Número de Proth

En teoría de números, un número de Proth es un número de la forma

donde k es impar, n es un entero positivo y 2n > k. Los números de Proth se llaman así en honor al matemático François Proth.[1]

Si un número de Proth es primo, se denomina número primo de Proth. Se puede emplear el teorema de Proth para comprobar la primalidad de un número de Proth dado.

Casos especiales

Ejemplos

Los primeros números de Proth son ((sucesión A080075 en OEIS)):

P0 = 21 + 1 = 3
P1 = 22 + 1 = 5
P2 = 23 + 1 = 9
P3 = 3 × 22 + 1 = 13
P4 = 24 + 1 = 17
P5 = 3 × 23 + 1 = 25
P6 = 25 + 1 = 33

Los primeros números primos de Proth son (A080076):

3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113, 2689, 2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857

Referencias

  1. Sze, Tsz-Wo (2008). «Deterministic Primality Proving on Proth Numbers». .

Véase también

Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.