Algèbre de Gerstenhaber

En mathématiques, une algèbre de Gerstenhaber est une structure algébrique qui généralise en un certain sens les algèbres de Lie et de Poisson. Elle tient son nom de Murray Gerstenhaber qui les a introduites en 1963. Formellement, c'est un espace vectoriel gradué muni de deux lois de degrés différents et de symétries opposées.

Pour les articles homonymes, voir Algèbre (homonymie) et Gerstenhaber.

Les algèbres de Gerstenhaber exactes, aussi connues sous le nom d’algèbres de Batalin-Vilkovisky ou BV-algèbres interviennent dans le formalisme Batalin-Vilkovisky (en) qui permet d'étudier les champs fantômes (en) des théories de jauges lagrangiennes.

Définition

On dit que est une algèbre de Gerstenhaber (graduée) lorsque :

  • G est un espace vectoriel -gradué, le degré d'un élément a étant noté  ;
  • Le « produit » est de degré 0, c'est-à-dire que pour tout couple (a, b) d'éléments de G,  ;
  • Le crochet de Lie est de degré -1, c'est-à-dire que pour tout couple (a, b) d'éléments de G,  ;
  • est une algèbre graduée commutative ;
  • est une algèbre de Lie graduée (en) ;
  • La « relation de Leibniz » suivante est vérifiée pour tous a, b, c éléments de G : .

Exemples

Articles connexes

Références

    • Portail de l’algèbre
    Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.