Johann Friedrich Pfaff

Johann Friedrich Pfaff (né à Stuttgart le et mort le à Halle en province de Saxe) est un mathématicien allemand qui étudie les changements de variables dans les équations aux dérivées partielles.

Johann Friedrich Pfaff
Johann Friedrich Pfaff
Biographie
Naissance
Décès
Nationalité
Domicile
Formation
Activités
Fratrie
Wilhelm Pfaff (en)
Autres informations
A travaillé pour
Membre de
Dir. de thèse
Archives conservées par
Universitäts- und Landesbibliothek Sachsen-Anhalt (d)[1]

Biographie

Pfaff fréquente l'école ducale Hohe Karlsschule de Stuttgart de 1774 à 1785. Sur recommandation de Charles II de Wurtemberg, fondateur de l'école, Pfaff peut aller étudier les mathématiques (avec le Pr. Abraham Kästner) et la physique (avec le Pr. Lichtenberg) à l'université de Göttingen à partir de 1785. Il étudie en 1787 l'astronomie à Berlin sous la direction de Bode[réf. souhaitée]. Il termine sa formation à Vienne. En 1788, Lichtenberg le recommande pour le poste de professeur de mathématiques à l'université d'Helmstedt.

Il devait revenir à Pfaff de découvrir le génie du jeune Carl Friedrich Gauss : il est son directeur de thèse à partir de 1799[2] et appuie sa candidature « in absentia » auprès de l'université d'Helmstedt. Après la fermeture de l'université en 1810 à la suite de troubles anti-français, Pfaff rejoint l'université de Halle[3] qui venait juste de rouvrir ses portes, et obtient en 1812 la direction de l'observatoire de cette ville. Pfaff a un autre étudiant fameux en la personne d'August Ferdinand Möbius.

Œuvres

Pfaff publie en 1788 à Helmstedt une nouvelle méthode pour le calcul des différentielles. Cette même année, il inaugure également une série d'articles sur la sommation des séries, et en 1793, poursuivant les travaux d'Euler, le développement en série d'intégrales de produits de fonctions puissance.

C'est en 1815 qu'il publie son article fondamental Methodus generalis æquationes differentiarum particularum ... complete integrandi qui traite du problème de Pfaff, c'est-à-dire de l'intégration d'équations aux dérivées partielles de la forme

On appelle aujourd'hui une forme différentielle de ce type Forme de Pfaff de variables .

La méthode de Pfaff est généralisée en 1827 par Jacobi. Le terme « pfaffien » est introduit par Arthur Cayley pour désigner un polynôme lié à ces recherches, et dont le déterminant d'une matrice antisymétrique est le carré. On parle ainsi, par exemple, de contrainte pfaffienne.

Notes et références

  1. « http://sundoc.bibliothek.uni-halle.de/nachlaesse/pfaff.htm »
  2. (en) « Johann Friedrich Pfaff », sur le site du Mathematics Genealogy Project
  3. Halle, comme Helmstedt, appartenaient à l'époque au Royaume de Westphalie fondé par Napoléon. Les manuscrits de Pfaff sont d'ailleurs aujourd'hui en dépôt à la bibliothèque universitaire de Halle.

Liens externes

  • Portail de l’astronomie
  • Portail des mathématiques
  • Portail du XVIIIe siècle
  • Portail du XIXe siècle
  • Portail du Saint-Empire romain germanique
  • Portail du Royaume de Wurtemberg
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.