Décomposition de Wold

La décomposition de Wold ou décomposition de Wold-von Neumann est un résultat d'analyse fonctionnelle décrivant les isométries d'un espace de Hilbert.

Énoncé

Définition  Soient H un espace de Hilbert et T:H → H une isométrie. On dit que T est un opérateur de décalage si, pour tout élément x de H, quand .

Théorème  Soient H un espace de Hilbert et T:H → H une isométrie. Il existe F et G deux sous-espaces de H, en somme directe et stables par T, tels que est un opérateur de décalage et est un opérateur unitaire.

Version pour un nombre infini d'isométries

Définition  Soit une suite d'espaces de Hilbert. Soit, pour tout , une isométrie. On dit que est une famille marquante s'il existe une suite d'espaces de Hilbert disjoints et des opérateurs unitaires vérifiant, pour tout , la relation

.

Théorème  Soit une suite d'espaces de Hilbert. Soit, pour tout , une isométrie. Il existe, pour tout , des sous-espaces de en somme directe, qu'on note et , tels que

  •  ;
  •  ;
  • la famille est marquante ;
  • est un opérateur unitaire.

Analyse des processus stationnaires

En statistiques, une version du théorème de Wold permet de décomposer tout processus faiblement stationnaire en la somme d'une partie « déterministe » et d'une partie « stochastique ».

Théorème  Soit un processus stationnaire au sens faible. Il existe une suite de nombres réels , des processus faiblement stationnaires et tels que

,

et les propriétés suivantes sont vérifiées :

  •  ;
  •  ;
  • si  ;
  •  ;
  • le processus est déterministe, c'est-à-dire qu'il existe des réels tels que, pour tout , quand .

Références

  • (en) Marvin Rosenblum et James Rovnyak, Hardy Classes and Operator Theory, Oxford University Press, , 161 p. (ISBN 0-19-503591-7, lire en ligne)
  • (en) Tiberiu Constantinescu, Schur parameters, factorization and dilation problems, vol. 82, Basel/Boston/Berlin, Birkhäuser, coll. « Operator theory, Advances and applications », , 253 p. (ISBN 3-7643-5285-X, lire en ligne)
  • (en) Herman J. Bierens, Introduction to the mathematical and statistical foundations of econometrics, Cambridge University Press, coll. « Themes in modern econometrics », , 323 p. (ISBN 978-0-521-54224-1, lire en ligne)

Voir aussi

  • Portail de l'analyse
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.