Menor (álgebra lineal)

En álgebra lineal, un menor o menor complementario de una matriz es el determinante de alguna submatriz, obtenido de mediante la eliminación de una o más de sus filas o columnas. Los menores obtenidos por la eliminación de únicamente una fila y una columna de matrices cuadradas se llaman primeros menores y se necesitan para encontrar la matriz de cofactores, la cual es útil para calcular el determinante y la inversa de matrices cuadradas.

Definición

Sea una matriz de y un entero con , un menor de orden de es el determinante de una matriz obtenida de mediante la eliminación de filas y columnas.

Puesto que hay:

(leído como "m combinaciones de k")

maneras de escoger filas de filas, y hay

maneras de escoger columnas de columnas, hay en total

menores de tamaño .

Notación

El menor (a menudo denotado como ) de una matriz cuadrada de , es definido como el determinante de la matriz formada mediante la eliminación de la -ésima fila y la -ésima columna de . Un menor puede ser referido también como -ésimo menor, o simplemente menor .

puede encontrarse también eliminando los índices correspondientes al elemento aij de la matriz , en cuyo caso decimos que es el menor de

Un menor formado por la eliminación de una única fila y una única columna de una matriz cuadrada (tal como ) es llamado primer menor. Cuando dos filas y dos columnas son eliminada, se le llama segundo menor.[1]

Menores de una matriz

El determinante de cualquier submatriz de de se llama menor de tamaño .

Tomando La submatriz = = es una submatriz principal y su determinante es un menor principal.

En la misma matriz, las submatrices superiores son: ; ; Los determinantes de las submatrices || = 1, || = 3, | = 26 son los menores escalonados superiores.

Las submatrices escalonadas inferiores de A son: ; ; Los determinantes de las submatrices , , son los menores inferiores principales.[2]

Véase también

Referencias

  1. Burnside, William Snow & Panton, Arthur William (1886) Theory of Equations: with an Introduction to the Theory of Binary Algebraic Form.
  2. Horn R.A., Johnson C.R. (2013). Matrix Analysis.

Enlaces externos

Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.