Shoshana Kamin
Shoshana Kamin (russe : Шошана Камин, hébreu : שושנה קמין) (née le ), née Susanna L'vovna Kamenomostskaya (russe : Сусанна Львовна Каменомостская) est une mathématicienne russe et israélienne, travaillant sur la théorie des équations aux dérivées partielles paraboliques et les problèmes de physique mathématique associés. Elle est professeure émérite à l'université de Tel Aviv.
Pour les articles homonymes, voir Kamin.
Naissance | |
---|---|
Nationalités | |
Formation |
Université d'État de Moscou (candidat ès sciences techniques (d)) () |
Activités |
A travaillé pour | |
---|---|
Dir. de thèse |
Biographie
Shoshana Kamin fait ses études à l'université d'État de Moscou, dont elle est diplômée en 1953. Elle obtient son diplôme de « candidate ès sciences », équivalent d'un doctorat, de la même université en 1959[1], sous la supervision d'Olga Oleinik[2]. Elle obtient un visa pour Israël et quitte l'Union soviétique au début de 1971, avec ses fils[3].
Elle rejoint le département de mathématiques de l'université de Tel Aviv[4], où elle est maintenant professeure émérite[5].
Contributions
À la fin des années 1950, elle a donné la première preuve de l'existence et de l'unicité de la solution généralisée du problème de Stefan (en) tridimensionnel[6]. Sa preuve a été généralisée par Oleinik[7].
Plus tard, elle a apporté d'importantes contributions à l'étude de l'équation du milieu poreux (en)[8],
et aux équations elliptiques non linéaires[9].
Publications
- (ru) S. L. Kamenomostskaya, « On Stefan Problem », Nauchnye Doklady Vysshey Shkoly, Fiziko-Matematicheskie Nauki, vol. 1, no 1, , p. 60–62 (zbMATH 0143.13901)Le premier recueil de recherches Shoshana Kamin osur le problème de Stefan.
- (ru) S. L. Kamenomostskaya, « On Stefan's problem », Matematicheskii Sbornik, vol. 53(95), no 4, , p. 489–514 (Math Reviews 0141895, zbMATH 0102.09301, lire en ligne)Dans cet article et dans l'article (Oleinik 1960), les premières preuves d'existence et d'unicité pour la solution généralisée du problème tridimensionnel de Stefan sont données.
- (en) S. L. Kamenomostskaya, The asymptotic behaviour of the solution of the filtration equation, vol. 14, Israel Journal of Mathematics, , 76–87 p. (DOI 10.1007/BF02761536, Math Reviews 0315292, zbMATH 0254.35054), chap. 1.
- (en) S. Kamin, Similar solutions and the asymptotics of filtration equations, vol. 60, Archive for Rational Mechanics and Analysis, , 171–183 p. (DOI 10.1007/BF00250678, Bibcode 1976ArRMA..60..171K, Math Reviews 0397202, zbMATH 0336.76036), chap. 2Selon Vázquez 2007, p. 15, c'est l'un des articles les plus importants de la théorie asymptotique de l'équation du milieu poreux. Aussi, peut-être pour la dernière fois, elle a signé cet article avec ses noms de famille actuels et anciens, écrivant précisément « S. Kamin (Kamenomostskaya) ».
Références
- (Fomin et Shilov 1969, p. 562).
- Voir la liste des étudiants candidats d'Olga Oleinik dans (Venttsel' et al. 2003, p. 171) (ru).
- Voir son article (Kamin 1976, p. 171) et « Notice Shoshana Kamin », sur http://www.mathnet.ru/index.phtml/?option_lang=eng.
- Voir Milman 2006, p. 217. Il dit précisément :« The emigration of the mid-1970s had already brought mathematicians of the highest caliber and of all ages to Israel: Mikhail Lifshits and David Milman, Israel Gohberg and Il'ya Pyatetskii-Shapiro, Shoshana Kamin, Boris Moishezon, Yurii Gurevich and I (I include myself in this group) »
- « List of senior faculty members at the School of Mathematical Sciences », Tel Aviv University
- Voir les références Kamenomostskaya 1961 et Oleinik 1960, ainsi que l'étude historique sur le problème de Stefan dans Rubinstein 1971, p. 1–15.
- Voir Oleinik 1960 etRubinstein 1971, p. 1–15 and 310.
- Voir Vázquez 2007, p. 15.
- Voir Rădulescu 2007, p. 22.
Bibliographie
Références biographiques
- (ru) S. V. Fomin et G. E. Shilov, Том второй : Биобиблиография выпуск первый А–Л, Moscou, Издательство "Nauka (publisher), , 816 p. (Math Reviews 0250816, zbMATH 0199.28501)
- (ru) Vitali Milman, « Observations on the movement of people and ideas in twentieth-century mathematics », dans Andreï Bolibroukh, Youri Osipov , Iakov Sinaï, Mathematical Events of the Twentieth Century, Berlin-Heidelberg-New York / Moscou, Springer-Verlag / PHASIS, (ISBN 978-3-540-23235-3, Bibcode 2006metc.book.....A, Math Reviews 2179060, zbMATH 1092.01015, lire en ligne), p. 215.
- (ru) T. D. Venttsel', V. S. Vladimirov, V. V. Zhikov, A. M. Il'in, V. A. Il'in, V. A. Kondrat'ev, L. D. Kudryavtsev, E. F. Mishchenko, S. M. Nikol'skii, Yu. S. Osipov, E. V. Radkevich, N. Kh. Rozov, V. A. Sadovnichii, L. D. Faddeev, G. A. Chechkin, A. S. Shamaev, T. A. Shaposhnikova, A. A. Shkalikov, Ol'ga Arsen'evna Oleinik (obituary), vol. 58, Uspekhi Matematicheskikh Nauk, , 165–174 p. (DOI 10.1070/RM2003v058n01ABEH000607, Bibcode 2003RuMaS..58..161V, Math Reviews 1992133, zbMATH 1050.01527, lire en ligne), « 1(349) »Russian Mathematical Surveys : (en) Ol'ga Arsen'evna Oleinik, vol. 58, Russian Mathematical Surveys, , 161–172 p. (DOI 10.1070/RM2003v058n01ABEH000607, Math Reviews 1992133, zbMATH 1050.01527, lire en ligne), chap. 1.
Références scientifiques
- (en) O. A. Ladyjenskaïa, V. A. Solonnikov et N. N. Uraltseva, Linear and quasi-linear equations of parabolic type, vol. 23, Providence, RI, American Mathematical Society, , XI+648 (ISBN 978-0-8218-8653-3, Math Reviews 0241821, zbMATH 0174.15403, lire en ligne).
- (ru) O. A. Oleinik, A method of solution of the general Stefan problem, vol. 135, Proceedings of the USSR Academy of Sciences, , 1050–1057 p. (zbMATH 0131.09202).
- (en) Anvarbek M. Meirmanov, The Stefan Problem, vol. 3, Berlin-New York, Walter de Gruyter, , x+245 (ISBN 3-11-011479-8, Math Reviews 1154310, zbMATH 0751.35052, lire en ligne).
- Vicenţiu D. Rădulescu, Handbook of Differential Equations : Stationary Partial Differential Equations, vol. 4, North-Holland, , 485–593 p. (ISBN 978-0-444-53036-3, DOI 10.1016/S1874-5733(07)80010-6, Math Reviews 2569336, zbMATH 1193.35053, arXiv math/0607552), « Singular Phenomena in Nonlinear Elliptic Problems: From Blow-Up Boundary Solutions to Equations with Singular Nonlinearities ».
- (en) L. I. Rubinstein, The Stefan Problem, vol. 27, Providence, R.I., American Mathematical Society, (ISBN 0-8218-1577-6, Math Reviews 0351348, zbMATH 0219.35043, lire en ligne)Une référence complète jusqu'en 1962-1963
- Juan Luis Vázquez, The porous medium equation. Mathematical theory, Oxford, The Clarendon Press, Oxford University Press, coll. « Oxford Mathematical Monographs », , xxii+624 (ISBN 978-0-19-856903-9, Math Reviews 2286292, zbMATH 1107.35003, lire en ligne).
Voir aussi
Articles connexes
Liens externes
- Ressources relatives à la recherche :
- Portail des mathématiques