Whey protein
Whey protein is a mixture of proteins isolated from whey, the liquid material created as a by-product of cheese production. The proteins consist of α-lactalbumin, β-lactoglobulin, serum albumin and immunoglobulins.[1] Glycomacropeptide also makes up the third largest component but is not a protein. Whey protein is commonly marketed as a protein supplement, and various health claims have been attributed to it. A review published in 2010 in the European Food Safety Authority Journal concluded that the provided literature did not adequately support the proposed claims.[2] For muscle growth, whey protein has been shown to be slightly better compared to other types of protein, such as casein or soy.[3]
Production of whey
Whey is left over when milk is coagulated during the process of cheese production, and contains everything that is soluble from milk after the pH is dropped to 4.6 during the coagulation process. It is a 5% solution of lactose in water and contains the water-soluble proteins of milk as well as some lipid content.[4] Processing can be done by simple drying, or the relative protein content can be increased by removing the lactose, lipids and other non-protein materials.[5] For example, membrane filtration separates the proteins from lipids, lactose and minerals in whey, which is followed by spray drying.[6]
Whey can be denatured by heat. High heat (such as the sustained high temperatures above 72 °C associated with the pasteurization process) denatures whey proteins. While native whey protein does not aggregate upon renneting or acidification of milk, denaturing the whey protein triggers hydrophobic interactions with other proteins, and the formation of a protein gel.[5]
Microbial Whey Protein Production
Microbes have been engineered to produce proteins similar or even "bioidentical" to whey.[7] Companies innovating microbe produced whey and cheese include Perfect Day, California Performance, New Culture, and Motif Ingredients. None of these companies stipulate the protein composition of their products, but they do contain some of the genes needed to make whey proteins.[8][9] These products are thought to be viewed as similar to current GMO derived food products.[7]
Composition
The protein in cow's milk is approximately 20% whey and 80% casein.[10] The protein in human milk is approximately 60% whey and 40% casein.[11] The protein fraction in whey constitutes approximately 10% of the total dry solids in whey. This protein is typically a mixture of beta-lactoglobulin (~65%), alpha-lactalbumin (~25%), bovine serum albumin (~8%) (see also serum albumin), and immunoglobulins.[12] The third largest fragment of whey protein isolate derived from sweet whey is glycomacropeptide or GMP. However, GMP lacks the secondary structure necessary for it to be classified as a protein and is considered a long amino acid chain. These peptides are all soluble in water in their native forms, independent of pH.
Major forms and uses
There a majorly four types of whey protein that are commercially produced:[13]
- Whey Protein Concentrates (WPC) have typically low - though not absent - levels of fat and cholesterol. They also contain carbohydrates in the form of lactose. Powders are typically between 29%–89% protein by dry weight.
- Whey Protein Isolates (WPI) are processed to remove fat and lactose, and as a result, WPI powders are typically over 90% protein by dry weight. Like WPC, WPI are mild and slightly milky in taste.
- Whey Protein Hydrolysates (WPH) are whey proteins that are predigested and partially hydrolyzed for the purpose of easier metabolizing. Their cost is generally higher than WPC or WPI.[5] Highly hydrolysed whey may be less allergenic than other forms of whey, due to its much smaller and simpler peptide chains. For this reason it is a common constituent in hypoallergenic baby milk formulas and medical foods.[14]
- Native whey protein is extracted from skim milk, rather than being collected as a byproduct of cheese production. This type of whey does not contain glycomacropeptide, which is formed only after the addition of rennet.[15][16][17]
There is evidence that whey protein is more bio-available than casein or soy protein.[18][19][20]
Whey protein is commonly marketed as a dietary supplement, typically sold in powdered form for mixing into beverages.[2] Whey protein is also commonly used as a thickener to improve texture and decrease syneresis in many types of yogurt. Yogurt with high amounts of protein have been more commonly found on shelves due to the recently increasing popularity of Greek Yogurt.[21]
Use for strength training and muscle building
The primary usage of whey protein supplements is for muscle growth and development. Eating whey protein supplements before exercise will not assist athletic performance, but it will enhance the body's protein recovery and synthesis after exercise because it increases the free amino acids in the body's free amino acid pool.[21]
In 2010 a panel of the European Food Safety Authority (EFSA) panel examined the effects on whey protein on weight loss (via both fat loss and increased satiety) and strength and muscle building. The panel concluded that there's no evidence supporting any weight loss claims and that whey protein is roughly as effective for building strength, muscle and lean body mass as other protein sources.[2]
Although whey proteins are responsible for some milk allergies, the major allergens in milk are the caseins.[22][23]
Whey cheese
Whey cheese, such as ricotta, is produced from whey and is rich in whey protein (except for brunost). The whey protein accounts for about 40–45% of the solids content of ricotta.[24]
References
- Farrell, HM; Jimenez-Flores, R; Bleck, GT; et al. (2004). "Nomenclature of the Proteins of Cows' Milk—Sixth Revision". Journal of Dairy Science. 87 (6): 1641–1674. doi:10.3168/jds.s0022-0302(04)73319-6. ISSN 0022-0302. PMID 15453478.
- EFSA Panel on Dietetic Products, Nutrition and Allergies (2010). "Scientific Opinion on the substantiation of health claims related to whey protein". EFSA Journal. 8 (10): 1818. doi:10.2903/j.efsa.2010.1818.
- Tang, Jason E.; Moore, Daniel R.; Kujbida, Gregory W.; Tarnopolsky, Mark A.; Phillips, Stuart M. (1 September 2009). "Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men". Journal of Applied Physiology. 107 (3): 987–992. doi:10.1152/japplphysiol.00076.2009. PMID 19589961. S2CID 16246420.
- "Whey." The Encyclopædia Britannica. 15th ed. 1994
- Foegeding, EA; Davis, JP; Doucet, D; McGuffey, MK (2002). "Advances in modifying and understanding whey protein functionality". Trends in Food Science & Technology. 13 (5): 151–159. doi:10.1016/S0924-2244(02)00111-5.
- Tunick MH (2008). "Whey Protein Production and Utilization." (abstract). In Onwulata CI, Huth PJ (eds.). Whey processing, functionality and health benefits. Ames, Iowa: Blackwell Publishing; IFT Press. pp. 1–13.
- Lerissa Zimberoff (11 July 2019). "Here comes lab-grown dairy: milk proteins made without animals". LA Times.
- "California Performance vegan whey". Retrieved 3 May 2022.
- US9924728B2, Ryan Pandya, Perumal Gandhi, Shaowen Ji, Derek Beauchamp, Louis Hom, "Food compositions comprising one or both of recombinant beta-lactoglobulin protein and recombinant alpha-lactalbumin protein", published March 27, 2018, assigned to Perfect Day Inc.
- Jay R. Hoffman & Michael J. Falvo (2004). "Protein - Which is best?". Journal of Sports Science and Medicine (3): 118–130.
- Luhovyy BL, Akhavan T, Anderson GH (2007). "Whey proteins in the regulation of food intake and satiety". Journal of the American College of Nutrition. 26 (6): 704S–712S. doi:10.1080/07315724.2007.10719651. PMID 18187437. S2CID 25573353.
- Haug, A; Høstmark, AT; Harstad, OM (2007). "Bovine milk in human nutrition – a review". Lipids Health Dis. 6: 25. doi:10.1186/1476-511X-6-25. PMC 2039733. PMID 17894873.
- Rawat, Manas. "Types Of Whey Protein And Which One Is The Best For You". shreddedyouth. Manas Rawat. Retrieved 17 September 2022.
- Lee YH (November 1992). "Food-processing approaches to altering allergenic potential of milk-based formula". J. Pediatr. 121 (5 Pt 2): S47–50. doi:10.1016/S0022-3476(05)81406-4. PMID 1447634.
- Alan L. Kelly; Seamus A. O'Mahony. "Technologies for whey processing: "Is there a better whey?"" (PDF). Dairyaustralia.com.au. Retrieved 19 May 2016.
- Burrington, Kimberlee. "Technical Report: Milk Fractionation Technology and Emerging Milk Protein Opportunities" (PDF). USDairy. U.S. Dairy Export Council. Retrieved 23 May 2016.
- "Leprino Foods enters direct-to-consumer whey protein market with Ascent Protein". 23 May 2016. Retrieved 1 June 2016.
- Morifuji, Masashi (2010). "Comparison of Different Sources and Degrees of Hydrolysis of Dietary Protein: Effect on Plasma Amino Acids, Dipeptides, and Insulin Responses in Human Subjects". J. Agric. Food Chem. 58 (15): 8788–8797.
- "Protein Quality - Macros Inc - Does Protein Quality Matter".
- Calbet, JA (2002). "Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans".. J Nutr. 132 (8): 2174–82.
- Guo, Mingruo (2019). Whey Protein Production, Chemistry, Functionality, and Applications. Temple University: John Wiley & Sons Ltd. pp. 119–122. ISBN 9781119256052.
- Wal JM (2004). "Bovine milk allergenicity". Ann. Allergy Asthma Immunol. 93 (5 Suppl 3): S2–11. doi:10.1016/S1081-1206(10)61726-7. PMID 15562868.
- Burks W, Helm R, Stanley S, Bannon GA (2001). "Food allergens". Curr Opin Allergy Clin Immunol. 1 (3): 243–248. doi:10.1097/01.all.0000011021.73682.01. PMID 11964696. S2CID 26812470.
- "Ricotta Cheese". Canadian Dairy Commission. 13 December 2013. Retrieved 15 September 2019..
External links
- Whey protein resources, National Dairy Council
- Whey Protein Healthnotes Archived 1 December 2009 at the Wayback Machine, University of California, San Diego