Orders of magnitude (energy)
Below 1 J
Factor (joules) | SI prefix | Value | Item |
---|---|---|---|
10−34 | 6.626×10−34 J | Photon energy of a photon with a frequency of 1 hertz.[1] | |
10−33 | 2×10−33 J | Average kinetic energy of translational motion of a molecule at the lowest temperature reached, 100 picokelvins as of 1999[2] | |
10−30 | quecto- (qJ) | ||
10−28 | 6.6×10−28 J | Energy of a typical AM radio photon (1 MHz) (4×10−9 eV)[3] | |
10−27 | ronto- (rJ) | ||
10−24 | yocto- (yJ) | 1.6×10−24 J | Energy of a typical microwave oven photon (2.45 GHz) (1×10−5 eV)[4][5] |
10−23 | 2×10−23 J | Average kinetic energy of translational motion of a molecule in the Boomerang Nebula, the coldest place known outside of a laboratory, at a temperature of 1 kelvin[6][7] | |
10−22 | 2–3000×10−22 J | Energy of infrared light photons[8] | |
10−21 | zepto- (zJ) | 1.7×10−21 J | 1 kJ/mol, converted to energy per molecule[9] |
2.1×10−21 J | Thermal energy in each degree of freedom of a molecule at 25 °C (kT/2) (0.01 eV)[10] | ||
2.856×10−21 J | By Landauer's principle, the minimum amount of energy required at 25 °C to change one bit of information | ||
3–7×10−21 J | Energy of a van der Waals interaction between atoms (0.02–0.04 eV)[11][12] | ||
4.1×10−21 J | The "kT" constant at 25 °C, a common rough approximation for the total thermal energy of each molecule in a system (0.03 eV)[13] | ||
7–22×10−21 J | Energy of a hydrogen bond (0.04 to 0.13 eV)[11][14] | ||
10−20 | 4.5×10−20 J | Upper bound of the mass–energy of a neutrino in particle physics (0.28 eV)[15][16] | |
10−19 | 1.6×10−19 J | ≈1 electronvolt (eV)[17] | |
3–5×10−19 J | Energy range of photons in visible light (≈1.6–3.1 eV)[18][19] | ||
3–14×10−19 J | Energy of a covalent bond (2–9 eV)[11][20] | ||
5–200×10−19 J | Energy of ultraviolet light photons[8] | ||
10−18 | atto- (aJ) | 2.18×10−18 J | Ground state ionization energy of hydrogen (13.6 eV) |
10−17 | 2–2000×10−17 J | Energy range of X-ray photons[8] | |
10−16 | |||
10−15 | femto- (fJ) | 3 × 10−15 J | Average kinetic energy of one human red blood cell.[21][22][23] |
10−14 | 1×10−14 J | Sound energy (vibration) transmitted to the eardrums by listening to a whisper for one second.[24][25][26] | |
> 2×10−14 J | Energy of gamma ray photons[8] | ||
2.7×10−14 J | Upper bound of the mass–energy of a muon neutrino[27][28] | ||
8.2×10−14 J | Rest mass–energy of an electron[29] (0.511 MeV)[30] | ||
10−13 | 1.6×10−13 J | 1 megaelectronvolt (MeV)[31] | |
2.3×10−13 J | Energy released by a single event of two protons fusing into deuterium (1.44 megaelectronvolt MeV)[32] | ||
10−12 | pico- (pJ) | 2.3×10−12 J | Kinetic energy of neutrons produced by DT fusion, used to trigger fission (14.1 MeV)[33][34] |
10−11 | 3.4×10−11 J | Average total energy released in the nuclear fission of one uranium-235 atom (215 MeV)[35][36] | |
10−10 | 1.492×10−10 J | Mass-energy equivalent of 1 u[37] (931.5 MeV)[38] | |
1.503×10−10 J | Rest mass–energy of a proton[39] (938.3 MeV)[40] | ||
1.505×10−10 J | Rest mass–energy of a neutron[41] (939.6 MeV)[42] | ||
1.6×10−10 J | 1 gigaelectronvolt (GeV)[43] | ||
3×10−10 J | Rest mass–energy of a deuteron[44] | ||
6×10−10 J | Rest mass–energy of an alpha particle[45] | ||
7×10−10 J | Energy required to raise a grain of sand by 0.1mm (the thickness of a piece of paper).[46] | ||
10−9 | nano- (nJ) | 1.6×10−9 J | 10 GeV[47] |
8×10−9 J | Initial operating energy per beam of the CERN Large Electron Positron Collider in 1989 (50 GeV)[48][49] | ||
10−8 | 1.3×10−8 J | Mass–energy of a W boson (80.4 GeV)[50][51] | |
1.5×10−8 J | Mass–energy of a Z boson (91.2 GeV)[52][53] | ||
1.6×10−8 J | 100 GeV[54] | ||
2×10−8 J | Mass–energy of the Higgs Boson (125.1 GeV)[55] | ||
6.4×10−8 J | Operating energy per proton of the CERN Super Proton Synchrotron accelerator in 1976[56][57] | ||
10−7 | 1×10−7 J | ≡ 1 erg[58] | |
1.6×10−7 J | 1 TeV (teraelectronvolt),[59] about the kinetic energy of a flying mosquito[60] | ||
10−6 | micro- (μJ) | 1.04×10−6 J | Energy per proton in the CERN Large Hadron Collider in 2015 (6.5 TeV)[61][62] |
10−5 | |||
10−4 | 1.0×10−4 J | Energy released by a typical radioluminescent wristwatch in 1 hour[63][64] (1 µCi × 4.871 MeV × 1 hr) | |
10−3 | milli- (mJ) | 3.0×10−3 J | Energy released by a P100 atomic battery in 1 hour[65] (2.4 V × 350 nA × 1 hr) |
10−2 | centi- (cJ) | 4.0×10−2 J | Use of a typical LED for 1 second[66] (2.0 V × 20 mA × 1 s) |
10−1 | deci- (dJ) | 1.1×10−1 J | Energy of an American half-dollar falling 1 metre[67][68] |
1 to 105 J
100 | J | 1 J | ≡ 1 N·m (newton–metre) |
1 J | ≡ 1 W·s (watt-second) | ||
1 J | Kinetic energy produced as an extra small apple (~100 grams[69]) falls 1 meter against Earth's gravity[70] | ||
1 J | Energy required to heat 1 gram of dry, cool air by 1 degree Celsius[71] | ||
1.4 J | ≈ 1 ft·lbf (foot-pound force)[58] | ||
4.184 J | ≡ 1 thermochemical calorie (small calorie)[58] | ||
4.1868 J | ≡ 1 International (Steam) Table calorie[72] | ||
8 J | Greisen-Zatsepin-Kuzmin theoretical upper limit for the energy of a cosmic ray coming from a distant source[73][74] | ||
101 | deca- (daJ) | 1×101 J | Flash energy of a typical pocket camera electronic flash capacitor (100–400 μF @ 330 V)[75][76] |
3.7–40×101 | Kinetic energy of a punch.[77] | ||
5×101 J | The most energetic cosmic ray ever detected[78] was most likely a single proton traveling only slightly slower than the speed of light.[79] | ||
102 | hecto- (hJ) | 1.5×102 to 3.6×102 J | Energy delivered by a biphasic external electric shock (defibrillation), usually during adult cardiopulmonary resuscitation for cardiac arrest. |
3×102 J | Energy of a lethal dose of X-rays[80] | ||
3×102 J | Kinetic energy of an average person jumping as high as they can[81][82][83] | ||
3.3×102 J | Energy to melt 1 g of ice[84] | ||
> 3.6×102 J | Kinetic energy of 800 gram[85] standard men's javelin thrown at > 30 m/s[86] by elite javelin throwers[87] | ||
5–20×102 J | Energy output of a typical photography studio strobe light in a single flash[88] | ||
6×102 J | Kinetic energy of 2 kg[89] standard men's discus thrown at 24.4 m/s by the world record holder Jürgen Schult[90] | ||
6×102 J | Use of a 10-watt flashlight for 1 minute | ||
7.5×102 J | A power of 1 horsepower applied for 1 second[58] | ||
7.8×102 J | Kinetic energy of 7.26 kg[91] standard men's shot thrown at 14.7 m/s by the world record holder Randy Barnes[92] | ||
8.01×102 J | Amount of work needed to lift a man with an average weight (81.7 kg) one meter above Earth (or any planet with Earth gravity) | ||
103 | kilo- (kJ) | 1.1×103 J | ≈ 1 British thermal unit (BTU), depending on the temperature[58] |
1.4×103 J | Total solar radiation received from the Sun by 1 square meter at the altitude of Earth's orbit per second (solar constant)[93] | ||
1.8×103 J | Kinetic energy of M16 rifle bullet (5.56×45mm NATO M855, 4.1 g fired at 930 m/s)[94] | ||
2.3×103 J | Energy to vaporize 1 g of water into steam[95] | ||
3×103 J | Lorentz force can crusher pinch[96] | ||
3.4×103 J | Kinetic energy of world-record men's hammer throw (7.26 kg[97] thrown at 30.7 m/s[98] in 1986)[99] | ||
3.6×103 J | ≡ 1 W·h (watt-hour)[58] | ||
4.2×103 J | Energy released by explosion of 1 gram of TNT[58][100] | ||
4.2×103 J | ≈ 1 food Calorie (large calorie) | ||
~7×103 J | Muzzle energy of an elephant gun, e.g. firing a .458 Winchester Magnum[101] | ||
9×103 J | Energy in an alkaline AA battery[102] | ||
104 | 1.7×104 J | Energy released by the metabolism of 1 gram of carbohydrates[103] or protein[104] | |
3.8×104 J | Energy released by the metabolism of 1 gram of fat[105] | ||
4–5×104 J | Energy released by the combustion of 1 gram of gasoline[106] | ||
5×104 J | Kinetic energy of 1 gram of matter moving at 10 km/s[107] | ||
105 | 3×105 – 15×105 J | Kinetic energy of an automobile at highway speeds (1 to 5 tons[108] at 89 km/h or 55 mph)[109] | |
5×105 J | Kinetic energy of 1 gram of a meteor hitting Earth[110] |
106 to 1011 J
106 | mega- (MJ) | 1×106 J | Kinetic energy of a 2 tonne[108] vehicle at 32 metres per second (115 km/h or 72 mph)[111] |
1.2×106 J | Approximate food energy of a snack such as a Snickers bar (280 food calories)[112] | ||
3.6×106 J | = 1 kWh (kilowatt-hour) (used for electricity)[58] | ||
4.2×106 J | Energy released by explosion of 1 kilogram of TNT[58][100] | ||
8.4×106 J | Recommended food energy intake per day for a moderately active woman (2000 food calories)[113][114] | ||
107 | 1×107 J | Kinetic energy of the armor-piercing round fired by the ISU-152 assault gun[115] | |
1.1×107 J | Recommended food energy intake per day for a moderately active man (2600 food calories)[113][116] | ||
3.3×107 J | Kinetic energy of a 23 lb projectile fired by the Navy's mach 8 railgun.[117] | ||
3.7×107 J | $1 of electricity at a cost of $0.10/kWh (the US average retail cost in 2009)[118][119][120] | ||
4×107 J | Energy from the combustion of 1 cubic meter of natural gas[121] | ||
4.2×107 J | Caloric energy consumed by Olympian Michael Phelps on a daily basis during Olympic training[122] | ||
6.3×107 J | Theoretical minimum energy required to accelerate 1 kg of matter to escape velocity from Earth's surface (ignoring atmosphere)[123] | ||
9×107 J | Total mass-energy of 1 microgram of matter (25 kWh) | ||
108 | 1×108 J | Kinetic energy of a 55 tonne aircraft at typical landing speed (59 m/s or 115 knots) | |
1.1×108 J | ≈ 1 therm, depending on the temperature[58] | ||
1.1×108 J | ≈ 1 Tour de France, or ~90 hours[124] ridden at 5 W/kg[125] by a 65 kg rider[126] | ||
7.3×108 J | ≈ Energy from burning 16 kilograms of oil (using 135 kg per barrel of light crude) | ||
109 | giga- (GJ) | 1–10×109 J | Energy in an average lightning bolt[127] (thunder) |
1.1×109 J | Magnetic stored energy in the world's largest toroidal superconducting magnet for the ATLAS experiment at CERN, Geneva[128] | ||
1.2×109 J | Inflight 100-ton Boeing 757-200 at 300 knots (154 m/s) | ||
1.4×109 J | Theoretical minimum amount of energy required to melt a tonne of steel (380 kWh)[129][130] | ||
2×109 J | Energy of an ordinary 61 liter gasoline tank of a car.[106][131][132] | ||
2×109 J | The unit of energy in Planck units[133] | ||
3×109 J | Inflight 125-ton Boeing 767-200 flying at 373 knots (192 m/s) | ||
3.3×109 J | Approximate average amount of energy expended by a human heart muscle over an 80-year lifetime[134][135] | ||
3.6×109 J | = 1 MW·h (megawatt-hour) | ||
4.2×109 J | Energy released by explosion of 1 ton of TNT. | ||
4.5×109 J | Average annual energy usage of a standard refrigerator[136][137] | ||
6.1×109 J | ≈ 1 bboe (barrel of oil equivalent)[138] | ||
1010 | 1.9×1010 J | Kinetic energy of an Airbus A380 at cruising speed (560 tonnes at 511 knots or 263 m/s) | |
4.2×1010 J | ≈ 1 toe (ton of oil equivalent)[138] | ||
4.6×1010 J | Yield energy of a Massive Ordnance Air Blast bomb, the second most powerful non-nuclear weapon ever designed[139][140] | ||
7.3×1010 J | Energy consumed by the average U.S. automobile in the year 2000[141][142][143] | ||
8.6×1010 J | ≈ 1 MW·d (megawatt-day), used in the context of power plants (24 MW·h)[144] | ||
8.8×1010 J | Total energy released in the nuclear fission of one gram of uranium-235[35][36][145] | ||
9×1010 J | Total mass-energy of 1 milligram of matter (25 MW·h) | ||
1011 | 2.4×1011 J | Approximate food energy consumed by an average human in an 80-year lifetime.[146] |
1012 to 1017 J
1012 | tera- (TJ) | 3.4×1012 J | Maximum fuel energy of an Airbus A330-300 (97,530 liters[147] of Jet A-1[148])[149] |
3.6×1012 J | 1 GW·h (gigawatt-hour)[150] | ||
4×1012 J | Electricity generated by one 20-kg CANDU fuel bundle assuming ~29%[151] thermal efficiency of reactor[152][153] | ||
4.2×1012 J | Energy released by explosion of 1 kiloton of TNT[58][154] | ||
6.4×1012 J | Energy contained in jet fuel in a Boeing 747-100B aircraft at max fuel capacity (183,380 liters[155] of Jet A-1[148])[156] | ||
1013 | 1.1×1013 J | Energy of the maximum fuel an Airbus A380 can carry (320,000 liters[157] of Jet A-1[148])[158] | |
1.2×1013 J | Orbital kinetic energy of the International Space Station (417 tonnes[159] at 7.7 km/s[160])[161] | ||
6.3×1013 J | Yield of the Little Boy atomic bomb dropped on Hiroshima in World War II (15 kilotons)[162][163] | ||
9×1013 J | Theoretical total mass–energy of 1 gram of matter (25 GW·h) [164] | ||
1014 | 1.8×1014 J | Energy released by annihilation of 1 gram of antimatter and matter (50 GW·h) | |
3.75×1014 J | Total energy released by the Chelyabinsk meteor.[165] | ||
6×1014 J | Energy released by an average hurricane in 1 second[166] | ||
1015 | peta- (PJ) | > 1015 J | Energy released by a severe thunderstorm[167] |
1×1015 J | Yearly electricity consumption in Greenland as of 2008[168][169] | ||
4.2×1015 J | Energy released by explosion of 1 megaton of TNT[58][170] | ||
1016 | 1×1016 J | Estimated impact energy released in forming Meteor Crater | |
1.1×1016 J | Yearly electricity consumption in Mongolia as of 2010[168][171] | ||
9×1016 J | Mass–energy in 1 kilogram of antimatter (or matter)[172] | ||
1017 | 1×1017 J | Energy released on the Earth's surface by the magnitude 9.1–9.3 2004 Indian Ocean earthquake[173] | |
1.7×1017 J | Total energy from the Sun that strikes the face of the Earth each second[174] | ||
2.1×1017 J | Yield of the Tsar Bomba, the largest nuclear weapon ever tested (50 megatons)[175][176] | ||
4.2×1017 J | Yearly electricity consumption of Norway as of 2008[168][177] | ||
4.5×1017 J | Approximate energy needed to accelerate one ton to one-tenth of the speed of light | ||
8×1017 J | Estimated energy released by the eruption of the Indonesian volcano, Krakatoa, in 1883[178][179][180] |
1018 to 1023 J
1018 | exa- (EJ) | 1.4×1018 J | Yearly electricity consumption of South Korea as of 2009[168][181] |
1019 | 1.2×1019 J | Explosive yield of global nuclear arsenal[182] | |
1.4×1019 J | Yearly electricity consumption in the U.S. as of 2009[168][183] | ||
1.4×1019J | Yearly electricity production in the U.S. as of 2009[184][185] | ||
5×1019 J | Energy released in 1 day by an average hurricane in producing rain (400 times greater than the wind energy)[166] | ||
6.4×1019 J | Yearly electricity consumption of the world as of 2008[186][187] | ||
6.8×1019 J | Yearly electricity generation of the world as of 2008[186][188] | ||
1020 | 5×1020 J | Total world annual energy consumption in 2010[189][190] | |
8×1020 J | Estimated global uranium resources for generating electricity 2005[191][192][193][194] | ||
1021 | zetta- (ZJ) | 6.9×1021 J | Estimated energy contained in the world's natural gas reserves as of 2010[189][195] |
7.9×1021 J | Estimated energy contained in the world's petroleum reserves as of 2010[189][196] | ||
9.3×1021 J | Annual net uptake of thermal energy by the global ocean during 2003-2018[197] | ||
1022 | 1.5×1022J | Total energy from the Sun that strikes the face of the Earth each day[174][198] | |
2.4×1022 J | Estimated energy contained in the world's coal reserves as of 2010[189][199] | ||
2.9×1022 J | Identified global uranium-238 resources using fast reactor technology[191] | ||
3.9×1022 J | Estimated energy contained in the world's fossil fuel reserves as of 2010[189][200] | ||
1023 | 2.2×1023 J | Total global uranium-238 resources using fast reactor technology[191] | |
3×1023 J | The energy released in the formation of the Chicxulub Crater in the Yucatán Peninsula[201] |
Over 1023 J
1024 | yotta- (YJ) | 5.5×1024 J | Total energy from the Sun that strikes the face of the Earth each year[174][202] |
1025 | 6×1025 J | Upper limit of energy released by a solar flare[203] | |
1026 | >1026J | Estimated energy of early Archean asteroid impacts[204] | |
3.8×1026 J | Total energy output of the Sun each second[205] | ||
1027 | ronna- (RJ) | 1×1027 J | Estimate of the energy released by the impact that created the Caloris basin on Mercury[206] |
~3×1027 J | Estimate of energy required to evaporate all water on surface of Earth | ||
1028 | 3.8×1028 J | Kinetic energy of the Moon in its orbit around the Earth (counting only its velocity relative to the Earth)[207][208] | |
1029 | 2.1×1029 J | Rotational energy of the Earth[209][210][211] | |
1030 | quetta- (QJ) | 1.8×1030 J | Gravitational binding energy of Mercury |
1031 | ~2×1031 J | The most energetic stellar superflare to date (S Fornacis)[212] | |
3.3×1031J | Total energy output of the Sun each day[205][213] | ||
1032 | 2×1032 J | Gravitational binding energy of the Earth[214] | |
1033 | 2.7×1033 J | Earth's kinetic energy in its orbit[215] | |
1034 | 1.2×1034 J | Total energy output of the Sun each year[205][216] | |
1039 | 1-5×1039 J | Energy of the giant flare (starquake) released by SGR 1806-20[217][218][219] | |
6.6×1039 J | Theoretical total mass–energy of the Moon | ||
1041 | 2.276×1041 J | Gravitational binding energy of the Sun[220] | |
5.4×1041 J | Theoretical total mass–energy of the Earth[221][222] | ||
1043 | 5×1043 J | Total energy of all gamma rays in a typical gamma-ray burst[223][224] | |
1044 | ~1044 J | Average value of a Tidal Disruption Event (TDE) in optical/UV bands[225] | |
1–2×1044 J | Estimated energy released in a supernova,[226] sometimes referred to as a foe | ||
1.2×1044 J | Approximate lifetime energy output of the Sun. | ||
~1044-45 | Estimated kinetic energy released by FBOT CSS161010[227] | ||
1045 | (1.1±0.2)×1045 J | Energy released by hypernova ASASSN-15lh[228] | |
2.3×1045 J | Energy released by the very energetic supernova PS1-10adi, about twice the energy of ASASSN-15lh[229][230] | ||
≳5 × 1045 J | Energy released by the most energetic supernova to date, SN 2016aps[231][232][233][234] | ||
>1045 J | Estimated energy of a magnetorotational hypernova[235] | ||
few times×1045 J | Beaming-corrected 'True' total energy (Energy in gamma rays+relativistic kinetic energy) of hyper-energetic gamma-ray burst[236][237][238][239][240] | ||
1046 | >1046 J | Estimated energy released in a hypernova,[241][242] in a pair-instability supernova[243] and in theoretical quark-novae[244] | |
1.5×1046 J | Estimated total energy of the most energetic non-quasar transient, AT2021lwx.[245] | ||
2–5×1046 J | Beaming-corrected 'True' total energy of the most powerful gamma-ray burst recorded, GRB 221009A.[246][247][248] | ||
1047 | 1045-47 J | Estimated energy of stellar mass rotational black holes by vacuum polarization in a electromagnetic field[249][250] | |
>1047 J | Total energy of a very energetic and relativistic jetted Tidal Disruption Event (TDE)[251] | ||
~1047 J | Highest possible beaming-corrected 'True' total energy of a gamma-ray burst.[252][253] | ||
1.8×1047 J | Theoretical total mass–energy of the Sun[254][255] | ||
5.4×1047 J | Mass–energy emitted as gravitational waves during the merger of two black holes, originally about 30 Solar masses each, as observed by LIGO (GW150914)[256] | ||
8.6×1047 J | Mass–energy emitted as gravitational waves during the most energetic black hole merger observed until 2020 (GW170729)[257] | ||
8.8×1047 J | GRB 080916C – formerly the most powerful Gamma-Ray Burst (GRB) ever recorded – total 'apparent'/isotropic (not corrected for beaming) energy output estimated at 8.8 × 1047 joules (8.8 × 1054 erg), or 4.9 times the Sun's mass turned to energy.[258][259][260] | ||
1048 | ~1048 J | Estimated energy of a supermassive Population III star supernova, denominated "General Relativistic Instability Supernova."[261][262] | |
~1.2×1048 J | Approximate energy released in the most energetic black hole merging to date (GW190521), which originated the first intermediate-mass black hole ever detected[263][264][265][266][267] | ||
1.2–1.5×1048 J | GRB 221009A – the most powerful Gamma-Ray Burst (GRB) ever recorded – total 'apparent'/isotropic (not corrected for beaming) energy output estimated at 1.2–1.5 × 1048 joules (1.2–1.5 × 1055 erg).[246] | ||
1050 | ≳1050 J | Upper limit of 'apparent'/isotropic energy (Eiso) of Population III stars Gamma-Ray Bursts (GRBs).[268] | |
1053 | >1053 J | Mechanical energy of very energetic so-called "quasar tsunamis"[269][270] | |
6×1053 J | Total mechanical energy or enthalpy in the powerful AGN outburst in the RBS 797[271] | ||
1054 | 3×1054 J | Total mechanical energy or enthalpy in the powerful AGN outburst in the Hercules A (3C 348)[272] | |
1055 | >1055 J | Total mechanical energy or enthalpy in the powerful AGN outburst in the MS 0735.6+7421,[273] Ophiucus Supercluster Explosion[274] and supermassive black holes mergings[275][276] | |
1057 | ~1057 J | Estimated rotational energy of M87 SMBH and total energy of the most luminous quasars over Gyr time-scales[277][278] | |
~2×1057 J | Estimated thermal energy of the Bullet Cluster of galaxies[279] | ||
1058 | ~1058 J | Estimated total energy (in shockwaves, turbulence, gases heating up, gravitational force) of galaxy clusters mergings[280] | |
4×1058 J | Visible mass–energy in our galaxy, the Milky Way[281][282] | ||
1059 | 1×1059 J | Total mass–energy of our galaxy, the Milky Way, including dark matter and dark energy[283][284] | |
1062 | 1–2×1062 J | Total mass–energy of the Virgo Supercluster including dark matter, the Supercluster which contains the Milky Way[285] | |
1069 | 4×1069 J | Estimated total mass–energy of the observable universe[286] |
SI multiples
Submultiples | Multiples | ||||
---|---|---|---|---|---|
Value | SI symbol | Name | Value | SI symbol | Name |
10−1 J | dJ | decijoule | 101 J | daJ | decajoule |
10−2 J | cJ | centijoule | 102 J | hJ | hectojoule |
10−3 J | mJ | millijoule | 103 J | kJ | kilojoule |
10−6 J | µJ | microjoule | 106 J | MJ | megajoule |
10−9 J | nJ | nanojoule | 109 J | GJ | gigajoule |
10−12 J | pJ | picojoule | 1012 J | TJ | terajoule |
10−15 J | fJ | femtojoule | 1015 J | PJ | petajoule |
10−18 J | aJ | attojoule | 1018 J | EJ | exajoule |
10−21 J | zJ | zeptojoule | 1021 J | ZJ | zettajoule |
10−24 J | yJ | yoctojoule | 1024 J | YJ | yottajoule |
10−27 J | rJ | rontojoule | 1027 J | RJ | ronnajoule |
10−30 J | qJ | quectojoule | 1030 J | QJ | quettajoule |
The joule is named after James Prescott Joule. As with every SI unit named for a person, its symbol starts with an upper case letter (J), but when written in full, it follows the rules for capitalisation of a common noun; i.e., "joule" becomes capitalised at the beginning of a sentence and in titles but is otherwise in lower case.
See also
Notes
- "Planck's constant | physics | Britannica.com". britannica.com. Retrieved 26 December 2016.
- Calculated: KEavg ≈ (3/2) × T × 1.38×10−23 = (3/2) × 1×10−10 × 1.38×10−23 ≈ 2.07×10−33 J
- Calculated: Ephoton = hν = 6.626×10−34 J-s × 1×106 Hz = 6.6×10−28 J. In eV: 6.6×10−28 J / 1.6×10−19 J/eV = 4.1×10−9 eV.
- Cheung, Howard (1998). Elert, Glenn (ed.). "Frequency of a microwave oven". The Physics Factbook. Retrieved 25 January 2022.
- Calculated: Ephoton = hν = 6.626×10−34 J-s × 2.45×108 Hz = 1.62×10−24 J. In eV: 1.62×10−24 J / 1.6×10−19 J/eV = 1.0×10−5 eV.
- "Boomerang Nebula boasts the coolest spot in the Universe". JPL. Retrieved 13 November 2011.
- Calculated: KEavg ≈ (3/2) × T × 1.38×10−23 = (3/2) × 1 × 1.38×10−23 ≈ 2.07×10−23 J
- "Wavelength, Frequency, and Energy". Imagine the Universe. NASA. Archived from the original on 18 November 2001. Retrieved 15 November 2011.
- Calculated: 1×103 J / 6.022×1023 entities per mole = 1.7×10−21 J per entity
- Calculated: 1.381×10−23 J/K × 298.15 K / 2 = 2.1×10−21 J
- "Bond Lengths and Energies". Chem 125 notes. UCLA. Archived from the original on 23 August 2011. Retrieved 13 November 2011.
- Calculated: 2 to 4 kJ/mol = 2×103 J / 6.022×1023 molecules/mol = 3.3×10−21 J. In eV: 3.3×10−21 J / 1.6×10−19 J/eV = 0.02 eV. 4×103 J / 6.022×1023 molecules/mol = 6.7×10−21 J. In eV: 6.7×10−21 J / 1.6×10−19 J/eV = 0.04 eV.
- Ansari, Anjum. "Basic Physical Scales Relevant to Cells and Molecules". Physics 450. Retrieved 13 November 2011.
- Calculated: 4 to 13 kJ/mol. 4 kJ/mol = 4×103 J / 6.022×1023 molecules/mol = 6.7×10−21 J. In eV: 6.7×10−21 J / 1.6×10−19 eV/J = 0.042 eV. 13 kJ/mol = 13×103 J / 6.022×1023 molecules/mol = 2.2×10−20 J. In eV: 13×103 J / 6.022×1023 molecules/mol / 1.6×10−19 eV/J = 0.13 eV.
- Thomas, S.; Abdalla, F.; Lahav, O. (2010). "Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey". Physical Review Letters. 105 (3): 031301. arXiv:0911.5291. Bibcode:2010PhRvL.105c1301T. doi:10.1103/PhysRevLett.105.031301. PMID 20867754. S2CID 23349570.
- Calculated: 0.28 eV × 1.6×10−19 J/eV = 4.5×10−20 J
- "CODATA Value: electron volt". NIST. Retrieved 4 November 2011.
- "BASIC LAB KNOWLEDGE AND SKILLS". Archived from the original on 15 May 2013. Retrieved 5 November 2011.
Visible wavelengths are roughly from 390 nm to 780 nm
- Calculated: E = hc/λ. E780 nm = 6.6×10−34 kg-m2/s × 3×108 m/s / (780×10−9 m) = 2.5×10−19 J. E_390 _nm = 6.6×10−34 kg-m2/s × 3×108 m/s / (390×10−9 m) = 5.1×10−19 J
- Calculated: 50 kcal/mol × 4.184 J/calorie / 6.0×1022e23 molecules/mol = 3.47×10−19 J. (3.47×10−19 J / 1.60×10−19 eV/J = 2.2 eV.) and 200 kcal/mol × 4.184 J/calorie / 6.0×1022e23 molecules/mol = 1.389×10−18 J. (7.64×10−19 J / 1.60×10−19 eV/J = 8.68 eV.)
- Phillips, Kevin; Jacques, Steven; McCarty, Owen (2012). "How much does a cell weigh?". Physical Review Letters. 109 (11): 118105. Bibcode:2012PhRvL.109k8105P. doi:10.1103/PhysRevLett.109.118105. PMC 3621783. PMID 23005682.
Roughly 27 picograms
- Bob Berman. "Our Bodies' Velocities, By the Numbers". Retrieved 19 August 2016.
The [...] blood [...] flow[s] at an average speed of 3 to 4 mph
- Calculated: 1/2 × 27×10−12 g × (3.5 miles per hour)2 = 3×10−15 J
- "Physics of the Body" (PDF). Notre Dame. Archived from the original (PDF) on 6 November 2016. Retrieved 19 August 2016.. "The eardrum is a [...] membran[e] with an area of 65 mm2."
- "Intensity and the Decibel Scale". Physics Classroom. Retrieved 19 August 2016.
- Calculated: two eardrums ≈ 1 cm2. 1×10−6 W/m2 × 1×10−4 m2 × 1 s = 1×10−14 J
- Thomas J Bowles (2000). P. Langacker (ed.). Neutrinos in physics and astrophysics: from 10–33 to 1028 cm: TASI 98 : Boulder, Colorado, USA, 1–26 June 1998. World Scientific. p. 354. ISBN 978-981-02-3887-2. Retrieved 11 November 2011.
an upper limit ov m_v_u < 170 keV
- Calculated: 170×103 eV × 1.6×10−19 J/eV = 2.7×10−14 J
- "electron mass energy equivalent". NIST. Retrieved 4 November 2011.
- "CODATA Value: electron mass energy equivalent in MeV". physics.nist.gov. Retrieved 13 August 2023.
- "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- "How much energy is released when hydrogen is fused to produce one kilo of helium?". 11 November 2017. Retrieved 21 July 2021.
- Muller, Richard A. (2002). "The Sun, Hydrogen Bombs, and the physics of fusion". Archived from the original on 2 April 2012. Retrieved 5 November 2011.
The neutron comes out with high energy of 14.1 MeV
- "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- "Energy From Uranium Fission". HyperPhysics. Retrieved 8 November 2011.
- "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- "CODATA Value: atomic mass constant energy equivalent". physics.nist.gov. Retrieved 13 August 2023.
- "CODATA Value: atomic mass constant energy equivalent in MeV". physics.nist.gov. Retrieved 13 August 2023.
- "proton mass energy equivalent". NIST. Retrieved 4 November 2011.
- "CODATA Value: proton mass energy equivalent in MeV". physics.nist.gov. Retrieved 13 August 2023.
- "neutron mass energy equivalent". NIST. Retrieved 4 November 2011.
- "CODATA Value: neutron mass energy equivalent in MeV". physics.nist.gov. Retrieved 13 August 2023.
- "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- "deuteron mass energy equivalent". NIST. Retrieved 4 November 2011.
- "alpha particle mass energy equivalent". NIST. Retrieved 4 November 2011.
- Calculated: 7×10−4 g × 9.8 m/s2 × 1×10−4 m
- "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- Myers, Stephen. "The LEP Collider". CERN. Retrieved 14 November 2011.
the LEP machine energy is about 50 GeV per beam
- Calculated: 50×109 eV × 1.6×10−19 J/eV = 8×10−9 J
- "W". PDG Live. Particle Data Group. Archived from the original on 17 July 2012. Retrieved 4 November 2011.
- "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- Amsler, C.; Doser, M.; Antonelli, M.; Asner, D.; Babu, K.; Baer, H.; Band, H.; Barnett, R.; Bergren, E.; Beringer, J.; Bernardi, G.; Bertl, W.; Bichsel, H.; Biebel, O.; Bloch, P.; Blucher, E.; Blusk, S.; Cahn, R. N.; Carena, M.; Caso, C.; Ceccucci, A.; Chakraborty, D.; Chen, M. -C.; Chivukula, R. S.; Cowan, G.; Dahl, O.; d'Ambrosio, G.; Damour, T.; De Gouvêa, A.; et al. (2008). "Review of Particle Physics⁎". Physics Letters B. 667 (1): 1–6. Bibcode:2008PhLB..667....1A. doi:10.1016/j.physletb.2008.07.018. hdl:1854/LU-685594. S2CID 227119789. Archived from the original on 12 July 2012.
- "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- ATLAS; CMS (26 March 2015). "Combined Measurement of the Higgs Boson Mass in pp Collisions at √s=7 and 8 TeV with the ATLAS and CMS Experiments". Physical Review Letters. 114 (19): 191803. arXiv:1503.07589. Bibcode:2015PhRvL.114s1803A. doi:10.1103/PhysRevLett.114.191803. PMID 26024162. S2CID 1353272.
- Adams, John. "400 GeV Proton Synchrotron". Excertp from the CERN Annual Report 1976. CERN. Retrieved 14 November 2011.
A circulating proton beam of 400 GeV energy was first achieved in the SPS on 17 June 1976
- Calculated: 400×109 eV × 1.6×10−19 J/eV = 6.4×10−8 J
- "Appendix B8—Factors for Units Listed Alphabetically". NIST Guide for the Use of the International System of Units (SI). NIST. 2 July 2009.
1.355818
- "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- "Chocolate bar yardstick". Archived from the original on 26 February 2014. Retrieved 24 January 2014.
A TeV is actually a very tiny amount of energy. A popular analogy is to a flying mosquito.
- "First successful beam at record energy of 6.5 TeV". Retrieved 28 April 2015.
- Calculated: 6.5×1012 eV per beam × 1.6×10−19 J/eV = 1.04×10−6 J
- "The radioactive series of radium-226" (PDF). CERN.
- Terrill, James G. Jr.; Ingraham, Samuel C. II; Moeller, Dade W. (1954). "Radium in the Healing Arts and in Industry: Radiation Exposure in the United States". Public Health Reports. 69 (3): 255–262. doi:10.2307/4588736. JSTOR 4588736. PMC 2024184. PMID 13134440.
- "NanoTritium™: Next-gen Tritium Battery with Decade-Long Betavoltaic Battery Power | CityLabs". Retrieved 4 April 2022.
- "LED - Basic Red 5mm - COM-09590 - SparkFun Electronics". www.sparkfun.com. Retrieved 4 April 2022.
- "Coin specifications". United States Mint. Retrieved 2 November 2011.
11.340 g
- Calculated: m×g×h = 11.34×10−3 kg × 9.8 m/s2 × 1 m = 1.1×10−1 J
- "Apples, raw, with skin (NDB No. 09003)". USDA Nutrient Database. USDA. Archived from the original on 3 March 2015. Retrieved 8 December 2011.
- Calculated: m×g×h = 1×10−1 kg × 9.8 m/s2 × 1 m = 1 J
- "Specific Heat of Dry Air". Engineering Toolbox. Retrieved 2 November 2011.
- "Footnotes". NIST Guide to the SI. NIST. 2 July 2009.
- "Physical Motivations". ULTRA Home Page (EUSO project). Dipartimento di Fisica di Torino. Retrieved 12 November 2011.
- Calculated: 5×1019 eV × 1.6×10−19 J/ev = 8 J
- "Notes on the Troubleshooting and Repair of Electronic Flash Units and Strobe Lights and Design Guidelines, Useful Circuits, and Schematics". Retrieved 8 December 2011.
The energy storage capacitor for pocket cameras is typically 100 to 400 uF at 330 V (charged to 300 V) with a typical flash energy of 10 W-s.
- "Teardown: Digital Camera Canon PowerShot |". electroelvis.com. 2 September 2012. Archived from the original on 1 August 2013. Retrieved 6 June 2013.
- Pomeroy, Ross (1 January 2014). "How to Get Punched in the Face". RealClearScience.
- "The Fly's Eye (1981–1993)". HiRes. Retrieved 14 November 2011.
- Bird, D. J. (March 1995). "Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation". Astrophysical Journal, Part 1. 441 (1): 144–150. arXiv:astro-ph/9410067. Bibcode:1995ApJ...441..144B. doi:10.1086/175344. S2CID 119092012.
- "Ionizing Radiation". General Chemistry Topic Review: Nuclear Chemistry. Bodner Research Web. Retrieved 5 November 2011.
- "Vertical Jump Test". Topend Sports. Retrieved 12 December 2011.
41–50 cm (males) 31–40 cm (females)
- "Mass of an Adult". The Physics Factbook. Retrieved 13 December 2011.
70 kg
- Kinetic energy at start of jump = potential energy at high point of jump. Using a mass of 70 kg and a high point of 40 cm => energy = m×g×h = 70 kg × 9.8 m/s2 × 40×10−2 m = 274 J
- "Latent Heat of Melting of some common Materials". Engineering Toolbox. Retrieved 10 June 2013.
334 kJ/kg
- "Javelin Throw – Introduction". IAAF. Retrieved 12 December 2011.
- Young, Michael. "Developing Event Specific Strength for the Javelin Throw" (PDF). Archived from the original (PDF) on 13 August 2011. Retrieved 13 December 2011.
For elite athletes, the velocity of a javelin release has been measured in excess of 30m/s
- Calculated: 1/2 × 0.8 kg × (30 m/s)2 = 360 J
- Greenspun, Philip. "Studio Photography". Archived from the original on 29 September 2007. Retrieved 13 December 2011.
Most serious studio photographers start with about 2000 watts-seconds
- "Discus Throw – Introduction". IAAF. Retrieved 12 December 2011.
- Calculated: 1/2 × 2 kg × (24.4 m/s)2 = 595.4 J
- "Shot Put – Introduction". IAAF. Retrieved 12 December 2011.
- Calculated: 1/2 × 7.26 kg × (14.7 m/s)2 = 784 J
- Kopp, G.; Lean, J. L. (2011). "A new, lower value of total solar irradiance: Evidence and climate significance". Geophysical Research Letters. 38 (1): n/a. Bibcode:2011GeoRL..38.1706K. doi:10.1029/2010GL045777.
- "Intermediate power ammunition for automatic assault rifles". Modern Firearms. World Guns. Archived from the original on 10 August 2013. Retrieved 12 December 2011.
- "Fluids – Latent Heat of Evaporation". Engineering Toolbox. Retrieved 10 June 2013.
2257 kJ/kg
- powerlabs.org – The PowerLabs Solid State Can Crusher!, 2002
- "Hammer Throw – Introduction". IAAF. Retrieved 12 December 2011.
- Otto, Ralf M. "HAMMER THROW WR PHOTOSEQUENCE – YURIY SEDYKH" (PDF). Retrieved 4 November 2011.
The total release velocity is 30.7 m/sec
- Calculated: 1/2 × 7.26 kg × (30.7 m/s)2 = 3420 J
- 4.2×109 J/ton of TNT-equivalent × (1 ton/1×106 grams) = 4.2×103 J/gram of TNT-equivalent
- ".458 Winchester Magnum" (PDF). Accurate Powder. Western Powders Inc. Archived from the original (PDF) on 28 September 2007. Retrieved 7 September 2010.
- "Battery energy storage in various battery sizes". AllAboutBatteries.com. Archived from the original on 4 December 2011. Retrieved 15 December 2011.
- "Energy Density of Carbohydrates". The Physics Factbook. Retrieved 5 November 2011.
- "Energy Density of Protein". The Physics Factbook. Retrieved 5 November 2011.
- "Energy Density of Fats". The Physics Factbook. Retrieved 5 November 2011.
- "Energy Density of Gasoline". The Physics Factbook. Retrieved 5 November 2011.
- Calculated: E = 1/2 m×v2 = 1/2 × (1×10−3 kg) × (1×104 m/s)2 = 5×104 J.
- "List of Car Weights". LoveToKnow. Retrieved 13 December 2011.
3000 to 12000 pounds
- Calculated: Using car weights of 1 ton to 5 tons. E = 1/2 m×v2 = 1/2 × (1×103 kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 3.0×105 J. E = 1/2 × (5×103 kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 15×105 J.
- Muller, Richard A. "Kinetic Energy in a meteor". Old Physics 10 notes. Archived from the original on 2 April 2012. Retrieved 13 November 2011.
- Calculated: KE = 1/2 × 2×103 kg × (32 m/s)2 = 1.0×106 J
- "Candies, MARS SNACKFOOD US, SNICKERS Bar (NDB No. 19155)". USDA Nutrient Database. USDA. Archived from the original on 3 March 2015. Retrieved 14 November 2011.
- "How to Balance the Food You Eat and Your Physical Activity and Prevent Obesity". Healthy Weight Basics. National Heart Lung and Blood Institutde. Retrieved 14 November 2011.
- Calculated: 2000 food calories = 2.0×106 cal × 4.184 J/cal = 8.4×106 J
- Calculated: 1/2 × m × v2 = 1/2 × 48.78 kg × (655 m/s)2 = 1.0×107 J.
- Calculated: 2600 food calories = 2.6×106 cal × 4.184 J/cal = 1.1×107 J
- Ackerman, Spencer. “Video: Navy’s Mach 8 Railgun Obliterates Record.” WIRED, 10 Dec. 2010, https://www.wired.com/2010/12/video-navys-mach-8-railgun-obliterates-record
- "Table 3.3 Consumer Price Estimates for Energy by Source, 1970–2009". Annual Energy Review. US Energy Information Administration. 19 October 2011. Retrieved 17 December 2011.
$28.90 per million BTU
- Calculated J per dollar: 1 million BTU/$28.90 = 1×106 BTU / 28.90 dollars × 1.055×103 J/BTU = 3.65×107 J/dollar
- Calculated cost per kWh: 1 kWh × 3.60×106 J/kWh / 3.65×107 J/dollar = 0.0986 dollar/kWh
- "Energy in a Cubic Meter of Natural Gas". The Physics Factbook. Retrieved 15 December 2011.
- "The Olympic Diet of Michael Phelps". WebMD. Retrieved 28 December 2011.
- Cline, James E. D. "Energy to Space". Retrieved 13 November 2011.
6.27×107 Joules / Kg
- "Tour de France Winners, Podium, Times". Bike Race Info. Retrieved 10 December 2011.
- "Watts/kg". Flamme Rouge. Archived from the original on 2 January 2012. Retrieved 4 November 2011.
- Calculated: 90 hr × 3600 seconds/hr × 5 W/kg × 65 kg = 1.1×108 J
- Smith, Chris (6 March 2007). "How do Thunderstorms Work?". The Naked Scientists. Retrieved 15 November 2011.
It discharges about 1–10 billion joules of energy
- "Powering up ATLAS's mega magnet". Spotlight on... CERN. Archived from the original on 30 November 2011. Retrieved 10 December 2011.
magnetic energy of 1.1 Gigajoules
- "ITP Metal Casting: Melting Efficiency Improvement" (PDF). ITP Metal Casting. U.S. Department of Energy. Retrieved 14 November 2011.
377 kWh/mt
- Calculated: 380 kW-h × 3.6×106 J/kW-h = 1.37×109 J
- Bell Fuels. "Lead-Free Gasoline Material Safety Data Sheet". NOAA. Archived from the original on 20 August 2002. Retrieved 6 July 2008.
- thepartsbin.com – Volvo Fuel Tank: Compare at The Parts Bin, 6 May 2012
- "Power of a Human Heart". The Physics Factbook. Retrieved 10 December 2011.
The mechanical power of the human heart is ~1.3 watts
- Calculated: 1.3 J/s × 80 years × 3.16×107 s/year = 3.3×109 J
- "U.S. Household Electricity Uses: A/C, Heating, Appliances". U.S. HOUSEHOLD ELECTRICITY REPORT. EIA. Retrieved 13 December 2011.
For refrigerators in 2001, the average UEC was 1,239 kWh
- Calculated: 1239 kWh × 3.6×106 J/kWh = 4.5×109 J
- Energy Units, by Arthur Smith, 21 January 2005
- "Top 10 Biggest Explosions". Listverse. 28 November 2011. Retrieved 10 December 2011.
a yield of 11 tons of TNT
- Calculated: 11 tons of TNT-equivalent × 4.184×109 J/ton of TNT-equivalent = 4.6×1010 J
- "Emission Facts: Average Annual Emissions and Fuel Consumption for Passenger Cars and Light Trucks". EPA. Retrieved 12 December 2011.
581 gallons of gasoline
- "200 Mile-Per-Gallon Cars?". Archived from the original on 19 December 2011. Retrieved 12 December 2011.
a gallon of gas ... 125 million joules of energy
- Calculated: 581 gallons × 125×106 J/gal = 7.26×1010 J
- Calculated: 1×106 watts × 86400 seconds/day = 8.6×1010 J
- Calculated: 3.44×10−10 J/U-235-fission × 1×10−3 kg / (235 amu per U-235-fission × 1.66×10−27 amu/kg) = 8.82×10−10 J
- Calculated: 2000 kcal/day × 365 days/year × 80 years = 2.4×1011 J
- "A330-300 Dimensions & key data". Airbus. Archived from the original on 16 January 2013. Retrieved 12 December 2011.
97530 litres
- "Archived copy" (PDF). Archived from the original (PDF) on 8 June 2011. Retrieved 19 August 2011.
{{cite web}}
: CS1 maint: archived copy as title (link) - Calculated: 97530 liters × 0.804 kg/L × 43.15 MJ/kg = 3.38×1012 J
- Calculated: 1×109 watts × 3600 seconds/hour
- Weston, Kenneth. "Chapter 10. Nuclear Power Plants" (PDF). Energy Conversion. Archived from the original (PDF) on 5 October 2011. Retrieved 13 December 2011.
The thermal efficiency of a CANDU plant is only about 29%
- "CANDU and Heavy Water Moderated Reactors". Retrieved 12 December 2011.
fuel burnup in a CANDU is only 6500 to 7500 MWd per metric ton uranium
- Calculated: 7500×106 watt-days/tonne × (0.020 tonnes per bundle) × 86400 seconds/day = 1.3×1013 J of burnup energy. Electricity = burnup × ~29% efficiency = 3.8×1012 J
- Calculated: 4.2×109 J/ton of TNT-equivalent × 1×103 tons/megaton = 4.2×1012 J/megaton of TNT-equivalent
- "747 Classics Technical Specs". Boeing. Archived from the original on 10 December 2007. Retrieved 12 December 2011.
183,380 L
- Calculated: 183380 liters × 0.804 kg/L × 43.15 MJ/kg = 6.36×1012 J
- "A380-800 Dimensions & key data". Airbus. Archived from the original on 8 July 2012. Retrieved 12 December 2011.
320,000 L
- Calculated: 320,000 L × 0.804 kg/L × 43.15 MJ/kg = 11.1×1012 J
- "International Space Station: The ISS to Date". NASA. Retrieved 23 August 2011.
- "The wizards of orbits". European Space Agency. Retrieved 10 December 2011.
The International Space Station, for example, flies at 7.7 km/s in one of the lowest practicable orbits
- Calculated: E = 1/2 m.v2 = 1/2 × 417000 kg × (7700m/s)2 = 1.2×1013 J
- "What was the yield of the Hiroshima bomb?". Warbird's Forum. Retrieved 4 November 2011.
21 kt
- Calculated: 15 kt = 15×109 grams of TNT-equivalent × 4.2×103 J/gram TNT-equivalent = 6.3×1013 J
- "Conversion from kg to J". NIST. Retrieved 4 November 2011.
- "JPL – Fireballs and bolides". Jet Propulsion Laboratory. NASA. Retrieved 13 April 2017.
- "How much energy does a hurricane release?". FAQ : HURRICANES, TYPHOONS, AND TROPICAL CYCLONES. NOAA. Retrieved 12 November 2011.
- "The Gathering Storms". COSMOS. Archived from the original on 4 April 2012. Retrieved 10 December 2011.
- "Country Comparison :: Electricity – consumption". The World Factbook. CIA. Archived from the original on 28 January 2012. Retrieved 11 December 2011.
- Calculated: 288.6×106 kWh × 3.60×106 J/kWh = 1.04×1015 J
- Calculated: 4.2×109 J/ton of TNT-equivalent × 1×106 tons/megaton = 4.2×1015 J/megaton of TNT-equivalent
- Calculated: 3.02×109 kWh × 3.60×106 J/kWh = 1.09×1016 J
- Calculated: E = mc2 = 1 kg × (2.998×108 m/s)2 = 8.99×1016 J
- "USGS Energy and Broadband Solution". National Earthquake Information Center, US Geological Survey. Archived from the original on 4 April 2010. Retrieved 9 December 2011.
- The Earth has a cross section of 1.274×1014 square meters and the solar constant is 1361 watts per square meter. Note, however, that because portions of Earth reflect light well, the actual energy absorbed is about 1.2*10^17 watts, from an average albedo of 0.3.
- "The Soviet Weapons Program – The Tsar Bomba". The Nuclear Weapon Archive. Retrieved 4 November 2011.
- Calculated: 50×106 tons TNT-equivalent × 4.2×109 J/ton TNT-equivalent = 2.1×1017 J
- Calculated: 115.6×109 kWh × 3.60×106 J/kWh = 4.16×1017 J
- Alexander, R. McNeill (1989). Dynamics of Dinosaurs and Other Extinct Giants. Columbia University Press. p. 144. ISBN 978-0-231-06667-9.
the explosion of the island volcano Krakatoa in 1883, had about 200 megatonnes energy.
- Calculated: 200×106 tons of TNT equivalent × 4.2×109 J/ton of TNT equivalent = 8.4×1017 J
- This value appears to be referred only to the third explosion on 27th August, 10.02 a.m. According to reports, the third explosion was by far the largest; it is associated to the biggest sound in the recorded history, the highest tsunami during the eruption and the most powerful shock waves rounded the world several times. 200 Megatons of TNT are often referred as the total energy released by the entire eruption, but it's plausible that are rather the energy released by the single third explosion, considering the effects.
- Calculated: 402×109 kWh × 3.60×106 J/kWh = 1.45×1017 J
- Mizokami, Kyle (1 April 2019). "Here's What Would Happen If We Blew Up All the World's Nukes at Once". Popular Mechanics. Retrieved 8 April 2021.
- Calculated: 3.741×1012 kWh × 3.600×106 J/kWh = 1.347×1019 J
- "United States". The World Factbook. USA. Retrieved 11 December 2011.
- Calculated: 3.953×1012 kWh × 3.600×106 J/kWh = 1.423×1019 J
- "World". The World Factbook. CIA. Retrieved 11 December 2011.
- Calculated: 17.8×1012 kWh × 3.60×106 J/kWh = 6.41×1019 J
- Calculated: 18.95×1012 kWh × 3.60×106 J/kWh = 6.82×1019 J
- "Statistical Review of World Energy 2011" (PDF). BP. Archived from the original (PDF) on 2 September 2011. Retrieved 9 December 2011.
- Calculated: 12002.4×106 tonnes of oil equivalent × 42×109 J/tonne of oil equivalent = 5.0×1020 J
- "Global Uranium Resources to Meet Projected Demand | International Atomic Energy Agency". iaea.org. June 2006. Retrieved 26 December 2016.
- "U.S. Energy Information Administration, International Energy Generation".
- "U.S. EIA International Energy Outlook 2007". eia.doe.gov. Retrieved 26 December 2016.
- Final number is computed. Energy Outlook 2007 shows 15.9% of world energy is nuclear. IAEA estimates conventional uranium stock, at today's prices is sufficient for 85 years. Convert billion kilowatt-hours to joules then: 6.25×1019×0.159×85 = 8.01×1020.
- Calculated: "6608.9 trillion cubic feet" => 6608.9×103 billion cubic feet × 0.025 million tonnes of oil equivalent/billion cubic feet × 1×106 tonnes of oil equivalent/million tonnes of oil equivalent × 42×109 J/tonne of oil equivalent = 6.9×1021 J
- Calculated: "188.8 thousand million tonnes" => 188.8×109 tonnes of oil × 42×109 J/tonne of oil = 7.9×1021 J
- Cheng, Lijing; Foster, Grant; Hausfather, Zeke; Trenberth, Kevin E.; Abraham, John (2022). "Improved Quantification of the Rate of Ocean Warming". Journal of Climate. 35 (14): 4827–4840. Bibcode:2022JCli...35.4827C. doi:10.1175/JCLI-D-21-0895.1.Calculated per reference: 0.58 W·m−2 is 9.3×1021 J·yr−1 in the global domain
- Calculated: 1.27×1014 m2 × 1370 W/m2 × 86400 s/day = 1.5×1022 J
- Calculated: 860938 million tonnes of coal => 860938×106 tonnes of coal × (1/1.5 tonne of oil equivalent / tonne of coal) × 42×109 J/tonne of oil equivalent = 2.4×1022 J
- Calculated: natural gas + petroleum + coal = 6.9×1021 J + 7.9×1021 J + 2.4×1022 J = 3.9×1022 J
- Richards, Mark A.; Alvarez, Walter; Self, Stephen; Karlstrom, Leif; Renne, Paul R.; Manga, Michael; Sprain, Courtney J.; Smit, Jan; Vanderkluysen, Loÿc; Gibson, Sally A. (1 November 2015). "Triggering of the largest Deccan eruptions by the Chicxulub impact". Geological Society of America Bulletin. 127 (11–12): 1507–1520. Bibcode:2015GSAB..127.1507R. doi:10.1130/B31167.1. ISSN 0016-7606. S2CID 3463018.
- Calculated: 1.27×1014 m2 × 1370 W/m2 × 86400 s/day = 5.5×1024 J
- Carroll, Bradley; Ostlie, Dale (2017). An Introduction to Modern Astrophysics (2 ed.). ISBN 978-1-108-42216-1.
- Zahnle, K. J. (26 August 2018). "Climatic Effect of Impacts on the Ocean". Comparative Climatology of Terrestrial Planets III: From Stars to Surfaces. 2065: 2056. Bibcode:2018LPICo2065.2056Z.
- "Ask Us: Sun: Amount of Energy the Earth Gets from the Sun". Cosmicopia. NASA. Archived from the original on 16 August 2000. Retrieved 4 November 2011.
- Lii, Jiangning. "Seismic effects of the Caloris basin impact, Mercury" (PDF). MIT.
- "Moon Fact Sheet". NASA. Retrieved 16 December 2011.
- Calculated: KE = 1/2 × m × v2. v = 1.023×103 m/s. m = 7.349×1022 kg. KE = 1/2 × (7.349×1022 kg) × (1.023×103 m/s)2 = 3.845×1028 J.
- "Moment of Inertia—Earth". Eric Weisstein's World of Physics. Retrieved 5 November 2011.
- Allain, Rhett. "Rotational energy of the Earth as an energy source". .dotphysics. Science Blogs. Archived from the original on 17 November 2011. Retrieved 5 November 2011.
the Earth takes 23.9345 hours to rotate
- Calculated: E_rotational = 1/2 × I × w2 = 1/2 × (8.0×1037 kg m2) × (2×pi/(23.9345 hour period × 3600 seconds/hour))2 = 2.1×1029 J
- Schaefer, Bradley E.; King, Jeremy R.; Deliyannis, Constantine P. (February 2000). "Superflares on Ordinary Solar‐Type Stars". The Astrophysical Journal. 529 (2): 1026–1030. arXiv:astro-ph/9909188. Bibcode:2000ApJ...529.1026S. doi:10.1086/308325. ISSN 0004-637X. S2CID 10586370.
- Calculated: 3.8×1026 J/s × 86400 s/day = 3.3×1031 J
- "Earth's Gravitational Binding Energy". Retrieved 19 March 2012.
Variable Density Method: the Earth's gravitational binding energy is −1.711×1032 J
- "DutchS/pseudosc/flipaxis". uwgb.edu. Archived from the original on 22 August 2017. Retrieved 26 December 2016.
- Calculated: 3.8×1026 J/s × 86400 s/day × 365.25 days/year = 1.2×1034 J
- "NASA - Cosmic Explosion Among the Brightest in Recorded History". www.nasa.gov. Retrieved 27 March 2022.
- Palmer, D. M.; Barthelmy, S.; Gehrels, N.; Kippen, R. M.; Cayton, T.; Kouveliotou, C.; Eichler, D.; Wijers, R. a. M. J.; Woods, P. M.; Granot, J.; Lyubarsky, Y. E. (April 2005). "A giant γ-ray flare from the magnetar SGR 1806–20". Nature. 434 (7037): 1107–1109. arXiv:astro-ph/0503030. Bibcode:2005Natur.434.1107P. doi:10.1038/nature03525. ISSN 1476-4687. PMID 15858567. S2CID 16579885.
- Stella, L.; Dall'Osso, S.; Israel, G. L.; Vecchio, A. (17 November 2005). "Gravitational Radiation from Newborn Magnetars in the Virgo Cluster". The Astrophysical Journal. 634 (2): L165–L168. arXiv:astro-ph/0511068. Bibcode:2005ApJ...634L.165S. doi:10.1086/498685. ISSN 0004-637X. S2CID 18172538.
-
Chandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure (Chicago: U. of Chicago; reprinted in New York: Dover), section 9, eqs. 90–92, p. 51 (Dover edition)
Lang, K. R. 1980, Astrophysical Formulae (Berlin: Springer Verlag), p. 272 - "Earth: Facts & Figures". Solar System Exploration. NASA. Archived from the original on 23 July 2012. Retrieved 29 September 2011.
- "Conversion from kg to J". NIST. Retrieved 4 November 2011.
- Frail, D. A.; Kulkarni, S. R.; Sari, R.; Djorgovski, S. G.; Bloom, J. S.; Galama, T. J.; Reichart, D. E.; Berger, E.; Harrison, F. A.; Price, P. A.; Yost, S. A.; Diercks, A.; Goodrich, R. W.; Chaffee, F. (2001). "Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir". The Astrophysical Journal. 562 (1): L55. arXiv:astro-ph/0102282. Bibcode:2001ApJ...562L..55F. doi:10.1086/338119. S2CID 1047372. "the gamma-ray energy release, corrected for geometry, is narrowly clustered around 5 × 1050 erg"
- Calculated: 5×1050 erg × 1×10−7 J/erg = 5×1043 J
- Lu, Wenbin; Kumar, Pawan (28 September 2018). "On the Missing Energy Puzzle of Tidal Disruption Events". The Astrophysical Journal. 865 (2): 128. arXiv:1802.02151. Bibcode:2018ApJ...865..128L. doi:10.3847/1538-4357/aad54a. ISSN 1538-4357. S2CID 56015417.
- Khokhlov, A.; Mueller, E.; Hoeflich, P.; Mueller; Hoeflich (1993). "Light curves of Type IA supernova models with different explosion mechanisms". Astronomy and Astrophysics. 270 (1–2): 223–248. Bibcode:1993A&A...270..223K.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - Coppejans, D. L.; Margutti, R.; Terreran, G.; Nayana, A. J.; Coughlin, E. R.; Laskar, T.; Alexander, K. D.; Bietenholz, M.; Caprioli, D.; Chandra, P.; Drout, M. R. (26 May 2020). "A Mildly Relativistic Outflow from the Energetic, Fast-rising Blue Optical Transient CSS161010 in a Dwarf Galaxy". The Astrophysical Journal. 895 (1): L23. arXiv:2003.10503. Bibcode:2020ApJ...895L..23C. doi:10.3847/2041-8213/ab8cc7. ISSN 2041-8213. S2CID 214623364.
- Dong, S.; Shappee, B. J.; Prieto, J. L.; Jha, S. W.; Stanek, K. Z.; Holoien, T. W.- S.; Kochanek, C. S.; Thompson, T. A.; Morrell, N.; Thompson, I. B.; et al. (15 January 2016). "ASASSN-15lh: A highly super-luminous supernova". Science. 351 (6270): 257–260. arXiv:1507.03010. Bibcode:2016Sci...351..257D. doi:10.1126/science.aac9613. PMID 26816375. S2CID 31444274.
- Kankare, E.; Kotak, R.; Mattila, S.; Lundqvist, P.; Ward, M. J.; Fraser, M.; Lawrence, A.; Smartt, S. J.; Meikle, W. P. S.; Bruce, A.; Harmanen, J. (December 2017). "A population of highly energetic transient events in the centres of active galaxies". Nature Astronomy. 1 (12): 865–871. arXiv:1711.04577. Bibcode:2017NatAs...1..865K. doi:10.1038/s41550-017-0290-2. ISSN 2397-3366. S2CID 119421626.
- Both ASSASN-15lh and PS1-10adi are indicated as supernovae and probably they are; actually, other mechanisms are proposed to explain them, more or less in accordance to the characteristics of supernovae
- Mike Wall (13 April 2020). "Boom! Distant star explosion is brightest ever seen". Space.com. Retrieved 29 March 2022.
- Starr, Michelle (14 April 2020). "Astronomers Detect The Most Powerful Star Explosion We've Ever Observed". ScienceAlert. Retrieved 29 March 2022.
- Kristen Rogers (13 April 2020). "Astronomers just discovered the brightest supernova ever seen". CNN. Retrieved 29 March 2022.
- Nicholl, Matt; Blanchard, Peter K.; Berger, Edo; Chornock, Ryan; Margutti, Raffaella; Gomez, Sebastian; Lunnan, Ragnhild; Miller, Adam A.; Fong, Wen-fai; Terreran, Giacomo; Vigna-Gómez, Alejandro (September 2020). "An extremely energetic supernova from a very massive star in a dense medium". Nature Astronomy. 4 (9): 893–899. arXiv:2004.05840. Bibcode:2020NatAs...4..893N. doi:10.1038/s41550-020-1066-7. ISSN 2397-3366. S2CID 215744925.
- Yong, D.; Kobayashi, C.; Da Costa, G. S.; Bessell, M. S.; Chiti, A.; Frebel, A.; Lind, K.; Mackey, A. D.; Nordlander, T.; Asplund, M.; Casey, A. R. (8 July 2021). "R-Process elements from magnetorotational hypernovae". Nature. 595 (7866): 223–226. arXiv:2107.03010. Bibcode:2021Natur.595..223Y. doi:10.1038/s41586-021-03611-2. ISSN 0028-0836. PMID 34234332. S2CID 235755170.
- McBreen, S; Krühler, T; Rau, A; Greiner, J; Kann, D. A; Savaglio, S; Afonso, P; Clemens, C; Filgas, R; Klose, S; Küpüc Yoldas, A; Olivares E, F; Rossi, A; Szokoly, G. P; Updike, A; Yoldas, A (2010). "Optical and near-infrared follow-up observations of four Fermi/LAT GRBs: Redshifts, afterglows, energetics and host galaxies". Astronomy and Astrophysics. 516 (71): A71. arXiv:1003.3885. Bibcode:2010A&A...516A..71M. doi:10.1051/0004-6361/200913734. S2CID 119151764.
- Cenko, S. B; Frail, D. A; Harrison, F. A; Haislip, J. B; Reichart, D. E; Butler, N. R; Cobb, B. E; Cucchiara, A; Berger, E; Bloom, J. S; Chandra, P; Fox, D. B; Perley, D. A; Prochaska, J. X; Filippenko, A. V; Glazebrook, K; Ivarsen, K. M; Kasliwal, M. M; Kulkarni, S. R; LaCluyze, A. P; Lopez, S; Morgan, A. N; Pettini, M; Rana, V. R (2010). "Afterglow Observations of Fermi-LAT Gamma-Ray Bursts and the Emerging Class of Hyper-Energetic Events". The Astrophysical Journal. 732 (1): 29. arXiv:1004.2900. Bibcode:2011ApJ...732...29C. doi:10.1088/0004-637X/732/1/29. S2CID 50964480.
- Cenko, S. B; Frail, D. A; Harrison, F. A; Kulkarni, S. R; Nakar, E; Chandra, P; Butler, N. R; Fox, D. B; Gal-Yam, A; Kasliwal, M. M; Kelemen, J; Moon, D. -S; Price, P. A; Rau, A; Soderberg, A. M; Teplitz, H. I; Werner, M. W; Bock, D. C. -J; Bloom, J. S; Starr, D. A; Filippenko, A. V; Chevalier, R. A; Gehrels, N; Nousek, J. N; Piran, T; Piran, T (2010). "The Collimation and Energetics of the Brightest Swift Gamma-Ray Bursts". The Astrophysical Journal. 711 (2): 641–654. arXiv:0905.0690. Bibcode:2010ApJ...711..641C. doi:10.1088/0004-637X/711/2/641. S2CID 32188849.
- url= http://tsvi.phys.huji.ac.il/presentations/Frail_AstroExtreme.pdf Archived 1 August 2014 at the Wayback Machine
- url= http://fermi.gsfc.nasa.gov/science/mtgs/grb2010/tue/Dale_Frail.ppt
- "A Hypernova: The Super-charged Supernova and its link to Gamma-Ray Bursts". Imagine the Universe!. NASA. Archived from the original on 19 October 2011. Retrieved 9 December 2011.
With a power about 100 times that of the already astonishingly powerful "typical" supernova
- it is specified that only the 1% of the total energy (10^44 J) is kinetic energy; so, almost the total energy is carried by neutrinos
- Kasen, Daniel; Woosley, S. E.; Heger, Alexander (2011). "Pair Instability Supernovae: Light Curves, Spectra, and Shock Breakout". The Astrophysical Journal. 734 (2): 102. arXiv:1101.3336. Bibcode:2011ApJ...734..102K. doi:10.1088/0004-637X/734/2/102. S2CID 118508934.
- "Quark-Nova | Astronomy & Astrophysics (A&A)".
- Wiseman, p.; Wang, Y.; Hönig, S.; Castero-Segura, N.; Clark, P.; Frohmaier, C.; Fulton, M. D.; Leloudas, G.; Middleton, M.; Müller-Bravo, T. E.; Mummery, A.; Pursiainen, M; Smartt, S. J.; Smith, K.; Sullivan, M. (July 2023). "Multiwavelength observations of the extraordinary accretion event AT 2021lwx". Monthly Notices of the Royal Astronomical Society. 522 (3): 3992–4002 – via Oxford Academic.
- Burns, Eric; Svinkin, Dmitry; Fenimore, Edward; Kann, D. Alexander; Agüí Fernández, José Feliciano; Frederiks, Dmitry; Hamburg, Rachel; Lesage, Stephen; Temiraev, Yuri; Tsvetkova, Anastasia; Bissaldi, Elisabetta; Briggs, Michael S.; Dalessi, Sarah; Dunwoody, Rachel; Fletcher, Cori (1 March 2023). "GRB 221009A: The BOAT". The Astrophysical Journal Letters. 946 (1): L31. doi:10.3847/2041-8213/acc39c. ISSN 2041-8205.
- Kann, D. A.; Agayeva, S.; Aivazyan, V.; Alishov, S.; Andrade, C. M.; Antier, S.; Baransky, A.; Bendjoya, P.; Benkhaldoun, Z.; Beradze, S.; Berezin, D.; Boër, M.; Broens, E.; Brunier, S.; Bulla, M. (9 May 2023). "GRANDMA and HXMT Observations of GRB 221009A: The Standard Luminosity Afterglow of a Hyperluminous Gamma-Ray Burst—In Gedenken an David Alexander Kann". The Astrophysical Journal Letters. 948 (2): L12. doi:10.3847/2041-8213/acc8d0. ISSN 2041-8205.
- Frederiks, D.; Svinkin, D.; Lysenko, A. L.; Molkov, S.; Tsvetkova, A.; Ulanov, M.; Ridnaia, A.; Lutovinov, A. A.; Lapshov, I.; Tkachenko, A.; Levin, V. (18 May 2023). "Properties of the Extremely Energetic GRB 221009A from Konus-WIND and SRG/ART-XC Observations". The Astrophysical Journal Letters. 949 (1): L7. doi:10.3847/2041-8213/acd1eb. ISSN 2041-8205.
- Ruffini, R.; Salmonson, J. D.; Wilson, J. R.; Xue, S. -S. (1 October 1999). "On the pair electromagnetic pulse of a black hole with electromagnetic structure". Astronomy and Astrophysics. 350: 334–343. arXiv:astro-ph/9907030. Bibcode:1999A&A...350..334R. ISSN 0004-6361.
- Ruffini, R.; Salmonson, J. D.; Wilson, J. R.; Xue, S. -S. (1 July 2000). "On the pair-electromagnetic pulse from an electromagnetic black hole surrounded by a baryonic remnant". Astronomy and Astrophysics. 359: 855–864. arXiv:astro-ph/0004257. Bibcode:2000A&A...359..855R. ISSN 0004-6361.
- De Colle, Fabio; Lu, Wenbin (September 2020). "Jets from Tidal Disruption Events". New Astronomy Reviews. 89: 101538. arXiv:1911.01442. Bibcode:2020NewAR..8901538D. doi:10.1016/j.newar.2020.101538. S2CID 207870076.
- Misra, Kuntal; Ghosh, Ankur; Resmi, L. (2023). "The Detection of Very High Energy Photons in Gamma Ray Bursts" (PDF). Tata Institute of Fundamental Research.
{{cite journal}}
: Cite journal requires|journal=
(help) - Frederiks, D.; Svinkin, D.; Lysenko, A. L.; Molkov, S.; Tsvetkova, A.; Ulanov, M.; Ridnaia, A.; Lutovinov, A. A.; Lapshov, I.; Tkachenko, A.; Levin, V. (1 May 2023). "Properties of the Extremely Energetic GRB 221009A from Konus-WIND and SRG/ART-XC Observations". The Astrophysical Journal Letters. 949 (1): L7. doi:10.3847/2041-8213/acd1eb. ISSN 2041-8205.
- "Sun Fact Sheet". NASA. Retrieved 15 October 2011.
- "Conversion from kg to J". NIST. Retrieved 4 November 2011.
- Abbott, B.; et al. (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters. 116 (6): 061102. arXiv:1602.03837. Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. PMID 26918975. S2CID 124959784.
- If GW190521 is a boson star merging, the present one remains the largest. See note [246][247]
- Tajima, Hiroyasu (2009). "Fermi Observations of high-energy gamma-ray emissions from GRB 080916C". arXiv.
- "Fermi's record breaking gamma-ray burst".
- It is important to specify that the energetic reduction for beaming (invoked to explain so much energetics and jet breaks) is expected in the "Fireball model", which is the traditional one; other main models explain both Long and Short GRBs with binary systems, such as "Induced Gravitational Collapse", "Binary-Driven Hypernovae" which refer to the "Fireshell" one, in which cases the beaming isn't assumpted and the isotropic energy is a real value of energy due to the rotational energy of the stellar black hole and vacuum polarization in a electromagnetic field, which are able to explain energetics up and over 1047 J
- Whalen, Daniel J.; Johnson, Jarrett L.; Smidt, Joseph; Meiksin, Avery; Heger, Alexander; Even, Wesley; Fryer, Chris L. (August 2013). "The Supernova That Destroyed a Protogalaxy: Prompt Chemical Enrichment and Supermassive Black Hole Growth". The Astrophysical Journal. 774 (1): 64. arXiv:1305.6966. Bibcode:2013ApJ...774...64W. doi:10.1088/0004-637X/774/1/64. ISSN 0004-637X. S2CID 59289675.
- Chen, Ke-Jung; Heger, Alexander; Woosley, Stan; Almgren, Ann; Whalen, Daniel J.; Johnson, Jarrett L. (July 2014). "The General Relativistic Instability Supernova of a Supermassive Population III Star". The Astrophysical Journal. 790 (2): 162. arXiv:1402.4777. Bibcode:2014ApJ...790..162C. doi:10.1088/0004-637X/790/2/162. ISSN 0004-637X. S2CID 119269181.
- Assuming the uncertainties about the masses of the objects, the values of the LIGO Data are taken in consideration; so we have a newborn black hole with about 142 solar masses and the conversion in gravitational waves of about 7 solar masses
- Abbott, R.; Abbott, T. D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K. (2 September 2020). "Properties and Astrophysical Implications of the 150 M ⊙ Binary Black Hole Merger GW190521". The Astrophysical Journal. 900 (1): L13. arXiv:2009.01190. Bibcode:2020ApJ...900L..13A. doi:10.3847/2041-8213/aba493. ISSN 2041-8213. S2CID 221447444.
- LIGO Scientific Collaboration and Virgo Collaboration; Abbott, R.; Abbott, T. D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M. (2 September 2020). "GW190521: A Binary Black Hole Merger with a Total Mass of $150\text{ }\text{ }{M}_{\ensuremath{\bigodot}}$". Physical Review Letters. 125 (10): 101102. doi:10.1103/PhysRevLett.125.101102. PMID 32955328. S2CID 221447506.
- A research claims that this is instead a boson stars merging with approximately 8 times more probability than the black hole case; if so, the existence and the collision of boson stars there would be confirmed together. Furthermore, the energy released and the distance would be reduced. See the following note for the link of the research
- Bustillo, Juan Calderón; Sanchis-Gual, Nicolas; Torres-Forné, Alejandro; Font, José A.; Vajpeyi, Avi; Smith, Rory; Herdeiro, Carlos; Radu, Eugen; Leong, Samson H. W. (24 February 2021). "GW190521 as a Merger of Proca Stars: A Potential New Vector Boson of $8.7\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}13}\text{ }\mathrm{eV}$". Physical Review Letters. 126 (8): 081101. doi:10.1103/PhysRevLett.126.081101. hdl:10773/31565. PMID 33709746. S2CID 231719224.
- Toma, Kenji; Sakamoto, Takanori; Mészáros, Peter (April 2011). "Population III Gamma-Ray Burst Afterglows: Constraints on Stellar Masses and External Medium Densities". The Astrophysical Journal. 731 (2): 127. arXiv:1008.1269. Bibcode:2011ApJ...731..127T. doi:10.1088/0004-637X/731/2/127. ISSN 0004-637X. S2CID 119288325.
- Garner, Rob (18 March 2020). "Quasar Tsunamis Rip Across Galaxies". NASA. Retrieved 28 March 2022.
- To determinate this value, the maximum energy of 1047 J for gamma-ray burts is taken in consideration; then six orders of magnitude are added, equivalent to ten million of years, the time frame in which the quasar tsunami will exceed the GRBs energetics over 1 million of times, according to the Nahum Arav's statement in the previous note
- Cavagnolo, K. W; McNamara, B. R; Wise, M. W; Nulsen, P. E. J; Brüggen, M; Gitti, M; Rafferty, D. A (2011). "A Powerful AGN Outburst in RBS 797". The Astrophysical Journal. 732 (2): 71. arXiv:1103.0630. Bibcode:2011ApJ...732...71C. doi:10.1088/0004-637X/732/2/71. S2CID 73653317.
- url= http://iopscience.iop.org/1538-4357/625/1/L9/fulltext/19121.text.html
- Li, Shuang-Liang; Cao, Xinwu (June 2012). "CONSTRAINTS ON JET FORMATION MECHANISMS WITH THE MOST ENERGETIC GIANT OUTBURSTS IN MS 0735$\mathplus$7421". The Astrophysical Journal. 753 (1): 24. arXiv:1204.2327. doi:10.1088/0004-637X/753/1/24. ISSN 0004-637X. S2CID 119236058.
- Giacintucci, S.; Markevitch, M.; Johnston-Hollitt, M.; Wik, D. R.; Wang, Q. H. S.; Clarke, T. E. (February 2020). "Discovery of a Giant Radio Fossil in the Ophiuchus Galaxy Cluster". The Astrophysical Journal. 891 (1): 1. arXiv:2002.01291. Bibcode:2020ApJ...891....1G. doi:10.3847/1538-4357/ab6a9d. ISSN 0004-637X. S2CID 211020555.
- Siegel, Ethan. "Merging Supermassive Black Holes Will Become The Most Energetic Events Of All". Forbes. Retrieved 21 March 2022.
- Siegel, Ethan (10 March 2020). "Merging Supermassive Black Holes Are The Universe's Most Energetic Events Of All". Starts With A Bang!. Retrieved 21 March 2022.
- Diodati, Michele (11 April 2020). "Rotating Black Holes, the Most Powerful Energy Generators in the Universe". Amazing Science. Retrieved 28 March 2022.
- Tamburini, Fabrizio; Thidé, Bo; Della Valle, Massimo (2020). "Measurement of the spin of the M87 black hole from its observed twisted light". Monthly Notices of the Royal Astronomical Society: Letters. 492: L22–L27. arXiv:1904.07923. doi:10.1093/mnrasl/slz176. ISSN 0035-8711.
- Tucker, W.; Blanco, P.; Rappoport, S.; David, L.; Fabricant, D.; Falco, E. E.; Forman, W.; Dressler, A.; Ramella, M. (2 March 1998). "1E 0657–56: A Contender for the Hottest Known Cluster of Galaxies". The Astrophysical Journal. 496 (1): L5. arXiv:astro-ph/9801120. Bibcode:1998ApJ...496L...5T. doi:10.1086/311234. ISSN 0004-637X. S2CID 16140198.
- Markevitch, Maxim; Vikhlinin, Alexey (May 2007). "Shocks and cold fronts in galaxy clusters". Physics Reports. 443 (1): 1–53. arXiv:astro-ph/0701821. Bibcode:2007PhR...443....1M. doi:10.1016/j.physrep.2007.01.001. S2CID 119326224.
- Jim Brau. "The Milky Way Galaxy". Retrieved 4 November 2011.
- "Conversion from kg to J". NIST. Retrieved 4 November 2011.
- Karachentsev, I. D.; Kashibadze, O. G. (2006). "Masses of the local group and of the M81 group estimated from distortions in the local velocity field". Astrophysics. 49 (1): 3–18. Bibcode:2006Ap.....49....3K. doi:10.1007/s10511-006-0002-6. S2CID 120973010.
- "Conversion from kg to J". NIST. Retrieved 4 November 2011.
- Einasto, M.; et al. (December 2007). "The richest superclusters. I. Morphology". Astronomy and Astrophysics. 476 (2): 697–711. arXiv:0706.1122. Bibcode:2007A&A...476..697E. doi:10.1051/0004-6361:20078037. S2CID 15004251.
- "Big Bang Energy". Archived from the original on 19 August 2014. Retrieved 26 December 2016.
{{cite web}}
: CS1 maint: bot: original URL status unknown (link)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.