Surrogate endpoint

In clinical trials, a surrogate endpoint (or surrogate marker) is a measure of effect of a specific treatment that may correlate with a real clinical endpoint but does not necessarily have a guaranteed relationship. The National Institutes of Health (USA) defines surrogate endpoint as "a biomarker intended to substitute for a clinical endpoint".[1][2]

Surrogate markers are used when the primary endpoint is undesired (e.g., death), or when the number of events is very small, thus making it impractical to conduct a clinical trial to gather a statistically significant number of endpoints. The FDA and other regulatory agencies will often accept evidence from clinical trials that show a direct clinical benefit to surrogate markers.[3]

Surrogate endpoints can be obtained from different modalities, such as, behavioural or cognitive scores, or biomarkers from Electroencephalography (qEEG), MRI, PET, or biochemical biomarkers.

A correlate does not make a surrogate. It is a common misconception that if an outcome is a correlate (that is, correlated with the true clinical outcome) it can be used as a valid surrogate end point (that is, a replacement for the true clinical outcome). However, proper justification for such replacement requires that the effect of the intervention on the surrogate end point predicts the effect on the clinical outcome: a much stronger condition than correlation.[4][5] In this context, the term Prentice criteria is used.[6]

The term "surrogate" should not be used in describing end points. Instead, descriptions of results and interpretations should be formulated in terms that designate the specific nature and category of variable assessed.[7]

A surrogate endpoint of a clinical trial is a laboratory measurement or a physical sign used as a substitute for a clinically meaningful endpoint that measures directly how a patient feels, functions or survives. Changes induced by a therapy on a surrogate endpoint are expected to reflect changes in a clinically meaningful endpoint.[8]

Examples in cardiovascular disease

A commonly used example is cholesterol. While elevated cholesterol levels increase the likelihood for heart disease, the relationship is not linear - many people with normal cholesterol develop heart disease, and many with high cholesterol do not. "Death from heart disease" is the endpoint of interest, but "cholesterol" is the surrogate marker. A clinical trial may show that a particular drug (for example, simvastatin (Zocor)) is effective in reducing cholesterol, without showing directly that simvastatin prevents death. Proof of Zocor's efficacy in reducing cardiovascular disease was only presented five years after its original introduction, and then only for secondary prevention.[9] In another case, AstraZeneca was accused of marketing rosuvastatin (Crestor) without providing hard endpoint data, relying instead on surrogate endpoints. The company countered that rosuvastatin had been tested on larger groups of patients than any other drug in the class, and that its effects should be comparable to the other statins.[10]

Examples in cancer

Progression Free Survival is a prominent example in Oncology contexts. There are examples of cancer drugs approved on the basis of progression-free survival failed to show subsequent improvements in overall survival in subsequent studies. In breast cancer, Bevacizumab (Avastin) initially gained approval from the Food and Drug Administration, but subsequently had its license revoked.[11][12] More patient focused surrogate endpoints may offer a more meaningful alternative such as Overall Treatment Utility.[13][14]

Criticism

There have been a number of instances when studies using surrogate markers have been used to show benefit from a particular treatment, but later, a repeat study looking at endpoints has not shown a benefit, or has even shown a harm.[15]

See also

References

  1. De Gruttola, Victor G; Clax, Pamela; DeMets, David L; Downing, Gregory J; Ellenberg, Susan S; Friedman, Lawrence; Gail, Mitchell H; Prentice, Ross; Wittes, Janet; Zeger, Scott L (2001). "Considerations in the Evaluation of Surrogate Endpoints in Clinical Trials". Controlled Clinical Trials. 22 (5): 485–502. doi:10.1016/S0197-2456(01)00153-2. ISSN 0197-2456.
  2. Cohn JN (2004). "Introduction to Surrogate Markers". Circulation. 109 (25 Suppl 1): IV20–1. doi:10.1161/01.CIR.0000133441.05780.1d. PMID 15226247.
  3. Alexandra Goho, "An Imperfect Substitute" CR Magazine, Spring 2009
  4. Fleming, Thomas R. (1996). "Surrogate End Points in Clinical Trials: Are We Being Misled?". Annals of Internal Medicine. 125 (7): 605. doi:10.7326/0003-4819-125-7-199610010-00011.
  5. Prentice, Ross L. (1989). "Surrogate endpoints in clinical trials: Definition and operational criteria". Statistics in Medicine. 8 (4): 431–440. doi:10.1002/sim.4780080407.
  6. O'Quigley, John; Flandre, Philippe (March 2006). "Quantification of the Prentice Criteria for Surrogate Endpoints". Biometrics. 62 (1): 297–300. doi:10.1111/j.1541-0420.2006.00538.x.
  7. Sobel, Burton E.; Furberg, Curt D. (1997). "Surrogates, Semantics, and Sensible Public Policy". Circulation. 95 (6): 1661–1663. doi:10.1161/01.CIR.95.6.1661.
  8. Temple RJ. A regulatory authority's opinion about surrogate endpoints. Clinical Measurement in Drug Evaluation. Edited by Nimmo WS, Tucker GT. New York: Wiley; 1995.
  9. Pedersen TR, Olsson AG, Faergeman O, et al. (1998). "Lipoprotein changes and reduction in the incidence of major coronary heart disease events in the Scandinavian Simvastatin Survival Study (4S)". Circulation. 97 (15): 1453–1460. doi:10.1161/01.cir.97.15.1453. PMID 9576425.
  10. Horton, Richard (October 25, 2003). "The statin wars: why AstraZeneca must retreat". Lancet. 362 (9393): 1341. doi:10.1016/S0140-6736(03)14669-7. PMID 14585629.
    McKillop T (November 1, 2003). "The statin wars". Lancet. 362 (9394): 1498. doi:10.1016/S0140-6736(03)14698-3. PMID 14602449.
  11. d'Agostino, Ralph B. (2011). "Changing End Points in Breast-Cancer Drug Approval — The Avastin Story". NEJM. 365 (2): e2. doi:10.1056/NEJMp1106984. PMID 21707384.
  12. Lenzer, J. (2011). "FDA committee votes to withdraw bevacizumab for breast cancer". BMJ. 343: d4244. doi:10.1136/bmj.d4244. PMID 21729988.
  13. Handforth C, Hall PS, Marshall HC, Collinson M, Jones M, Seymour MT (2013). "Overall treatment utility: a novel outcome measure reflecting the balance of benefits and harms from cancer therapy". European Journal of Cancer. 49 (S2): 346.
  14. Hall PS, Lord SR, Collinson M, Marshall H, Jones M, Lowe C, Howard H, Swinson D, Velikova G, Anthoney A, Roy R, Seymour M (2017). "A randomised phase II trial and feasibility study of palliative chemotherapy in frail or elderly patients with advanced gastroesophageal cancer (321GO)". British Journal of Cancer. 116 (4): 472–478. doi:10.1038/bjc.2016.442. PMC 5318975. PMID 28095397.
  15. Psaty BM, Weiss NS, Furberg CD, et al. (1999). "Surrogate end points, health outcomes, and the drug approval process for the treatment of risk factors for cardiovascular disease". JAMA. 282 (8): 786–790. doi:10.1001/jama.282.8.786. PMID 10463718.
This article is issued from Offline. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.