Géoïde

Un géoïde est une surface équipotentielle de référence du champ de pesanteur terrestre[1],[2].

Un géoïde est déterminé à terre par nivellement géométrique en utilisant aussi les mesures de gravimétrie ; les repères de nivellement des marégraphes sont, si possible, rapportés à un géoïde, en pratique la surface de référence du nivellement terrestre, « géoïde du nivellement terrestre ». En mer, le même géoïde peut être prolongé à l'aide de mesures gravimétriques. Un argument important pour l'utilisation d'un géoïde en tant que référence pour la marée est le fait que la référence verticale des modèles mathématiques utilisés pour simuler la dynamique des océans est une équipotentielle du champ de pesanteur. En tout point la verticale locale est perpendiculaire au géoïde. Une erreur très courante consiste à le confondre avec la surface moyenne océanographique (SMO)[3]. Ces deux surfaces doivent en effet être distinguées car la SMO est, par rapport au géoïde, affectée par des phénomènes, qualifiés ici de « météorologiques et océaniques ». Le géoïde de référence qui en résulte a la forme d'un ellipsoïde, légèrement déformé, aplati au niveau des pôles d'environ 0,335 %. C'est une représentation de la surface de la Terre plus précise que l'approximation sphérique ou ellipsoïdale.

Définition mathématique

1. Océan — 2. Ellipsoïde — 3. Déformation locale — 4. Continent — 5. Géoïde

Sur la Terre, tout point subit une accélération de la pesanteur . Cette accélération dérive d'un potentiel gravitationnel , tel que :

Les surfaces où le potentiel de pesanteur est constant sont des équipotentielles de pesanteur. Un géoïde est une surface équipotentielle de pesanteur proche du niveau moyen des mers. Cette surface peut être moyennée ou données en fonction du temps (les masses internes de la Terre et les océans bougent en permanence).

Comme l'orientation du champ de pesanteur varie à la surface de la Terre, un géoïde ne se superpose pas rigoureusement avec un ellipsoïde. La forme d'un géoïde est en effet « déformée », à cause de l'inégale répartition des masses à la surface et dans les profondeur du manteau terrestre et à l'intérieur. Il n'y a d'ailleurs pas de corrélation simple entre un modèle numérique de terrain et une description précise d'une géoïde.

La description du Géoide se fait traditionnellement par la décomposition en harmoniques sphériques sur l'ensemble de la surface du Globe. Cependant les usages de plus en plus localisés, et les données de plus en plus précises (spatiales [4]et gravimètres) obligent à l'usage d'autres familles de fonctions, comme les ondelettes ou les Slepian, permettant une description plus localisée dans le temps et dans l'espace.

Lien avec l'altitude

Une altitude exprime l'éloignement d'un point par rapport au géoïde. L'ellipsoïde et le géoïde ne concordent pas forcément. L'altitude le long d'une ligne de champ diffère donc de la hauteur de ce même point, mesurée par rapport à l'ellipsoïde. La différence entre les deux surfaces de référence, appelée hauteur du géoïde, peut aller jusqu'à une centaine de mètres.

Il existe plusieurs manières d'exprimer l'altitude : altitude dynamique, altitude orthométrique[5], altitude normale.

À quoi sert un géoïde ?

Maquette du « patatoïde de Potsdam » (2017) où les fluctuations du rayon terrestre sont amplifiées 15 000 fois (crédit Deutsches GeoForschungsZentrum).

Toute mesure a besoin d'une référence. Le géoïde étant une surface équipotentielle de pesanteur particulière, il sert de zéro de référence pour les mesures précises d'altitude. Les applications sont nombreuses : hydrologie (étude des bassins versants), aéronautique, balistique.

Dès lors que l'on a voulu envoyer des objets volumineux (fusées spatiales, missiles balistiques intercontinentaux) suivant des trajectoires elliptiques autour de la Terre, il devenait important de connaître avec précision le champ de pesanteur terrestre. Une méthode de prospection géophysique, la gravimétrie, utilise également le géoïde comme référence.

Mais cette surface irrégulière est difficile à utiliser dans les calculs, et on préfère alors utiliser un ellipsoïde, surface régulière qui lorsqu'elle est bien choisie (centre, dimensions, orientation...) s'écarte au maximum de quelques dizaines de mètres du géoïde, quel que soit le point considéré à la surface de la Terre (voir système géodésique). Cette erreur est visible sur certains appareils GPS : ceux-ci ne permettant que de mesurer la distance par rapport au centre de la Terre, les appareils utilisant l'approximation ellipsoïdale présentent une erreur dans leur calcul d'altitude.

Notes et références

  1. Définitions lexicographiques et étymologiques de « géoïde » dans le Trésor de la langue française informatisé, sur le site du Centre national de ressources textuelles et lexicales
  2. Entrée « géoïde », dans Richard Taillet, Loïc Villain et Pascal Febvre, Dictionnaire de physique, Bruxelles, De Boeck Université, 2009 (2e éd.) (1re éd. 2008), XII-741 p. (ISBN 978-2-8041-0248-7, OCLC 632092205, BNF 42122945), p. 252 (lire en ligne)
  3. « Géoïde », sur Réseau de référence des observations marégraphiques, (consulté le )
  4. « Comment déterminer le géoïde au-dessus des continents ? — Planet-Terre », sur planet-terre.ens-lyon.fr (consulté le )
  5. Par rapport au niveau de la mer. Voir Des coordonnées, oui mais dans quel système?, document établi par le CNRS

Voir aussi

Articles connexes

Liens externes

  • Portail de l’astronomie
  • Portail de la géodésie et de la géophysique
  • Portail de l’information géographique
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.