Helicasa
La helicasa es una enzima vital en los seres vivos ya que participa en los procesos de duplicación y reproducción celular de este, transcripción, recombinación y reparación del ADN, y de biogénesis de ribosoma. Su misión es romper los puentes de hidrógeno que unen las bases nitrogenadas, haciendo así posible que otras enzimas puedan copiar la secuencia del ADN.
Helicasa | ||||
---|---|---|---|---|
Estructuras disponibles | ||||
PDB | ||||
Identificadores | ||||
Identificadores externos |
Bases de datos de enzimas
| |||
Número EC | 3.6.4 | |||
Estructura/Función proteica | ||||
Tipo de proteína | Hidrolasa | |||
Funciones | Enzima | |||
Ortólogos | ||||
Especies |
| |||
Ubicación (UCSC) |
| |||
PubMed (Búsqueda) |
| |||
PMC (Búsqueda) |
| |||
Son proteínas que se van desplazando longitudinalmente a lo largo de los enlaces fosfodiéster del ácido nucleico, separando las dos cadenas antiparalelas del ácido nucleico (ya sea ADN bicatenario, ARN bicatenario o un híbrido ADN-ARN) usando para ello la energía que se desprende en la hidrólisis de ATP o GTP. Se mueven a lo largo de la doble cadena con una direccionabilidad y una procesividad específicas de cada enzima particular. Hay muchas helicasas (14 confirmadas en E. coli y 24 en células humanas) como consecuencia de la gran variedad de procesos en los que debe ser catalizada la separación de cadenas de ácido nucleico.
Las helicasas adoptan diferentes estructuras y estados de oligomerización. Mientras que la helicasa tipo AdnB actúa sobre el ADN como hexámeros en forma de rosca, otras enzimas han demostrado ser activas como monómeros o como dímeros. Estudios recientes han demostrado que las helicasas no solo esperan de forma pasiva a la horquilla para abrirla, sino que desempeñan un papel activo obligando a la horquilla a abrirse,[1] por lo que es un motor activo en el desenrollamiento de su sustrato.[2] Las helicasas pueden actuar de una forma mucho más rápida in vivo que in vitro debido a la presencia de una serie de proteínas accesorias que ayudan en la desestabilización de la unión en la horquilla.[2]
Referencias
- Johnson DS, Bai L, Smith BY, Patel SS, Wang MD (2007). «Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped t7 helicase». Cell 129 (7): 1299-309. PMID 17604719. doi:10.1016/j.cell.2007.04.038.
- «Researchers solve mystery of how DNA strands separate». 2007-07-03. Consultado el 5 de julio de 2007.