolvable when the center of the diffraction pattern of one is
directly over the first minimum of the diffraction pattern of the other.

4.6 X-Ray Diffraction

e X-rays are relatively short-wavelength EM radiation and can exhibit wave characteristics such as interference when
interacting with correspondingly small objects.

4.7 Holography
¢ Holography is a technique based on wave interference to record and form three-dimensional images.

e Lasers offer a practical way to produce sharp holographic images because of their monochromatic and coherent
light for pronounced interference patterns.

CONCEPTUAL QUESTIONS

4. What happens to the diffraction pattern of a single slit
4.1 Single-Slit Diffraction when the entire optical apparatus is immersed in water?

1. As the width of the slit producing a single-slit

diffraction pattern is reduced, how will the diffraction 5. In our study of diffraction by a single slit, we assume

pattern produced change? that the length of the slit is much larger than the width.
What happens to the diffraction pattern if these two

) . . i ' ?
2. Compare interference and diffraction. dimensions were comparable?

6. A rectangular slit is twice as wide as it is high. Is the
central diffraction peak wider in the vertical direction or in
the horizontal direction?

3. If you and a friend are on opposite sides of a hill,
you can communicate with walkie-talkies but not with
flashlights. Explain.



178

4.2 Intensity in Single-Slit Diffraction
7. In Equation 4.4, the parameter f looks like an angle

but is not an angle that you can measure with a protractor
in the physical world. Explain what / represents.

4.3 Double-Slit Diffraction

8. Shown below is the central part of the interference
pattern for a pure wavelength of red light projected onto a
double slit. The pattern is actually a combination of single-
and double-slit interference. Note that the bright spots are
evenly spaced. Is this a double- or single-slit characteristic?
Note that some of the bright spots are dim on either side
of the center. Is this a single- or double-slit characteristic?
Which is smaller, the slit width or the separation between
slits? Explain your responses.

4.5 Circular Apertures and Resolution

9. Is higher resolution obtained in a microscope with red
or blue light? Explain your answer.

10. The resolving power of refracting telescope increases
with the size of its objective lens. What other advantage is
gained with a larger lens?

PROBLEMS

4.1 Single-Slit Diffraction

17. (a) At what angle is the first minimum for 550-nm
light falling on a single slit of width 1.00um ? (b) Will

there be a second minimum?

18. (a) Calculate the angle at which a 2.00-um -wide

slit produces its first minimum for 410-nm violet light. (b)
Where is the first minimum for 700-nm red light?

19. (a) How wide is a single slit that produces its first
minimum for 633-nm light at an angle of 28.0° ? (b) At

what angle will the second minimum be?

20. (a) What is the width of a single slit that produces
its first minimum at 60.0° for 600-nm light? (b) Find the

wavelength of light that has its first minimum at 62.0°.
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11. The distance between atoms in a molecule is about
1078 cm . Can visible light be used to “see” molecules?

12. A beam of light always spreads out. Why can a beam
not be created with parallel rays to prevent spreading? Why
can lenses, mirrors, or apertures not be used to correct the
spreading?

4.6 X-Ray Diffraction

13. Crystal lattices can be examined with X-rays but not
UV. Why?

4.7 Holography

14. How can you tell that a hologram is a true three-
dimensional image and that those in three-dimensional
movies are not?

15. If a hologram is recorded using monochromatic light
at one wavelength but its image is viewed at another
wavelength, say 10% shorter, what will you see? What

if it is viewed using light of exactly half the original
wavelength?

16. What image will one see if a hologram is recorded
using monochromatic light but its image is viewed in white
light? Explain.

21. Find the wavelength of light that has its third
minimum at an angle of 48.6° when it falls on a single slit

of width 3.00um .

22. (a) Sodium vapor light averaging 589 nm in
wavelength falls on a single slit of width 7.50um . At what

angle does it produces its second minimum? (b) What is the
highest-order minimum produced?

23. Consider a single-slit diffraction pattern for
A =589 nm, projected on a screen that is 1.00 m from
a slit of width 0.25 mm. How far from the center of the
pattern are the centers of the first and second dark fringes?
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24. (a) Find the angle between the first minima for the
two sodium vapor lines, which have wavelengths of 589.1
and 589.6 nm, when they fall upon a single slit of width
2.00um . (b) What is the distance between these minima

if the diffraction pattern falls on a screen 1.00 m from the
slit? (c) Discuss the ease or difficulty of measuring such a
distance.

25. (a) What is the minimum width of a single slit (in
multiples of 1) that will produce a first minimum for

a wavelength A ? (b) What is its minimum width if it
produces 50 minima? (c) 1000 minima?

26. (a) If a single slit produces a first minimum at 14.5°,

at what angle is the second-order minimum? (b) What is
the angle of the third-order minimum? (c) Is there a fourth-
order minimum? (d) Use your answers to illustrate how the
angular width of the central maximum is about twice the
angular width of the next maximum (which is the angle
between the first and second minima).

27. If the separation between the first and the second
minima of a single-slit diffraction pattern is 6.0 mm, what
is the distance between the screen and the slit? The light
wavelength is 500 nm and the slit width is 0.16 mm.

28. A water break at the entrance to a harbor consists of
a rock barrier with a 50.0-m-wide opening. Ocean waves
of 20.0-m wavelength approach the opening straight on. At
what angles to the incident direction are the boats inside the
harbor most protected against wave action?

29. An aircraft maintenance technician walks past a tall
hangar door that acts like a single slit for sound entering
the hangar. Outside the door, on a line perpendicular to the
opening in the door, a jet engine makes a 600-Hz sound.
At what angle with the door will the technician observe the
first minimum in sound intensity if the vertical opening is
0.800 m wide and the speed of sound is 340 m/s?

4.2 Intensity in Single-Slit Diffraction

30. A single slit of width 3.0 ym is illuminated by a
sodium yellow light of wavelength 589 nm. Find the
intensity ata 15° angle to the axis in terms of the intensity
of the central maximum.

31. A single slit of width 0.1 mm is illuminated by a
mercury light of wavelength 576 nm. Find the intensity at a
10° angle to the axis in terms of the intensity of the central

maximum.
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32. The width of the central peak in a single-slit
diffraction pattern is 5.0 mm. The wavelength of the light
is 600 nm, and the screen is 2.0 m from the slit. (a) What is
the width of the slit? (b) Determine the ratio of the intensity
at 4.5 mm from the center of the pattern to the intensity at
the center.

33. Consider the single-slit diffraction pattern for
A=600nm, D=0.025mm, and x =2.0m. Find the

intensity in terms of I, at € =0.5°, 1.0°, 1.5°, 3.0°,
and 10.0°.

4.3 Double-Slit Diffraction
34. Two slits of width 2 um, each in an opaque material,
are separated by a center-to-center distance of 6 um. A

monochromatic light of wavelength 450 nm is incident
on the double-slit. One finds a combined interference and
diffraction pattern on the screen.

(a) How many peaks of the interference will be observed in
the central maximum of the diffraction pattern?

(b) How many peaks of the interference will be observed
if the slit width is doubled while keeping the distance
between the slits same?

(c) How many peaks of interference will be observed if the
slits are separated by twice the distance, that is, 12 ym,

while keeping the widths of the slits same?

(d) What will happen in (a) if instead of 450-nm light
another light of wavelength 680 nm is used?

(e) What is the value of the ratio of the intensity of the
central peak to the intensity of the next bright peak in (a)?

(f) Does this ratio depend on the wavelength of the light?

(g) Does this ratio depend on the width or separation of the
slits?

35. A double slit produces a diffraction pattern that is a
combination of single- and double-slit interference. Find
the ratio of the width of the slits to the separation between
them, if the first minimum of the single-slit pattern falls
on the fifth maximum of the double-slit pattern. (This will
greatly reduce the intensity of the fifth maximum.)

36. For a double-slit configuration where the slit
separation is four times the slit width, how many
interference fringes lie in the central peak of the diffraction
pattern?

37. Light of wavelength 500 nm falls normally on 50

slits that are 2.5x 107> mm wide and spaced

5.0% 107> mm apart. How many interference fringes lie
in the central peak of the diffraction pattern?
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38. A monochromatic light of wavelength 589 nm
incident on a double slit with slit width 2.5 ym and

unknown separation results in a diffraction pattern
containing nine interference peaks inside the central
maximum. Find the separation of the slits.

39. When a monochromatic light of wavelength 430 nm
incident on a double slit of slit separation 5 um, there are

11 interference fringes in its central maximum. How many
interference fringes will be in the central maximum of a
light of wavelength 632.8 nm for the same double slit?

40. Determine the intensities of two interference peaks
other than the central peak in the central maximum of
the diffraction, if possible, when a light of wavelength
628 nm is incident on a double slit of width 500 nm and
separation 1500 nm. Use the intensity of the central spot to

be 1 mW/cm?2.

4.4 Diffraction Gratings

41. A diffraction grating has 2000 lines per centimeter. At
what angle will the first-order maximum be for 520-nm-
wavelength green light?

42. Find the angle for the third-order maximum for
580-nm-wavelength yellow light falling on a difraction
grating having 1500 lines per centimeter.

43. How many lines per centimeter are there on a
diffraction grating that gives a first-order maximum for
470-nm blue light at an angle of 25.0° ?

44. What is the distance between lines on a diffraction
grating that produces a second-order maximum for 760-nm
red light at an angle of 60.0° ?

45. Calculate the wavelength of light that has its second-
order maximum at 45.0° when falling on a diffraction

grating that has 5000 lines per centimeter.

46. An electric current through hydrogen gas produces
several distinct wavelengths of visible light. What are the
wavelengths of the hydrogen spectrum, if they form first-
order maxima at angles 24.2°, 25.7°, 29.1°, and 41.0°

when projected on a diffraction grating having 10,000 lines
per centimeter?

47. (a) What do the four angles in the preceding problem
become if a 5000-line per centimeter diffraction grating
is used? (b) Using this grating, what would the angles be
for the second-order maxima? (c) Discuss the relationship
between integral reductions in lines per centimeter and the
new angles of various order maxima.
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48. What is the spacing between structures in a feather that
acts as a reflection grating, giving that they produce a first-
order maximum for 525-nm light at a 30.0° angle?

49. An opal such as that shown in Figure 4.15 acts like
a reflection grating with rows separated by about 8 um. If

the opal is illuminated normally, (a) at what angle will red
light be seen and (b) at what angle will blue light be seen?

50. At what angle does a diffraction grating produce a
second-order maximum for light having a first-order
maximum at 20.0° ?

51. (a) Find the maximum number of lines per centimeter
a diffraction grating can have and produce a maximum for
the smallest wavelength of visible light. (b) Would such a
grating be useful for ultraviolet spectra? (c) For infrared
spectra?

52. (a) Show that a 30,000 line per centimeter grating
will not produce a maximum for visible light. (b) What is
the longest wavelength for which it does produce a first-
order maximum? (c) What is the greatest number of line
per centimeter a diffraction grating can have and produce a
complete second-order spectrum for visible light?

53. The analysis shown below also applies to diffraction
gratings with lines separated by a distance d. What is the
distance between fringes produced by a diffraction grating
having 125 lines per centimeter for 600-nm light, if the
screen is 1.50 m away? (Hint: The distance between
adjacent fringes is Ay = xA/d, assuming the slit

separation d is comparable to A.)

Screen

XA
Ay =
y
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4.5 Circular Apertures and Resolution

54. The 305-m-diameter Arecibo radio telescope pictured
in Figure 4.20 detects radio waves with a 4.00-cm average
wavelength. (a) What is the angle between two just-
resolvable point sources for this telescope? (b) How close
together could these point sources be at the 2 million light-
year distance of the Andromeda Galaxy?

55. Assuming the angular resolution found for the Hubble
Telescope in Example 4.6, what is the smallest detail that
could be observed on the moon?

56. Diffraction spreading for a flashlight is insignificant
compared with other limitations in its optics, such as
spherical aberrations in its mirror. To show this, calculate
the minimum angular spreading of a flashlight beam that is
originally 5.00 cm in diameter with an average wavelength
of 600 nm.

57. (a) What is the minimum angular spread of a 633-nm
wavelength He-Ne laser beam that is originally 1.00 mm in
diameter? (b) If this laser is aimed at a mountain cliff 15.0
km away, how big will the illuminated spot be? (c) How
big a spot would be illuminated on the moon, neglecting
atmospheric effects? (This might be done to hit a corner
reflector to measure the round-trip time and, hence,
distance.)

58. A telescope can be used to enlarge the diameter of a
laser beam and limit diffraction spreading. The laser beam
is sent through the telescope in opposite the normal
direction and can then be projected onto a satellite or the
moon. (a) If this is done with the Mount Wilson telescope,
producing a 2.54-m-diameter beam of 633-nm light, what
is the minimum angular spread of the beam? (b) Neglecting
atmospheric effects, what is the size of the spot this beam
would make on the moon, assuming a lunar distance of

3.84% 108 m ?

59. The limit to the eye’s acuity is actually related to
diffraction by the pupil. (a) What is the angle between
two just-resolvable points of light for a 3.00-mm-diameter
pupil, assuming an average wavelength of 550 nm? (b)
Take your result to be the practical limit for the eye. What
is the greatest possible distance a car can be from you if you
can resolve its two headlights, given they are 1.30 m apart?
(c) What is the distance between two just-resolvable points
held at an arm’s length (0.800 m) from your eye? (d) How
does your answer to (c) compare to details you normally
observe in everyday circumstances?

60. What is the minimum diameter mirror on a telescope
that would allow you to see details as small as 5.00 km
on the moon some 384,000 km away? Assume an average
wavelength of 550 nm for the light received.
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61. Find the radius of a star’s image on the retina of an
eye if its pupil is open to 0.65 cm and the distance from the
pupil to the retina is 2.8 cm. Assume A = 550 nm .

62. (a) The dwarf planet Pluto and its moon, Charon, are
separated by 19,600 km. Neglecting atmospheric effects,
should the 5.08-m-diameter Palomar Mountain telescope
be able to resolve these bodies when they are
4.50x 10° km from Earth?
wavelength of 550 nm. (b) In actuality, it is just barely
possible to discern that Pluto and Charon are separate

bodies using a ground-based telescope. What are the
reasons for this?

Assume an average

63. A spy satellite orbits Earth at a height of 180 km. What
is the minimum diameter of the objective lens in a telescope
that must be used to resolve columns of troops marching
2.0 m apart? Assume A = 550 nm.

64. What is the minimum angular separation of two stars
that are just-resolvable by the 8.1-m Gemini South
telescope, if atmospheric effects do not limit resolution?
Use 550 nm for the wavelength of the light from the stars.

65. The headlights of a car are 1.3 m apart. What is the
maximum distance at which the eye can resolve these two
headlights? Take the pupil diameter to be 0.40 cm.

66. When dots are placed on a page from a laser printer,
they must be close enough so that you do not see the
individual dots of ink. To do this, the separation of the dots
must be less than Raleigh’s criterion. Take the pupil of the
eye to be 3.0 mm and the distance from the paper to the eye
of 35 cm; find the minimum separation of two dots such
that they cannot be resolved. How many dots per inch (dpi)
does this correspond to?

67. Suppose you are looking down at a highway from a
jetliner flying at an altitude of 6.0 km. How far apart must
two cars be if you are able to distinguish them? Assume
that A = 550 nm and that the diameter of your pupils is 4.0

mim.

68. Can an astronaut orbiting Earth in a satellite at a
distance of 180 km from the surface distinguish two
skyscrapers that are 20 m apart? Assume that the pupils of
the astronaut’s eyes have a diameter of 5.0 mm and that
most of the light is centered around 500 nm.

69. The characters of a stadium scoreboard are formed
with closely spaced lightbulbs that radiate primarily yellow
light. (Use A = 600 nm.) How closely must the bulbs be

spaced so that an observer 80 m away sees a display of
continuous lines rather than the individual bulbs? Assume
that the pupil of the observer’s eye has a diameter of 5.0
mm.
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70. If a microscope can accept light from objects at angles
as large as a = 70°, what is the smallest structure that can
be resolved when illuminated with light of wavelength 500
nm and (a) the specimen is in air? (b) When the specimen
is immersed in oil, with index of refraction of 1.52?

71. A camera uses a lens with aperture 2.0 cm. What is
the angular resolution of a photograph taken at 700 nm
wavelength? Can it resolve the millimeter markings of a
ruler placed 35 m away?

4.6 X-Ray Diffraction

72. X-rays of wavelength 0.103 nm reflects off a crystal
and a second-order maximum is recorded at a Bragg angle
of 25.5°. What is the spacing between the scattering

planes in this crystal?

73. A first-order Bragg reflection maximum is observed
when a monochromatic X-ray falls on a crystal at a 32.3°

angle to a reflecting plane. What is the wavelength of this
X-ray?

74. An X-ray scattering experiment is performed on a
crystal whose atoms form planes separated by 0.440 nm.
Using an X-ray source of wavelength 0.548 nm, what is
the angle (with respect to the planes in question) at which
the experimenter needs to illuminate the crystal in order to
observe a first-order maximum?

ADDITIONAL PROBLEMS

79. White light falls on two narrow slits separated by
0.40 mm. The interference pattern is observed on a screen
3.0 m away. (a) What is the separation between the first
maxima for red light (A =700nm) and violet light

(A=400nm)? (b) At what point nearest the central
maximum will a maximum for yellow light (A = 600 nm)

coincide with a maximum for violet light? Identify the
order for each maximum.

80. Microwaves of wavelength 10.0 mm fall normally on
a metal plate that contains a slit 25 mm wide. (a) Where are
the first minima of the diffraction pattern? (b) Would there
be minima if the wavelength were 30.0 mm?

81. Quasars, or quasi-stellar radio sources, are
astronomical objects discovered in 1960. They are distant
but strong emitters of radio waves with angular size so
small, they were originally unresolved, the same as stars.
The quasar 3C405 is actually two discrete radio sources
that subtend an angle of 82 arcsec. If this object is studied
using radio emissions at a frequency of 410 MHz, what is
the minimum diameter of a radio telescope that can resolve
the two sources?
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75. The structure of the NaCl crystal forms reflecting
planes 0.541 nm apart. What is the smallest angle,
measured from these planes, at which X-ray diffraction can
be observed, if X-rays of wavelength 0.085 nm are used?

76. On a certain crystal, a first-order X-ray diffraction
maximum is observed at an angle of 27.1° relative to its
surface, using an X-ray source of unknown wavelength.
Additionally, when illuminated with a different, this time of
known wavelength 0.137 nm, a second-order maximum is
detected at 37.3°. Determine (a) the spacing between the

reflecting planes, and (b) the unknown wavelength.

77. Calcite crystals contain scattering planes separated by
0.30 nm. What is the angular separation between first and
second-order diffraction maxima when X-rays of 0.130 nm
wavelength are used?

78. The first-order Bragg angle for a certain crystal is
12.1° . What is the second-order angle?

82. Two slits each of width 1800 nm and separated by
the center-to-center distance of 1200 nm are illuminated
by plane waves from a krypton ion laser-emitting at
wavelength 461.9 nm. Find the number of interference
peaks in the central diffraction peak.

83. A microwave of an unknown wavelength is incident
on a single slit of width 6 cm. The angular width of the
central peak is found to be 25°. Find the wavelength.

84. Red light (wavelength 632.8 nm in air) from a Helium-
Neon laser is incident on a single slit of width 0.05 mm.
The entire apparatus is immersed in water of refractive
index 1.333. Determine the angular width of the central
peak.

85. A light ray of wavelength 461.9 nm emerges from
a 2-mm circular aperture of a krypton ion laser. Due to
diffraction, the beam expands as it moves out. How large is
the central bright spot at (a) 1 m, (b) 1 km, (c) 1000 km,
and (d) at the surface of the moon at a distance of 400,000
km from Earth.
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86. How far apart must two objects be on the moon to
be distinguishable by eye if only the diffraction effects of
the eye’s pupil limit the resolution? Assume 550 nm for
the wavelength of light, the pupil diameter 5.0 mm, and
400,000 km for the distance to the moon.

87. How far apart must two objects be on the moon to be
resolvable by the 8.1-m-diameter Gemini North telescope
at Mauna Kea, Hawaii, if only the diffraction effects of the
telescope aperture limit the resolution? Assume 550 nm for
the wavelength of light and 400,000 km for the distance to
the moon.

88. A spy satellite is reputed to be able to resolve objects
10. cm apart while operating 197 km above the surface of
Earth. What is the diameter of the aperture of the telescope
if the resolution is only limited by the diffraction effects?
Use 550 nm for light.

89. Monochromatic light of wavelength 530 nm passes
through a horizontal single slit of width 1.5 yum in an

opaque plate. A screen of dimensions 2.0m X 2.0m is

1.2 m away from the slit. (a) Which way is the diffraction
pattern spread out on the screen? (b) What are the angles
of the minima with respect to the center? (c) What are the
angles of the maxima? (d) How wide is the central bright
fringe on the screen? (e) How wide is the next bright fringe
on the screen?

90. A monochromatic light of unknown wavelength is
incident on a slit of width 20 um . A diffraction pattern is

seen at a screen 2.5 m away where the central maximum is
spread over a distance of 10.0 cm. Find the wavelength.

91. A source of light having two wavelengths 550 nm and
600 nm of equal intensity is incident on a slit of width
1.8 um . Find the separation of the m = 1 bright spots of

the two wavelengths on a screen 30.0 cm away.

92. A single slit of width 2100 nm is illuminated normally
by a wave of wavelength 632.8 nm. Find the phase
difference between waves from the top and one third from
the bottom of the slit to a point on a screen at a horizontal
distance of 2.0 m and vertical distance of 10.0 cm from the
center.

93. A single slit of width 3.0 yum is illuminated by a
sodium yellow light of wavelength 589 nm. Find the
intensity ata 15° angle to the axis in terms of the intensity
of the central maximum.

94. A single slit of width 0.10 mm is illuminated by a
mercury lamp of wavelength 576 nm. Find the intensity at a
10° angle to the axis in terms of the intensity of the central

maximum.
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95. A diffraction grating produces a second maximum that
is 89.7 cm from the central maximum on a screen 2.0 m
away. If the grating has 600 lines per centimeter, what is
the wavelength of the light that produces the diffraction
pattern?

96. A grating with 4000 lines per centimeter is used to
diffract light that contains all wavelengths between 400 and
650 nm. How wide is the first-order spectrum on a screen
3.0 m from the grating?

97. A diffraction grating with 2000 lines per centimeter is
used to measure the wavelengths emitted by a hydrogen gas
discharge tube. (a) At what angles will you find the maxima
of the two first-order blue lines of wavelengths 410 and
434 nm? (b) The maxima of two other first-order lines are
found at 8; = 0.097rad and 6, =0.132rad . What are

the wavelengths of these lines?

98. For white light (400nm < A<700nm) falling

normally on a diffraction grating, show that the second
and third-order spectra overlap no matter what the grating
constant d is.

99. How many complete orders of the visible spectrum
(400 nm < A< 700 nm) can be produced with a diffraction

grating that contains 5000 lines per centimeter?

100. Two lamps producing light of wavelength 589 nm are
fixed 1.0 m apart on a wooden plank. What is the maximum
distance an observer can be and still resolve the lamps as
two separate sources of light, if the resolution is affected
solely by the diffraction of light entering the eye? Assume
light enters the eye through a pupil of diameter 4.5 mm.

101. On a bright clear day, you are at the top of a mountain
and looking at a city 12 km away. There are two tall towers
20.0 m apart in the city. Can your eye resolve the two
towers if the diameter of the pupil is 4.0 mm? If not,
what should be the minimum magnification power of the
telescope needed to resolve the two towers? In your
calculations use 550 nm for the wavelength of the light.
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102. Radio telescopes are telescopes used for the detection
of radio emission from space. Because radio waves have
much longer wavelengths than visible light, the diameter
of a radio telescope must be very large to provide good
resolution. For example, the radio telescope in Penticton,
BC in Canada, has a diameter of 26 m and can be operated
at frequencies as high as 6.6 GHz. (a) What is the
wavelength corresponding to this frequency? (b) What is
the angular separation of two radio sources that can be
resolved by this telescope? (c) Compare the telescope’s
resolution with the angular size of the moon.
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Figure 4.30 (credit: Jason Nishiyama)

103. Calculate the wavelength of light that produces its
first minimum at an angle of 36.9° when falling on a

single slit of width 1.00 um .

104. (a) Find the angle of the third diffraction minimum
for 633-nm light falling on a slit of width 20.0 um. (b)

What slit width would place this minimum at 85.0° ?

105. As an example of diffraction by apertures of
everyday dimensions, consider a doorway of width 1.0 m.
(a) What is the angular position of the first minimum in
the diffraction pattern of 600-nm light? (b) Repeat this
calculation for a musical note of frequency 440 Hz (A
above middle C). Take the speed of sound to be 343 m/s.

106. What are the angular positions of the first and second
minima in a diffraction pattern produced by a slit of width
0.20 mm that is illuminated by 400 nm light? What is the
angular width of the central peak?
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107. How far would you place a screen from the slit of the
previous problem so that the second minimum is a distance
of 2.5 mm from the center of the diffraction pattern?

108. How narrow is a slit that produces a diffraction
pattern on a screen 1.8 m away whose central peak is 1.0 m
wide? Assume A =589 nm .

109. Suppose that the central peak of a single-slit
diffraction pattern is so wide that the first minima can be
assumed to occur at angular positions of +90°. For this

case, what is the ratio of the slit width to the wavelength of
the light?

110. The central diffraction peak of the double-slit
interference pattern contains exactly nine fringes. What is
the ratio of the slit separation to the slit width?

111. Determine the intensities of three interference peaks
other than the central peak in the central maximum of the
diffraction, if possible, when a light of wavelength 500 nm
is incident normally on a double slit of width 1000 nm and
separation 1500 nm. Use the intensity of the central spot to

be 1 mW/cm?.

112. The yellow light from a sodium vapor lamp seems
to be of pure wavelength, but it produces two first-order
maxima at 36.093° and 36.129° when projected on a

10,000 line per centimeter diffraction grating. What are the
two wavelengths to an accuracy of 0.1 nm?

113. Structures on a bird feather act like a reflection
grating having 8000 lines per centimeter. What is the angle
of the first-order maximum for 600-nm light?

114. If a diffraction grating produces a first-order
maximum for the shortest wavelength of visible light at
30.0°, at what angle will the first-order maximum be for

the largest wavelength of visible light?

115. (a) What visible wavelength has its fourth-order
maximum at an angle of 25.0° when projected on a

25,000-line per centimeter diffraction grating? (b) What is
unreasonable about this result? (c) Which assumptions are
unreasonable or inconsistent?

116. Consider a spectrometer based on a diffraction
grating. Construct a problem in which you calculate the
distance between two wavelengths of electromagnetic
radiation in your spectrometer. Among the things to be
considered are the wavelengths you wish to be able to
distinguish, the number of lines per meter on the diffraction
grating, and the distance from the grating to the screen or
detector. Discuss the practicality of the device in terms of
being able to discern between wavelengths of interest.
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117. An amateur astronomer wants to build a telescope
with a diffraction limit that will allow him to see if there are
people on the moons of Jupiter. (a) What diameter mirror is
needed to be able to see 1.00-m detail on a Jovian moon at

a distance of 7.50 x 10® km from Earth? The wavelength

of light averages 600 nm. (b) What is unreasonable about
this result? (c) Which assumptions are unreasonable or
inconsistent?

CHALLENGE PROBLEMS

118. Blue light of wavelength 450 nm falls on a slit of
width 0.25 mm. A converging lens of focal length 20 cm is
placed behind the slit and focuses the diffraction pattern on
a screen. (a) How far is the screen from the lens? (b) What
is the distance between the first and the third minima of the
diffraction pattern?

119. (a) Assume that the maxima are halfway between
the minima of a single-slit diffraction pattern. The use the
diameter and circumference of the phasor diagram, as
described in Intensity in Single-Slit Diffraction, to
determine the intensities of the third and fourth maxima in
terms of the intensity of the central maximum. (b) Do the
same calculation, using Equation 4.4.

120. (a) By differentiating Equation 4.4, show that the
higher-order maxima of the single-slit diffraction pattern
occur at values of S that satisfy tanf = . (b) Plot

y=tanf and y = f versus f and find the intersections

of these two curves. What information do they give you
about the locations of the maxima? (c) Convince yourself

that these points do not appear exactly at f = (n + %)ﬂ,

where n=0, 1, 2, ..., but are quite close to these

values.

121. What is the maximum number of lines per centimeter
a diffraction grating can have and produce a complete first-
order spectrum for visible light?
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122. Show that a diffraction grating cannot produce a
second-order maximum for a given wavelength of light
unless the first-order maximum is at an angle less than
30.0°.

123. A He-Ne laser beam is reflected from the surface of a
CD onto a wall. The brightest spot is the reflected beam at
an angle equal to the angle of incidence. However, fringes
are also observed. If the wall is 1.50 m from the CD, and
the first fringe is 0.600 m from the central maximum, what
is the spacing of grooves on the CD?

124. Objects viewed through a microscope are placed very
close to the focal point of the objective lens. Show that the
minimum separation x of two objects resolvable through

the microscope is given by x = %,

where f{, is the focal length and D is the diameter of the

objective lens as shown below.
—o——f

< Objective
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Figure 5.1 Special relativity explains how time passes slightly differently on Earth and within the rapidly moving global
positioning satellite (GPS). GPS units in vehicles could not find their correct location on Earth without taking this correction into
account. (credit: USAF)
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Introduction

The special theory of relativity was proposed in 1905 by Albert Einstein (1879-1955). It describes how time, space, and
physical phenomena appear in different frames of reference that are moving at constant velocity with respect to each other.
This differs from Einstein’s later work on general relativity, which deals with any frame of reference, including accelerated
frames.

The theory of relativity led to a profound change in the way we perceive space and time. The “common sense” rules that
we use to relate space and time measurements in the Newtonian worldview differ seriously from the correct rules at speeds
near the speed of light. For example, the special theory of relativity tells us that measurements of length and time intervals
are not the same in reference frames moving relative to one another. A particle might be observed to have a lifetime of

1.0x 1078 s in one reference frame, but a lifetime of 2.0 X 102 s in another; and an object might be measured to be

2.0 m long in one frame and 3.0 m long in another frame. These effects are usually significant only at speeds comparable to
the speed of light, but even at the much lower speeds of the global positioning satellite, which requires extremely accurate
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time measurements to function, the different lengths of the same distance in different frames of reference are significant
enough that they need to be taken into account.

Unlike Newtonian mechanics, which describes the motion of particles, or Maxwell's equations, which specify how the
electromagnetic field behaves, special relativity is not restricted to a particular type of phenomenon. Instead, its rules on
space and time affect all fundamental physical theories.

The modifications of Newtonian mechanics in special relativity do not invalidate classical Newtonian mechanics or require
its replacement. Instead, the equations of relativistic mechanics differ meaningfully from those of classical Newtonian
mechanics only for objects moving at relativistic speeds (i.e., speeds less than, but comparable to, the speed of light). In
the macroscopic world that you encounter in your daily life, the relativistic equations reduce to classical equations, and
the predictions of classical Newtonian mechanics agree closely enough with experimental results to disregard relativistic
corrections.

5.1 | Invariance of Physical Laws

Learning Objectives

By the end of this section, you will be able to:

* Describe the theoretical and experimental issues that Einstein’s theory of special relativity
addressed.

* State the two postulates of the special theory of relativity.

Suppose you calculate the hypotenuse of a right triangle given the base angles and adjacent sides. Whether you calculate
the hypotenuse from one of the sides and the cosine of the base angle, or from the Pythagorean theorem, the results
should agree. Predictions based on different principles of physics must also agree, whether we consider them principles of
mechanics or principles of electromagnetism.

Albert Einstein pondered a disagreement between predictions based on electromagnetism and on assumptions made in
classical mechanics. Specifically, suppose an observer measures the velocity of a light pulse in the observer’s own rest
frame; that is, in the frame of reference in which the observer is at rest. According to the assumptions long considered

. . . . . . - .
obvious in classical mechanics, if an observer measures a velocity Vv in one frame of reference, and that frame of

reference is moving with velocity u past a second reference frame, an observer in the second frame measures the original

—_
velocity as v’ = ¥V + W . This sum of velocities is often referred to as Galilean relativity. If this principle is correct,

the pulse of light that the observer measures as traveling with speed c travels at speed ¢ + u measured in the frame of the
second observer. If we reasonably assume that the laws of electrodynamics are the same in both frames of reference, then the
predicted speed of light (in vacuum) in both frames should be ¢ = 1/4/eyu. Each observer should measure the same speed

of the light pulse with respect to that observer’s own rest frame. To reconcile difficulties of this kind, Einstein constructed
his special theory of relativity, which introduced radical new ideas about time and space that have since been confirmed
experimentally.

Inertial Frames

All velocities are measured relative to some frame of reference. For example, a car’s motion is measured relative to its
starting position on the road it travels on; a projectile’s motion is measured relative to the surface from which it is launched;
and a planet’s orbital motion is measured relative to the star it orbits. The frames of reference in which mechanics takes the
simplest form are those that are not accelerating. Newton’s first law, the law of inertia, holds exactly in such a frame.

Inertial Reference Frame

An inertial frame of reference is a reference frame in which a body at rest remains at rest and a body in motion moves
at a constant speed in a straight line unless acted upon by an outside force.

For example, to a passenger inside a plane flying at constant speed and constant altitude, physics seems to work exactly
the same as when the passenger is standing on the surface of Earth. When the plane is taking off, however, matters are
somewhat more complicated. In this case, the passenger at rest inside the plane concludes that a net force F on an object
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is not equal to the product of mass and acceleration, ma. Instead, F is equal to ma plus a fictitious force. This situation is
not as simple as in an inertial frame. The term “special” in “special relativity” refers to dealing only with inertial frames of
reference. Einstein’s later theory of general relativity deals with all kinds of reference frames, including accelerating, and
therefore non-inertial, reference frames.

Einstein’s First Postulate

Not only are the principles of classical mechanics simplest in inertial frames, but they are the same in all inertial frames.
Einstein based the first postulate of his theory on the idea that this is true for all the laws of physics, not merely those in
mechanics.

First Postulate of Special Relativity

The laws of physics are the same in all inertial frames of reference.

This postulate denies the existence of a special or preferred inertial frame. The laws of nature do not give us a way to
endow any one inertial frame with special properties. For example, we cannot identify any inertial frame as being in a state
of “absolute rest.” We can only determine the relative motion of one frame with respect to another.

There is, however, more to this postulate than meets the eye. The laws of physics include only those that satisfy this
postulate. We will see that the definitions of energy and momentum must be altered to fit this postulate. Another outcome

of this postulate is the famous equation E = mcz, which relates energy to mass.

Einstein’s Second Postulate

The second postulate upon which Einstein based his theory of special relativity deals with the speed of light. Late in the
nineteenth century, the major tenets of classical physics were well established. Two of the most important were the laws
of electromagnetism and Newton’s laws. Investigations such as Young’s double-slit experiment in the early 1800s had
convincingly demonstrated that light is a wave. Maxwell’s equations of electromagnetism implied that electromagnetic

waves travel at ¢ = 3.00x10% m/s in a vacuum, but they do not specify the frame of reference in which light has this

speed. Many types of waves were known, and all travelled in some medium. Scientists therefore assumed that some medium
carried the light, even in a vacuum, and that light travels at a speed c relative to that medium (often called “the aether”).

Starting in the mid-1880s, the American physicist A.A. Michelson, later aided by E.W. Morley, made a series of direct
measurements of the speed of light. They intended to deduce from their data the speed v at which Earth was moving through
the mysterious medium for light waves. The speed of light measured on Earth should have been c , v when Earth’s motion
was opposite to the medium’s flow at speed u past the Earth, and ¢ — v when Earth was moving in the same direction as the
medium. The results of their measurements were startling.

Michelson-Morley Experiment

The Michelson-Morley experiment demonstrated that the speed of light in a vacuum is independent of the motion of
Earth about the Sun.

The eventual conclusion derived from this result is that light, unlike mechanical waves such as sound, does not need a
medium to carry it. Furthermore, the Michelson-Morley results implied that the speed of light c is independent of the motion
of the source relative to the observer. That is, everyone observes light to move at speed c regardless of how they move
relative to the light source or to one another. For several years, many scientists tried unsuccessfully to explain these results
within the framework of Newton’s laws.

In addition, there was a contradiction between the principles of electromagnetism and the assumption made in Newton’s
laws about relative velocity. Classically, the velocity of an object in one frame of reference and the velocity of that object in
a second frame of reference relative to the first should combine like simple vectors to give the velocity seen in the second
frame. If that were correct, then two observers moving at different speeds would see light traveling at different speeds.
Imagine what a light wave would look like to a person traveling along with it (in vacuum) at a speed c. If such a motion
were possible, then the wave would be stationary relative to the observer. It would have electric and magnetic fields whose
strengths varied with position but were constant in time. This is not allowed by Maxwell’s equations. So either Maxwell’s
equations are different in different inertial frames, or an object with mass cannot travel at speed c. Einstein concluded that
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the latter is true: An object with mass cannot travel at speed c. Maxwell’s equations are correct, but Newton’s addition of
velocities is not correct for light.

Not until 1905, when Einstein published his first paper on special relativity, was the currently accepted conclusion reached.
Based mostly on his analysis that the laws of electricity and magnetism would not allow another speed for light, and only
slightly aware of the Michelson-Morley experiment, Einstein detailed his second postulate of special relativity.

Second Postulate of Special Relativity

Light travels in a vacuum with the same speed c in any direction in all inertial frames.

In other words, the speed of light has the same definite speed for any observer, regardless of the relative motion of the
source. This deceptively simple and counterintuitive postulate, along with the first postulate, leave all else open for change.
Among the changes are the loss of agreement on the time between events, the variation of distance with speed, and the
realization that matter and energy can be converted into one another. We describe these concepts in the following sections.

@ 5.1 Check Your Understanding Explain how special relativity differs from general relativity.

5.2 | Relativity of Simultaneity

Learning Objectives

By the end of this section, you will be able to:

» Show from Einstein's postulates that two events measured as simultaneous in one inertial
frame are not necessarily simultaneous in all inertial frames.

* Describe how simultaneity is a relative concept for observers in different inertial frames in
relative motion.

Do time intervals depend on who observes them? Intuitively, it seems that the time for a process, such as the elapsed time
for a foot race (Figure 5.2), should be the same for all observers. In everyday experiences, disagreements over elapsed time
have to do with the accuracy of measuring time. No one would be likely to argue that the actual time interval was different
for the moving runner and for the stationary clock displayed. Carefully considering just how time is measured, however,
shows that elapsed time does depends on the relative motion of an observer with respect to the process being measured.
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Figure 5.2 Elapsed time for a foot race is the same for all observers, but at relativistic speeds,
elapsed time depends on the motion of the observer relative to the location where the process
being timed occurs. (credit: "Jason Edward Scott Bain"/Flickr)

Consider how we measure elapsed time. If we use a stopwatch, for example, how do we know when to start and stop the
watch? One method is to use the arrival of light from the event. For example, if you’re in a moving car and observe the light
arriving from a traffic signal change from green to red, you know it’s time to step on the brake pedal. The timing is more
accurate if some sort of electronic detection is used, avoiding human reaction times and other complications.

Now suppose two observers use this method to measure the time interval between two flashes of light from flash lamps
that are a distance apart (Figure 5.3). An observer A is seated midway on a rail car with two flash lamps at opposite sides
equidistant from her. A pulse of light is emitted from each flash lamp and moves toward observer A, shown in frame (a)
of the figure. The rail car is moving rapidly in the direction indicated by the velocity vector in the diagram. An observer B
standing on the platform is facing the rail car as it passes and observes both flashes of light reach him simultaneously, as
shown in frame (c). He measures the distances from where he saw the pulses originate, finds them equal, and concludes that
the pulses were emitted simultaneously.

However, because of Observer A’s motion, the pulse from the right of the railcar, from the direction the car is moving,
reaches her before the pulse from the left, as shown in frame (b). She also measures the distances from within her frame of
reference, finds them equal, and concludes that the pulses were not emitted simultaneously.

The two observers reach conflicting conclusions about whether the two events at well-separated locations were
simultaneous. Both frames of reference are valid, and both conclusions are valid. Whether two events at separate locations
are simultaneous depends on the motion of the observer relative to the locations of the events.
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Figure 5.3 (a) Two pulses of light are emitted simultaneously relative to observer B. (c) The pulses reach
observer B’s position simultaneously. (b) Because of A’s motion, she sees the pulse from the right first and
concludes the bulbs did not flash simultaneously. Both conclusions are correct.

Here, the relative velocity between observers affects whether two events a distance apart are observed to be simultaneous.
Simultaneity is not absolute. We might have guessed (incorrectly) that if light is emitted simultaneously, then two observers
halfway between the sources would see the flashes simultaneously. But careful analysis shows this cannot be the case if the
speed of light is the same in all inertial frames.

This type of thought experiment (in German, “Gedankenexperiment”) shows that seemingly obvious conclusions must be
changed to agree with the postulates of relativity. The validity of thought experiments can only be determined by actual
observation, and careful experiments have repeatedly confirmed Einstein’s theory of relativity.
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5.3 | Time Dilation

Learning Objectives

By the end of this section, you will be able to:

* Explain how time intervals can be measured differently in different reference frames.
» Describe how to distinguish a proper time interval from a dilated time interval.

» Describe the significance of the muon experiment.

* Explain why the twin paradox is not a contradiction.

* Calculate time dilation given the speed of an object in a given frame.

The analysis of simultaneity shows that Einstein’s postulates imply an important effect: Time intervals have different values
when measured in different inertial frames. Suppose, for example, an astronaut measures the time it takes for a pulse of
light to travel a distance perpendicular to the direction of his ship’s motion (relative to an earthbound observer), bounce off
a mirror, and return (Figure 5.4). How does the elapsed time that the astronaut measures in the spacecraft compare with
the elapsed time that an earthbound observer measures by observing what is happening in the spacecraft?

Examining this question leads to a profound result. The elapsed time for a process depends on which observer is measuring
it. In this case, the time measured by the astronaut (within the spaceship where the astronaut is at rest) is smaller than
the time measured by the earthbound observer (to whom the astronaut is moving). The time elapsed for the same process
is different for the observers, because the distance the light pulse travels in the astronaut’s frame is smaller than in the
earthbound frame, as seen in Figure 5.4. Light travels at the same speed in each frame, so it takes more time to travel the
greater distance in the earthbound frame.
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Figure 5.4 (a) An astronaut measures the time Az for light to travel distance 2D in the astronaut’s frame. (b) A NASA
scientist on Earth sees the light follow the longer path 2s and take a longer time Az. (c) These triangles are used to find the
relationship between the two distances D and s.

Time Dilation

Time dilation is the lengthening of the time interval between two events for an observer in an inertial frame that is
moving with respect to the rest frame of the events (in which the events occur at the same location).

To quantitatively compare the time measurements in the two inertial frames, we can relate the distances in Figure 5.4 to
each other, then express each distance in terms of the time of travel (respectively either A¢ or At) of the pulse in the

corresponding reference frame. The resulting equation can then be solved for At in terms of Az.

The lengths D and L in Figure 5.4 are the sides of a right triangle with hypotenuse s. From the Pythagorean theorem,
s?=D*+ L%

The lengths 2s and 2L are, respectively, the distances that the pulse of light and the spacecraft travel in time At in the

earthbound observer’s frame. The length D is the distance that the light pulse travels in time Az in the astronaut’s frame.
This gives us three equations:

2s = cAt; 2L = vAt; 2D = cAr.
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Note that we used Einstein’s second postulate by taking the speed of light to be ¢ in both inertial frames. We substitute these
results into the previous expression from the Pythagorean theorem:

s2 = D+ 12

Then we rearrange to obtain
(cAn? — (vAD? = (cAD)%

Finally, solving for Af in terms of Az gives us

Af— At (5.1)

V1 = wie)?

This is equivalent to

At = yAr,

where y is the relativistic factor (often called the Lorentz factor) given by

1 (5.2)

and v and c are the speeds of the moving observer and light, respectively.

Note the asymmetry between the two measurements. Only one of them is a measurement of the time interval between two
events—the emission and arrival of the light pulse—at the same position. It is a measurement of the time interval in the
rest frame of a single clock. The measurement in the earthbound frame involves comparing the time interval between two
events that occur at different locations. The time interval between events that occur at a single location has a separate name
to distinguish it from the time measured by the earthbound observer, and we use the separate symbol At to refer to it

throughout this chapter.

Proper Time

The proper time interval Az between two events is the time interval measured by an observer for whom both events
occur at the same location.

The equation relating A and Az is truly remarkable. First, as stated earlier, elapsed time is not the same for different
observers moving relative to one another, even though both are in inertial frames. A proper time interval Az for an

observer who, like the astronaut, is moving with the apparatus, is smaller than the time interval for other observers. It is the
smallest possible measured time between two events. The earthbound observer sees time intervals within the moving system
as dilated (i.e., lengthened) relative to how the observer moving relative to Earth sees them within the moving system.
Alternatively, according to the earthbound observer, less time passes between events within the moving frame. Note that the
shortest elapsed time between events is in the inertial frame in which the observer sees the events (e.g., the emission and
arrival of the light signal) occur at the same point.

This time effect is real and is not caused by inaccurate clocks or improper measurements. Time-interval measurements of
the same event differ for observers in relative motion. The dilation of time is an intrinsic property of time itself. All clocks
moving relative to an observer, including biological clocks, such as a person’s heartbeat, or aging, are observed to run more
slowly compared with a clock that is stationary relative to the observer.
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Note that if the relative velocity is much less than the speed of light (v<<c), then v2ic? is extremely small, and the
elapsed times A¢ and At are nearly equal. At low velocities, physics based on modern relativity approaches classical

physics—everyday experiences involve very small relativistic effects. However, for speeds near the speed of light, v2/c?

is close to one, so m is very small and At becomes significantly larger than Az.

Half-Life of a Muon

There is considerable experimental evidence that the equation Af = yAz is correct. One example is found in cosmic ray

particles that continuously rain down on Earth from deep space. Some collisions of these particles with nuclei in the upper
atmosphere result in short-lived particles called muons. The half-life (amount of time for half of a material to decay) of a
muon is 1.52 ps when it is at rest relative to the observer who measures the half-life. This is the proper time interval Arz.
This short time allows very few muons to reach Earth’s surface and be detected if Newtonian assumptions about time and
space were correct. However, muons produced by cosmic ray particles have a range of velocities, with some moving near
the speed of light. It has been found that the muon’s half-life as measured by an earthbound observer ( At) varies with

velocity exactly as predicted by the equation At = yAr. The faster the muon moves, the longer it lives. We on Earth see

the muon last much longer than its half-life predicts within its own rest frame. As viewed from our frame, the muon decays
more slowly than it does when at rest relative to us. A far larger fraction of muons reach the ground as a result.

Before we present the first example of solving a problem in relativity, we state a strategy you can use as a guideline for
these calculations.

Problem-Solving Strategy: Relativity

1. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). Look in
particular for information on relative velocity v.

Identify exactly what needs to be determined in the problem (identify the unknowns).

Make certain you understand the conceptual aspects of the problem before making any calculations (express
the answer as an equation). Decide, for example, which observer sees time dilated or length contracted before
working with the equations or using them to carry out the calculation. If you have thought about who sees
what, who is moving with the event being observed, who sees proper time, and so on, you will find it much
easier to determine if your calculation is reasonable.

4. Determine the primary type of calculation to be done to find the unknowns identified above (do the
calculation). You will find the section summary helpful in determining whether a length contraction, relativistic
kinetic energy, or some other concept is involved.

Note that you should not round off during the calculation. As noted in the text, you must often perform your calculations to
many digits to see the desired effect. You may round off at the very end of the problem solution, but do not use a rounded
number in a subsequent calculation. Also, check the answer to see if it is reasonable: Does it make sense? This may be more
difficult for relativity, which has few everyday examples to provide experience with what is reasonable. But you can look
for velocities greater than c or relativistic effects that are in the wrong direction (such as a time contraction where a dilation
was expected).
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Example 5.1

Time Dilation in a High-Speed Vehicle

The Hypersonic Technology Vehicle 2 (HTV-2) is an experimental rocket vehicle capable of traveling at 21,000
km/h (5830 my/s). If an electronic clock in the HTV-2 measures a time interval of exactly 1-s duration, what would
observers on Earth measure the time interval to be?

Strategy

Apply the time dilation formula to relate the proper time interval of the signal in HTV-2 to the time interval
measured on the ground.

Solution
a. Identify the knowns: Az = 1s;v = 5830 m/s.

b. Identify the unknown: At.
c. Express the answer as an equation:

At = yAr = AT

d. Do the calculation. Use the expression for y to determine At from Az :

At = Ls

*\/1 _( 5830 m/s )
3.00 x 108 m/s

= 1.000000000189 s

=1s+1.89x 107105,

2

Significance

The very high speed of the HTV-2 s still only 10 times the speed of light. Relativistic effects for the HTV-2 are
negligible for almost all purposes, but are not zero.

Example 5.2

What Speeds are Relativistic?

How fast must a vehicle travel for 1 second of time measured on a passenger’s watch in the vehicle to differ by
1% for an observer measuring it from the ground outside?

Strategy
Use the time dilation formula to find v/c for the given ratio of times.
Solution
a. Identify the known:
Ar _ 1
Ar  1.01

b. Identify the unknown: v/c.

c. Express the answer as an equation:
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At = yAr= 1 At
1 —v2c?
At _ — 2.2
A= 1—-v/c
(M ? - 1- v?
At 2

V1 = (At/AD>.

ol

d. Do the calculation:

L ={1-@/ron?
=0.14.

Significance

The result shows that an object must travel at very roughly 10% of the speed of light for its motion to produce
significant relativistic time dilation effects.

Example 5.3

Calculating At for a Relativistic Event

Suppose a cosmic ray colliding with a nucleus in Earth’s upper atmosphere produces a muon that has a velocity
v = 0.950c. The muon then travels at constant velocity and lives 2.20 ps as measured in the muon’s frame of
reference. (You can imagine this as the muon’s internal clock.) How long does the muon live as measured by an
earthbound observer (Figure 5.5)?

At At
Elapsed muon Elapsed muon
lifetime lifetime

Muon created
A

Muon created

Y

Muon decays Muon decays

(a) Muon'’s reference frame (b) Earth's reference frame
Figure 5.5 A muon in Earth’s atmosphere lives longer as measured by an
earthbound observer than as measured by the muon’s internal clock.

As we will discuss later, in the muon’s reference frame, it travels a shorter distance than measured in Earth’s
reference frame.

Strategy

A clock moving with the muon measures the proper time of its decay process, so the time we are given is
A7 = 2.20us. The earthbound observer measures At as given by the equation Ar = yAz. Because the velocity

is given, we can calculate the time in Earth’s frame of reference.
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Solution
a. Identify the knowns: v = 0.950c, At = 2.20us.

b. Identify the unknown: At.

c. Express the answer as an equation. Use:

with

d. Do the calculation. Use the expression for y to determine At from Az:
At =yAr

= 1 2AT
122
c2

2.20us

B V1 = (0.950)2

= 7.05 us.

Remember to keep extra significant figures until the final answer.

Significance
One implication of this example is that because y = 3.20 at 95.0% of the speed of light (v = 0.950¢), the

relativistic effects are significant. The two time intervals differ by a factor of 3.20, when classically they would
be the same. Something moving at 0.950c is said to be highly relativistic.

Example 5.4

Relativistic Television

A non-flat screen, older-style television display (Figure 5.6) works by accelerating electrons over a short
distance to relativistic speed, and then using electromagnetic fields to control where the electron beam strikes a

fluorescent layer at the front of the tube. Suppose the electrons travel at 6.00 X 107 m/s through a distance of
0.200 m from the start of the beam to the screen. (a) What is the time of travel of an electron in the rest frame of

the television set? (b) What is the electron’s time of travel in its own rest frame?




200

Chapter 5 | Relativity

Figure 5.6 The electron beam in a cathode ray tube television display.

Strategy for (a)

(a) Calculate the time from vt = d. Even though the speed is relativistic, the calculation is entirely in one frame
of reference, and relativity is therefore not involved.

Solution
a. Identify the knowns:

v =6.00x 107 m/s;d = 0.200 m.
b. Identify the unknown: the time of travel At.

c. Express the answer as an equation:

At =

<|x

d. Do the calculation:

; —_0200m
6.00x 107 m/s

=333x 1077 s.

Significance

The time of travel is extremely short, as expected. Because the calculation is entirely within a single frame of
reference, relativity is not involved, even though the electron speed is close to c.

Strategy for (b)

(b) In the frame of reference of the electron, the vacuum tube is moving and the electron is stationary. The
electron-emitting cathode leaves the electron and the front of the vacuum tube strikes the electron with the
electron at the same location. Therefore we use the time dilation formula to relate the proper time in the electron
rest frame to the time in the television frame.
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Solution
a. Identify the knowns (from part a):

Ar=333%x10"7 s;v = 6.00 x 107 m/s;d = 0.200 m.
b. Identify the unknown: .

c. Express the answer as an equation:

At = yAr=—0T
1 —v2c?
Ar = AN —v¥e2

d. Do the calculation:

2
7
Ar =(333x107° s)\/l—(m)x—l()sm“)
3.00 x 108 m/s

=3.26x% 1077s.

Significance

The time of travel is shorter in the electron frame of reference. Because the problem requires finding the time
interval measured in different reference frames for the same process, relativity is involved. If we had tried to
calculate the time in the electron rest frame by simply dividing the 0.200 m by the speed, the result would be
slightly incorrect because of the relativistic speed of the electron.

@ 5.2 Check Your Understanding What is y if v = 0.650c?

The Twin Paradox

An intriguing consequence of time dilation is that a space traveler moving at a high velocity relative to Earth would age
less than the astronaut’s earthbound twin. This is often known as the twin paradox. Imagine the astronaut moving at such a
velocity that y = 30.0, asin Figure 5.7. A trip that takes 2.00 years in her frame would take 60.0 years in the earthbound

twin’s frame. Suppose the astronaut travels 1.00 year to another star system, briefly explores the area, and then travels 1.00
year back. An astronaut who was 40 years old at the start of the trip would be would be 42 when the spaceship returns.
Everything on Earth, however, would have aged 60.0 years. The earthbound twin, if still alive, would be 100 years old.

The situation would seem different to the astronaut in Figure 5.7. Because motion is relative, the spaceship would seem to
be stationary and Earth would appear to move. (This is the sensation you have when flying in a jet.) Looking out the window
of the spaceship, the astronaut would see time slow down on Earth by a factor of y = 30.0. Seen from the spaceship, the

earthbound sibling will have aged only 2/30, or 0.07, of a year, whereas the astronaut would have aged 2.00 years.
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At start of trip, both twins are same age

Ship travels at
relativistic speed

At end of trip, Earthbound twin
has aged more than traveling twin

Figure 5.7 The twin paradox consists of the conflicting
conclusions about which twin ages more as a result of a long
space journey at relativistic speed.

The paradox here is that the two twins cannot both be correct. As with all paradoxes, conflicting conclusions come from
a false premise. In fact, the astronaut’s motion is significantly different from that of the earthbound twin. The astronaut
accelerates to a high velocity and then decelerates to view the star system. To return to Earth, she again accelerates and
decelerates. The spacecraft is not in a single inertial frame to which the time dilation formula can be directly applied. That
is, the astronaut twin changes inertial references. The earthbound twin does not experience these accelerations and remains
in the same inertial frame. Thus, the situation is not symmetric, and it is incorrect to claim that the astronaut observes the
same effects as her twin. The lack of symmetry between the twins will be still more evident when we analyze the journey
later in this chapter in terms of the path the astronaut follows through four-dimensional space-time.

In 1971, American physicists Joseph Hafele and Richard Keating verified time dilation at low relative velocities by flying
extremely accurate atomic clocks around the world on commercial aircraft. They measured elapsed time to an accuracy of
a few nanoseconds and compared it with the time measured by clocks left behind. Hafele and Keating’s results were within
experimental uncertainties of the predictions of relativity. Both special and general relativity had to be taken into account,
because gravity and accelerations were involved as well as relative motion.

Es/l 5.3  Check Your Understanding a. A particle travels at 1.90 x 103 m/s and lives 2.10x 10™8s when at
rest relative to an observer. How long does the particle live as viewed in the laboratory?

b. Spacecraft A and B pass in opposite directions at a relative speed of 4.00 X 107 m/s. An internal clock in

spacecraft A causes it to emit a radio signal for 1.00 s. The computer in spacecraft B corrects for the beginning
and end of the signal having traveled different distances, to calculate the time interval during which ship A was
emitting the signal. What is the time interval that the computer in spacecraft B calculates?
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5.4 | Length Contraction

Learning Objectives

By the end of this section, you will be able to:

* Explain how simultaneity and length contraction are related.

» Describe the relation between length contraction and time dilation and use it to derive the
length-contraction equation.

The length of the train car in Figure 5.8 is the same for all the passengers. All of them would agree on the simultaneous
location of the two ends of the car and obtain the same result for the distance between them. But simultaneous events in one
inertial frame need not be simultaneous in another. If the train could travel at relativistic speeds, an observer on the ground
would see the simultaneous locations of the two endpoints of the car at a different distance apart than observers inside the
car. Measured distances need not be the same for different observers when relativistic speeds are involved.

Figure 5.8 People might describe distances differently, but at
relativistic speeds, the distances really are different. (credit:
“russavia”/Flickr)

Proper Length

Two observers passing each other always see the same value of their relative speed. Even though time dilation implies that
the train passenger and the observer standing alongside the tracks measure different times for the train to pass, they still
agree that relative speed, which is distance divided by elapsed time, is the same. If an observer on the ground and one on the
train measure a different time for the length of the train to pass the ground observer, agreeing on their relative speed means
they must also see different distances traveled.

The muon discussed in Example 5.3 illustrates this concept (Figure 5.9). To an observer on Earth, the muon travels at
0.950c for 7.05 ps from the time it is produced until it decays. Therefore, it travels a distance relative to Earth of:

Ly = vAt = (0.950)(3.00 x 10® m/s)(7.05 x 1070 s) = 2.01 km.

In the muon frame, the lifetime of the muon is 2.20 ps. In this frame of reference, the Earth, air, and ground have only
enough time to travel:

L = vAz = (0.950)(3.00 x 10® m/s)(2.20 x 107° s) km = 0.627 km.

The distance between the same two events (production and decay of a muon) depends on who measures it and how they are
moving relative to it.



204 Chapter 5 | Relativity

Proper Length

Proper length L, is the distance between two points measured by an observer who is at rest relative to both of the

points.

The earthbound observer measures the proper length L, because the points at which the muon is produced and decays are

stationary relative to Earth. To the muon, Earth, air, and clouds are moving, so the distance L it sees is not the proper length.

®- ®0627 km
fe=— 2.01km ———+] 4]

"‘T “‘T
' v -
(@) (b)

Figure 5.9 (a) The earthbound observer sees the muon travel 2.01 km. (b) The same path has length 0.627 km seen from the
muon’s frame of reference. The Earth, air, and clouds are moving relative to the muon in its frame, and have smaller lengths
along the direction of travel.

Length Contraction

To relate distances measured by different observers, note that the velocity relative to the earthbound observer in our muon
example is given by

y=Lo
At
The time relative to the earthbound observer is At¢, because the object being timed is moving relative to this observer. The

velocity relative to the moving observer is given by

L

V=A—z_.

The moving observer travels with the muon and therefore observes the proper time Az. The two velocities are identical;
thus,

Lo_ L
At AT

We know that Ar = yAz. Substituting this equation into the relationship above gives

L (5.3)

L==2

Substituting for y gives an equation relating the distances measured by different observers.

Length Contraction

Length contraction is the decrease in the measured length of an object from its proper length when measured in a
reference frame that is moving with respect to the object:

2 5.4
L=L0V1—V—2 (4
c

where L is the length of the object in its rest frame, and L is the length in the frame moving with velocity v.
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If we measure the length of anything moving relative to our frame, we find its length L to be smaller than the proper length
L that would be measured if the object were stationary. For example, in the muon’s rest frame, the distance Earth moves

between where the muon was produced and where it decayed is shorter than the distance traveled as seen from the Earth’s
frame. Those points are fixed relative to Earth but are moving relative to the muon. Clouds and other objects are also
contracted along the direction of motion as seen from muon’s rest frame.

Thus, two observers measure different distances along their direction of relative motion, depending on which one is
measuring distances between objects at rest.

But what about distances measured in a direction perpendicular to the relative motion? Imagine two observers moving along
their x-axes and passing each other while holding meter sticks vertically in the y-direction. Figure 5.10 shows two meter
sticks M and M’ that are at rest in the reference frames of two boys S and S’, respectively. A small paintbrush is attached

to the top (the 100-cm mark) of stick M’. Suppose that S’ is moving to the right at a very high speed v relative to S, and the

sticks are oriented so that they are perpendicular, or transverse, to their relative velocity vector. The sticks are held so that
as they pass each other, their lower ends (the 0-cm marks) coincide. Assume that when S looks at his stick M afterwards,
he finds a line painted on it, just below the top of the stick. Because the brush is attached to the top of the other boy’s stick
M’, S can only conclude that stick M’ is less than 1.0 m long.

— |/

Si’
"«
i == 100 cm 100 cm%

M M

Y
» L
P L | 1
L . ' 4
Figure 5.10 Meter sticks M and M’ are stationary in the reference
frames of observers S and S’, respectively. As the sticks pass, a

small brush attached to the 100-cm mark of M’ paints a line on M.

Now when the boys approach each other, S’, like S, sees a meter stick moving toward him with speed v. Because their

situations are symmetric, each boy must make the same measurement of the stick in the other frame. So, if S measures stick
M’ to be less than 1.0 m long, S’ must measure stick M to be also less than 1.0 m long, and S’ must see his paintbrush
pass over the top of stick M and not paint a line on it. In other words, after the same event, one boy sees a painted line on a
stick, while the other does not see such a line on that same stick!

Einstein’s first postulate requires that the laws of physics (as, for example, applied to painting) predict that S and S’, who
are both in inertial frames, make the same observations; that is, S and S’ must either both see a line painted on stick M, or

both not see that line. We are therefore forced to conclude our original assumption that S saw a line painted below the top
of his stick was wrong! Instead, S finds the line painted right at the 100-cm mark on M. Then both boys will agree that a
line is painted on M, and they will also agree that both sticks are exactly 1 m long. We conclude then that measurements of
a transverse length must be the same in different inertial frames.

Example 5.5

Calculating Length Contraction
Suppose an astronaut, such as the twin in the twin paradox discussion, travels so fast that y = 30.00. (a) The

astronaut travels from Earth to the nearest star system, Alpha Centauri, 4.300 light years (ly) away as measured
by an earthbound observer. How far apart are Earth and Alpha Centauri as measured by the astronaut? (b) In terms
of ¢, what is the astronaut’s velocity relative to Earth? You may neglect the motion of Earth relative to the sun
(Figure 5.11).
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Strategy

in terms of c.

Solution for (a)

For part (a):
a. Identify the knowns: Ly = 4.300 ly; y = 30.00.
b. Identify the unknown: L.
L

c. Express the answer as an equation: L = 70

d. Do the calculation:
_Lo

L=%

43001y
~30.00
= 0.1433 ly.
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Figure 5.11 (a) The earthbound observer measures the proper distance between Earth and Alpha Centauri. (b) The
astronaut observes a length contraction because Earth and Alpha Centauri move relative to her ship. She can travel this
shorter distance in a smaller time (her proper time) without exceeding the speed of light.

First, note that a light year (ly) is a convenient unit of distance on an astronomical scale—it is the distance light
travels in a year. For part (a), the 4.300-ly distance between Alpha Centauri and Earth is the proper distance
L, because it is measured by an earthbound observer to whom both stars are (approximately) stationary. To

the astronaut, Earth and Alpha Centauri are moving past at the same velocity, so the distance between them is the
contracted length L. In part (b), we are given y, so we can find v by rearranging the definition of y to express v
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Solution for (b)
For part (b):
a. Identify the known: y = 30.00.
b. Identify the unknown: v in terms of c.

c. Express the answer as an equation. Start with:

2 = 12
)
62

2

vo _ 1_L1L

5So=1

C ]/2
1
= 1-Li
72
v _ 1L
Cc ]/2
=1-—L—
(30.00)2

= 0.99944

ol

d. Do the calculation:

or
v =10.9994 c.
Significance

Remember not to round off calculations until the final answer, or you could get erroneous results. This is
especially true for special relativity calculations, where the differences might only be revealed after several
decimal places. The relativistic effect is large here (y = 30.00), and we see that v is approaching (not equaling)

the speed of light. Because the distance as measured by the astronaut is so much smaller, the astronaut can travel
it in much less time in her frame.

People traveling at extremely high velocities could cover very large distances (thousands or even millions of light years) and
age only a few years on the way. However, like emigrants in past centuries who left their home, these people would leave the
Earth they know forever. Even if they returned, thousands to millions of years would have passed on Earth, obliterating most
of what now exists. There is also a more serious practical obstacle to traveling at such velocities; immensely greater energies

would be needed to achieve such high velocities than classical physics predicts can be attained. This will be discussed later
in the chapter.

Why don’t we notice length contraction in everyday life? The distance to the grocery store does not seem to depend on

2

2
whether we are moving or not. Examining the equation L = L1 — Y we see that at low velocities (v<<c), the
c

lengths are nearly equal, which is the classical expectation. But length contraction is real, if not commonly experienced. For
example, a charged particle such as an electron traveling at relativistic velocity has electric field lines that are compressed
along the direction of motion as seen by a stationary observer (Figure 5.12). As the electron passes a detector, such as a
coil of wire, its field interacts much more briefly, an effect observed at particle accelerators such as the 3-km-long Stanford
Linear Accelerator (SLAC). In fact, to an electron traveling down the beam pipe at SLAC, the accelerator and Earth are all
moving by and are length contracted. The relativistic effect is so great that the accelerator is only 0.5 m long to the electron.
It is actually easier to get the electron beam down the pipe, because the beam does not have to be as precisely aimed to get
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down a short pipe as it would to get down a pipe 3 km long. This, again, is an experimental verification of the special theory
of relativity.

Figure 5.12 The electric field lines of a high-velocity charged
particle are compressed along the direction of motion by length
contraction, producing an observably different signal as the
particle goes through a coil.

@ 5.4 Check Your Understanding A particle is traveling through Earth’s atmosphere at a speed of 0.750c. To
an earthbound observer, the distance it travels is 2.50 km. How far does the particle travel as viewed from the
particle’s reference frame?

5.5 | The Lorentz Transformation

Learning Objectives

* Describe the Galilean transformation of classical mechanics, relating the position, time,
velocities, and accelerations measured in different inertial frames

» Derive the corresponding Lorentz transformation equations, which, in contrast to the Galilean
transformation, are consistent with special relativity

* Explain the Lorentz transformation and many of the features of relativity in terms of four-
dimensional space-time

We have used the postulates of relativity to examine, in particular examples, how observers in different frames of reference
measure different values for lengths and the time intervals. We can gain further insight into how the postulates of relativity
change the Newtonian view of time and space by examining the transformation equations that give the space and time
coordinates of events in one inertial reference frame in terms of those in another. We first examine how position and
time coordinates transform between inertial frames according to the view in Newtonian physics. Then we examine how
this has to be changed to agree with the postulates of relativity. Finally, we examine the resulting Lorentz transformation
equations and some of their consequences in terms of four-dimensional space-time diagrams, to support the view that the
consequences of special relativity result from the properties of time and space itself, rather than electromagnetism.

The Galilean Transformation Equations

An event is specified by its location and time (x, y, z, t) relative to one particular inertial frame of reference S. As an
example, (X, y, z, t) could denote the position of a particle at time t, and we could be looking at these positions for many
different times to follow the motion of the particle. Suppose a second frame of reference S’ moves with velocity v with

respect to the first. For simplicity, assume this relative velocity is along the x-axis. The relation between the time and
coordinates in the two frames of reference is then

x=x"+vt, y=y', z=7.

Implicit in these equations is the assumption that time measurements made by observers in both S and S’ are the same.
That is,
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These four equations are known collectively as the Galilean transformation.

We can obtain the Galilean velocity and acceleration transformation equations by differentiating these equations with
respect to time. We use u for the velocity of a particle throughout this chapter to distinguish it from v, the relative velocity
of two reference frames. Note that, for the Galilean transformation, the increment of time used in differentiating to calculate
the particle velocity is the same in both frames, df = dt’. Differentiation yields

Mx=ugc+v, uy=u’y, I,{Zzu’Z

and

— — —
ax=ay, ay=day, da;=az

We denote the velocity of the particle by u rather than v to avoid confusion with the velocity v of one frame of reference
with respect to the other. Velocities in each frame differ by the velocity that one frame has as seen from the other frame.
Observers in both frames of reference measure the same value of the acceleration. Because the mass is unchanged by the
transformation, and distances between points are uncharged, observers in both frames see the same forces F' = ma acting

between objects and the same form of Newton’s second and third laws in all inertial frames. The laws of mechanics are
consistent with the first postulate of relativity.

The Lorentz Transformation Equations

The Galilean transformation nevertheless violates Einstein’s postulates, because the velocity equations state that a pulse of
light moving with speed c along the x-axis would travel at speed ¢ — v in the other inertial frame. Specifically, the spherical

pulse has radius r = ¢t at time t in the unprimed frame, and also has radius ' = ct' at time ¢ in the primed frame.
Expressing these relations in Cartesian coordinates gives
yret-c?? =

24y 42 2? =

The left-hand sides of the two expressions can be set equal because both are zero. Because y =y’ and z =z, we obtain
2 _ 2

-2 =x 2. (5.5)

This cannot be satisfied for nonzero relative velocity v of the two frames if we assume the Galilean transformation results
in t=1¢ with x =x"+v¢".
To find the correct set of transformation equations, assume the two coordinate systems S and S’ in Figure 5.13. First

suppose that an event occurs at (x’, 0, 0, ') in S’ and at (x, 0, 0, ) in S, as depicted in the figure.

Y Y
s S’
_%-
v
- V[ ——
- X — '
X, X
/ Event
= X -
/ /
g
z 4
Zz

Figure 5.13 An event occurs at (x, 0, 0, t) in S and at
(x’, 0,0, ¢) in S’. The Lorentz transformation equations relate

events in the two systems.

Suppose that at the instant that the origins of the coordinate systems in S and S’ coincide, a flash bulb emits a spherically
spreading pulse of light starting from the origin. At time ¢, an observer in S finds the origin of S’ to be at x = v¢. With
the help of a friend in S, the S’ observer also measures the distance from the event to the origin of S’ and finds it to be
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x'V'1 = v?/c?. This follows because we have already shown the postulates of relativity to imply length contraction. Thus
the position of the event in S is

x=vt+x'V1 —vZ/c?

and
/ X —=vt

x'= .
V1 —v?/c?
The postulates of relativity imply that the equation relating distance and time of the spherical wave front:
x2+y2+z2—c2t2=0
must apply both in terms of primed and unprimed coordinates, which was shown above to lead to Equation 5.5:

2,2 222

x2 -2t c2t

We combine this with the equation relating x and x’ to obtain the relation between t and ¢’ :

P va/c? ;
V1 —v2/c?

The equations relating the time and position of the events as seen in S are then

P '+ vx'lc?
V1 —v2/c?

x x' + vt
V1 —v2/c?

y =

Z Z.

This set of equations, relating the position and time in the two inertial frames, is known as the Lorentz transformation.
They are named in honor of H.A. Lorentz (1853-1928), who first proposed them. Interestingly, he justified the
transformation on what was eventually discovered to be a fallacious hypothesis. The correct theoretical basis is Einstein’s
special theory of relativity.

The reverse transformation expresses the variables in S in terms of those in §’. Simply interchanging the primed and

unprimed variables and substituting gives:

¢ o= t —vxlc?
V1 —v2/c?

X = X—vt
V1 —v2/c?

=y

4 Z.

Example 5.6

Using the Lorentz Transformation for Time

Spacecraft S’ is on its way to Alpha Centauri when Spacecraft S passes it at relative speed c¢/2. The captain of
S’ sends a radio signal that lasts 1.2 s according to that ship’s clock. Use the Lorentz transformation to find the
time interval of the signal measured by the communications officer of spaceship S.

Solution
a. Identify the known: At =1, —¢;"=12s; Ax' =x"p—x"| =0.

b. Identify the unknown: At =1, —1¢;.
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c. Express the answer as an equation. The time signal starts as (x’, 7;’) and stops at (x’, #,’). Note
that the x’ coordinate of both events is the same because the clock is at rest in S’. Write the first
Lorentz transformation equation in terms of Af=1¢, —f;, Ax = x, —x;, andsimilarly for the primed

coordinates, as:

Ar = A+ vAx’/cz.

122

o2

Because the position of the clock in §’ is fixed, Ax" =0, and the time interval Az becomes:

Ar=—AC
12
C

[\

d. Do the calculation.
With At = 1.2's this gives:

Ar=—L28 _ g5,
2

-

Note that the Lorentz transformation reproduces the time dilation equation.

Example 5.7

Using the Lorentz Transformation for Length

A surveyor measures a street to be L = 100 m long in Earth frame S. Use the Lorentz transformation to obtain an
expression for its length measured from a spaceship S’, moving by at speed 0.20c, assuming the x coordinates
of the two frames coincide at time ¢ = 0.

Solution
a. Identify the known: L = 100 m; v = 0.20c; Az = 0.

b. Identify the unknown: L'.

c. Express the answer as an equation. The surveyor in frame S has measured the two ends of the stick
simultaneously, and found them at rest at x, and x; a distance L =x,—x;=100m apart. The
spaceship crew measures the simultaneous location of the ends of the sticks in their frame. To relate
the lengths recorded by observers in S’ and S, respectively, write the second of the four Lorentz

transformation equations as:

Xy — VI X1 — VvVt
Xp=xy = 2,2 : 2,2

\/l—v/c VI—V /c

Xo—X1 _ L

VI—v27e? V1= v2sc?
d. Do the calculation. Because x'5 —x’| = 100 m, the length of the moving stick is equal to:
L' =100m)V1 —v2c?
= (100 m)}/1 — (0.20)*
=98.0m.

Note that the Lorentz transformation gave the length contraction equation for the street.
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Example 5.8

Lorentz Transformation and Simultaneity

The observer shown in Figure 5.14 standing by the railroad tracks sees the two bulbs flash simultaneously at
both ends of the 26 m long passenger car when the middle of the car passes him at a speed of ¢/2. Find the
separation in time between when the bulbs flashed as seen by the train passenger seated in the middle of the car.

Figure 5.14 An person watching a train go by observes two bulbs flash simultaneously at opposite ends
of a passenger car. There is another passenger inside of the car observing the same flashes but from a
different perspective.

Solution
a. Identify the known: Ar = 0.

Note that the spatial separation of the two events is between the two lamps, not the distance of the lamp
to the passenger.

b. Identify the unknown: At =1, —1).

Again, note that the time interval is between the flashes of the lamps, not between arrival times for
reaching the passenger.

c. Express the answer as an equation:
Ar = A + vAx'/c?
V1 = v2/c?
d. Do the calculation:
At +£(26 m)/c?

V1 —v2/c?

Ay = _26m/s_ ___ 26ms
- - 8
2¢ 2(3.00x10® m/s)
Ar = —433x107%s.

Significance
The sign indicates that the event with the larger x,’, namely, the flash from the right, is seen to occur first in the

S’ frame, as found earlier for this example, so that 7, < 7.

Space-time

Relativistic phenomena can be analyzed in terms of events in a four-dimensional space-time. When phenomena such as the
twin paradox, time dilation, length contraction, and the dependence of simultaneity on relative motion are viewed in this
way, they are seen to be characteristic of the nature of space and time, rather than specific aspects of electromagnetism.

In three-dimensional space, positions are specified by three coordinates on a set of Cartesian axes, and the displacement of
one point from another is given by:
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(Ax, Ay, Az)= (xp =Xy, Y= ¥1» 22— 21)-
The distance Ar between the points is
Ar? = (Ax)? +(Ay)? + (A9~

The distance Ar is invariant under a rotation of axes. If a new set of Cartesian axes rotated around the origin relative to the
original axes are used, each point in space will have new coordinates in terms of the new axes, but the distance Ar’ given
by

Ar'? = (Ax)? + (Ay)? + (AZ)2
That has the same value that Ar> had. Something similar happens with the Lorentz transformation in space-time.

Define the separation between two events, each given by a set of x, y, z, and ct along a four-dimensional Cartesian system
of axes in space-time, as

(Ax, Ay, Az, cAf) = (xy = X1, Yo = Y1, 2 — 2y, €ty — 1))
Also define the space-time interval As between the two events as
As? = (Ax)? + (AyP + (A2)% — (cAD>.
If the two events have the same value of ct in the frame of reference considered, As would correspond to the distance Ar

between points in space.

The path of a particle through space-time consists of the events (x, y, z, ct) specifying a location at each time of its motion.
The path through space-time is called the world line of the particle. The world line of a particle that remains at rest at the
same location is a straight line that is parallel to the time axis. If the particle moves at constant velocity parallel to the x-
axis, its world line would be a sloped line x = v#, corresponding to a simple displacement vs. time graph. If the particle

accelerates, its world line is curved. The increment of s along the world line of the particle is given in differential form as
ds? = (dx)? + (dy)* + (d2)* — ¢ (D)™

Just as the distance Ar is invariant under rotation of the space axes, the space-time interval:
As? = (A% + (Ay)? + (A2)% - (cAD?.

is invariant under the Lorentz transformation. This follows from the postulates of relativity, and can be seen also by
substitution of the previous Lorentz transformation equations into the expression for the space-time interval:

As? = (A0? +(Ay)? + (A2)% = (cAD?

2 At/_'_VAX’ 2
— AX’+VAZ,] n2 "2 C2
= |2 +(AY) + (A7) — |c—=—=
( 1—v2/c? V1 —v2/c?

= (AX)? + (AY)? + (AZ)% = (cAr)?

= As’?
In addition, the Lorentz transformation changes the coordinates of an event in time and space similarly to how a three-
dimensional rotation changes old coordinates into new coordinates:

Lorentz transformation Axis — rotation around z-axis

(x, t coordinates): (x, y coordinates):

x' = x+ =Pyt x" = (cos @)x + (sin @)y

ct" = (=fy)x + (y)ct y' = (—sin O)x + (cos O)y
where y = 4; p=vlc.

V1= p2

Lorentz transformations can be regarded as generalizations of spatial rotations to space-time. However, there are some
differences between a three-dimensional axis rotation and a Lorentz transformation involving the time axis, because of
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differences in how the metric, or rule for measuring the displacements Ar and As, differ. Although Ar is invariant under
spatial rotations and As is invariant also under Lorentz transformation, the Lorentz transformation involving the time axis

does not preserve some features, such as the axes remaining perpendicular or the length scale along each axis remaining the
same.

Note that the quantity As? can have either sign, depending on the coordinates of the space-time events involved. For pairs

of events that give it a negative sign, it is useful to define At? as —As>. The significance of Az as just defined follows
by noting that in a frame of reference where the two events occur at the same location, we have Ax = Ay = Az =0 and

therefore (from the equation for As? = — Arz):

Ar? = — As? = (A2

Therefore At is the time interval At in the frame of reference where both events occur at the same location. It is the same
interval of proper time discussed earlier. It also follows from the relation between As and that Az that because As is

Lorentz invariant, the proper time is also Lorentz invariant. All observers in all inertial frames agree on the proper time
intervals between the same two events.

5.5 Check Your Understanding Show that if a time increment dt elapses for an observer who sees the
particle moving with velocity v, it corresponds to a proper time particle increment for the particle of dz = ydt.

The light cone

We can deal with the difficulty of visualizing and sketching graphs in four dimensions by imagining the three spatial
coordinates to be represented collectively by a horizontal axis, and the vertical axis to be the ct-axis. Starting with a
particular event in space-time as the origin of the space-time graph shown, the world line of a particle that remains at rest at
the initial location of the event at the origin then is the time axis. Any plane through the time axis parallel to the spatial axes
contains all the events that are simultaneous with each other and with the intersection of the plane and the time axis, as seen
in the rest frame of the event at the origin.

It is useful to picture a light cone on the graph, formed by the world lines of all light beams passing through the origin event
A, as shown in Figure 5.15. The light cone, according to the postulates of relativity, has sides at an angle of 45° if the time

axis is measured in units of ct, and, according to the postulates of relativity, the light cone remains the same in all inertial
frames. Because the event A is arbitrary, every point in the space-time diagram has a light cone associated with it.

Timei

Figure 5.15 The light cone consists of all the world lines
followed by light from the event A at the vertex of the cone.
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Consider now the world line of a particle through space-time. Any world line outside of the cone, such as one passing from
A through C, would involve speeds greater than c, and would therefore not be possible. Events such as C that lie outside the
light cone are said to have a space-like separation from event A. They are characterized by:

Asic =(xy - )‘B)2 + (x4 —X3)2 + (x4 — )CB)2 — (cAD)? > 0.

An event like B that lies in the upper cone is reachable without exceeding the speed of light in vacuum, and is characterized
by

ASE&B = (xq = x3)2 + (x4 — xB)2 + (x4 — x}_z;)2 — (cAD? < 0.

The event is said to have a time-like separation from A. Time-like events that fall into the upper half of the light cone occur
at greater values of ¢ than the time of the event A at the vertex and are in the future relative to A. Events that have time-like
separation from A and fall in the lower half of the light cone are in the past, and can affect the event at the origin. The region
outside the light cone is labeled as neither past nor future, but rather as “elsewhere.”

For any event that has a space-like separation from the event at the origin, it is possible to choose a time axis that will
make the two events occur at the same time, so that the two events are simultaneous in some frame of reference. Therefore,
which of the events with space-like separation comes before the other in time also depends on the frame of reference of
the observer. Since space-like separations can be traversed only by exceeding the speed of light; this violation of which
event can cause the other provides another argument for why particles cannot travel faster than the speed of light, as well as
potential material for science fiction about time travel. Similarly for any event with time-like separation from the event at
the origin, a frame of reference can be found that will make the events occur at the same location. Because the relations

Asic =(xy— XB)Z +(xy — )cB)2 + (x4 — )CB)Z —(cAD?>0
and
AS%&B =(xy - XB)Z +(xy — x3)2 +(xy — xB)2 — (cAD? < 0.

are Lorentz invariant, whether two events are time-like and can be made to occur at the same place or space-like and can be
made to occur at the same time is the same for all observers. All observers in different inertial frames of reference agree on
whether two events have a time-like or space-like separation.

The twin paradox seen in space-time

The twin paradox discussed earlier involves an astronaut twin traveling at near light speed to a distant star system, and
returning to Earth. Because of time dilation, the space twin is predicted to age much less than the earthbound twin. This
seems paradoxical because we might have expected at first glance for the relative motion to be symmetrical and naively
thought it possible to also argue that the earthbound twin should age less.

To analyze this in terms of a space-time diagram, assume that the origin of the axes used is fixed in Earth. The world line of
the earthbound twin is then along the time axis.

The world line of the astronaut twin, who travels to the distant star and then returns, must deviate from a straight line path
in order to allow a return trip. As seen in Figure 5.16, the circumstances of the two twins are not at all symmetrical. Their
paths in space-time are of manifestly different length. Specifically, the world line of the earthbound twin has length 2cAt¢,

which then gives the proper time that elapses for the earthbound twin as 2A¢. The distance to the distant star system is
Ax = vAt. The proper time that elapses for the space twin is 2A7 where

2AT? = — As? = (cAt)2 - (Ax)z.
This is considerably shorter than the proper time for the earthbound twin by the ratio

cAr _ /\/(CAI)Z — (a0 _ \/(cAt)z — (vAD)>

cAt (cAr)? (cAt)?
2
=l1-L=1
(32 Y

consistent with the time dilation formula. The twin paradox is therefore seen to be no paradox at all. The situation of the
two twins is not symmetrical in the space-time diagram. The only surprise is perhaps that the seemingly longer path on the
space-time diagram corresponds to the smaller proper time interval, because of how Az and As depend on Ax and At.
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Earth twin Space twin

N

cAt
Ax

X
Figure 5.16 The space twin and the earthbound twin, in the
twin paradox example, follow world lines of different length
through space-time.

Lorentz transformations in space-time

We have already noted how the Lorentz transformation leaves
As? = (A% + (Ay)? + (A2)% - (cAn)?

unchanged and corresponds to a rotation of axes in the four-dimensional space-time. If the S and S’ frames are in relative
motion along their shared x-direction the space and time axes of S’ are rotated by an angle a as seen from S, in the way
shown in shown in Figure 5.17, where:

tana = % = .

This differs from a rotation in the usual three-dimension sense, insofar as the two space-time axes rotate toward each other
symmetrically in a scissors-like way, as shown. The rotation of the time and space axes are both through the same angle.
The mesh of dashed lines parallel to the two axes show how coordinates of an event would be read along the primed axes.
This would be done by following a line parallel to the x’ and one parallel to the #' -axis, as shown by the dashed lines. The

length scale of both axes are changed by:

2 2
f_ LB NI

ct
The line labeled “v = ¢” at 45° to the x-axis corresponds to the edge of the light cone, and is unaffected by the Lorentz

transformation, in accordance with the second postulate of relativity. The “v = ¢” line, and the light cone it represents, are
the same for both the Sand S’ frame of reference.
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Figure 5.17 The Lorentz transformation results in new space
and time axes rotated in a scissors-like way with respect to the
original axes.

Simultaneity

Simultaneity of events at separated locations depends on the frame of reference used to describe them, as given by the
scissors-like “rotation” to new time and space coordinates as described. If two events have the same ¢ values in the unprimed
frame of reference, they need not have the same values measured along the c#’-axis, and would then not be simultaneous

in the primed frame.

As a specific example, consider the near-light-speed train in which flash lamps at the two ends of the car have flashed
simultaneously in the frame of reference of an observer on the ground. The space-time graph is shown Figure 5.18. The
flashes of the two lamps are represented by the dots labeled “Left flash lamp” and “Right flash lamp™ that lie on the light
cone in the past. The world line of both pulses travel along the edge of the light cone to arrive at the observer on the ground
simultaneously. Their arrival is the event at the origin. They therefore had to be emitted simultaneously in the unprimed
frame, as represented by the point labeled as t(both). But time is measured along the ct’-axis in the frame of reference of
the observer seated in the middle of the train car. So in her frame of reference, the emission event of the bulbs labeled as ¢’

(left) and ¢’ (right) were not simultaneous.
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Figure 5.18 The train example revisited. The flashes occur at the same time
t(both) along the time axis of the ground observer, but at different times, along
the ¢’ time axis of the passenger.

In terms of the space-time diagram, the two observers are merely using different time axes for the same events because
they are in different inertial frames, and the conclusions of both observers are equally valid. As the analysis in terms of the
space-time diagrams further suggests, the property of how simultaneity of events depends on the frame of reference results
from the properties of space and time itself, rather than from anything specifically about electromagnetism.

5.6 | Relativistic Velocity Transformation

Learning Objectives

By the end of this section, you will be able to:
» Derive the equations consistent with special relativity for transforming velocities in one inertial
frame of reference into another.
*  Apply the velocity transformation equations to objects moving at relativistic speeds.

* Examine how the combined velocities predicted by the relativistic transformation equations
compare with those expected classically.

Remaining in place in a kayak in a fast-moving river takes effort. The river current pulls the kayak along. Trying to paddle
against the flow can move the kayak upstream relative to the water, but that only accounts for part of its velocity relative to
the shore. The kayak’s motion is an example of how velocities in Newtonian mechanics combine by vector addition. The
kayak’s velocity is the vector sum of its velocity relative to the water and the water’s velocity relative to the riverbank.
However, the relativistic addition of velocities is quite different.
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Velocity Transformations

Imagine a car traveling at night along a straight road, as in Figure 5.19. The driver sees the light leaving the headlights
at speed ¢ within the car’s frame of reference. If the Galilean transformation applied to light, then the light from the car’s
headlights would approach the pedestrian at a speed u = v+ ¢, contrary to Einstein’s postulates.

Figure 5.19 According to experimental results and the second postulate of relativity, light from the car’s headlights moves
away from the car at speed ¢ and toward the observer on the sidewalk at speed c.

Both the distance traveled and the time of travel are different in the two frames of reference, and they must differ in a way
that makes the speed of light the same in all inertial frames. The correct rules for transforming velocities from one frame to
another can be obtained from the Lorentz transformation equations.

Relativistic Transformation of Velocity

Suppose an object P is moving at constant velocity u = (u;, uy, u’z) as measured in the S’ frame. The §’ frame is moving

along its x’-axis at velocity v. In an increment of time d¢’, the particle is displaced by dx’ along the x’-axis. Applying
the Lorentz transformation equations gives the corresponding increments of time and displacement in the unprimed axes:

dt = }/(a’t’ + vdx’' /cz)
dx = y(dx' +vdt)
dy = dy'
dz = d7.
The velocity components of the particle seen in the unprimed coordinate system are then
de _ _dx4vdt) _ Gty
dt y(dt’ + vdx’/c2) 1+ CLZ%
, ay
dy — dy — dr’
dt dr' + vdx'lc* v dy
J’( ) y[1+ C—ZT
dz
dz dz’ r

At y(dr +vdx'lc?) ,,(1 4 Lﬂ)'
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We thus obtain the equations for the velocity components of the object as seen in frame S:

Wy +v uyly u;ly
Ux= 2 W= 2f 4= 2
1+vu/c 1+vu'/c 1+vu/c
Compare this with how the Galilean transformation of classical mechanics says the velocities transform, by adding simply
as vectors:

—_ ! —_ ! —_ !
Uy =Uy+ U, Uy =Wy, Uz= U

When the relative velocity of the frames is much smaller than the speed of light, that is, when v < ¢, the special relativity
velocity addition law reduces to the Galilean velocity law. When the speed v of S’ relative to S is comparable to the speed

of light, the relativistic velocity addition law gives a much smaller result than the classical (Galilean) velocity addition
does.

Example 5.9

Velocity Transformation Equations for Light

Suppose a spaceship heading directly toward Earth at half the speed of light sends a signal to us on a laser-
produced beam of light (Figure 5.20). Given that the light leaves the ship at speed c as observed from the ship,
calculate the speed at which it approaches Earth.

- laser light
pul g
y _

v = 0.500c

Figure 5.20 How fast does a light signal approach Earth if sent from a
spaceship traveling at 0.500c?

Strategy

Because the light and the spaceship are moving at relativistic speeds, we cannot use simple velocity addition.
Instead, we determine the speed at which the light approaches Earth using relativistic velocity addition.

Solution
a. Identify the knowns: v = 0.500c; u’ = c.
b. Identify the unknown: u.
v+u

1+2
62

c. Express the answer as an equation: u =

d. Do the calculation:

v+u

1+
2

_ _0.500c + ¢
(0.500¢)(c)
2

1+
C

_ (0500 + 1)c

(c2 + 0.500c2)
2
= C.
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Significance

Relativistic velocity addition gives the correct result. Light leaves the ship at speed c and approaches Earth at
speed c. The speed of light is independent of the relative motion of source and observer, whether the observer is
on the ship or earthbound.

Velocities cannot add to greater than the speed of light, provided that v is less than ¢ and u’ does not exceed c. The
following example illustrates that relativistic velocity addition is not as symmetric as classical velocity addition.

Example 5.10

Relativistic Package Delivery

Suppose the spaceship in the previous example approaches Earth at half the speed of light and shoots a canister
at a speed of 0.750c (Figure 5.21). (a) At what velocity does an earthbound observer see the canister if it is shot
directly toward Earth? (b) If it is shot directly away from Earth?

u' = 0.750c u' = —0.750c
u' l u' i
—= o - ™
» v = 0.500c & v=o0500c
Canister toward Earth Canister away from Earth

Figure 5.21 A canister is fired at 0.7500c toward Earth or away from Earth.

Strategy

Because the canister and the spaceship are moving at relativistic speeds, we must determine the speed of the
canister by an earthbound observer using relativistic velocity addition instead of simple velocity addition.

Solution for (a)
a. Identify the knowns: v = 0.500c; u’ = 0.750c.

b. Identify the unknown: u.

c. Express the answer as an equation: u = lv + \Z; .

+ 2=

c2
d. Do the calculation:
u =vtu
1+
c2
_ _0.500c¢ + 0.750c
- 1+ (0.500¢)(0.750c)
2
c
= 0.909¢.

Solution for (b)
a. Identify the knowns: v = 0.500c; u’ = —0.750c.

b. Identify the unknown: u.
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c. Express the answer as an equation: u = 1": "fu’ -
02
d. Do the calculation:
u =vxtu
1+

o2

_ 0.500¢ + (=0.750¢)
1+ (o.sooc)(;onsoc)

c

= —0.400c.

Significance

The minus sign indicates a velocity away from Earth (in the opposite direction from v), which means the canister
is heading toward Earth in part (a) and away in part (b), as expected. But relativistic velocities do not add as
simply as they do classically. In part (a), the canister does approach Earth faster, but at less than the vector
sum of the velocities, which would give 1.250c. In part (b), the canister moves away from Earth at a velocity
of —0.400c, which is faster than the —0.250c expected classically. The differences in velocities are not even

symmetric: In part (a), an observer on Earth sees the canister and the ship moving apart at a speed of 0.409¢, and
at a speed of 0.900c in part (b).

5.6 Check Your Understanding Distances along a direction perpendicular to the relative motion of the two
frames are the same in both frames. Why then are velocities perpendicular to the x-direction different in the two
frames?

5.7 | Doppler Effect for Light

Learning Objectives

By the end of this section, you will be able to:

* Explain the origin of the shift in frequency and wavelength of the observed wavelength when
observer and source moved toward or away from each other

* Derive an expression for the relativistic Doppler shift
* Apply the Doppler shift equations to real-world examples

As discussed in the chapter on sound, if a source of sound and a listener are moving farther apart, the listener encounters
fewer cycles of a wave in each second, and therefore lower frequency, than if their separation remains constant. For the
same reason, the listener detects a higher frequency if the source and listener are getting closer. The resulting Doppler shift
in detected frequency occurs for any form of wave. For sound waves, however, the equations for the Doppler shift differ
markedly depending on whether it is the source, the observer, or the air, which is moving. Light requires no medium, and
the Doppler shift for light traveling in vacuum depends only on the relative speed of the observer and source.

The Relativistic Doppler Effect

Suppose an observer in S sees light from a source in §’ moving away at velocity v (Figure 5.22). The wavelength of the
light could be measured within §” —for example, by using a mirror to set up standing waves and measuring the distance

between nodes. These distances are proper lengths with S’ as their rest frame, and change by a factor V1 — vZ2/c? when
measured in the observer’s frame S, where the ruler measuring the wavelength in S’ is seen as moving.
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Figure 5.22 (a) When a light wave is emitted by a source fixed in
the moving inertial frame S’, the observer in S sees the wavelength

measured in S’. to be shorter by a factor V1 — v2 /2, (b) Because

the observer sees the source moving away within S, the wave pattern
reaching the observer in S is also stretched by the factor
(cAt + vAD/(cAt) = 1+ vic.

If the source were stationary in S, the observer would see a length cA¢ of the wave pattern in time Az. But because of the
motion of S’ relative to S, considered solely within S, the observer sees the wave pattern, and therefore the wavelength,
stretched out by a factor of

cAt period + vAt period

v
cAt 1+

o

period
as illustrated in (b) of Figure 5.22. The overall increase from both effects gives
(L+7)

(1-9)

Aops = Asre (1 +) L= Asre(1 + ) = A

122 (I+2A1—%)

al=ol=

where Ag is the wavelength of the light seen by the source in §” and 4, is the wavelength that the observer detects

within S.

Red Shifts and Blue Shifts

The observed wavelength 1, of electromagnetic radiation is longer (called a “red shift”) than that emitted by the source
when the source moves away from the observer. Similarly, the wavelength is shorter (called a “blue shift”) when the source
moves toward the observer. The amount of change is determined by

1+z

1=

Aobs = 4s

o<
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where Ay is the wavelength in the frame of reference of the source, and v is the relative velocity of the two frames S and

S’. The velocity v is positive for motion away from an observer and negative for motion toward an observer. In terms of
source frequency and observed frequency, this equation can be written as

<

1-X
fobszfs Tg

Notice that the signs are different from those of the wavelength equation.

Example 5.11

Calculating a Doppler Shift

Suppose a galaxy is moving away from Earth at a speed 0.825c. It emits radio waves with a wavelength of
0.525 m. What wavelength would we detect on Earth?

Strategy

Because the galaxy is moving at a relativistic speed, we must determine the Doppler shift of the radio waves using
the relativistic Doppler shift instead of the classical Doppler shift.

Solution
a. Identify the knowns: u = 0.825¢; A, = 0.525 m.

b. Identify the unknown: A .

C. Express the answer as an equation:

d. Do the calculation:

1+
1—

o<

Aobs =As

ol

0.825
1 4 285

0.825¢
1 =25

= (0.525m)

= 1.70 m.
Significance

Because the galaxy is moving away from Earth, we expect the wavelengths of radiation it emits to be redshifted.
The wavelength we calculated is 1.70 m, which is redshifted from the original wavelength of 0.525 m. You will
see in Particle Physics and Cosmology that detecting redshifted radiation led to present-day understanding
of the origin and evolution of the universe.

5.7 Check Your Understanding Suppose a space probe moves away from Earth at a speed 0.350c. It sends a
radio-wave message back to Earth at a frequency of 1.50 GHz. At what frequency is the message received on
Earth?

The relativistic Doppler effect has applications ranging from Doppler radar storm monitoring to providing information on
the motion and distance of stars. We describe some of these applications in the exercises.
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5.8 | Relativistic Momentum

Learning Objectives

By the end of this section, you will be able to:

* Define relativistic momentum in terms of mass and velocity
* Show how relativistic momentum relates to classical momentum

* Show how conservation of relativistic momentum limits objects with mass to speeds less than
C

Momentum is a central concept in physics. The broadest form of Newton’s second law is stated in terms of momentum.
Momentum is conserved whenever the net external force on a system is zero. This makes momentum conservation a
fundamental tool for analyzing collisions (Figure 5.23). Much of what we know about subatomic structure comes from
the analysis of collisions of accelerator-produced relativistic particles, and momentum conservation plays a crucial role in
this analysis.

Figure 5.23 Momentum is an important concept for these
football players from the University of California at Berkeley
and the University of California at Davis. A player with the
same velocity but greater mass collides with greater impact
because his momentum is greater. For objects moving at
relativistic speeds, the effect is even greater.

The first postulate of relativity states that the laws of physics are the same in all inertial frames. Does the law of conservation
of momentum survive this requirement at high velocities? It can be shown that the momentum calculated as merely
B =md X

dt ’
Lorentz transformation to the velocities. The correct equation for momentum can be shown, instead, to be the classical
expression in terms of the increment dz of proper time of the particle, observed in the particle’s rest frame:

even if it is conserved in one frame of reference, may not be conserved in another after applying the
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Relativistic Momentum

Relativistic momentum B is classical momentum multiplied by the relativistic factor y:
-

p =ymu (5.6)

where m is the rest mass of the object, u s its velocity relative to an observer, and y is the relativistic factor:

1 (5.7)

Note that we use u for velocity here to distinguish it from relative velocity v between observers. The factor y that occurs
here has the same form as the previous relativistic factor y except that it is now in terms of the velocity of the particle u
instead of the relative velocity v of two frames of reference.

With p expressed in this way, total momentum p;, is conserved whenever the net external force is zero, just as in

classical physics. Again we see that the relativistic quantity becomes virtually the same as the classical quantity at low
velocities, where u/c is small and y is very nearly equal to 1. Relativistic momentum has the same intuitive role as classical

momentum. It is greatest for large masses moving at high velocities, but because of the factor y, relativistic momentum

approaches infinity as u approaches ¢ (Figure 5.24). This is another indication that an object with mass cannot reach the
speed of light. If it did, its momentum would become infinite—an unreasonable value.
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o
|
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0 02c 04c 06c¢ 08c 1.0c
Speed u (m/s)
Figure 5.24 Relativistic momentum approaches infinity as the
velocity of an object approaches the speed of light.

The relativistically correct definition of momentum as p = ymu is sometimes taken to imply that mass varies with velocity:
Myyr = ym, particularly in older textbooks. However, note that m is the mass of the object as measured by a person at rest

relative to the object. Thus, m is defined to be the rest mass, which could be measured at rest, perhaps using gravity. When
a mass is moving relative to an observer, the only way that its mass can be determined is through collisions or other means
involving momentum. Because the mass of a moving object cannot be determined independently of momentum, the only
meaningful mass is rest mass. Therefore, when we use the term “mass,” assume it to be identical to “rest mass.”
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Relativistic momentum is defined in such a way that conservation of momentum holds in all inertial frames. Whenever the
net external force on a system is zero, relativistic momentum is conserved, just as is the case for classical momentum. This
has been verified in numerous experiments.
5.8 Check Your Understanding What is the momentum of an electron traveling at a speed 0.985c? The rest
mass of the electron is 9.11 x 10731 kg.

5.9 | Relativistic Energy

Learning Objectives

By the end of this section, you will be able to:

* Explain how the work-energy theorem leads to an expression for the relativistic kinetic energy
of an object

* Show how the relativistic energy relates to the classical kinetic energy, and sets a limit on the
speed of any object with mass

* Describe how the total energy of a particle is related to its mass and velocity

* Explain how relativity relates to energy-mass equivalence, and some of the practical
implications of energy-mass equivalence

The tokamak in Figure 5.25 is a form of experimental fusion reactor, which can change mass to energy. Nuclear reactors
are proof of the relationship between energy and matter.

Conservation of energy is one of the most important laws in physics. Not only does energy have many important forms, but
each form can be converted to any other. We know that classically, the total amount of energy in a system remains constant.
Relativistically, energy is still conserved, but energy-mass equivalence must now be taken into account, for example, in the
reactions that occur within a nuclear reactor. Relativistic energy is intentionally defined so that it is conserved in all inertial
frames, just as is the case for relativistic momentum. As a consequence, several fundamental quantities are related in ways
not known in classical physics. All of these relationships have been verified by experimental results and have fundamental
consequences. The altered definition of energy contains some of the most fundamental and spectacular new insights into
nature in recent history.

; 2 R IR £ ¥
Figure 5.25 The National Spherical Torus Experiment
(NSTX) is a fusion reactor in which hydrogen isotopes undergo
fusion to produce helium. In this process, a relatively small mass
of fuel is converted into a large amount of energy. (credit:
Princeton Plasma Physics Laboratory)
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Kinetic Energy and the Ultimate Speed Limit

The first postulate of relativity states that the laws of physics are the same in all inertial frames. Einstein showed that the
law of conservation of energy of a particle is valid relativistically, but for energy expressed in terms of velocity and mass in
a way consistent with relativity.

Consider first the relativistic expression for the kinetic energy. We again use u for velocity to distinguish it from
relative velocity v between observers. Classically, kinetic energy is related to mass and speed by the familiar expression

K= %muz. The corresponding relativistic expression for kinetic energy can be obtained from the work-energy theorem.

This theorem states that the net work on a system goes into kinetic energy. Specifically, if a force, expressed as

> 4p dyu
F = % =m (Zt ), accelerates a particle from rest to its final velocity, the work done on the particle should be equal

to its final kinetic energy. In mathematical form, for one-dimensional motion:

K = JFdx = Im%(yu)dx

_[dGw) dx 5, _ d
= mJ 0 d}; dt = mJudt( — _L(‘u/c)szt.

Integrate this by parts to obtain

K = mu® _mJ#@dt
V- @io?|,, 1 — (ulc)? 9t

mu2

N /117 _____u

V1 = (ulc)? mJ V1 = (ulc)?

= —1 m?z/ 2 - mcz(\/l - (u/c)z'
\/ — u/c

mu2 mC2

= —+ —_
Vi — @) 1 = (ue)?
2,2 2,2
_ ol wtieh +1 - wlie )]_mcz

K = ch 2

du

u

0

m6‘2

Relativistic Kinetic Energy

Relativistic kinetic energy of any particle of mass m is

Ky =@ - l)mcz- (5.8)

When an object is motionless, its speed is # = 0 and

y = 1 =1
| o2
c2
so that K .; = O atrest, as expected. But the expression for relativistic kinetic energy (such as total energy and rest energy)

does not look much like the classical %muz. To show that the expression for K. reduces to the classical expression for

kinetic energy at low speeds, we use the binomial expansion to obtain an approximation for (1 + ¢)" valid for small ¢:
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(1+6&)"=1+ne+ "(”2_, D2, nn = 13),(” =234 o ml4ne
by neglecting the very small terms in e? and higher powers of ¢. Choosing & = —u?/c? and n = —% leads to the

conclusion that y at nonrelativistic speeds, where & = u/c is small, satisfies
—-1/2 2
Y= (1 - u2/c2) ~ 1 +%(“—2)

A binomial expansion is a way of expressing an algebraic quantity as a sum of an infinite series of terms. In some cases, as
in the limit of small speed here, most terms are very small. Thus, the expression derived here for y is not exact, but it is a

very accurate approximation. Therefore, at low speed:

1(u?
y_lz_(_)'
2\ 2

Entering this into the expression for relativistic kinetic energy gives

2
2 2
K= [%(%):I’"C = %mu = K jass-

That is, relativistic kinetic energy becomes the same as classical kinetic energy when u<<c.

It is even more interesting to investigate what happens to kinetic energy when the speed of an object approaches the speed
of light. We know that y becomes infinite as u approaches c, so that K, also becomes infinite as the velocity approaches

the speed of light (Figure 5.26). The increase in K is far larger than in K, as v approaches c. An infinite amount of

work (and, hence, an infinite amount of energy input) is required to accelerate a mass to the speed of light.

The Speed of Light

No object with mass can attain the speed of light.

The speed of light is the ultimate speed limit for any particle having mass. All of this is consistent with the fact that velocities
less than ¢ always add to less than c. Both the relativistic form for kinetic energy and the ultimate speed limit being ¢ have
been confirmed in detail in numerous experiments. No matter how much energy is put into accelerating a mass, its velocity
can only approach—not reach—the speed of light.

A
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1.0 - Kiel

Kinetic Energy, K (J)

0 T T T T ™
0 02c 04c 06c 08c ¢

Speed u (m/s)
Figure 5.26 This graph of K versus velocity shows how
kinetic energy increases without bound as velocity approaches
the speed of light. Also shown is K, the classical kinetic

energy.
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Example 5.12

Comparing Kinetic Energy
An electron has a velocity v = 0.990c. (a) Calculate the kinetic energy in MeV of the electron. (b) Compare this

with the classical value for kinetic energy at this velocity. (The mass of an electron is 9.11 X 10731 kg.)

Strategy

The expression for relativistic kinetic energy is always correct, but for (a), it must be used because the velocity
is highly relativistic (close to c). First, we calculate the relativistic factor y, and then use it to determine

the relativistic kinetic energy. For (b), we calculate the classical kinetic energy (which would be close to the
relativistic value if v were less than a few percent of c) and see that it is not the same.
Solution for (a)
For part (a):
a. Identify the knowns: v =0.990c; m = 9.11 X 10731 kg.
b. Identify the unknown: K .

1

C. Express the answer as an equation: K, = (y — Dme? with Y= .
1—u?/c?

d. Do the calculation. First calculate y. Keep extra digits because this is an intermediate calculation:

1

1 — 1=

o2

1

| — (0.990)

2

= 7.0888.

[\

Now use this value to calculate the kinetic energy:
Ko =@- l)mc2
= (7.0888 — 1)(9.11 x 107! kg)(3.00 x 10% m/s?)

=4.9922%x 10713 1.
e. Convert units:

K

rel

= (4.9922x 10713 J)(LVB)
1.60x 10713 J

=3.12MeV.
Solution for (b)
For part (b):
a. List the knowns: v =0.990c; m =9.11 X 10731 kg.
b. List the unknown: K.

c. Express the answer as an equation: K, = %muz.

d. Do the calculation:
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1 2
Kijass = b) mu

= %(9.11 x 10731 kg)(0.990) (3.00 x 10® my/s)?

=4.0179% 10714 J.
e. Convert units:

K

class

=4.0179x 10714 J(LVB)
1.60x 10713 J

= 0.251 Mev.

Significance

As might be expected, because the velocity is 99.0% of the speed of light, the classical kinetic energy differs
significantly from the correct relativistic value. Note also that the classical value is much smaller than the

relativistic value. In fact, K o/K j,ss = 12.4 in this case. This illustrates how difficult it is to get a mass moving

close to the speed of light. Much more energy is needed than predicted classically. Ever-increasing amounts of
energy are needed to get the velocity of a mass a little closer to that of light. An energy of 3 MeV is a very small
amount for an electron, and it can be achieved with present-day particle accelerators. SLAC, for example, can

accelerate electrons to over 50 X 10°eV = 50,000 MeV.

Is there any point in getting v a little closer to ¢ than 99.0% or 99.9%? The answer is yes. We learn a great deal by doing this.
The energy that goes into a high-velocity mass can be converted into any other form, including into entirely new particles.
In the Large Hadron Collider in Figure 5.27, charged particles are accelerated before entering the ring-like structure.
There, two beams of particles are accelerated to their final speed of about 99.7% the speed of light in opposite directions,
and made to collide, producing totally new species of particles. Most of what we know about the substructure of matter
and the collection of exotic short-lived particles in nature has been learned this way. Patterns in the characteristics of these
previously unknown particles hint at a basic substructure for all matter. These particles and some of their characteristics will
be discussed in a later chapter on particle physics.

#

Figure 5.27 The European Organization for Nuclear Research
(called CERN after its French name) operates the largest particle
accelerator in the world, straddling the border between France
and Switzerland.

Total Relativistic Energy

The expression for kinetic energy can be rearranged to:
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2
E=—Mt" __ —K4me
1—u?lc?
Einstein argued in a separate article, also later published in 1905, that if the energy of a particle changes by AE, its mass

changes by Am = AE/c?. Abundant experimental evidence since then confirms that mc?

corresponds to the energy that
the particle of mass m has when at rest. For example, when a neutral pion of mass m at rest decays into two photons, the
photons have zero mass but are observed to have total energy corresponding to mc? for the pion. Similarly, when a particle
of mass m decays into two or more particles with smaller total mass, the observed kinetic energy imparted to the products
of the decay corresponds to the decrease in mass. Thus, E is the total relativistic energy of the particle, and mc? is its rest

energy.

Total Energy

Total energy E of a particle is

E= ymc2 (5.9)
where m is mass, c is the speed of light, y = 1 > and u is the velocity of the mass relative to an observer.
o2
Rest Energy
Rest energy of an object is
= me2, (5.10)

This is the correct form of Einstein’s most famous equation, which for the first time showed that energy is related to the
mass of an object at rest. For example, if energy is stored in the object, its rest mass increases. This also implies that mass
can be destroyed to release energy. The implications of these first two equations regarding relativistic energy are so broad
that they were not completely recognized for some years after Einstein published them in 1905, nor was the experimental
proof that they are correct widely recognized at first. Einstein, it should be noted, did understand and describe the meanings
and implications of his theory.

Example 5.13

Calculating Rest Energy
Calculate the rest energy of a 1.00-g mass.
Strategy

One gram is a small mass—Iless than one-half the mass of a penny. We can multiply this mass, in SI units, by the
speed of light squared to find the equivalent rest energy.

Solution
a. Identify the knowns: m = 1.00 X 1073 kg; ¢ =3.00x 108 mis.

b. Identify the unknown: E,.

c. Express the answer as an equation: Ey = me?.

d. Do the calculation:
Ey =mc? = (1.00x 107 kg)(3.00x 10® my/s)>
=9.00x 10" kg -m?/s2.
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e. Convert units. Noting that 1kg- m?/s2 = 11J, we see the rest energy is:

Ey=9.00x10"3 7.

Significance
This is an enormous amount of energy for a 1.00-g mass. Rest energy is large because the speed of light c is a

large number and c?isa very large number, so that me? is huge for any macroscopic mass. The 9.00 X 10131

rest mass energy for 1.00 g is about twice the energy released by the Hiroshima atomic bomb and about 10,000
times the kinetic energy of a large aircraft carrier.

Today, the practical applications of the conversion of mass into another form of energy, such as in nuclear weapons and
nuclear power plants, are well known. But examples also existed when Einstein first proposed the correct form of relativistic
energy, and he did describe some of them. Nuclear radiation had been discovered in the previous decade, and it had been
a mystery as to where its energy originated. The explanation was that, in some nuclear processes, a small amount of mass
is destroyed and energy is released and carried by nuclear radiation. But the amount of mass destroyed is so small that it is
difficult to detect that any is missing. Although Einstein proposed this as the source of energy in the radioactive salts then
being studied, it was many years before there was broad recognition that mass could be and, in fact, commonly is, converted
to energy (Figure 5.28).

(b)

Figure 5.28 (a) The sun and (b) the Susquehanna Steam Electric Station both convert mass into energy—the sun via
nuclear fusion, and the electric station via nuclear fission. (credit a: modification of work by NASA; credit b: modification
of work by “ChNPP”/Wikimedia Commons)

Because of the relationship of rest energy to mass, we now consider mass to be a form of energy rather than something
separate. There had not been even a hint of this prior to Einstein’s work. Energy-mass equivalence is now known to be the
source of the sun’s energy, the energy of nuclear decay, and even one of the sources of energy keeping Earth’s interior hot.

Stored Energy and Potential Energy

What happens to energy stored in an object at rest, such as the energy put into a battery by charging it, or the energy stored
in a toy gun’s compressed spring? The energy input becomes part of the total energy of the object and thus increases its rest
mass. All stored and potential energy becomes mass in a system. In seeming contradiction, the principle of conservation
of mass (meaning total mass is constant) was one of the great laws verified by nineteenth-century science. Why was it not
noticed to be incorrect? The following example helps answer this question.
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Example 5.14

Calculating Rest Mass
A car battery is rated to be able to move 600 ampere-hours (A -h) of charge at 12.0 V. (a) Calculate the increase

in rest mass of such a battery when it is taken from being fully depleted to being fully charged, assuming none of
the chemical reactants enter or leave the battery. (b) What percent increase is this, given that the battery’s mass is
20.0 kg?

Strategy
In part (a), we first must find the energy stored as chemical energy E},,. in the battery, which equals the electrical
energy the battery can provide. Because E},; =gV, we have to calculate the charge q in 600 A -h, which

is the product of the current I and the time t. We then multiply the result by 12.0 V. We can then calculate the
battery’s increase in mass using Ey,, = (Am)cz. Part (b) is a simple ratio converted into a percentage.

Solution for (a)
a. Identify the knowns: /-1 =600A-h;V =12.0V; c =3.00 x 108 m/s.

b. Identify the unknown: Am.

c. Express the answer as an equation:

Epy = (Am)c?

d. Do the calculation:
_ (600 A -h)12.0V)
m=-————a—
(3.00x 10°)

Write amperes A as coulombs per second (C/s), and convert hours into seconds:

(600 C/s - h)(26%05)(12.0J/C)

(3.00 x 108 m/s)>
=2.88x%x 10710 kg.

where we have used the conversion 1kg- m2/s?=11.

Solution for (b)

For part (b):
a. Identify the knowns: Am = 2.88 X IO_IOkg; m = 20.0 kg.
b. Identify the unknown: % change.

c. Express the answer as an equation: % increase = AWm %X 100%.

d. Do the calculation:
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% increase = % x 100%

_2.88x 10710 kg
~ 7 200kg

=1.44%107°%.

x 100%

Significance

Both the actual increase in mass and the percent increase are very small, because energy is divided by 2, a
very large number. We would have to be able to measure the mass of the battery to a precision of a billionth of a
percent, or 1 part in 10 "1 to notice this increase. It is no wonder that the mass variation is not readily observed.

In fact, this change in mass is so small that we may question how anyone could verify that it is real. The answer is
found in nuclear processes in which the percentage of mass destroyed is large enough to be measured accurately.
The mass of the fuel of a nuclear reactor, for example, is measurably smaller when its energy has been used. In
that case, stored energy has been released (converted mostly into thermal energy to power electric generators) and
the rest mass has decreased. A decrease in mass also occurs from using the energy stored in a battery, except that
the stored energy is much greater in nuclear processes, making the change in mass measurable in practice as well
as in theory.

Relativistic Energy and Momentum

We know classically that kinetic energy and momentum are related to each other, because:

2 2
mu )
classzé)m:(zm) z%mu :

K

Relativistically, we can obtain a relationship between energy and momentum by algebraically manipulating their defining
equations. This yields:

B2 = (pc)z + (mcH?, (5.11)

where E is the relativistic total energy, E = mc? N1 = u?/c?, and p is the relativistic momentum. This relationship

between relativistic energy and relativistic momentum is more complicated than the classical version, but we can gain some
interesting new insights by examining it. First, total energy is related to momentum and rest mass. At rest, momentum is

zero, and the equation gives the total energy to be the rest energy mc? (so this equation is consistent with the discussion
of rest energy above). However, as the mass is accelerated, its momentum p increases, thus increasing the total energy. At
sufficiently high velocities, the rest energy term (mcz)2 becomes negligible compared with the momentum term (pc)z;

thus, E = pc at extremely relativistic velocities.

If we consider momentum p to be distinct from mass, we can determine the implications of the equation
E?= (pc)2 + (mcz)z, for a particle that has no mass. If we take m to be zero in this equation, then £ = pc, orp = E/c.

Massless particles have this momentum. There are several massless particles found in nature, including photons (which

are packets of electromagnetic radiation). Another implication is that a massless particle must travel at speed ¢ and only at
speed c. It is beyond the scope of this text to examine the relationship in the equation E 2= (pc)2 + (mcz)2 in detail, but
you can see that the relationship has important implications in special relativity.

@/ 5.9 Check Your Understanding What is the kinetic energy of an electron if its speed is 0.992c?
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CHAPTER 5 REVIEW

KEY TERMS

classical (Galilean) velocity addition method of adding velocities when v<<c; velocities add like regular numbers
in one-dimensional motion: u = v+ u’, where v is the velocity between two observers, u is the velocity of an object

relative to one observer, and u’ is the velocity relative to the other observer

event occurrence in space and time specified by its position and time coordinates (x, y, z, t) measured relative to a frame of
reference

first postulate of special relativity laws of physics are the same in all inertial frames of reference

Galilean relativity if an observer measures a velocity in one frame of reference, and that frame of reference is moving
with a velocity past a second reference frame, an observer in the second frame measures the original velocity as the
vector sum of these velocities

Galilean transformation relation between position and time coordinates of the same events as seen in different
reference frames, according to classical mechanics

inertial frame of reference reference frame in which a body at rest remains at rest and a body in motion moves at a
constant speed in a straight line unless acted on by an outside force

length contraction decrease in observed length of an object from its proper length L, to length L when its length is
observed in a reference frame where it is traveling at speed v

Lorentz transformation relation between position and time coordinates of the same events as seen in different reference
frames, according to the special theory of relativity

Michelson-Morley experiment investigation performed in 1887 that showed that the speed of light in a vacuum is the
same in all frames of reference from which it is viewed

proper length L; the distance between two points measured by an observer who is at rest relative to both of the points;

for example, earthbound observers measure proper length when measuring the distance between two points that are
stationary relative to Earth

proper time ATt is the time interval measured by an observer who sees the beginning and end of the process that the time
interval measures occur at the same location

relativistic kinetic energy kinetic energy of an object moving at relativistic speeds

relativistic momentum ' the momentum of an object moving at relativistic velocity; p =ym u

relativistic velocity addition method of adding velocities of an object moving at a relativistic speeds

rest energy epergy stored in an object at rest: Ey= mc?

rest frame frame of reference in which the observer is at rest
rest mass mass of an object as measured by an observer at rest relative to the object

second postulate of special relativity light travels in a vacuum with the same speed c in any direction in all inertial
frames

special theory of relativity theory that Albert Einstein proposed in 1905 that assumes all the laws of physics have the
same form in every inertial frame of reference, and that the speed of light is the same within all inertial frames

speed of light ultimate speed limit for any particle having mass

time dilation lengthening of the time interval between two events when seen in a moving inertial frame rather than the rest
frame of the events (in which the events occur at the same location)
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total energy g, of 411 energies for a particle, including rest energy and kinetic energy, given for a particle of mass m and

speed uby E = ymc2, where y = %
] — 1=
2
world line path through space-time
KEY EQUATIONS
Ar=—BT - 43
Time dilation 12
2
— 1
r= 2
Lorentz factor 1 -2
2
L
Length contraction L=Ly\1l- % = 70
Galilean transformation x=x'+vt, y=y, z=27, 1=t
. _ ' +vxlc?
Lorentz transformation r= )
1—-v7/c
Y= x' + vt
1=v2/c?
y=y
z=7
. _ _t—vxlc?
Inverse Lorentz transformation V==
1—-v/c
x/ — X —vt
V1 —v2/c?
y=y
7=z
Space-time invariants (As)? = (A0 + (Ay)2 +(A2)?% = c2(Aan?
(Ax)% + (Ay? + (Az)?
B = — (Aie? = (an? - il |
C
N : o u+v uyly ully
Relativistic velocity addition Ux=|"T7"7""">2 W=7 2 Y| 2
1 +vu'/c 1 +vu'/c 1 +vu'/c
1+¢
Relativistic Doppler effect for wavelength Aobs = s IT;
C
v
Relativistic Doppler effect for frequency Jobs = fs\l7/+
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P =ymu =224 _ u
Relativistic momentum P =7 - i
T
E= ymcz, where y = 1
Relativistic total energy | _u2
2
K. = 2 _ 1
el = (y = Dmc=, wherey =
Relativistic kinetic energy 1= W
2
c
SUMMARY

5.1 Invariance of Physical Laws

Relativity is the study of how observers in different reference frames measure the same event.

Modern relativity is divided into two parts. Special relativity deals with observers in uniform (unaccelerated)
motion, whereas general relativity includes accelerated relative motion and gravity. Modern relativity is consistent
with all empirical evidence thus far and, in the limit of low velocity and weak gravitation, gives close agreement
with the predictions of classical (Galilean) relativity.

An inertial frame of reference is a reference frame in which a body at rest remains at rest and a body in motion
moves at a constant speed in a straight line unless acted upon by an outside force.

Modern relativity is based on Einstein’s two postulates. The first postulate of special relativity is that the laws of
physics are the same in all inertial frames of reference. The second postulate of special relativity is that the speed of
light c is the same in all inertial frames of reference, independent of the relative motion of the observer and the light
source.

The Michelson-Morley experiment demonstrated that the speed of light in a vacuum is independent of the motion
of Earth about the sun.

5.2 Relativity of Simultaneity

Two events are defined to be simultaneous if an observer measures them as occurring at the same time (such as by
receiving light from the events).

Two events at locations a distance apart that are simultaneous for an observer at rest in one frame of reference are
not necessarily simultaneous for an observer at rest in a different frame of reference.

5.3 Time Dilation

Two events are defined to be simultaneous if an observer measures them as occurring at the same time. They are not
necessarily simultaneous to all observers—simultaneity is not absolute.

Time dilation is the lengthening of the time interval between two events when seen in a moving inertial frame rather
than the rest frame of the events (in which the events occur at the same location).

Observers moving at a relative velocity v do not measure the same elapsed time between two events. Proper time
Az is the time measured in the reference frame where the start and end of the time interval occur at the same
location. The time interval A¢ measured by an observer who sees the frame of events moving at speed v is related
to the proper time interval Az of the events by the equation:

At = At _ yAT,

12

c

(3]

where
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The premise of the twin paradox is faulty because the traveling twin is accelerating. The journey is not symmetrical
for the two twins.

Time dilation is usually negligible at low relative velocities, but it does occur, and it has been verified by
experiment.

The proper time is the shortest measure of any time interval. Any observer who is moving relative to the system
being observed measures a time interval longer than the proper time.

5.4 Length Contraction

All observers agree upon relative speed.

Distance depends on an observer’s motion. Proper length L, is the distance between two points measured by an
observer who is at rest relative to both of the points.

Length contraction is the decrease in observed length of an object from its proper length L, to length L when its
length is observed in a reference frame where it is traveling at speed v.

The proper length is the longest measurement of any length interval. Any observer who is moving relative to the
system being observed measures a length shorter than the proper length.

5.5 The Lorentz Transformation

The Galilean transformation equations describe how, in classical nonrelativistic mechanics, the position, velocity,
and accelerations measured in one frame appear in another. Lengths remain unchanged and a single universal time
scale is assumed to apply to all inertial frames.

Newton’s laws of mechanics obey the principle of having the same form in all inertial frames under a Galilean
transformation, given by

x=x"4+vt, y=y, z=27, t=t.

The concept that times and distances are the same in all inertial frames in the Galilean transformation, however, is
inconsistent with the postulates of special relativity.

The relativistically correct Lorentz transformation equations are

Lorentz transformation Inverse Lorentz transformation

t= t 4+ vx'/c? = 1 —vx/c?
V1 —v2/c? V1 —v2/c?

r =X vt ¥ = XVt
V1 —v2/c? V1 —v2/c?

y=Yy y =y

’ r_

We can obtain these equations by requiring an expanding spherical light signal to have the same shape and speed of
growth, c, in both reference frames.

Relativistic phenomena can be explained in terms of the geometrical properties of four-dimensional space-time, in
which Lorentz transformations correspond to rotations of axes.

The Lorentz transformation corresponds to a space-time axis rotation, similar in some ways to a rotation of space
axes, but in which the invariant spatial separation is given by As rather than distances Ar, and that the Lorentz

transformation involving the time axis does not preserve perpendicularity of axes or the scales along the axes.
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The analysis of relativistic phenomena in terms of space-time diagrams supports the conclusion that these
phenomena result from properties of space and time itself, rather than from the laws of electromagnetism.

5.6 Relativistic Velocity Transformation

With classical velocity addition, velocities add like regular numbers in one-dimensional motion: u =v+u’,
where v is the velocity between two observers, u is the velocity of an object relative to one observer, and u’ is the
velocity relative to the other observer.

Velocities cannot add to be greater than the speed of light.

Relativistic velocity addition describes the velocities of an object moving at a relativistic velocity.

5.7 Doppler Effect for Light

An observer of electromagnetic radiation sees relativistic Doppler effects if the source of the radiation is moving
relative to the observer. The wavelength of the radiation is longer (called a red shift) than that emitted by the source
when the source moves away from the observer and shorter (called a blue shift) when the source moves toward the
observer. The shifted wavelength is described by the equation:

1+
1—

o<

Aobs = 4s

o<

where A, is the observed wavelength, A is the source wavelength, and v is the relative velocity of the source to

obs

the observer.

5.8 Relativistic Momentum

The law of conservation of momentum is valid for relativistic momentum whenever the net external force is zero.
The relativistic momentum is p = ymu, where m is the rest mass of the object, u is its velocity relative to an

1

1 =i

c

observer, and the relativistic factor is y =

At low velocities, relativistic momentum is equivalent to classical momentum.

Relativistic momentum approaches infinity as u approaches c. This implies that an object with mass cannot reach
the speed of light.

5.9 Relativistic Energy

The relativistic work-energy theorem is W = E — E; = ;/mc2 —mc? = &y — 1)mc2.
Relativistically, W = K| where K is the relativistic kinetic energy.

1 .
s
c

An object of mass m at velocity u has kinetic energy K = (y — 1)mc2, where y =

(3]

At low velocities, relativistic kinetic energy reduces to classical kinetic energy.

No object with mass can attain the speed of light, because an infinite amount of work and an infinite amount of
energy input is required to accelerate a mass to the speed of light.

Relativistic energy is conserved as long as we define it to include the possibility of mass changing to energy.

1

1 —u=

The total energy of a particle with mass m traveling at speed u is defined as E = ymcz, where y =

u denotes the velocity of the particle.
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* The rest energy of an object of mass mis Ej = mc?, meaning that mass is a form of energy. If energy is stored in

an object, its mass increases. Mass can be destroyed to release energy.

¢ We do not ordinarily notice the increase or decrease in mass of an object because the change in mass is so small

for a large increase in energy. The equation E 2= (pc)2 + (mc

2)2 relates the relativistic total energy E and the

relativistic momentum p. At extremely high velocities, the rest energy mc? becomes negligible, and E = pc.

CONCEPTUAL QUESTIONS

5.1 Invariance of Physical Laws

1. Which of Einstein’s postulates of special relativity
includes a concept that does not fit with the ideas of
classical physics? Explain.

2. Is Earth an inertial frame of reference? Is the sun?
Justify your response.

3. When you are flying in a commercial jet, it may appear
to you that the airplane is stationary and Earth is moving
beneath you. Is this point of view valid? Discuss briefly.

5.3 Time Dilation

4. (a) Does motion affect the rate of a clock as measured
by an observer moving with it? (b) Does motion affect how
an observer moving relative to a clock measures its rate?

5. To whom does the elapsed time for a process seem
to be longer, an observer moving relative to the process
or an observer moving with the process? Which observer
measures the interval of proper time?

6. (a) How could you travel far into the future of Earth
without aging significantly? (b) Could this method also
allow you to travel into the past?

5.4 Length Contraction

7. To whom does an object seem greater in length, an
observer moving with the object or an observer moving
relative to the object? Which observer measures the
object’s proper length?

8. Relativistic effects such as time dilation and length
contraction are present for cars and airplanes. Why do these
effects seem strange to us?

9. Suppose an astronaut is moving relative to Earth at
a significant fraction of the speed of light. (a) Does he
observe the rate of his clocks to have slowed? (b) What
change in the rate of earthbound clocks does he see? (c)
Does his ship seem to him to shorten? (d) What about the
distance between two stars that lie in the direction of his
motion? (e) Do he and an earthbound observer agree on his
velocity relative to Earth?

5.7 Doppler Effect for Light

10. Explain the meaning of the terms “red shift” and “blue
shift” as they relate to the relativistic Doppler effect.

11. What happens to the relativistic Doppler effect when
relative velocity is zero? Is this the expected result?

12. TIs the relativistic Doppler effect consistent with the

classical Doppler effect in the respect that 4, is larger for

motion away?

13. All galaxies farther away than about 50 X 108 ly

exhibit a red shift in their emitted light that is proportional
to distance, with those farther and farther away having
progressively greater red shifts. What does this imply,
assuming that the only source of red shift is relative
motion?

5.8 Relativistic Momentum

14. How does modern relativity modify the law of
conservation of momentum?

15. Is it possible for an external force to be acting on
a system and relativistic momentum to be conserved?
Explain.

5.9 Relativistic Energy

16. How are the classical laws of conservation of energy
and conservation of mass modified by modern relativity?
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17. What happens to the mass of water in a pot when it
cools, assuming no molecules escape or are added? Is this
observable in practice? Explain.

18. Consider a thought experiment. You place an
expanded balloon of air on weighing scales outside in the
early morning. The balloon stays on the scales and you
are able to measure changes in its mass. Does the mass
of the balloon change as the day progresses? Discuss the
difficulties in carrying out this experiment.

19. The mass of the fuel in a nuclear reactor decreases by
an observable amount as it puts out energy. Is the same true
for the coal and oxygen combined in a conventional power
plant? If so, is this observable in practice for the coal and
oxygen? Explain.

PROBLEMS

5.3 Time Dilation
23. (a) Whatis y if v=0.250c? (b) If v =0.500c¢?

24. (a) Whatis y if v=10.100c? (b)If v =0.900c?

25. Particles called x -mesons are produced by accelerator
beams. If these particles travel at 2.70 X 108 m/s and live

2.60% 10785 when at rest relative to an observer, how
long do they live as viewed in the laboratory?

26. Suppose a particle called a kaon is created by cosmic
radiation striking the atmosphere. It moves by you at

0.980c, and it lives 1.24 X 10785 when at rest relative

to an observer. How long does it live as you observe it?

27. A neutral z-meson is a particle that can be created

by accelerator beams. If one such particle lives

1.40x 1071 s as measured in the laboratory, and

0.840 x 10710 5 when at rest relative to an observer, what
is its velocity relative to the laboratory?

28. A neutron lives 900 s when at rest relative to an
observer. How fast is the neutron moving relative to an
observer who measures its life span to be 2065 s?

29. If relativistic effects are to be less than 1%, then
y must be less than 1.01. At what relative velocity is

y=1.01?

30. If relativistic effects are to be less than 3%, then
y must be less than 1.03. At what relative velocity is

y=1.03?
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20. We know that the velocity of an object with mass
has an upper limit of c. Is there an upper limit on its
momentum? Its energy? Explain.

21. Given the fact that light travels at c, can it have mass?
Explain.

22. If you use an Earth-based telescope to project a laser
beam onto the moon, you can move the spot across the
moon’s surface at a velocity greater than the speed of light.
Does this violate modern relativity? (Note that light is
being sent from the Earth to the moon, not across the
surface of the moon.)

5.4 Length Contraction

31. A spaceship, 200 m long as seen on board, moves by
the Earth at 0.970c. What is its length as measured by an
earthbound observer?

32. How fast would a 6.0 m-long sports car have to be
going past you in order for it to appear only 5.5 m long?

33. (a) How far does the muon in Example 5.1 travel
according to the earthbound observer? (b) How far does it
travel as viewed by an observer moving with it? Base your
calculation on its velocity relative to the Earth and the time
it lives (proper time). (c) Verify that these two distances are
related through length contraction y = 3.20.

34. (a) How long would the muon in Example 5.1 have
lived as observed on Earth if its velocity was 0.0500c¢ ?

(b) How far would it have traveled as observed on Earth?
(c) What distance is this in the muon’s frame?

35. Unreasonable Results A spaceship is heading
directly toward Earth at a velocity of 0.800c. The astronaut
on board claims that he can send a canister toward the Earth
at 1.20c relative to Earth. (a) Calculate the velocity the
canister must have relative to the spaceship. (b) What is
unreasonable about this result? (c) Which assumptions are
unreasonable or inconsistent?
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5.5 The Lorentz Transformation

36. Describe the following physical occurrences as events,
that is, in the form (x, y, z, t): (a) A postman rings a doorbell
of a house precisely at noon. (b) At the same time as the
doorbell is rung, a slice of bread pops out of a toaster that
is located 10 m from the door in the east direction from the
door. (c) Ten seconds later, an airplane arrives at the airport,
which is 10 km from the door in the east direction and 2 km
to the south.

37. Describe what happens to the angle a = tan(v/c),

and therefore to the transformed axes in Figure 5.17, as
the relative velocity v of the S and S’ frames of reference

approaches c.

38. Describe the shape of the world line on a space-
time diagram of (a) an object that remains at rest at a
specific position along the x-axis; (b) an object that moves
at constant velocity u in the x-direction; (c) an object that
begins at rest and accelerates at a constant rate of in the
positive x-direction.

39. A man standing still at a train station watches two boys
throwing a baseball in a moving train. Suppose the train is
moving east with a constant speed of 20 m/s and one of the
boys throws the ball with a speed of 5 m/s with respect to
himself toward the other boy, who is 5 m west from him.
What is the velocity of the ball as observed by the man on
the station?

40. When observed from the sun at a particular instant,
Earth and Mars appear to move in opposite directions with
speeds 108,000 km/h and 86,871 km/h, respectively. What
is the speed of Mars at this instant when observed from
Earth?

41. A man is running on a straight road perpendicular to
a train track and away from the track at a speed of 12 m/
s. The train is moving with a speed of 30 m/s with respect
to the track. What is the speed of the man with respect to a
passenger sitting at rest in the train?

42. A man is running on a straight road that makes 30°

with the train track. The man is running in the direction on
the road that is away from the track at a speed of 12 m/s.
The train is moving with a speed of 30 m/s with respect to
the track. What is the speed of the man with respect to a
passenger sitting at rest in the train?
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43. In a frame at rest with respect to the billiard table, a
billiard ball of mass m moving with speed v strikes another
billiard ball of mass m at rest. The first ball comes to rest
after the collision while the second ball takes off with speed
v in the original direction of the motion of the first ball.
This shows that momentum is conserved in this frame. (a)
Now, describe the same collision from the perspective of a
frame that is moving with speed v in the direction of the
motion of the first ball. (b) Is the momentum conserved in
this frame?

44. 1In a frame at rest with respect to the billiard table,
two billiard balls of same mass m are moving toward each
other with the same speed v. After the collision, the two
balls come to rest. (a) Show that momentum is conserved
in this frame. (b) Now, describe the same collision from
the perspective of a frame that is moving with speed v
in the direction of the motion of the first ball. (c) Is the
momentum conserved in this frame?

45. In a frame S, two events are observed: event 1: a
pion is created at rest at the origin and event 2: the pion
disintegrates after time 7. Another observer in a frame S’

is moving in the positive direction along the positive x-
axis with a constant speed v and observes the same two
events in his frame. The origins of the two frames coincide
at t =1t = 0. (a) Find the positions and timings of these

two events in the frame S’ (a) according to the Galilean

transformation, and (b) according to the Lorentz

transformation.

5.6 Relativistic Velocity Transformation

46. If two spaceships are heading directly toward each
other at 0.800c, at what speed must a canister be shot from
the first ship to approach the other at 0.999c as seen by the
second ship?

47. Two planets are on a collision course, heading directly
toward each other at 0.250c. A spaceship sent from one
planet approaches the second at 0.750c as seen by the
second planet. What is the velocity of the ship relative to
the first planet?

48. When a missile is shot from one spaceship toward
another, it leaves the first at 0.950c and approaches the
other at 0.750c. What is the relative velocity of the two
ships?

49. What is the relative velocity of two spaceships if one
fires a missile at the other at 0.750c and the other observes
it to approach at 0.950c?
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50. Prove that for any relative velocity v between two
observers, a beam of light sent from one to the other will
approach at speed c (provided that v is less than c, of
course).

51. Show that for any relative velocity v between two
observers, a beam of light projected by one directly away
from the other will move away at the speed of light
(provided that v is less than c, of course).

5.7 Doppler Effect for Light

52. A highway patrol officer uses a device that measures
the speed of vehicles by bouncing radar off them and
measuring the Doppler shift. The outgoing radar has a
frequency of 100 GHz and the returning echo has a
frequency 15.0 kHz higher. What is the velocity of the
vehicle? Note that there are two Doppler shifts in echoes.
Be certain not to round off until the end of the problem,
because the effect is small.

5.8 Relativistic Momentum

53. Find the momentum of a helium nucleus having a
mass of 6.68 x 10727 kg that is moving at 0.200c.

54. What is the momentum of an electron traveling at
0.980c?

55. (a) Find the momentum of a 1.00 X 10° -kg asteroid

heading towards Earth at 30.0 km/s. (b) Find the ratio of
this momentum to the classical momentum. (Hint: Use the

approximation that y = 1 + (1/2)\/2/6’2 at low velocities.)

56. (a) What is the momentum of a 2000-kg satellite
orbiting at 4.00 km/s? (b) Find the ratio of this momentum
to the classical momentum. (Hint: Use the approximation

that y =1+ (1/2)v2/c2 at low velocities.)

57. What is the velocity of an electron that has a
momentum of 3.04 x 107! kg-m/s ? Note that you

must calculate the velocity to at least four digits to see the
difference from c.

58. Find the velocity of a proton that has a momentum of
4.48x 1071 kg - mys.

5.9 Relativistic Energy
59. What is the rest energy of an electron, given its mass is
9.11 x 107! kg? Give your answer in joules and MeV.
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60. Find the rest energy in joules and MeV of a proton,
given its mass is 1.67 X 107% kg.

61. If the rest energies of a proton and a neutron (the
two constituents of nuclei) are 938.3 and 939.6 MeV,
respectively, what is the difference in their mass in
kilograms?

62. The Big Bang that began the universe is estimated
to have released 10 J of energy. How many stars could
half this energy create, assuming the average star’s mass is
4.00x 10%° kg ?

63. A supernova explosion of a 2.00 X 103! kg star

produces 1.00 X 1047 of energy. (a) How many

kilograms of mass are converted to energy in the explosion?
(b) What is the ratio Am/m of mass destroyed to the

original mass of the star?

64. (a) Using data from m58312 (http://cnx.org/
content/m58312/latest/#fs-id1165039443587) ,
calculate the mass converted to energy by the fission of
1.00 kg of uranium. (b) What is the ratio of mass destroyed
to the original mass, Am/m?

65. (a) Using data from m58312 (http://cnx.org/
content/m58312/latest/#fs-id1165039443587) ,
calculate the amount of mass converted to energy by the
fusion of 1.00 kg of hydrogen. (b) What is the ratio of
mass destroyed to the original mass, Am/m ? (c) How

does this compare with Am/m for the fission of 1.00 kg of
uranium?

66. There is approximately 10347 of energy available
from fusion of hydrogen in the world’s oceans. (a) If
1033 J of this energy were utilized, what would be the

decrease in mass of the oceans? (b) How great a volume
of water does this correspond to? (c) Comment on whether
this is a significant fraction of the total mass of the oceans.

67. A muon has a rest mass energy of 105.7 MeV, and it
decays into an electron and a massless particle. (a) If all
the lost mass is converted into the electron’s kinetic energy,
find y for the electron. (b) What is the electron’s velocity?

68. A x-meson is a particle that decays into a muon and a
massless particle. The 7 -meson has a rest mass energy of

139.6 MeV, and the muon has a rest mass energy of 105.7
MeV. Suppose the 7 -meson is at rest and all of the missing

mass goes into the muon’s kinetic energy. How fast will the
muon move?
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69. (a) Calculate the relativistic kinetic energy of a
1000-kg car moving at 30.0 m/s if the speed of light were
only 45.0 m/s. (b) Find the ratio of the relativistic kinetic
energy to classical.

70. Alpha decay is nuclear decay in which a helium
nucleus is emitted. If the helium nucleus has a mass of

6.80x 10727 kg and is given 5.00 MeV of kinetic energy,

what is its velocity?

ADDITIONAL PROBLEMS

72. (a) At what relative velocity is y = 1.50? (b) At what
relative velocity is y = 100?

73. (a) At what relative velocity is y = 2.00? (b) At what

relative velocity is y = 10.0?

74. Unreasonable Results (a) Find the value of y

required for the following situation. An earthbound
observer measures 23.9 h to have passed while signals from
a high-velocity space probe indicate that 24.0 h have passed
on board. (b) What is unreasonable about this result? (c)
Which assumptions are unreasonable or inconsistent?

75. (a) How long does it take the astronaut in Example
5.5 to travel 4.30 ly at 0.99944c¢ (as measured by the

earthbound observer)? (b) How long does it take according
to the astronaut? (c) Verify that these two times are related
through time dilation with y = 30.00 as given.

76. (a) How fast would an athlete need to be running
for a 100- m race to look 100 yd long? (b) Is the answer
consistent with the fact that relativistic effects are difficult
to observe in ordinary circumstances? Explain.

77. (a) Find the value of y for the following situation. An

astronaut measures the length of his spaceship to be 100 m,
while an earthbound observer measures it to be 25.0 m. (b)
What is the speed of the spaceship relative to Earth?

78. A clock in a spaceship runs one-tenth the rate at which
an identical clock on Earth runs. What is the speed of the
spaceship?
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71. (a) Beta decay is nuclear decay in which an electron
is emitted. If the electron is given 0.750 MeV of kinetic
energy, what is its velocity? (b) Comment on how the high
velocity is consistent with the kinetic energy as it compares
to the rest mass energy of the electron.

79. An astronaut has a heartbeat rate of 66 beats per
minute as measured during his physical exam on Earth. The
heartbeat rate of the astronaut is measured when he is in
a spaceship traveling at 0.5c with respect to Earth by an
observer (A) in the ship and by an observer (B) on Earth.
(a) Describe an experimental method by which observer B
on Earth will be able to determine the heartbeat rate of the
astronaut when the astronaut is in the spaceship. (b) What
will be the heartbeat rate(s) of the astronaut reported by
observers A and B?

80. A spaceship (A) is moving at speed c/2 with respect
to another spaceship (B). Observers in A and B set their
clocks so that the event at (x, y, z, t) of turning on a laser in
spaceship B has coordinates (0, 0, 0, 0) in A and also (0, 0,
0, 0) in B. An observer at the origin of B turns on the laser
at t =0 and turns it off at r = 7 in his time. What is the
time duration between on and off as seen by an observer in
A?

81. Same two observers as in the preceding exercise, but
now we look at two events occurring in spaceship A. A
photon arrives at the origin of A at its time 7= 0 and

another photon arrives at (x =1.00m, 0, 0) at =0 in
the frame of ship A. (a) Find the coordinates and times of
the two events as seen by an observer in frame B. (b) In

which frame are the two events simultaneous and in which
frame are they are not simultaneous?

82. Same two observers as in the preceding exercises. A
rod of length 1 m is laid out on the x-axis in the frame of
B from origin to (x = 1.00 m, 0, 0). What is the length of

the rod observed by an observer in the frame of spaceship
A?

83. An observer at origin of inertial frame S sees a
flashbulb go off at x=150km, y=15.0km, and
z=1.00km at time ¢ =4.5% 10™%s. At what time and
position in the S’ system did the flash occur, if S’ is

moving along shared x-direction with S at a velocity
v=0.6c?
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84. An observer sees two events 1.5X 1073 s apart at

a separation of 800 m. How fast must a second observer
be moving relative to the first to see the two events occur
simultaneously?

85. An observer standing by the railroad tracks sees two
bolts of lightning strike the ends of a 500-m-long train
simultaneously at the instant the middle of the train passes
him at 50 m/s. Use the Lorentz transformation to find the
time between the lightning strikes as measured by a
passenger seated in the middle of the train.

86. Two astronomical events are observed from Earth to
occur at a time of 1 s apart and a distance separation of

15x10°m from each other. (a) Determine whether

separation of the two events is space like or time like. (b)
State what this implies about whether it is consistent with
special relativity for one event to have caused the other?

87. Two astronomical events are observed from Earth to
occur at a time of 0.30 s apart and a distance separation of

2.0% 10°m from each other. How fast must a spacecraft

travel from the site of one event toward the other to make
the events occur at the same time when measured in the
frame of reference of the spacecraft?

88. A spacecraft starts from being at rest at the origin and
accelerates at a constant rate g, as seen from Earth, taken to
be an inertial frame, until it reaches a speed of ¢/2. (a) Show
that the increment of proper time is related to the elapsed

time in Earth’s frame by: dr = V1 — v2/c2dt.

(b) Find an expression for the elapsed time to reach speed
c/2 as seen in Earth’s frame. (c) Use the relationship in (a)
to obtain a similar expression for the elapsed proper time to
reach ¢/2 as seen in the spacecraft, and determine the ratio
of the time seen from Earth with that on the spacecraft to
reach the final speed.

89. (a) All but the closest galaxies are receding from our
own Milky Way Galaxy. If a galaxy 12.0 X 10° ly away

is receding from us at 0.900c, at what velocity relative to
us must we send an exploratory probe to approach the other
galaxy at 0.990c as measured from that galaxy? (b) How
long will it take the probe to reach the other galaxy as
measured from Earth? You may assume that the velocity of
the other galaxy remains constant. (c) How long will it then
take for a radio signal to be beamed back? (All of this is
possible in principle, but not practical.)

90. Suppose a spaceship heading straight toward the Earth
at 0.750c can shoot a canister at 0.500c relative to the ship.
(a) What is the velocity of the canister relative to Earth, if it
is shot directly at Earth? (b) If it is shot directly away from
Earth?
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91. Repeat the preceding problem with the ship heading
directly away from Earth.

92. 1If a spaceship is approaching the Earth at 0.100c and
a message capsule is sent toward it at 0.100c relative to
Earth, what is the speed of the capsule relative to the ship?

93. (a) Suppose the speed of light were only 3000 m/s.
A jet fighter moving toward a target on the ground at 800
m/s shoots bullets, each having a muzzle velocity of 1000
m/s. What are the bullets’ velocity relative to the target?
(b) If the speed of light was this small, would you observe
relativistic effects in everyday life? Discuss.

94. If a galaxy moving away from the Earth has a speed
of 1000 km/s and emits 656 nm light characteristic of
hydrogen (the most common element in the universe). (a)
What wavelength would we observe on Earth? (b) What
type of electromagnetic radiation is this? (c) Why is the
speed of Earth in its orbit negligible here?

95. A space probe speeding towards the nearest star moves
at 0.250c and sends radio information at a broadcast

frequency of 1.00 GHz. What frequency is received on
Earth?

96. Near the center of our galaxy, hydrogen gas is moving
directly away from us in its orbit about a black hole. We
receive 1900 nm electromagnetic radiation and know that it
was 1875 nm when emitted by the hydrogen gas. What is
the speed of the gas?

97. (a) Calculate the speed of a 1.00-ug particle of dust

that has the same momentum as a proton moving at 0.999c.
(b) What does the small speed tell us about the mass of
a proton compared to even a tiny amount of macroscopic
matter?

98. (a) Calculate y for a proton that has a momentum of
1.00 kg - m/s. (b) What is its speed? Such protons form a

rare component of cosmic radiation with uncertain origins.

99. Show that the relativistic form of Newton’s second law

is(a) F= mdiL +; (b) Find the force needed
dt 5 32
(1 —u‘lc )
to accelerate a mass of 1 kg by 1 m/s? when it is traveling
at a velocity of c/2.
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100. A positron is an antimatter version of the electron,
having exactly the same mass. When a positron and an
electron meet, they annihilate, converting all of their mass
into energy. (a) Find the energy released, assuming
negligible kinetic energy before the annihilation. (b) If this
energy is given to a proton in the form of kinetic energy,
what is its velocity? (c) If this energy is given to another
electron in the form of kinetic energy, what is its velocity?

101. What is the kinetic energy in MeV of a m-meson
that lives 1.40x 107!¢ s as measured in the laboratory,

and 0.840 x 10710 s when at rest relative to an observer,
given that its rest energy is 135 MeV?

102. Find the kinetic energy in MeV of a neutron with a
measured life span of 2065 s, given its rest energy is 939.6
MeV, and rest life span is 900s.

103. (a) Show that (pc)z/(mcz)2 = }/2 — 1. This means

that at large velocities pc > > mc?. (b)Is E =~ pc when
y =30.0,

paradox?

as for the astronaut discussed in the twin

104. One cosmic ray neutron has a velocity of 0.250c
relative to the Earth. (a) What is the neutron’s total energy
in MeV? (b) Find its momentum. (c) Is E = pc in this

situation? Discuss in terms of the equation given in part (a)
of the previous problem.

105. Whatis y fora proton having a mass energy of 938.3

MeV accelerated through an effective potential of 1.0 TV
(teravolt)?

106. (a) What is the effective accelerating potential for
electrons at the Stanford Linear Accelerator, if

y = 1.00 x 103 for them? (b) What is their total energy

(nearly the same as kinetic in this case) in GeV?

107. (a) Using data from m58312 (http:/lcnx.orgl/
content/m58312/latest/#fs-id1165039443587) , find
the mass destroyed when the energy in a barrel of crude oil
is released. (b) Given these barrels contain 200 liters and

assuming the density of crude oil is 750kg/m3, what is

the ratio of mass destroyed to original mass, Am/m?
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108. (a) Calculate the energy released by the destruction
of 1.00 kg of mass. (b) How many kilograms could be lifted
to a 10.0 km height by this amount of energy?

109. A Van de Graaff accelerator utilizes a 50.0 MV
potential difference to accelerate charged particles such as
protons. (a) What is the velocity of a proton accelerated by
such a potential? (b) An electron?

110. Suppose you use an average of 500kW-h of

electric energy per month in your home. (a) How long
would 1.00 g of mass converted to electric energy with an
efficiency of 38.0% last you? (b) How many homes could
be supplied at the 500 kW -h per month rate for one year

by the energy from the described mass conversion?

111. (a) A nuclear power plant converts energy from
nuclear fission into electricity with an efficiency of 35.0%.
How much mass is destroyed in one year to produce a
continuous 1000 MW of electric power? (b) Do you think it
would be possible to observe this mass loss if the total mass

of the fuel is 10* kg?

112. Nuclear-powered rockets were researched for some
years before safety concerns became paramount. (a) What
fraction of a rocket’s mass would have to be destroyed
to get it into a low Earth orbit, neglecting the decrease
in gravity? (Assume an orbital altitude of 250 km, and
calculate both the kinetic energy (classical) and the
gravitational potential energy needed.) (b) If the ship has a

mass of 1.00 x 10° kg (100 tons), what total yield nuclear

explosion in tons of TNT is needed?

113. The sun produces energy at a rate of 3.85 X 1020 w
by the fusion of hydrogen. About 0.7% of each kilogram
of hydrogen goes into the energy generated by the Sun.
(a) How many kilograms of hydrogen undergo fusion each
second? (b) If the sun is 90.0% hydrogen and half of this
can undergo fusion before the sun changes character, how
long could it produce energy at its current rate? (c) How
many kilograms of mass is the sun losing per second? (d)
What fraction of its mass will it have lost in the time found
in part (b)?

114. Show that E”— p262 for a particle is invariant

under Lorentz transformations.
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6 | PHOTONS AND MATTER
WAVES
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Figure 6.1 In this image of pollen taken with an electron microscope, the bean-shaped grains are about 50um long. Electron

microscopes can have a much higher resolving power than a conventional light microscope because electron wavelengths can be
100,000 times shorter than the wavelengths of visible-light photons. (credit: modification of work by Dartmouth College Electron
Microscope Facility)

Chapter Outline

6.1 Blackbody Radiation

6.2 Photoelectric Effect

6.3 The Compton Effect

6.4 Bohr’s Model of the Hydrogen Atom
6.5 De Broglie’s Matter Waves

6.6 Wave-Particle Duality

Introduction

Two of the most revolutionary concepts of the twentieth century were the description of light as a collection of particles,
and the treatment of particles as waves. These wave properties of matter have led to the discovery of technologies such as
electron microscopy, which allows us to examine submicroscopic objects such as grains of pollen, as shown above.

In this chapter, you will learn about the energy quantum, a concept that was introduced in 1900 by the German physicist
Max Planck to explain blackbody radiation. We discuss how Albert Einstein extended Planck’s concept to a quantum of
light (a “photon™) to explain the photoelectric effect. We also show how American physicist Arthur H. Compton used the
photon concept in 1923 to explain wavelength shifts observed in X-rays. After a discussion of Bohr’s model of hydrogen, we
describe how matter waves were postulated in 1924 by Louis-Victor de Broglie to justify Bohr’s model and we examine the
experiments conducted in 1923-1927 by Clinton Davisson and Lester Germer that confirmed the existence of de Broglie’s
matter waves.
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6.1 | Blackbody Radiation

Learning Objectives

By the end of this section you will be able to:

* Apply Wien’s and Stefan’s laws to analyze radiation emitted by a blackbody
* Explain Planck’s hypothesis of energy quanta

All bodies emit electromagnetic radiation over a range of wavelengths. In an earlier chapter, we learned that a cooler body
radiates less energy than a warmer body. We also know by observation that when a body is heated and its temperature rises,
the perceived wavelength of its emitted radiation changes from infrared to red, and then from red to orange, and so forth.
As its temperature rises, the body glows with the colors corresponding to ever-smaller wavelengths of the electromagnetic
spectrum. This is the underlying principle of the incandescent light bulb: A hot metal filament glows red, and when heating
continues, its glow eventually covers the entire visible portion of the electromagnetic spectrum. The temperature (T) of the
object that emits radiation, or the emitter, determines the wavelength at which the radiated energy is at its maximum. For
example, the Sun, whose surface temperature is in the range between 5000 K and 6000 K, radiates most strongly in a range
of wavelengths about 560 nm in the visible part of the electromagnetic spectrum. Your body, when at its normal temperature
of about 300 K, radiates most strongly in the infrared part of the spectrum.

Radiation that is incident on an object is partially absorbed and partially reflected. At thermodynamic equilibrium, the rate
at which an object absorbs radiation is the same as the rate at which it emits it. Therefore, a good absorber of radiation (any
object that absorbs radiation) is also a good emitter. A perfect absorber absorbs all electromagnetic radiation incident on it;
such an object is called a blackbody.

Although the blackbody is an idealization, because no physical object absorbs 100% of incident radiation, we can construct
a close realization of a blackbody in the form of a small hole in the wall of a sealed enclosure known as a cavity radiator,
as shown in Figure 6.2. The inside walls of a cavity radiator are rough and blackened so that any radiation that enters
through a tiny hole in the cavity wall becomes trapped inside the cavity. At thermodynamic equilibrium (at temperature T),
the cavity walls absorb exactly as much radiation as they emit. Furthermore, inside the cavity, the radiation entering the
hole is balanced by the radiation leaving it. The emission spectrum of a blackbody can be obtained by analyzing the light
radiating from the hole. Electromagnetic waves emitted by a blackbody are called blackbody radiation.

Figure 6.2 A blackbody is physically realized by a small hole
in the wall of a cavity radiator.

The intensity (4, T) of blackbody radiation depends on the wavelength A of the emitted radiation and on the temperature
T of the blackbody (Figure 6.3). The function I(4, T) is the power intensity that is radiated per unit wavelength; in

other words, it is the power radiated per unit area of the hole in a cavity radiator per unit wavelength. According to this
definition, /(4, T)dA is the power per unit area that is emitted in the wavelength interval from A to A+ dA. The intensity
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distribution among wavelengths of radiation emitted by cavities was studied experimentally at the end of the nineteenth
century. Generally, radiation emitted by materials only approximately follows the blackbody radiation curve (Figure 6.4);
however, spectra of common stars do follow the blackbody radiation curve very closely.

A

Ultraviolet 1 Visible Infrared
R —

@® A maximum

Radiation intensity

Wavelength A (um)
Figure 6.3 The intensity of blackbody radiation versus the wavelength of the emitted radiation. Each curve
corresponds to a different blackbody temperature, starting with a low temperature (the lowest curve) to a high
temperature (the highest curve).
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Figure 6.4 The spectrum of radiation emitted from a quartz
surface (blue curve) and the blackbody radiation curve (black
curve) at 600 K.

Two important laws summarize the experimental findings of blackbody radiation: Wien’s displacement law and Stefan’s law.
Wien’s displacement law is illustrated in Figure 6.3 by the curve connecting the maxima on the intensity curves. In these
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curves, we see that the hotter the body, the shorter the wavelength corresponding to the emission peak in the radiation curve.
Quantitatively, Wien’s law reads

Amax T =2.898 x 103 m-K (6.2)

where Amax is the position of the maximum in the radiation curve. In other words, Apmax is the wavelength at which a

blackbody radiates most strongly at a given temperature T. Note that in Equation 6.1, the temperature is in kelvins. Wien’s
displacement law allows us to estimate the temperatures of distant stars by measuring the wavelength of radiation they emit.

Example 6.1

Temperatures of Distant Stars

On a clear evening during the winter months, if you happen to be in the Northern Hemisphere and look up at the
sky, you can see the constellation Orion (The Hunter). One star in this constellation, Rigel, flickers in a blue color
and another star, Betelgeuse, has a reddish color, as shown in Figure 6.5. Which of these two stars is cooler,
Betelgeuse or Rigel?

Strategy

We treat each star as a blackbody. Then according to Wien’s law, its temperature is inversely proportional to the
wavelength of its peak intensity. The wavelength lg:;lf) of blue light is shorter than the wavelength /15;2?2 of
red light. Even if we do not know the precise wavelengths, we can still set up a proportion.

Solution

Writing Wien’s law for the blue star and for the red star, we have

(red) -3 (blue) .
s Tredy = 2:898 X 1073 m K = 2o Tpiuey (6.2)
When simplified, Equation 6.2 gives
blue) (6.3)
Tired) =~ (redy L (blue) < T (blue)

max

Therefore, Betelgeuse is cooler than Rigel.
Significance

Note that Wien’s displacement law tells us that the higher the temperature of an emitting body, the shorter the
wavelength of the radiation it emits. The qualitative analysis presented in this example is generally valid for
any emitting body, whether it is a big object such as a star or a small object such as the glowing filament in an
incandescent lightbulb.

6.1 Check Your Understanding The flame of a peach-scented candle has a yellowish color and the flame of
a Bunsen’s burner in a chemistry lab has a bluish color. Which flame has a higher temperature?
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Figure 6.5 In the Orion constellation, the re star Betelgeuse, which usually takes on a yellowish tint, appears as the
figure’s right shoulder (in the upper left). The giant blue star on the bottom right is Rigel, which appears as the hunter’s left
foot. (credit left: modification of work by NASA c/o Matthew Spinelli)

The second experimental relation is Stefan’s law, which concerns the total power of blackbody radiation emitted across the
entire spectrum of wavelengths at a given temperature. In Figure 6.3, this total power is represented by the area under the
blackbody radiation curve for a given T. As the temperature of a blackbody increases, the total emitted power also increases.
Quantitatively, Stefan’s law expresses this relation as

P(T) = 6AT* (6.4)

where A is the surface area of a blackbody, T is its temperature (in kelvins), and o is the Stefan—-Boltzmann constant,

6=5.670x 1078 W/(m2 . K4). Stefan’s law enables us to estimate how much energy a star is radiating by remotely

measuring its temperature.

Example 6.2

Power Radiated by Stars

A star such as our Sun will eventually evolve to a “red giant” star and then to a “white dwarf” star. A typical white
dwarf is approximately the size of Earth, and its surface temperature is about 2.5 X 10°K. A typical red giant

has a surface temperature of 3.0 X 103K and a radius ~100,000 times larger than that of a white dwarf. What is
the average radiated power per unit area and the total power radiated by each of these types of stars? How do they
compare?
Strategy

If we treat the star as a blackbody, then according to Stefan’s law, the total power that the star radiates is
proportional to the fourth power of its temperature. To find the power radiated per unit area of the surface, we do
not need to make any assumptions about the shape of the star because P/A depends only on temperature. However,
to compute the total power, we need to make an assumption that the energy radiates through a spherical surface

enclosing the star, so that the surface areais A = 47rR2, where R is its radius.
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Solution
A simple proportion based on Stefan’s law gives
(6.5)

4 4 4
P gwart /A dwarf — Uwaarf — [waarf] — (2.5 X 104) — 4820
Poiant/Agiant  oT? T 3.0% 103

giant giant

The power emitted per unit area by a white dwarf is about 5000 times that the power emitted by a red giant.
Denoting this ratio by a = 4.8 x 10°, Equation 6.5 gives

(6.6)

2 2 2
Pdwarf — aAdWarf — a4ﬂRdwa.rf — a[Rdwa.rf) =48% 103 Rdwarf =48% 10—7
P A giant 47R> 10°R dwarf

giant giant giant
We see that the total power emitted by a white dwarf is a tiny fraction of the total power emitted by a red giant.
Despite its relatively lower temperature, the overall power radiated by a red giant far exceeds that of the white
dwarf because the red giant has a much larger surface area. To estimate the absolute value of the emitted power

per unit area, we again use Stefan’s law. For the white dwarf, we obtain

Powart _ 4 _ -8 W 4yt _ 10y /2 (6.7)
T = 0Ty = 5670 10 m2.K4(2.5 x 10*K) =22x10""W/m
The analogous result for the red giant is obtained by scaling the result for a white dwarf:
(6.8)

Paiant L 221010 W _ 4 56,109 W. = 4.6x 105 W,
Agiant 4.82 % 103 m? m? m?

Significance

To estimate the total power emitted by a white dwarf, in principle, we could use Equation 6.7. However, to find
its surface area, we need to know the average radius, which is not given in this example. Therefore, the solution
stops here. The same is also true for the red giant star.

6.2 Check Your Understanding An iron poker is being heated. As its temperature rises, the poker begins to
glow—first dull red, then bright red, then orange, and then yellow. Use either the blackbody radiation curve or
Wien’s law to explain these changes in the color of the glow.

V 6.3 Check Your Understanding Suppose that two stars, @ and f, radiate exactly the same total power. If
the radius of star « is three times that of star £, what is the ratio of the surface temperatures of these stars?

Which one is hotter?

The term “blackbody” was coined by Gustav R. Kirchhoff in 1862. The blackbody radiation curve was known
experimentally, but its shape eluded physical explanation until the year 1900. The physical model of a blackbody at
temperature T is that of the electromagnetic waves enclosed in a cavity (see Figure 6.2) and at thermodynamic equilibrium
with the cavity walls. The waves can exchange energy with the walls. The objective here is to find the energy density
distribution among various modes of vibration at various wavelengths (or frequencies). In other words, we want to know
how much energy is carried by a single wavelength or a band of wavelengths. Once we know the energy distribution, we
can use standard statistical methods (similar to those studied in a previous chapter) to obtain the blackbody radiation curve,
Stefan’s law, and Wien’s displacement law. When the physical model is correct, the theoretical predictions should be the
same as the experimental curves.

In a classical approach to the blackbody radiation problem, in which radiation is treated as waves (as you have studied in
previous chapters), the modes of electromagnetic waves trapped in the cavity are in equilibrium and continually exchange
their energies with the cavity walls. There is no physical reason why a wave should do otherwise: Any amount of energy can
be exchanged, either by being transferred from the wave to the material in the wall or by being received by the wave from
the material in the wall. This classical picture is the basis of the model developed by Lord Rayleigh and, independently,
by Sir James Jeans. The result of this classical model for blackbody radiation curves is known as the Rayleigh—Jeans law.
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However, as shown in Figure 6.6, the Rayleigh—Jeans law fails to correctly reproduce experimental results. In the limit of
short wavelengths, the Rayleigh—Jeans law predicts infinite radiation intensity, which is inconsistent with the experimental
results in which radiation intensity has finite values in the ultraviolet region of the spectrum. This divergence between the
results of classical theory and experiments, which came to be called the ultraviolet catastrophe, shows how classical physics
fails to explain the mechanism of blackbody radiation.
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Figure 6.6 The ultraviolet catastrophe: The Rayleigh—Jeans
law does not explain the observed blackbody emission spectrum.

The blackbody radiation problem was solved in 1900 by Max Planck. Planck used the same idea as the Rayleigh—Jeans
model in the sense that he treated the electromagnetic waves between the walls inside the cavity classically, and assumed
that the radiation is in equilibrium with the cavity walls. The innovative idea that Planck introduced in his model is the
assumption that the cavity radiation originates from atomic oscillations inside the cavity walls, and that these oscillations
can have only discrete values of energy. Therefore, the radiation trapped inside the cavity walls can exchange energy with
the walls only in discrete amounts. Planck’s hypothesis of discrete energy values, which he called quanta, assumes that
the oscillators inside the cavity walls have quantized energies. This was a brand new idea that went beyond the classical
physics of the nineteenth century because, as you learned in a previous chapter, in the classical picture, the energy of an
oscillator can take on any continuous value. Planck assumed that the energy of an oscillator ( £,,) can have only discrete,

or quantized, values:

E,=nhf, wheren=1, 2, 3, ... (6.9)

In Equation 6.9, fis the frequency of Planck’s oscillator. The natural number n that enumerates these discrete energies is
called a quantum number. The physical constant h is called Planck’s constant:

h=6626x10"34].s= 4136 x 10" PeV s (6.10)

Each discrete energy value corresponds to a quantum state of a Planck oscillator. Quantum states are enumerated by
quantum numbers. For example, when Planck’s oscillator is in its first # = 1 quantum state, its energy is E; = hf; when

itis in the n = 2 quantum state, its energy is £, = 2hf; when itis in the n = 3 quantum state, E5 = 3Af; and so on.

Note that Equation 6.9 shows that there are infinitely many quantum states, which can be represented as a sequence {hf,
2hf, 3hf,..., (n — 1)hf, nhf, (n + 1)hf,...}. Each two consecutive quantum states in this sequence are separated by an energy
jump, AE = hf. An oscillator in the wall can receive energy from the radiation in the cavity (absorption), or it can give

away energy to the radiation in the cavity (emission). The absorption process sends the oscillator to a higher quantum state,
and the emission process sends the oscillator to a lower quantum state. Whichever way this exchange of energy goes, the
smallest amount of energy that can be exchanged is hf. There is no upper limit to how much energy can be exchanged, but
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whatever is exchanged must be an integer multiple of hf. If the energy packet does not have this exact amount, it is neither
absorbed nor emitted at the wall of the blackbody.

Planck’s Quantum Hypothesis

Planck’s hypothesis of energy quanta states that the amount of energy emitted by the oscillator is carried by the
quantum of radiation, AE :

AE = hf

Recall that the frequency of electromagnetic radiation is related to its wavelength and to the speed of light by the
fundamental relation fA = c¢. This means that we can express Equation 6.10 equivalently in terms of wavelength A.

When included in the computation of the energy density of a blackbody, Planck’s hypothesis gives the following theoretical
expression for the power intensity of emitted radiation per unit wavelength:

2

5 hcldkn T
A7 e ]

where c is the speed of light in vacuum and kg is Boltzmann’s constant, kg = 1.380 X 10~23J/K. The theoretical formula

expressed in Equation 6.11 is called Planck’s blackbody radiation law. This law is in agreement with the experimental
blackbody radiation curve (see Figure 6.7). In addition, Wien’s displacement law and Stefan’s law can both be derived
from Equation 6.11. To derive Wien’s displacement law, we use differential calculus to find the maximum of the radiation
intensity curve I(4, T). To derive Stefan’s law and find the value of the Stefan—Boltzmann constant, we use integral

calculus and integrate I(4, T) to find the total power radiated by a blackbody at one temperature in the entire spectrum of
wavelengths from A =0 to 4 = oo. This derivation is left as an exercise later in this chapter.

Planck

Radiation Intensity

012345678910

Wavelength A (pem)
Figure 6.7 Planck’s theoretical result (continuous curve) and
the experimental blackbody radiation curve (dots).

Example 6.3

Planck’s Quantum Oscillator

A quantum oscillator in the cavity wall in Figure 6.2 is vibrating at a frequency of 5.0 X 10" Hz. Calculate
the spacing between its energy levels.
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Strategy

Energy states of a quantum oscillator are given by Equation 6.9. The energy spacing AFE is obtained by finding
the energy difference between two adjacent quantum states for quantum numbers n + 1 and n.

Solution

We can substitute the given frequency and Planck’s constant directly into the equation:
AE=E,, | —E,= 0+ Dhf —nhf = hf = (6.626 x 1074 -5)(5.0 x 10'*Hz) =33 x 10717

Significance

Note that we do not specify what kind of material was used to build the cavity. Here, a quantum oscillator is a
theoretical model of an atom or molecule of material in the wall.

6.4  Check Your Understanding A molecule is vibrating at a frequency of 5.0 X 10'#Hz. What is the

smallest spacing between its vibrational energy levels?

Example 6.4

Quantum Theory Applied to a Classical Oscillator

A 1.0-kg mass oscillates at the end of a spring with a spring constant of 1000 N/m. The amplitude of these
oscillations is 0.10 m. Use the concept of quantization to find the energy spacing for this classical oscillator. Is
the energy quantization significant for macroscopic systems, such as this oscillator?

Strategy

We use Equation 6.10 as though the system were a quantum oscillator, but with the frequency f of the mass
vibrating on a spring. To evaluate whether or not quantization has a significant effect, we compare the quantum
energy spacing with the macroscopic total energy of this classical oscillator.

Solution

For the spring constant, k = 1.0 X 10°N/m, the frequency f of the mass, m = 1.0kg, is

_ 1alk _ 141.0x103N/m _
f‘zn\/;_zn\/ Tokg = -0Hz

The energy quantum that corresponds to this frequency is
AE = hf = (6.626 X 107°*J-5)(5.0Hz) = 3.3 x 10733
When vibrations have amplitude A = 0.10m, the energy of oscillations is

E= %kAz = %(IOOON/m)(O.lm)Z = 5.0

Significance

Thus, for a classical oscillator, we have AE/E =~ 1073* We see that the separation of the energy levels is
immeasurably small. Therefore, for all practical purposes, the energy of a classical oscillator takes on continuous
values. This is why classical principles may be applied to macroscopic systems encountered in everyday life
without loss of accuracy.

6.5 Check Your Understanding Would the result in Example 6.4 be different if the mass were not 1.0 kg
but a tiny mass of 1.0 ug, and the amplitude of vibrations were 0.10 ym?



258 Chapter 6 | Photons and Matter Waves

When Planck first published his result, the hypothesis of energy quanta was not taken seriously by the physics community
because it did not follow from any established physics theory at that time. It was perceived, even by Planck himself, as
a useful mathematical trick that led to a good theoretical “fit” to the experimental curve. This perception was changed in
1905 when Einstein published his explanation of the photoelectric effect, in which he gave Planck’s energy quantum a new
meaning: that of a particle of light.

6.2 | Photoelectric Effect

Learning Objectives

By the end of this section you will be able to:

» Describe physical characteristics of the photoelectric effect
* Explain why the photoelectric effect cannot be explained by classical physics
* Describe how Einstein’s idea of a particle of radiation explains the photoelectric effect

When a metal surface is exposed to a monochromatic electromagnetic wave of sufficiently short wavelength (or
equivalently, above a threshold frequency), the incident radiation is absorbed and the exposed surface emits electrons. This
phenomenon is known as the photoelectric effect. Electrons that are emitted in this process are called photoelectrons.

The experimental setup to study the photoelectric effect is shown schematically in Figure 6.8. The target material serves
as the anode, which becomes the emitter of photoelectrons when it is illuminated by monochromatic radiation. We call this
electrode the photoelectrode. Photoelectrons are collected at the cathode, which is kept at a lower potential with respect
to the anode. The potential difference between the electrodes can be increased or decreased, or its polarity can be reversed.
The electrodes are enclosed in an evacuated glass tube so that photoelectrons do not lose their kinetic energy on collisions
with air molecules in the space between electrodes.

When the target material is not exposed to radiation, no current is registered in this circuit because the circuit is broken
(note, there is a gap between the electrodes). But when the target material is connected to the negative terminal of a battery
and exposed to radiation, a current is registered in this circuit; this current is called the phetocurrent. Suppose that we now
reverse the potential difference between the electrodes so that the target material now connects with the positive terminal
of a battery, and then we slowly increase the voltage. The photocurrent gradually dies out and eventually stops flowing
completely at some value of this reversed voltage. The potential difference at which the photocurrent stops flowing is called
the stopping potential.
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Figure 6.8 An experimental setup to study the photoelectric effect. The
anode and cathode are enclosed in an evacuated glass tube. The voltmeter
measures the electric potential difference between the electrodes, and the
ammeter measures the photocurrent. The incident radiation is
monochromatic.

Characteristics of the Photoelectric Effect

The photoelectric effect has three important characteristics that cannot be explained by classical physics: (1) the absence of
a lag time, (2) the independence of the kinetic energy of photoelectrons on the intensity of incident radiation, and (3) the
presence of a cut-off frequency. Let’s examine each of these characteristics.

The absence of lag time

When radiation strikes the target material in the electrode, electrons are emitted almost instantaneously, even at very low
intensities of incident radiation. This absence of lag time contradicts our understanding based on classical physics. Classical
physics predicts that for low-energy radiation, it would take significant time before irradiated electrons could gain sufficient
energy to leave the electrode surface; however, such an energy buildup is not observed.

The intensity of incident radiation and the kinetic energy of photoelectrons

Typical experimental curves are shown in Figure 6.9, in which the photocurrent is plotted versus the applied potential
difference between the electrodes. For the positive potential difference, the current steadily grows until it reaches a plateau.
Furthering the potential increase beyond this point does not increase the photocurrent at all. A higher intensity of radiation
produces a higher value of photocurrent. For the negative potential difference, as the absolute value of the potential
difference increases, the value of the photocurrent decreases and becomes zero at the stopping potential. For any intensity
of incident radiation, whether the intensity is high or low, the value of the stopping potential always stays at one value.

To understand why this result is unusual from the point of view of classical physics, we first have to analyze the
energy of photoelectrons. A photoelectron that leaves the surface has kinetic energy K. It gained this energy from the
incident electromagnetic wave. In the space between the electrodes, a photoelectron moves in the electric potential and
its energy changes by the amount gAV, where AV is the potential difference and g = —e. Because no forces are
present but electric force, by applying the work-energy theorem, we obtain the energy balance AK —eAV =0 for
the photoelectron, where AK is the change in the photoelectron’s kinetic energy. When the stopping potential —AV

is applied, the photoelectron loses its initial kinetic energy K; and comes to rest. Thus, its energy balance becomes
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(0—-K;)—e(=AVs) =0, sothat K; =eAVj. In the presence of the stopping potential, the largest kinetic energy Kpax

that a photoelectron can have is its initial kinetic energy, which it has at the surface of the photoelectrode. Therefore, the
largest kinetic energy of photoelectrons can be directly measured by measuring the stopping potential:

Kmax = eAV,. (6.12)

At this point we can see where the classical theory is at odds with the experimental results. In classical theory, the
photoelectron absorbs electromagnetic energy in a continuous way; this means that when the incident radiation has a high
intensity, the kinetic energy in Equation 6.12 is expected to be high. Similarly, when the radiation has a low intensity,
the kinetic energy is expected to be low. But the experiment shows that the maximum kinetic energy of photoelectrons is
independent of the light intensity.

Photocurrent4
High intensity
Low intensity
| e
—AV, Potential difference

Figure 6.9 The detected photocurrent plotted versus the
applied potential difference shows that for any intensity of
incident radiation, whether the intensity is high (upper curve) or
low (lower curve), the value of the stopping potential is always
the same.

The presence of a cut-off frequency

For any metal surface, there is a minimum frequency of incident radiation below which photocurrent does not occur. The
value of this cut-off frequency for the photoelectric effect is a physical property of the metal: Different materials have
different values of cut-off frequency. Experimental data show a typical linear trend (see Figure 6.10). The kinetic energy of
photoelectrons at the surface grows linearly with the increasing frequency of incident radiation. Measurements for all metal
surfaces give linear plots with one slope. None of these observed phenomena is in accord with the classical understanding
of nature. According to the classical description, the kinetic energy of photoelectrons should not depend on the frequency
of incident radiation at all, and there should be no cut-off frequency. Instead, in the classical picture, electrons receive
energy from the incident electromagnetic wave in a continuous way, and the amount of energy they receive depends only
on the intensity of the incident light and nothing else. So in the classical understanding, as long as the light is shining, the
photoelectric effect is expected to continue.
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Figure 6.10 Kinetic energy of photoelectrons at the surface
versus the frequency of incident radiation. The photoelectric
effect can only occur above the cut-off frequency f.

Measurements for all metal surfaces give linear plots with one
slope. Each metal surface has its own cut-off frequency.

The Work Function

The photoelectric effect was explained in 1905 by A. Einstein. Einstein reasoned that if Planck’s hypothesis about energy
quanta was correct for describing the energy exchange between electromagnetic radiation and cavity walls, it should also
work to describe energy absorption from electromagnetic radiation by the surface of a photoelectrode. He postulated that an
electromagnetic wave carries its energy in discrete packets. Einstein’s postulate goes beyond Planck’s hypothesis because it
states that the light itself consists of energy quanta. In other words, it states that electromagnetic waves are quantized.

In Einstein’s approach, a beam of monochromatic light of frequency f is made of photons. A photon is a particle of light.
Each photon moves at the speed of light and carries an energy quantum E,. A photon’s energy depends only on its

frequency f. Explicitly, the energy of a photon is

E;=hf (6.13)

where & is Planck’s constant. In the photoelectric effect, photons arrive at the metal surface and each photon gives away

all of its energy to only one electron on the metal surface. This transfer of energy from photon to electron is of the “all or
nothing” type, and there are no fractional transfers in which a photon would lose only part of its energy and survive. The
essence of a quantum phenomenon is either a photon transfers its entire energy and ceases to exist or there is no transfer
at all. This is in contrast with the classical picture, where fractional energy transfers are permitted. Having this quantum
understanding, the energy balance for an electron on the surface that receives the energy E; from a photon is

Efszax+¢

where K.« is the kinetic energy, given by Equation 6.12, that an electron has at the very instant it gets detached from
the surface. In this energy balance equation, ¢ is the energy needed to detach a photoelectron from the surface. This energy
¢ is called the work function of the metal. Each metal has its characteristic work function, as illustrated in Table 6.1. To

obtain the kinetic energy of photoelectrons at the surface, we simply invert the energy balance equation and use Equation
6.13 to express the energy of the absorbed photon. This gives us the expression for the kinetic energy of photoelectrons,
which explicitly depends on the frequency of incident radiation:

Kmax = hf — ¢. (6.14)

This equation has a simple mathematical form but its physics is profound. We can now elaborate on the physical meaning
behind Equation 6.14.
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Typical Values of the Work Function for Some Common Metals

Metal ¢ (eV)
Na 2.46
Al 4.08
Pb 4.14
Zn 4.31
Fe 4.50
Cu 4.70
Ag 4.73
Pt 6.35
Table 6.1

In Einstein’s interpretation, interactions take place between individual electrons and individual photons. The absence of
a lag time means that these one-on-one interactions occur instantaneously. This interaction time cannot be increased by
lowering the light intensity. The light intensity corresponds to the number of photons arriving at the metal surface per unit
time. Even at very low light intensities, the photoelectric effect still occurs because the interaction is between one electron
and one photon. As long as there is at least one photon with enough energy to transfer it to a bound electron, a photoelectron
will appear on the surface of the photoelectrode.

The existence of the cut-off frequency f. for the photoelectric effect follows from Equation 6.14 because the kinetic
energy Kpax of the photoelectron can take only positive values. This means that there must be some threshold frequency

for which the kinetic energy is zero, 0 = hf. — ¢b. In this way, we obtain the explicit formula for cut-off frequency:

(6.15)

SIS

fe

Cut-off frequency depends only on the work function of the metal and is in direct proportion to it. When the work function
is large (when electrons are bound fast to the metal surface), the energy of the threshold photon must be large to produce a
photoelectron, and then the corresponding threshold frequency is large. Photons with frequencies larger than the threshold
frequency f. always produce photoelectrons because they have K,x > 0. Photons with frequencies smaller than f,

do not have enough energy to produce photoelectrons. Therefore, when incident radiation has a frequency below the cut-
off frequency, the photoelectric effect is not observed. Because frequency f and wavelength A of electromagnetic waves

are related by the fundamental relation Af = ¢ (where ¢ is the speed of light in vacuum), the cut-off frequency has its

corresponding cut-off wavelength 1. :

ho= €= _he (6.16)

¢ ¢lh ¢
In this equation, hc = 1240 eV - nm. Our observations can be restated in the following equivalent way: When the incident
radiation has wavelengths longer than the cut-off wavelength, the photoelectric effect does not occur.

Example 6.5

Photoelectric Effect for Silver

Radiation with wavelength 300 nm is incident on a silver surface. Will photoelectrons be observed?
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Strategy

Photoelectrons can be ejected from the metal surface only when the incident radiation has a shorter wavelength
than the cut-off wavelength. The work function of silver is ¢ = 4.73 eV (Table 6.1). To make the estimate, we

use Equation 6.16.
Solution
The threshold wavelength for observing the photoelectric effect in silver is

— hc _1240eV -nm _
Ae = P 1736V 262 nm.

The incident radiation has wavelength 300 nm, which is longer than the cut-off wavelength; therefore,
photoelectrons are not observed.
Significance

If the photoelectrode were made of sodium instead of silver, the cut-off wavelength would be 504 nm and
photoelectrons would be observed.

Equation 6.14 in Einstein’s model tells us that the maximum kinetic energy of photoelectrons is a linear function of the
frequency of incident radiation, which is illustrated in Figure 6.10. For any metal, the slope of this plot has a value of
Planck’s constant. The intercept with the K.« -axis gives us a value of the work function that is characteristic for the metal.

On the other hand, K,,x can be directly measured in the experiment by measuring the value of the stopping potential AV

(see Equation 6.12) at which the photocurrent stops. These direct measurements allow us to determine experimentally the
value of Planck’s constant, as well as work functions of materials.

Einstein’s model also gives a straightforward explanation for the photocurrent values shown in Figure 6.9. For example,
doubling the intensity of radiation translates to doubling the number of photons that strike the surface per unit time. The
larger the number of photons, the larger is the number of photoelectrons, which leads to a larger photocurrent in the
circuit. This is how radiation intensity affects the photocurrent. The photocurrent must reach a plateau at some value of
potential difference because, in unit time, the number of photoelectrons is equal to the number of incident photons and the
number of incident photons does not depend on the applied potential difference at all, but only on the intensity of incident
radiation. The stopping potential does not change with the radiation intensity because the kinetic energy of photoelectrons
(see Equation 6.14) does not depend on the radiation intensity.

Example 6.6

Work Function and Cut-Off Frequency

When a 180-nm light is used in an experiment with an unknown metal, the measured photocurrent drops to zero
at potential — 0.80 V. Determine the work function of the metal and its cut-off frequency for the photoelectric
effect.

Strategy

To find the cut-off frequency f,, we use Equation 6.15, but first we must find the work function ¢. To find
¢, we use Equation 6.12 and Equation 6.14. Photocurrent drops to zero at the stopping value of potential,
so we identify AV = 0.8V.

Solution
We use Equation 6.12 to find the kinetic energy of the photoelectrons:
Kmax = eAV;=¢(0.80V) = 0.80eV.

Now we solve Equation 6.14 for ¢ :

¢ =hf —Kmpax = %— Kumax = 1241%8#— 0.80eV = 6.09¢eV.
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Finally, we use Equation 6.15 to find the cut-off frequency:

_o_ 6.09 eV - ~15
Je = T aaex 107 ey s I

Significance

In calculations like the one shown in this example, it is convenient to use Planck’s constant in the units of eV -s
and express all energies in eV instead of joules.

Example 6.7

The Photon Energy and Kinetic Energy of Photoelectrons

A 430-nm violet light is incident on a calcium photoelectrode with a work function of 2.71 eV.

Find the energy of the incident photons and the maximum kinetic energy of ejected electrons.

Strategy

The energy of the incident photon is E = hf = hc/A, where we use f1 = c. To obtain the maximum energy
of the ejected electrons, we use Equation 6.16.

Solution

_hc _ 1240eV -nm _ _ = _ —
Ef_/l_—430nm =2.88¢eV, Kmax = E ¢ =2.88eV—-271eV=0.17eV

Significance

In this experimental setup, photoelectrons stop flowing at the stopping potential of 0.17 V.

6.6 Check Your Understanding A yellow 589-nm light is incident on a surface whose work function is 1.20
eV. What is the stopping potential? What is the cut-off wavelength?

6.7 Check Your Understanding Cut-off frequency for the photoelectric effect in some materials is
8.0 x 10'> Hz. When the incident light has a frequency of 1.2 x 10 “Hz, the stopping potential is measured
as —0.16 V. Estimate a value of Planck’s constant from these data (in units J-s and eV -s) and determine the
percentage error of your estimation.

6.3 | The Compton Effect

Learning Objectives

By the end of this section, you will be able to:

* Describe Compton’s experiment
* Explain the Compton wavelength shift
» Describe how experiments with X-rays confirm the particle nature of radiation

Two of Einstein’s influential ideas introduced in 1905 were the theory of special relativity and the concept of a light
quantum, which we now call a photon. Beyond 1905, Einstein went further to suggest that freely propagating
electromagnetic waves consisted of photons that are particles of light in the same sense that electrons or other massive
particles are particles of matter. A beam of monochromatic light of wavelength A (or equivalently, of frequency f) can be

seen either as a classical wave or as a collection of photons that travel in a vacuum with one speed, c (the speed of light),

This OpenStax book is available for free at http://cnx.org/content/col12067/1.3



Chapter 6 | Photons and Matter Waves 265

and all carrying the same energy, E ¢ = hf. This idea proved useful for explaining the interactions of light with particles

of matter.

Momentum of a Photon

Unlike a particle of matter that is characterized by its rest mass 7, a photon is massless. In a vacuum, unlike a particle

of matter that may vary its speed but cannot reach the speed of light, a photon travels at only one speed, which is exactly
the speed of light. From the point of view of Newtonian classical mechanics, these two characteristics imply that a photon
should not exist at all. For example, how can we find the linear momentum or kinetic energy of a body whose mass is zero?
This apparent paradox vanishes if we describe a photon as a relativistic particle. According to the theory of special relativity,
any particle in nature obeys the relativistic energy equation

E2 = pzcz + m%c4' (6.17)

This relation can also be applied to a photon. In Equation 6.17, E is the total energy of a particle, p is its linear momentum,
and my is its rest mass. For a photon, we simply set my =0 in this equation. This leads to the expression for the

momentum p ; of a photon

E (6.18)
_=f
Pr=—c—

Here the photon’s energy E, is the same as that of a light quantum of frequency f, which we introduced to explain the

photoelectric effect:

Ef=hf=%, (6.19)

The wave relation that connects frequency f with wavelength A and speed c also holds for photons:
Af=c (6.20)
Therefore, a photon can be equivalently characterized by either its energy and wavelength, or its frequency and momentum.

Equation 6.19 and Equation 6.20 can be combined into the explicit relation between a photon’s momentum and its
wavelength:

_h 6.21
pp=l (6:21)

Notice that this equation gives us only the magnitude of the photon’s momentum and contains no information about the
direction in which the photon is moving. To include the direction, it is customary to write the photon’s momentum as a
vector:

T))f:hT()- (6.22)
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In Equation 6.22, 7 = h/2x is the reduced Planck’s constant (pronounced “h-bar”), which is just Planck’s constant

—
divided by the factor 2z. Vector Kk is called the “wave vector” or propagation vector (the direction in which a photon is
moving). The propagation vector shows the direction of the photon’s linear momentum vector. The magnitude of the wave

-
vector is k = | k | = 2x/4 and is called the wave number. Notice that this equation does not introduce any new physics.
We can verify that the magnitude of the vector in Equation 6.22 is the same as that given by Equation 6.18.

The Compton Effect

The Compton effect is the term used for an unusual result observed when X-rays are scattered on some materials. By
classical theory, when an electromagnetic wave is scattered off atoms, the wavelength of the scattered radiation is expected
to be the same as the wavelength of the incident radiation. Contrary to this prediction of classical physics, observations show
that when X-rays are scattered off some materials, such as graphite, the scattered X-rays have different wavelengths from
the wavelength of the incident X-rays. This classically unexplainable phenomenon was studied experimentally by Arthur
H. Compton and his collaborators, and Compton gave its explanation in 1923.

To explain the shift in wavelengths measured in the experiment, Compton used Einstein’s idea of light as a particle. The
Compton effect has a very important place in the history of physics because it shows that electromagnetic radiation cannot
be explained as a purely wave phenomenon. The explanation of the Compton effect gave a convincing argument to the
physics community that electromagnetic waves can indeed behave like a stream of photons, which placed the concept of a
photon on firm ground.

The schematics of Compton’s experimental setup are shown in Figure 6.11. The idea of the experiment is straightforward:
Monochromatic X-rays with wavelength A are incident on a sample of graphite (the “target”), where they interact with
atoms inside the sample; they later emerge as scattered X-rays with wavelength A’. A detector placed behind the target can
measure the intensity of radiation scattered in any direction @ with respect to the direction of the incident X-ray beam. This
scattering angle, 6, is the angle between the direction of the scattered beam and the direction of the incident beam. In
this experiment, we know the intensity and the wavelength A of the incoming (incident) beam; and for a given scattering
angle 6, we measure the intensity and the wavelength A’ of the outgoing (scattered) beam. Typical results of these

measurements are shown in Figure 6.12, where the x-axis is the wavelength of the scattered X-rays and the y-axis is the
intensity of the scattered X-rays, measured for different scattering angles (indicated on the graphs). For all scattering angles
(except for 6 = 0°), we measure two intensity peaks. One peak is located at the wavelength A, which is the wavelength

of the incident beam. The other peak is located at some other wavelength, A’. The two peaks are separated by A4, which

depends on the scattering angle 0 of the outgoing beam (in the direction of observation). The separation A4 is called the
Compton shift.

P Detector

Collimating
slits
|
AAY AV VAV e W o
Graphite !
X-ray | | target /
source /

Figure 6.11 Experimental setup for studying Compton
scattering.
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Figure 6.12 Experimental data show the Compton effect for X-rays scattering off graphite at various angles: The intensity of
the scattered beam has two peaks. One peak appears at the wavelength A of the incident radiation and the second peak appears

at wavelength A’. The separation A4 between the peaks depends on the scattering angle 6, which is the angular position of

the detector in Figure 6.11. The experimental data in this figure are plotted in arbitrary units so that the height of the profile
reflects the intensity of the scattered beam above background noise.

Compton Shift

As given by Compton, the explanation of the Compton shift is that in the target material, graphite, valence electrons are
loosely bound in the atoms and behave like free electrons. Compton assumed that the incident X-ray radiation is a stream
of photons. An incoming photon in this stream collides with a valence electron in the graphite target. In the course of this
collision, the incoming photon transfers some part of its energy and momentum to the target electron and leaves the scene
as a scattered photon. This model explains in qualitative terms why the scattered radiation has a longer wavelength than
the incident radiation. Put simply, a photon that has lost some of its energy emerges as a photon with a lower frequency, or
equivalently, with a longer wavelength. To show that his model was correct, Compton used it to derive the expression for
the Compton shift. In his derivation, he assumed that both photon and electron are relativistic particles and that the collision
obeys two commonsense principles: (1) the conservation of linear momentum and (2) the conservation of total relativistic
energy.

In the following derivation of the Compton shift, £ f and _p) f denote the energy and momentum, respectively, of an

incident photon with frequency f. The photon collides with a relativistic electron at rest, which means that immediately
before the collision, the electron’s energy is entirely its rest mass energy, m % Immediately after the collision, the

electron has energy E and momentum T)) , both of which satisfy Equation 6.19. Immediately after the collision, the

~ =
outgoing photon has energy E ;, momentum p r, and frequency f’. The direction of the incident photon is horizontal

from left to right, and the direction of the outgoing photon is at the angle 6, as illustrated in Figure 6.11. The scattering
=
angle 6 is the angle between the momentum vectors T)) rand Pp g andwe can write their scalar product:

5 = . (6.23)
Py Ps= pfpfcosa.
Following Compton’s argument, we assume that the colliding photon and electron form an isolated system. This assumption

is valid for weakly bound electrons that, to a good approximation, can be treated as free particles. Our first equation is the
conservation of energy for the photon-electron system:

X 2_¢ 6.24
E;+myc®=E;+E. (6.24)
The left side of this equation is the energy of the system at the instant immediately before the collision, and the right
side of the equation is the energy of the system at the instant immediately after the collision. Our second equation is the
conservation of linear momentum for the photon—electron system where the electron is at rest at the instant immediately
before the collision:

2 6.25
f’)f= | g (6:28)
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The left side of this equation is the momentum of the system right before the collision, and the right side of the equation
is the momentum of the system right after collision. The entire physics of Compton scattering is contained in these three
preceding equations—the remaining part is algebra. At this point, we could jump to the concluding formula for the Compton
shift, but it is beneficial to highlight the main algebraic steps that lead to Compton’s formula, which we give here as follows.

We start with rearranging the terms in Equation 6.24 and squaring it:
~ 2
217 _ 2
[(Ef—Ef)+moc] =FE~.
In the next step, we substitute Equation 6.19 for £ 2, simplify, and divide both sides by ¢? to obtain
~ 2 - 5
(Ef/c—Ef/c) +2moc(Ef/c—Ef/c)=p .

Now we can use Equation 6.21 to express this form of the energy equation in terms of momenta. The result is
L \2 5 (6.26)
(Pr=pys) +2moclpp—ps)=p>
To eliminate p2, we turn to the momentum equation Equation 6.25, rearrange its terms, and square it to obtain
- \2 - \2 -
~ 2 ~ 2., ~2 ~
(B F— P f) =p and(f))f_ P f) =Pf+pf_2f))f' P r

The product of the momentum vectors is given by Equation 6.23. When we substitute this result for p2 in Equation

6.26, we obtain the energy equation that contains the scattering angle 6 :

2
(py=py) +2moclpy—bs)=p}+pj—2p P yeost.

With further algebra, this result can be simplified to

IN)L - pif = m})C(l — cosd). (6.27)
s

Now recall Equation 6.21 and write: 1/p = Alh and 1/p = Alh. When these relations are substituted into

Equation 6.27, we obtain the relation for the Compton shift:

¥ = &= (1 = cosd). (6.28)

The factor h/mgc is called the Compton wavelength of the electron:

de = =1 = 0.00243 nm = 2.43 pm. (6.29)

moc_

Denoting the shiftas A4 =A1"— 4, the concluding result can be rewritten as

AL = A1 — cosh). (6.30)

This formula for the Compton shift describes outstandingly well the experimental results shown in Figure 6.12. Scattering
data measured for molybdenum, graphite, calcite, and many other target materials are in accord with this theoretical result.
The nonshifted peak shown in Figure 6.12 is due to photon collisions with tightly bound inner electrons in the target
material. Photons that collide with the inner electrons of the target atoms in fact collide with the entire atom. In this extreme
case, the rest mass in Equation 6.29 must be changed to the rest mass of the atom. This type of shift is four orders of
magnitude smaller than the shift caused by collisions with electrons and is so small that it can be neglected.
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Compton scattering is an example of inelastic scattering, in which the scattered radiation has a longer wavelength than the
wavelength of the incident radiation. In today’s usage, the term “Compton scattering” is used for the inelastic scattering of
photons by free, charged particles. In Compton scattering, treating photons as particles with momenta that can be transferred
to charged particles provides the theoretical background to explain the wavelength shifts measured in experiments; this is
the evidence that radiation consists of photons.

Example 6.8

Compton Scattering

An incident 71-pm X-ray is incident on a calcite target. Find the wavelength of the X-ray scattered at a 30°
angle. What is the largest shift that can be expected in this experiment?

Strategy

To find the wavelength of the scattered X-ray, first we must find the Compton shift for the given scattering angle,
6 = 30°. We use Equation 6.30. Then we add this shift to the incident wavelength to obtain the scattered

wavelength. The largest Compton shift occurs at the angle & when 1 — cosé has the largest value, which is for
the angle 6 = 180°.

Solution
The shift at € = 30° is
AL = A1 —co0s30°) = 0.1344, = (0.134)(2.43) pm = 0.325 pm.
This gives the scattered wavelength:
A'=214+AA=(71+0.325) pm = 71.325 pm.
The largest shift is
(AD) max = A1 — c0s1800) = 2(2.43 pm) = 4.86 pm.

Significance

The largest shift in wavelength is detected for the backscattered radiation; however, most of the photons from the
incident beam pass through the target and only a small fraction of photons gets backscattered (typically, less than
5%). Therefore, these measurements require highly sensitive detectors.

6.8 Check Your Understanding An incident 71-pm X-ray is incident on a calcite target. Find the
wavelength of the X-ray scattered at a 60° angle. What is the smallest shift that can be expected in this

experiment?

6.4 | Bohr’s Model of the Hydrogen Atom

Learning Objectives

By the end of this section, you will be able to:

* Explain the difference between the absorption spectrum and the emission spectrum of radiation
emitted by atoms

* Describe the Rutherford gold foil experiment and the discovery of the atomic nucleus
* Explain the atomic structure of hydrogen
* Describe the postulates of the early quantum theory for the hydrogen atom

e Summarize how Bohr’s quantum model of the hydrogen atom explains the radiation spectrum
of atomic hydrogen
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Historically, Bohr’s model of the hydrogen atom is the very first model of atomic structure that correctly explained the
radiation spectra of atomic hydrogen. The model has a special place in the history of physics because it introduced an early
quantum theory, which brought about new developments in scientific thought and later culminated in the development of
quantum mechanics. To understand the specifics of Bohr’s model, we must first review the nineteenth-century discoveries
that prompted its formulation.

When we use a prism to analyze white light coming from the sun, several dark lines in the solar spectrum are observed
(Figure 6.13). Solar absorption lines are called Fraunhofer lines after Joseph von Fraunhofer, who accurately measured
their wavelengths. During 1854-1861, Gustav Kirchhoff and Robert Bunsen discovered that for the various chemical
elements, the line emission spectrum of an element exactly matches its line absorption spectrum. The difference between
the absorption spectrum and the emission spectrum is explained in Figure 6.14. An absorption spectrum is observed when
light passes through a gas. This spectrum appears as black lines that occur only at certain wavelengths on the background of
the continuous spectrum of white light (Figure 6.13). The missing wavelengths tell us which wavelengths of the radiation
are absorbed by the gas. The emission spectrum is observed when light is emitted by a gas. This spectrum is seen as
colorful lines on the black background (see Figure 6.15 and Figure 6.16). Positions of the emission lines tell us which
wavelengths of the radiation are emitted by the gas. Each chemical element has its own characteristic emission spectrum.
For each element, the positions of its emission lines are exactly the same as the positions of its absorption lines. This
means that atoms of a specific element absorb radiation only at specific wavelengths and radiation that does not have these
wavelengths is not absorbed by the element at all. This also means that the radiation emitted by atoms of each element has
exactly the same wavelengths as the radiation they absorb.

KH G F E D C B A

ARRRRRNRRRRE
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Figure 6.13 In the solar emission spectrum in the visible range from 380 nm to 710 nm, Fraunhofer lines are observed as
vertical black lines at specific spectral positions in the continuous spectrum. Highly sensitive modern instruments observe
thousands of such lines.
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Figure 6.14 Observation of line spectra: (a) setup to observe absorption lines; (b) setup to
observe emission lines. (a) White light passes through a cold gas that is contained in a glass
flask. A prism is used to separate wavelengths of the passed light. In the spectrum of the passed
light, some wavelengths are missing, which are seen as black absorption lines in the continuous
spectrum on the viewing screen. (b) A gas is contained in a glass discharge tube that has
electrodes at its ends. At a high potential difference between the electrodes, the gas glows and
the light emitted from the gas passes through the prism that separates its wavelengths. In the
spectrum of the emitted light, only specific wavelengths are present, which are seen as colorful
emission lines on the screen.
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Figure 6.15 The emission spectrum of atomic hydrogen: The spectral positions of emission lines are characteristic for
hydrogen atoms. (credit: “Merikanto”/Wikimedia Commons)

Figure 6.16 The emission spectrum of atomic iron: The spectral positions of emission lines are characteristic for iron atoms.

Emission spectra of the elements have complex structures; they become even more complex for elements with higher atomic
numbers. The simplest spectrum, shown in Figure 6.15, belongs to the hydrogen atom. Only four lines are visible to the
human eye. As you read from right to left in Figure 6.15, these lines are: red (656 nm), called the H- a line; aqua (486

nm), blue (434 nm), and violet (410 nm). The lines with wavelengths shorter than 400 nm appear in the ultraviolet part of
the spectrum (Figure 6.15, far left) and are invisible to the human eye. There are infinitely many invisible spectral lines in
the series for hydrogen.

An empirical formula to describe the positions (wavelengths) A of the hydrogen emission lines in this series was discovered
in 1885 by Johann Balmer. It is known as the Balmer formula:

1_p(L_1 (6.31)
A VY

The constant Ry = 1.09737 X 10’m~! is called the Rydberg constant for hydrogen. In Equation 6.31, the positive
integer n takes on values n = 3, 4, 5, 6 for the four visible lines in this series. The series of emission lines given by the

Balmer formula is called the Balmer series for hydrogen. Other emission lines of hydrogen that were discovered in the
twentieth century are described by the Rydberg formula, which summarizes all of the experimental data:

(6.32)

=Ry n%_# | Whereni=nf+1,nf+2, nf+3,
f i

When n = 1, the series of spectral lines is called the Lyman series. When n = 2, the series is called the Balmer
series, and in this case, the Rydberg formula coincides with the Balmer formula. When n = 3, the series is called the
Paschen series. When ne= 4, the series is called the Brackett series. When ng= 5, the series is called the Pfund
series. When n = 6, we have the Humphreys series. As you may guess, there are infinitely many such spectral bands
in the spectrum of hydrogen because n £ can be any positive integer number.

The Rydberg formula for hydrogen gives the exact positions of the spectral lines as they are observed in a laboratory;

however, at the beginning of the twentieth century, nobody could explain why it worked so well. The Rydberg formula
remained unexplained until the first successful model of the hydrogen atom was proposed in 1913.



272 Chapter 6 | Photons and Matter Waves

Example 6.9

Limits of the Balmer Series

Calculate the longest and the shortest wavelengths in the Balmer series.

Strategy

We can use either the Balmer formula or the Rydberg formula. The longest wavelength is obtained when 1/n;

is largest, which is when n; =ny+1 =3, because n; =2 for the Balmer series. The smallest wavelength is

obtained when 1/n; is smallest, whichis 1/n; —» 0 when n; — oo.

Solution

The long-wave limit:

el 1) 71 1) 4=
= RH(?—?) = (109737 x 10)(1 - 3) = 1 = 656.3 nm

N

The short-wave limit:

L gL _o) NI
1= RH(?— o) = (109737 x 107)5(L) = 2 = 364.6 nm

Significance

Note that there are infinitely many spectral lines lying between these two limits.

@ 6.9 Check Your Understanding What are the limits of the Lyman series? Can you see these spectral lines?

The key to unlocking the mystery of atomic spectra is in understanding atomic structure. Scientists have long known that
matter is made of atoms. According to nineteenth-century science, atoms are the smallest indivisible quantities of matter.
This scientific belief was shattered by a series of groundbreaking experiments that proved the existence of subatomic
particles, such as electrons, protons, and neutrons.

The electron was discovered and identified as the smallest quantity of electric charge by J.J. Thomson in 1897 in his
cathode ray experiments, also known as f-ray experiments: A f-ray is a beam of electrons. In 1904, Thomson proposed
the first model of atomic structure, known as the “plum pudding” model, in which an atom consisted of an unknown
positively charged matter with negative electrons embedded in it like plums in a pudding. Around 1900, E. Rutherford,
and independently, Paul Ulrich Villard, classified all radiation known at that time as « -rays, -rays, and y-rays (a y-
ray is a beam of highly energetic photons). In 1907, Rutherford and Thomas Royds used spectroscopy methods to show
that positively charged particles of « -radiation (called « -particles) are in fact doubly ionized atoms of helium. In 1909,
Rutherford, Ernest Marsden, and Hans Geiger used « -particles in their famous scattering experiment that disproved

Thomson’s model (see Linear Momentum and Collisions (http://cnx.org/content/m58317/latest/) ).

In the Rutherford gold foil experiment (also known as the Geiger—-Marsden experiment), « -particles were incident

on a thin gold foil and were scattered by gold atoms inside the foil (see m58321 (http://cnx.org/content/m58321/
latest/#CNX_UPhysics_09 04 TvsR) ). The outgoing particles were detected by a 360° scintillation screen

surrounding the gold target (for a detailed description of the experimental setup, see Linear Momentum and Collisions
(http:/lcnx.org/content/m58317/latest/) ). When a scattered particle struck the screen, a tiny flash of light
(scintillation) was observed at that location. By counting the scintillations seen at various angles with respect to the direction
of the incident beam, the scientists could determine what fraction of the incident particles were scattered and what fraction
were not deflected at all. If the plum pudding model were correct, there would be no back-scattered « -particles. However,
the results of the Rutherford experiment showed that, although a sizable fraction of « -particles emerged from the foil not
scattered at all as though the foil were not in their way, a significant fraction of « -particles were back-scattered toward the
source. This kind of result was possible only when most of the mass and the entire positive charge of the gold atom were
concentrated in a tiny space inside the atom.
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In 1911, Rutherford proposed a nuclear model of the atom. In Rutherford’s model, an atom contained a positively charged
nucleus of negligible size, almost like a point, but included almost the entire mass of the atom. The atom also contained
negative electrons that were located within the atom but relatively far away from the nucleus. Ten years later, Rutherford
coined the name proton for the nucleus of hydrogen and the name neutron for a hypothetical electrically neutral particle
that would mediate the binding of positive protons in the nucleus (the neutron was discovered in 1932 by James Chadwick).
Rutherford is credited with the discovery of the atomic nucleus; however, the Rutherford model of atomic structure does
not explain the Rydberg formula for the hydrogen emission lines.

Bohr’s model of the hydrogen atom, proposed by Niels Bohr in 1913, was the first quantum model that correctly explained
the hydrogen emission spectrum. Bohr’s model combines the classical mechanics of planetary motion with the quantum
concept of photons. Once Rutherford had established the existence of the atomic nucleus, Bohr’s intuition that the negative
electron in the hydrogen atom must revolve around the positive nucleus became a logical consequence of the inverse-square-
distance law of electrostatic attraction. Recall that Coulomb’s law describing the attraction between two opposite charges
has a similar form to Newton’s universal law of gravitation in the sense that the gravitational force and the electrostatic

force are both decreasing as 1/ r2, where r is the separation distance between the bodies. In the same way as Earth

revolves around the sun, the negative electron in the hydrogen atom can revolve around the positive nucleus. However,
an accelerating charge radiates its energy. Classically, if the electron moved around the nucleus in a planetary fashion, it
would be undergoing centripetal acceleration, and thus would be radiating energy that would cause it to spiral down into the
nucleus. Such a planetary hydrogen atom would not be stable, which is contrary to what we know about ordinary hydrogen
atoms that do not disintegrate. Moreover, the classical motion of the electron is not able to explain the discrete emission
spectrum of hydrogen.

To circumvent these two difficulties, Bohr proposed the following three postulates of Bohr’s model:

1. The negative electron moves around the positive nucleus (proton) in a circular orbit. All electron orbits are centered
at the nucleus. Not all classically possible orbits are available to an electron bound to the nucleus.

2. The allowed electron orbits satisfy the first quantization condition: In the nth orbit, the angular momentum L, of

the electron can take only discrete values:

L, =n#4, wheren=1, 2, 3, ... (6.33)

This postulate says that the electron’s angular momentum is quantized. Denoted by r, and v,, respectively, the
radius of the nth orbit and the electron’s speed in it, the first quantization condition can be expressed explicitly as

MeVy Iy = NA. (6.34)

3. An electron is allowed to make transitions from one orbit where its energy is E, to another orbit where its energy is

E,,,. When an atom absorbs a photon, the electron makes a transition to a higher-energy orbit. When an atom emits

a photon, the electron transits to a lower-energy orbit. Electron transitions with the simultaneous photon absorption
or photon emission take place instantaneously. The allowed electron transitions satisfy the second quantization
condition:

hf =|Ep— Ep| (6.35)

where hf is the energy of either an emitted or an absorbed photon with frequency f. The second quantization
condition states that an electron’s change in energy in the hydrogen atom is quantized.

These three postulates of the early quantum theory of the hydrogen atom allow us to derive not only the Rydberg formula,
but also the value of the Rydberg constant and other important properties of the hydrogen atom such as its energy levels,
its ionization energy, and the sizes of electron orbits. Note that in Bohr’s model, along with two nonclassical quantization
postulates, we also have the classical description of the electron as a particle that is subjected to the Coulomb force, and its
motion must obey Newton’s laws of motion. The hydrogen atom, as an isolated system, must obey the laws of conservation
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of energy and momentum in the way we know from classical physics. Having this theoretical framework in mind, we are
ready to proceed with our analysis.

Electron Orbits

To obtain the size r, of the electron’s nth orbit and the electron’s speed v, in it, we turn to Newtonian mechanics. As

a charged particle, the electron experiences an electrostatic pull toward the positively charged nucleus in the center of its
circular orbit. This electrostatic pull is the centripetal force that causes the electron to move in a circle around the nucleus.
Therefore, the magnitude of centripetal force is identified with the magnitude of the electrostatic force:

Tn " 4ge ,.’%'

Here, e denotes the value of the elementary charge. The negative electron and positive proton have the same value of
charge, |gl = e. When Equation 6.36 is combined with the first quantization condition given by Equation 6.34, we can

solve for the speed, v,, and for the radius, 7, :

b= 1 e_zl (6.37)
" Amgey A N
ry = 4rne 2n2. (6.38)
e€

Note that these results tell us that the electron’s speed as well as the radius of its orbit depend only on the index n
that enumerates the orbit because all other quantities in the preceding equations are fundamental constants. We see from
Equation 6.38 that the size of the orbit grows as the square of n. This means that the second orbit is four times as large as
the first orbit, and the third orbit is nine times as large as the first orbit, and so on. We also see from Equation 6.37 that the
electron’s speed in the orbit decreases as the orbit size increases. The electron’s speed is largest in the first Bohr orbit, for
n =1, which is the orbit closest to the nucleus. The radius of the first Bohr orbit is called the Bohr radius of hydrogen,

denoted as ay. Its value is obtained by setting n = 1 in Equation 6.38:

2 - 2 6.39
ag = 4neg—L—~ =529% 107 m = 0.529 A. (6.39)
mee
We can substitute a, in Equation 6.38 to express the radius of the nth orbit in terms of a :
ro = agn?. (6.40)

This result means that the electron orbits in hydrogen atom are quantized because the orbital radius takes on only specific
values of a), 4ag, 9aq, 16ay, ... given by Equation 6.40, and no other values are allowed.

Electron Energies

The total energy E,, of an electron in the nth orbit is the sum of its kinetic energy K,, and its electrostatic potential energy

U,. Utilizing Equation 6.37, we find that

4 6.41
anlmev,%z—l Me ( )

2 327‘[28(2) 7 on

1
5

Recall that the electrostatic potential energy of interaction between two charges ¢ and g, that are separated by a distance

rip is (1/4rmeqg)q q,/71 . Here, g = + e is the charge of the nucleus in the hydrogen atom (the charge of the proton),
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g, = —e is the charge of the electron and 71, = 7, is the radius of the nth orbit. Now we use Equation 6.38 to find the
potential energy of the electron:

1 2 _ 1 me€4L (6.42)

Uy= -1 _
" dmeg"n o len?el A2 n?

The total energy of the electron is the sum of Equation 6.41 and Equation 6.42:

4 (6.43)
1 mee ]
" " " 327728(2) A% n?

Note that the energy depends only on the index n because the remaining symbols in Equation 6.43 are physical constants.
The value of the constant factor in Equation 6.43 is

. / (6.44)
1 mee 1 mee —18
= =L =2.17x 10781 =13.6eV.
R2aed n* 8el h?

E,

It is convenient to express the electron’s energy in the nth orbit in terms of this energy, as

En=-EyL. (6.45)
n

Now we can see that the electron energies in the hydrogen atom are quantized because they can have only discrete values of
—E,, —Ey/4, —Ey/9, —Ey/16, ... given by Equation 6.45, and no other energy values are allowed. This set of allowed

electron energies is called the energy spectrum of hydrogen (Figure 6.17). The index n that enumerates energy levels
in Bohr’s model is called the energy quantum number. We identify the energy of the electron inside the hydrogen atom
with the energy of the hydrogen atom. Note that the smallest value of energy is obtained for n = 1, so the hydrogen atom

cannot have energy smaller than that. This smallest value of the electron energy in the hydrogen atom is called the ground
state energy of the hydrogen atom and its value is

E =-Ey=—-13.6¢eV. (6.46)

The hydrogen atom may have other energies that are higher than the ground state. These higher energy states are known as
excited energy states of a hydrogen atom.

There is only one ground state, but there are infinitely many excited states because there are infinitely many values of n
in Equation 6.45. We say that the electron is in the “first exited state” when its energy is £, (when n = 2), the second

excited state when its energy is £5 (when n = 3) and, in general, in the nth exited state when its energy is E,, , 1. There
is no highest-of-all excited state; however, there is a limit to the sequence of excited states. If we keep increasing n in

Equation 6.45, we find that the limit is —nli_)mooEO/ n% = 0. In this limit, the electron is no longer bound to the nucleus

but becomes a free electron. An electron remains bound in the hydrogen atom as long as its energy is negative. An electron
that orbits the nucleus in the first Bohr orbit, closest to the nucleus, is in the ground state, where its energy has the smallest
value. In the ground state, the electron is most strongly bound to the nucleus and its energy is given by Equation 6.46.
If we want to remove this electron from the atom, we must supply it with enough energy, E,, to at least balance out its

ground state energy E :
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The energy that is needed to remove the electron from the atom is called the ionization energy. The ionization energy FE

that is needed to remove the electron from the first Bohr orbit is called the ionization limit of the hydrogen atom. The
ionization limit in Equation 6.47 that we obtain in Bohr’s model agrees with experimental value.

E
0 n=smws
—0.54 eV n=>5
—0.85eV n==4
151 eV YYYY n=3
Paschen series
A =
—3.40 eV n=2
H_J
Balmer series
—136ev—1YY n=1

[E——
Lyman series

Figure 6.17 The energy spectrum of the hydrogen atom.
Energy levels (horizontal lines) represent the bound states of an
electron in the atom. There is only one ground state, n = 1,

and infinite quantized excited states. The states are enumerated
by the quantum number n = 1, 2, 3, 4, .... Vertical lines

illustrate the allowed electron transitions between the states.
Downward arrows illustrate transitions with an emission of a
photon with a wavelength in the indicated spectral band.

Spectral Emission Lines of Hydrogen

To obtain the wavelengths of the emitted radiation when an electron makes a transition from the nth orbit to the mth orbit,
we use the second of Bohr’s quantization conditions and Equation 6.45 for energies. The emission of energy from the
atom can occur only when an electron makes a transition from an excited state to a lower-energy state. In the course of such
a transition, the emitted photon carries away the difference of energies between the states involved in the transition. The
transition cannot go in the other direction because the energy of a photon cannot be negative, which means that for emission
we must have E, > E,, and n > m. Therefore, the third of Bohr’s postulates gives

hf = 1 ) (6.48)

E,-E ‘:E —Ep=-EyL+E,-L=E (L——.
noEm noEm 0,2770, 2 o2 a2
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Now we express the photon’s energy in terms of its wavelength, Af = hc/A, and divide both sides of Equation 6.48 by
hc. The result is

1_Eo(1 1 (6.49)
A he\y2  n2)
The value of the constant in this equation is
Lo 13.6eV = 1.097x 1074k (6:50)
he (4136 x 1070 eV -5)(2.997 x 108 m/s) m

This value is exactly the Rydberg constant Ry in the Rydberg heuristic formula Equation 6.32. In fact, Equation 6.49
is identical to the Rydberg formula, because for a given m, we have n =m + 1, m + 2, .... In this way, the Bohr quantum

model of the hydrogen atom allows us to derive the experimental Rydberg constant from first principles and to express it in
terms of fundamental constants. Transitions between the allowed electron orbits are illustrated in Figure 6.17.

We can repeat the same steps that led to Equation 6.49 to obtain the wavelength of the absorbed radiation; this again
gives Equation 6.49 but this time for the positions of absorption lines in the absorption spectrum of hydrogen. The
only difference is that for absorption, the quantum number m is the index of the orbit occupied by the electron before the
transition (lower-energy orbit) and the quantum number n is the index of the orbit to which the electron makes the transition
(higher-energy orbit). The difference between the electron energies in these two orbits is the energy of the absorbed photon.

Example 6.10

Size and lonization Energy of the Hydrogen Atom in an Excited State

If a hydrogen atom in the ground state absorbs a 93.7-nm photon, corresponding to a transition line in the Lyman
series, how does this affect the atom’s energy and size? How much energy is needed to ionize the atom when it is
in this excited state? Give your answers in absolute units, and relative to the ground state.

Strategy

Before the absorption, the atom is in its ground state. This means that the electron transition takes place from the
orbit m = 1 to some higher nth orbit. First, we must determine n for the absorbed wavelength A = 93.7 nm.

Then, we can use Equation 6.45 to find the energy E,, of the excited state and its ionization energy E, 5,
and use Equation 6.40 to find the radius r, of the atom in the excited state. To estimate n, we use Equation
6.49.

Solution

Substitute m =1 and 4 =93.7nm in Equation 6.49 and solve for n. You should not expect to obtain a

perfect integer answer because of rounding errors, but your answer will be close to an integer, and you can
estimate n by taking the integral part of your answer:

1_ 1 1 _ 1 _ 1 _ _
E_RH(IZ nz):'n_\/hL_\/l— 1 =607 =n=6.
ARy 93.7x 102 m)(1.097 x 10’ m™1)

The radius of the n = 6 orbit is
rn=agn® = ay6> =36ay=36(0.529x 1071%m) = 19.04 x 107%m = 19.0 A.

Thus, after absorbing the 93.7-nm photon, the size of the hydrogen atom in the excited n = 6 state is 36 times

larger than before the absorption, when the atom was in the ground state. The energy of the fifth excited state (
n==6)is:

Ey Ey_ Ey_  13.6eV . _
- o T St = —0.378eV.
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After absorbing the 93.7-nm photon, the energy of the hydrogen atom is larger than it was before the absorption.
Ionization of the atom when it is in the fifth excited state (n = 6 ) requites 36 times less energy than is needed

when the atom is in the ground state:

Ey, ¢=—Eg=—(~0.378eV) = 0.378¢V.

[o0]

Significance

We can analyze any spectral line in the spectrum of hydrogen in the same way. Thus, the experimental
measurements of spectral lines provide us with information about the atomic structure of the hydrogen atom.

6.10 Check Your Understanding When an electron in a hydrogen atom is in the first excited state, what
prediction does the Bohr model give about its orbital speed and kinetic energy? What is the magnitude of its
orbital angular momentum?

Bohr’s model of the hydrogen atom also correctly predicts the spectra of some hydrogen-like ions. Hydrogen-like ions
are atoms of elements with an atomic number Z larger than one (Z =1 for hydrogen) but with all electrons removed

except one. For example, an electrically neutral helium atom has an atomic number Z = 2. This means it has two electrons
orbiting the nucleus with a charge of ¢ = + Ze. When one of the orbiting electrons is removed from the helium atom (we

say, when the helium atom is singly ionized), what remains is a hydrogen-like atomic structure where the remaining electron
orbits the nucleus with a charge of ¢ = + Ze. This type of situation is described by the Bohr model. Assuming that the

charge of the nucleus is not +e but +Ze, we can repeat all steps, beginning with Equation 6.36, to obtain the results
for a hydrogen-like ion:

a
r, = 7onz (6.51)
where a, is the Bohr orbit of hydrogen, and
En=-Z*Ey: (6.52)
n

where E is the ionization limit of a hydrogen atom. These equations are good approximations as long as the atomic
number Z is not too large.

The Bohr model is important because it was the first model to postulate the quantization of electron orbits in atoms. Thus,
it represents an early quantum theory that gave a start to developing modern quantum theory. It introduced the concept of
a quantum number to describe atomic states. The limitation of the early quantum theory is that it cannot describe atoms
in which the number of electrons orbiting the nucleus is larger than one. The Bohr model of hydrogen is a semi-classical
model because it combines the classical concept of electron orbits with the new concept of quantization. The remarkable
success of this model prompted many physicists to seek an explanation for why such a model should work at all, and to
seek an understanding of the physics behind the postulates of early quantum theory. This search brought about the onset of
an entirely new concept of “matter waves.”
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6.5 | De Broglie’s Matter Waves

Learning Objectives

By the end of this section, you will be able to:

* Describe de Broglie's hypothesis of matter waves

* Explain how the de Broglie’s hypothesis gives the rationale for the quantization of angular
momentum in Bohr’s quantum theory of the hydrogen atom

* Describe the Davisson—-Germer experiment

* Interpret de Broglie’s idea of matter waves and how they account for electron diffraction
phenomena

Compton’s formula established that an electromagnetic wave can behave like a particle of light when interacting with
matter. In 1924, Louis de Broglie proposed a new speculative hypothesis that electrons and other particles of matter
can behave like waves. Today, this idea is known as de Broglie’s hypothesis of matter waves. In 1926, De Broglie’s
hypothesis, together with Bohr’s early quantum theory, led to the development of a new theory of wave quantum
mechanics to describe the physics of atoms and subatomic particles. Quantum mechanics has paved the way for new
engineering inventions and technologies, such as the laser and magnetic resonance imaging (MRI). These new technologies
drive discoveries in other sciences such as biology and chemistry.

According to de Broglie’s hypothesis, massless photons as well as massive particles must satisfy one common set of
relations that connect the energy E with the frequency f, and the linear momentum p with the wavelength 1. We have

discussed these relations for photons in the context of Compton’s effect. We are recalling them now in a more general
context. Any particle that has energy and momentum is a de Broglie wave of frequency f and wavelength 1 :

E = hf (6.53)

—h (6.54)
A=2.

Here, E and p are, respectively, the relativistic energy and the momentum of a particle. De Broglie’s relations are usually

—_
expressed in terms of the wave vector Kk , k =2x/1, and the wave frequency @ = 2z f, as we usually do for waves:

E = hw (6.55)
7 =ik (6.56)

Wave theory tells us that a wave carries its energy with the group velocity. For matter waves, this group velocity is the

2

velocity u of the particle. Identifying the energy E and momentum p of a particle with its relativistic energy mc~ and its

relativistic momentum mu, respectively, it follows from de Broglie relations that matter waves satisfy the following relation:

(6.57)
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where f = u/c. When a particle is massless we have u = ¢ and Equation 6.57 becomes Af = c.



280 Chapter 6 | Photons and Matter Waves

Example 6.11

How Long Are de Broglie Matter Waves?

Calculate the de Broglie wavelength of: (a) a 0.65-kg basketball thrown at a speed of 10 m/s, (b) a nonrelativistic
electron with a kinetic energy of 1.0 eV, and (c) a relativistic electron with a kinetic energy of 108 keV.

Strategy

We use Equation 6.57 to find the de Broglie wavelength. When the problem involves a nonrelativistic object
moving with a nonrelativistic speed u, such as in (a) when = u/c < 1, we use nonrelativistic momentum p.

When the nonrelativistic approximation cannot be used, such as in (c), we must use the relativistic momentum
p=mu=myyu = Eyyp, where the rest mass energy of a particle is Ey=m, ¢? and y is the Lorentz

factor y = 1/V1 — ﬁz. The total energy E of a particle is given by Equation 6.53 and the kinetic energy
is K=FE—Ey=(y—1)Ey. When the kinetic energy is known, we can invert Equation 6.18 to find the

momentum p = V(E2 - E%)/c2 =\K(K + 2E;)/c and substitute in Equation 6.57 to obtain

i=h_ he (6.58)

h____ _he
P KK +2Ep)

Depending on the problem at hand, in this equation we can use the following values for hc:
he = (6.626 X 107347 -$)(2.998 x 108 m/s) = 1.986 X 10™2°J-m = 1.241 eV - um

Solution
a. For the basketball, the kinetic energy is

K = mou® /2 = (0.65kg)(10m/s)? /2 = 32.5]

and the rest mass energy is

Ey=myc? = (0.65kg)(2.998 x 108 m/s)? = 5.84 x 101°].

We see that K/(K + Ej) < 1 and use p = myu = (0.65kg)(10m/s) = 6.5] - s/m :

-34
a=h= 6-622>5<J{2/m I's — 1.02%x 1073 m.

b. For the nonrelativistic electron,

Ey=myc? =(9.109 x 1073 kg)(2.998 x 108 m/s)? = 511 keV

and when K =1.0eV, we have K/(K+Ey = (1/512)% 1073 < 1, so we can use the
nonrelativistic formula. However, it is simpler here to use Equation 6.58:

1=h he 1.241 eV - um

n _ = = 1.23 nm.
p \/K(K +2E) V(1.0eV)[1.0eV+2(511 keV)]

If we use nonrelativistic momentum, we obtain the same result because 1 eV is much smaller than the rest
mass of the electron.

c. For afast electron with K = 108 keV, relativistic effects cannot be neglected because its total energy is
E=K+Ey=108keV + 511keV =619keV and K/E = 108/619 is not negligible:

1= h he _ 1.241 eV -um _
P WK(K+2Ey) 1108keV[108keV +2(511keV)]

3.55 pm.
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Significance

We see from these estimates that De Broglie’s wavelengths of macroscopic objects such as a ball are
immeasurably small. Therefore, even if they exist, they are not detectable and do not affect the motion of
macroscopic objects.

6.11 Check Your Understanding What is de Broglie’s wavelength of a nonrelativistic proton with a kinetic
energy of 1.0 eV?

Using the concept of the electron matter wave, de Broglie provided a rationale for the quantization of the electron’s angular
momentum in the hydrogen atom, which was postulated in Bohr’s quantum theory. The physical explanation for the first
Bohr quantization condition comes naturally when we assume that an electron in a hydrogen atom behaves not like a particle
but like a wave. To see it clearly, imagine a stretched guitar string that is clamped at both ends and vibrates in one of its
normal modes. If the length of the string is | (Figure 6.18), the wavelengths of these vibrations cannot be arbitrary but
must be such that an integer k number of half-wavelengths 1/2 fit exactly on the distance I between the ends. This is the

condition [ = kA/2 for a standing wave on a string. Now suppose that instead of having the string clamped at the walls,

we bend its length into a circle and fasten its ends to each other. This produces a circular string that vibrates in normal
modes, satisfying the same standing-wave condition, but the number of half-wavelengths must now be an even number
k, k =2n, and the length I is now connected to the radius r, of the circle. This means that the radii are not arbitrary but

must satisfy the following standing-wave condition:

27y, = Zn%. (6.59)
If an electron in the nth Bohr orbit moves as a wave, by Equation 6.59 its wavelength must be equal to A = 2zr, /n.

Assuming that Equation 6.58 is valid, the electron wave of this wavelength corresponds to the electron’s linear
momentum, p = h/A = nh/(2zr,) = nk/r,. In a circular orbit, therefore, the electron’s angular momentum must be

nf _ g (6.60)

Ln=rnp=rnrn

This equation is the first of Bohr’s quantization conditions, given by Equation 6.36. Providing a physical explanation for
Bohr’s quantization condition is a convincing theoretical argument for the existence of matter waves.
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Figure 6.18 Standing-wave pattern: (a) a stretched string clamped at the walls; (b) an electron wave trapped in the third Bohr
orbit in the hydrogen atom.

Example 6.12

The Electron Wave in the Ground State of Hydrogen

Find the de Broglie wavelength of an electron in the ground state of hydrogen.
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Strategy

We combine the first quantization condition in Equation 6.60 with Equation 6.36 and use Equation 6.38
for the first Bohr radius with n = 1.

Solution
When n=1 and r, =ay=0.529 A, the Bohr quantization condition gives agp =1-%= p = 7%/a(. The
electron wavelength is:
A=hlp=~hlhalay=2ray=2r(0.529 A) =3324A.
Significance

We obtain the same result when we use Equation 6.58 directly.

6.12 Check Your Understanding Find the de Broglie wavelength of an electron in the third excited state of
hydrogen.

Experimental confirmation of matter waves came in 1927 when C. Davisson and L. Germer performed a series of electron-
scattering experiments that clearly showed that electrons do behave like waves. Davisson and Germer did not set up their
experiment to confirm de Broglie’s hypothesis: The confirmation came as a byproduct of their routine experimental studies
of metal surfaces under electron bombardment.

In the particular experiment that provided the very first evidence of electron waves (known today as the Davisson—Germer
experiment), they studied a surface of nickel. Their nickel sample was specially prepared in a high-temperature oven to
change its usual polycrystalline structure to a form in which large single-crystal domains occupy the volume. Figure 6.19
shows the experimental setup. Thermal electrons are released from a heated element (usually made of tungsten) in the
electron gun and accelerated through a potential difference AV, becoming a well-collimated beam of electrons produced

by an electron gun. The kinetic energy K of the electrons is adjusted by selecting a value of the potential difference in the
electron gun. This produces a beam of electrons with a set value of linear momentum, in accordance with the conservation
of energy:
2 (6.61)
eAV =K =L— = p=12meAV.

2m

The electron beam is incident on the nickel sample in the direction normal to its surface. At the surface, it scatters in various
directions. The intensity of the beam scattered in a selected direction ¢ is measured by a highly sensitive detector. The

detector’s angular position with respect to the direction of the incident beam can be varied from ¢ = 0° to ¢ = 90°. The

entire setup is enclosed in a vacuum chamber to prevent electron collisions with air molecules, as such thermal collisions
would change the electrons’ kinetic energy and are not desirable.
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Figure 6.19 Schematics of the experimental setup of the
Davisson—Germer diffraction experiment. A well-collimated
beam of electrons is scattered off the nickel target. The kinetic
energy of electrons in the incident beam is selected by adjusting
a variable potential, AV, in the electron gun. Intensity of the

scattered electron beam is measured for a range of scattering
angles ¢, whereas the distance between the detector and the

target does not change.

When the nickel target has a polycrystalline form with many randomly oriented microscopic crystals, the incident electrons
scatter off its surface in various random directions. As a result, the intensity of the scattered electron beam is much the same
in any direction, resembling a diffuse reflection of light from a porous surface. However, when the nickel target has a regular
crystalline structure, the intensity of the scattered electron beam shows a clear maximum at a specific angle and the results
show a clear diffraction pattern (see Figure 6.20). Similar diffraction patterns formed by X-rays scattered by various
crystalline solids were studied in 1912 by father-and-son physicists William H. Bragg and William L. Bragg. The Bragg law
in X-ray crystallography provides a connection between the wavelength A of the radiation incident on a crystalline lattice,

the lattice spacing, and the position of the interference maximum in the diffracted radiation (see Diffraction).

The lattice spacing of the Davisson—Germer target, determined with X-ray crystallography, was measured to be
a=2.15A. Unlike X-ray crystallography in which X-rays penetrate the sample, in th