Xcas

Xcas is a user interface to Giac, which is an open source[2] computer algebra system (CAS) for Windows, macOS and Linux among many other platforms. Xcas is written in C++.[3] Giac can be used directly inside software written in C++.

Xcas
Developer(s)Bernard Parisse
Initial release2000 (2000)
Stable release
1.9.0.63[1] Edit this on Wikidata (1 October 2023 (1 October 2023))
Repository
Written inC++
Operating systemWindows, macOS, Linux, FreeBSD, Android, iOS
TypeComputer algebra system (CAS)
LicenseGNU GPL
Websitexcas.univ-grenoble-alpes.fr/en.html
calculate fractions without common denominator
Figure 1. Xcas calculates fractions without common denominator.
Figure 2. Xcas can solve equation, calculate derivative, antiderivative and more.
Figure 3. Xcas can solve differential equations

Xcas has compatibility modes with many popular algebra systems like WolframAlpha,[4] Mathematica,[5] Maple,[6] or MuPAD. Users can use Giac/Xcas to develop formal algorithms or use it in other software. Giac is used in SageMath[4] for calculus operations. Among other things, Xcas can solve equations (Figure 3) and differential equations (Figure 4) and draw graphs. There is a forum for questions about Xcas.[7]

CmathOOoCAS, an OpenOffice.org plugin which allows formal calculation in Calc spreadsheet and Writer word processing, uses Giac to perform calculations.[8]

Features

Here is a brief overview of what Xcas is able to do:[9][10]

Example Xcas commands:

  • Produce mixed fractions: propfrac(42/15) gives 2 + 4/5
  • Calculate square root: sqrt(4) = 2
  • Draw a vertical line in coordinate system: line(x=1) draws the vertical line in the output window
  • Draw graph: plot(function) (for example, plot(3 * x^2 - 5) produces a plot of y = 3x2 − 5
  • Calculate average: mean([3, 4, 2]) is 3
  • Calculate variance: variance([3, 4, 2]) is 2/3
  • Calculate standard deviation: stddev([3, 4, 2]) is 6/3
  • Calculate determinant of a matrix: {{code|det([[1,2], [3,4]])}} is −2
  • Calculate local extrema of a function: extrema(-2*cos(x)-cos(x)^2,x) is [0, π]
  • Calculate cross product of two vectors: cross([1, 2, 3], [4, 3, 2]) is [-5, 10, -5]
  • Calculate permutations: nPr()
  • Calculate combinations: nCr()
  • Solve equation: solve(equation,x)
  • Factoring Polynomials: factor(polynomial,x) or cfactor(polynomial,x)
  • Differentiation of function: diff(function,x)
  • Calculate indefinite integrals/antiderivatives: int(function,x)
  • Calculate definite integrals/area under the curve of a function: int(function,x,lowerlimit,upperlimit)
    • Calculate definite integral aka solid of revolution - finding volume by rotation (around the x-axis): int(pi*function^2,x,lowerlimit,upperlimit)
    • Calculate definite integral aka solid of revolution - finding volume by rotation (around the y-axis) for a decreasing function: int(2*pi*x*function,x,lowerlimit,upperlimit)
  • Separation of variables: split((x+1)*(y-2),[x,y]) produces
  • desolve differential equation (the derivatives are written as y or y): desolve(differential equation,y)

Supported operating systems

History

Xcas and Giac are open-source projects developed and written by Bernard Parisse and Renée De Graeve at the former Joseph Fourier University of Grenoble (now the Grenoble Alpes University),[24] France since 2000.[25] Xcas and Giac are based on experiences gained with Parisse's former project Erable.[26] Pocket CAS and CAS Calc P11 utilize Giac.

The system was also chosen by Hewlett-Packard as the CAS for their HP Prime calculator, which utilizes the Giac/Xcas 1.5.0 engine under a dual-license scheme.

In 2013, the mathematical software Xcas was also integrated into GeoGebra's CAS view.[27]

Use in education

Since 2015, Xcas is used in the French education system.[28][29][30][31] Xcas is also[32] used in German[33] universities,[34][35] and in Spain and Mexico.[36] It is also used at the University of North Carolina Wilmington[37] and the University of New Mexico.[38] Xcas[39] is used in particular for learning algebra.[40]

χCAS

There is a port of Giac/Xcas for Casio graphing calculators: fx-CG10, fx-CG20, fx-CG50, fx-9750GIII, fx-9860GIII, called χCAS (KhiCAS). These calculators do not have their own computer algebra system. It is also available for TI Nspire CX, CX-II, and Numworks N0110[41]

See also

References

  1. "Index of /~parisse/debian/dists/stable/main/source".
  2. "Giac/Xcas and Pari/GP" (PDF).
  3. "Elsevier Enhanced Reader". reader.elsevier.com. Retrieved 2022-06-08.
  4. Tõnisson, Eno (2017-11-09). Differences between expected answers and the answers offered by computer algebra systems to school mathematics equations (Thesis). hdl:10062/58398.
  5. "Computer Algebra in Education". math.unm.edu. Retrieved 2022-01-03.
  6. "xcas - Computer Algebra System - console and graphical calculator". reposcope.com. Retrieved 2020-04-12.
  7. "Le forum de XCAS - Page d'accueil". xcas.univ-grenoble-alpes.fr. Retrieved 2020-04-12.
  8. "An introduction to the Xcas interface" (PDF).
  9. "MATHEMATICS EDUCATION AS A SCIENCE AND A PROFESSION" (PDF). Josip Juraj Strossmayer University of Osijek. 2019-05-02. Retrieved 2017-10-05.
  10. Read more commands and features hear.
  11. "Xcas reference card".
  12. Gandit, Michèle (2009). Bardini, C.; Fortin, P.; Oldknow, A.; Vagost, D. (eds.). Experimenting and proof in mathematics with XCAS. Proceedings of the 9th International Conference on Technology in Mathematics Teaching. Metz, France. CiteSeerX 10.1.1.580.4878.
  13. Halkos, George E.; Tsilika, Kyriaki D. (2015). "Using Xcas in Calculus Curricula: a Plan of Lectures and Laboratory Projects". Computational and Applied Mathematics Journal. 1 (3). S2CID 58451849.
  14. Halkos, George E.; Tsilika, Kyriaki D.; Simos, Theodore E.; Psihoyios, George; Tsitouras, Ch.; Anastassi, Zacharias (2011). "Xcas as a Programming Environment for Stability Conditions for a Class of Differential Equation Models in Economics". Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP Conference Proceedings. 1389 (1): 1769–1772. Bibcode:2011AIPC.1389.1769H. doi:10.1063/1.3636951.
  15. Fleurant, Cyril; Bodin-Fleurant, Sandrine (2019). "Integration and Differential Equations". Mathematics for Earth Science and Geography. Springer Textbooks in Earth Sciences, Geography and Environment. pp. 145–177. doi:10.1007/978-3-319-69242-5_6. ISBN 978-3-319-69241-8. S2CID 189288194.
  16. "Computeralgebra-Rundbrief Nr. 62: Fachgruppe Computeralgebra" (PDF). Gesellschaft für Informatik e.V. 2019-05-02. Retrieved 2018-03-02. (in German)
  17. "Xcas for Windows". logitheque. 2016-06-09. Retrieved 2018-12-05.
  18. "Installing Xcas". www-fourier.ujf-grenoble.fr. Retrieved 2021-11-14.
  19. "Symbolic Algebra Everywhere". Joey Bernard. 2015-12-15. Retrieved 2018-12-05.
  20. "Xcas Calcul Formel Lycee | PDF | Intégral | Variable (Mathématiques)".
  21. "Giac/Xcas, a free computer algebra system". www-fourier.ujf-grenoble.fr. Retrieved 2022-02-10.
  22. "Xcas Pad – Apps i Google Play". play.google.com (in Danish). Retrieved 2021-11-14.
  23. "Xcas en ligne". www.xcasenligne.fr. Retrieved 2022-03-18.
  24. "Planète MATHS - Liste des ressources par niveau". www.ac-grenoble.fr. Retrieved 2022-01-03.
  25. Fekih, Lassaad Ben; Verlinden, Olivier; Kouroussis, Georges (2011). Development of a user-friendly and open-source multibody framework with the help of symbolic tools. 4th International Congress Design and Modelling of Mechanical Systems. Sousse (Tunisia).
  26. MacCallum, Malcolm A. H. (December 2018). "Computer algebra in gravity research". Living Reviews in Relativity. 21 (1): 6. Bibcode:2018LRR....21....6M. doi:10.1007/s41114-018-0015-6. PMC 6105178. PMID 30174551.
  27. "Xcas | Semantic Scholar". www.semanticscholar.org. Retrieved 2022-02-10.
  28. "Liens mathématiques - Lycée Rosa Parks de Montgeron". www.lyc-rosaparks-montgeron.ac-versailles.fr. Retrieved 2022-01-03.
  29. "M@ths en LIgne". membres-ljk.imag.fr. Retrieved 2022-01-03.
  30. "Articles en ligne". www.epi.asso.fr. Retrieved 2022-01-03.
  31. "Quelles compétences mathématiques sont sollicitées en physique-chimie et SVT au lycée, et nécessaires pour la licence ?" (PDF).
  32. "Module 2 - Introduction". www.didaktik.mathematik.uni-wuerzburg.de. Retrieved 2022-01-03.
  33. Halkos, George; Tsilika, Kyriaki (November 2014). "Perspectives on integrating a computer algebra system into advanced calculus curricula". mpra.ub.uni-muenchen.de. Retrieved 2022-01-03.
  34. "Computeralgebra. Rundbrief" (PDF).
  35. "Abschlussbericht "Intelligentes Lernen"" (PDF).
  36. Salat Figols, Ramón Sebastián (2013). "La enseñanza de las matemáticas y la tecnología" [The teaching of mathematics and technology]. Revista Innovación Educativa (in Spanish). 13 (62): 61–74.
  37. "Xcas_session". people.uncw.edu. Retrieved 2022-01-03.
  38. "Computer Algebra in Education". math.unm.edu. Retrieved 2022-01-03.
  39. "Top PDF computer algebra - 1Library". 1library.net. Retrieved 2022-01-03.
  40. "THE DERIVE - NEWSLETTER #99" (PDF).
  41. https://www-fourier.ujf-grenoble.fr/~parisse/install_en

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.