Extensión simple

En la teoría de cuerpos (una rama del álgebra), una extensión simple es una extensión de cuerpos de manera que L está generado por un solo elemento, al cual se lo denomina elemento primitivo. Dicho de otro modo, un elemento primitivo de una extensión de cuerpos L/K es un elemento ζ de L tal que

L = K(ζ),

o en otras palabras, L está generado por ζ sobre K. Esto significa que todo elemento de L puede ser escrito como cociente de dos polinomios en ζ con coeficientes en K.

Si la extensión L/K es simple (es decir, si admite un elemento primitivo), entonces L puede ser una extensión finita de K (caso en el que ζ es un elemento algebraico de L sobre K), o en cambio L es isomorfo al cuerpo de funciones racionales sobre K en una indeterminada (en este caso ζ es un elemento trascendente de L sobre K).

Construcción

Sean y dos cuerpos de manera que es extensión de . Se define la extensión generada por sobre como el conjunto

.

Así es exactamente el conjunto de los valores que se obtienen al evaluar en todas las funciones racionales definidas en .

Propiedades

  • es un subconjunto de :
Todo elemento de está también en , y como , si entonces . Si entonces es , y si , existe . Así pues, y es .
  • De hecho, es subcuerpo de .
Definimos las operaciones suma y producto en como las restricciones a de las operaciones del cuerpo de cocientes de , i.e., si , entonces:
.
Por ser un anillo y un cuerpo, es sencillo demostrar que la suma y el producto así definidos en son operaciones internas en .
Como es cuerpo, en particular es dominio de integridad, y por la Propiedad Universal del Cuerpo de Cocientes de un Dominio Íntegro, el cuerpo de cocientes de es (el menor cuerpo que contiene a es el propio ). Así se demuestra que , con las operaciones así definidas, es subcuerpo de .
  • es un subconjunto de
Para comprobar que , basta con tomar el cociente para cada (donde identificamos con el polinomio constante ). Además, como las operaciones en son las extensiones de las operaciones en , es inmediato que es subcuerpo de .
Tomando el polinomio , entonces es , luego .
Todo esto demuestra que es una extensión de y subcuerpo de .
  • Finalmente, es la menor extensión de que contiene a :
Sea ahora una extensión de de forma que . Como y , si , entonces , y como , entonces . Por último, como es cuerpo, si , entonces existe y , luego .
Queda entonces demostrado que es la menor extensión de que contiene a . A este proceso se le denomina a veces adjunción de un elemento a un cuerpo .

Observaciones

Una extensión simple puede ser algebraica o trascendente, dependiendo de si es un elemento algebraico o trascendente sobre . Si es trascendente, entonces el grado de la extensión es infinito. Si es algebraico, entonces el grado de la extensión es finito. En concreto, , siendo el polinomio mónico irreducible de sobre . Se deduce que toda extensión simple que sea algebraica es de grado finito.

Recíprocamente, si la extensión L/K admite un elemento primitivo, entonces L puede ser una extensión finita de K, caso en el que ζ es un elemento algebraico de L sobre K, o en cambio L es isomorfo al cuerpo de funciones racionales sobre K en una indeterminada, en este caso ζ es un elemento trascendente de L sobre K.

Teorema del elemento primitivo

El teorema del elemento primitivo responde a la pregunta de qué extensiones finitas de cuerpos tienen elementos primitivos, es decir, son simples. Por ejemplo, no es obvio que si se junta al cuerpo Q de números racionales las raíces de los siguientes polinomios

X2 − 2

y

X2 − 3,

llamadas α y β respectivamente, para obtener un cuerpo K = Q(α, β) de grado 4 sobre Q, donde K es Q(γ) para un elemento primitivo γ. De hecho, se puede ver que

γ = α + β

Las potencias de γi para 0 ≤ i ≤ 3 pueden ser expresadas como combinación lineal de 1, α, β y αβ a coeficientes enteros. Tomando dichas igualdades como un sistema lineal de ecuaciones, se puede resolver para α y β sobre Q(γ), la cual cosa implica que dicha elección de γ es en realidad un elemento primitivo en este ejemplo.

Enunciado

En general, el teorema del elemento primitivo se enuncia de la siguiente forma:

La extensión de cuerpo L/K es finita y tiene un elemento primitivo si y solo si hay un número finito de subextensiones de cuerpos F con KFL.

Consecuencias

Un importante corolario de dicho teorema afirma:

Toda extensión separable finita L/K tiene un elemento primitivo.

Dicho corolario es aplicable al ejemplo expuesto más arriba (y a muchos similares), ya que Q tiene característica 0 por lo que toda extensión finita sobre Q es separable.

Para extensiones inseparables (o no separables), se puede afirmar lo siguiente:

Si el grado de la extensión [L:K] es un número primo, entonces L/K tiene un elemento primitivo.

Si el grado de la extensión no es un número primo y la extensión no es separable, se pueden encontrar contraejemplos. Por ejemplo, si K es Fp(T,U), el cuerpo de las funciones racionales con dos indeterminadas T y U sobre el cuerpo finito con p elementos, y L se obtiene a partir de K adjuntando una raíz pesima de T, y de U, entonces no existe ningún elemento primitivo de L sobre K. De hecho se puede ver que para cualquier α en L, el elemento αp pertenece a K. Además tenemos que [L:K] = p2 pero no existen elementos de L con grado p2 sobre K, como un elemento primitivo debería tener.

Véase también

Enlaces externos

Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.