استخراج المعرفة

استخراج المعرفة هو إنشاء المعرفة من مصادر ( قواعد البيانات العلائقية ، XML ) ومصادر ( نص ، وثائق ، صور ) غير منظمة. يجب أن تكون المعرفة الناتجة بتنسيق يمكن قراءته آليًا وتفسيره آليًا ويجب أن تمثل المعرفة بطريقة تسهل الاستنتاج. على الرغم من أنها تشبه بشكل منهجي استخراج المعلومات ( NLP ) و ETL (مستودع البيانات) ، إلا أن المعيار الرئيسي هو أن نتيجة الاستخراج تتجاوز إنشاء المعلومات المهيكلة أو التحول إلى مخطط علائقي . يتطلب إما إعادة استخدام المعرفة الرسمية الحالية (إعادة استخدام المعرفات أو الأنطولوجيات ) أو إنشاء مخطط بناءً على البيانات المصدر. ويمكن لكل شخص استخراج البيانات ومعرفة قيمتها من خلال دراسة المحتوى العميق.

تقوم مجموعة RDB2RDF W3C [1] حاليًا بتوحيد لغة لاستخراج أطر وصف الموارد (RDF) من قواعد البيانات العلائقية . مثال شائع آخر لاستخراج المعرفة هو تحويل ويكيبيديا إلى بيانات منظمة وأيضًا رسم الخرائط للمعرفة الحالية (انظر DBpedia و Freebase ).

مراجع

  1. RDB2RDF Working Group, Website: http://www.w3.org/2001/sw/rdb2rdf/, charter: http://www.w3.org/2009/08/rdb2rdf-charter, R2RML: RDB to RDF Mapping Language: http://www.w3.org/TR/r2rml/ نسخة محفوظة 2021-10-10 على موقع واي باك مشين.
  • بوابة فلسفة
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.