Orthogonalisation simultanée

La méthode de Gauss construit une base orthogonale pour une forme quadratique donnée sur un espace vectoriel réel de dimension finie. Le théorème montre l'existence d'une base orthogonale en même temps pour deux formes quadratiques dont l'une est issue d'un produit scalaire.

Orthogonalisation simultanée dans le cas euclidien

Théorème  Soit E un espace euclidien. Si q est une forme quadratique sur E, alors il existe une base orthonormée pour le produit scalaire et orthogonale pour q.

Applications

Une conique à centre a des axes de symétrie orthogonaux.

Note et référence

  1. Michèle Audin, Géométrie, EDP Sciences, , 3e éd., 428 p. (ISBN 978-2-7598-0180-0, lire en ligne), p. 271-272 et 266.

Articles connexes

  • Portail des mathématiques
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.