Catégorie des groupes abéliens

En mathématiques, la catégorie des groupes abéliens est une construction qui rend compte abstraitement des propriétés observées en algèbre dans l'étude des groupes abéliens.

Définition

Catégorie des groupes abéliens

La catégorie des groupes abéliens est la catégorie Ab définie ainsi :

C'est donc une sous-catégorie pleine de la catégorie Grp des groupes.

La catégorie des groupes abéliens s'identifie à la catégorie des modules sur  :

.

Catégories enrichies sur Ab

La catégorie Ab est monoïdale, et permet donc de définir une structure enrichie. Les catégories enrichies sur Ab sont dites préadditives (en).

Adjonctions

On a un foncteur d'oubli naturel U sur Ab qui consiste à « oublier » la structure de groupe . Ce foncteur admet un adjoint à gauche représenté par le foncteur libre qui associe à un ensemble le groupe abélien librement engendré par cet ensemble. La catégorie Ab est donc concrète.

Propriétés de la catégorie des groupes abéliens

Propriétés catégoriques

Objets

Morphismes

Limites

Note et référence

Note

  1. C'est le critère de Baer sur les modules injectifs.

Référence

(en) Saunders Mac Lane, Categories for the Working Mathematician [détail de l’édition]

  • Portail des mathématiques
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.