Beekeeping

Beekeeping (or apiculture) is the maintenance of bee colonies, commonly in man-made hives, by humans. Most such bees are honey bees in the genus Apis, but other honey-producing bees such as Melipona stingless bees are also kept. A beekeeper (or apiarist) keeps bees in order to collect their honey and other products that the hive produces, such as beeswax, propolis, flower pollen, bee pollen, and royal jelly, as well as to pollinate crops or to produce bees for sale to other beekeepers. A location where bees are kept is called an apiary or "bee yard".

Beekeeping, tacuinum sanitatis casanatensis (14th century)

The keeping of bees dates back to 10,000 years ago, and has been traditionally done for honey. Georgia (country) is "Cradle of beekeeping". The oldest honey ever found comes from Georgia. The 5,500-year-old find was unearthed from the grave of a noblewoman during archaeological excavations in 2003 near the Borjomi town.[1] The ceramic jars contained several types of honey, including linden and flower honey. The domestication of bees can be seen in Egyptian art from around 4,500 years ago. There is also evidence of beekeeping in ancient China, Greece, and Maya.

In the modern era, beekeeping is more often used for crop pollination and other products, such as wax and propolis. The largest beekeeping operations are agricultural businesses that are operated for profit, though many people have small beekeeping operations that they run as a hobby. As beekeeping technology has advanced, beekeeping has become more accessible, and urban beekeeping was described as a growing trend as of 2010. Some studies have found that "city bees" are actually healthier than "rural bees" because there are fewer pesticides and greater biodiversity.[2]

History

Honey seeker depicted on 8,000-year-old cave painting near Valencia, Spain[3]

Early history

At some point in history at least 10,000 years ago, humans began to attempt to maintain colonies of wild bees in artificial hives made from hollow logs, wooden boxes, pottery vessels, or woven straw baskets (known as skeps). Depictions of humans collecting honey from wild bees date to 10,000 years ago.[4] Beekeeping in pottery vessels began about 9,000 years ago in North Africa.[5] Traces of beeswax are found in potsherds throughout the Middle East beginning about 7000 BCE.[5] Domestication of bees is shown in Egyptian art from around 4,500 years ago.[6] Simple hives and smoke were used and honey was stored in jars, some of which were found in the tombs of pharaohs such as Tutankhamun. It was not until the 18th century that European understanding of the colonies and biology of bees allowed the construction of the movable comb hive so that honey could be harvested without destroying the entire colony.

Honeybees were kept in Egypt from antiquity.[7] On the walls of the sun temple of Nyuserre Ini from the Fifth Dynasty, before 2422 BCE, workers are depicted blowing smoke into hives as they are removing honeycombs.[8] Inscriptions detailing the production of honey are found on the tomb of Pabasa from the Twenty-sixth Dynasty (c.650 BCE), depicting pouring honey in jars and cylindrical hives.[9]

An inscription records the introduction of honey bees into the land of Suhum in Mesopotamia, where they were previously unknown:

I am Shamash-resh-ușur, the governor of Suhu and the land of Mari. Bees that collect honey, which none of my ancestors had ever seen or brought into the land of Suhu, I brought down from the mountain of the men of Habha, and made them settle in the orchards of the town 'Gabbari-built-it'. They collect honey and wax, and I know how to melt the honey and wax – and the gardeners know too. Whoever comes in the future, may he ask the old men of the town, (who will say) thus: "They are the buildings of Shamash-resh-ușur, the governor of Suhu, who introduced honey bees into the land of Suhu."

translated text from stele, (Dalley, 2002)[10]

The oldest archaeological finds directly relating to beekeeping have been discovered at Rehov, a Bronze and Iron Age archaeological site in the Jordan Valley, Israel.[11] Thirty intact hives, made of straw and unbaked clay, were discovered by archaeologist Amihai Mazar in the ruins of the city, dating from about 900 BCE. The hives were found in orderly rows, three high, in a manner that could have accommodated around 100 hives, held more than 1 million bees and had a potential annual yield of 500 kilograms of honey and 70 kilograms of beeswax, according to Mazar, and are evidence that an advanced honey industry existed in ancient Israel 3,000 years ago.[12][13][14]

The Beekeepers, 1568, by Pieter Bruegel the Elder

In ancient Greece (Crete and Mycenae), there existed a system of high-status apiculture, as can be concluded from the finds of hives, smoking pots, honey extractors and other beekeeping paraphernalia in Knossos. Beekeeping was considered a highly valued industry controlled by beekeeping overseers—owners of gold rings depicting apiculture scenes rather than religious ones as they have been reinterpreted recently, contra Sir Arthur Evans.[15] Aspects of the lives of bees and beekeeping are discussed at length by Aristotle. Beekeeping was also documented by the Roman writers Virgil, Gaius Julius Hyginus, Varro, and Columella.[16]

Beekeeping has also been practiced in ancient China since antiquity. In a book written by Fan Li (or Tao Zhu Gong) during the Spring and Autumn period there are sections describing the art of beekeeping, stressing the importance of the quality of the wooden box used and how this can affect the quality of the honey.[17] The Chinese word for honey ( , reconstructed Old Chinese pronunciation *mjit) was borrowed from proto-Tocharian *ḿət(ə) (where *ḿ is palatalized; cf. Tocharian B mit), cognate with English mead.[18]

The ancient Maya domesticated a separate species of stingless bee, which they used for several purposes, including making balché, a mead-like alcoholic drink.[19] By 300 BCE they had achieved the highest levels of stingless beekeeping practices in the world.[20] The use of stingless bees is referred to as meliponiculture, named after bees of the tribe Meliponini—such as Melipona quadrifasciata in Brazil. This variation of bee keeping still occurs around the world today.[21] For instance, in Australia, the stingless bee Tetragonula carbonaria is kept for production of their honey.[22]

Scientific study of honey bees

European natural philosophers began to study bee colonies scientifically in the 18th century. Preeminent among these scientific pioneers were Swammerdam, René Antoine Ferchault de Réaumur, Charles Bonnet, and François Huber. Swammerdam and Réaumur were among the first to use a microscope and dissection to understand the internal biology of honey bees. Réaumur was among the first to construct a glass walled observation hive to better observe activities within hives. He observed queens laying eggs in open cells, but still had no idea of how a queen was fertilized; nobody had ever witnessed the mating of a queen and drone and many theories held that queens were "self-fertile," while others believed that a vapor or "miasma" emanating from the drones fertilized queens without direct physical contact. Huber was the first to prove by observation and experiment that queens are physically inseminated by drones outside the confines of hives, usually a great distance away.[23]

Following Réaumur's design, Huber built improved glass-walled observation hives and sectional hives that could be opened like the leaves of a book. This allowed inspecting individual wax combs and greatly improved direct observation of hive activity. Although he went blind before he was twenty, Huber employed a secretary, François Burnens, to make daily observations, conduct careful experiments, and keep accurate notes over more than twenty years. Huber confirmed that a hive consists of one queen who is the mother of all the female workers and male drones in the colony. He was also the first to confirm that mating with drones takes place outside of hives and that queens are inseminated by a number of successive matings with male drones, high in the air at a great distance from their hive. Together, he and Burnens dissected bees under the microscope and were among the first to describe the ovaries and spermatheca, or sperm store, of queens as well as the penis of male drones. Huber is originally regarded as "the father of modern bee-science" and his "Nouvelles Observations sur Les Abeilles (or "New Observations on Bees")[24] revealed all the basic scientific truths for the biology and ecology of honeybees.[23]

Invention of the movable comb hive

Honey harvesting in its earliest times frequently resulted in the destruction of the whole colony as a result of the honey being taken. The wild hive was broken into, using smoke to quiet the bees. The honeycombs were pulled out and either immediately eaten whole or crushed up, along with the eggs, larvae, and honey they held. A sieve or basket was used to separate the liquid honey from the demolished brood nest. In mediaeval times in northern Europe, although skeps and other artificial containers were made to house bees, the precious honey and wax were still extracted only after killing the colony of bees.[25] It was impossible to replace old, dark-brown brood comb, in which larval bees are constricted by layers of shed pupal skins.[26]

The movable frames of modern hives are considered to be the descendants of the traditional basket top bar (movable comb) hives of Greece, which allowed the beekeeper to avoid killing the bees.[27] The oldest testimony on their use dates back to 1669 although it is probable that their use is more than 3000 years old.[28]

A beekeeper inspecting a hive frame from a Langstroth hive.

Intermediate stages in the transition from the old beekeeping to the new were recorded for example by Thomas Wildman in 1768, who described advances over the destructive old skep-based beekeeping so that the bees no longer had to be killed to harvest the honey.[29] Wildman for example fixed a parallel array of wooden bars across the top of a straw hive or skep about ten inches (about 25 cm) in diameter "so that there are in all seven bars of deal to which the bees fix their combs", foreshadowing more modern uses of movable-comb hives. He also described using such hives in a multi-storey configuration, foreshadowing the modern use of supers: he added (at a proper time) successive straw hives below, and eventually removing the ones above when free of brood and filled with honey, so that the bees could be separately preserved at the harvest for a following season. Wildman also described a further development, using hives with "sliding frames" for the bees to build their comb.[30]

Wildman's book acknowledged the advances in knowledge of bees previously made by Swammerdam, Maraldi, and de Réaumur—he included a lengthy translation of Réaumur's account of the natural history of bees—and he also described the initiatives of others in designing hives for the preservation of bee-life when taking the harvest, citing in particular reports from Brittany dating from the 1750s, due to Comte de la Bourdonnaye. Another example of a hive design, was invented by Rev. John Thorley in 1744. The hive was placed in a bell jar that was screwed onto a wicker basket. The bees were free to move from the basket to the jar and the honey was produced and stored in the jar. The hive was designed to keep the bees from swarming as much as they would have in other hive designs.[31]

The 19th century saw this revolution in beekeeping practice completed through the perfection of the movable comb hive by the American Lorenzo Lorraine Langstroth. Langstroth was the first person to make practical use of Huber's earlier discovery that there was a specific spatial measurement between the wax combs, later called the bee space, which bees do not block with wax, but keep as a free passage. Having determined this bee space (commonly given as between 6 and 9 millimetres or 14 and 38 inch),[32][33] though up to 15mm has been found in populations in Ethiopia.[34] Langstroth then designed a series of wooden frames within a rectangular hive box, carefully maintaining the correct space between successive frames, and found that the bees would build parallel honeycombs in the box without bonding them to each other or to the hive walls. This enables the beekeeper to slide any frame out of the hive for inspection, without harming the bees or the comb, protecting the eggs, larvae and pupae contained within the cells. It also meant that combs containing honey could be gently removed and the honey extracted without destroying the comb. The emptied honey combs could then be returned to the bees intact for refilling. Langstroth's book, The Hive and Honey-bee, published in 1853, described his rediscovery of the bee space and the development of his patent movable comb hive.

The invention and development of the movable-comb-hive fostered the growth of commercial honey production on a large scale in both Europe and the US (see also Beekeeping in the United States).

Evolution of hive designs

Langstroth's design for movable comb hives was seized upon by apiarists and inventors on both sides of the Atlantic and a wide range of moveable comb hives were designed and perfected in England, France, Germany and the United States.[35] Classic designs evolved in each country: Dadant hives and Langstroth hives are still dominant in the US; in France the De-Layens trough-hive became popular and in the UK a British National hive became standard as late as the 1930s although in Scotland the smaller Smith hive is still popular. In some Scandinavian countries and in Russia the traditional trough hive persisted until late in the 20th century and is still kept in some areas. However, the Langstroth and Dadant designs remain ubiquitous in the US and also in many parts of Europe, though Sweden, Denmark, Germany, France and Italy all have their own national hive designs. Regional variations of hive evolved to reflect the climate, floral productivity and the reproductive characteristics of the various subspecies of native honey bee in each bio-region.[35]

Honey-laden honeycomb in a wooden frame

The differences in hive dimensions are insignificant in comparison to the common factors in all these hives: they are all square or rectangular; they all use movable wooden frames; they all consist of a floor, brood-box, honey super, crown-board and roof. Hives have traditionally been constructed of cedar, pine, or cypress wood, but in recent years hives made from injection molded dense polystyrene have become increasingly important.[36]

Hives also use queen excluders between the brood-box and honey supers to keep the queen from laying eggs in cells next to those containing honey intended for consumption. Also, with the advent in the 20th century of mite pests, hive floors are often replaced for part of (or the whole) year with a wire mesh and removable tray.[36]

Western honey bee on a honeycomb

In 2015 the Flow Hive system was invented in Australia by Cedar Anderson and his father Stuart Anderson,[37] allowing honey to be extracted without cumbersome centrifuge equipment.

Pioneers of practical and commercial beekeeping

Beekeeping has seen improvements in the design and production of beehives, systems of management and husbandry, stock improvement by selective breeding, honey extraction and marketing, in the 19th century. Notable innovators of modern beekeeping include:

Petro Prokopovych used frames with channels in the side of the woodwork; these were packed side by side in boxes that were stacked one on top of the other. The bees traveled from frame to frame and box to box via the channels.[38] The channels were similar to the cutouts in the sides of modern wooden sections.[39]

Jan Dzierżon was the father of modern apiology and apiculture. All modern beehives are descendants of his design.[40]

François Huber made significant discoveries regarding the bee life-cycle and communication between bees. Despite being blind, Huber brought to light a large amount of information regarding the queen bee's mating habits and her contact with the rest of the hive. His work was published as New Observations on the Natural History of Bees.[41]

L. L. Langstroth revered as the "father of American apiculture"; no other individual has influenced modern beekeeping practice more than Lorenzo Lorraine Langstroth. His classic book The Hive and Honey-bee was published in 1853.[42]

Moses Quinby often termed "the father of commercial beekeeping in the United States," author of Mysteries of Bee-Keeping Explained. He invented the Bee smoker in 1873.[43][44]

Amos Root author of the A B C of Bee Culture, which has been continuously revised and remains in print. Root pioneered the manufacture of hives and the distribution of bee-packages in the United States.[45]

A. J. Cook author of The Bee-Keepers' Guide; or Manual of the Apiary, 1876.[46]

Dr. C.C. Miller was one of the first entrepreneurs actually to make a living from apiculture. By 1878 he made beekeeping his sole business activity. His book, Fifty Years Among the Bees, remains a classic, and his influence on bee management persists to this day.[47]

Honey Extractor

Franz Hruschka was an Austrian/Italian military officer who made one important invention that catalyzed the commercial honey industry. In 1865 he invented the simple machine for extracting honey from the comb by means of centrifugal force. His original idea was to support combs in a metal framework and then spin them around within a container to collect honey as it was thrown out by centrifugal force. This meant that honeycombs could be returned to a hive undamaged but empty, saving the bees a vast amount of work, time, and materials. This single invention significantly improved the efficiency of honey harvesting and catalyzed the modern honey industry.[48]

Walter T. Kelley was an American pioneer of modern beekeeping in the early and mid-20th century. He greatly improved upon beekeeping equipment and clothing and went on to manufacture these items as well as other equipment. His company sold via catalog worldwide, and his book, How to Keep Bees & Sell Honey, an introductory book of apiculture and marketing, allowed for a boom in beekeeping following World War II.[49]

In the U.K., practical beekeeping was led in the early 20th century by a few men, pre-eminently Brother Adam and his Buckfast bee and R.O.B. Manley, author of many titles, including Honey Production in the British Isles and inventor of the Manley frame, still universally popular in the U.K. Other notable British pioneers include William Herrod-Hempsall and Gale.[50][51]

Ahmed Zaky Abushady (1892–1955) was an Egyptian poet, medical doctor, bacteriologist, and bee scientist who was active in England and Egypt in the early part of the twentieth century. In 1919, Abushady patented a removable, standardized aluminum honeycomb. In 1919 he also founded The Apis Club in Benson, Oxfordshire, which was transitioned to the International Bee Research Association (IBRA). In Egypt in the 1930s, Abushady established The Bee Kingdom League and its organ, The Bee Kingdom.[52]

Modern beekeeping

Horizontal hives

Modern top bar hive

A top-bar hive is a single-story frameless beehive in which the comb hangs from removable bars. The bars form a continuous roof over the comb, whereas the frames in most current hives allow space for bees to move up or down between boxes. Hives that have frames or that use honey chambers in summer but which use management principles similar to those of regular top-bar hives are sometimes also referred to as top-bar hives. Top-bar hives are rectangular in shape and are typically more than twice as wide as multi-story framed hives commonly found in English-speaking countries. Top-bar hives usually include one box only, and allow for beekeeping methods that interfere very little with the colony. While conventional advice often recommends inspecting each colony each week during the warmer months, heavy work when full supers have to be lifted,[53] some beekeepers fully inspect top-bar hives only once a year,[54] and only one comb needs to be lifted at a time.[55]

There is no single opinion leader or national standard for horizontal hives, and many different designs are used.[56] Some will accept the various standard frame sizes.

Vertical stackable hives

There are three types of vertical stackable hives: hanging or top-access frame, sliding or side-access frame, and top bar.

Hanging frame hives include Langstroth, the British National, Dadant, Layens, and Rose, differing primarily by size or number of frames. The Langstroth was the first successful top-opened hive with movable frames. Many other hive designs are based on the principle of bee space first described by Langstroth, and is a descendant of Jan Dzierzon's Polish hive designs. Langstroth hives are the most common size in the United States and much of the world; the British National is the most common size in the United Kingdom; Dadant and Modified Dadant hives are widely used in France and Italy, and Layens by some beekeepers, where their large size is an advantage. Square Dadant hives–often called 12 frame Dadant or Brother Adam hives–are used in large parts of Germany and other parts of Europe by commercial beekeepers.

Any hanging frame hive design can be built as a sliding frame design. The AZ Hive, the original sliding frame design, integrates hives using Langstroth-sized frames into a honey house so as to streamline the workflow of honey harvest by localization of labor, similar to cellular manufacturing. The honey house can be a portable trailer, allowing the beekeeper to haul the hives to a site and provide pollination services.

Top bar stackable hives simply use top bars instead of full frames. The most common type is the Warre hive, although any hive with hanging frames can be made into a top bar stackable hive by using only the top bar and not the whole frame. This may work less-well with larger frames, where crosscomb and attachment can occur more-readily.

Beekeepers often wear protective clothing to protect themselves from stings

Protective clothing

Most beekeepers also wear some protective clothing. Novice beekeepers usually wear gloves and a hooded suit or hat and veil. Experienced beekeepers sometimes elect not to use gloves because they inhibit delicate manipulations. The face and neck are the most important areas to protect, so most beekeepers wear at least a veil.[57] Defensive bees are attracted to the breath, and a sting on the face can lead to much more pain and swelling than a sting elsewhere, while a sting on a bare hand can usually be quickly removed by fingernail scrape to reduce the amount of venom injected.

Traditionally beekeeping clothing was pale colored and this is still very common today. This is because of the natural color of cotton and cost of coloring was an expense not warranted for workwear, though some consider this is to provide better differentiation from the colony's natural predators (such as bears and skunks) which tend to be dark-colored. It is now known that bees see in ultraviolet and are also attracted to scent. So the type of fabric conditioner used has more impact than the color of the fabric.[58][59]

'Stings' retained in clothing fabric continue to pump out an alarm pheromone that attracts aggressive action and further stinging attacks. Washing suits regularly, and rinsing gloved hands in vinegar minimizes attraction.

Smoker

Bee smoker with heat shield and hook

Most beekeepers use a smoker, which is a device designed to generate smoke from the incomplete combustion of various fuels. Although the exact mechanism is disputed, it is said that smoke calms bees. Some claim it initiates a feeding response in anticipation of possible hive abandonment due to fire.[60] It is also thought that smoke masks alarm pheromones released by guard bees or when bees are squashed in an inspection. The ensuing confusion creates an opportunity for the beekeeper to open the hive and work without triggering a defensive reaction.

Many types of fuel can be used in a smoker as long as it is natural and not contaminated with harmful substances. These fuels include hessian (or burlap), twine, pine needles, corrugated cardboard, and mostly rotten or punky wood. Indian beekeepers, especially in Kerala, often use coconut fibers as they are readily available, safe, and of negligible expense. Some beekeeping supply sources also sell commercial fuels like pulped paper and compressed cotton, or even aerosol cans of smoke. Other beekeepers use sumac as fuel because it ejects much smoke and lacks an odor.

Some beekeepers are using "liquid smoke" as a safer, more convenient alternative. It is a water-based solution that is sprayed onto the bees from a plastic spray bottle. A spray of clean water can also be used to encourage bees to move on.[61]

Torpor may also be induced by the introduction of chilled air into the hive – while chilled carbon dioxide may have harmful long-term effects.[62]

Hive tool

American hive tool

Most beekeepers use a Hive tool when working on their hives. There are two main types; the American hive tool; and the Australian hive tool often called a 'frame lifter'.

They are used to scrape off burr-comb from around the hive, especially on top of the frames. They are also used to separate the frames before lifting out of the hive.

Effects of stings and of protective measures

Some beekeepers believe that the more stings a beekeeper receives, the less irritation each causes, and they consider it important for safety of the beekeeper to be stung a few times a season. Beekeepers have high levels of antibodies (mainly IgG) reacting to the major antigen of bee venom, phospholipase A2 (PLA).[63] Antibodies correlate with the frequency of bee stings.

The entry of venom into the body from bee-stings may also be hindered and reduced by protective clothing that allows the wearer to remove stings and venom sacs with a simple tug on the clothing. Although the stinger is barbed, a worker bee's stinger is less likely to become lodged into clothing than human skin.

Symptoms of a being stung include redness, swelling, and itching around the site of the sting. In mild cases, it will take about 2 hours for the pain and swelling to subside. In moderate cases, the red welt at the sting site will become slightly larger for 1–2 days before beginning to heal. A severe reaction, which is rare among beekeepers, results in anaphylactic shock.[64]

If a beekeeper is stung by a bee, there are many protective measures that should be taken in order to make sure the affected area does not become too irritated. The first cautionary step that should be taken following a bee sting is removing the stinger without squeezing the attached venom glands. A quick scrape with a fingernail is effective and intuitive. This step is effective in making sure that the venom injected does not spread, so the side effects of the sting will go away sooner. Washing the affected area with soap and water is also a good way to stop the spread of venom. The last step that needs to be taken is to apply ice or a cold compress to the stung area.[64]

Internal temperature of a hive

Tunnel entrance with baffle

The bees maintain the internal temperature of their hive at about 35 °C (95 °F).[65] Their ability to do this is known as social homeostasis and was first described by Gates.[66]

Hot weather

During hot weather, the bees cool the hive by circulating cool air from the entrance up through the hive and out again;[67] and if necessary, by placing water, which they fetch, throughout the hive to create evaporative cooling.[68]

Cold weather

Hive with a second skin of polystyrene

In cold weather the packing/insulation of the bee hive is essential.[69] The extra insulation reduces the amount of honey the bees consume and makes it easier for them to maintain the hive's ideal temperature. This need for insulation has encouraged the use of double walled hives with an outer wall of timber, or polystyrene as in the photograph; and even hives constructed from a ceramic.[70]

Location of hives

There has been considerable debate about the best location for hives. Virgil thought they should be located near clear springs, ponds or shallow brooks. Wildman thought they should face to the south or west. One thing all writers agreed on is that hives should be sheltered from strong winds. In hot climates, they were often placed under the shade of trees in summer.[71]

Researchers found that domestic honey bees placed in national parks in the USA competed with native bee species for resources. A further review of the literature concluded that large concentrations of beehives, in continents where they were not native, such as North and South America, could compete against the native bees, however this was not as strongly observed in areas where domestic bees are native such as Europe and Africa, where the different bee species have adapted over millennia to have a narrower overlapping of forage preferences.[72]

Natural beekeeping

The natural beekeeping movement believes that bee hives are weakened by modern beekeeping and agricultural practices, such as crop spraying, hive movement, frequent hive inspections, artificial insemination of queens, routine medication, and sugar water feeding.[73]

Practitioners of "natural beekeeping" tend to use variations of the top-bar hive, which is a simple design that retains the concept of having a movable comb without the use of frames or a foundation. The horizontal top-bar hive, as championed by Marty Hardison, Michael Bush, Philip Chandler, Dennis Murrell and others, can be seen as a modernization of hollow log hives, with the addition of wooden bars of specific width from which bees hang their combs. Its widespread adoption in recent years can be attributed to the publication in 2007 of The Barefoot Beekeeper[74] by Philip Chandler, which challenged many aspects of modern beekeeping and offered the horizontal top-bar hive as a viable alternative to the ubiquitous Langstroth-style movable-frame hive.

A vertical top-bar hive is the Warré hive, based on a design by the French priest Abbé Émile Warré (1867–1951) and popularized by Dr. David Heaf in his English translation of Warré's book L'Apiculture pour Tous as Beekeeping For All.[75]

Honey bee in Toronto

Urban or backyard beekeeping

Related to natural beekeeping, urban beekeeping is an attempt to revert to a less industrialized way of obtaining honey by utilizing small-scale colonies that pollinate urban gardens.

Some have found that "city bees" are actually healthier than "rural bees" because there are fewer pesticides and greater biodiversity in the urban gardens.[76] Urban bees may fail to find forage, however, and homeowners can use their landscapes to help feed local bee populations by planting flowers that provide nectar and pollen. An environment of year-round, uninterrupted bloom creates an ideal environment for colony reproduction.[77]

Indoor beekeeping

Modern beekeepers have experimented with raising bees indoors, in a controlled environment, or indoor observation hives. This may be done for reasons of space and monitoring or in the off-season. In the off-season, large commercial beekeepers may move colonies to "wintering" warehouses with fixed temperature, light, and humidity. This helps the bees remain healthy but relatively dormant. These relatively dormant or "wintered" bees survive on stored honey, and new bees are not born.[78]

Experiments in raising bees for longer durations indoors have looked into more precise and varying environment controls. In 2015, MIT's Synthetic Apiary project simulated springtime inside a closed environment for several hives throughout a winter. They provided food sources and simulated long days and saw activity and reproduction levels comparable to the levels seen outdoors in warm weather. They concluded that such an indoor apiary could be sustained year-round if needed.[79][80]

Formation of new colonies

Colony reproduction: swarming and supersedure

A swarm about to land
New wax combs between basement joists

All colonies are totally dependent on their queen, who is the only egg-layer. Although queens have a 3–4 year adult lifespan, diminished longevity of queens (less than 1 year) is commonly and increasingly observed.[81] She can choose whether or not to fertilize an egg as she lays it; if she does so, it develops into a female worker bee; if she lays an unfertilized egg it becomes a male drone. She decides which type of egg to lay depending on the size of the open brood cell she encounters on the comb. In a small worker cell, she lays a fertilized egg; if she finds a larger drone cell, she lays an unfertilized drone egg.[82]

All the time that the queen is fertile and laying eggs she produces a variety of pheromones, which control the behavior of the bees in the hive. These are commonly called queen substance, but there are various pheromones with different functions. As the queen ages, she begins to run out of stored sperm, and her pheromones begin to fail.[83]

Inevitably, the queen begins to falter, and the bees decide to replace her by creating a new queen from one of her worker eggs. They may do this because she has been damaged (lost a leg or an antenna), because she has run out of sperm and cannot lay fertilized eggs (has become a "drone laying queen"), or because her pheromones have dwindled to where they cannot control all the bees in the hive. At this juncture, the bees produce one or more queen cells by modifying existing worker cells that contain a normal female egg. They then pursue one of two ways to replace the queen: one is to supersedure, that is, replacing or superseding the queen without swarming, or, two, swarm cell production, that is, dividing the hive into two colonies through swarming.[84]

Supersedure is a valued behavioral trait by some beekeepers. A hive that supersedes its old queen does not lose any stock. Instead it creates a new queen and the old one fades away or is killed when the new queen emerges. In these hives, the bees produce just one or two queen cells, characteristically in the center of the face of a broodcomb.[85]

Swarm cell production involves creating many queen cells, typically a dozen or more. These are large, peanut-shaped protrusions requiring space, for which reason they are often located around the edges of a broodcomb, commonly at the sides and the bottom.[85]

Once either process has begun, the old queen leaves the hive with the hatching of the first queen cells. She leaves accompanied by a large number of bees, predominantly young bees (wax-secretors), who form the basis of the new hive. Scouts are sent out from the swarm to find suitable hollow trees or rock crevices. As soon as one is found, the entire swarm moves in. Within a matter of hours, they build new wax brood combs, using honey stores that the young bees have filled themselves with before leaving the old hive. Only young bees can secrete wax from special abdominal segments, and this is why swarms tend to contain more young bees. Often a number of virgin queens accompany the first swarm (the "prime swarm"), and the old queen is replaced as soon as a daughter queen mates and begins laying. Otherwise, she is quickly superseded in the new home.[85]

Different sub-species of Apis mellifera exhibit differing swarming characteristics. In general the more northerly black races are said to swarm less and supersede more, whereas the more southerly yellow and grey varieties are said to swarm more frequently. The truth is complicated because of the prevalence of cross-breeding and hybridization of the sub-species.[85]

A swarm attached to a branch

Factors that trigger swarming

George S. Demuth describes the main factors that increase the swarming tendency of bees.[86] They are:

  • The genetics of bees; that is, how strong is the swarming instinct
  • Congestion of the brood nest
  • Insufficient empty combs for ripening nectar and storing honey
  • Inadequate ventilation
  • Having an old queen
  • Warming weather conditions.

Demuth attributed some of his comments to Snelgrove.[87]

Some beekeepers may monitor their colonies carefully in spring and watch for the appearance of queen cells, which are a dramatic signal that the colony is determined to swarm.[85]

This swarm looks for shelter. A beekeeper may capture it and introduce it into a new hive, helping meet this need. Otherwise, it reverts to a feral state, in which case it finds shelter in a hollow tree, excavation, abandoned chimney, or even behind shutters.[85]

A small after-swarm has less chance of survival and may threaten the original hive's survival if the number of individuals left is unsustainable. When a hive swarms despite the beekeeper's preventative efforts, a good management practice is to give the reduced hive a couple frames of open brood with eggs. This helps replenish the hive more quickly and gives a second opportunity to raise a queen if there is a mating failure.[85]

Each sub-species of honey bee has its own swarming characteristics. Italian bees are very prolific and inclined to swarm; Northern European black bees have a strong tendency to supersede their old queen without swarming. These differences are the result of differing evolutionary pressures in the regions where each sub-species evolved.[85]

Artificial swarming

When a colony accidentally loses its queen, it is said to be "queenless".[88] The workers realize that the queen is absent after as little as an hour, as her pheromones fade in the hive. Instinctively, the workers select cells containing eggs aged less than three days and enlarge these cells dramatically to form "emergency queen cells". These appear similar to large peanut-like structures about an inch long that hang from the center or side of the brood combs. The developing larva in a queen cell is fed differently from an ordinary worker-bee; in addition to the normal honey and pollen, she receives a great deal of royal jelly, a special food secreted by young "nurse bees" from the hypopharyngeal gland.[89] This special food dramatically alters the growth and development of the larva so that, after metamorphosis and pupation, it emerges from the cell as a queen bee. The queen is the only bee in a colony which has fully developed ovaries, and she secretes a pheromone which suppresses the normal development of ovaries in all her workers.[90]

Beekeepers use the ability of the bees to produce new queens to increase their colonies in a procedure called splitting a colony.[91] To do this, they remove several brood combs from a healthy hive, taking care to leave the old queen behind. These combs must contain eggs or larvae less than three days old and be covered by young nurse bees, which care for the brood and keep it warm. These brood combs and attendant nurse bees are then placed into a small "nucleus hive" with other combs containing honey and pollen. As soon as the nurse bees find themselves in this new hive and realize they have no queen, they set about constructing emergency queen cells using the eggs or larvae they have in the combs with them.[85]

Losses

Diseases

The common agents of disease that affect adult honey bees include fungi, bacteria, protozoa, viruses, parasites, and poisons. The gross symptoms displayed by affected adult bees are very similar, whatever the cause, making it difficult for the apiarist to ascertain the causes of problems without microscopic identification of microorganisms or chemical analysis of poisons.[92] Since 2006, colony losses from colony collapse disorder have been increasing across the world although the causes of the syndrome are, as yet, unknown.[93][94] In the US, commercial beekeepers have been increasing the number of hives to deal with higher rates of attrition.[95]

Parasites

Nosema apis is a microsporidian which causes the most common and widespread disease of the adult honey bee, nosemosis, also called nosema.[96]

Galleria mellonella and Achroia grisella "wax moth" larvae that hatch, tunnel through, and destroy comb that contains bee larvae and their honey stores. The tunnels they create are lined with silk, which entangles and starves emerging bees. Destruction of honeycombs also results in honey leaking and being wasted. A healthy hive can manage wax moths, but weak colonies, unoccupied hives, and stored frames can be decimated.[97]

Small hive beetle (Aethina tumida) is native to Africa but has now spread to most continents. It is a serious pest among honey bees unadapted to it.[98]

Varroa destructor, the Varroa mite, is an established pest of two species of honey bee through many parts of the world, and is blamed by many researchers as a leading cause of CCD.[99]

Tropilaelaps mites, of which there are four species, are native to Apis dorsata, Apis laboriosa, and Apis breviligula, but spread to Apis mellifera after they were introduced to Asia.[100]

Acarapis woodi, the tracheal mite, infests the trachea of honey bees.[101]

Predators

Most predators prefer not to eat honeybees due to their unpleasant sting, but they still have some predators. These include large animals such as skunks or bears, which are after the honey and brood in the nest as well as the adult bees themselves.[102] Some birds will also eat bees (for example, bee-eaters, which are named for their bee-centric diet), as do some robber flies, such as Mallophora ruficauda, which is a pest of apiculture in South America due to its habit of eating workers while they are foraging in meadows.[103]

World apiculture

According to U.N. FAO data,[104] the world's beehive stock rose from around 50 million in 1961 to around 83 million in 2014, which comes to about 1.3% average annual growth. Average annual growth has accelerated to 1.9% since 2009.

World's stock of beehives from 1961 to 2014
World honey production and consumption in 2005
CountryProduction (1000 metric tons)Consumption (1000 metric tons)Number of beekeepersNumber of bee hives
Europe and Russia
Ukraine (*2019) *69.94 52
Russia (*2019) 63.53 54
Spain 37.00 40
Germany (*2008) 21.23 89 90,000* 1,000,000*
Hungary 19.71 4
Romania 19.20 10
Greece 16.27 16
France 15.45 30
Bulgaria 11.22 2
Serbia 3 to 5 6.3 30,000 430,000
Denmark (*1996) 2.5 5 *4,000 *150,000
North America
United States (*2006, **2002, ***2019) ***71.18 158.75* 12,029** (210,000 bee keepers) ***2,812,000
Canada 45 (2006); 28 (2007)[105] 80.35(2019) 29 13,000 500,000
Latin America
Argentina (*2019) 93.42 (Average 84)[106] 3 *2984290
Mexico (*2019) *61.99 31 *2157870
Brazil 33.75 2
Uruguay 11.87 1
Oceania
Australia 18.46 16 12,000 520,000[107]
New Zealand 9.69 8 2602 313,399
Asia
China (*2019) *444.1 238 7,200,000[106]
Turkey (*2019) *109.33 66 4,500,000[106][108]
Iran (*2019) *75.46 3,500,000[106]
India 52.23 45 9,800,000[106]
South Korea 23.82 27
Vietnam 13.59 0
Turkmenistan 10.46 10
Africa
Ethiopia 41.23 40 4,400,000
Tanzania 28.68 28
Angola 23.77 23
Kenya 22.00 21
Egypt (*1997) 16* 200,000* 2,000,000*
Central African Republic 14.23 14
Morocco 4.5 27,000 400,000
South Africa (*2008) ≈2.5*[109] ≈1.5*[109] ≈1,790*[109] ≈92,000*[109]
Source: Food and Agriculture Organization of the United Nations[110]
2019 data[111][112]
Sources:
  • Denmark: beekeeping.com[113] (1996)
  • Arab countries: beekeeping.com[114] (1997)
  • US: University of Arkansas National Agricultural Law Center,[115] Agricultural Marketing Resource Center[116]
  • Serbia[117]

Gallery: Harvesting honey

See also

  • Africanized bee
  • Bee (mythology)
  • Bee removal
  • Biosecurity
  • Castoreum, a product used by medieval beekeepers to increase honey production
  • List of crop plants pollinated by bees
  • More Than Honey - a 2012 Swiss documentary film on honey bees and beekeeping
  • Tetragonula carbonaria - a bee kept for honey that is not related to the Honey bee
  • Western honey bee life cycle

References

  1. "What's the Oldest Honey Ever Found?". 28 January 2022.
  2. Tanguy, Marion (23 June 2010). "Can cities save our bees? - Marion Tanguy" via www.theguardian.com.
  3. Traynor, Kirsten. "Ancient Cave Painting Man of Bicorp". MD Bee. Archived from the original on 2019-10-20. Retrieved 2008-03-12.
  4. Dams, M.; Dams, L. (21 July 1977). "Spanish Rock Art Depicting Honey Gathering During the Mesolithic". Nature. 268 (5617): 228–230. Bibcode:1977Natur.268..228D. doi:10.1038/268228a0. S2CID 4177275.
  5. Roffet-Salque, Mélanie; et al. (14 June 2016). "Widespread exploitation of the honeybee by early Neolithic farmers". Nature. 534 (7607): 226–227. doi:10.1038/nature18451. PMID 26560301.
  6. Crane, Eva (1999). The world history of beekeeping and honey hunting. London: Duckworth. ISBN 9780715628270.
  7. "Ancient Egypt: Bee-keeping". Reshafim.org.il. 2003-04-06. Archived from the original on 2016-03-09. Retrieved 2016-03-12.
  8. Bodenheimer, F. S. (1960). Animal and Man in Bible Lands. Brill Archive. p. 79.
  9. Dalley, S. (2002). Mari and Karana: Two Old Babylonian Cities (2 ed.). Gorgias Press LLC. p. 203. ISBN 978-1-931956-02-4.
  10. "Oldest known archaeological example of beekeeping discovered in Israel". Thaindian.com. 2008-09-01. Archived from the original on 2015-11-17. Retrieved 2016-03-12.
  11. Mazar, Amihai and Panitz-Cohen, Nava, (December 2007) It Is the Land of Honey: Beekeeping at Tel Rehov Near Eastern Archaeology, Volume 70, Number 4, ISSN 1094-2076
  12. Friedman, Matti (September 4, 2007), "Israeli archaeologists find 3,000-year-old beehives" Archived 2022-01-19 at the Wayback Machine in USA Today, Retrieved 2010-01-04
  13. Crane, Eva The World History of Beekeeping and Honey Hunting, Routledge 1999, ISBN 978-0-415-92467-2, 720 pp.
  14. Haralampos V. Harissis; Anastasios V. Harissis (2009). Apiculture in the Prehistoric Aegean. Minoan and Mycenaean Symbols Revisited. Oxford, England: British Archaeological Reports. ISBN 9781407304540. Archived from the original on 2022-01-19. Retrieved 2016-03-12.
  15. Islam, M. R.; Islam, Jaan S.; Zatzman, Gary M.; Rahman, M. Safiur; Mughal, M. A. H. (2015-12-03). The Greening of Pharmaceutical Engineering, Practice, Analysis, and Methodology. John Wiley & Sons. ISBN 978-1-119-18421-8.
  16. Chantawannakul, Panuwan; Williams, Geoffrey; Neumann, Peter (2018). Asian Beekeeping in the 21st Century. Springer. ISBN 978-981-10-8222-1.
  17. Meier, Kristin; Peyrot, Michaël (2017). "The Word for "Honey" in Chinese, Tocharian and Sino-Vietnamese". Zeitschrift der Deutschen Morgenländischen Gesellschaft. 167 (1): 7–22. doi:10.13173/zeitdeutmorggese.167.1.0007. ISSN 0341-0137. JSTOR 10.13173/zeitdeutmorggese.167.1.0007.
  18. Kent, Robert B. (1984). "Mesoamerican Stingless Beekeeping". Journal of Cultural Geography. 4 (2): 14–28. doi:10.1080/08873638409478571. ISSN 0887-3631. Archived from the original on 2022-01-19. Retrieved 2021-03-29.
  19. Crane, E. (1998). Amerindian honey hunting and hive beekeeping. Acta Americana, 6(1), 5-18
  20. Quezada-Euán, José Javier G.; May-Itzá, William de Jesús; González-Acereto, Jorge A. (2001-01-01). "Meliponiculture in Mexico: problems and perspective for development". Bee World. 82 (4): 160–167. doi:10.1080/0005772X.2001.11099523. ISSN 0005-772X. S2CID 85263563.
  21. Halcroft, Megan T.; et al. (2013). "The Australian Stingless Bee Industry: A Follow-up Survey, One Decade on". Journal of Apicultural Research. 52 (2): 1–7. doi:10.3896/ibra.1.52.2.01. S2CID 86326633.
  22. Reuber, Brant (2015). 21st Century Homestead: Beekeeping. Lulu.com. p. 26. ISBN 978-1-312-93733-8.
  23. François Huber (1814). Nouvelles observations sur les abeilles. Chez J. J. Paschoud, ... et a Geneve. Retrieved 27 March 2014.
  24. Wolf, C. W. (2021). Apis Mellifica – Or, The Poison Of The Honey-Bee. Read Books Ltd. ISBN 978-1-5287-6221-2.
  25. van Veen, J. W. (2014). Gupta, Rakesh K.; Reybroeck, Wim; van Veen, Johan W.; Gupta, Anuradha (eds.). Beekeeping for Poverty Alleviation and Livelihood Security. Vol. 1 Ch 12. London: Springer. pp. 350–1. ISBN 978-94-017-9199-1.
  26. Crane, Eva. The World History of Beekeeping and Honey Hunting. pp. 395–396, 414.
  27. Harissis (Χαρίσης), Haralampos (Χαράλαμπος); Mavrofridis, Georgios (2012). "A 17th Century Testimony On The Use Of Ceramic Top-bar Hives. 2012 | Haralampos (Χαράλαμπος) Harissis (Χαρίσης) and Georgios Mavrofridis". Bee World. 89 (3): 56–58. doi:10.1080/0005772X.2012.11417481. S2CID 85120138. Archived from the original on 2015-10-19. Retrieved 2016-03-12.
  28. Thomas Wildman, A Treatise on the Management of Bees London, 1768. https://www.google.co.uk/books/edition/A_Treatise_on_the_Management_of_Bees/CCZAAAAAcAAJ Chapter V. Of the Methods practised for taking the Wax and Honey, without destroying the Bees. pp 93-109 accessed 17 March 2022.
  29. Thomas Wildman, A Treatise on the Management of Bees London, 1768. https://www.google.co.uk/books/edition/A_Treatise_on_the_Management_of_Bees/CCZAAAAAcAAJ accessed 17 March 2022. Chapter II Of the Management of Bees in Hives and Boxes. pp 79-86.
  30. Kritsky, Gene (2010). The Quest for the Perfect Hive: A History of Innovation in Bee Culture. New York: Oxford University Press.
  31. Nelson, Eric V. (August 1967). Agriculture Handbook No. 335. Washington, D.C.: United States Department of Agriculture. pp. 2, 27.
  32. Dave Cushman http://www.dave-cushman.net/bee/bsp.html
  33. Journal of Biology, Agriculture and Healthcare. Determination of Bee Space and Cell Dimensions for Jimma Zone Honeybee Eco-Races (Apis malifera), Southwest Ethiopian. Abera Hailu, Kassa Biratu. Ethiopian Institute of Agricultural Research (EIAR). Jimma Research Center P.O. Box 192 Jimma Ethiopia. ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol. 6 no. 9 2016. https://www.academia.edu/26826420/Determination_of_Bee_Space_and_Cell_Dimensions_for_Jimma_Zone_Honeybee_Eco_Races_Apis_malifera_Southwest_Ethiopian accessed 20 March 2022
  34. Reuber, Brant (2015). 21st Century Homestead: Beekeeping. Lulu.com. p. 27. ISBN 978-1-312-93733-8.
  35. Reuber, Brant (2015). 21st Century Homestead: Beekeeping. Lulu.com. p. 28. ISBN 978-1-312-93733-8.
  36. Hassall, Craig (12 September 2017). "Flow Hive: Cedar and Stuart Anderson talk about life one year after crowdfunding success". Australian Broadcasting Corporation. ABC Online. Archived from the original on 2019-04-04. Retrieved 2019-03-13.
  37. "2 Hryvni, Ukraine". en.numista.com.
  38. Dave Cushman. "History of British Standards in Beekeeping". dave-cushman.net. Archived from the original on 2013-04-05. Retrieved 2013-04-11.
  39. Cincinnati Historical Society; Cincinnati Museum Center; Filson Historical Society (2005). Ohio Valley history. The journal of the Cincinnati Historical Society. Vol. 5–6. Cincinnati Museum Center. p. 96.
  40. Koutchoumoff, Lisbeth (November 16, 2018). "L'étonnante Histoire du Genevois François Huber, apiculteur aveugle et visionnaire". Le Temps.
  41. Root, Amos Ives (1891). The ABC of Bee Culture: A Cyclopaedia of Everything Pertaining to the Care of the Honey-bee ...
  42. Bee Culture. Moses Quinby – http://www.beeculture.com/moses-quinby/ Archived 2018-05-26 at the Wayback Machine
  43. Thermal Beekeeping: Look Inside a Burning Bee Smoker - https://americanbeejournal.com/thermal-beekeeping-look-inside-a-burning-bee-smoker/ Archived 2021-01-22 at the Wayback Machine
  44. "Some Giants in Beekeeping". Archived 2006-09-03 at the Wayback Machine Gobeekeeping.com. Retrieved February 22, 2013
  45. Crawford, David L. (1916). "Albert John Cook, DSC". Journal of Entomology and Zoology. Pomona College Dept. of Zoology. 8 (4): 169–170.
  46. "Bees as business: UMass Amherst, Du Bois Library, SCUA". Archived from the original on 2012-10-14. Retrieved 2007-08-30.
  47. "Birth of American Bee Culture: A Look at Advertisements in A.J. Cook's The Bee Keepers' Guide". St Andrews Rare Books. 26 May 2016. Archived from the original on 30 May 2018. Retrieved 29 May 2018. ... a honey extractor. This machine, invented by Major Francesco De Hruschka in 1865, used centrifugal force to dislodge honey from the combs and collected it into a vat. The extractor, combined with Langstroth's movable comb hive, greatly improved the efficiency of honey harvesting.
  48. Moffett, Joseph O. (1979). Beekeepers and Associates. p. 69.
  49. "Brother Adam – English Page". perso.unamur.be.
  50. "Movable frame hives". startbeekeeping.net. 5 April 2009. Archived from the original on 16 November 2016. Retrieved 1 May 2009.
  51. Crane, Eva. The world history of beekeeping and honey hunting, New York : Routledge, 1999. OCLC 41049690
  52. Advice for New Beekeepers UK National Bee Unit. 02/03/2020 http://www.nationalbeeunit.com/index.cfm?pageid=209 accessed 6.6.2020
  53. Fedor Lazutin. Keeping bees with a smile. Principles and practice of natural beekeeping. p 321. New Society Publishers. April 2020.
  54. Michael Bush. The Practical Beekeeper. p.551. xstarpublishing.com. 2004. ISBN 978-161476-064-1
  55. Top Bar Hives, warts and all. January 4, 2020. Paul. https://oxnatbees.wordpress.com/2020/01/04/top-bar-hives-warts-and-all/ This article first appeared in BBKA News, January 2020.
  56. Graham, Joe M., ed. (1992). The Hive and the honey bee: a new book on beekeeping which continues the tradition of "Langstroth on the hive and the honeybee" (Rev. ed.). Hamilton, IL: Dadant. ISBN 0-915698-09-9. OCLC 27344331.
  57. "What Do Bees See? And How Do We Know?". NC State News. 27 July 2011. Archived from the original on 2020-04-01. Retrieved 2020-04-17.
  58. Murphy, Cheryl. "Well, I'll BEE...Bees see UV". Scientific American Blog Network. Archived from the original on 2020-01-13. Retrieved 2020-04-17.
  59. Newton, David Comstock (March 1967). Behavioral Response of Honey Bees (Apis Mellifera L., Hymenoptera: Apidae) to Colony Disturbance by Smoke, Acetic Acid, Isopentyl Acetate, Light, Temperature and Vibration (Ph.D. thesis). Champaign, IL: University of Illinois. p. 3. Document No. 302256408ProQuest 302256408.
  60. The Barefoot Beekeeper. Philip Chandler 2015 ISBN 9781326192259
  61. Robinson, Gene E.; Visscher, P. Kirk (December 1984). "Effect of Low Temperature Narcosis on Honey Bee (Hymenoptera: Apidae) Foraging Behavior". The Florida Entomologist. 67 (4): 568. doi:10.2307/3494466. JSTOR 3494466.
  62. HELD, W.; STUCKI, M.; HEUSSER, C.; BLASER, K. (February 1989). "Production of Human Antibodies to Bee Venom Phospholipase A2 in Vitro". Scandinavian Journal of Immunology. 29 (2): 203–209. doi:10.1111/j.1365-3083.1989.tb01117.x. PMID 2922572. S2CID 40844101.
  63. Mayo Clinic Staff. "Bee Stings-Treatments and Drugs". Mayo Clinic. Archived from the original on 12 April 2016. Retrieved 3 April 2016.
  64. Southwick, Edward E.; Heldmaier, Gerhard (1987). "Temperature Control in Honey Bee Colonies". BioScience. American Institute of Biological Sciences. 37 (6): 395–399. doi:10.2307/1310562. JSTOR 1310562.
  65. Gates, S.B.N. (1914). "The temperature of the bee colony". Bull. No. 96. USDA. pp. 1–19.
  66. Southwick, Edward E.; Moritz, R.F.A. (1987). "Social control of air ventilation in colonies of honey bees, Apis mellifera". Journal of Insect Physiology. 33 (9): 623–626. doi:10.1016/0022-1910(87)90130-2.
  67. Jarimi, Hasila; Tapia-Brito, Emmanuel; Riffat, Saffa (2020). "A Review on Thermoregulation Techniques in Honey Bees (Apis Mellifera) Beehive Microclimate and Its Similarities to the Heating and Cooling Management in Buildings". Future Cities and Environment. 6 (7): 4–5. doi:10.5334/fce.81. S2CID 225427905.
  68. Root, A.I. (1978). ABC and XYZ of Bee Culture. Medina, Ohio: A.I. Root Company. pp. 682, 683.
  69. Todorka, L.; Lyuben, L.; Ivanka, M.; Gergana, M.; Krasimira, T. (2020). "Thermal conductivity of the ceramic beehive". Machines Technologies Materials. 14 (2): 90–92.
  70. The National Cyclopaedia of Useful Knowledge. Vol. I. London: Charles Knight. 1847. p. 894.
  71. Jennifer Oldham. "Will Putting Honey Bees on Public Lands Threaten Native Bees?". e360.yale.edu. Yale School of the Environment. Archived from the original on 20 October 2021. Retrieved 23 September 2021.
  72. "Natural Beekeeping date". Archived from the original on 2020-11-27. Retrieved 2020-07-30.
  73. Chandler, Philip (2007). The Barefoot Beekeeper. Lulu. p. 111. ISBN 978-1-4092-7114-7. Archived from the original on 2022-01-17. Retrieved 2022-01-20.
  74. "Beekeeping with the Warré hive – Home". Warre.biobees.com. Archived from the original on 2016-03-17. Retrieved 2016-03-12.
  75. Tanguy, Marion (2010-06-23). "Can cities save our bees?". The Guardian. Archived from the original on 2017-02-25. Retrieved 2016-12-11.
  76. Goodman Kurtz, Chaya (2010-06-03). "Bee-Friendly Landscaping". Networx. Archived from the original on 2012-08-06. Retrieved 2012-08-12.
  77. "Wintering Techniques". Archived from the original on 2016-09-24. Retrieved 2016-10-24.
  78. "Synthetic Apiary – Biologically augmented digital fabrication". CreativeApplications.Net. Archived from the original on 2016-10-07. Retrieved 2016-10-06.
  79. "MIT's Mediated Matter Group Builds a Synthetic Apiary to Help Save Bees". Architect Magazine. 2016-10-17. Archived from the original on 2016-10-25. Retrieved 2016-10-24.
  80. Amiri, Esmaeil; Strand, Micheline; Rueppell, Olav; Tarpy, David (2017-05-08). "Queen Quality and the Impact of Honey Bee Diseases on Queen Health: Potential for Interactions between Two Major Threats to Colony Health". Insects. 8 (2): 48. doi:10.3390/insects8020048. ISSN 2075-4450. PMC 5492062. PMID 28481294.
  81. "Queen Bees Control Sex of Young After All". Science. Archived from the original on 2022-01-21. Retrieved 2022-01-21.
  82. Connor, Larry. "Queen Bee 101: Biology and Behavior of Queen Bees". Bee Culture. 138.7(2010): 48 via Print.
  83. "An Introduction to Queen Honey Bee Development". Penn State Extension. Retrieved 2022-01-21.
  84. Rinderer, Thomas E. (2013-09-03). Bee Genetics and Breeding. Academic Press. ISBN 978-1-4832-7003-6.
  85. Root, A.I. (1978). ABC and XYZ of Bee Culture. Medina, Ohio: A. I. Root Company. pp. 610–611.
  86. Snelgrove, L.E. (1935). Swarming, its Control and Prevention. Bleadon, England: Snelgrove & Smith.
  87. Hepburn, H. Randall; Radloff, Sarah E. (2011-01-04). Honeybees of Asia. Springer Science & Business Media. p. 448. ISBN 978-3-642-16422-4.
  88. Frost, Elizabeth (2016-05-26). Queen Bee Breeding: AgGuide – A Practical Handbook (in Arabic). NSW Agriculture. ISBN 978-1-74256-922-2.
  89. Mucignat-Caretta, Carla (2014-02-14). Neurobiology of Chemical Communication. CRC Press. ISBN 978-1-4665-5341-5.
  90. Kearney, Hilary (2019-04-30). QueenSpotting: Meet the Remarkable Queen Bee and Discover the Drama at the Heart of the Hive; Includes 48 Queenspotting Challenges. Storey Publishing. ISBN 978-1-63586-038-2.
  91. Grout, Roy A., ed. (1949). "Diseases of Adult bees". The hive and the honey bee: a new book on beekeeping which continues the tradition of "Langstroth on the hive and the honeybee". Dadant and Sons. p. 607. Archived from the original on 26 July 2020. Retrieved 21 June 2013.
  92. Johnson, Renee (2010). Honey Bee Colony Collapse Disorder.
  93. Walsh, Bryan (7 May 2013). "Beepocalypse Redux: Honeybees Are Still Dying – and We Still Don't Know Why". Time Science and Space. Time Inc. Archived from the original on 7 June 2013. Retrieved 21 June 2013.
  94. Ingraham, Christopher (2015-07-23). "Call off the bee-pocalypse: U.S. honeybee colonies hit a 20-year high". The Washington Post. ISSN 0190-8286. Archived from the original on 2015-11-30. Retrieved 2015-12-01.
  95. Sulborska, Aneta; Horeca, Beata; Cebrat, Malgorzata; Kowalczyk, Marek; Skrzypek, Tomasz H.; Kazimierczak, Waldemar; Trytek, Mariusz; Borsuk, Grzegorz (2019). "Microsporidia Nosema spp. – obligate bee parasites are transmitted by air". Scientific Reports. 9 (1): 14376. Bibcode:2019NatSR...914376S. doi:10.1038/s41598-019-50974-8. PMC 6779873. PMID 31591451. Retrieved 7 October 2019.
  96. Kwadha, Charles A.; Ong'amo, George O.; Ndegwa, Paul N.; Raina, Suresh K.; Fombong, Ayuka T. (2017-06-09). "The Biology and Control of the Greater Wax Moth, Galleria mellonella". Insects. 8 (2): 61. doi:10.3390/insects8020061. PMC 5492075. PMID 28598383.
  97. Hood, Michael (2004). "The small hive beetle, Aethina tumida: a review" (PDF). Bee World. 85 (3): 51–59. doi:10.1080/0005772X.2004.11099624. S2CID 83632463. Archived from the original (PDF) on 20 May 2014.
  98. Oliver, Randy (2017-01-30). "The Varroa Problem: Part 1 @ Scientific Beekeeping". scientificbeekeeping.com. Archived from the original on 2018-08-14. Retrieved 14 August 2018.
  99. Anderson, Denis; Roberts, John (2013), Standard methods for Tropilaelaps mites research
  100. ""Tracheal mites" Tarsonemidae". Agricultural Research Service, United States Department of Agriculture. February 18, 2005. Archived from the original on May 17, 2011. Retrieved March 10, 2011.
  101. "What are some predators of the honeybee?". sciencing.com. Archived from the original on 2020-07-26. Retrieved 2019-11-19.
  102. Castelo, Marcela K; Lazzari, Claudio R (2004-04-01). "Host-seeking behavior in larvae of the robber fly Mallophora ruficauda (Diptera: Asilidae)". Journal of Insect Physiology. 50 (4): 331–336. doi:10.1016/j.jinsphys.2004.02.002. ISSN 0022-1910. PMID 15081826.
  103. "FAOSTAT". www.fao.org. Retrieved 2022-01-26.
  104. "ARCHIVED – PDF document" (PDF). Statcan.gc.ca. 2010-05-17. Archived (PDF) from the original on 2022-01-19. Retrieved 2016-03-12.
  105. "Economic aspects of beekeeping production in Croatia" (PDF). Veterinarski Arhiv. 79: 397–408. 2009. Archived (PDF) from the original on 2011-07-21. Retrieved 2016-03-12.
  106. Bee Aware website Industry Archived 2016-05-14 at the Wayback Machine Retrieved May 13, 2016
  107. "The prospects for beekeeping in the expanded EU" (PDF). Archived from the original (PDF) on 2005-12-18.
  108. Conradie, Beatrice & Nortjé, Bronwyn (July 2008). "SURVEY OF BEEKEEPING IN SOUTH AFRICA" (PDF). Centre for Social Science Research. Archived from the original (PDF) on December 2, 2012. Retrieved January 23, 2012.
  109. "FAOSTAT". Archived from the original on 2007-03-10.
  110. "Beehive numbers by leading countries worldwide 2019". Statista. Archived from the original on 2021-02-03. Retrieved 2021-03-29.
  111. "Global leading producers of honey worldwide 2019". Statista. Archived from the original on 2021-03-06. Retrieved 2021-03-29.
  112. "Apiservices – Beekeeping – Apiculture – Denmark/Danemark". Beekeeping.com. Archived from the original on 2016-03-17. Retrieved 2016-03-12.
  113. "The Future of Bees and Honey Production in Arab Countries". Beekeeping.com. Archived from the original on 2016-03-04. Retrieved 2016-03-12.
  114. "Farm Commodity Programs: Honey" (PDF). nationalaglawcenter.org. National Honey Board. 2002. Archived (PDF) from the original on 27 September 2013. Retrieved 27 March 2014.
  115. "Bees". Archived from the original on 2006-10-06.
  116. Šljivić, Miljko. "Beekeeping in Serbia". Pcela.rs. Archived from the original on 2016-03-03. Retrieved 2016-03-12.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.