Inégalité de Paley–Zygmund

En mathématiques, l’inégalité de Paley-Zygmund minore la probabilité qu'une variable aléatoire positive soit « petite », au sens de sa valeur moyenne attendue et de sa variance. Elle fut établie par Raymond Paley et Antoni Zygmund.

Pour les articles homonymes, voir Paley (homonymie).

Inégalité

Énoncé

Si Z ≥ 0 est une variable aléatoire de variance finie, et si 0 < θ < 1, alors

Démonstration

Tout d'abord, on a :

Le premier terme de la somme est égal, au plus, à . Le second terme est au plus égal à :

d'après l'inégalité de Cauchy-Schwarz.

Ainsi, l'inégalité de Paley-Zygmund est démontrée.

Inégalités liées

En réécrivant le morceau de droite, l'inégalité de Paley-Zygmund se met sous la forme :

L'inégalité de Tchebychev donne une meilleure minoration :

Références

  • (en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Paley–Zygmund inequality » (voir la liste des auteurs).
  • R.E.A.C.Paley et A.Zygmund, « A note on analytic functions in the unit circle », Proc. Camb. Phil. Soc. 28, 1932, 266-272.
  • Portail des probabilités et de la statistique
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.