Règle de signes de Descartes

En mathématiques, la règle de signes, d'abord décrite par René Descartes dans son livre La Géométrie, est une technique qui donne des informations partielles sur le nombre de racines réelles positives ou négatives d'un polynôme.

La règle est appliquée en comptant le nombre de changements de signe dans la suite formée par les  coefficients du polynôme. Si un coefficient est égal à zéro, ce terme est tout simplement omis de la suite.

Règle de signes de Descartes

Racines positives

La règle stipule que si les termes d'un polynôme d'une seule variable à coefficients réels sont ordonnés par ordre décroissant des exposants, alors le nombre de racines positives du polynôme est le nombre de changements de signe entre les coefficients consécutifs différents de zéro, éventuellement diminué d'un nombre pair[1]. Les racines multiples d'une même valeur sont comptabilisées séparément.

Racines négatives 

Comme corollaire de la règle, le nombre de racines négatives est le nombre de changements de signe après multiplication des coefficients des termes de puissance impaire par -1, ou diminué par un nombre pair. Cette procédure équivaut à substituer l'opposé de la variable à la variable elle-même. Par exemple, pour trouver le nombre de racines négatives de

,

nous demandons de manière équivalente combien de racines positives il y a pour dans

.

La règle des signes de Descartes pour donne le nombre de racines positives de , et comme cela donne le nombre de racines négatives de f.

Exemple : racines réelles

Le polynôme

a un changement de signe entre les deuxième et troisième termes (la suite des paires successives de signes est + +, + , ). Par conséquent, il a exactement une racine positive. Notez que le signe principal doit être pris en compte bien que, dans cet exemple particulier, il n'a pas d'incidence sur la réponse. Pour trouver le nombre de racines négatives, changer les signes des coefficients des termes d'exposants impairs, c'est-à-dire, appliquer la règle de Descartes des signes pour le polynôme pour obtenir un second polynôme

.

Ce polynôme a deux changements de signe (la suite des paires successives de signes est +, + +, + ), ce qui signifie que ce deuxième polynôme a deux ou aucune racines positives ; ainsi le polynôme d'origine a deux ou aucune racines négatives.

En fait, la factorisation du premier polynôme est

ainsi, les racines sont 1 (deux fois) et 1.

La factorisation du deuxième polynôme est

donc ici, les racines sont 1 (deux fois) et 1, les opposés des racines du polynôme d'origine.

Racines complexes

Tout polynôme de degré n a exactement n racines dans le plan complexe, comptées avec leur multiplicité. Donc, si f(x) est un polynôme qui n'a pas de racine nulle (ce qui peut être déterminé par l'inspection), alors le nombre minimum de racines complexes est égal à

p désigne le nombre maximum de racines positives, q désigne le nombre maximum de racines négatives (ces deux peuvent être trouvés en utilisant la règle de signes de Descartes), et n désigne le degré de l'équation.

Exemple :  coefficients nuls, racines complexes

Le polynôme

a un changement de signe, donc le nombre maximum de racines réelles positives est 1.

,

nous pouvons dire que le polynôme n'a aucune racine réelle négative. Donc, le nombre minimum de racines complexes est

.

Puisque les racines complexes d'un polynôme à coefficients réels sont des paires conjuguées, nous pouvons voir que x3 − 1 a exactement 2 racines complexes et 1 racine réelle (positive).

Cas particulier

La soustraction d'uniquement un multiple de 2 du nombre maximal de racines positives se produit parce que le polynôme peut avoir des racines complexes, qui viennent toujours par paires puisque la règle s'applique aux polynômes dont les coefficients sont réels. Ainsi, si l'on sait que le polynôme a toutes ses racines réelles, cette règle permet de trouver le nombre exact de racines positives et négatives. Comme il est facile de déterminer la multiplicité de l'éventuelle racine 0, le signe de toutes les racines peut être déterminé dans ce cas.

Généralisations

Si le polynôme réel f a k racines positives réelles comptées avec multiplicité alors, pour tout a > 0, il y a au moins k changements de signe dans la suite des coefficients de la série de Taylor de la fonction eaxf(x). Pour a assez grand, il y a exactement k changements de signe[2],[3].

Dans les années 1970 Askold Georgevich Khovanskiǐ a développé la théorie des fewnomials qui généralise la règle de Descartes[4]. La règle des signes peut être considérée comme indiquant que le nombre de racines réelles d'un polynôme dépend de la complexité du polynôme, et que cette complexité est proportionnelle au nombre de monômes dont il dispose, et non à son degré. Khovanskiǐ a montré que cela est vrai non seulement pour les polynômes, mais aussi pour les combinaisons algébriques de nombreuses fonctions transcendantes, les fonctions pfaffiennes (en).

Références

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Descartes' rule of signs » (voir la liste des auteurs).
  1. Pascal Boyer, Petit compagnon des nombres et de leurs applications, Paris, Calvage et Mounet, , 648 p. (ISBN 978-2-916352-75-6), III. Corps et théorie de Galois, chap. 6 (« Localisation des racines d'un polynôme »), p. 345.
  2. (en) D. R. Curtiss, « Recent extensions of Descartes' rule of signs », Annals of Maths., vol. 19, n ° 4, 1918, p. 251-278.
  3. (en) Vladimir P. Kostov, « A mapping defined by the Schur-Szegő composition », Comptes Rendus Acad. Bulg. Sci., vol. 63, n ° 7, 2010, p. 943-952, arxiv:1504.01870.
  4. (en) A. G. Khovanskiǐ, Fewnomials (traduit du russe par Smilka Zdravkovska), « Translations of Mathematical Monographs », AMS, Providence (RI), 1991 (ISBN 0-8218-4547-0), lien Zentralblatt MATH, p. 88.

Voir aussi

Articles connexes

Liens externes

Cet article intègre des éléments issus de la règle des signes de Descartes sur PlanetMath, qui est sous licence Creative Commons Attribution / Share-Alike.

  • Portail des mathématiques
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.