Archaeal translation
Archaeal translation is the process by which messenger RNA is translated into proteins in archaea. Not much is known on this subject, but on the protein level it seems to resemble eukaryotic translation.
Most of the initiation, elongation, and termination factors in archaea have homologs in eukaryotes.[1] Shine-Dalgarno sequences only are found in a minority of genes for many phyla, with many leaderless mRNAs probably initiated by scanning.[2][3][4] The process of ABCE1 ATPase-based recycling is also shared with eukaryotes.[5]
Being a prokaryote without a nucleus, archaea do perform transcription and translation at the same time like bacteria do.[6]
References
- ↑ Saito K, Kobayashi K, Wada M, Kikuno I, Takusagawa A, Mochizuki M, et al. (November 2010). "Omnipotent role of archaeal elongation factor 1 alpha (EF1α in translational elongation and termination, and quality control of protein synthesis". Proceedings of the National Academy of Sciences of the United States of America. 107 (45): 19242–7. Bibcode:2010PNAS..10719242S. doi:10.1073/pnas.1009599107. PMC 2984191. PMID 20974926.
- ↑ Hernández, Greco; Jagus, Rosemary (2016-08-10). "Evolution of Translational Initiation: From Archaea to Eukarya". Evolution of the protein synthesis machinery and its regulation. Hernández, Greco,, Jagus, Rosemary. Switzerland. doi:10.1007/978-3-319-39468-8_4. ISBN 9783319394688. OCLC 956539514.
- ↑ Benelli, D; Londei, P (January 2011). "Translation initiation in Archaea: conserved and domain-specific features". Biochemical Society Transactions. 39 (1): 89–93. doi:10.1042/BST0390089. PMID 21265752.
- ↑ Nakagawa, S; Niimura, Y; Gojobori, T (20 April 2017). "Comparative genomic analysis of translation initiation mechanisms for genes lacking the Shine-Dalgarno sequence in prokaryotes". Nucleic Acids Research. 45 (7): 3922–3931. doi:10.1093/nar/gkx124. PMC 5397173. PMID 28334743.
- ↑ Becker, T; Franckenberg, S; Wickles, S; Shoemaker, CJ; Anger, AM; Armache, JP; Sieber, H; Ungewickell, C; Berninghausen, O; Daberkow, I; Karcher, A; Thomm, M; Hopfner, KP; Green, R; Beckmann, R (22 February 2012). "Structural basis of highly conserved ribosome recycling in eukaryotes and archaea". Nature. 482 (7386): 501–6. Bibcode:2012Natur.482..501B. doi:10.1038/nature10829. PMC 6878762. PMID 22358840.
- ↑ French, S. L.; Santangelo, T. J.; Beyer, A. L.; Reeve, J. N. (30 January 2007). "Transcription and Translation are Coupled in Archaea". Molecular Biology and Evolution. 24 (4): 893–895. doi:10.1093/molbev/msm007. PMID 17237472.
This article is issued from Offline. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.