N-tert-Butylbenzenesulfinimidoyl chloride

N-tert-Butylbenzenesulfinimidoyl chloride is a useful oxidant for organic synthesis reactions.[1] It is a good electrophile, and the sulfimide S=N bond can be attacked by nucleophiles, such as alkoxides, enolates, and amide ions. The nitrogen atom in the resulting intermediate is basic, and can abstract an α-hydrogen to create a new double bond.

N-tert-Butylbenzenesulfinimidoyl chloride
Line drawing of N-tert-butylbenzenesulfinimidoyl chloride
Ball-and-stick model of N-tert-butylbenzenesulfinimidoyl chloride
Ball-and-stick model of N-tert-butylbenzenesulfinimidoyl chloride
Space-filling model of N-tert-butylbenzenesulfinimidoyl chloride
Space-filling model of N-tert-butylbenzenesulfinimidoyl chloride
Names
Preferred IUPAC name
N-tert-Butylbenzenesulfinimidoyl chloride
Systematic IUPAC name
[(1,1-Dimethylethyl)imino]chloro(phenyl)-λ4-sulfane
Other names
N-tert-Butylphenylsulfinimidoyl chloride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.189.718
UNII
UN number 3261
  • InChI=1S/C10H14ClNS/c1-10(2,3)12-13(11)9-7-5-4-6-8-9/h4-8H,1-3H3
  • CC(C)(C)N=S(C1=CC=CC=C1)Cl
Properties
C10H14ClNS
Molar mass 215.74 g·mol−1
Appearance Yellow to deep yellow-red crystals or powder
Melting point 51 to 53 °C (124 to 127 °F; 324 to 326 K)[1]
Boiling point 112 to 116 °C (234 to 241 °F; 385 to 389 K)[1] 0.5 mm Hg
Decomposes
Solubility in other solvents Benzene, THF, DCM; slightly soluble in toluene
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Corrosive
GHS labelling:
GHS05: Corrosive
Danger
H290, H314
P234, P260, P264, P280, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P363, P405
Safety data sheet (SDS) TCI MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Preparation

This reagent can be synthesized quickly and in near-quantitative yield by reacting phenyl thioacetate with tert-butyldichloroamine in hot benzene. After the reaction is complete, the product can be isolated as a yellow, moisture-sensitive solid by vacuum distillation.[2]

N-tert-Butylbenzenesulfinimidoyl chloride can be synthesized from phenyl thioacetate and N-tert-butyl-N,N-dichloroamine in benzene.

Mechanism

The first two steps in an oxidation reaction involving N-tert-butylbenzenesulfinimidoyl chloride are similar to a nucleophilic acyl substitution reaction. A nucleophile, such as an alkoxide (1), attacks the S=N bond in 2. The resulting intermediate (3) collapses and ejects chloride ion, which is a good leaving group. The resulting sulfimide has two resonance forms - 4a and 4b. Because of this, the nitrogen is basic, and via a five-membered ring transition state, it can abstract the hydrogen adjacent to the oxygen. This forms a new C=O bond and ejects a neutral sulfenamide (5), giving ketone 6 as the product. N-tert-Butylbenzenesulfinimidoyl chloride reacts with enolates, amides, and primary alkoxides by the same general mechanism.

In oxidation reactions with N-tert-butylbenzenesulfinimidoyl chloride, a five-membered ring transition state is responsible for the formation of a new double bond.

The Swern oxidation, which converts primary and secondary alcohols to aldehydes and ketones, respectively, also uses a sulfur-containing compound (DMSO) as the oxidant and proceeds by a similar mechanism. In the Swern oxidation, elimination also occurs via a five-membered ring transition state, but the basic species is a sulfur ylide instead of a negatively charged nitrogen. Several other oxidation reactions also make use of DMSO as the oxidant and pass through a similar transition state (see #See also).

Reactions

Reacting an aldehyde with a Grignard reagent or organolithium and treating the resulting secondary alkoxide with N-tert-butylbenzenesulfinimidoyl chloride is a convenient one-pot reaction for converting aldehydes to ketones. While Grignards can be used for this reaction, organolithium compounds give higher yields, due to the higher reactivity of a lithium alkoxide compared to the corresponding magnesium salt. In some cases, an equivalent of DMPU, a Lewis base, will increase yields. For example, treating benzaldehyde with n-butyllithium and N-tert-butylbenzenesulfinimidoyl chloride in THF gives 1-phenyl-1-pentanone in good yield.[3]

Benzaldehyde and n-butyllithium react to give a secondary alkoxide, which reacts with N-tert-butylbenzenesulfinimidoyl chloride to give a ketone.

N-tert-Butylbenzenesulfinimidoyl chloride can also be used to synthesize imines from amines. Imines synthesized in this fashion have been shown to undergo a one-pot Mannich reaction with 1,3-dicarbonyl compounds, such as malonate esters and 1,3-diketones. In this example, Cbz-protected benzylamine is deprotonated using n-butyllithium, then treated with N-tert-butylbenzenesulfinimidoyl chloride to form the protected imine. Dimethyl malonate acts as the nucleophile and reacts with the imine to give the final product, a Mannich base.[4]

Lithiated benzylamine reacts with N-tert-butylbenzenesulfinimidoyl chloride to give an imine, which then reacts with dimethyl malonate to give a Mannich base.

See also

References

  1. Matsuo, J.; Mukaiyama, T. (2001). "N-tert-Butylbenzenesulfinimidoyl Chloride". e-EROS Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons. doi:10.1002/047084289X. hdl:10261/236866. ISBN 9780470842898. Retrieved 30 June 2012.
  2. Barrett, A. G. M.; Gray, A. A.; Hill, M. S.; Hitchcock, P. B.; Procopiou, P. A.; White, A. J. P. (2006). "Imino Sulfinamidines: Synthesis and Coordination Chemistry of a Novel Class of Chiral Bidentate Ligands". Inorganic Chemistry. 45 (8): 3352–3358. doi:10.1021/ic052104m. PMID 16602794.
  3. Crawford, J. J.; Henderson, K. W.; Kerr, W. J. (2006). "Direct and Efficient One-Pot Preparation of Ketones from Aldehydes Using N-tert-Butylphenylsulfinimidoyl Chloride". Organic Letters. 8 (22): 5073–5076. doi:10.1021/ol061903l. PMID 17048846.
  4. Matsuo, J.; Tanaki, Y.; Ishibashi, H. (2006). "Oxidative Mannich Reaction of N-Carbobenzyloxy Amines with 1,3-Dicarbonyl Compounds". Organic Letters. 8 (19): 4371–4374. doi:10.1021/ol0618095. PMID 16956229.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.