Problema de Plateau

En matemáticas, el problema de Plateau es mostrar la existencia de una superficie minimal con una frontera dada, un problema planteado por Joseph-Louis Lagrange en 1760. Sin embargo, fue nombrado posteriormente por Joseph Plateau quien experimentó con películas de jabón. El problema es considerado parte del cálculo de variaciones. La existencia y regularidad de los problemas son parte de la teoría geométrica de la medida.

Ejemplo práctico del problema de Plateau con formas creadas con alambre y pompas de jabón.

Planteamiento

La generalización del problema de Plateau formulado consiste en lo siguiente:

Se da una curva cerrada (de Jordan) en el espacio. Hallar la superficie que contiene esta curva y tal que el área abarcada por la curva sea mínima.

Se dan dos puntos y del plano . Sea . Supongamos que es la ecuación de una curva que une los puntos y , es decir,

, .

La curva gira alrededor del eje barriendo cierta superficie de revolución. Se pregunta: ¿cuál es la superficie de rotación que tiene la menor área posible? De este modo se llega al problema de la elección de la función para la que la integral

(área de la superficie de revolución) es mínima. Estas superficies de revolución mínimas, bajo ciertas restricciones adicionales sobre los puntos y , se denominan catenoides.


Enlaces externos

Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.