أكسونومتري
اكسونومتري- 'axonometric (من اليونانية áxon =محور وقياس = métron، ان يجري قياسها من خلال المحاور) هو إحدى طرق الاظهار الهندسي التي تعاملت معها الهندسة الوصفية. وقد اُدخل من قبل العالم الفرنسي غاسبار مونج في نهاية القرن الثامن عشر. المميزة الأساسية لطريقة الأكسونومتري هي القدرة على تمثيل، في نفس المستوى π، ثلاثة وجوه لحجم K ثلاثي الأبعاد ,هذا صحيح إذا اعتبرنا K متوازي متوازي السطوح أو ان K أي نوع من الحجوم ولكنه مغلف افتراضيا بمتوازي السطوح.
الأكسونومتري تسمى عمودية أو مائلة, اعتمادا على اتجاه الإسقاط بالنسبة لمستوى الإسقاط π.
الرسم بشكل عام يعني قراءة وكتابة الواقع المحيط بنا، أو نقل للآخرين ما يدور في أذهاننا. وعندما نرسم بأي أداة ولأي غرض ، فنحن نتذكر ما رأيناه ونترجمه من خلال الآثار التي تتركها حركة اليد على الورقة. ومن المهم تذكر أنه قبل الرسم على الورق ، يجب تخيل الأشكال في الفراغ ثلاثي الابعاد. وبهذه الطريقة فقط يمكنك القول أنه يمكنك الرؤية من خلال الرسم.[1]
تاريخ
أول مساهمات نظرية لدراسة الإظهار الاكسنومتري كانت لعالم الرياضيات الفرنسي جيرار ديزارغ (1593-1661) نحو 1630. ولكن هذه الدراسات لم تكن مفهومة كاملا من قبل معاصريه, وأعماله بقيت غير معروفة حتى أواخر القرن الثامن عشر تقريبا، عندما قام غاسبار مونج بالتعمق في هذه الدراسة. على الرغم من أن عمل مونج كان أساسي لجميع طرق التمثيل الهندسي، لكنة لم يتعمق في الإسقاط الاكسونومتري، بشكل نهائي. المساهمة الكبيرة اتت من الراهب الإنجليزي دبليو فاريش (W. Farish) فاريش (1759-1839)، بعد عامين من وفاة مونج، في 1820. وفي بيان تلي في كمبردج، وُضع الأساس النظري النهائي للاكسونومتري متساوية القياس (ايزومترك). تمثيل الاكسنومتري وجد تعريفا كاملا بعد بضع سنوات، عندما أساليب الإسقاط المتعامدة أصبحت أساليب علمية دقيقة في الوصف والتطبيق.
الجدارة العلمية لتدوين الاكسنومتري النهائي، يعود إلى العالم الألماني ول. ج. ويسباخ Weisbach ((1806 - 1871Ì، إضافة إلى أعمال بولك (Pohlke K. 1850) [2]
مصادر
- axonometric section- قطاعات اكسنومترية
- دليل التصميم المعماري؛ الكاتب البروفوسور: [[[ماريو دوتشي]]؛ دار النشر: اتيرزا باري 2002- (Da M.Docci, Manuale di Disegno architettonico, Laterza Bari 2002)]
طالع أيضا
وصلات خارجية
- أنواع الاكسنومتري (بالإيطالية)
- Axonometry and New Design of Bauhaus. Therearetwo kindsof axonometrywhich diÆerin their projection method:oblique axonometry and orthogonal axonometry. The former consists projection(axonometric top view)where a top views undistorted and cavalier projection(axonometric front view)where the front viewis undistorted of two subdivisions:military
- بوابة رياضيات
- بوابة هندسة رياضية