Orthogonal polynomials on the unit circle
In mathematics, orthogonal polynomials on the unit circle are families of polynomials that are orthogonal with respect to integration over the unit circle in the complex plane, for some probability measure on the unit circle. They were introduced by Szegő (1920, 1921, 1939).
Definition
Suppose that is a probability measure on the unit circle in the complex plane, whose support is not finite. The orthogonal polynomials associated to are the polynomials with leading term that are orthogonal with respect to the measure .
The Szegő recurrence
The monic orthogonal Szegő polynomials satisfy a recurrence relation of the form
for and initial condition , with
and constants given by
called the Verblunsky coefficients.[1]: 44 Subsequently, Geronimus' theorem states that the Verblunsky coefficients associated with are the Schur parameters:[1]: 74
Verblunsky's theorem
Verblunsky's theorem states that any sequence of complex numbers in the open unit disk is the sequence of Verblunsky coefficients for a unique probability measure on the unit circle with infinite support.[2]: 97
Baxter's theorem
Baxter's theorem states that the Verblunsky coefficients form an absolutely convergent series if and only if the moments of form an absolutely convergent series and the weight function is strictly positive everywhere.[2]: 313
Szegő's theorem
Verblunsky's form of Szegő's theorem states that
where is the absolutely continuous part of the measure . Verblunsky's form also allows for a non-zero singular part while in Szegő's original version.[1]: 29
Rakhmanov's theorem
Rakhmanov's theorem states that if the absolutely continuous part of the measure is positive almost everywhere then the Verblunsky coefficients tend to 0.
Examples
The Rogers–Szegő polynomials are an example of orthogonal polynomials on the unit circle.
References
- Simon, Barry (2011). Szegő's theorem and its descendants: spectral theory for L² perturbations of orthogonal polynomials. Princeton University Press. ISBN 978-0-691-14704-8.
- Simon, Barry (2005), Orthogonal polynomials on the unit circle. Part 1. Classical theory, American Mathematical Society Colloquium Publications, vol. 54, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-3446-6, MR 2105088
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Orthogonal Polynomials on the unit circle", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
- Simon, Barry (2005), Orthogonal polynomials on the unit circle. Part 1. Classical theory, American Mathematical Society Colloquium Publications, vol. 54, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-3446-6, MR 2105088
- Simon, Barry (2005), Orthogonal polynomials on the unit circle. Part 2. Spectral theory, American Mathematical Society Colloquium Publications, vol. 54, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-3675-0, MR 2105089
- Szegő, Gábor (1920), "Beiträge zur Theorie der Toeplitzschen Formen", Mathematische Zeitschrift, 6 (3–4): 167–202, doi:10.1007/BF01199955, ISSN 0025-5874, S2CID 118147030
- Szegő, Gábor (1921), "Beiträge zur Theorie der Toeplitzschen Formen", Mathematische Zeitschrift, 9 (3–4): 167–190, doi:10.1007/BF01279027, ISSN 0025-5874, S2CID 125157848
- Szegő, Gábor (1939), Orthogonal Polynomials, Colloquium Publications, vol. XXIII, American Mathematical Society, ISBN 978-0-8218-1023-1, MR 0372517