Table of explosive detonation velocities
This is a compilation of published detonation velocities for various high explosive compounds. Detonation velocity is the speed with which the detonation shock wave travels through the explosive. It is a key, directly measurable indicator of explosive performance, but depends on density which must always be specified, and may be too low if the test charge diameter is not large enough. Especially for little studied explosives there may be divergent published values due to charge diameter issues. In liquid explosives, like nitroglycerin, there may be two detonation velocities, one much higher than the other. The detonation velocity values presented here are typically for the highest practical density which maximizes achievable detonation velocity.[1]
The velocity of detonation is an important indicator for overall energy and power of detonation, and in particular for the brisance or shattering effect of an explosive which is due to the detonation pressure. The pressure can be calculated using Chapman-Jouguet theory from the velocity and density.
Explosive class | Explosive name | Abbreviation | Detonation velocity (m/s) |
Test Density (g/cm3) |
---|---|---|---|---|
Aromatic | 1,3,5-trinitrobenzene | TNB | 7,450 | 1.60 |
Aromatic | 1,3,5-Triazido-2,4,6-trinitrobenzene | TATNB | 7,300 | 1.71 |
Aromatic | 4,4’-Dinitro-3,3’-diazenofuroxan | DDF | 10,000 | 2.02 |
Aromatic | Trinitrotoluene | TNT | 6,900 | 1.60 |
Aromatic | Diazodinitrophenol | DDNP | 7,100 | 1.63 |
Aromatic | Trinitroaniline | TNA | 7,300 | 1.72 |
Aromatic | Tetryl | 7,570 | 1.71 | |
Aromatic | Picric acid | TNP | 7,350 | 1.70 |
Aromatic | Ammonium picrate (Dunnite) | 7,150 | 1.60 | |
Aromatic | Methyl picrate | 6,800 | 1.57 | |
Aromatic | Ethyl picrate | 6,500 | 1.55 | |
Aromatic | Picryl chloride | 7,200 | 1.74 | |
Aromatic | Trinitrocresol | 6,850 | 1.62 | |
Aromatic | Lead styphnate | 5,200 | 2.90 | |
Aromatic | Triaminotrinitrobenzene | TATB | 7,350 | 1.80 |
Aliphatic | 1,1-diamino-2,2-dinitroethene | DADNE, FOX-7 | 8,335 | 1.76 |
Inorganic | Ammonium perchlorate | AP[2] | 6,300 | 1.95 |
Aliphatic | Methyl nitrate | MN[3] | 6,818 | 1.22 |
Aliphatic | Nitroglycol/ethylene glycol dinitrate | EGDN | 7,500 | 1.49 |
Aliphatic | Nitroglycerine | NG | 7,700 | 1.59 |
Aliphatic | Mannitol hexanitrate | MHN | 8,260 | 1.73 |
Aliphatic | Pentaerythritol tetranitrate | PETN | 8,400 | 1.76 |
Aliphatic | Erythritol tetranitrate | ETN | 8,200 | 1.72 |
Aliphatic | Xylitol pentanitrate | XPN | 7,100 | 1.852 |
Aliphatic | Ethylenedinitramine | EDNA | 7,570 | 1.65 |
Aliphatic | Nitroguanidine | NQ | 8,200 | 1.70 |
Aliphatic | Cyclotrimethylenetrinitramine | RDX | 8,550 | 1.762 |
Aliphatic | Cyclotetramethylene tetranitramine | HMX | 9,100 | 1.89 |
Aliphatic | Hexanitrodiphenylamine | HND | 7,100 | 1.64 |
Aliphatic | Hexanitrohexaazaisowurtzitane | HNIW or CL-20[4] | 9,500 | 2.04 |
Aliphatic | Dinitroglycoluril | DINGU | 8,450 | 1.94 |
Aliphatic | Tetranitroglycoluril | TNGU, Sorguyl, Sorguryl | 9,150 | 1.95 |
Aliphatic | Hexanitrohexaazatricyclododecanedione | HHTDD, DTNGU, Naza/Namsorguyl/uryl HnHaza/amTcDglcDuryl | 9,700 | 2.16 |
Aliphatic | 5-Nitro-2,4-dihydro-3H-1,2,4-triazole-3-one [5] | NTO | 8,564 | 1.93 |
Aliphatic | Octanitrocubane | ONC | 10,100 | 2.00 |
Aliphatic | Nitrocellulose | NC | 7,300 | 1.20 |
Aliphatic | Urea nitrate | UN | 4,700 | 1.67 |
Aliphatic | Triacetone triperoxide | AP or TATP | 5,300 | 1.18 |
Aliphatic | Methyl ethyl ketone peroxide | MEKP | 5,200 | 1.17 |
Aliphatic | Hexamethylene triperoxide diamine | HMTD | 4,500 | 0.88 |
Inorganic | Mercury fulminate | 4,250 | 3.00 | |
Inorganic | Potassium perchlorate aluminium mixture | KClO4[6] | 4,600 | 1.5 |
Inorganic | Lead azide | 4,630 | 3.00 | |
Inorganic | Nickel hydrazine nitrate | NHN | 7,000 | 1.70 |
Inorganic | Silver azide | 4,000 | 4.00 | |
Aliphatic | Ammonium nitrate/fuel oil | AN/FO | 3,200 | 1.30 |
Inorganic | Ammonium nitrate | AN | 2,700 | 1.73 |
Explosive class | Explosive name | Abbreviation | Detonation velocity (m/s) |
Test Density (g/cm3) |
See also
References
- Cooper, Paul W. (1996). Explosives Engineering, New York: Wiley-VCH. ISBN 0-471-18636-8
- Shevchenko, A. A.; Dolgoborodov, A Yu; Brazhnikov, M. A.; Kirilenko, V. G. (2018). "Pseudoideal detonation of mechanoactivated mixtures of ammonium perchlorate with nanoaluminum". Journal of Physics: Conference Series. 946 (1): 012055. Bibcode:2018JPhCS.946a2055S. doi:10.1088/1742-6596/946/1/012055.
- Kozak, G.D. (1998). "Measurement and calculation of the ideal detonation velocity for liquid nitrocompounds". Combust Explos Shock Waves. 34 (5): 584. doi:10.1007/BF02672682. S2CID 98738029.
- Bolton, O.; Simke, L. R.; Pagoria, P. F.; Matzger, A. J. (2012). "High Power Explosive with Good Sensitivity: A 2:1 Cocrystal of CL-20:HMX". Crystal Growth & Design. 12 (9): 4311. doi:10.1021/cg3010882.
- Viswanath DS, Ghosh TK, Boddu VM. (2018) 5-Nitro-2,4-Dihydro-3H-1,2,4-Triazole-3-One (NTO). Chapter 5 in Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties. Springer. doi:10.1007/978-94-024-1201-7_5
- "Data" (PDF). www.dtic.mil. Retrieved 2019-12-15.