Lusternik–Schnirelmann theorem

In mathematics, the Lusternik–Schnirelmann theorem, aka Lusternik–Schnirelmann–Borsuk theorem or LSB theorem, says as follows.

If the sphere Sn is covered by n + 1 closed sets, then one of these sets contains a pair (x, x) of antipodal points.

It is named after Lazar Lyusternik and Lev Schnirelmann, who published it in 1930.[1][2][3]

Equivalent results

There are several fixed-point theorems which come in three equivalent variants: an algebraic topology variant, a combinatorial variant and a set-covering variant. Each variant can be proved separately using totally different arguments, but each variant can also be reduced to the other variants in its row. Additionally, each result in the top row can be deduced from the one below it in the same column.[4]

Algebraic topologyCombinatoricsSet covering
Brouwer fixed-point theoremSperner's lemmaKnaster–Kuratowski–Mazurkiewicz lemma
Borsuk–Ulam theoremTucker's lemmaLusternik–Schnirelmann theorem

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.