Antibiotic misuse
Antibiotic misuse, sometimes called antibiotic abuse or antibiotic overuse, refers to the misuse or overuse of antibiotics, with potentially serious effects on health. It is a contributing factor to the development of antibiotic resistance, including the creation of multidrug-resistant bacteria, informally called "super bugs": relatively harmless bacteria (such as Staphylococcus, Enterococcus and Acinetobacter) can develop resistance to multiple antibiotics and cause life-threatening infections.[1]
History of antibiotic regulation
Antibiotics have been around since 1928 when penicillin was discovered by Alexander Fleming. In the 1980s, antibiotics that were determined medically important for treatment of animals could be approved under veterinary oversight. In 1996, the National Antimicrobial Resistance Monitoring System (NARMS) was established.[2] Starting in 2010, publications regarding antimicrobial drugs in food became an annual report. Starting in 2012, there was publicly solicited input on how data is to be collected and reported for matters relating to the use of antimicrobials for food-producing animals. Resulting from this, the FDA revised its sampling structure within NARMS with the goal of obtaining more representative livestock data for the key organisms under surveillance.[2] "NARMS partners at CDC and USDA have published over 150 peer-reviewed research articles examining the nature and magnitude of antimicrobial resistance hazards associated with antibiotic use in food-producing animals." In 2014, the FDA began working with the United States Department of Agriculture (USDA) and the Centers of Disease Control and Prevention (CDC) to explore additional mechanisms to obtain data that is representative of antibiotic use in food-producing animals. In 2015, the FDA issued the Veterinary Feed Directive (VFD) final rule, under which veterinarians must authorize the use of antimicrobials within feed for the animals they serve.[2]
In addition to antibiotic regulation in food production, there have been numerous policies put in place to regulate antibiotic distribution in healthcare, specifically in hospital settings. In 2014, the CDC officially recognized the need for antimicrobial stewardship within all U.S. hospital in their publication of the Core Elements of Hospital Antibiotic Stewardship Programs. These programs outline opportunities for reducing unnecessary antibiotic usage, and provide guidelines for antibiotic prescription for common infections. The CDC highlighted post-prescription tactics for antibiotic regulation, such as reassessing dosages and the class or type of antibiotic used, in order to optimally treat each infection.[3] The CDC also emphasized the need for evidence-based prescribing, a practice that focuses on the utilization of evidence and research to make informed medical decisions;[4] these sentiments were echoed by the American Dental Association (ADA) which works to provide detailed guidelines for dentists considering prescribing their patients antibiotics.[5] In 2019, the CDC published a report concerning the issue and updating the public on the effectiveness of past policy. This report, titled Antibiotic Resistance Threats in the United States, 2019, indicated which pathogens posed the greatest threat of resistance, and highlighted the importance of infection prevention, providing recommendations for prevention strategies.[6]
There has also been a substantial effort to educate not only prescribers, but patients too on the issue of antibiotic misuse. The World Health Organization (WHO) has designated a "World Antimicrobial Awareness Week" in November. In 2021, the week's theme was "Spread Awareness, Stop Resistance" and the organization published many different forms of media including podcasts, articles, and infographics to raise awareness for the issue.[7] In the United States, the CDC has published posters and other materials for the purpose of educating the public on antibiotic resistance.[8] State health departments, such as Colorado's Department of Public Health & Environment, have partnered with the CDC to distribute these materials to healthcare providers.[9]
Instances of antibiotic misuse
Antibiotics treats bacterial infections rather than viral infections.
Common situations in which antibiotics are overused include the following:[10]
- Apparent viral respiratory illness in children should not be treated with antibiotics. If there is a diagnosis of bacterial infection, then antibiotics may be used.[11]
- Despite acute respiratory-tract infections being mainly caused by viruses, as many as 75% of cases are treated with antibiotics.[12]
- When children with ear tubes get ear infections, they should have antibiotic eardrops put into their ears to go to the infection rather than having oral antibiotics, which are more likely to have unwanted side effects.[13]
- Swimmer's ear should be treated with antibiotic eardrops, not oral antibiotics.[14]
- Sinusitis should not be treated with antibiotics because it is usually caused by a virus, and even when it is caused by a bacterium, antibiotics are not indicated except in atypical circumstances as it usually resolves without treatment.[15]
- Viral conjunctivitis should not be treated with antibiotics. Antibiotics should only be used with confirmation that a patient has bacterial conjunctivitis.[16]
- Older persons often have bacteria in their urine which is detected in routine urine tests, but unless the person has the symptoms of a urinary tract infection, antibiotics should not be used in response.[17]
- Eczema should not be treated with oral antibiotics. Dry skin can be treated with lotions or other symptom treatments.[18]
- The use of topical antibiotics to treat surgical wounds does not reduce infection rates in comparison with non-antibiotic ointment or no ointment at all.[18]
- The use of doxycycline in acne vulgaris has been associated with increased risk of Crohn's disease.[19]
- The use of minocycline in acne vulgaris has been associated with skin and gut dysbiosis.[20]
Social and economic impact of antibiotic misuse
Antibiotics can cause severe reactions and add significantly to the cost of care.[21] In the United States, antibiotics and anti-infectives are the leading cause of adverse effect from drugs. In a study of 32 States in 2011, antibiotics and anti-infectives accounted for nearly 24 percent of ADEs that were present on admission, and 28 percent of those that occurred during a hospital stay.[22]
If antimicrobial resistance continues to increase from current levels, it is estimated that by 2050 ten million people would die every year due to lack of available treatment[23] and the world's GDP would be 2 - 3.5% lower in 2050.[24] If worldwide action is not taken to combat antibiotic misuse and the development of antimicrobial resistance, from 2014 - 2050 it is estimated that 300 million people could die prematurely due to drug resistance and $60 – 100 trillion of economic output would be lost.[24] If the current worldwide development of antimicrobial resistance is delayed by just 10 years, $65 trillion of the world's GDP output can be saved from 2014 to 2050.[24]
Prescribing by an infectious disease specialist compared with prescribing by a non-infectious disease specialist decreases antibiotic consumption and reduces costs.[25]
Antibiotic resistance
Though antibiotics are required to treat severe bacterial infections, misuse has contributed to a rise in bacterial resistance.[26] The overuse of fluoroquinolone and other antibiotics fuels antibiotic resistance in bacteria, which can inhibit the treatment of antibiotic-resistant infections.[27][28][29] Their excessive use in children with otitis media has given rise to a breed of bacteria resistant to antibiotics entirely.[30] Additionally, the use of antimicrobial substances in building materials and personal care products has contributed to a higher percentage of antibiotic resistant bacteria in the indoor environment, where humans spend a large majority of their lives.[31]
Widespread use of fluoroquinolones as a first-line antibiotic has led to decreased antibiotic sensitivity, with negative implications for serious bacterial infections such as those associated with cystic fibrosis, where quinolones are among the few viable antibiotics.[32][33][34]
Inappropriate use
Human health
Antibiotics have no effect on viral infections such as the common cold. They are also ineffective against sore throats, which are usually viral and self-resolving.[35] Most cases of bronchitis (90–95%) are viral as well, passing after a few weeks—the use of antibiotics against bronchitis is superfluous and can put the patient at risk of developing adverse reactions.[36] If you take an antibiotic when you have a viral infection, the antibiotic attacks bacteria in your body, bacteria that are either beneficial or at least not causing disease. This misdirected treatment can then promote antibiotic-resistant properties in harmless bacteria that can be shared with other bacteria, or create an opportunity for potentially harmful bacteria to replace the harmless ones.[37]
Official guidelines by the American Heart Association for dental antibiotic prophylaxis call for the administration of antibiotics to prevent infective endocarditis. Though the current (2007) guidelines dictate more restricted antibiotic use, many dentists[38] and dental patients[39] follow the 1997 guidelines instead, leading to overuse of antibiotics.[40]
A study by Imperial College London in February 2017 found that of 20 online websites, 9 would provide antibiotics (illegally) without a prescription to UK residents.[41]
Studies have shown that common misconceptions about the effectiveness and necessity of antibiotics to treat common mild illnesses contribute to their overuse.[42][43] Antibiotics should also be used at the lowest dose for the shortest course. For example, research in the UK has shown that a 3-day course of antibiotics (amoxcicillin) was as effective as 7-day course for treating children with pneumonia.[44][45]
Common examples of avoidable antibiotic misuse in clinics
1) Unadequate dosing; 2) unnecessary wide spectrum; 3) unnecessary double anaerobic coverage; 4) limited intravenous-to-oral shift; 5) unnecessary long antibiotic therapy duration; 6) limited access to outpatient parenteral antibiotic therapy (OPAT); 7) limited exploitation of the PK/PD potential of a certain antibiotic; 8) limited clinical use of biomarkers; 9) limited knowledge of old (but effective) antibiotics; 10) limited antibiotic allergy de-labelling
Livestock
There has been significant use of antibiotics in animal husbandry. The most abundant use of antimicrobials worldwide is in livestock; they are typically distributed in animal feed or water for purposes such as disease prevention and growth promotion.[46] Debates have arisen surrounding the extent of the impact of these antibiotics, particularly antimicrobial growth promoters, on human antibiotic resistance. Although some sources assert that there remains a lack of knowledge on which antibiotic use generates the most risk to humans,[47] policies and regulations have been placed to limit any harmful effects, such as the potential of bacteria developing antibiotic resistance within livestock, and that bacteria transferring resistance genes to human pathogens [48] Many countries already ban growth promotion, and the European Union has banned the use of antibiotics for growth promotion since 2006.[49] On January 1, 2017, the FDA enacted legislation to require that all human medically important feed-grade antibiotics (many prior over-the-counter-drugs) become classified as Veterinary Feed Directive drugs (VFD). This action requires that farmers establish and work with veterinaries to receive a written VFD order.[50] The effect of this act places a requirement on an established veterinarian-client-patient relationship (VCPR). Through this relationship, farmers will receive an increased education in the form of advice and guidance from their veterinarian. Resistant bacteria in food can cause infections in humans. Similar to humans, giving antibiotics to food animals will kill most bacteria, but resistant bacteria can survive. When food animals are slaughtered and processed, resistant germs in the animal gut can contaminate the meat or other animal products. Resistant germs from the animal gut can also get into the environment, like water and soil, from animal manure. If animal manure or water containing resistant germs are used on fruits, vegetables, or other produce as fertilizer or irrigation, then this can spread resistant germs.[51]
See also
- Dysbiosis
- Alliance for the Prudent Use of Antibiotics
- Natural growth promoter
- Broad-spectrum antibiotic#Disruption of normal microbiome
References
- Harrison JW, Svec TA (April 1998). "The beginning of the end of the antibiotic era? Part II. Proposed solutions to antibiotic abuse". Quintessence International. 29 (4): 223–9. PMID 9643260.
- Food Insight (2016). "FDA Antibiotic Regulation Through the Decades".
{{cite journal}}
: Cite journal requires|journal=
(help) - "Core Elements of Hospital Antibiotic Stewardship Programs | Antibiotic Use | CDC". www.cdc.gov. 16 December 2021. Retrieved 29 May 2022.
- Maxwell, Simon R J (30 July 2005). "Evidence based prescribing". British Medical Journal. 331 (7511): 247–248. doi:10.1136/bmj.331.7511.247. PMC 1181254. PMID 16051992.
- "Clinical Practice Guidelines and Evidence | American Dental Association". www.ada.org. Retrieved 30 May 2022.
- CDC (29 March 2022). "The biggest antibiotic-resistant threats in the U.S." Centers for Disease Control and Prevention. Retrieved 30 May 2022.
- "World Antimicrobial Awareness Week 2021". www.who.int. Retrieved 30 May 2022.
- CDC (8 October 2021). "Patient and Healthcare Provider Information". Centers for Disease Control and Prevention. Retrieved 30 May 2022.
- "Antibiotic Awareness | Department of Public Health & Environment". cdphe.colorado.gov. Retrieved 30 May 2022.
- "Antibiotics: Are you misusing them?". Mayo Clinic. Retrieved 9 October 2020.
- American Academy of Pediatrics, "Five Things Physicians and Patients Should Question", Choosing Wisely: an initiative of the ABIM Foundation, American Academy of Pediatrics, retrieved 1 August 2013, which cites
- American Academy of Pediatrics Subcommittee on Diagnosis and Management of Bronchiolitis (2006). "Diagnosis and Management of Bronchiolitis". Pediatrics. 118 (4): 1774–1793. doi:10.1542/peds.2006-2223. PMID 17015575.
{{cite journal}}
: CS1 maint: uses authors parameter (link) - Shulman, S. T.; Bisno, A. L.; Clegg, H. W.; Gerber, M. A.; Kaplan, E. L.; Lee, G.; Martin, J. M.; Van Beneden, C. (2012). "Clinical Practice Guideline for the Diagnosis and Management of Group a Streptococcal Pharyngitis: 2012 Update by the Infectious Diseases Society of America". Clinical Infectious Diseases. 55 (10): e86–102. doi:10.1093/cid/cis629. PMC 7108032. PMID 22965026.
- American Academy of Pediatrics Subcommittee on Diagnosis and Management of Bronchiolitis (2006). "Diagnosis and Management of Bronchiolitis". Pediatrics. 118 (4): 1774–1793. doi:10.1542/peds.2006-2223. PMID 17015575.
- "Reducing Antibiotic Exposure | Procalcitonin & Bacterial Infection". Thermo Fisher Scientific. Retrieved 13 April 2022.
- American Academy of Otolaryngology–Head and Neck Surgery, "Five Things Physicians and Patients Should Question", Choosing Wisely: an initiative of the ABIM Foundation, American Academy of Otolaryngology–Head and Neck Surgery, retrieved 1 August 2013
{{citation}}
: CS1 maint: uses authors parameter (link), which cites- Rosenfeld, R. M.; Schwartz, S. R.; Pynnonen, M. A.; Tunkel, D. E.; Hussey, H. M.; Fichera, J. S.; Grimes, A. M.; Hackell, J. M.; Harrison, M. F.; Haskell, H.; Haynes, D. S.; Kim, T. W.; Lafreniere, D. C.; LeBlanc, K.; Mackey, W. L.; Netterville, J. L.; Pipan, M. E.; Raol, N. P.; Schellhase, K. G. (2013). "Clinical Practice Guideline: Tympanostomy Tubes in Children". Otolaryngology–Head and Neck Surgery. 149 (1 Suppl): S1–S35. doi:10.1177/0194599813487302. ISSN 0194-5998. PMID 23818543.
- American Academy of Otolaryngology–Head and Neck Surgery (February 2013), "Five Things Physicians and Patients Should Question", Choosing Wisely: an initiative of the ABIM Foundation, American Academy of Otolaryngology–Head and Neck Surgery, retrieved 1 August 2013
{{citation}}
: CS1 maint: uses authors parameter (link), which cites- Rosenfeld, R.; Brown, L.; Cannon, C.; Dolor, R.; Ganiats, T.; Hannley, M.; Kokemueller, P.; Marcy, S.; Roland, P.; Shiffman, R.; Stinnett, S. S.; Witsell, D. L.; American Academy of Otolaryngology–Head and Neck Surgery Foundation (2006). "Clinical practice guideline: Acute otitis externa". Otolaryngology–Head and Neck Surgery. 134 (4): S4–23. doi:10.1016/j.otohns.2006.02.014. PMID 16638473. S2CID 20340836.
- Consumer Reports; American Academy of Allergy, Asthma, and Immunology (July 2012), "Treating sinusitis: Don't rush to antibiotics" (PDF), Choosing Wisely: an initiative of the ABIM Foundation, Consumer Reports, retrieved 14 August 2012
{{citation}}
: CS1 maint: uses authors parameter (link) - Sheikh, Aziz; Hurwitz, Brian; van Schayck, Constant Paul; McLean, Susannah; Nurmatov, Ulugbek (12 September 2012). "Antibiotics versus placebo for acute bacterial conjunctivitis". The Cochrane Database of Systematic Reviews. 9 (9): CD001211. doi:10.1002/14651858.CD001211.pub3. ISSN 1469-493X. PMID 22972049.
- American Geriatrics Society, "Five Things Physicians and Patients Should Question", Choosing Wisely: an initiative of the ABIM Foundation, American Geriatrics Society, retrieved 1 August 2013
- American Academy of Dermatology (February 2013), "Five Things Physicians and Patients Should Question", Choosing Wisely: an initiative of the ABIM Foundation, American Academy of Dermatology, retrieved 5 December 2013, which cites
- Sheth, V. M.; Weitzul, S. (2008). "Postoperative topical antimicrobial use". Dermatitis: Contact, Atopic, Occupational, Drug. 19 (4): 181–189. doi:10.2310/6620.2008.07094. PMID 18674453.
- Margolis, David J.; Fanelli, Matthew; Hoffstad, Ole; Lewis, James D. (2010). "Potential association between the oral tetracycline class of antimicrobials used to treat acne and inflammatory bowel disease". The American Journal of Gastroenterology. 105 (12): 2610–2616. doi:10.1038/ajg.2010.303. ISSN 1572-0241. PMID 20700115. S2CID 20085592.
- Thompson, Katherine G.; Rainer, Barbara M.; Antonescu, Corina; Florea, Liliana; Mongodin, Emmanuel F.; Kang, Sewon; Chien, Anna L. (1 February 2020). "Minocycline and Its Impact on Microbial Dysbiosis in the Skin and Gastrointestinal Tract of Acne Patients". Annals of Dermatology. 32 (1): 21–30. doi:10.5021/ad.2020.32.1.21. ISSN 1013-9087. PMC 7992645. PMID 33911705.
- Beringer PM, Wong-Beringer A, Rho JP (January 1998). "Economic aspects of antibacterial adverse effects". PharmacoEconomics. 13 (1 Pt 1): 35–49. doi:10.2165/00019053-199813010-00004. PMID 10175984. S2CID 25827533.
- Weiss AJ, Elixhauser A. Origin of Adverse Drug Events in U.S. Hospitals, 2011. HCUP Statistical Brief #158. Agency for Healthcare Research and Quality, Rockville, MD. July 2013.
- "Antibiotic Overuse & Resistance | Antibiotic Stewardship". Thermo Fisher Scientific. Retrieved 13 April 2022.
- "Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations" (PDF). Review on Antimicrobial Resistance.
- Beović B., Kreft, Seme K., Čižman M. (2009). "The Impact of Total Control of Antibiotic Prescribing by Infectious Disease Specialist on Antibiotic Consumption and Cost". Journal of Chemotherapy. 21 (1): 46–51. doi:10.1179/joc.2009.21.1.46. PMID 19297272. S2CID 20534190.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - "Reducing Antibiotic Exposure". Thermo Fisher. Retrieved 3 December 2021.
- Neuhauser MM, Weinstein RA, Rydman R, Danziger LH, Karam G, Quinn JP (February 2003). "Antibiotic resistance among gram-negative bacilli in US intensive care units: implications for fluoroquinolone use". JAMA. 289 (7): 885–8. doi:10.1001/jama.289.7.885. PMID 12588273.
- "Studies examine prescribing of antibiotics for respiratory infections in hospital emergency departments". USA: U.S. Department of Health and Human Services. Archived from the original on 7 May 2009.
From 1995 to 2002, inappropriate antibiotic prescribing for acute respiratory infections, which are usually caused by viruses and thus are not responsive to antibiotics, declined from 61% to 49%. However, the use of broad-spectrum antibiotics such as the fluoroquinolones, jumped from 41% to 77% from 1995 to 2001. Overuse of these antibiotics will eventually render them useless for treating antibiotic-resistant infections, for which broad-spectrum antibiotics are supposed to be reserved.
- "Fluoroquinolone Resistance and Tuberculosis Treatment". USA: The New York City Department of Health and Mental Hygiene.
- Froom J; Culpepper L; Jacobs M; et al. (July 1997). "Antimicrobials for acute otitis media? A review from the International Primary Care Network". BMJ. 315 (7100): 98–102. doi:10.1136/bmj.315.7100.98. PMC 2127061. PMID 9240050.
- Hartmann, Erica; Hickey, Roxana; Hsu, Tiffany; Roman, Clarisse; Chen, Jing; Schwager, Randall; Kline, Jeff; Brown, G.; Halden, Rolf; Huttenhower, Curtis; Green, Jessica (20 September 2016). "Antimicrobial Chemicals Are Associated with Elevated Antibiotic Resistance Genes in the Indoor Dust Microbiome". Environmental Science & Technology. 50 (18): 9807–9815. Bibcode:2016EnST...50.9807H. doi:10.1021/acs.est.6b00262. PMC 5032049. PMID 27599587.
- "Cipro, Related Antibiotics Over-Prescribed, Fueling Microbe Resistance". USA: University Of California. 1 October 2002. Retrieved 13 August 2009.
- K. Bassett; B. Mintzes; V. Musini; T.L. Perry Jr; M. Wong; J.M. Wright (November 2002). "Therapeutics Letter" (PDF). Canadian Family Physician. 48. Archived from the original (PDF) on 14 April 2020.
Gatifloxacin and moxifloxacin have no proven clinical advantages over other fluoroquinolones, macrolides, or amoxicillin. Based on cost, they are not first-choice drugs for their approved indications.
- Ziganshina, Lilia E.; Titarenko, Albina F.; Davies, Geraint R. (6 June 2013). "Fluoroquinolones for treating tuberculosis (presumed drug-sensitive)". The Cochrane Database of Systematic Reviews (6): CD004795. doi:10.1002/14651858.CD004795.pub4. ISSN 1469-493X. PMC 6532730. PMID 23744519.
- Little P, Gould C, Williamson I, Warner G, Gantley M, Kinmonth AL (August 1997). "Reattendance and complications in a randomised trial of prescribing strategies for sore throat: the medicalising effect of prescribing antibiotics". BMJ. 315 (7104): 350–2. doi:10.1136/bmj.315.7104.350. PMC 2127265. PMID 9270458.
- Hueston WJ (March 1997). "Antibiotics: neither cost effective nor 'cough' effective". The Journal of Family Practice. 44 (3): 261–5. PMID 9071245.
- Mayo Clinic
- Zadik Y; Findler M; Livne S; et al. (December 2008). "Dentists' knowledge and implementation of the 2007 American Heart Association guidelines for the prevention of infective endocarditis". Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 106 (6): e16–9. doi:10.1016/j.tripleo.2008.08.009. PMID 19000604.
- Elad S, Binenfeld-Alon E, Zadik Y, Aharoni M, Findler M (March 2011). "Survey of acceptance of the 2007 American Heart Association guidelines for the prevention of infective endocarditis: a pilot study". Quintessence Int. 42 (3): 243–51. PMID 21465012.
- Wilson W; Taubert KA; Gewitz M; et al. (October 2007). "Prevention of infective endocarditis: guidelines from the American Heart Association". Circulation. 116 (15): 1736–54. doi:10.1161/CIRCULATIONAHA.106.183095. PMID 17446442.
- "No prescription needed to obtain antibiotics from almost half of online sites, study shows". Pharmaceutical Journal. 17 February 2017. Retrieved 19 March 2017.
- Barnes, Sasha. "Rutgers study finds antibiotic overuse is caused by misconceptions, financial incentives". The Daily Targum.
- Blaser, Martin J.; Melby, Melissa K.; Lock, Margaret; Nichter, Mark (16 February 2021). "Accounting for variation in and overuse of antibiotics among humans". BioEssays. 43 (2): 2000163. doi:10.1002/bies.202000163. PMID 33410142. S2CID 230811912 – via Wiley Online Library.
- "3 days' antibiotic is effective in childhood pneumonia". NIHR Evidence. 27 May 2022. doi:10.3310/nihrevidence_50885. S2CID 249937345. Retrieved 8 June 2022.
- Barratt, Sam; Bielicki, Julia A.; Dunn, David; Faust, Saul N.; Finn, Adam; Harper, Lynda; Jackson, Pauline; Lyttle, Mark D.; Powell, Colin VE; Rogers, Louise; Roland, Damian (4 November 2021). "Amoxicillin duration and dose for community-acquired pneumonia in children: the CAP-IT factorial non-inferiority RCT". Health Technology Assessment. 25 (60): 1–72. doi:10.3310/hta25600. ISSN 2046-4924. PMID 34738518. S2CID 243762087.
- Silbergeld, E.K.; Graham, J.; Price, L.B. (2008), "Industrial food animal production, antimicrobial resistance, and human health", Annual Review of Public Health, 29: 151–169, doi:10.1146/annurev.publhealth.29.020907.090904, PMID 18348709
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. (2012), "A review of antibiotic use in food animals: Perspective, policy, and potential", Public Health Reports, 127 (1): 4–22, doi:10.1177/003335491212700103, PMC 3234384, PMID 22298919
- "Are antibiotics turning livestock into superbug factories?". 28 September 2017.
- European Commission, Brussels (December 2005). "Ban on antibiotics as growth promoters in animal feed enters into effect".
- Beth Ferry, Madonna Benjamin, Michigan State University Extension and Megan Sprague, MDARD (2016). "Don't wait, be ready! New antibiotic rules for 2017".
{{cite journal}}
: Cite journal requires|journal=
(help)CS1 maint: multiple names: authors list (link) - CDC
Further reading
- Blaser, Martin J. (2014). Missing microbes: how the overuse of antibiotics is fueling our modern plagues. Henry Holt and Company. ISBN 978-0805098105. Archived from the original on 22 January 2014. Retrieved 26 February 2014.
External links
- Be Antibiotics Aware: Know When Antibiotics Work, provided by the Centers for Disease Control and Prevention
- Antibiotics: Misuse puts you and others at risk provided by the Mayo Clinic