Algorithme de Floyd-Warshall

En informatique, l'algorithme de Floyd-Warshall est un algorithme pour déterminer les distances des plus courts chemins entre toutes les paires de sommets dans un graphe orienté et pondéré, en temps cubique au nombre de sommets. Il est parfois appelé algorithme de Roy-Floyd-Warshall car il a été décrit par Bernard Roy en 1959[1] avant les articles de Floyd et Warshall datant de 1962.

Algorithme de Floyd-Warshall
Découvreur ou inventeur
Date de découverte
Problèmes liés
Algorithme de recherche de chemin (d), algorithme de la théorie des graphes (d)
Structure des données
Complexité en temps
Pire cas
Moyenne
Meilleur cas
Complexité en espace
Pire cas

Algorithme

L'algorithme de Floyd-Warshall prend en entrée un graphe orienté et valué, décrit par une matrice d'adjacence donnant le poids d'un arc lorsqu'il existe et la valeur sinon. Le poids d'un chemin entre deux sommets est la somme des poids sur les arcs constituant ce chemin. Les arcs du graphe peuvent avoir des poids négatifs, mais le graphe ne doit pas posséder de circuit de poids strictement négatif. L'algorithme calcule, pour chaque paire de sommets, le poids minimal parmi tous les chemins entre ces deux sommets.

L'algorithme de Floyd-Warshall est un exemple de programmation dynamique. On suppose que les sommets de G sont {1, 2, 3, 4, …, n}. Il résout successivement les sous-problèmes suivants :

est le poids minimal d'un chemin du sommet i au sommet j n'empruntant que des sommets intermédiaires dans {1, 2, 3, …, k} s'il en existe un, et sinon.

On note la matrice des . Pour k = 0, est la matrice d'adjacence définissant G. Maintenant, pour trouver une relation de récurrence, on considère un chemin p entre i et j de poids minimal dont les sommets intermédiaires sont dans {1, 2, 3, …, k}. De deux choses l'une :

  • soit p n'emprunte pas le sommet k ;
  • soit p emprunte exactement une fois le sommet k (car les circuits sont de poids positifs ou nuls) et p est donc la concaténation de deux chemins, entre i et k et k et j respectivement, dont les sommets intermédiaires sont dans {1, 2, 3, …, k-1}.

L'observation ci-dessus donne la relation de récurrence , pour tous i, j et k dans {1, 2, 3, 4…, n}. Ainsi on résout les sous-problèmes par valeur de k croissante.

Pseudo-code

Donnons d'abord une première version d'après l'analyse faite dans la section précédente.Le pseudo-code suivant effectue ce calcul :

 fonction FloydWarshall ()
    matrice d'adjacence de  (matrice )
   for  to 
       for  to 
           for  to 
                
   renvoyer 

On peut optimiser l'algorithme en effectuant le calcul en place dans une unique matrice . Le pseudo-code suivant effectue ce calcul :

 fonction FloydWarshall ()
   matrice d'adjacence de  (matrice )
   for  to 
       for  to 
           for  to 
                
   renvoyer 

La complexité en temps de cet algorithme (deuxième version) est O(n3) et sa complexité en espace O(n2).

Exemple

L'algorithme est exécuté sur le graphe à gauche.

  • Pour k=0, les seuls chemins sont les arcs directs.
  • Pour k=1, on regarde les chemins où le sommet 1 peut être un sommet intermédiaire. On trouve le chemin 2→1→3 qui est moins lourd que 2→3.
  • Pour k=2, maintenant, le sommet 2 peut être un sommet intermédiaire. La boîte rouge et la boîte bleu montrent que le chemin 4→2→1→3 est la concaténation du chemin 4→2 et 2→1→3 avec le sommet 2 comme sommet intermédiaire. Notons que le chemin 4→2→3 n'est pas considéré car c'est 2→1→3 qui est un chemin le plus léger obtenu à l'itération précédente et non 2→3.
  • Pour k=3, on trouve encore d'autres chemins.
  • Pour k=4, on a trouvé des plus courts chemins entre tous les sommets.

Applications

L'algorithme de Floyd-Warshall peut être utilisé dans les situations suivantes :

Améliorations

En 1993, Bahar et coll. ont donné une implémentation de l'algorithme de Floyd-Warshall pour des graphes représentés symboliquement à l'aide d'une structure de données appelée diagramme de décision algébriques qui est une généralisation des diagrammes de décision binaire[2].

Notes et références

  1. Bernard Roy, « Transitivité et connexité. », C. R. Acad. Sci. Paris, vol. 249, , p. 216–218
  2. R. Iris Bahar, Erica A. Frohm, Charles M. Gaona et Gary D. Hachtel, « Algebraic decision diagrams and their applications », ICCAD '93 Proceedings of the 1993 IEEE/ACM international conference on Computer-aided design, IEEE Computer Society Press, , p. 188–191 (ISBN 0818644907, lire en ligne, consulté le )

Références

Voir aussi

  • Portail de l'informatique théorique
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.