Bakken Formation

The Bakken Formation (/ˈbɑːkən/ BAH-kən) is a rock unit from the Late Devonian to Early Mississippian age occupying about 200,000 square miles (520,000 km2) of the subsurface of the Williston Basin, underlying parts of Montana, North Dakota, Saskatchewan and Manitoba. The formation was initially described by geologist J. W. Nordquist in 1953.[2] The formation is entirely in the subsurface, and has no surface outcrop. It is named after Henry O. Bakken (1901–1982), a farmer in Tioga, North Dakota, who owned the land where the formation was initially discovered while drilling for oil.[3]

Bakken Formation
Stratigraphic range: Late Devonian-Early Mississippian
~
Cut Bakken core samples
TypeGeological formation
Unit ofThree Forks Group
UnderliesMadison Limestone
OverliesWabamun, Big Valley & Torquay Formations
Area200,000 square miles (520,000 km2)
Thicknessup to 40 metres (130 ft)[1]
Lithology
PrimaryShale, dolomite
OtherSandstone, siltstone
Location
Coordinates48.3929°N 102.9399°W / 48.3929; -102.9399
RegionCentral North America
Country Canada
 United States
ExtentWilliston Basin
Type section
Named forHenry O. Bakken (1901-1982)
Named byJ.W. Nordquist
Year defined1953

Map of the Bakken Formation reservoirs in the US portion of the Williston Basin (Saskatchewan is north border). Prior to 2007, most oil came from the Elm Coulee Oil Field
Schematic north-south cross section showing the Bakken and adjacent formations (USGS, 2013)
Map of Bakken wells in the US as of 2008, largely restricted to the southwest pinchout and the Nesson Anticline (USGS, 2013)
US Bakken and Three Forks wells as of 2013

Besides the Bakken Formation being a widespread prolific source rock for oil when thermally mature, significant producible oil reserves exist within the rock unit itself.[4] Oil was first discovered within the Bakken in 1951, but past efforts to produce it have faced technical difficulties.

In April 2008, a USGS report estimated the amount of recoverable oil using technology readily available at the end of 2007 within the Bakken Formation at 3.0 to 4.3 billion barrels (680,000,000 m3), with a mean of 3.65 billion.[5] Simultaneously the state of North Dakota released a report with a lower estimate of 2.1 billion barrels (330,000,000 m3) of technically recoverable oil in the Bakken.[6] Various other estimates place the total reserves, recoverable and non-recoverable with today's technology, at up to 24 billion barrels. A recent estimate places the figure at 18 billion barrels.[7] In April 2013, the U.S. Geological Survey released a new figure for expected ultimate recovery of 7.4 billion barrels of oil.[8]

The application of hydraulic fracturing and directional drilling technologies has caused a boom in Bakken oil production since 2000. By the end of 2010, oil production rates had reached 458,000 barrels (72,800 m3) per day, thereby outstripping the pipeline capacity to ship oil out of the Bakken.[9][10] There is some controversy over the safety of shipping this crude oil by rail due to its volatility.[11]

This was illustrated by the 2013 Lac-Mégantic rail disaster, in which a unit train carrying 77 tank cars full of highly volatile Bakken oil through Quebec from North Dakota to the Irving Oil Refinery in New Brunswick derailed and exploded in the town centre of Lac-Mégantic. It destroyed 30 buildings (half the downtown core) and killed 47 people.[12] The explosion was estimated to have a one-kilometre (0.62 mi) blast radius.[13]

As of January 2015, estimates varied on the break-even oil price for drilling Bakken wells. The North Dakota Department of Natural Resources estimated overall break-even to be just below US$40 per barrel. An analyst for Wood Mackenzie said that the overall break-even price was US$62/barrel, but in high-productivity areas such as Sanish Field and Parshall Oil Field, the break-even price was US$38–US$40 per barrel.[14]

Geology

The rock formation consists of three members: lower shale, middle dolomite, and upper shale. The shales were deposited in relatively deep anoxic marine conditions, and the dolomite was deposited as a coastal carbonate bank during a time of shallower, well-oxygenated water. The middle dolomite member is the principal oil reservoir, roughly two miles (3 km) below the surface. Both the upper and lower shale members are organic-rich marine shale.

Oil and gas

The Bakken Formation has emerged in recent years as one of the most important sources of new oil production in the United States. Most Bakken drilling and production has been in North Dakota, although the formation also extends into Montana and the Canadian provinces of Saskatchewan and Manitoba. As of 2013, the Bakken was the source of more than ten percent of all US oil production. By April 2014, Bakken production in North Dakota and Montana exceeded 1 million barrels per day (160,000 m3/d). As a result of increased production from the Bakken, and long-term production declines in Alaska and California, North Dakota as of 2014 was the second-largest oil-producing state in the US, behind only Texas in volume of oil produced.[15]

Bakken production has also increased in Canada, although to a lesser degree than in the US, since the 2004 discovery of the Viewfield Oil Field in Saskatchewan. The same techniques of horizontal drilling and multi-stage massive hydraulic fracturing are used. In December 2012, 2,357 Bakken wells in Saskatchewan produced a record high of 71,000 barrels per day (11,000 m3/d).[16] The Bakken Formation also produces in Manitoba, but the yield is small, averaging less than 2,000 barrels per day (300 m3/d) in 2012.[17]

Drilling and completion

Lower Bakken-3 Forks Transition

Most Bakken wells are drilled and completed in the middle member. Many wells are now being drilled and completed in the basal Sanish/Pronghorn member and in the underlying Three Forks Formation, which the North Dakota Department of Mineral Resources treats as part of the Bakken for oil production statistical purposes.

Porosities in the Bakken averages about 5%, and permeabilities are very low, averaging 0.04 millidarcys—much lower than typical oil reservoirs, in today's terms an unconventional light tight oil play.[18] However, the presence of vertical to sub-vertical natural fractures makes the Bakken an excellent candidate for horizontal drilling techniques in which a well is drilled horizontally along bedding planes, rather than vertically through them. In this way, a borehole can contact many thousands of feet of oil reservoir rock in a unit with a maximum thickness of only about 140 feet (40 m).[19]

Production is also enhanced by artificially fracturing the rock,[20] to allow oil to seep to the oil well.

Hydrogen sulfide (H2S, also known as sour gas) is found to varying degrees in crude petroleum. The gas is flammable, corrosive, poisonous, and explosive; thus, oil with higher levels of H2S presents challenges such as "health and environmental risks, corrosion of wellbore, added expense with regard to materials handling and pipeline equipment, and additional refinement requirements."[21] Bakken oil has historically been characterized as "sweet", meaning that it has little or no H2S. However, increased concentration of H2S over time has been observed in some Bakken wells, believed to be due to certain completion practices, such as hydraulic fracturing into neighboring formations, that may contain high levels of H2S.[21] Some other formations in the Williston Basin have always produced "sour" (high H2S) crude oil, and because sweet oil brings a higher price, oil transporters suspect that some sour oil is being blended into sweet Bakken crude. H2S in crude oil is being investigated as a possible cause of the explosive nature of the Lac-Mégantic rail disaster.[22][23] Pipeline transport operator Enbridge no longer accepts crude with more than five parts per million H2S, citing safety concerns.[24]

Increased US oil production from hydraulically fractured tight oil wells in formations such as the Bakken was mostly responsible for the decrease in US oil imports since 2005. The US imported 52% of its oil in 2011, down from 65% in 2005.[25] Hydraulically fractured wells in the Bakken, Eagle Ford, and other tight oil targets enabled US crude oil production to rise in September 2013 to the highest output since 1989.[26]

Oil in place

A research paper by USGS geochemist Leigh Price in 1999 estimated the total amount of oil contained in the Bakken shale ranged from 271 to 503 billion barrels (43.1 to 80.0 billion cubic metres), with a mean of 413 billion barrels (65.7 billion cubic metres).[27] While others before him had begun to realize that the oil generated by the Bakken shales had remained within the Bakken, it was Price, who had spent much of his career studying the Bakken, who particularly stressed this point. If he was right, the large amounts of oil remaining in this formation would make it a prime oil exploration target. Price died in 2000 before his research could be peer-reviewed and published. The drilling and production successes in much of the Bakken beginning with the Elm Coulee Oil Field discovery in 2000 have proven correct his claim that the oil generated by the Bakken shale was there.[28] In April 2008, a report issued by the state of North Dakota Department of Mineral Resources estimated that the North Dakota portion of the Bakken contained 167 billion barrels (26.6 billion cubic metres) of oil in place.[6]

Recoverable oil

Although the amount of oil in place is a very large oil resource, the percentage that can be extracted with current technology is another matter. Estimates of the Bakken's recovery factor have ranged from as low as 1%—because the Bakken shale has generally low porosity and low permeability, making the oil difficult to extract—to Leigh Price's estimate of 50% recoverable.[29] Reports issued by both the USGS and the state of North Dakota in April 2013 estimated up to 7.4 billion barrels of oil can be recovered from the Bakken and Three Forks formations in the Dakotas and Montana, using current technology.[30] The flurry of drilling activity in the Bakken, coupled with the wide range of estimates of in-place and recoverable oil, led North Dakota senator Byron Dorgan to ask the USGS to conduct a study of the Bakken's potentially recoverable oil. In April 2008 the USGS released this report, which estimated the amount of technically recoverable, undiscovered oil in the Bakken formation at 3.0 to 4.3 billion barrels (480 to 680 million cubic metres), with a mean of 3.65 billion.[5] Later that month, the state of North Dakota's report[6] estimated that of the 167 billion barrels (26.6 billion cubic metres) of oil in place in the North Dakota portion of the Bakken, 2.1 billion barrels (330 million cubic metres) were technically recoverable with current technology.

In 2011, a senior manager at Continental Resources Inc. (CLR) declared that the "Bakken play in the Williston basin could become the world's largest discovery in the last 30–40 years," as ultimate recovery from the overall play is now estimated at 24 billion barrels (3.8 billion cubic metres).[31] (Note: the recent discoveries off the coast of Brazil should be greater, with proven reserves of 30 billion,[32] and a potential for 50 to 80.[33]) This considerable increase has been made possible by the combined use of horizontal drilling, hydraulic fracturing, and a large number of wells drilled. While these technologies have been consistently in use since the 1980s, the Bakken trend is the place where they are being most heavily used: 150 active rigs in the play and a rate of 1,800 added wells per year.

An April 2013 estimate by the USGS projects that 7.4 billion barrels (1.18 billion cubic metres) of undiscovered oil can be recovered from the Bakken and Three Forks formations and 6.7 trillion cubic feet of natural gas and 530 million barrels of natural gas liquids using current technology.[30][34][35]

The Energy Information Administration (EIA), the statistics service of the Department of Energy, estimated in 2013 that there were 1.6 billion barrels and 2.2 trillion cubic feet (tcf) of technically recoverable oil and natural gas in the Canadian portion of the Bakken formation.[36] Crescent Point Energy and other operators are implementing waterfloods in the Bakken Formation of the Viewfield Oil Field in Saskatchewan. Some believe that waterflooding can raise the recovery factor at Viewfield from 19 percent to more than 30 percent, adding 1.5 to two billion barrels of additional oil.[37]

Proved reserves

The US EIA reported that proved reserves in the Bakken/Three Forks were 2.00 billion barrels of oil as of 2011.[38]

History of Bakken oil

Oil wells producing from the Bakken Formation, US and Canada in 2011

The Bakken formation has produced oil since 1953, when the #1 Woodrow Starr was completed in North Dakota by Stanolind Oil and Gas.[39][40]

Southwest pinch-out

A major advance in extracting oil from the Bakken came in 1995, when geologist Dick Findley realized that the dolomitic Middle member of the Bakken Formation was a better exploration target than the upper or lower members. Although the middle member held less oil in place than the organic shales both above and below, it was able to maintain open fractures more than the shales. Horizontal wells in the middle Bakken were used successfully to develop the Elm Coulee Field in Montana.[41]

The 2000 discovery of the Elm Coulee Oil Field, Richland County, Montana, where production is expected to ultimately total 270 million barrels (43,000,000 m3), drew a great deal of attention to the trend where oil was trapped along the Bakken pinchout. In 2007, production from Elm Coulee averaged 53,000 barrels per day (8,400 m3/d) — more than the entire state of Montana a few years earlier.[42] The Mondak Field to the southeast of Elm Coulee extended the productive pinchout trend into North Dakota. Elm Coulee was key to later Bakken development because it combined horizontal wells and hydraulic fracturing, and targeted the dolomitic middle Bakken member rather than the shales of the upper or lower Bakken.

East side trap

Pulling the Bakken core out of the core barrel
Bakken Core

New interest developed in 2006 when EOG Resources reported that a single well it had drilled into an oil-rich layer of shale near Parshall, North Dakota, was anticipated to produce 700,000 barrels (110,000 m3) of oil.[43] At Parshall, the abrupt eastern limit of the field is formed by the extent of thermally mature Bakken shale; shale farther east is thermally immature, and unproductive.[44]

The Parshall Oil Field discovery, combined with other factors, including an oil-drilling tax break enacted by the state of North Dakota in 2007,[45] shifted attention in the Bakken from Montana to the North Dakota side.[46] The number of wells drilled in the North Dakota Bakken jumped from 300 in 2006[47] to 457 in 2007.[48]

The viability of the play in North Dakota west of the Nesson Anticline was uncertain until 2009, when Brigham Oil & Gas achieved success with larger hydraulic fracturing treatments, with 25 or more stages.[49]

According to the North Dakota Department of Mineral Resources, daily oil production per well reached a plateau at 145 barrels in June 2010. Although the number of wells tripled between June 2010 and December 2012, oil production per well remained essentially unchanged. However, as more wells were brought online, total oil produced continued to increase until it peaked in mid-2015 at 1.15 million barrels per day. The increase ended because of a slow decline in daily production per well that began in 2013, down to 115 barrels in mid-2015.[50] The peak production value reported by the EIA is about 9% larger. The EIA also reports that the Bakken rig count dropped about 60% over the year ending in October 2015 in response to the collapsing price of oil, while the new-well (initial) oil production per rig increased by 40%, both apparently plateauing at that time.[51] (The production rate from fracked wells decreases more rapidly than from conventional wells drilled in more permeable rock.)

Bakken Region: New-well oil and gas production per rig, and number of rigs
Bakken Region: New-well oil and gas production per rig, and number of rigs
Bakken Region in North Dakota: Oil and gas production rates (US only)
Bakken Region in North Dakota: Oil and gas production rates (US only)

Exploration and production

Several public companies had drilling rigs in the Bakken trend. These include EOG Resources,[52] Continental Resources,[53] Chord Energy,[54] Marathon Oil Corporation,[55] Diamondback Energy,[56] and Hess Corporation.[57] In Canada, operators include Ridgeback Resources,[58] and Crescent Point Energy. LIG Assets, Inc. elected to participate in a 10% industry position in a group of oil leases located in the Bakken formation in North Dakota. The leases comprise approximately 1,280 acres (520 ha) in McKenzie County, was the most productive oil producing county in the state as of 2015.[59]

By 2015, some companies had sold assets in the Bakken, in favor of exploring the Permian Basin in Texas, due in part to the higher cost of transport to major markets closer to tidewater with lower cost access to foreign oil markets.[60][61]

Oil extraction in Bakken field declined by around 20% from mid-2015 to mid-2016 and then remained rather stable through mid-2017.[62]

Worker safety versus productivity

With the persistently low price of oil in 2015, there was pressure on rigs to maximize drilling speed, with associated additional risks to the crews. It was reported that on average, an oil worker died in the Bakken every six weeks. One company offered workers daily bonuses of $150 for drilling quickly, while those who proceeded more slowly, exercising caution, were offered only $40 a day. The well owner may avoid liability for accidents if the blame can be assigned to the rig subcontractor. Statutes have been established to prevent this in four other oil-producing states: Texas, Louisiana, New Mexico and Wyoming.[63][64]

Oil and gas infrastructure

The great increases in oil and gas production have exceeded the area's pipeline capacity to transport hydrocarbons to markets. There is only one refinery in the area. As a result, the oil and gas prices received have been much lower than the normal North American index prices of West Texas Intermediate for oil and Henry Hub for gas.[65]

The shortage of pipeline capacity has caused some producers to ship oil out of the area by more expensive methods of truck or railroad. It was Bakken crude oil carried by train that caught fire in the deadly 2013 Lac-Mégantic rail disaster in Quebec. Part of the disaster at Lac-Mégantic has been blamed on the fact that much of the highly volatile Bakken oil was mislabeled as lower risk oil and was being shipped in substandard tank cars not designed to contain it.[66] Because of the shortage of pipeline capacity out of North Dakota, over half of its production is sent to market by rail. BNSF Railway and Canadian Pacific Railway reported to Minnesota officials that about 50 Bakken oil trains pass through the state each week, mostly through the Twin Cities of Minneapolis–Saint Paul. At least 15 major accidents involving crude oil or ethanol trains have occurred in the United States and Canada since 2006, and most small cities such as Lac-Megantic are not prepared for oil train explosions and fires.[67]

In March 2013, Canadian pipeline company Enbridge completed a pipeline to take North Dakota oil north into Canada, where it hooks up to Enbridge's main pipeline delivering western Canadian oil to refineries in the American Midwest. Unlike the rejected cross-border Keystone XL Pipeline, the pipeline project to carry American crude across the border was approved by the US government without controversy.[68]

Absent the infrastructure to produce and export natural gas, it is merely flared on the spot; a 2013 study estimated the cost at $100 million per month.[69]

Effects of the boom

The North Dakota oil boom has given those who own mineral rights large incomes from lease bonuses and royalties. The boom has reduced unemployment and given the state of North Dakota a billion-dollar budget surplus. North Dakota, which ranked 38th in per capita gross domestic product (GDP) in 2001, rose steadily with the Bakken boom, and now has per capita GDP 29% above the national average.[70]

The industrialization and population boom has put a strain on water supplies, sewage systems, available housing and government services of the small towns and ranches in the area.[71][72][73]

Increasing economic prosperity has also brought increasing crime and social problems.[74]

See also

References

  1. Lexicon of Canadian Geological Units. "Bakken Formation". Archived from the original on 2012-07-07. Retrieved 2009-03-26.
  2. Nordquist, J.W., Mississippian stratigraphy of northern Montana, Billings Geological Society, 4th Annual Field Conference Guidebook, pp. 68–82, 1953
  3. Son of Bakken formation namesake remains reserved, December 3, 2012, Associated Press.
  4. US Energy Information Administration, November 2006, Technology-based oil and natural gas plays: Shale shock! Could there be billions in the Bakken?, PDF file, retrieved 16 January 2009.
  5. "3 to 4.3 Billion Barrels of Technically Recoverable Oil Assessed in North Dakota and Montana's Bakken Formation—25 Times More Than 1995 Estimate". U.S. Geological Survey. April 10, 2008. Retrieved October 24, 2016.
  6. "ND study: 167 billion barrels of oil in Bakken".
  7. , North Dakota government
  8. US Department of the Interior, "USGS releases new oil and gas assessment for Bakken and Three Forks", Press Release, 30 Apr. 2013, Department of Interior.
  9. "New Drilling Method Opens Vast U.S. Oil Fields". FoxNews.com. 2010-04-07. Retrieved 2011-02-23.
  10. "Producers turn to railroads for shipping Bakken crude". Tulsa World. 2011-01-28. Retrieved 2011-02-23.
  11. Cook, Lynn (14 May 2014). "Bakken Crude Is Highly Volatile, Oil Study Shows". The Wall Street Journal. Dow Jones & Company. Retrieved 2014-07-26.
  12. "Search resumes in Lac-Mégantic for 5 still missing". 2013-07-21. Retrieved 2013-07-21.
  13. "Graphic: Timeline of Events in Quebec Train Disaster".
  14. Zawadzki, Sabina (21 November 2013). "Analysis: Bakken drillers undaunted by local oil prices under $80". Reuters. New York. Retrieved October 24, 2016.
  15. US EIA, "Crude oil production", accessed November 25, 2014
  16. Dan Kohlruss and others, "Well stimulation observations in the Viewfield Bakken pool" Archived 2013-10-29 at the Wayback Machine, 2013.
  17. Government of Manitoba, "Manitoba oil facts", accessed 17 September 2013
  18. Diagenesis and Fracture Development in the Bakken formation, Williston Basin: Implications for Reservoir Quality in the Middle Member, by Janet K. Pitman, Leigh C. Price, and Julie A. LeFever, U.S. Geological Survey Professional Paper 1653, 2001.
  19. Donald Barrs, "Devonian System", in Geologic Atlas of the Rocky Mountain Region. Rocky Mountain Association of Geologists, Denver, CO, 1972: p. 98.
  20. Yedlin, Deborah (2008-01-16). "Using horizontal drilling techniques in Canada". The Calgary Herald. Archived from the original on 2008-04-11. Retrieved 2008-01-23.
  21. Holubnyak, Yevhen; et al. (April 2011). "Understanding the Souring at Bakken Oil Reservoirs. SPE 141434-MS". OnePetro. Society of Petroleum Engineers. doi:10.2118/141434-MS. Archived from the original on June 2, 2018. Retrieved July 20, 2019.
  22. "Fracking chemicals in spotlight as regulators investigate rail car corrosion and flammability of North Dakota crude". Financial Post. Bloomberg News. August 13, 2013.
  23. Efstathiou Jr., Jim; Keane, Angela Greiling (January 14, 2014). "North Dakota Oil Boom Seen Adding Costs for Rail Safety". Bloomberg News.
  24. "Fracking chemicals in spotlight as regulators investigate rail car corrosion and flammability of North Dakota crude". Financial Post. Bloomberg News. August 13, 2013.
  25. Jad Mouwad, "Fuel to burn: now what?", The New York Times, April 11, 2012.
  26. "Fracking pushes US crude output to highest level since 1989", Bloomberg, 11 Sept. 2013.
  27. Price, Leigh. "Origins and Characteristics of the Basin-Centered Continuous Reservoir Unconventional Oil-Resource Base of the Bakken Source System, Williston Basin". Archived from the original (unpublished paper) on 2013-03-05. Retrieved 2013-02-11.
  28. Bakken Formation Reserve Estimates, which is a July 2006 press release from the North Dakota Industrial Commission which is part of the North Dakota state government thus in the public domain.
  29. State of North Dakota Bakken Formation Reserve Estimates (PDF).
  30. "North Dakota Oil Boom Getting Bigger - Valley News Live - KVLY/KXJB - Fargo/Grand Forks". Archived from the original on 2013-10-29. Retrieved 2013-05-01.
  31. "Continental statement: Bakken's giant scope underappreciated"
  32. "Brazil's Oil Frontier: Sub-salt drilling could net billions of barrels". Archived from the original on November 14, 2011. Retrieved December 4, 2011.
  33. "Subsalt". Retrieved December 4, 2011.
  34. Lenny Bernstein (April 30, 2013). "Northern plains site has twice as much oil as previously thought, Interior says". The Washington Post. Retrieved May 1, 2013. The doubling of the estimate resulted largely because of the first look at the Three Forks Formation in North Dakota, which the Geological Survey said contains 3.73 billion barrels of oil. Its reassessment of the Bakken Formation, which lies above Three Forks, showed 3.65 billion barrels, only a little more than a 2008 USGS estimate. The agency's conclusion that the formations contain 6.7 trillion cubic feet of natural gas and 530 million barrels of natural gas liquids represented a tripling of previous estimates.
  35. Stephanie B. Gaswirth; Kristen R. Marra; Troy A. Cook; Ronald R. Charpentier; Donald L. Gautier; Debra K. Higley; Timothy R. Klett; Michael D. Lewan; Paul G. Lillis; Christopher J. Schenk; Marilyn E. Tennyson; Katherine J. Whidden. "National Assessment of Oil and Gas Fact Sheet Assessment of Undiscovered Oil Resources in the Bakken and Three Forks Formations, Williston Basin Province, Montana, North Dakota, and South Dakota, 2013" (PDF). Fact Sheet 2013–3013. United States Geological Survey. Retrieved May 1, 2013. Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered volumes of 7.4 billion barrels of oil, 6.7 trillion cubic feet of associated/dissolved natural gas, and 0.53 billion barrels of natural gas liquids in the Bakken and Three Forks Formations in the Williston Basin Province of Montana, North Dakota, and South Dakota.
  36. US Energy Information Administration, World shale gas, 17 May 2013.
  37. Secondary recovery will drive the future of the Bakken Archived September 26, 2013, at the Wayback Machine, Oil and Gas Inquirer, 2013.
  38. US EIA, Crude oil reserves, Table 2, 2013
  39. Gold, Russell (2014). The Boom: How Fracking Ignited the American Energy Revolution and Changed the World.
  40. Nordeng, Stephan (January 2010). "A Brief History of Oil Production from the Bakken Formation in the Williston Basin" (PDF). North Dakota Department of Mineral Resources. Retrieved December 8, 2019.
  41. "New USGS Bakken assessment on its way", AAPG Explorer.
  42. Elm Coulee Field.
  43. SUZUKAMO, LESLIE BROOKS (December 8, 2007). "Standing on oil". St. Paul Pioneer Press.
  44. Jarvie and others, Geology and geochemistry of the Parshall area Archived October 29, 2013, at the Wayback Machine, Rocky Mountain Association of Geologists, 2011.
  45. Measure offers oil tax rate cut.
  46. Julie Lefever, "What's happening at Parshall, North Dakota" Archived May 28, 2010, at the Wayback Machine, North Dakota Division of Mineral Resources, 2 Sept. 2007.
  47. 2006 North Dakota Oil Production by Formation (PDF)
  48. 2007 North Dakota Oil Production by Formation (PDF).
  49. "Bakken shale oil", National Geographic Magazine, Mar. 2013.
  50. ND Monthly Bakken Oil Production Statistics (PDF) (Report). North Dakota Department of Mineral Resources. October 2015. Retrieved 7 November 2015.
  51. Drilling Productivity Report for key tight oil and shale gas regions (PDF) (Report). Energy Information Administration. October 2015. p. 3. Retrieved 7 November 2015.
  52. "EOG Resources Inc". EOG Resources.
  53. "Continental Resources Inc". Continental Resources.
  54. "Chord Energy". Chord Energy.
  55. "Marathon Oil Corporation". Marathon Oil Corporation.
  56. "Diamondback Energy". Diamondback Energy.
  57. "Hess Corporation". Hess Corporation.
  58. "Ridgeback Resources". Ridgeback Resources.
  59. "LIG Assets, Inc. Takes Position in North Dakota Oil Leases".
  60. Renshaw, Jarrett; Ngai, Catherine (3 November 2015). "U.S. oil refiners look abroad for crude supplies as North Dakota boom fades". Reuters. Retrieved 7 November 2015.
  61. Cook, Lynn (28 October 2015). "Occidental Petroleum to Exit Bakken Shale Amid Heavy Losses". The Wall Street Journal. Dow Jones & Company. Retrieved 7 November 2015.
  62. "Natural gas production in the Bakken region grew while crude oil fell in 2021". Energy Information Administration. May 16, 2022.
  63. Berzon, Alexandra (12 March 2015). "Oil Deaths Rise as Bakken Boom Fades". The Wall Street Journal. Dow Jones & Company. Retrieved 7 November 2015.
  64. Raphael, T.J. (18 June 2015). "Fracking in the Bakken comes with a high human cost". Public Radio International. Retrieved 7 November 2015.
  65. "Takeaway capacity". Today in Energy. U.S. Energy Information Administration. 17 April 2012.
  66. Allan Woods, "Lac Megantic: Train carried mislabeled oil", The Star, 11 Sept. 2013.
  67. David Shaffer, "N. Dakota adding pipelines, but oil trains still up", Star-Tribune
  68. Geoffrey Morgan, "While Keystone-XL gets all the attention a new Bakken pipeline crosses the border" Archived 2013-09-26 at the Wayback Machine, Alberta Oil Magazine, 6 Mar. 2013.
  69. "Bakken shale natural gas flaring tops $100 million each month".
  70. US Energy Information Administration, "North Dakota sees growth in real GDP", 12 July 2013.
  71. "New Boom Reshapes Oil World, Rocks North Dakota". NPR. September 25, 2011.
  72. "Oil Boom Puts Strain on North Dakota Towns". NPR. December 2, 2011.
  73. "Affidavit: Abducted Montana Teacher Strangled in Cocaine Frenzy". Reuters. February 18, 2012.
  74. "Bakken oil booms — and so does crime on the Plains". Fox News. Associated Press. April 23, 2012.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.