Boole's inequality
In probability theory, Boole's inequality, also known as the union bound, says that for any finite or countable set of events, the probability that at least one of the events happens is no greater than the sum of the probabilities of the individual events. This inequality provides an upper bound on the probability of occurrence of at least one of a countable number of events in terms of the individual probabilities of the events. Boole's inequality is named for its discoverer, George Boole.[1]
Part of a series on statistics |
Probability theory |
---|
Formally, for a countable set of events A1, A2, A3, ..., we have
In measure-theoretic terms, Boole's inequality follows from the fact that a measure (and certainly any probability measure) is σ-sub-additive.
Proof
Proof using induction
Boole's inequality may be proved for finite collections of events using the method of induction.
For the case, it follows that
For the case , we have
Since and because the union operation is associative, we have
Since
by the first axiom of probability, we have
and therefore
Proof without using induction
For any events in in our probability space we have
One of the axioms of a probability space is that if are disjoint subsets of the probability space then
this is called countable additivity.
If we modify the sets , so they become disjoint,
we can show that
by proving both directions of inclusion.
Suppose . Then for some minimum such that . Therefore . So the first inclusion is true: .
Next suppose that . It follows that for some . And so , and we have the other inclusion: .
By construction of each , . For it is the case that
So, we can conclude that the desired inequality is true:
Bonferroni inequalities
Boole's inequality may be generalized to find upper and lower bounds on the probability of finite unions of events.[2] These bounds are known as Bonferroni inequalities, after Carlo Emilio Bonferroni; see Bonferroni (1936).
Let
for all integers k in {1, ..., n}.
When n is odd, the sequence of inequalities:
and
both hold. When n is even, then:
and
both hold. The chains of inequalities among the partial sums follow from the observation that the events Sk form a decreasing sequence of sets.[3] The equalities follow from the inclusion–exclusion principle, and Boole's inequality is the special case of the extremal upper bounds.
Example
Suppose that you are estimating 5 parameters based on a random sample, and you can control each parameter separately. If you want your estimations of all five parameters to be good with a chance 95%, what should you do to each parameter?
Tuning each parameter's chance to be good to within 95% is not enough because "all are good" is a subset of each event "Estimate i is good". We can use Boole's Inequality to solve this problem. By finding the complement of event "all fives are good", we can change this question into another condition:
P( at least one estimation is bad) = 0.05 ≤ P( A1 is bad) + P( A2 is bad) + P( A3 is bad) + P( A4 is bad) + P( A5 is bad)
One way is to make each of them equal to 0.05/5 = 0.01, that is 1%. In another word, you have to guarantee each estimate good to 99%( for example, by constructing a 99% confidence interval) to make sure the total estimation to be good with a chance 95%. This is called Bonferroni Method of simultaneous inference.
See also
References
- Boole, George (1847). The Mathematical Analysis of Logic. Philosophical Library. ISBN 9780802201546.
- Casella, George; Berger, Roger L. (2002). Statistical Inference. Duxbury. pp. 11–13. ISBN 0-534-24312-6.
- Venkatesh, Santosh (2012). The Theory of Probability. Cambridge University Press. pp. 94–99, 113–115. ISBN 978-0-534-24312-8.
Other related articles
- Bonferroni, Carlo E. (1936), "Teoria statistica delle classi e calcolo delle probabilità", Pubbl. D. R. Ist. Super. Di Sci. Econom. E Commerciali di Firenze (in Italian), 8: 1–62, Zbl 0016.41103
- Dohmen, Klaus (2003), Improved Bonferroni Inequalities via Abstract Tubes. Inequalities and Identities of Inclusion–Exclusion Type, Lecture Notes in Mathematics, vol. 1826, Berlin: Springer-Verlag, pp. viii+113, ISBN 3-540-20025-8, MR 2019293, Zbl 1026.05009
- Galambos, János; Simonelli, Italo (1996), Bonferroni-Type Inequalities with Applications, Probability and Its Applications, New York: Springer-Verlag, pp. x+269, ISBN 0-387-94776-0, MR 1402242, Zbl 0869.60014
- Galambos, János (1977), "Bonferroni inequalities", Annals of Probability, 5 (4): 577–581, doi:10.1214/aop/1176995765, JSTOR 2243081, MR 0448478, Zbl 0369.60018
- Galambos, János (2001) [1994], "Bonferroni inequalities", Encyclopedia of Mathematics, EMS Press
This article incorporates material from Bonferroni inequalities on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.