Extensión HNN

En matemáticas se llama extensión HNN a una construcción en el área de teoría de grupos. La teoría de extensiones HNN es fundamental en el estudio combinatorio y geométrico de grupos.[1] Las extensiones HNN junto a los productos amalgamados forman la base de la teoría de Bass-Serre.

Fueron introducidos por Graham Higman, Bernhard Neumann y Hanna Neumann en 1949 en el artículo Embedding Theorems for Groups.[2] En este artículo también se prueban otros resultados interesantes relativos a grupos.

Definición

Una extensión HNN de un grupo G es la inmersión de dicho grupo en otro grupo H de forma que dos subgrupos isomorfos K y J de G son conjugados (por un isomorfismo dado previamente) en H.

Si tiene la presentación y es un isomorfismo entre dos subgrupos de entonces la extensión HNN de respecto de (que se nota ) tiene la siguiente presentación:

Dado que el grupo contiene los generadores y las relaciones de , resulta clara la existencia de un morfismo de en , lo que prueban Higman, Neumann y Neumann en su artículo es que dicho morfismo es inyectivo.

Una consecuencia directa de este resultado es que cualquier isomorfismo entre dos subgrupos de un grupo G puede verse en una extensión H del mismo como un isomorfismo interno (o sea que ambos subgrupos resultan conjugados en H).

El lema de Britton, probado en 1963 en "The word problem"[3] da una forma de identificar los elementos de una extensión HNN que no son la identidad.

Cualquier elemento puede escribirse como:

Lema de Britton Sea w tal que

  • n = 0 y g0 ≠ 1 ∈ G, o
  • n > 0 y en w no aparecen subpalabras de la forma tjt−1, con jJ y de la forma t−1kt con kK,

entonces w ≠ 1 ∈ Gα.

Referencias

  1. Stillwell, John (1993). Classical topology and combinatorial group theory. Springer - Verlag.
  2. Higman, Graham; B. H. Neumann, Hanna Neumann (1949). «Embedding Theorems for Groups» (PDF). Journal of the London Mathematical Society. s1-24 (4): 247-254. doi:10.1112/jlms/s1-24.4.247. Consultado el 18 de junio de 2013.
  3. http://www.jstor.org/discover/10.2307/1970200?uid=3739264&uid=2&uid=4&sid=21102338715291

Enlaces externos

Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.