Angelika van der Linde
Angelika van der Linde-Ploumbidis (Angelika van der Linde) is a statistician. She earned a Ph.D in 1982 or 1983 at the Freie Universität Berlin with the dissertation Zur numerischen Behandlung von Versuchsplanungsproblemen für lineare Regressionsmodelle mit korrelierten Beobachtungen .[1][2]
In addition to her influential work in Bayesian statistical theory,[3][4][5] she works in numerical analysis,[6] probability theory and stochastic processes, geophysics and systems theory.[7]
References
- "Angelika van der Linde-Ploumbidis - The Mathematics Genealogy Project". www.genealogy.math.ndsu.nodak.edu. Retrieved 18 October 2021.
- Linde-Ploumbidis, Angelika (1982). Zur numerischen Behandlung von Versuchsplanungsproblemen für lineare Regressionsmodelle mit korrelierten Beobachtungen (Thesis). Berlin.
- David J. Spiegelhalter; Nicola G. Best; Bradley P. Carlin; Angelika van der Linde (8 April 2014). "The deviance information criterion: 12 years on". Journal of the Royal Statistical Society Series B: Statistical Methodology. 76 (3): 485–493. doi:10.1111/RSSB.12062. ISSN 1369-7412. Wikidata Q108929214.
- Angelika van der Linde (6 February 2012). "A Bayesian view of model complexity" (PDF). Statistica Neerlandica. 66 (3): 253–271. doi:10.1111/J.1467-9574.2011.00518.X. ISSN 0039-0402. Wikidata Q108929405.
- David J. Spiegelhalter; Nicola G. Best; Bradley P. Carlin; Angelika van der Linde (October 2002). "Bayesian measures of model complexity and fit". Journal of the Royal Statistical Society Series B: Statistical Methodology. 64 (4): 583–639. doi:10.1111/1467-9868.00353. ISSN 1369-7412. Wikidata Q56532420.
- Angelika van der Linde (1996), The Invariance of Statistical Analyses with Smoothing Splines with Respect to the Inner Product in the Reproducing Kernel Hilbert Space, pp. 149–164, doi:10.1007/978-3-642-48425-4_12, Wikidata Q108931033
- "zbMATH Open - the first resource for mathematics: Angelika van der Linde". zbmath.org. Retrieved 18 October 2021.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.