SgrS RNA
SgrS (sugar transport-related sRNA, previously named ryaA)[1] is a 227 nucleotide small RNA that is activated by SgrR in Escherichia coli during glucose-phosphate stress. The nature of glucose-phosphate stress is not fully understood, but is correlated with intracellular accumulation of glucose-6-phosphate.[2] SgrS helps cells recover from glucose-phosphate stress by base pairing with ptsG mRNA (encoding the glucose transporter) and causing its degradation in an RNase E dependent manner.[3][4] Base pairing between SgrS and ptsG mRNA also requires Hfq, an RNA chaperone frequently required by small RNAs that affect their targets through base pairing.[5] The inability of cells expressing sgrS to create new glucose transporters leads to less glucose uptake and reduced levels of glucose-6-phosphate. SgrS is an unusual small RNA in that it also encodes a 43 amino acid functional polypeptide, SgrT, which helps cells recover from glucose-phosphate stress by preventing glucose uptake. The activity of SgrT does not affect the levels of ptsG mRNA of PtsG protein.[2] It has been proposed that SgrT exerts its effects through regulation of the glucose transporter, PtsG.[6][7]
SgrS RNA | |
---|---|
Identifiers | |
Symbol | SgrS |
Rfam | RF00534 |
Other data | |
RNA type | Gene; antisense |
Domain(s) | Bacteria |
GO | GO:0032057 GO:0043488 GO:0030371 |
SO | SO:0000655 |
PDB structures | PDBe |
SgrS was originally discovered in E. coli but homologues have since been identified in other Gammaproteobacteria such as Salmonella enterica and members of the genus Citrobacter.[8] A comparative genomics based target prediction approach that employs these homologs, has been developed and was used to predict the SgrS target, ptsI (b2416), which was subsequently verified experimentally.[9]
References
- Vanderpool CK, Gottesman S (November 2004). "Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system". Molecular Microbiology. 54 (4): 1076–89. doi:10.1111/j.1365-2958.2004.04348.x. PMID 15522088. S2CID 24804508.
- Wadler CS, Vanderpool CK (December 2007). "A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide". Proceedings of the National Academy of Sciences of the United States of America. 104 (51): 20454–9. doi:10.1073/pnas.0708102104. PMC 2154452. PMID 18042713.
- Vanderpool CK, Gottesman S (March 2007). "The novel transcription factor SgrR coordinates the response to glucose-phosphate stress". Journal of Bacteriology. 189 (6): 2238–48. doi:10.1128/JB.01689-06. PMC 1899371. PMID 17209026.
- Rice JB, Vanderpool CK (May 2011). "The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes". Nucleic Acids Research. 39 (9): 3806–19. doi:10.1093/nar/gkq1219. PMC 3089445. PMID 21245045.
- Kawamoto H, Koide Y, Morita T, Aiba H (August 2006). "Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq". Molecular Microbiology. 61 (4): 1013–22. doi:10.1111/j.1365-2958.2006.05288.x. PMID 16859494. S2CID 35533720.
- Maki K, Morita T, Otaka H, Aiba H (May 2010). "A minimal base-pairing region of a bacterial small RNA SgrS required for translational repression of ptsG mRNA". Molecular Microbiology. 76 (3): 782–92. doi:10.1111/j.1365-2958.2010.07141.x. PMID 20345651. S2CID 39687800.
- Kawamoto H, Morita T, Shimizu A, Inada T, Aiba H (February 2005). "Implication of membrane localization of target mRNA in the action of a small RNA: mechanism of post-transcriptional regulation of glucose transporter in Escherichia coli". Genes & Development. 19 (3): 328–38. doi:10.1101/gad.1270605. PMC 546511. PMID 15650111.
- Horler RS, Vanderpool CK (September 2009). "Homologs of the small RNA SgrS are broadly distributed in enteric bacteria but have diverged in size and sequence". Nucleic Acids Research. 37 (16): 5465–76. doi:10.1093/nar/gkp501. PMC 2760817. PMID 19531735.
- Wright PR, Richter AS, Papenfort K, Mann M, Vogel J, Hess WR, Backofen R, Georg J (September 2013). "Comparative genomics boosts target prediction for bacterial small RNAs". Proceedings of the National Academy of Sciences of the United States of America. 110 (37): E3487-96. Bibcode:2013PNAS..110E3487W. doi:10.1073/pnas.1303248110. PMC 3773804. PMID 23980183.
Further reading
- Vanderpool CK (April 2007). "Physiological consequences of small RNA-mediated regulation of glucose-phosphate stress". Current Opinion in Microbiology. 10 (2): 146–51. doi:10.1016/j.mib.2007.03.011. PMID 17383224.
- Aiba H (April 2007). "Mechanism of RNA silencing by Hfq-binding small RNAs". Current Opinion in Microbiology. 10 (2): 134–9. doi:10.1016/j.mib.2007.03.010. PMID 17383928.
- Sun Y, Vanderpool CK (November 2013). "Physiological consequences of multiple-target regulation by the small RNA SgrS in Escherichia coli". Journal of Bacteriology. 195 (21): 4804–15. doi:10.1128/JB.00722-13. PMC 3807494. PMID 23873911.
- Bobrovskyy M, Vanderpool CK (2014). "The small RNA SgrS: roles in metabolism and pathogenesis of enteric bacteria". Frontiers in Cellular and Infection Microbiology. 4: 61. doi:10.3389/fcimb.2014.00061. PMC 4021124. PMID 24847473.
- Papenfort K, Sun Y, Miyakoshi M, Vanderpool CK, Vogel J (April 2013). "Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis". Cell. 153 (2): 426–37. doi:10.1016/j.cell.2013.03.003. PMC 4151517. PMID 23582330.