Sphingomonadaceae

Sphingomonadaceae are a gram-negative bacterial family of the Alphaproteobacteria. An important feature is the presence of sphingolipids (mainly 2′-hydroxymyristol dihydrosphingosine 1-glucuronic acid, "SGL-1") in the outer membrane of the cell wall.[2][3] The cells are ovoid or rod-shaped. Others are also pleomorphic, i.e. the cells change the shape over time. Some species from Sphingomonadaceae family are dominant components of biofilms.[4][5][6]

Sphingomonadaceae
A culture of "Sphingomonas phyllosphaerae"
A culture of Sphingomonas phyllosphaerae
Scientific classification Edit this classification
Domain: Bacteria
Phylum: Pseudomonadota
Class: Alphaproteobacteria
Order: Sphingomonadales
Family: Sphingomonadaceae
Kosako et al. 2000
Type genus
Sphingomonas
Yabuuchi et al. 1990
Genera[1]
  • Aestuariisphingobium Li et al. 2020
  • Allosphingosinicella Hördt et al. 2020
  • Aquisediminimonas Jin et al. 2019
  • "Binariimonas" Zhao et al. 2016
  • Blastomonas Sly and Cahill 1997
  • Chakrabartia Jani et al. 2019
  • "Citromicrobium" Yurkov et al. 1999
  • "Hankyongella" Siddiqi and Im 2020
  • Hephaestia Felföldi et al. 2014
  • "Lutibacterium" Chung and King 2001
  • Novosphingopyxis Feng et al. 2020
  • Parablastomonas Ren et al. 2015
  • Parasphingopyxis Uchida et al. 2012
  • Parasphingorhabdus Feng et al. 2020
  • Rhizorhabdus Francis et al. 2014
  • Rhizorhapis Francis et al. 2014
  • Sphingobium Takeuchi et al. 2001
  • Sphingomicrobium Kämpfer et al. 2012
  • Sphingomonas Yabuuchi et al. 1990
  • Sphingopyxis Takeuchi et al. 2001
  • Sphingorhabdus Jogler et al. 2013
  • Sphingosinithalassobacter Hetharua et al. 2019
  • Stakelama Chen et al. 2010
  • "Tardibacter" Lee et al. 2018

Energy source

While most species within Sphingomonadaceae family are heterotrophic,[7] some are phototrophic.

Function

Some species of Sphingomonadaceae are known to degrade some aromatic compounds. This makes the bacteria of interest to environmental remediation.[8]

The diverse metabolic capacity of genera within the Sphingomonadaceae family, such as Sphingobium, Novosphingobium, and Sphingopyxis enable these genera to adapt to and be abundant in the presence of Bisphenol A. A microbial community with abundant Sphingomonadaceae members can degrade Bisphenol A with a constant rate.[9]

Some Sphingomonas species are able to produce sphingans, a kind of exopolysaccharides with certain viscosity. This property of sphingans makes it useful in many industries including food and pharmaceutical.[10][7]

Distribution

Bacteria within Sphingomonadaceae family are distributed in various environments, such as water,[5] soil,[11][12] sediment.[7][13]

Phylogeny

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature[1] and the phylogeny is based on whole-genome sequences.[14][lower-alpha 1]

Sphingomonadaceae

Sphingomicrobium

Sphingopyxis

Sphingorhabdus

Parasphingopyxis

Novosphingopyxis

Blastomonas

Parasphingorhabdus

Rhizorhapis

Sphingobium

Stakelama

Hephaestia

Sphingomonas

Allosphingosinicella

Rhizorhabdus

outgroup

Erythrobacteraceae

Interaction with human and plants

Some members of the Sphingomonadaceae commonly exist in human-impacted environments, including drinking water systems,[15][5] hospital and household tap water,[16] and medical devices.[17][18][19]

Most of the species of the Sphingomonadaceae are not known to be harmful to humans or plants.[7] Some species can protect plants from disease-causing pathogens such as Thielaviopsis basicola, and Rhizoctonia solani.[7][12][11][20]

The Sphingomonas and Sphingobium genera tend to have higher antibiotic resistance compared with three other genera within the Sphingomonadaceae: Novosphingobium, Sphingopyxis, and Blastomonas.[5] 

Notes

  1. Aestuariisphingobium, Aquisediminimonas, Chakrabartia, Parablastomonas, and Sphingosinithalassobacter are not included in this phylogenetic tree.

References

  1. Euzéby JP, Parte AC. "Sphingomonadaceae". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved June 4, 2021.
  2. Garrity GM, Brenner DJ, Krieg NR, Staley JR, eds. (2005). Bergey's Manual of Systematic Bacteriology. Vol. Two The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. New York, New York: Springer. ISBN 978-0-387-24145-6.
  3. Ikushiro H, Islam MM, Tojo H, Hayashi H (August 2007). "Molecular characterization of membrane-associated soluble serine palmitoyltransferases from Sphingobacterium multivorum and Bdellovibrio stolpii". Journal of Bacteriology. 189 (15): 5749–61. doi:10.1128/JB.00194-07. PMC 1951810. PMID 17557831.
  4. de Vries HJ, Beyer F, Jarzembowska M, Lipińska J, van den Brink P, Zwijnenburg A, et al. (2019-01-25). "Sphingomonadaceae from fouled membranes". npj Biofilms and Microbiomes. 5 (1): 6. doi:10.1038/s41522-018-0074-1. PMC 6347639. PMID 30701078.
  5. Vaz-Moreira I, Nunes OC, Manaia CM (August 2011). "Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water". Applied and Environmental Microbiology. 77 (16): 5697–706. Bibcode:2011ApEnM..77.5697V. doi:10.1128/AEM.00579-11. PMC 3165245. PMID 21705522.
  6. Li L, Jeon Y, Lee SH, Ryu H, Santo Domingo JW, Seo Y (July 2019). "Dynamics of the physiochemical and community structures of biofilms under the influence of algal organic matter and humic substances". Water Research. 158: 136–145. Bibcode:2019WatRe.158..136L. doi:10.1016/j.watres.2019.04.014. PMC 6563348. PMID 31026675.
  7. Glaeser SP, Kämpfer P (2014). "The Family Sphingomonadaceae". In Rosenberg E, DeLong EF, Lory S, Stackebrandt E (eds.). The Prokaryotes. pp. 641–707. doi:10.1007/978-3-642-30197-1_302. ISBN 978-3-642-30197-1. {{cite book}}: |work= ignored (help)
  8. Balkwill DL, Fredrickson JK, Romine MR (12 October 2006). "Sphingomonas and Related Genera". The Prokaryotes, A Handbook of the Biology of Bacteria. Vol. 7: Proteobacteria: Delta and Epsilon Subclasses. Deeply Rooting Bacteria. ISBN 978-0-387-33493-6.
  9. Oh S, Choi D (April 2019). "Microbial Community Enhances Biodegradation of Bisphenol A Through Selection of Sphingomonadaceae". Microbial Ecology. 77 (3): 631–639. doi:10.1007/s00248-018-1263-4. PMID 30251120. S2CID 52811122.
  10. Li H, Jiao X, Sun Y, Sun S, Feng Z, Zhou W, Zhu H (November 2016). "The preparation and characterization of a novel sphingan WL from marine Sphingomonas sp. WG". Scientific Reports. 6 (1): 37899. Bibcode:2016NatSR...637899L. doi:10.1038/srep37899. PMC 5121650. PMID 27883073.
  11. Kyselková M, Almario J, Kopecký J, Ságová-Marečková M, Haurat J, Muller D, et al. (August 2014). "Evaluation of rhizobacterial indicators of tobacco black root rot suppressiveness in farmers' fields". Environmental Microbiology Reports. 6 (4): 346–53. doi:10.1111/1758-2229.12131. PMID 24992533.
  12. Gómez Expósito R, de Bruijn I, Postma J, Raaijmakers JM (2017-12-18). "Current Insights into the Role of Rhizosphere Bacteria in Disease Suppressive Soils". Frontiers in Microbiology. 8: 2529. doi:10.3389/fmicb.2017.02529. PMC 5741648. PMID 29326674.
  13. Jin L, Ko SR, Jin CZ, Jin FJ, Li T, Ahn CY, Oh HM, Lee HG (2019-08-01). "Description of novel members of the family Sphingomonadaceae: Aquisediminimonas profunda gen. nov., sp. nov., and Aquisediminimonas sediminicola sp. nov., isolated from freshwater sediment". International Journal of Systematic and Evolutionary Microbiology. 69 (8): 2179–2186. doi:10.1099/ijsem.0.003347. PMID 31204973.
  14. Hördt, Anton; López, Marina García; Meier-Kolthoff, Jan P.; Schleuning, Marcel; Weinhold, Lisa-Maria; Tindall, Brian J.; Gronow, Sabine; Kyrpides, Nikos C.; Woyke, Tanja; Göker, Markus (7 April 2020). "Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria". Frontiers in Microbiology. 11: 468. doi:10.3389/fmicb.2020.00468. PMC 7179689. PMID 32373076.
  15. Li D, Li Z, Yu J, Cao N, Liu R, Yang M (November 2010). "Characterization of bacterial community structure in a drinking water distribution system during an occurrence of red water". Applied and Environmental Microbiology. 76 (21): 7171–80. Bibcode:2010ApEnM..76.7171L. doi:10.1128/AEM.00832-10. PMC 2976220. PMID 20851995.
  16. Narciso-da-Rocha C, Vaz-Moreira I, Manaia CM (January 2014). "Genotypic diversity and antibiotic resistance in Sphingomonadaceae isolated from hospital tap water". The Science of the Total Environment. 466–467: 127–35. Bibcode:2014ScTEn.466..127N. doi:10.1016/j.scitotenv.2013.06.109. PMID 23892027.
  17. Soto-Giron MJ, Rodriguez-R LM, Luo C, Elk M, Ryu H, Hoelle J, et al. (May 2016). Besser TE (ed.). "Biofilms on Hospital Shower Hoses: Characterization and Implications for Nosocomial Infections". Applied and Environmental Microbiology. 82 (9): 2872–2883. Bibcode:2016ApEnM..82.2872S. doi:10.1128/AEM.03529-15. PMC 4836434. PMID 26969701.
  18. Poza M, Gayoso C, Gómez MJ, Rumbo-Feal S, Tomás M, Aranda J, et al. (2012-08-29). "Exploring bacterial diversity in hospital environments by GS-FLX Titanium pyrosequencing". PLOS ONE. 7 (8): e44105. Bibcode:2012PLoSO...744105P. doi:10.1371/journal.pone.0044105. PMC 3430676. PMID 22952889.
  19. Meric M, Willke A, Kolayli F, Yavuz S, Vahaboglu H (March 2009). "Water-borne Sphingomonas paucimobilis epidemic in an intensive care unit". The Journal of Infection. 58 (3): 253–5. doi:10.1016/j.jinf.2009.01.007. PMID 19232740.
  20. Chapelle E, Mendes R, Bakker PA, Raaijmakers JM (January 2016). "Fungal invasion of the rhizosphere microbiome". The ISME Journal. 10 (1): 265–8. doi:10.1038/ismej.2015.82. PMC 4681858. PMID 26023875.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.