Iron(II,III) oxide

Iron(II,III) oxide
Names
IUPAC name
iron(II) iron(III) oxide
Other names
ferrous ferric oxide, ferrosoferric oxide, iron(II,III) oxide, magnetite, black iron oxide, lodestone, rust, iron(II) diiron(III) oxide
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.013.889
Edit this at Wikidata
PubChem CID
UNII
InChI
  • InChI=1S/3Fe.4O checkY
    Key: SZVJSHCCFOBDDC-UHFFFAOYSA-N checkY
  • InChI=1/3Fe.4O/rFe3O4/c1-4-2-6-3(5-1)7-2
    Key: SZVJSHCCFOBDDC-QXRQKJBKAR
SMILES
  • O1[Fe]2O[Fe]O[Fe]1O2
Properties
Chemical formula
Fe3O4

FeO.Fe2O3

Molar mass 231.533 g/mol
Appearance solid black powder
Density 5 g/cm3
Melting point 1,597 °C (2,907 °F; 1,870 K)
Boiling point 2,623[1] °C (4,753 °F; 2,896 K)
Refractive index (nD)
2.42[2]
Hazards
NFPA 704 (fire diamond)
Thermochemistry
Std enthalpy of
formation fH298)
-1120.89 kJ·mol−1[3]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Infobox references

Iron(II,III) oxide is the chemical compound with formula Fe3O4. It occurs in nature as the mineral magnetite. It is one of a number of iron oxides, the others being iron(II) oxide (FeO), which is rare, and iron(III) oxide (Fe2O3) which also occurs naturally as the mineral hematite. It contains both Fe2+ and Fe3+ ions and is sometimes formulated as FeO  Fe2O3. This iron oxide is encountered in the laboratory as a black powder. It exhibits permanent magnetism and is ferrimagnetic, but is sometimes incorrectly described as ferromagnetic.[4] Its most extensive use is as a black pigment. For this purpose, it is synthesized rather than being extracted from the naturally occurring mineral as the particle size and shape can be varied by the method of production.[5]

Preparation

Under anaerobic conditions, ferrous hydroxide (Fe(OH)2) can be oxidized by water to form magnetite and molecular hydrogen. This process is described by the Schikorr reaction:

The well-crystallized magnetite (Fe3O4) is thermodynamically more stable than the ferrous hydroxide (Fe(OH)2 ).[6]

Magnetite can be prepared in the laboratory as a ferrofluid in the Massart method by mixing iron(II) chloride and iron(III) chloride in the presence of sodium hydroxide.[7] Magnetite can also be prepared by the chemical co-precipitation in presence of ammonia, which consist in a mixture of a solution 0.1 M of FeCl3·6H2O and FeCl2·4H2O with mechanic agitation of about 2000 rpm. The molar ratio of FeCl3:FeCl2 can be 2:1; heating this solution at 70 °C, and immediately the speed is elevated to 7500 rpm and adding quickly a solution of NH4OH (10 volume %), immediately a dark precipitate will be formed, which consists of nanoparticles of magnetite.[8] In both cases, the precipitation reaction rely on a quick transformation of acidic hydrolyzed iron ions into the spinel iron oxide structure, by hydrolysis at elevated pH values (above ca. 10).

Considerable efforts has been devoted towards controlling the particle formation process of magnetite nanoparticles due to the challenging and complex chemistry reactions involved in the phase transformations prior to the formation of the magnetite spinel structure.[9] Magnetite particles are of interests in bioscience applications such as in magnetic resonance imaging (MRI) since iron oxide magnetite nanoparticles represent a non-toxic alternative to currently employed gadolinium-based contrast agents. However, due to lack of control over the specific transformations involved in the formation of the particles, truly superparamagnetic particles have not yet been prepared from magnetite, i.e. magnetite nanoparticles that completely lose their permanent magnetic characteristic in the absence of an external magnetic field (which by definition show a coercivity of 0 A/m). The smallest values currently reported for nanosized magnetite particles is Hc = 8.5 A m−1,[10] whereas the largest reported magnetization value is 87 Am2 kg−1 for synthetic magnetite.[11][12]

Pigment quality Fe3O4, so called synthetic magnetite, can be prepared using processes that use industrial wastes, scrap iron or solutions containing iron salts (e.g. those produced as by-products in industrial processes such as the acid vat treatment (pickling) of steel):

  • Oxidation of Fe metal in the Laux process where nitrobenzene is treated with iron metal using FeCl2 as a catalyst to produce aniline:[5]
C6H5NO2 + 3 Fe + 2 H2O → C6H5NH2 + Fe3O4
  • Oxidation of FeII compounds, e.g. the precipitation of iron(II) salts as hydroxides followed by oxidation by aeration where careful control of the pH determines the oxide produced.[5]

Reduction of Fe2O3 with hydrogen:[13][14]

3Fe2O3 + H2 → 2Fe3O4 +H2O

Reduction of Fe2O3 with CO:[15]

3Fe2O3 + CO → 2Fe3O4 + CO2

Production of nano-particles can be performed chemically by taking for example mixtures of FeII and FeIII salts and mixing them with alkali to precipitate colloidal Fe3O4. The reaction conditions are critical to the process and determine the particle size.[16]

Reactions

Reduction of magnetite ore by CO in a blast furnace is used to produce iron as part of steel production process:[4]

Controlled oxidation of Fe3O4 is used to produce brown pigment quality γ-Fe2O3 (maghemite):[17]

More vigorous calcining (roasting in air) gives red pigment quality α-Fe2O3 (hematite):[17]

Structure

Fe3O4 has a cubic inverse spinel group structure which consists of a cubic close packed array of oxide ions where all of the Fe2+ ions occupy half of the octahedral sites and the Fe3+ are split evenly across the remaining octahedral sites and the tetrahedral sites.

Both FeO and γ-Fe2O3 have a similar cubic close packed array of oxide ions and this accounts for the ready interchangeability between the three compounds on oxidation and reduction as these reactions entail a relatively small change to the overall structure.[4] Fe3O4 samples can be non-stoichiometric.[4]

The ferrimagnetism of Fe3O4 arises because the electron spins of the FeII and FeIII ions in the octahedral sites are coupled and the spins of the FeIII ions in the tetrahedral sites are coupled but anti-parallel to the former. The net effect is that the magnetic contributions of both sets are not balanced and there is a permanent magnetism.[4]

In the molten state, experimentally constrained models show that the iron ions are coordinated to 5 oxygen ions on average.[18] There is a distribution of coordination sites in the liquid state, with the majority of both FeII and FeIII being 5-coordinated to oxygen and minority populations of both 4- and 6-fold coordinated iron.

Properties

Sample of magnetite, naturally occurring Fe3O4.

Fe3O4 is ferrimagnetic with a Curie temperature of 858 K. There is a phase transition at 120K, called Verwey transition where there is a discontinuity in the structure, conductivity and magnetic properties.[19] This effect has been extensively investigated and whilst various explanations have been proposed, it does not appear to be fully understood.[20]

While it has much higher electrical resistivity than iron metal (96.1 nΩ m), Fe3O4's electrical resistivity (0.3 mΩ m [21]) is significantly lower than that of Fe2O3 (approx kΩ m). This is ascribed to electron exchange between the FeII and FeIII centres in Fe3O4.[4]

Uses

Fe3O4 is used as a black pigment and is known as C.I pigment black 11 (C.I. No.77499) or Mars Black.[17]

Fe3O4 is used as a catalyst in the Haber process and in the water-gas shift reaction.[22] The latter uses an HTS (high temperature shift catalyst) of iron oxide stabilised by chromium oxide.[22] This iron–chrome catalyst is reduced at reactor start up to generate Fe3O4 from α-Fe2O3 and Cr2O3 to CrO3.[22]

Bluing is a passivation process that produces a layer of Fe3O4 on the surface of steel to protect it from rust.

Ferumoxytol along with sulfur and aluminium, it is an ingredient in a specific type of thermite useful for cutting steel.

Medical uses

Ferumoxytol
Clinical data
Trade namesFeraheme, Rienso
AHFS/Drugs.comMonograph
MedlinePlusa614023
License data
Routes of
administration
Intravenous infusion
ATC code
  • None
Legal status
Legal status
Identifiers
IUPAC name
  • iron(2+);iron(3+);oxygen(2-)
CAS Number
DrugBank
UNII
KEGG
ChEBI
CompTox Dashboard (EPA)
ECHA InfoCard100.013.889
Edit this at Wikidata
Chemical and physical data
FormulaFe3O4
Molar mass231.531 g·mol−1
3D model (JSmol)
SMILES
  • [O-2].[O-2].[O-2].[O-2].[Fe+2].[Fe+3].[Fe+3]
InChI
  • InChI=1S/3Fe.4O/q+2;2*+3;4*-2
  • Key:WTFXARWRTYJXII-UHFFFAOYSA-N

Nano particles of Fe3O4 are used as contrast agents in MRI scanning.[25]

Ferumoxytol, sold under the brand names Feraheme and Rienso, is an intravenous Fe3O4 preparation for treatment of anemia resulting from chronic kidney disease.[23][24][26][27] Ferumoxytol is manufactured and globally distributed by AMAG Pharmaceuticals.[27][23]

Biological occurrence

Magnetite has been found as nano-crystals in magnetotactic bacteria (42–45 nm)[5] and in the beak tissue of homing pigeons.[28]

References

  1. Magnetite (Fe3O4): Properties, Synthesis, and Applications Lee Blaney, Lehigh Review 15, 33-81 (2007). See Appendix A, p.77
  2. Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill, 2002, ISBN 0-07-049439-8
  3. 1 2 3 4 5 6 Greenwood NN, Earnshaw A (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  4. 1 2 3 4 Cornell RM, Schwertmann U (2007). The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. Wiley-VCH. ISBN 978-3-527-60644-3.
  5. Ma M, Zhang Y, Guo Z, Gu N (January 2013). "Facile synthesis of ultrathin magnetic iron oxide nanoplates by Schikorr reaction". Nanoscale Research Letters. 8 (1): 16. Bibcode:2013NRL.....8...16M. doi:10.1186/1556-276X-8-16. PMC 3598988. PMID 23294626.
  6. Massart R (1981). "Preparation of aqueous magnetic liquids in alkaline and acidic media". IEEE Transactions on Magnetics. 17 (2): 1247–1248. Bibcode:1981ITM....17.1247M. doi:10.1109/TMAG.1981.1061188.
  7. Keshavarz S, Xu Y, Hrdy S, Lemley C, Mewes T, Bao Y (2010). "Relaxation of Polymer Coated Fe3O4 Magnetic Nanoparticles in Aqueous Solution". IEEE Transactions on Magnetics. 46 (6): 1541–1543. doi:10.1109/TMAG.2010.2040588. S2CID 35129018.
  8. Jolivet JP, Chanéac C, Tronc E (March 2004). "Iron oxide chemistry. From molecular clusters to extended solid networks". Chemical Communications (5): 481–7. doi:10.1039/B304532N. PMID 14973569.
  9. Ström V, Olsson RT, Rao KV (2010). "Real-time monitoring of the evolution of magnetism during precipitation of superparamagnetic nanoparticles for bioscience applications". Journal of Materials Chemistry. 20 (20): 4168. doi:10.1039/C0JM00043D.
  10. Fang M, Ström V, Olsson RT, Belova L, Rao KV (2011). "Rapid mixing: A route to synthesize magnetite nanoparticles with high moment". Applied Physics Letters. 99 (22): 222501. Bibcode:2011ApPhL..99v2501F. doi:10.1063/1.3662965.
  11. Fang M, Ström V, Olsson RT, Belova L, Rao KV (April 2012). "Particle size and magnetic properties dependence on growth temperature for rapid mixed co-precipitated magnetite nanoparticles". Nanotechnology. 23 (14): 145601. Bibcode:2012Nanot..23n5601F. doi:10.1088/0957-4484/23/14/145601. PMID 22433909.
  12. US 2596954, Heath TD, "Process for reduction of iron ore to magnetite", issued 13 May 1952, assigned to Dorr Company
  13. Pineau A, Kanari N, Gaballah I (2006). "Kinetics of reduction of iron oxides by H2 Part I: Low temperature reduction of hematite". Thermochimica Acta. 447 (1): 89–100. doi:10.1016/j.tca.2005.10.004.
  14. Hayes PC, Grieveson P (1981). "The effects of nucleation and growth on the reduction of Fe2O3 to Fe3O4". Metallurgical and Materials Transactions B. 12 (2): 319–326. Bibcode:1981MTB....12..319H. doi:10.1007/BF02654465. S2CID 94274056.
  15. Arthur T. Hubbard (2002) Encyclopedia of Surface and Colloid Science CRC Press, ISBN 0-8247-0796-6
  16. 1 2 3 Gunter Buxbaum, Gerhard Pfaff (2005) Industrial Inorganic Pigments 3d edition Wiley-VCH ISBN 3-527-30363-4
  17. Shi, Caijuan; Alderman, Oliver; Tamalonis, Anthony; Weber, Richard; You, Jinglin; Benmore, Chris (2020). "Redox-structure dependence of molten iron oxides". Communications Materials. 1 (1): 80. Bibcode:2020CoMat...1...80S. doi:10.1038/s43246-020-00080-4. S2CID 226248368.
  18. Verwey EJ (1939). "Electronic Conduction of Magnetite (Fe3O4) and its Transition Point at Low Temperatures". Nature. 144 (3642): 327–328 (1939). Bibcode:1939Natur.144..327V. doi:10.1038/144327b0. S2CID 41925681.
  19. Walz F (2002). "The Verwey transition - a topical review". Journal of Physics: Condensed Matter. 14 (12): R285–R340. doi:10.1088/0953-8984/14/12/203.
  20. Itai R (1971). "Electrical resistivity of Magnetite anodes". Journal of the Electrochemical Society. 118 (10): 1709. Bibcode:1971JElS..118.1709I. doi:10.1149/1.2407817.
  21. 1 2 3 Sunggyu Lee (2006) Encyclopedia of Chemical Processing CRC Press ISBN 0-8247-5563-4
  22. 1 2 3 "Feraheme- ferumoxytol injection". DailyMed. 9 July 2020. Retrieved 14 September 2020.
  23. 1 2 "Rienso EPAR". European Medicines Agency. 17 September 2018. Retrieved 14 September 2020.
  24. Babes L, Denizot B, Tanguy G, Jallet P (April 1999). "Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study". Journal of Colloid and Interface Science. 212 (2): 474–482. Bibcode:1999JCIS..212..474B. doi:10.1006/jcis.1998.6053. PMID 10092379.
  25. Schwenk MH (January 2010). "Ferumoxytol: a new intravenous iron preparation for the treatment of iron deficiency anemia in patients with chronic kidney disease". Pharmacotherapy. 30 (1): 70–9. doi:10.1592/phco.30.1.70. PMID 20030475. S2CID 7748714.(registration required)
  26. 1 2 "Drug Approval Package: Feraheme (Ferumoxytol) Injection NDA #022180". U.S. Food and Drug Administration (FDA). Retrieved 14 September 2020. Lay summary (PDF). {{cite web}}: Cite uses deprecated parameter |lay-url= (help)
  27. Hanzlik M, Heunemann C, Holtkamp-Rötzler E, Winklhofer M, Petersen N, Fleissner G (December 2000). "Superparamagnetic magnetite in the upper beak tissue of homing pigeons". Biometals. 13 (4): 325–31. doi:10.1023/A:1009214526685. PMID 11247039. S2CID 39216462.
  • "Ferumoxytol". Drug Information Portal. U.S. National Library of Medicine.
This article is issued from Offline. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.