Extensión HNN
En matemáticas se llama extensión HNN a una construcción en el área de teoría de grupos. La teoría de extensiones HNN es fundamental en el estudio combinatorio y geométrico de grupos.[1] Las extensiones HNN junto a los productos amalgamados forman la base de la teoría de Bass-Serre.
Fueron introducidos por Graham Higman, Bernhard Neumann y Hanna Neumann en 1949 en el artículo Embedding Theorems for Groups.[2] En este artículo también se prueban otros resultados interesantes relativos a grupos.
Definición
Una extensión HNN de un grupo G es la inmersión de dicho grupo en otro grupo H de forma que dos subgrupos isomorfos K y J de G son conjugados (por un isomorfismo dado previamente) en H.
Si tiene la presentación y es un isomorfismo entre dos subgrupos de entonces la extensión HNN de respecto de (que se nota ) tiene la siguiente presentación:
Dado que el grupo contiene los generadores y las relaciones de , resulta clara la existencia de un morfismo de en , lo que prueban Higman, Neumann y Neumann en su artículo es que dicho morfismo es inyectivo.
Una consecuencia directa de este resultado es que cualquier isomorfismo entre dos subgrupos de un grupo G puede verse en una extensión H del mismo como un isomorfismo interno (o sea que ambos subgrupos resultan conjugados en H).
El lema de Britton, probado en 1963 en "The word problem"[3] da una forma de identificar los elementos de una extensión HNN que no son la identidad.
Cualquier elemento puede escribirse como:
Lema de Britton Sea w tal que
- n = 0 y g0 ≠ 1 ∈ G, o
- n > 0 y en w no aparecen subpalabras de la forma tjt−1, con j ∈ J y de la forma t−1kt con k ∈ K,
entonces w ≠ 1 ∈ G∗α.
Referencias
- Stillwell, John (1993). Classical topology and combinatorial group theory. Springer - Verlag.
- Higman, Graham; B. H. Neumann, Hanna Neumann (1949). «Embedding Theorems for Groups» (PDF). Journal of the London Mathematical Society. s1-24 (4): 247-254. doi:10.1112/jlms/s1-24.4.247. Consultado el 18 de junio de 2013.
- http://www.jstor.org/discover/10.2307/1970200?uid=3739264&uid=2&uid=4&sid=21102338715291