Partial groupoid

In abstract algebra, a partial groupoid (also called halfgroupoid, pargoid, or partial magma) is a set endowed with a partial binary operation.[1][2]

Group-like structures
Totalityα Associativity Identity Divisibilityβ Commutativity
Partial magma UnneededUnneededUnneededUnneededUnneeded
Semigroupoid UnneededRequiredUnneededUnneededUnneeded
Small category UnneededRequiredRequiredUnneededUnneeded
Groupoid UnneededRequiredRequiredRequiredUnneeded
Magma RequiredUnneededUnneededUnneededUnneeded
Quasigroup RequiredUnneededUnneededRequiredUnneeded
Unital magma RequiredUnneededRequiredUnneededUnneeded
Loop RequiredUnneededRequiredRequiredUnneeded
Semigroup RequiredRequiredUnneededUnneededUnneeded
Associative quasigroup RequiredRequiredUnneededRequiredUnneeded
Monoid RequiredRequiredRequiredUnneededUnneeded
Commutative monoid RequiredRequiredRequiredUnneededRequired
Group RequiredRequiredRequiredRequiredUnneeded
Abelian group RequiredRequiredRequiredRequiredRequired
The closure axiom, used by many sources and defined differently, is equivalent.
Here, divisibility refers specifically to the quasigroup axioms.

A partial groupoid is a partial algebra.

Partial semigroup

A partial groupoid is called a partial semigroup (also called semigroupoid, semicategory, naked category, or precategory) if the following associative law holds:[3]

For all such that and , the following two statements hold:

  1. if and only if , and
  2. if (and, because of 1., also ).

References

  1. Evseev, A. E. (1988). "A survey of partial groupoids". In Ben Silver (ed.). Nineteen Papers on Algebraic Semigroups. American Mathematical Soc. ISBN 0-8218-3115-1.
  2. Folkert Müller-Hoissen; Jean Marcel Pallo; Jim Stasheff, eds. (2012). Associahedra, Tamari Lattices and Related Structures: Tamari Memorial Festschrift. Springer Science & Business Media. pp. 11 and 82. ISBN 978-3-0348-0405-9.
  3. Schelp, R. H. (1972). "A partial semigroup approach to partially ordered sets". Proceedings of the London Mathematical Society. 3 (1): 46–58. doi:10.1112/plms/s3-24.1.46. Retrieved 1 April 2023.

Further reading

  • E.S. Ljapin; A.E. Evseev (1997). The Theory of Partial Algebraic Operations. Springer Netherlands. ISBN 978-0-7923-4609-8.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.