Matrice de Hilbert

En algèbre linéaire, une matrice de Hilbert (en hommage au mathématicien David Hilbert) est une matrice carrée de terme général

Ainsi, la matrice de Hilbert de taille 5 vaut

Les matrices de Hilbert servent d'exemples classiques de matrices mal conditionnées, ce qui en rend l'usage très délicat en analyse numérique. Par exemple, le coefficient de conditionnement (pour la norme 2) de la matrice précédente est de l'ordre de 4,8×10⁵.

Le déterminant de telles matrices peut être calculé de façon explicite, comme cas particulier d'un déterminant de Cauchy.

Si on interprète le terme général de la matrice de Hilbert comme

on peut y reconnaître une matrice de Gram pour les fonctions puissances et le produit scalaire usuel sur l'espace des fonctions de [0, 1] dans de carré intégrable. Puisque les fonctions puissances sont linéairement indépendantes, les matrices de Hilbert sont donc définies positives.

Article connexe

Matrice de Cauchy, généralisation d'une matrice de Hilbert

  • Portail des mathématiques
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.