Théorème de Budan
Le théorème de Budan s'énonce ainsi :
Étant donnée une équation polynomiale p(x) = 0 de degré m, si on substitue à x, x+a et x+b, pour deux nombres a et b (a < b) et si, après chaque substitution, on compte les variations de signe que présente la suite des coefficients de p(x+a) et p(x+b), alors le nombre des racines de p(x) = 0 comprises entre a et b ne surpasse jamais celui des variations perdues de p(x+a) à p(x+b), et, quand il est moindre, la différence est toujours un nombre pair.
Ce théorème date de 1807 [1],[2] et est à l'origine de la méthode de Budan-Fourier.
Voir aussi
Article connexe
Références
- (en) Alkiviadis G. Akritas, « On the Budan–Fourier Controversy », ACM-SIGSAM Bulletin, vol. 15, no 1, , p. 8–10 (lire en ligne)
- (en) Alkiviadis G. Akritas, « Reflections on a Pair of Theorems by Budan and Fourier », Mathematics Magazine, vol. 55, no 5, , p. 292–298 (lire en ligne)
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.