Kindling model
Kindling is a commonly used model for the development of seizures and epilepsy in which the duration and behavioral involvement of induced seizures increases after seizures are induced repeatedly.[1] The kindling model was first proposed in the late 1960s by Graham V. Goddard and colleagues.[2] Although kindling is a widely used model, its applicability to human epilepsy is controversial.[1]
Method
The word kindling is a metaphor: the increase in response to small stimuli is similar to the way small burning twigs can produce a large fire.[3] It is used by scientists to study the effects of repeated seizures on the brain.[1] A seizure may increase the likelihood that more seizures will occur; an old saying in epilepsy research is "seizures beget seizures".[1] Repeated stimulation "lowers the threshold" for more seizures to occur.[4]
The brains of experimental animals are repeatedly stimulated, usually with electricity, to induce the seizures.[1] Chemicals may also be used to induce seizures.[3] The seizure that occurs after the first such electrical stimulation lasts a short time and is accompanied by a small amount of behavioral effects compared with seizures that result from repeated stimulations.[1] With further seizures, the accompanying behavior intensifies, for example progressing from freezing in early stimulations to convulsions in later ones.[5] The lengthening of duration and intensification of behavioral accompaniment eventually reaches a plateau after repeated stimulation.[1] Even if animals are left unstimulated for as long as 12 weeks, the effect remains; the response to stimulation remains higher than it had been before.[3]
It has been reported that repeated seizure stimulation can result in spontaneous seizures, but studies have had conflicting findings on this question.[1] In humans, some seizure disorders come to an end by themselves even after large numbers of seizures.[1] However, in both human epilepsy and in some animal models, evidence suggests that a process like that found in kindling does occur.[1]
Historical perspective
Already in the 1950s and 1960s, numerous authors recognized the seizure-inducing potential of focal stimulation.[6] Here, Delgado and Sevillano demonstrated that repeated low-intensity stimuli to the hippocampus could lead to progressive increase of electrically evoked seizure activity.[7] Yet, it was not until the late 1960s that Graham Goddard recognized the potential importance of this phenomenon and coined the term 'kindling'.[8] Further research by Goddard on the characteristics of the kindling phenomenon led to his conclusion that kindling can be used to model human epileptogenesis, learning and memory.[9] The publication of these results opened a completely new niche for epilepsy research and has stimulated a significant number of studies on the subject of kindling and its relevance to human epilepsy.[6]
New approaches
In 2019, a new model to develop kindling in the neocortex was developed using optogenetics (light) instead of passing electrical current.[10] In 2021, "optokindling" by activating pyramidal cells in the piriform cortex has shown to disrupt the GABA production of feedback inhibitory cells, which led to the progression of seizure severity in mice.[11]
See also
- Kindling (sedative–hypnotic withdrawal)
- Epileptogenesis
- Racine stages (a method by which seizure severity is quantified in animal models of epilepsy)
References
- 1 2 3 4 5 6 7 8 9 10 Bertram E (2007). "The relevance of kindling for human epilepsy". Epilepsia. 48 (Supplement 2): 65–74. doi:10.1111/j.1528-1167.2007.01068.x. PMID 17571354.
- ↑ Sato M (2008). "Kindling: An experimental model of epilepsy" (PDF). Psychiatry and Clinical Neurosciences. 36 (4): 440–441. doi:10.1111/j.1440-1819.1982.tb03123.x.
- 1 2 3 Abel MS, McCandless DW (1992). "The kindling model of epilepsy". In Adams RN, Baker GB, Baker JM, Bateson AN, Boisvert DP, Boulton AA, et al. (eds.). Neuromethods: Animal Models of Neurological Disease. Totowa, NJ: Humana Press. pp. 153–155. ISBN 0-89603-211-6.
- ↑ PK Sahoo; KI Mathai; GV Ramdas; MN Swamy (2007). "The pathophysiology of post traumatic epilepsy" (PDF). Indian Journal of Neurotrauma. 4 (1): 11–14. doi:10.1016/s0973-0508(07)80004-9. Archived from the original (PDF) on 2010-12-02.
Temkin NR, Jarell AD, Anderson GD (2001). "Antiepileptogenic agents: how close are we?". Drugs. 61 (8): 1045–55. doi:10.2165/00003495-200161080-00002. PMID 11465868.
{{cite journal}}
: CS1 maint: uses authors parameter (link) - ↑ Morimoto K, Fahnestock M, Racine RJ (May 2004). "Kindling and status epilepticus models of epilepsy: Rewiring the brain". Prog. Neurobiol. 73 (1): 1–60. doi:10.1016/j.pneurobio.2004.03.009. PMID 15193778.
- 1 2 McNamara JO; Byrne MC; Dasheiff RM; JG Fitz (1980). "The Kindling Model of Epilepsy; a Review". Progress in Neurobiology. 15 (2): 139–59. doi:10.1016/0301-0082(80)90006-4. PMID 6109361.
- ↑ Delgado JM, Sevillano M (1961). "Evolution of repeated hippocampal seizures in the cat". Electroenceph. Clin. Neurophys. 13 (2): 722–733. doi:10.1016/0013-4694(61)90104-3.
- ↑ Goddard GV (1967). "Development of epileptic seizures through brain stimulation at low intensity". Nature. 214 (5092): 1020–1. Bibcode:1967Natur.214.1020G. doi:10.1038/2141020a0. PMID 6055396.
- ↑ Goddard GV, McIntyre DC, Leech CK (1969). "A permanent change in brain function resulting from daily electrical stimulation". Exp Neurol. 25 (3): 295–330. doi:10.1016/0014-4886(69)90128-9. PMID 4981856.
- ↑ Cela, Elvis; McFarlan, Amanda R.; Chung, Andrew J.; Wang, Taiji; Chierzi, Sabrina; Murai, Keith K.; Sjöström, P. Jesper (December 2019). "An Optogenetic Kindling Model of Neocortical Epilepsy". Scientific Reports. 9 (1): 5236. Bibcode:2019NatSR...9.5236C. doi:10.1038/s41598-019-41533-2. ISSN 2045-2322. PMC 6437216. PMID 30918286.
- ↑ Ryu, Brendan; Nagappan, Shivathmihai; Santos-Valencia, Fernando; Lee, Psyche; Rodriguez, Erica; Lackie, Meredith; Takatoh, Jun; Franks, Kevin M. (April 2021). "Chronic loss of inhibition in piriform cortex following brief, daily optogenetic stimulation". Cell Reports. 35 (3): 109001. doi:10.1016/j.celrep.2021.109001. ISSN 2211-1247. PMC 8102022.