تجزئة مجموعة

تجزئة مجموعة M هي مجموعة من أجزاء M، غير فارغة وغير متقاطعة، تغطي M كليا.[1][2][3]

التعريف

لتكن M مجموعة ما. J مجموعة من أجزاء M . نقول أن J تجزئة ل M إذا كان :

  • كل عنصر من J مجموعة غير فارغة.
  • اتحاد عناصر J يساوي M
  • عناصر J مجموعات منفصلة (غير متقاطعة) مثنى مثنى.

عناصر J تسمى أجزاء التجزئة.

أمثلة

  • M مجموعة ما. { J = { M تجزئة ل M.
  • المجموعة { M = {1, 2, 3 لها 5 تجزئات :

- { {1, 2, 3} },

- { {1, 2}, {3} },

- { {1, 3}, {2} },

- { {1}, {2, 3} },

- { {1}, {2}, {3} }

  • { {}, {1,3}, {2} } ليست تجزئة لأنها تضم مجموعة فارغة، * { {1, 2}, {2, 3} } ليست تجزئة لأن العناصر {1, 2} و{2, 3} متقاطعة,
  • { {1}, {2} } ليست تجزئة لأن العناصر لا تغطي M كليا.

علاقة الترتيب على تجزئات مجموعة

M مجموعة ما. J وI تجزئتين لM.

نقول أن J أدق من I ونكتب J < I إذا كان كل عنصر من J جزء من أحد عناصرI.

< تعرف علاقة ترتيب جزئية على مجموعة تجزئات M.

مثال { {1}, {2}, {3} }= J أدق من { {1}, {2, 3} }= I.

عدد تجزئات مجموعة منتهية

يسمى عدد بيل Bn، عدد تجزءات مجموعة منتهية من n عنصر.

مثال : B0 = 1, B0 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, B6 = 203

الدالة الأسية المولدة للمتتالية Bn هي:

.

كما تحقق Bn علاقة الترجع التالية

انظر أيضا

مراجع

  • بوابة رياضيات
  1. "معلومات عن تجزئة مجموعة على موقع britannica.com"، britannica.com، مؤرشف من الأصل في 21 مايو 2016.
  2. "معلومات عن تجزئة مجموعة على موقع mathworld.wolfram.com"، mathworld.wolfram.com، مؤرشف من الأصل في 2 سبتمبر 2019.
  3. "معلومات عن تجزئة مجموعة على موقع babelnet.org"، babelnet.org، مؤرشف من الأصل في 14 ديسمبر 2019.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.