Automated machine learning

Automated machine learning (AutoML) is the process of automating the tasks of applying machine learning to real-world problems.

AutoML potentially includes every stage from beginning with a raw dataset to building a machine learning model ready for deployment. AutoML was proposed as an artificial intelligence-based solution to the growing challenge of applying machine learning.[1][2] The high degree of automation in AutoML aims to allow non-experts to make use of machine learning models and techniques without requiring them to become experts in machine learning. Automating the process of applying machine learning end-to-end additionally offers the advantages of producing simpler solutions, faster creation of those solutions, and models that often outperform hand-designed models.

Common techniques used in AutoML include hyperparameter optimization, meta-learning and neural architecture search.

Comparison to the standard approach

In a typical machine learning application, practitioners have a set of input data points to be used for training. The raw data may not be in a form that all algorithms can be applied to. To make the data amenable for machine learning, an expert may have to apply appropriate data pre-processing, feature engineering, feature extraction, and feature selection methods. After these steps, practitioners must then perform algorithm selection and hyperparameter optimization to maximize the predictive performance of their model. If deep learning is used, the architecture of the neural network must also be chosen by the machine learning expert.

Each of these steps may be challenging, resulting in significant hurdles to using machine learning. AutoML aims to simplify these steps for non-experts, and to make it easier for them to use machine learning techniques correctly and effectively.

AutoML plays an important role within the broader approach of automating data science, which also includes challenging tasks such as data engineering, data exploration and model interpretation[3] and prediction.[4]

Targets of automation

Automated machine learning can target various stages of the machine learning process.[2] Steps to automate are:

See also

References

  1. Thornton C, Hutter F, Hoos HH, Leyton-Brown K (2013). Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms. KDD '13 Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. pp. 847–855.
  2. Hutter F, Caruana R, Bardenet R, Bilenko M, Guyon I, Kegl B, and Larochelle H. "AutoML 2014 @ ICML". AutoML 2014 Workshop @ ICML. Retrieved 2018-03-28.
  3. De Bie, Tijl; De Raedt, Luc; Hernández-Orallo, José; Hoos, Holger H.; Smyth, Padhraic; Williams, Christopher K. I. (March 2022). "Automating Data Science". Communications of the ACM. 65 (3): 76–87. doi:10.1145/3495256.
  4. Predicting Carpark Prices Indices in Hong Kong Using AutoML, Computer Modeling in Engineering & Sciences 2023, 134(3), 2247-2282. https://doi.org/10.32604/cmes.2022.020930
  5. Erickson, Nick; Mueller, Jonas; Shirkov, Alexander; Zhang, Hang; Larroy, Pedro; Li, Mu; Smola, Alexander (2020-03-13). "AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data". arXiv:2003.06505 [stat.ML].

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.