Tonelli's theorem (functional analysis)

In mathematics, Tonelli's theorem in functional analysis is a fundamental result on the weak lower semicontinuity of nonlinear functionals on Lp spaces. As such, it has major implications for functional analysis and the calculus of variations. Roughly, it shows that weak lower semicontinuity for integral functionals is equivalent to convexity of the integral kernel. The result is attributed to the Italian mathematician Leonida Tonelli.

Statement of the theorem

Let be a bounded domain in -dimensional Euclidean space and let be a continuous extended real-valued function. Define a nonlinear functional on functions by

Then is sequentially weakly lower semicontinuous on the space for and weakly- lower semicontinuous on if and only if the function defined by

is convex.

See also

References

    • Renardy, Michael & Rogers, Robert C. (2004). An introduction to partial differential equations. Texts in Applied Mathematics 13 (Second ed.). New York: Springer-Verlag. p. 347. ISBN 0-387-00444-0. (Theorem 10.16)
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.